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Motivation ﬂ(“.
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" Global trend for exergy generation in small units ® Small Modular Reactors (SMR)
® Short construction time & low investment cost
® Operational flexibility within versatile grid architectures
®* Remote location
® Cogeneration capability (electricity and water desalination)

" Various SMR concepts worldwide under construction and development
® Light water cooled (CAREM, SMART, KLT-40S, CNP300, NuSCALE, ACPR50S)
® Helium cooled (HTR-PM)
® Liquid metal cooled SMR (PRISM, BREST, SVBR-100, ARC-100)

Superior SMR Feature compared to large Units

" Safety concept of innovative SMR-designs relying on passive SAFETY
* Exclusion of some accident initiators (e.g. Large break LOCA).
®* Heat removal (short & long term) natural circulation based plus passive heat removal
* Limited power provides options for infinite heat sinks (“walk-away reactor”?)

® Demonstration of passive safety performance pre-requisite for licensing

IS 1a

O Evaluation of the SMART-behaviour at steady state conditions
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KIT Approach to Evaluate the SMART-Plant ﬂ(".
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Consecutive approach to analyze SMART
" Task-1: Development of an integral plant model for a system thermal hydraulic
code e.g. TRACE
* Simulation of plant stationary conditions
* Extend the model for analysis of the plant under transient conditions

" Steps required for Task-1:

® Collection of public available data about SMART
¥ Geometry, materials, operation conditions
® Neutronic data, thermo-physical data of key-materials
¥ Representation of safety systems
¥ Integration of Containment Model

independent development of integral SMART model (for TRACE analysis)
based on public data
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Peculiarities of the SMR SMART Plant AT
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" Main features:
® Integrated design: primary pumps, pressurizer and heat-exchangers inside the RPV.
® Passive residual heat removal system (PRHRS for long term cooling).
® Large internal cooling source (Sump-integrated IRWST).

Source: Kang, H., Han, H., & Kim, Y. (2014). Thermal Sizing of Printed Circuit Steam Generator for Integral Reactor. Jeju: KAERI.
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Main SMART Plant Characteristics

® Core characteristics
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Reactor Type

Thermal core power
Active core height
Target cycle length
Fuel Material

FA type

Number of FAs

Power density

Cooling mode
Operating pressure
Core inlet temperature
Core outlet temperature

Flow Mixing Header

Core coolant mass flow rate
Steam Generator
Reactor Coolant Pump

SMART
330 MWy,
2.0m
36 months
<5w/o UO;
17x17 square

57
63 kW/liter
Forced Circulation
15 MPa
296 °C
e

2090 kg/s
Helically Coiled Type (8)
Canned Motor Pump (4)

Source: Keun Bae Park, “SMART: An Early Deployable Integral Reactor for Multi-Purpose Applications”, INPRO Dialogue Forum on Nuclear Energy Innovations: CUC for Small &
Medium-sized Nuclear Power Reactors, 10-14 October 2011, Vienna, Austria
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SMART Passive Safety Systems ﬂ(".
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SMART: Scheme of PRHRS

SMART: Connection of RPV with _ .
Source: Chung, Y. J., Lee, G. H., Kim, H. C., Kim, K. K., & Zee, S. Q. (2004).

FW and Steam L|neS Parameters which effect the mass flow in the PRHRS under a natural convection
condition. KAERI.

Source: Park, K. B. (2011). SMART An Early Deployable Reactor Source: Bae, S., Cho, S., Kang, K., & Park, H. (2016). Application of direct passive residual
for Multi-purpose Applications. KAERL heat removal system to the SMART reactor. Annals of Nuclear Energy .
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Numerical Tools and Solution Approach .ﬂ(".

Karlsruher Institut fur Technologie

" Numerical tools used:
* TRACE system thermal hydraulic code
®* SNAP as pre- and post processor

" Generation of a Data Base with the SMART data needed to develop the
TRACE model

Cartesian Core & Cylindrical Vessel Database

Cartesian Vessel Database

| Fills | | Vessel | [ Steam Generators Heat Structures |

| Breaks | [ Core | [ Core Heat Structures | [ References |
| Vessel | | Core Bypass | [ Power Component |

| Heat Structures | [ e | Pressurizer | [ Model Options |

| Power Component | | Pumps |

| Model Options | [ Steam Generators Cassettes |

| Steam Generators Helical Tubes |
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TRACE-Integral SMART Plant Model (1/4) ﬂ(".
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® Model of the RPV and Internals
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TRACE: Axial Nodalisation
SMART RPV Lower Part TRACE: 3D Cartesian VESSEL
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TRACE-Integral SMART Plant Model (2/4)
® Cylindrical 3D VESSEL Model of RPV

Axial Levels

Unit

Value

Remark

Data Status

21 0.5 Pump Visual Approximation
20 1,25 Trapezoid Visual Approximat
19 0.6
18 0.6
17 0.6
16 06
15 0.6 - .
m 0.6 Coolant Temperature Homogenization Zone SG Height
13 06
12 0.6
11 m 0.6
10 06
9 0,16 Fuel Alig; Plate Assumed same as Bottom Core Support Plate
8 0.6
’ 0.6 Core Adopted from Reference (5)
6 0.6
5 0.6
4 0,16 Bottom Core Support Plate Adopted from Reference (14)
2 0,7
2 0,7 Lower Plenum Visual Approximation
1 0,7
Radial levels Unit Value Remark Data Status

1 1,02 Core Adopted from Reference (26)
2 0.15 Annular Channel Visual Approximati
3 m 0,6
4 0,446 Downcomer Calculated from total vessel diameter
5 0.6

