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Zusammenfassung 

Ergebnisse des unter Bedingungen eines LOCA-Störfalls ausgeführten Versuches  QUENCH-LOCA-2 mit M5®-

Hüllrohren 

Der QUENCH-L2-Bündelversuch wurde im Rahmen der QUENCH-LOCA-Testserie durchgeführt. Die M5®-Rohre 
im Lieferzustand mit Außendurchmesser von 10,75 mm wurden als Hüllrohre von 21 elektrisch beheizten 
Stäbe verwendet. Wie schon im früheren QUENCH-L1-Test, wurden die Brennstabsimulatoren separat mit 
Krypton bis zu einem Innendruck von 55 bar beaufschlagt. Bündelkonfiguration und Testprotokoll waren 
ähnlich denen des Referenztests QUENCH-L1 mit Zry-4-Hüllrohren. Eine Änderung zu dem vorhergehenden 
Versuch war die Verwendung von Wolfram für die Heizelemente mit 4,6 mm Durchmesser statt der 
Tantalheizer mit 6,0 mm Durchmesser. Diese Maßnahme erlaubte, den störenden Einfluss der hohen Duktilität 
des Tantals bei hohen Temperaturen zu vermeiden. Das spezifische Ziel des QUENCH-L2-Tests war es, 
Informationen über das Verhalten der M5®-Legierung unter Bedingungen eines LOCA-Störfalls mit komplettem 
Bruch eines Rohres des Kühlkreislaufes (LB-LOCA) bereitzustellen, besonders mit Fokus  auf die so genannte 
sekundäre Hydrierung des Hüllrohrmaterials. 

Der Versuch wurde am 30. Juli 2013 am Karlsruher Institut für Technologie erfolgreich durchgeführt. Das 
Temperatur-Zeit-Szenario entsprach dem eines typischen LB-LOCA-Störfalls in einem deutschen DWR. Die 
Vortestberechnungen wurden am Paul Scherrer Institut mit dem SCDAP/RELAP5-Code durchgeführt. 

Vor dem Experiment wurden die Stäbe mit Krypton bis zu einem Druck von 20 bar gefüllt. Der Versuch startete 
mit der Stabilisierung des Bündels bei einer elektrischen Leistung von 3,6 kW. Dabei wurden 6 g/s Argon und 
2 g/s überhitzter Dampf in das Bündel injiziert, sodass die maximale Bündeltemperatur der 
Stabilisierungsphase von ca. 860 K erreicht wurde. Während dieser Phase wurde der Stabinnendruck auf 
55 bar erhöht. Das Bündel wurde bei 860 K und 55 bar für 1000 s gehalten. Die Transiente wurde durch 
schnelles Erhöhen (3,8 s) der elektrischen Leistung auf 42 kW gestartet, gefolgt von einem Anstieg auf 60 kW 
innerhalb der nächsten 42 s. In diesem Zustand wurde das Bündel für den Rest der transienten Phase (bis 77 s) 
gehalten. Während dieses Zeitraums stieg die Temperatur wie geplant auf ein maximales Niveau von etwas 
oberhalb 1350 K (maximal gemessen wurden 1398 K). Die durchschnittliche Aufheizgeschwindigkeit in der 
transienten Phase betrug 7,6 K/s. 

Die erhöhte Duktilität der Hüllrohre führte zu einer fortschreitenden Rohrdehnung und schließlich zum 
Bersten von allen Hüllrohren. Das erste Bersten erfolgte 48 s nach Start  der Transiente beim inneren Stab # 08 
bei etwa 1113 K. Alle Stäbe versagten innerhalb der nächsten 20 s. Die Bersttemperaturen lagen zwischen 
1050 K und 1195 K (ähnlich denen beim QUENCH-L1-Versuch). Der azimutale Temperaturunterschied erreichte 
70 K für einige Stäbe zum Zeitpunkt des Berstens. Die durchschnittliche Dauer des Druckabbaus in den Stäben 
auf Systemdruck betrug etwa 38 s (ähnlich den Versuchen QUENCH-L0 und -L1). 

Der Versuch wurde fortgesetzt mit einer Leistungsrücknahme auf 3,5 kW (Simulation der Nachzerfallswärme) 
bei 78 s und der Injektion von 20 g/s Dampf. In dieser Phase fand eine kontinuierliche Abkühlung auf ca. 
1030 K statt. Der Kühlphase folgte nach 208 s das Abschrecken mit 100 g/s Wasser. Die ersten 40 s waren 
nötig, um das kleine Volumen am Bündelfuß zu füllen; während dieser Zeit erhöhte sich die Temperatur etwas 
aufgrund der Abschaltung der Dampfeinspeisung. Das erste Abschrecken wurde nach 238 s in den unteren 
Ebenen des Bündels registriert. Die Abschreckfront bewegte sich allmählich nach oben, und das erste 
Abschrecken im Ballooning-Bereich fand nach 265 s statt. Die komplette Bündelkühlung wurde nach 300 s 
erreicht. 
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Die Nachuntersuchung mit Videoskop zeigte typische Ballooning-Bilder in den Ebenen zwischen 800 und 
1000 mm. Einige Stäbe wiesen zwischen den Gitterabstandshaltern bei 550 und 1050 mm Höhe Krümmungen 
auf. Fragmentierungen der Hüllrohre wurde nicht beobachtet (Restduktilität ist ausreichend). Es wurde 
umfangreiches Datenmaterial aus den Laserscanner-Messungen herangezogen, um das Ausmaß der Bündel-
Blockade für jede Ebene zu ermitteln. Die maximale Blockade des Kühlkanals (15% bei 960 mm) war niedriger 
im Vergleich zu QUENCH-L0 und -L1 (ca. 23%). Aufgrund moderater Blockade wurde eine gute Kühlbarkeit für 
alle drei Bündel QUENCH-L0, -L1 und -L2 beobachtet. Wirbelstrommessungen an den Außenoberflächen jedes 
Hüllrohres zeigten im Vergleich zu den QUENCH-L0 und L1-Tests einen niedrigeren Oxidationsgrad.  

Eine detaillierte Bestimmung der Konzentration und Verteilung des absorbierten Wasserstoffs wurde mittels 
Neutronenradio- und Tomographie durchgeführt. Ausgeprägte Wasserstoffbänder wurden nur bei fünf 
Innenstäben beobachtet, und nur in zwei Fällen lag die Wasserstoffkonzentration über 1000 Gew.-ppm (ca. 
1100 Gew.-ppm). Alle anderen zwölf geprüften Hüllrohre zeigten Konzentrationen zwischen 60 und 670 Gew.-
ppm. 

Alle 21 Hüllrohre wurden in Zugversuchen getestet. Ähnlich den QUENCH-L0-Stäben mit Wasserstoff-
konzentrationen unter 1500 Gew.-ppm versagten neun QUENCH-L2-Hüllrohre an der Berststelle aufgrund von 
Spannungskonzentration. Alle anderen Hüllrohre versagten nach Einschnürung außerhalb des Ballooning-
Bereiches. 
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Abstract 

The QUENCH-L2 bundle experiment was performed in the framework of the QUENCH-LOCA test series. As-
received M5® tubes with an outside diameter of 10.75 mm were used as claddings of 21 electrical heated rods. 
Similar to the previous QUENCH-L1 test, the fuel rod simulators were separately internally pressurized with 
krypton to 55 bar. Bundle configuration and test protocol were similar to the reference test QUENCH-L1 with 
Zry-4 cladding. A change related to the previous experiment was the use of tungsten for the heater elements 
with 4.6 mm diameter instead of tantalum heaters with 6.0 mm diameter. This measure avoids a disturbing 
influence of too high ductility of tantalum at high temperatures. Specific objectives of QUENCH-L2 were to 
provide information about the behaviour of the M5® alloy on the response to a best-estimate large break 
LOCA sequence, as regards the impact of burst parameters on secondary hydriding of the cladding. 

The experiment was successfully conducted at the Karlsruhe Institute of Technology on July 30, 2013 according 
to a temperature/time-scenario typical for a LB LOCA in a German PWR. Pre-test calculations were performed 
at Paul Scherrer Institute by using the SCDAP/RELAP5 code system. 

Before the experiment, the rods were filled with krypton to 20 bar. The experiment started by stabilizing the 
bundle conditions with an application of electrical bundle power of 3.6 kW in 6 g/s argon plus 2 g/s 
superheated steam, resulting in maximum bundle temperatures of about 860 K. During this stabilization phase 
the rods were pressurized with krypton to 55 bar. The bundle was kept at peak cladding temperature (PCT) of 
860 K and internal rod pressure 55 bar for 1000 s before the transient started. The transient was initiated by 
rapidly increasing the electrical power to 42 kW, reached after 3.8 s, followed by a steady increase to 60 kW 
within the next 42 s and maintained at that level for the rest of the transient (until 77 s). During this period, 
the temperatures increased from their initial values to a maximum in excess of 1350 K, as planned. The 
average heatup rate at the maximum temperature location was 7.6 K/s. 

The increased ductility of the heated cladding resulted in a progressive ballooning and consequent burst of all 
claddings. The first burst occurred 48 s after transient initiation at the inner rod #08 at about 1113 K. All rods 
failed within the next 20 s. The burst temperatures were between 1050 K and 1195 K (similar to QUENCH-L1). 
The azimuthal temperature gradient for several rods reached 70 K on the burst time. The average 
depressurization duration of rods to the system pressure was about 38 s (similar to tests QUENCH-L0 and -L1). 

The experiment continued with a power decrease to 3.5 kW at 78 s to simulate decay heat and injection of 
steam at nominal 20 g/s. After short period of peak cladding temperature increase to 1398 K, the bundle 
cooling was established. In this test stage mostly steady cooling to about 1030 K occurred. The cooling phase 
was followed by the injection of up to 100 g/s water from 208 s. The first 40 s were needed to fill the lower 
volume; during this time the temperatures increased somewhat in the absence of significant steam flow. The 
first quenching occurred at the bottom of the bundle at 238 s. Quenching progressed readily toward the top, 
and the first quench in the region of ballooning occurred at 265 s. Complete quenching was achieved at 300 s. 

The post-test videoscope inspection showed typical ballooning pictures at elevations between about 800 and 
1000 mm. Some rods seem to be bent between the grid spacers located at 550 and 1050 mm. No 
fragmentation of claddings was observed (residual ductility is sufficient). The data from the laser scanner 
measurements allow defining the degree of the bundle blockage for each elevation. The maximum blockage 
ratio of the cooling channel (15% at 960 mm) was lower in comparison to QUENCH-L0 and -L1 (about 23%). 

                                                           

 The QUENCH-LOCA test series is supported by VGB Power Tech Service GmbH 
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Due to moderate blockage a good bundle coolability was kept for all three bundles QUENCH-L0, -L1 and -L2. 
Eddy-current measurements at the outer surface of each cladding revealed lower degree of oxidation in 
comparison to QUENCH-L0 and -L1 tests. 

A detailed determination of concentration and distribution of the absorbed hydrogen was realized by means 
of neutron radio- and tomography. Pronounced hydrogen bands in the claddings were observed only for five 
inner rods and only in two cases the hydrogen concentration exceeds 1000 wppm (about 1100 wppm). All 
other twelve investigated claddings showed concentrations between 60 and 670 wppm. 

All 21 claddings were subjected to tensile tests. Nine claddings failed during tensile tests due to stress 
concentration at the burst position – similar to rods of the QUENCH-L0 bundle with hydrogen concentration 
less of 1500 wppm. All other claddings failed due to fracture after necking at elevations outside of ballooning 
region. 
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Introduction 

Under the licensing procedures for pressurized water reactors (PWR) evidence must be given that the impacts 
of all pipe ruptures hypothetically occurring in the primary loop implying a loss of coolant can be controlled. 
The double-ended break of the main coolant line between the main coolant pump and the reactor pressure 
vessel is considered to constitute the design basis for the emergency core cooling system (ECCS) in a loss-of-
coolant accident (LOCA). The break of a coolant line leads to the loss of coolant in the primary circuit of a PWR 
and the decrease in system pressure from 15.5 MPa to eventually around 0.32 MPa (boiling point, 
corresponding to 135°C). Consequently, the remaining coolant in the core as well as the emergency cooling 
water fed into the reactor core evaporate, the temperature of the fuel elements rises and the fuel rods start to 
balloon since they contain pressurized filling gas and fission gas products. At temperatures above 700°C, the 
load within the metallic cladding wall reaches a critical value and the most ballooned tube section finally 
bursts. 

Upon rupture of the reactor coolant line the reactor is shut down. However, as the production of decay heat 
will be continued, reliable sustainment of the reactor core rod geometry and long-term emergency cooling of 
the core are required. To retain the core rod geometry the cladding embrittlement increasing during oxidation 
in steam has to be limited to an acceptable value. The current LOCA criteria and their safety goals are applied 
worldwide with minor modifications since the NRC release in 1973 [1, 2]. The criteria are given as limits on 
peak cladding temperature (TPCT ≤ 1200°C) and on oxidation level ECR (equivalent cladding reacted) calculated 
as a percentage of cladding oxidized (ECR ≤ 17% using the Baker-Just oxidation correlation). These two items 
constitute the criterion of cladding embrittlement due to oxygen uptake and, according to the RSK (Reactor 
Safety Commission) Guidelines, are included in the current German LOCA criteria, too [3]. 

The results elaborated worldwide in the 1980’s on the Zircaloy-4 (Zry-4) cladding tubes behavior (oxidation, 
deformation and bundle coolability) under LOCA conditions constitute a reliable data base and an important 
input for the safety assessment of LWRs. With respect to the LOCA conditions for German LWRs, different out-
off-pile [4, 5, 6], the FR2 in-pile [7] single rod as well as the REBEKA bundle tests [8, 9] were performed. It was 
concluded that the ECC-criteria established by licensing authorities are conservative and that the coolability of 
an LWR and the public safety can be maintained in a LOCA [10]. In-pile test data (with burn-up up to 35 
MWd/kgU) were consistent with the out-of-pile data and did not indicate an influence of the nuclear 
environment on cladding deformation. 

Due to major advantages in fuel-cycle costs, optimised reactor operation, and waste management, the current 
trend in the nuclear industry is to increase fuel burn-up. At high burn-up, fuel rods fabricated from 
conventional Zry-4 often exhibit significant oxidation, hydriding, and oxide spallation. Thus, fuel vendors have 
developed and proposed the use of new cladding alloys, such as Duplex DX-D4, M5®, ZIRLO™ and other. 
Therefore, it is important to verify the safety margins for high burn-up fuel and fuel claddings with advanced 
alloys. In recognition of this, LOCA-related behaviour of new types of cladding is being actively investigated in 
several countries [11, 12]. Due to long cladding hydriding period for the high fuel burn-up, post-quench 
ductility is not only influenced by oxidation, it is also significantly depending on the hydrogen concentration. 
Consequently, the 17% ECR limit is inadequate to ensure post-quench ductility at hydrogen concentrations 
higher than ≈500 wppm [13]. Due to so-called secondary hydriding (during oxidation of inner cladding surface 
after burst), which was firstly observed by JAERI [14], the hydrogen content can reach 4000 wppm in Zircaloy 
cladding regions around the burst [15]. 
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Particularly to investigate the influence of the secondary hydriding phenomena on the applicability of the 
embrittlement criteria for the German nuclear reactors, it was decided to perform the QUENCH-LOCA bundle 
test series in the QUENCH facility of KIT, supported by the association of the German utilities (VGB). 
Additionally, the QUENCH-LOCA bundle tests could support experiments performed in-pile and in-cell, 
respectively, e.g. single-rod tests as those planned in the OECD SCIP-2 project [16]. Compared to single-rod 
experiments, bundle tests have the advantage to study the mutual interference of rod ballooning among fuel 
rod simulators as well as to take into account the local coolant channel blockages in this more realistic 
arrangement. 

The first test QUENCH-L0 was performed with Zry-4 cladding tubes not pre-oxidised on 22.07.2010 as 
commissioning test and terminated with reflood immediately after the transient phase [17, 18]. The QUENCH-
L1 test was performed on 02.02.2012 as reference test, using a similar bundle compared to the QUENCH-L0 
test but including a cool-down phase between transient and reflood [19]. 
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1 Description of the Test Facility 

The QUENCH facility was constructed 1997 at KIT for investigation of the hydrogen source term during reflood, 
i.e. of the measurement of hydrogen release during the reflood of an overheated reactor core. Since then 17 
bundle tests were successfully performed under severe accident conditions (Table 1). The main components of 
the QUENCH test facility are presented in Fig. 1. The test section is enclosed by a safety containment with a 
wall thickness of 5.6 mm and an inner diameter of 801.8 mm. The facility can be operated in two modes: a 
forced-convection mode depicted in the flow diagram of Fig. 2 and a boil-off mode. In the forced-convection 
mode (relevant for QUENCH-L2) superheated steam from the steam generator and superheater together with 
argon as a carrier gas enter the test bundle at the bottom (Figs. 3 and 4). The system pressure in the test 
section for the QUENCH-LOCA test is about 0.3 MPa. The argon, steam and hydrogen produced in the 
zirconium-steam reaction flow upward inside the bundle and from the outlet at the top through a water-
cooled off-gas pipe to the condenser where the remaining steam is separated from the non-condensable gases 
argon and hydrogen. The water cooling circuits for bundle head and off-gas pipe are temperature-controlled 
to guarantee that the steam/gas temperature is high enough so that condensation at the test section outlet 
and inside the off-gas pipe can be avoided. The temperature at the bundle head is kept at 348 K, and the flow 
rate of the cooling water is ~250 g/s. 

The off-gas pipe consists of a water-cooled inner pipe with a countercurrent flow and a flow rate of ~370 g/s. 
The water inlet temperature is controlled at 393 K. Between the off-gas pipe and inner cooling jacket there is 
stagnant off-gas. The main dimensions of the tubes that make up the off-gas pipe are: 

 Inner pipe: outer diameter 139.7 mm, wall thickness 4.5 mm; total length 3256 mm,  
material: stainless steel; 

 Inner cooling jacket: outer diameter 154 mm, wall thickness 2 mm, material: stainless steel; 
 Outer cooling jacket: outer diameter 168.3 mm, wall thickness 5 mm, material: stainless steel. 

The quenching water is injected into the bundle through a separate line marked “bottom quenching” in Fig. 4. 
The design characteristics of the test bundle are given in Table 2. The test bundle is made up of 21 fuel rod 
simulators, each with a length of approximately 2.5 m, and of four corner rods (see cross section in Fig. 5). The 
bundle is surrounded by a Zr shroud, which has two functions: 1) The shroud acts as steam and gas guide tube; 
2) It simulates an adiabatic surrounding of the reactor core. The consideration of heated rod claddings, corner 
rods and shroud, manufactured from similar zirconium alloys, results in the surface of 30.6 effective rod 
simulators. 

The fuel rod simulators (Fig. 6) are held in their positions by five grid spacers, four made of Zry-4, and one of 
Inconel 718 in the lower bundle zone. This bundle design is applied with a pitch of 14.3 mm. All test rods are 
heated electrically over a length of 1900 mm (thereof 1024 mm in the middle with W heater and residual 
length with Mo heaters at rod ends). The M5® cladding of the fuel rod simulator has an outside diameter of 
10.75 mm and a wall thickness of 0.725 mm (see also Table 2). The cladding properties are listed in Table 3. 

Tungsten (chemically clean tungsten) heating elements of 4.6 mm diameter are installed in the center of rods. 
W heaters with this small diameter were used for the first time in the QUENCH-L2 experiment. Their higher 
electrical resistance in comparison to tungsten heaters of 6 mm diameter (used for commissioning test 
QUENCH-L0) results in higher maximum heating rates, especially during the first transient phase and hence to 
a more prototypical test conduct. The tungsten heater with diameter of 4.6 mm produce similar heat amount 
as the tantalum heaters with diameter of 6 mm (used for the QUENCH-L1 test) but they are more rigid at high 
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temperatures. These heaters are surrounded by annular yttria-stabilized ZrO2 pellets. The physical properties 
of the ZrO2 pellets are described in Table 4. 

The tungsten heaters are connected to molybdenum heater (chemically clean molybdenum) and copper 
electrode (material 2.1293 with Cr 0.8, Zr 0.08 and balance Cu) at each end of the W heater. The molybdenum 

and copper parts are joined by high-frequency/high-temperature brazing under vacuum (2x10
-3

 mbar) using an 
AuNi 18 powder (particle size <105 μm). For electrical insulation the surfaces of both Mo and Cu parts are 
plasma-coated with 0.2 mm ZrO2. To protect the copper electrodes and the O-ring-sealed wall penetrations 
against excessive heat they are water-cooled (lower and upper cooling chambers filled with demineralized 
water). 

The copper electrodes are connected to the DC electric power supply by means of special sliding contacts at 
the top and bottom. The total heating power is limited by a maximal current of 7200 A and voltage of 9 V. Two 
DC-generators were used for two groups of rods connected in parallel: 1) 10 internal rods: #1 - #9 and rod #15; 
2) 11 external rods: #10 - #14 and #16 - #21. The electrical resistance of the internal rod heating system, 
combined of W and Mo heaters as well as Cu alloy electrodes, was measured before (at the end of bundle 
assembling) and after the test (Table 5). The measured electric resistance of a single heater (W+Mo+Cu 
sections) is about 4.7 mΩ at room temperature. This value increases significantly with temperature. 
The additional resistance of the external electric circuit between the axial end of the single heater and the 
connection to the generator (sliding contacts, cables, and bolts) is 3.75 mΩ for the inner rod group and 
4.05 mΩ for the outer rod group. These values can be taken as constant because the external electric circuit 
remains at ambient temperature throughout the experiment. 

The lower boundary for the lower cooling chamber is a sealing plate made of stainless steel with plastic inlays 
for electrical insulation, sealed toward the system by O-shaped rings. The upper boundary of the lower cooling 
chamber is a sealing plate of stainless steel. An insulation plate made of plastic (PEEK) forms the top of the 
upper cooling chamber, and a sealing plate of Al2O3, functioning as a heat-protection shield, is the lower 
boundary of the upper cooling chamber (see Fig. 6). 

In the region below the upper Al2O3 plate the copper electrode is connected firmly to the cladding. This is done 
by rotary swaging the cladding onto the electrode. In the swaging region a sleeve of boron nitride is put 
between electrode and cladding for electrical insulation. The axial position of the fuel rod simulator in the test 
bundle is fixed by a groove and a locking ring in the top Cu electrodes. Referred to the test bundle the fixing 
point of the fuel rod simulators is located directly above the upper edge of the upper insulation plate. So, 
during operation the fuel rod simulators are allowed to expand downwards. Clearance for expansion of the 
test rods is provided in the region of the lower sealing plate. Also in this region, relative movement between 
cladding and internal heater/electrode can take place. 

The test bundle is surrounded by a 3.17 mm thick shroud (79.66 mm ID) made of Zr 702 with a 36 mm thick 
ZrO2 fiber insulation (physical properties are given in Table 6) and an annular cooling jacket made of Inconel 
600 (inner tube) and stainless steel (outer tube; see Fig. 5). The annulus between shroud and cooling jacket 
was filled (after several cycles of degasing) with stagnant argon of about 0.3 MPa (Fig. 18) and was connected 
to a flow-controlled argon feeding system in order to prevent steam access to the annulus after possible 
shroud failure. The 6.7 mm annulus of the cooling jacket is cooled by an argon flow. Above the W heater, i.e. 
above the 1024 mm elevation there is no ZrO2 fiber insulation to allow for higher radial heat losses. This region 
of the cooling jacket is cooled by a water flow (Figs. 3 and 4). Both, the lack of ZrO2 insulation above the W 
heaters and the water cooling, force the axial temperature maximum downward. 
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Insertion of four corner rods avoids an atypically large flow cross section at the outer positions and hence 
helps to obtain a rather uniform radial temperature profile. 