Azimutal Levels Unit Value Remark Data Status
1 45
2 45
3 45
3 ° :: Steam Generators Design decision
6 45
7 43
8 45

TRACE: Axial Nodalisation
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: } Level-4
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® Cylindrical Vessel Coolant Path
® 4 axial levels to improve flow mixer model
® Dbetter model of core with Cartesian mesh
® easier representation of horizontal flow
though skirt (level 1 to 3 in ring 2)

INR



TRACE-Integral SMART Plant Model (3/4) ST

/ff;—l-
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Pump inlet Pump outlet

3D VESSEL Model: Location of pumps

Inlet and outlet azimuthal distribution

3D VESSEL Model: Location of the In-Vessel Heat Exchangers
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3D VESSEL Cylindrical SNAP

Model (21x5x8 cells) Visualization: RPV
Blue dots: Connections

with the Cartesian core
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TRACE-Integral SMART Plant Model (4/4)
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.'/ H\!
IRWST IRWST
Overall form Adopted from Reference (24) - Cylindrical
Diameter Adopted from Reference (32) m 36
Height Adopted from Reference (32) m 68.4
Wall Thickness | Adopted from Reference (32) m 1.4
Volume Adopted from Reference (32) m? 56390
Design Pressure | Adopted from Reference (24) | MPa 0.42
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TRACE Integral SMART Model: Simulation Results ~NCIT
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" TRACE steady state simulation
" Steady state reached after 287 seconds

Inlet Core Temp. (K) 570.26 568.85
Outlet Core Temp. (K) 597.30 596,15
Outlet SG Temp. (K) 567,85 571 (theoretical)
Steam Mass Flow (kg/s) 160,301 160,8
Steam Pressure (Pa) 5,198E06 5,2E06
Reactor Coolant Flow (kg's) 2090 2090
Bypass Mass Flow (kg/s) 46,56 45,98
Core Mass Flow (kg/s) 2043,44 2044,02
SG Mass Flow (kg/s) 261,25 261
Pump Impeller Speed (rad/s) 178,22 179
Core Pressure Drop (KPa) (values between 5 & 45)

SG Cassette Pressure Drop (KPa) Q 55

D ——

SG Coil Pressure Drop (KPa) “ 170

®  Observation :

* TRACE predictions close to reference data find in the open literature
* Pressure drop over SG-cassette show largest deviation
* Further improvement necessary =» close contact with SMART developers needed!
(detailed design information)
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TRACE-Model of PRHRS AT
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" Depiction of Passive Residual Heat Removal System (PRHRS)

ECT
\ 1.5m
=2 Emergency
l‘ Cooldown Tank
i MSIV
dif:;::lrnge
A Compensating
Tank
) 4.2m
7
SG
236w | Helical
Feedwater
supply
TRACE Model of the Secondary Side:
= Connections with the Passive Residual Heat Removal System. SMART: Scheme of PRHRS

Source: Chung, Y. J., Lee, G. H., Kim, H. C., Kim, K. K., & Zee, S.
Q. (2004). Parameters which effect the mass flow in the PRHRS
under a natural convection condition. KAERI.

ECT=Emergency Cooldown Tank
CT =Compensating Tank

SG = Steam Generator

HX =Heat Exchanger
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SMART SS: SNAP Visualization of Key Parameters ~NCIT
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Summary .\X‘(IT
" Integral model of the SMART plant developed using public available data

®* Comparison of TRACE-prediction with reference data is promising
® For further improvements close contact with SMART-developers needed

" Integral TRACE model includes also safety systems and hence it is ready
to be used for transient analysis of SMART

® Coupled with a 3D core model e.g. PARCS/TRACE model
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Outlook
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" KIT developed a new core design (KSMR core) from scratch which can be

integrated in the SMART-plant (boron free core).
" Currently selected KSMR-transients are analysed with coupled codes

(PARCS/SCF and TRACE/PARCS) e.g. REA and Steam Line Break (SLB).

SLB occurrence
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KSMR behaviour under SLB predicted by TRACE/PARCS

Source: Y. Alzaben, V. Sanchez, R. Stieglitz; “Simulation of KSMR Core Zero Power Conditions Using The Monte Carlo Code Serpent”, 48th Annual Meeting on Nuclear Technology
(AMNT 2017), Berlin, Germany, May 16-17, 2017
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Outlook ﬂ(".
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" Longterm decay heat removal feasible ?

SLB occurrence |
5 = Trip Initiated by Low Steam Pressure Signal

Trip Initiated by High Core Power Signal

6 ;>
H
:

efficient removal by PRHRS

Total Heat Transfer Rate to Emergency
Cooldown Tank (% of Nominal Power)

_10 "7150 300 450 600 750 900 1050 1200 1350 1500 1650 1800

Simulation Time (sec)

KSMR behaviour under SLB predicted by TRACE/PARCS

Source: Y. Alzaben, V. Sanchez, R. Stieglitz; “Simulation of KSMR Core Zero Power Conditions Using The Monte Carlo Code Serpent”, 48th Annual Meeting on Nuclear Technology
(AMNT 2017), Berlin, Germany, May 16-17, 2017
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announcement of 25t Frédéric Joliot & Otto Hahn Summer School
on nuclear reactors “Physics, Fuels and Systems” 2019

“Innovative Reactors: Matching the Design to Future Deployment and
Energy Needs”

21st-30th August 2019 in Karlsruhe

Topics to be covered

Close to maturity innovative reactor concepts for various purposes/missions
Near-term deployment power-to-grid LWR technology

Multi-mission liquid fuel reactors

Space propulsion/deep space exploration

Minimal operation and intervention reactors

Power provision in remote areas , versatile reactors

Group Reflection, Seminar

OGO OO
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