According to LOCA scenarios the fuel rod simulators were separately pressurized. The gas supply system 
(Fig. 7) for individual pressurization of rods consists of pressure controller, 21 valves, 21 pressure transducers, 
and 21 justified compensation volumes for setting of original volume value of 31.5 cm³ (the compensation is 
needed because of the absence of empty plenums inside the rod simulators). The gas supply is connected with 
capillary tubes (with inner diameter 1 mm, length ca. 1.2 m) to each rod at its lower end with drilled copper 
electrode (Fig. 8). The gas gap between the cladding and the Cu/Mo parts and the W-heater/ZrO2-pellets is 
0.15 mm and 0.075 mm, respectively.  Before gas filling the rods and the gas supply system were evacuated. 

At the beginning of experiment, the fuel rod simulators were backfilled with Kr gas to 20 bar. Then, before the 
transient, they were separately pressurized to the target pressure of 55 bar as shown in Fig. 9 

2 Test Bundle Instrumentation 

A list of all instruments for the experiment QUENCH-L2, which were installed in the test section and at the test 
loop is given in Table 7. The distribution of the thermocouples along the bundle is shown in Table 8. No failed 
thermocouples were detected during the test. 

2.1 Thermocouples 

The test bundle was instrumented with sheathed thermocouples (TC) attached to the rod claddings (Fig. 10) at 
17 different elevations between -250 mm and 1350 mm and at different orientations according to 
Figs. 11 and 12. The NiCr/Ni thermocouples (1 mm diameter, stainless steel sheath 1.4541 (X6CrNiTi18-10), 
MgO insulation) are used for temperature measurement at rod cladding and shroud outer surfaces. The TC tip 
is held in place by a Zr ferrule welded to the surface. The cables of the rod-thermocouples from the -250 mm 
to the 850 mm level leave the test section at the bottom whereas those of the TCs above 850 mm are routed 
out on the top of the test section to prevent TC cables passing the hot zone. On the same account the cables of 
the shroud-thermocouples in this region are routed outside the isolation. The thermocouples are designated 
as following: 

 “TFS” for the thermocouples attached to the outer surface of the rod claddings; 

 “TSH” for the shroud thermocouples mounted at the outer surface between -250 mm  
and 1250 mm; 

 “TIT” for the thermocouples installed inside the Zry-4 instrumentation rods at the three corner positions of 
the bundle (positions A, C and D) (see Fig. 13); 

 “TCI” for the thermocouples at the cooling jacket are installed inside the wall of the inner  
cooling tube (from -250 mm to 1150 mm, designation); 

 “TCO” for the thermocouples at the outer surface of the outer cooling tube 
(from -250 mm to 950 mm). 



Data Acquisition and Process Control 

6 

2.2 Gas Measurement System 

The flow rates of noble gases (Ar, Kr) are regulated with the BRONKHORST flow controllers. Steam and water 
flows are controlled with the SIEMENS flow controllers. Numerous pressure transmitters from WIKA measure 
absolute and differential pressures along the gas supply system, at inlet and outlet of the test section. 

The outlet steam and released hydrogen are analyzed by a Balzers mass spectrometer (MS) “GAM 300” 
(Fig. 14). Due to its location at the off-gas pipe in the facility the mass spectrometer responds almost 
immediately (less than 10 s). The “BALZERS GAM 300“ is a completely computer-controlled quadrupole MS 
with an 8 mm rod system which allows reliable quantitative measurement of gas concentrations down to 
about 10 ppm. For the MS measurement a sampling tube is inserted in the off-gas pipe located approx. 2.7 m 
downstream from the test section outlet (see Fig. 2 and 4). It has several holes at different elevations to 
guarantee that the sampling of the gas to be analyzed is representative (see Fig. 15). To avoid steam 
condensation in the gas pipes between the sampling position and the MS the temperature of the gas at the MS 
inlet is controlled by heating tapes to about 150 °C (the upper operating temperature of the MS inlet valves). 
This allows the MS to analyze the steam production rate. Besides, the concentrations of the following species 
were continuously measured by the mass spectrometer during all test phases: argon, hydrogen, steam, 
nitrogen, oxygen, and krypton. The fuel rod simulators are filled with krypton which can be used as an 
indicator for cladding failure. Additionally, the MS is used to control the atmosphere in the facility, e.g., to 
monitor the gas composition at the beginning of the test. 

The temperature and pressure of the analyzed gas are measured near to the inlet valve of the MS. The MS is 
calibrated for hydrogen with well-defined argon/gas mixtures and for steam with mixtures of argon and steam 
supplied by a BRONKHORST controlled evaporator mixing (CEM) device. The MS off-gas is released into the 
atmosphere because the amount of sampling gas taken out of the system is negligible. A heated measuring gas 
pump was used to ensure a continuous flow of the steam-gas mixture from the off-gas pipe to the mass 
spectrometer. 

For the MS the mass flow rate of each gas specious is calculated by referring the measured gas concentration 
to the known argon mass flow rate according to equation (1): 

Ar

Ar

G

Ar

G

G m
C

C

M

M
m        (1) 

with M representing the molecular masses, C the concentrations in vol% and m  the mass flow rates of the 
corresponding gases. 

3 Data Acquisition and Process Control 

A LabView-based control and data acquisition system is used in the QUENCH facility. Data acquisition, data 
storage, online visualization as well as process control, control engineering and system protection are 
accomplished by three computer systems that are linked in a network. 

The data acquisition system allows recording of about 200 measurement channels at a maximum frequency 
of 25 Hz per channel. The experimental data and the date and time of the data acquisition are stored as raw 
data in binary format. After the experiment the raw data are converted into SI units and stored as ASCII data. 
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For process control, a system flow chart with the most important actual measurement values is displayed on 
the computer screen. Furthermore, the operating mode of the active components (pumps, steam generator, 
superheater, DC power system, valves) is indicated. Blocking systems and limit switches ensure safe plant 
operation. Operating test phases, e.g. heating or quenching phases, are pre-programmed and can be started 
on demand during the experiment. The parameter settings of the control circuits and devices can be modified 
online. 

Online visualization allows to observe and to document the current values of selected measurement positions 
in the form of tables or line graphs. Eight diagrams with six curves each can be displayed as graphs. This means 
that altogether 48 measurement channels can be selected and displayed online during the course of the 
experiment. 

The data of the main data acquisition system and of the mass spectrometers are stored on different 
computers. Both computers are synchronized. The data of the main acquisition system are stored at a 
frequency of 5 Hz. The mass spectrometer data are recorded at a frequency of approx. 1 Hz during the entire 
test. 

4 Test Performance and Results of 
Online Measurements 

The test procedure was based on pre-test calculations for the QUENCH-LOCA series performed by the Paul 
Scherrer Institute (PSI, Villigen). According to the planned LOCA scenario, the transient phase should be 
performed with 8 K/s followed by slow cool-down phase and quenching. 

The sequence of the test events is represented in Table 9. As a start the experiment began by stabilizing the 
bundle conditions with an application of electrical bundle power of 3.5 kW (corresponding to a linear heat rate 
of ≈1 W/cm) in argon - superheated steam mixture (with rates of 6 g/s argon and 2 g/s steam, or specific rates 
0.2 g/s/(effective rod) and 0.07 g/s/(effective rod) correspondingly) resulting in a peak bundle temperatures of 
850 K (Fig. 16).  

Oscillation of the gas pressures during the test are presented in Figs. 17, 18. Fig. 19 shows the water flow 
characteristics. Mass spectrometer data on steam registration (during steam supply and evaporation phases), 
hydrogen production (due to oxidation of bundle and shroud) and krypton release (due to failure of claddings) 
are presented in Fig. 20. The development of integral hydrogen production is illustrated in Fig. 46. The 
dependence of evaporation rate of the quench water on the position of collapsed water front is depicted in 
Fig. 47. 

The transient was initiated by rapidly increasing the electrical power to 42 kW (linear heat rate ≈9 W/cm) 
followed by steady increase to 60 kW (linear heat rate ≈13 W/cm) within 42 s and stayed at that level for the 
rest of the transient (until 78 s). During this period the temperatures increased from their initial values to a 
maximum in excess of 1300 K, as planned. Due to limitation of the maximal electrical current of the DC 
generators the average heating rate of about 6 K/s was realised. The readings of thermocouples at each 
bundle elevation are shown in Figs. 21 - 37. The temperatures of cooling jacket were practically not changed 
during the whole test (Fig. 38). The bundle inlet and outlet gas mixture temperatures were registered at -410 
mm (T511) and +1350 mm (T512) correspondingly (Fig. 39). Two additional (in comparison to the reference 
test QUENCH-L1) thermocouples TFS 7/12i and TFS 7/13i installed at cladding surface of rod #7 at the 
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azimuthal position adjacent to the central rod #1 (i.e. opposite to thermocouples TFS 7/12 and TFS 7/13) 
allowed the registration of radial temperature gradients at the hottest elevations (Fig. 40). 

The axial temperature profile in the bundle has a pronounced maximum between 850 and 1050 mm (Figs. 41 -
 44). There is also a radial temperature gradient due to two reasons: 1) radial heat flux to the shroud, 2) 
electrical power supplied to the internal rod group was higher than the power for the external group because 
both DC generators reached current limit (~3600 A) but the electrical resistance of 11 external rods connected 
in parallel is lower than for 10 internal rods. 

The experiment continued with power decrease to 3.5 kW at 78 s to simulate decay heat and injection of 
steam at a nominal value of 20 g/s. There was an initial minor temporary increase in temperatures at some 
locations, but this phase was mostly steady cooling to about 900 K.  

This cooling phase was followed by 100 g/s water injection at 216 s. There was a period of about 40 s while the 
lower volume was being filled during which time the temperatures increased somewhat in the absence of 
significant flow. The first quench occurred at the bottom of the bundle at 238 s. Quenching progressed readily 
toward the top (indicated by wetting of thermocouples at different elevations, Figs. 48, Table 12), and the first 
quench in the ballooned region occurred at 264 s. Complete quench was achieved at 302 s. 

The decreased yield strength and increased ductility of the claddings during the transient phase resulted in a 
progressive ballooning and consequent burst of all pressurized rods (Table 10). The first burst occurred 48 s 
after initiation of the transient phase at about 1113 K at rod #8. All 21 pressurized rods failed within 20 s 
(Fig. 45). The individual rod failures were indicated by internal pressure readings and correlated with krypton 
peaks measured in the off-gas pipe by the mass spectrometer. The Kr release indicates failure of inner and 
outer rod groups (Fig. 46). The first failed rod was the internal rod #8, the last one was the peripherical rod #12 
(Table 10). The temperature range for bursts is estimated from thermocouple readings to be between 1050 
and 1195 K. 

5 Posttest Examination 

5.1 Optical Observation of Outer Cladding Surfaces 

First observations of burst positions were performed immediately after the test by means of the OLYMPUS 
videoscope. The camera of the videoscope (diameter 6 mm, total cable length 9 m) was introduced through 
the bundle bottom at positions of withdrawn corner rods (Figs. 49 - 53). For the peripheral rods no contacts 
between adjacent claddings due to ballooning or rod bending were observed. All observed thermocouples 
remained intact after the test. 

The bundle was withdrawn from the shroud for further investigations. No noticeable changed bundle 
geometry was indicated (Fig. 54). Grid spacers were removed for the separation of the single rods. Moderate 
rod bending was observed for the inner rods (Fig. 55) with values between 6 and 12 mm deviation from 
original rod axis and some of the outer rods (Fig. 56) with values between 3 and 11 mm. 

The shape and geometry of burst openings of all inner rods are very similar among each other (Fig. 57).  The 
lengths of these openings varied between 10 and 14 mm, and the opening areas determined by image 
analyses are 12 - 29 mm² (Table 10). The scattering of the geometrical parameters for openings of the outer 
rods is larger: the length varies between 10 and 24 mm, and the areas bandwidth is 12 - 94 mm². The 
tangential burst positions of all rods, except the central one, correspond to the hottest rod region and are 
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directed mostly to the bundle centre (Fig. 58). All bursts are axially located between 770 and 970 mm (Fig. 59). 
No global blockage was formed due to the variation of the ballooning positions. 

Observations of the cladding surface were performed with a Keyence digital microscope equipped with a 
macroscopic objective. The shapes of burst openings are shown in Figs. 60 - 63. Fig. 64 illustrates the structure 
of oxidized cladding surfaces near to the opening of rod #1. It can be seen that the cladding surface is covered 
with a network of crossed longitudinal cracks developed during the ballooning process. A large-scale crack cells 
network is located near to the burst opening, whereas small-scale cells are typical for the cladding side 
opposite to burst. The cell sizes change not only circumferentially, but also longitudinally: they decrease with 
increasing distance to the burst location. The surface cracks disappear at distances between 50 and 60 mm 
from the burst position – according to the strong strain decrease shown in the upper diagrams of Fig. 66. The 
cell size strongly depends on strain: the higher the strain the larger are the cells. 

5.2 Profilometry of Claddings with Laser Scanner 

5.2.1 Linear Laser Scanning 

The profilometry of the rods was performed with a Linear Laser Scanner (Fig. 65) made by ANT Antriebstechnik 
GmbH for quantifying the deformations produced on the rods as a result of the QUENCH LOCA experiments. 
The ballooned parts of the bundle rods exposed to LOCA scenarios acquire a variety of shapes and sizes due to 
different temperature conditions. Therefore a precise method to detect the local variations in diameter along 
the rods was required. 

5.2.2 Main Characteristics of the Measuring Device and Procedures 

The measuring mechanism is based upon photocells which compare the amount of laser light blocked by the 
rod in relation to the portion of light that reaches the sensors. The equipment is mounted vertically and 
supported on a wall of the experimental hall in order to minimize the effects of shocks and vibrations 
propagated by the floor. The rod to be measured is placed vertically and linked to a step motor which is 
responsible for the precise turning of the rod according to a given number of measurements that should be 
made during a rotation of 360°. A resolution of 0.25° is provided. The laser scanner itself moves a 
predetermined length up or down the driving rails in order to cover a specific section of the examined rod. The 
smallest vertical step is 100 µm and the maximum length which the scanner can handle is 2000 mm. 

Automatic settings allow the scanner to work for many hours without the need of supervision. For safety 
reasons and because of mechanical limitations, the data gathering is quite slow. A total of approximately 5700 
points are measured each hour. This means that a scanning of a 1500 mm rod section takes roughly 4 days 
considering a measurement every 1 mm and 1°. 

All data generated can be processed in various ways in order to determine different information. For instance, 
it allows the exact location and orientation of each burst, determination of circumferential cladding strain, 
calculation of increase of the cladding cross-section area and thus blockage. Also, a digital 3D rendered image 
is generated as a record and for further analysis, since every rod is sooner or later damaged by mechanical 
testing or cut for metallographic examination. 

5.2.3 Results of the Scans 

The evaluation of the scans can be divided into azimuthal and longitudinal analysis.  
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The azimuthal plots (Figs. 66 - 86, bottom) clearly show the orientation of the bursts and also give an idea of 
the shape.  It was revealed that the bursts were oriented mainly to the center of the bundle, because of the 
radial thermal gradient which was established in the test section. The maximal cladding diameter was 
observed in the burst plane, the minimal diameter – in the perpendicular plane. It is interesting to mention, 
that immediately below and above the burst opening the maximal diameter was measured in the plane 
perpendicular to the burst plane. All azimuthal plots illustrate this fact: the neighboring elevations lower the 
burst evident the maximal diameter in the plane perpendicular to the burst. I.e. during ballooning, the 
cladding extends here more in the directions perpendicular to the burst plane. 

The shape of the bursts vary widely, neither size nor symmetry have any apparent correlation to burst 
temperature.  

Also based on these scans, the circumferential strains can be calculated (Table 13), which are depicted on 
Figs. 66 - 86, top. Inside the burst axial region, the strain includes here the burst opening width at each 
measured elevation. To obtain the maximum strain before burst, the opening width in its middle should be 
subtracted from the measured cladding perimeter at this elevation. 

There is a clear correlation of the burst mean location and the temperature distribution on the longitudinal 
axis. Maximum strain of 29.3% was observed on the outer rod #10, minimum strain of 11.6% was observed on 
the outer rod #21. 

For all rods the deformation starts at elevations about 250 mm and ends at 1250 mm. The axial extension of 
each rod with more than 5% strain is usually shorter than 185 mm. It is worth to notice that besides the main 
strain maximum most of the rods (#1 - #6, #12 - #15, #17 - #21) have a second (or sometimes even third)  
strain maximum located ≈100 mm (or ≈200 mm) below or above main maximum too. I.e. the ballooning was 
initiated at many axial locations inside the hot zone. 

The blockage is the quotient of total increase of the rod cross-sections divided by initial empty area inside the 
inner surface of the shroud. Since the burst locations are scattered between elevations 784 and 963 mm, the 
blockage wasn´t too significant. As shown in Fig. 87, the maximum blockage occurs at about 960 mm and 
reaches 15% of area reduction. If, hypothetically, all burst were located at the same level, the blockage would 
be 28%. 

5.3 Nondestructive Eddy Current and Ultrasound Measurements 

Before cutting the cladding tubes for further investigations, the oxidation degree of each cladding was 
measured by means of the eddy current measurement device ISOSCOPE FMP30 from Helmut Fischer GmbH. 
The device was calibrated with two plastic foils of 24.3 and 99.3 µm thicknesses, which were disposed at the 
surface of as-received M5® tube. At least 20 circumferential measurements at each axial position were used to 
achieve the averaged result. The axial step width was 20 mm.  The device shows the distance between the 
gauge and the internal metallic layer; i.e. the measured values correspond to the sum of the thicknesses of 
ZrO2 and -Zr(O) layers. The comparison of eddy current results with metallographic results confirms this 
assumption. 

Fig. 88 and Fig. 89 show results of eddy current measurements for the inner and the outer groups of rods 
respectively. The most oxidized region is between 750 and 950 mm, what corresponds to the axial 
temperature profile. The comparison of measurement results for one rod with the same position (rod #3) in 
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three bundles (QL-0, -1, and -2) shows that the QL2 bundle has the smaller oxidation degree than the 
commissioning and reference bundles (Fig. 90). 

Fig. 91 illustrates clearly the existence of a radial temperature gradient. This radial temperature gradient 
causes an azimuthal difference in the oxidation of each rod: the side of the cladding oriented to the central 
(hottest) rod is more oxidized than the cladding side oriented to shroud. Irregular thickness changes were 
observed inside the axial zone with the pronounced ballooning due to variations of the cladding thickness from 
this parameter for the original calibration sample. The thinning of the cladding wall along the line of the burst 
opening in the ballooning region was proved by ultrasound measurements (Fig. 92). The wall thickness 
increases from 500 µm in vicinity of the opening tip to the regular thickness of 725 µm at a distance of about 
40 mm. 

5.4 Metallographic Examination 

The metallographic investigation of the longitudinal section of the claddings at the burst elevation evidences 
oxide layer growth at the outer cladding surface as well as oxidation of the inner surface (Fig. 93). The 
thickness of the inner oxide layer decreases axially: at the elevation 30 mm above and below the burst opening 
edge only very thin oxide layers were observed. 

The detailed optical mapping of the inner surface (Fig. 94) shows a transition from oxidised inner surface in the 
ballooning region to a metallic surface outside the ballooning region. A part of inner surface outside the 
ballooning was not oxidised due to a close contact between pellets and cladding. The axial locations of 
contacts between adjacent pellets have become visible due to strips of deposed tungsten transported through 
the gas phase from the tungsten electrical heater to the Zry cladding. The presence of tungsten in these strips 
was proved by an EDX analysis of the inner cladding surface (Fig. 95). Deposition of tungsten was also 
observed at the pellet surfaces (Fig. 96).  

The internal cladding oxidation is caused by steam penetration through the burst opening after release of 
filling and fission gases (Fig. 97). The hydrogen, produced during the oxidation of the inner cladding surface, 
propagated in the gap between cladding and pellet up to boundary of the inner oxidised region. Outside of this 
region there are no more barriers for the absorption of hydrogen by the metal, and this internally oxidised 
region should be surrounded by hydrided zones. This assumption was confirmed by neutron radiography.  

5.5 Results of Neutron Radiography and Tomography: 
Analysis of Absorbed Hydrogen. 

5.5.1 Basic Principles 

Neutron radiography is a powerful tool for the determination of hydrogen concentration and distribution in 
zirconium alloys [20-24]. Hydrogen can be quantitatively and non-destructively determined with a spatial 
resolution of up to 25 µm. The method was applied for the post-test hydrogen analysis of selected QUENCH-L2 
cladding tubes. 

Firstly, a short introduction into neutron radiography will be given.  The sample is positioned into a parallel 
neutron beam. The intensity distribution behind the sample is measured for each pixel. From the intensity the 
transmission T can be calculated: 
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where x and y are the coordinates of the pixel position. I, I0 and IB are the intensities behind and before the 
sample and the background intensity, respectively. From the neutron transmission the total macroscopic 
neutron cross section Σtotal can be calculated: 
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where s is the neutron path length through the material. The total macroscopic neutron cross section is the 
sum of the total microscopic cross section σ of the isotopes i multiplied with their number density N: 
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In the case of steam oxidation of cladding materials it can be assumed that only the amount of oxygen and 
hydrogen is changed whereas the amount of zirconium and the alloying elements is not influenced 
significantly. 

In order to reconstruct the specimen three-dimensionally, radiography projections have to be taken from 
different orientations. According to the sampling theorem, the number n of projections is connected with the 
spatial resolution (pixel size) d and the radius R of the object circle that fully encompasses the object formed 
by the rotating of the sample: 

d

R
n 2       (5) 

5.5.2 Technique 

The neutron radiography measurements were performed at the ICON facility at the Swiss neutron source SINQ 
at Paul Scherrer Institute Villigen. The investigations were performed applying the so called micro-tomography 
setup providing the highest resolution (pixel distance 13 µm). The field of view is 28 mm x 28 mm. The samples 
were scanned through the field of view with a step width of 25 mm. Exposure times of 300 s were applied. The 
specimens were measured horizontally. 

The neutron tomography experiments were performed at the ANTARES facility at the FRM2 research reactor in 
Garching. 401 projections were measured with a pixel size of 75 µm and an illumination time of 30 s. A field of 
view of 77 mm (axial direction) x 77 mm (radial direction) was applied. 

5.5.3 Results of Radiography 

The investigations comprise measurements of all rods of the QUENCH-L2 test. At first, the calibration of the 
correlation between number density ratio of hydrogen to zirconium atoms and total macroscopic neutron 
cross section was performed for the experimental setup applied. Calibration specimens were produced by 
annealing cladding tube segments in argon/hydrogen atmosphere with different hydrogen partial pressures at 
various temperatures. The hydrogen uptake of calibration samples was determined by measurement of the 
weight gain. From the slope of the curve the calibration was determined: 
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Fig. 98 shows the radiographs taken from internal rods, whereas Fig. 99 reveals depicted results for outer rods. 
For the inner rods, not only the bended hydrogen enriched bands known from the QUENCH-L0 test were 
found but also tungsten stripes corresponding to contacts of adjacent pellets. The tungsten was transported 
from heaters when their temperatures exceeded 1200°C. 

5.5.4 Hydrogen Content: Results of Tomography 

All 21 rods were investigated. For the experimental setup applied the following correlation was determined: 

Zr

H
cmcmtotal

11 6838.21954.0      (7) 

The reasons for the difference between equations (6) and (7) are different neutron spectra of the SINQ and 
the Garching research reactor and different wavelength efficiencies of the two detector systems applied 
(Gadox transmitter at PSI, LiF6 at FRM2). 

This procedure was applied for the reconstructions of QUENCH-L2 rods. Seven inner rods and eight outer rods 
were investigated before the tensile tests. Fig. 100 and Fig. 101 illustrate the tomography results for inner and 
outer rods correspondingly. The concentration of absorbed hydrogen for relatively cold outer rods was 
noticeably low (if any) in comparison to inner rods. 

The statistical analysis of the tomography data allows determining the axial distribution of hydrogen 
concentration in the vicinity of burst openings. The resolution of this distribution is very high due to small pixel 
size (75 µm). Figs. 102 - 112 depict distribution of mean and maximal concentrations calculated for each cross 
section (width of cross section is 75 µm). Mean value corresponds to arithmetic average for all pixels of cross 
section. Maximal value was determined by scanning of each cross section with window x*y*z=3*3*1 pixels. It 
can be seen that the mean hydrogen concentration within the burst opening region is between 10 and 
50 wppm. Inner rods show a significant increase of hydrogen content above (hydrogen band) and below 
(hydrogen longitudinal spot) the burst opening, whereas for outer rods only increased background hydrogen 
signal was measured. Additionally, tungsten rings at the inner cladding surface were detected. A comparison 
between inner and peripheral rods indicates that zones with noticeable hydrogen enrichments are formed if 
the temperature exceeds 1273 K. The axial profiles of maximal concentrations are similar to profiles of mean 
values and shifted by several hundred wppm in comparison to mean curves. The maxima of both curves for 
each measured rod are represented in Table 11. 

5.5.5 Cladding Cross Sections Reconstructed by Tomography 

Tomographic reconstructions allow rebuilding very precisely the shape of cladding tubes at each axial 
elevation. Fig. 113 compares the initial tube form (given in cyan) with the post-test tomography images of 
burst claddings at the axial position of the maximal burst opening. This comparison shows that claddings were 
practically not deformed at positions opposite to burst openings. The wall thinning occurred essentially in 
vicinity of the burst openings. 
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5.6 Mechanical Tests 

To determine the residual strength and ductility of QUENCH-LOCA tested claddings, particularly to identify the 
embrittlement in dependence of the different quench test conditions, tensile tests on relevant cladding 
sections were performed at room temperature. Previously, the mechanical properties of the axially 
homogeneous hydrogenated Zircaloy-4 claddings were investigated in 2010 during the single rod test series 
[25]. 

5.6.1 Tensile Test Set-up 

The tensile tests were carried out using a universal testing machine from INSTRON (type 4505, 50 kN load cell), 
equipped with specially developed grip holders. The experiments were performed displacement-controlled 
with a displacement rate of 2 mm/min at room temperature (RT). To clamp the tubes without deforming their 
end sections, exact fitting end plugs were mounted. Since a cladding tested in a QUENCH experiment usually 
shows an inhomogeneous ZrO2/α-Zr(O) layer thickness along the main tube axis, the specimens were optically 
subdivided with paint markers to determine both the global and the local axial elongation during a test by 
using a CCD-camera measurement system. To increase the resolution of the optical measurement device, 
three cameras were used for the tests. Generally, the initial gauge length l0 of a specimen was 750 mm and a 
sample was prepared in that way, that the ballooning section was positioned in the axial center. However, 
since some of the specimens (#3, 5, 8, 9, 14 and 15) showed a strongly warped shape after the QUENCH test, 
they had to be cut that the ballooning section revealed a distance of 50 mm related to the center, in order to 
avoid strong bending moments in the claddings at the edge of the grips. After the tests, the strain was 
calculated from the captured pictures by using the Digital Image Correlation and Tracing program provided by 
MATLAB [26] and the stress was calculated by using average values of the measured initial inner and outer 
diameters from the ends of a tube. 

5.6.2 Results of the Tensile Tests 

During the tensile tests, two different failure modes were observed (Fig. 113) – typical fracture after necking 
with fracture surfaces perpendicular to the load direction, as well as fracture from (pre)crack tip to (pre)crack 
tip at which the final crack propagates around a sample (compare Fig. 115). The second mode doesn’t occur 
abruptly. In fact one can observe that the onset of failure is driven by strong local deformations, starting at the 
(pre)crack tips. It is interesting to note, that almost only claddings from the outer area of the bundle failed in 
this mode (#8, 10, 15 – 21), in parts with remarkable elongations at fracture up to more than 11 %. 

In general, the elongation at fracture varies between 2.7 and 16.5 %, and the strength at fracture of the 
QUENCH tested cladding varies between ca 300 and ca 500 MPa. An overview of all determined mechanical 
properties is given in Table 14. Fig. 116 and Fig. 117 depict the stress-strain curves of all inner and outer 
specimens respectively. Since every tube showed a more or less pronounced individual warped shape, the 
claddings were differently straightened at the beginning of a test.  However, even if the single samples reveal 
greater differences in elongation with respect to the onset of deformation and afterwards also with respect to 
both fracture behaviour and fracture specific values, the general deformation behaviour is definitely very 
similar. When comparing Zircaloy-4 (QUENCH-L0, QUENCH-L1) with M5® (QUENCH-L2) one can see that the 
general deformation behaviour of individual Zircaloy-4 claddings is more heterogeneous within a bundle. 
Additionally it is found, that the embrittlement of M5® claddings during a QUENCH-LOCA test is on average 
significantly lower, even in the ballooning section. 
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6 Summary and Conclusions 

Test QUENCH-LOCA-2 was performed according to a temperature/time-scenario typical for a LBLOCA in a 
German PWR with a maximal heat-up rate of 8 K/s, a cooling phase lasting 120 s and the terminated with 3.3 
g/s/rod water flooding. 

The maximum temperature of 1400 K was reached at the end of the heat-up phase at elevation 850 mm. The 
tangential temperature difference across a rod was up to 70 K on the burst onset. 

Due to the low ballooning degree the maximum blockage ratio of the cooling channel (15% at 960 mm) was 
lower in comparison to QUENCH-L0 and -L1 (about 23%). Due to moderate blockage good bundle coolability 
was kept for all three bundles. 

The cladding burst occurred at temperatures between 1050 and 1195 K (similar to QUENCH L1). The inner rod 
pressure relieved to the system pressure during about 35 s (similar to QUENCH-L0 and -L1). 

During quenching, following the high-temperature phase, no cladding fragmentation was observed, stands for 
sufficiently residual ductility. 

Eddy current measurements showed a quite low degree of oxidation of the outer surface of the cladding with 
less than 25 µm for both layers ZrO2 and α-Zr(O). The inner cladding surface was oxidized in vicinity of the 
burst to about 10 µm ZrO2 and 15 µm α-Zr(O). The thickness of inner oxide layer was reduced to less than 
5 µm at distance 30 mm from the edges of burst openings. 

The three experiments performed so far (QUENCH-L0, -L1 and -L2) show that the formation of hydrogen-
containing bands is expected above 930°C. The pronounced hydrogen bands inside QUENCH-L2 claddings were 
observed only for five inner claddings and only in two cases (rods #1 and #8) the hydrogen concentration was 
higher than 1000 wppm (about 1100 wppm). All other twelve claddings investigated showed concentrations 
between 60 and 670 wppm. 

Nine claddings (one from inner rods and eight from outer rods) failed during tensile tests due to stress 
concentration at the burst position – similar to rods of the QUENCH-L0 bundle with hydrogen concentration 
< 1500 wppm. All other claddings failed due to fracture after necking at elevations outside of the ballooning 
region 
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Table 1: QUENCH Test Matrix 1997 – 2013 

Test 
Quench 

 medium and 
injection rate 

Temp. at onset  
of flooding

1)
 

Max. ZrO2  

before 
transient

2) 

Max. ZrO2  

(X s) before 
flooding

2)
 

Posttest average 
ZrO2 thickness

3)
 

H2 production 
before / during 

cooldown, g 
Remarks, objectives 

QUENCH-00 
Oct. 9 - 16, 97 

Water 
80 g/s  1800 K   completely 

oxidized  Commissioning tests. 

QUENCH-01 
Febr 26, 98 

Water 
52 g/s  1830 K 312 µm  500 µm 

at 913 mm 36 / 3 
COBE Project; 

partial fragmentation of pre-
oxidized cladding. 

QUENCH-02 
July 7, 98 

Water 
47 g/s  2400 K   completely 

oxidized 20 / 140 
COBE Project; no additional pre-
oxidation; quenching from high 

temperatures. 

QUENCH-03 
January 20, 99 

Water 
40 g/s  2350 K   completely 

oxidized 18 / 120 
No additional pre-oxidation, 

quenching from high 
temperatures. 

QUENCH-04 
June 30, 99 

Steam 
50 g/s  2160 K 82 µm  280 µm 10 / 2 

Cool-down behavior of slightly 
pre-oxidized cladding by cold 

steam injection. 

QUENCH-05 
March 29, 2000 

Steam 
48 g/s  2020 K 160 µm  420 µm 25 / 2 

Cool-down behavior of pre-
oxidized cladding by cold steam 

injection. 

QUENCH-06 
Dec 13 2000 

Water 
42 g/s  2060 K 207 µm5) 300 µm,   (60 s), 

SVECHA modeling 

670 µm4) (60% metal 
converted to outer 

ZrO2) 
32 / 4 

OECD-ISP 45; prediction of H2 
source term by different code 

systems. 

QUENCH-07 
July 25, 2001 

Steam 
15 g/s  2100 K 230 µm  completely 

oxidized 66 / 120 
COLOSS Project; impact of B4C 
absorber rod failure on H2, CO, 

CO2, and CH4 generation. 

QUENCH-09 
July 3, 2002 

Steam 
49 g/s  2100 K   completely 

oxidized 60 / 400 As QUENCH-07, steam-starved 
conditions prior to cooldown. 

QUENCH-08 
July 24, 2003 

Steam 
15 g/s  2090 K 274 µm  completely 

oxidized 46 / 38 As QUENCH-07, no absorber rod 

QUENCH-10 
July 21, 2004 

Water 
50 g/s  2200 K 514 µm 613 µm 

(at 850 mm) 
completely 

oxidized 48 / 5 LACOMERA Project; 
Air ingress. 
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Test 
Quench 

 medium and 
injection rate 

Temp. at onset 
of flooding

1)
 

Max. ZrO2  

before 
transient

2) 

Max. ZrO2  

(X s) before 
flooding

2)
 

Posttest average 
ZrO2 thickness

3)
 

H2 production 
before / during 

cooldown, g 
Remarks, objectives 

QUENCH-11 
Dec 08, 2005 

Water 
18 g/s  2040 K  170 µm completely 

oxidized 9 / 132 LACOMERA Project; 
Boil-off. 

QUENCH-12 
Sept 27, 2006 

Water 
48 g/s  2100 K 

160 µm, 
breakaway 

300 µm, (110 s), 
breakaway 

completely 
oxidized 34 / 24 ISTC Project No. 1648.2; VVER 

bundle with E110 claddings 

QUENCH-13 
Nov 7, 2007 

Water 
52 g/s  1820 K  400 µm, after 

AgInCd rod failure 750 µm 42 / 1 
SARNET; impact of AgInCd 

absorber rod failure on aerosol 
generation. 

QUENCH-14 
July 2, 2008 

Water 
41 g/s  2100 K 170 µm6) 470 µm6), (30 s) 

840 µm4) (74% metal 
converted to outer 

ZrO2) 
34 / 6 ACM series: M5® cladding 

QUENCH-15 
May 27, 2009 

Water 
48 g/s  2100 K 145 µm6) 380 µm6), (30 s) 

630 µm4) (70% metal 
converted to outer 

ZrO2) 
41 / 7 ACM series: ZIRLOTM cladding 

QUENCH-L0 
July 22, 2010 

Water, 
100 g/s 

1330 K 1 µm  18 µm 
 20 µm 

(central rod) 
0.748/0.3 

VGB Project; 
Commissioning test 

QUENCH-16 
July 27, 2011 

Water 
53 g/s  1870 K 135 µm 

130 µm 
at 450-950 mm, 

breakaway 

1075 µm 
at 550-650 mm 16 / 128 LACOMECO Project; 

Air ingress. 

QUENCH-L1 
Feb. 02, 2012 

Water, 
100 g/s 

1373 K 1 µm  19 µm 
 22 µm 

(central rod) 
0.718/0.01 

VGB Project; 
Reference test 

QUENCH-17 
Jan 31, 2013 

Water 
10 g/s  1800 K - completely 

oxidized 
completely 

oxidized 110 / 1 
SARNET-2; 

Debris formation and 
coolability. 

QUENCH-L2 
July 30, 2013 

Water, 
100 g/s 

1373 K 1 µm n.a. 
20 µm 

(central rod) 
0.4 total 

VGB Project; 
M5® test 

1) Maximum measured bundle temperature at 950 mm elevation. 2)  Measured at the withdrawn corner rod at 950 mm elevation. 
3) Measured posttest at the bundle elevation of maximum temperature, i.e. 950 mm. 4) Some claddings were completely oxidized at 950 mm elevation. 
5) Oxide thickness during transient phase. 6) Zircaloy-4 corner rods. 
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Table 2: Design characteristics of the QUENCH-L2 test bundle 

Bundle type  PWR 
Bundle size  21 heated rods 
Effective number  
of rods 

(considering surface of heated 
rods, shroud and corner rods) 

30.6 rods (21 + 7.4 from shroud + 2.2 
from corner rods) 

Pitch  14.3 mm 
Coolant channel area  29.65 cm2 
Hydraulic diameter  11.5 mm 
Cladding material  M5® 
Cladding outside diameter  10.75 mm 
Cladding thickness  0.725 mm 
Cladding length  (position in the bundle) 2278 mm (between -593 and 1685 

mm) 
Rod length  (elevations) 2480 mm           (-690 to 1790 mm) 
Internal rod pressure; gas) 5.5 MPa abs.; Kr 
Material of middle heater   

surface roughness 
Tungsten (W) 
Ra=1.6 µm 

Tungsten heater length  1024 mm (between 0 and 1024 mm) 
Tungsten heater diameter  4.6 mm 
Annular pellet  
  

material 
dimensions 
surface roughness 

ZrO2;Y2O3-stabilized 
 9.15/4.75 mm; L=11 mm 
Ra=0.3 µm 

Pellet stack   0 mm to ~1020 mm 
Corner rod (4)  material 

instrumented (A, C, D) 
 
not instrumented (B) 

Zircaloy-4 
tube  6x0.9 (bottom: -1140 mm) 
rod  6 mm  (top: +1300 mm) 
rod  6 mm  (-1350 to +1155 mm) 

Grid spacer  
  

material 
length 
sheet thickness 
elevation of lower edge 

Zircaloy-4, Inconel 718 
Zircaloy: 42 mm, Inconel: 38 mm 
0.5 mm 
Inc: -100; Zry: 150, 550, 1050, 1410 
mm 

Shroud  
  

material 
wall thickness 
outside diameter 
length (extension) 

Zirconium 702 (flange: Zry-4) 
3.17 mm 
86.0 mm 
1600 mm (-300 mm to 1300 mm) 

Shroud insulation  
  

material 
insulation thickness 
elevation 

ZrO2  fiber 
~ 36 mm 
 -300 to ~1000 mm 

Molybdenum heaters and 
copper electrodes 
 

length of upper part 
length of lower part 
outer diameter: 
prior to coating 
after coating with ZrO2 
coat. surface roughness 
borehole of Cu-electrodes 

766 mm (576 Mo, 190 mm Cu) 
690 mm (300 Mo, 390 mm Cu) 
 
8.6 mm 
9.0 mm 
Ra=6-12 µm 
diameter 2 mm, length 96 mm 

Cooling jacket  
  

Material: inner/outer tube  
inner tube 
outer tube 

Inconel 600 (2.4816) / SS (1.4571) 
 158.3 / 168.3 mm 
 181.7 / 193.7 mm 
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Table 3: Properties of M5® cladding tubes 

Chemical composition of M5® in weight-% (delivery specification) 

Element Symbol Measured value 

Niobium Nb 0.99 

Oxygen O 0.14 

Sulfur S 0.0017-0.0025 

Mechanical properties of M5® at RT in tension 

Element Measured value 

0.2 Yield strength Rp 0.2 384 MPa 

Ultimate tensile stress Rm 516 MPa 

Elongation at fracture A50 mm 38% 

Microstructure of M5®  

Grain size: 5.6 µm Nr. 12.0 according to ASTM E 112 
(acceptable average grain size shall be < Nr. 11, i.e. < 7.9 µm) 

Surface Conditions: 

- Roughness (inside): Ra = 0.15 µm (accepted 0.80 µm) 

- Roughness (outside): Ra = 0.32 µm (accepted 0.80 µm) 
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Table 4: Main characteristics of the ZrO2 pellet material, yttria-stabilized (type FZY) * 

Property Data 

Density 5.5-5.8 g/cm3 

Open porosity 0 

Mean grain size 50 µm 

Hardness (Knoop, 100 g) 17000 N/mm2 

Yield strength under compression 2000 N/mm2 

Bending strength 350 N/mm2 

Elastic modulus 165 GPa 

Specific heat at 20 °C 400 J/kg K 

Thermal conductivity at 100 °C 2.5 W/m K 

Linear expansion, 20-1000 °C 10.5 x 10-6/K 

Specific electric resistance at 20 °C 1010 Ω cm 

at 500 °C 5000 Ω cm 

at 1000 °C 50 Ω cm 

*According to FRIATEC, Mannheim
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Table 5: QUENCH-L2; Electrical resistances of rods [mΩ] at 20°C 

a) Internal circuit with 9+1 rods 

rod 1 2 3 4 5 6 7 8 9 15 Ave-
rage 

10 rods 
parallel 

pre-test 4.7 4.7 4.7 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 0.47 

post-test 4.7 4.8 4.6 4.6 4.7 4.7 6.0 4.7 4.8 4.7 4.8 0.48 

Note: Measured values include the resistance of slide contacts Rs=0.75 mΩ 

Table B2. External circuit with 11 rods 

rod 10 11 12 13 14 16 17 18 19 20 21 Ave-
rage 

11 rods 
parallel 

pre-
test 

4.7 4.7 4.6 4.6 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 0.42 

post-
test 4.8 4.8 4.7 4.7 4.7 4.7 4.7 4.7 4.8 4.7 4.8 4.7 0.43 

Note: Measured values include the resistance of slide contacts Rs=0.75 mΩ 

 

Each circuit connected to the DC generator with 4 parallel bonded cables. The resistance of each cable is 
Rc=1.2 mΩ. Therefore, the external (outside) resistance  

corresponding to each heated rod (indicated by SCDAP/RELAP as fxwid) is Rie=Rs+10*Rc/4=3.75 mΩ for the 
inner rod group and Roe=Rs+11*Rc/4=4.05 mΩ for the outer rod group. 
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Table 6 : Properties of zirconia fiber insulating boards* 

a) Chemical composition 

Oxide ZrO2 Y2O3 HfO2 TiO2 SiO2 CaO MgO Fe2O3 Al2O3 Na2O 

typical 
wt% 

88 10 2 0.14 0.12 0.09 0.03 0.04 0.01 0.01 

Table B2. Physical properties 

bulk 

density 

poro-

sity 

shrinkage thermal 

expansion 

coefficient 

@298-1453

K 

melting 

point 

max. 

service 

tempe-

rature 

flexural 

strength 

Compressive 

strength @10% 

compression 
1 hour 

@1925 K 

24 

hours 

@1925 

K 

g/cm³ % % 1/K K K MPa MPa 

0.48 92 1.2 2.8 10.7*10-6 2866 2500 0.59 0.29 

*According to specifications of manufacturer ZIRCAR PRODUCTS on the ZYFB3 material  

Thermal conductivity 

temperature, K 673 1073 1373 1673 1923 

conductivity, W/(m*K) 0.08 0.11 0.14 0.19 0.24 

Specific heat capacity 

temperature, K 366 2644 

specific heat capacity, J/(kg*K) 544 754 
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Table 7: List of instrumentation for the QUENCH-L2 test 

Chan Designation Instrument, location Unit 

0 P rod 13 Internal pressure of rod #13 bar 

1 P rod 14 Internal pressure of rod #14 bar 

2 P rod 15 Internal pressure of rod #15 bar 

3 P rod 12 Internal pressure of rod #12 bar 

4 P rod 03 Internal pressure of rod #03 bar 

5 P rod 04 Internal pressure of rod #04 bar 

6 P rod 05 Internal pressure of rod #05 bar 

7 P rod 16 Internal pressure of rod #16 bar 

8 P rod 11 Internal pressure of rod #11 bar 

9 P rod 02 Internal pressure of rod #02 bar 

10 P rod 01 Internal pressure of rod #01 bar 

11 P rod 06 Internal pressure of rod #06 bar 

12 P rod 17 Internal pressure of rod #17 bar 

13 P rod 10 Internal pressure of rod #10 bar 

14 P rod 09 Internal pressure of rod #09 bar 

15 P rod 08 Internal pressure of rod #08 bar 

16 P rod 07 Internal pressure of rod #07 bar 

17 P rod 18 Internal pressure of rod #18 bar 

18 P rod 21 Internal pressure of rod #21 bar 

19 P rod 19 Internal pressure of rod #19 bar 

20 P rod 20 Internal pressure of rod #20 bar 

21..23  20 mA, Reserve  

24 P 511 top Pressure at top leg of differential level sensor L 501 bar 

25..31  20 mA, Reserve  

32..34  TC (W/Re), Reserve  

35 TSH 15/0 
TC (NiCr/Ni), shroud outer surface, 1150 mm, 21°  feed cable outside of 

shroud isolaton K 

36 TSH 14/270 TC (NiCr/Ni), shroud outer surface, 1050 mm, 289°, feed cable outside 
of shroud isolaton K 

37  TC (W/Re), Reserve K 

38 TFS 15/13 TC (NiCr/Ni), surface of fuel rod simulator 15, group 5, 950 mm K 

39 TFS 19/12 TC (NiCr/Ni), surface of fuel rod simulator 19, group 5, 850 mm K 

40..41  TC (W/Re), Reserve  
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Chan Designation Instrument, location Unit 

42 TFS 7/12 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 850 mm K 

43 TFS 15/12 TC (NiCr/Ni), surface of fuel rod simulator 15, group 5, 850 mm K 

44 TFS 2/12 TC (NiCr/Ni), surface of fuel rod simulator 2, group 2, 850 mm K 

45 TFS 4/12 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 850 mm K 

46 TFS 19/13 TC (NiCr/Ni), surface of fuel rod simulator 19, group 5, 950 mm K 

47..57  TC (W/Re), Reserve K 

58 TFS 7/10 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 650 mm K 

59..60  TC (W/Re), Reserve K 

61 TFS 11/12 TC (NiCr/Ni), surface of fuel rod simulator 11, group 4, 850 mm K 

62 P 206 Reserve  

63 F 206 Reserve  

64 T 402 b TC (NiCr/Ni), Ar super heater K 

65..67  TC (W/Re), Reserve K 

68 T 512 TC (NiCr/Ni), gas temperature bundle outlet K 

69..70  TC (W/Re), Reserve K 

71 Ref. T01 Temperature of measuring crate 1 (reference temperature) K 

72 TFS 11/13 TC (NiCr/Ni) surface of fuel rod simulator 11, group 4, 950 mm K 

73 TFS 7/13 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 950 mm K 

74 TFS 2/13 TC (NiCr/Ni), surface of fuel rod simulator 2, group 2, 950 mm K 

75 TFS 4/13 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 950 mm K 

76 TFS 15/11 TC (NiCr/Ni), surface of fuel rod simulator 15, group 5, 750 mm K 

77 TFS 19/11 TC (NiCr/Ni), surface of fuel rod simulator 19, group 5, 750 mm K 

78 TFS 11/11 TC (NiCr/Ni) surface of fuel rod simulator 11, group 4, 750 mm K 

79 TFS 7/11 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 750 mm K 

80 TFS 2/11 TC (NiCr/Ni) surface of fuel rod simulator 2 group 2, 750 mm K 

81 TSH 12/90 TC (NiCr/Ni), shroud outer surface, 850 mm, 109° K 

82 TFS 2/10 TC (NiCr/Ni); surface of fuel rod simulator 2, group 2, 650 mm K 

83 TSH 10/270 TC (NiCr/Ni), shroud outer surface, 650 mm, 289° K 

84 TSH 9/180 TC (NiCr/Ni), shroud outer surface, 550 mm, 191° K 

85 TSH 8/90 TC (NiCr/Ni), shroud outer surface, 450 mm, 109° K 

86 TSH 7/0 TC (NiCr/Ni), shroud outer surface, 350 mm, 11° K 

87 TSH 6/270 TC (NiCr/Ni) shroud outer surface, 250 mm, 281° K 

88 TSH 5/180 TC (NiCr/Ni), shroud outer surface, 150 mm, 191° K 
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Chan Designation Instrument, location Unit 

89 TSH 4/90 TC (NiCr/Ni), shroud outer surface, 50 mm, 109° K 

90 TSH 11/0 TC (NiCr/Ni), shroud outer surface, 750 mm, 11° K 

91 TCI 9/270 TC (NiCr/Ni), cooling jacket inner tube wall, 550 mm, 270° K 

92 TCI 10/270 TC (NiCr/Ni), cooling jacket inner tube wall, 650 mm, 270° K 

93 TCI 11/270 TC (NiCr/Ni), cooling jacket inner tube wall, 750 mm, 270° K 

94 TCI 13/270 TC (NiCr/Ni), cooling jacket inner tube wall, 950 mm, 270° K 

95 TFS 4/11 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 750 mm K 

96 TFS 15/10 TC (NiCr/Ni), surface of fuel rod simulator 15, group 5, 650 mm K 

97 TFS 19/10 TC (NiCr/Ni), surface of fuel rod simulator 19, group 5, 650 mm K 

98 TFS 11/10 TC (NiCr/Ni), surface of fuel rod simulator 11, group 4, 650 mm K 

99 TSH 13/180 TC (NiCr/Ni), shroud outer surface, 950 mm, 191°, feed cable outside of 
shroud isolaton K 

100 TSH 3/0 TC (NiCr/Ni), shroud outer surface, -50 mm, 11° K 

101 TFS 4/10 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 650 mm K 

102 TFS 15/14 TC (NiCr/Ni), surface of fuel rod simulator 15, group 5, 1050 mm K 

103 TFS 19/14 TC (NiCr/Ni), surface of fuel rod simulator 19, group 5, 1050 mm K 

104 TFS 11/14 TC (NiCr/Ni), surface of fuel rod simulator 11, group 4, 1050 mm K 

105 TFS 7/14 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 1050 mm K 

106 TFS 2/14 TC (NiCr/Ni), surface of fuel rod simulator 2, group 2, 1050 mm K 

107 TFS 4/14 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 1050 mm K 

108 TFS 15/9 TC (NiCr/Ni), surface of fuel rod simulator 15, group 5, 550 mm K 

109 TFS 11/9 TC (NiCr/Ni), surface of fuel rod simulator 11, group 4, 550 mm K 

110 TFS 7/9 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 550 mm K 

111 TFS 4/9 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 550 mm K 

112 TFS 15/15 TC (NiCr/Ni), surface of fuel rod simulator 15, group 5, 1150 mm K 

113 TFS 19/15 TC (NiCr/Ni), surface of fuel rod simulator 19, group 5, 1150 mm K 

114 TFS 11/15 TC (NiCr/Ni), surface of fuel rod simulator 11, group 4, 1150 mm K 

115 TFS 7/15 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 1150 mm K 

116 TFS 2/15 TC (NiCr/Ni), surface of fuel rod simulator 2, group 2, 1150 mm K 

117 TFS 4/15 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 1150 mm K 

118 TFS 11/8 TC (NiCr/Ni), surface of fuel rod simulator 11, group 4, 450 mm K 

119 TFS 7/8 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 450 mm K 

120 TFS 4/8 TC (NiCr/Ni), surface of fuel rod simulator 4 group 2, 450 mm K 

121 TFS 11/16 TC (NiCr/Ni), surface of fuel rod simulator 11, group 4, 1250 mm K 
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Chan Designation Instrument, location Unit 

122 TFS 7/16 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 1250 mm K 

123 T 601 Temperature off-gas, 2660 mm from test section outlet (flange) K 

124 TFS 11/7 TC (NiCr/Ni), surface of fuel rod simulator 11, group 4, 350 mm K 

125 TFS 7/12i TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 850 mm, near to 
rod #1 K 

126 TFS 7/7 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 350 mm K 

127 TFS 4/7 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 350 mm K 

128 T 104 Temperature quench water K 

129 T 201 Temperature steam generator heating pipe K 

130 TIT C/12 TC (NiCr/Ni), center line of corner rod C, 850 mm K 

131 T 205 Temperature upstream steam flow instrument location 10 g/s K 

132 T 301A Temperature downstream superheater K 

133 T 302 Temperature superheater heating pipe K 

134 T 303 Temperature upstream total flow instrument location K 

135 T 401 Temperature upstream Ar flow instrument (orifice) location K 

136 T 403 Temperature of Ar at inlet cooling jacket K 

137 T 404 Temperature of Ar at outlet cooling jacket K 

138 T 501 Temperature in containment (near from bundle head) K 

139 TFS 7/6 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 250 mm K 

140 TFS 4/6 TC (NiCr/Ni), surface of fuel rod simulator 4, group 2, 250 mm K 

141 TFS 7/17 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 1350 mm K 

142 TFS 7/5 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 150 mm K 

143 TFS 7/4 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 50 mm K 

144 TFS 7/3 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, -50 mm K 

145 TFS 7/2 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, -150 mm K 

146 TFS 7/1 TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, -250 mm K 

147 TFS 7/13i TC (NiCr/Ni), surface of fuel rod simulator 7, group 3, 950 mm, near to 
rod #1 K 

148 T 511 Gas temperature at bundle inlet K 

149 TIT D/11 TC (NiCr/Ni), center line of corner rod D, 750 mm K 

150 TIT A/13 TC (NiCr/Ni), center line of corner rod A, 950 mm K 

151 Ref. T02 Temperature of measuring crate 2 (reference temperature) K 

152 P 201 Pressure steam generator bar 

153 P 204 Pressure at steam flow instrument location 50 g/s bar 

154 P 205 Pressure at steam flow instrument location 10 g/s bar 
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Chan Designation Instrument, location Unit 

155 P 303 Pressure upstream total flow instrument (orifice) location bar 

156 P 401 Pressure upstream gas flow instrument location bar 

157 P 511 Pressure at bundle inlet, L501 low leg bar 

158 P 512 Pressure at bundle outlet bar 

159 P 601 Pressure upstream off-gas flow instrument (orifice) F 601 bar 

160 P 901 Pressure at bundle inlet, L501 upper leg bar 

161 L 201 Liquid level steam generator mm 

162 L 501 Liquid level quench water mm 

163 L 701 Liquid level condensation vessel mm 

164 Fm 401 Argon (carrier gas) mass flow rate (Bronkhorst device) g/s 

165 P 411 Reserve (Pressure Kr supply for heated rods) bar 

166 P 403 Pressure Ar cooling of cooling jacket bar 

167 P 406 Pressure insulation shroud/cooling jacket bar 

168 Fm 104 Flow rate quench water g/s 

169 Fm 204 Flow rate steam 50 g/s g/s 

170 Fm 205 Flow rate steam 10 g/s g/s 

171 F 303 Flow rate at bundle inlet (steam + argon), orifice mbar 

172 F 401 Argon (carrier gas) volumetric flow rate Nm³/h 

173 Fm 403 Mass flow rate of cooling gas (Ar) g/s 

174 F 601 Flow rate off-gas (orifice), 2000 mm from test section outlet (flange) mbar 

175 Fm 406 Flow rate argon into room between shroud and cooling jacket g/s 

176 E 201 Electric current steam generator A 

177 E 301 Electric current superheater A 

178 E 501 Electric current of left group of fuel rod simulators A 

179 E 502 Electric current of right group of fuel rod simulators A 

180 E 503 Electric voltage of left group of fuel rod simulators V 

181 E 504 Electric voltage of right group of fuel rod simulators V 

182 Hub_V302 Gas supply valve lift % 

183 Ref. T03 Temperature of buffer amplifier (reference temperature) K 

184…199  Binary inputs  

200..215  Analog outputs  

250 E 505 Electric power inner ring of fuel rod simulators W 
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Chan Designation Instrument, location Unit 

251 E 506 Electric power outer ring of fuel rod simulators W 

252 EP Gross electrical power kW 

 

Indications: 

TFS - TC at the rod surface; 

TIT - TC at inside of corner rods; 

TSH - TC at outer surface of shroud; 

- gauge outside of containment. 

Groups of the rods for modeling: 

central groups: 
group 1: rod 1; 
group 2: rods 2, 4, 6, 8; 
group 3: rods 3, 5, 7, 9; 
 
peripherical groups: 
group 4: rods 11, 14, 17, 20; 
group 5: rods 10, 12, 13, 15, 16, 18, 19, 21. 
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Table 8: QUENCH-L2; Rod thermocouple positions 

Elevation, mm -250 -150 -50 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 

Rod/Elevation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1                  

2          X X X X X X   

3                  

4      X X X X X X X X X X   

5                  

6                  

7 X X X X X X X X X X X X, Xi X, Xi X X X X 

8                  

9                  

10                  

11       X X X X X X X X X X  

12                  

13                  

14                  

15         X X X X X X X   

16                  

17                  

18                  

19          X X X X X X   

20                  

21                  

Number per 
elevation 1 1 1 1 1 2 3 3 4 6 6 6+1 6+1 6 6 2 1 

  

 

TFS (rod surface, shroud direction), indicated as X in table above 56 

TFS (rod surface, central rod direction), indicated as Xi in table above 2 

TIT (inside corner rods) 3 

TSH (outer shroud surface) 13 

TCs to bundle bottom   TCs to bundle top 

(7 W/Re+20 NiCr/Ni) 
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Table 9:  QUENCH-L2; Sequence of events 

Time [s] Event 

-2283.6 
(10:25:04; 

30.07.2013) 

Start data recording, Tmax = TFS 7/13i = 847 K, el. power at 3.56 kW.                          
L701 = 485 mm. L 501 = -400 mm. System pressure 3 bar. Hot Ar 6 g/s  
(heated in superheater), superheated steam 2 g/s.  

-2260… 
-1060 Pressurization of rods from 20 to 55 bar. 

0 Start of transient with max electrical power increase rate. 

3.8;    46 Electrical power 42;   60 kW. 

40…52 Sequential onset of ballooning from inner rod #4 to peripheral rod #20. 

48…68 Sequential onset of burst for rods from inner rod #8 to peripheral rod  
#12. See burst table (Table 10). 

78 
Switch of the electrical power from max 59.4 kW to decay heat of 3.5 kW. 
Initiation of rapid steam supply line (20 g/s) additionally to carrier argon (6 g/s).   
Switch-off of slow steam supply (2 g/s). Tmax = TFS 7/12i = 1336 K. 

85.2 
Cladding surface temperature maximum reached. Maximal hydrogen production 
rate.  
Tmax = TFS 7/12i = 1400 K. 

85.2…210.4 Cool-down of bundle in steam. Decrease of TFS 7/12i reading from 1400 K to 1026 K. 

160…176 Temporary decrease of Ar flow rate due to switch between two Ar suppliers 

210.4…220 Increase of maximal bundle temperatures to ≈1044 K due to switch-off of the steam 
cooling (closing of gas inlet valve at 210.4 s). 

216 Initiation of quench water supply. Switch of argon to bundle top supply. 

237 Maximal quench rate (about 100 g/s) reached. 

238…302 
Wetting of cladding surface thermocouples (TFS) at elevations between -250 and 
1350 mm at temperatures between 520 (TFS 7/1; -250 mm) and 856 K (TFS 7/14; 
1050 mm). (Table 12). 

260…295 Maximal water evaporation rate (about 25 g/s). 

365 Bundle completely filled with water (L 501 = 1307 mm). 

474 Electrical power switched off. Tmax = TFS 15/15 = 321 K. 

662 End of data recording. 
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Table 10: QUENCH-L2; Burst parameters 

rod burst time, 
s 

interpolated 
burst T, K 

burst 
azimuth. 

position, ° 

burst 
middle 

elev., mm 

max burst 
width, 

mm 

burst 
length, 

mm 

burst area, 
mm² 

1 50.4 1135 354 875 3.4 14 29 

2 52.6 1167 186 958 2.9 11 20 

3 52.7 1168 135 961 2.5 10 15 

4 52.4 1167 163 963 2.9 11.5 21 

5 53.1 1163 308 890 3.0 11.5 21 

6 49.8 1121 312 869 2.6 11 17 

7 52.9 1136 248 967 3.1 12 23 

8 48.4 1113 100 875 3.3 12 24 

9 52.7 1162 66 887 1.7 11 12 

10 66.2 1125 97 917 6.6 22 85 

11 65 1145 147 963 2.8 12 21 

12 67.8 1195 (max) 141 948 2.5 11 19 

13 67.4 1178 151 946 2.4 10 15 

14 66.2 1167 129 959 3.1 12 23 

15 57.2 1124 174 951 2.4 13 25 

16 64 1143 188 951 3.4 13 27 

17 62 1102 289 803 3.9 20 66 

18 65 1139 274 957 3.3 12 24 

19 67.4 1093 342 885 1.8 11 12 

20 62.8 1110 230 814 5.5 24 94 

21 65.8 1050 (min) 68 784 1.5 15 16 

average  1138 ± 34  911 ± 58 3.1 ± 1.2 13.3 ± 3.9 29 ± 23 
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Table 11: QUENCH-L4; Content of hydrogen absorbed by secondary hydrogenation (post-tensile 
n0  tomography): axial maximum averaged for cross section and axial absolute local 
maximum 

rod # 

CH above burst opening 
(H-band), wppm 

elevation, mm 
CH below burst opening 

(H-spot), wppm 
elevation, mm 

averaged absolute aver. abs. averaged absolute aver. abs. 

1 490±10 920±20 904 900 205±10 880±30 848 850 

2 260±10 545±30 988 988 210±10 670±30 909 934 

3 260±10 550±30 990 990 180±10 590±30 946 943 

6 225±10 560±30 886 885 115±10 620±30 829 830 

9 311±10 785±30 914 912 150±10 520±30 862 866 

13* 25±10 150±30 960 960 20±10 160±30 937 937 

14* 35±10 155±30 970 970 35±10 160±30 948 948 

16* 55±10 175±30 965 965 45±10 165±30 945 945 

18 104±10 230±30 992 992     

20* 25±10 195±30 830 830 30±10 175±30 815 810 

21 160±10 410±30 810 812     

*hydrogen content around burst opening for outer rods 
 

Table 12: QUENCH-L2; Wetting of TFS thermocouples 

Bundle elevation, mm Wetting time, s Collapsed water front, mm 

-250 238 -364 

-150 240 -280 

-50 246 -138 

50 247 -100 

150 250 -5 
250 257 116 

350 258..258.5 143..154 

450 255.5..262 56.6..211 

550 260..262 182..211 

650 263..269 235..361 

750 264..272 275..422 
850 264..285 275..576 

950 274..292 456..700 

1050 265..293 300..727 

1150 273..295 460..767 

1250 275..302 462..917 

1350 261* 194 

*condensation of stagnant steam inside the bundle head due to injection of cold argon 
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Table 13: QUENCH-L2; Strain parameters at the middle of burst elevation 

rod 

group 
rod 

# 

elevation  
of burst  

middle, mm 

max strain 

% 
max D 

mm 

at azimuth 

° 

min D 

mm 
at azimuth 

° 

ce
n

tr
al

 g
ro

u
p

 

1 875 22 13.99 338 12.42 77 

2 958 20 13.88 169 12.27 259 

3 961 19.5 13.84 123 12.06 207 

4 963 21 13.96 151 12.31 252 

5 890 23.7 14.42 291 12.43 212 

6 869 18.6 13.71 326 12.09 228 

7 963 22.4 14.06 238 12.42 161 

8 875 19 14.06 81 11.92 124 

9 887 15.4 13.40 67 11.89 325 

p
er

ip
h

e
ri

ca
l g

ro
u

p
 

10 917 29.3 15.65 63 12.64 170 

11 963 20.4 13.90 161      12.33 243 

12 948 18.5 13.67 131 12.03 49 

13 946 19.4 13.81 167 12.14 248 

14 959 21.3 14.19 147 12.31 231 

15 951 22.3 13.99 189 12.18 268 

16 951 20.5 17.06 209 12.12 289 

17 803 17.9 13.68 335 11.78 288 

18 957 24 14.51 291 12.40 191 

19 885 18.4 14.15 28 11.76 120 

20 814 22.1 17.09 278 12.20 352 

21 784 11.6 12.73 26 11.15 69 

average  910 ± 58 20.3 ± 3.5 14.27 ± 1.07  12.14 ± 0.32  



 

38 

Table 14: QUENCH-L2; Results of tensile tests 

rod 
l0=800 mm 

ultimate tensile 
strength [MPa] 

fracture  
stress 
[MPa] 

elongation at 
fracture 

(graded) [%] 
rupture based on 

01 513 374 13.3 fracture after necking 

02 494 436 3.1 fracture after necking 

03 512 356 11.5 fracture after necking 

04 514 367 10.7 fracture after necking 

05 511 360 11.3 fracture after necking 

06 513 422 11.2 fracture after necking 

07 517 372 11.5 fracture after necking 

08 450 448 2.7 stress concentration 

09 509 365 14.0 fracture after necking 

10 502 296 11.3 stress concentration 

11 486 445 4.3 fracture after necking 

12 505 370 16.5 fracture after necking 

13 504 361 16.3 fracture after necking 

14 506 389 14.0 stress concentration 

15 499 495 6.9 stress concentration 

16 512 493 9.0 stress concentration 

17 502 483 6.7 stress concentration 

18 498 488 10.1 stress concentration 

19 500 483 6.9 stress concentration 

20 494 484 4.7 stress concentration 

21 497 476 5.5 stress concentration 
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 Flow diagram of the QUENCH test facility. Figure 1
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 QUENCHFacility - Main components. Figure 2
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 QUENCH Facility; Containment and test section Figure 3
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 QUENCH-L02; Test section with flow lines. Figure 4
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 QUENCH-L2; Fuel rod simulator bundle (cross section, top view) including rod type indications Figure 5
corresponding to table “List of Instrumentation”. 
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 Heated fuel rod simulator. Figure 6
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 QUENCH-L2; Rod pressure control and measurement panel. Figure 7

precise pressure control 

Front side with: 
 

21 pressure valves 

21 adjustable 

compensation volumes 
to setting of original 

volume value 

of 31.5 cm3 

21 pressure  
transducers 

21 capillary tubes 

to test bundle 

Rear side with : 
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 QUENCH-L2; Rod pressurization.Figure 8

boreholes 

through bottom Cu-electrodes 

Mo heater 

Kr filling for rod 
internal pressurisation 

Rod cladding 
 

Cu electrode 

O-seals 

475 mm 

625 mm 

Ø 2mm 

bundle bottom 

bundle top 

2 m 
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 QUENCH-L2; Individual rod pressurization with Kr at max cladding temperature Tpct between 500°C and 585°C.Figure 9
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 QUENCH-L2; Concept for TC fastening at the test rod. Figure 10
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 Axial temperature measurement locations in the QUENCH-L2 test section. Figure 11
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 QUENCH-L2; Test bundle; TC instrumentation and rod designation (top view). Figure 12

 

 

 QUENCH-L2; Arrangement of the thermocouples inside the corner rods. Figure 13
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 QUENCH Facility; H2 measurement with the GAM 300 mass spectrometer. Figure 14

 

 Mass spectrometer sampling position at the off-gas pipe of the QUENCH test facility.Figure 15
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 QUENCH-L2; Test scenario.Figure 16
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 QUENCH-L2; System pressure measured at test section inlet P 511, at outlet P 512, and in Figure 17
the off-gas pipe P 601. 

 

 QUENCH-L2; Argon pressure between shroud and cooling jacket P 406 demonstrates tightness of Figure 18
the shroud. 
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 QUENCH-L2; Quench measurement of collapsed water level (L 501), top, water mass flow rate Figure 19
(Fm 104), center, condensed water (L 701), bottom. 
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 QUENCH-L2; Steam rate, top, Hydrogen, center, Krypton, bottom, measured by mass Figure 20
spectrometry (MS).  
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 QUENCH-L2; Temperatures measured by rod cladding (TFS 7/1) thermocouple at -250 Figure 21
mm elevation. 

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS 7/2) thermocouple at -150 Figure 22
mm elevation. 
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 QUENCH-L2; Temperatures measured by rod cladding (TFS 7/3) and shroud (TSH 3/0) Figure 23
thermocouples at -50 mm elevation.  

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS 7/4) and shroud (TSH 4/90) Figure 24
thermocouples at 50 mm elevation. 
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 25: QUENCH-L2; Temperatures measured by rod cladding (TFS 7/5) and shroud (TSH Figure 25
5/180) thermocouples at 150 mm elevation. 

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 6/270) Figure 26
thermocouples at 250 mm elevation. 
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 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 7/0) Figure 27
thermocouples at 350 mm elevation. 

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 8/90) Figure 28
thermocouples at 450 mm elevation. 
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 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 9/180) Figure 29
thermocouples at 550 mm elevation.  

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 10/270) Figure 30
thermocouples at 650 mm elevation. 

-100 0 100 200 300 400 500 600

200

400

600

800

1000

1200

 TFS 4/9

 TFS 7/9

 TFS 11/9

 TFS 15/9

 TSH 9/180

+550 mm

T
e
m

p
e
ra

tu
re

, 
K

Time, s

 

 

-100 0 100 200 300 400 500 600

200

400

600

800

1000

1200

 TFS 2/10

 TFS 4/10

 TFS 7/10

 TFS 11/10

 TFS 15/10

 TFS 19/10

 TSH 10/270 

+650 mm

T
e
m

p
e
ra

tu
re

, 
K

Time, s

 

 



 

61 

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 11/0), Figure 31
and corner rod internal (TIT D/11) thermocouples at 750 mm elevation. 

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 12/90), Figure 32
and corner rod internal (TIT C/12) thermocouples at 850 mm elevation. 
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 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 13/180), Figure 33
and corner rod internal (TIT A/13) thermocouples at 950 mm elevation. 

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 14/270) Figure 34
thermocouples at 1050 mm elevation. 
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 QUENCH-L2; Temperatures measured by rod cladding (TFS) and shroud (TSH 15/0) Figure 35
thermocouples at 1150 mm elevation. 

 

 QUENCH-L2; Temperatures measured by rod cladding (TFS) thermocouples at 1250 Figure 36
mm elevation. 
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 QUENCH-L2; Temperatures measured by rod cladding (TFS 7/17) thermocouple at Figure 37
1350 mm elevation. 

 

 QUENCH-L2; Overview of the TCI (inner cooling jacket). Figure 38
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 QUENCH-L2; Gas temperatures at inlet and outlet of the bundle. Figure 39

 

 QUENCH-L2; Tangential temperature differences at 850 and 950 mm. Figure 40
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 QUENCH-L2; Axial temperature profile TFS internal and external rod group together with TSH, left, and axial temperature profile of all TFS, right, at Figure 41
48,2 s (first cladding burst). 
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 QUENCH-L2; Axial temperature profile TFS internal and external rod group together with TSH, left, and axial temperature profile of all TFS, right, at Figure 42
48,2 s (first cladding burst). 
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 QUENCH-L2; Axial temperature profile TFS internal and external rod group together with TSH, left, and axial temperature profile of all TFS, right, at 76 Figure 43
s (before end of transient). 
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 QUENCH-L2; Axial temperature profile TFS internal and external rod group together with TSH, left, and axial temperature profile of all TFS, right, at 84 Figure 44
s (max temperature at 900 mm). 
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 QUENCH-L2; Rod pressure evolution during heating phase for QUENCH-L1 and -L2. Figure 45
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 QUENCH-L2; Mass spectrometer measurements: integral hydrogen release and Figure 46
krypton as burst indicator. 

 

 QUENCH-L2; Mass spectrometer measurements: steam during reflood. Figure 47
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 QUENCH-L2; Sequence of wetting of surface thermocouples for rod #7 by 2-phase fluid formed above collapsed water front (L 501). Figure 48
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ballooning and burst of cladding tubes #12 and #13  

at elevation 950 mm; 

intact thermocouple TFS 2/13 attached to cladding #2 

 

camera location in bundle at the position of  

withdrawn corner rod A; 

bundle top view 

 QUENCH-L2; videoscope observations with camera inserted from the bundle bottom at position of corner rod A. Figure 49
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pellets under burst opening of cladding #13  

at elevation 950 mm 

 

camera location in bundle; 

bundle top view 

 

 

 QUENCH-L2; videoscope observations with camera inserted from the bundle bottom at position of corner rod A and threaded between rods #13 and Figure 50
#3. 
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camera location in bundle; 

bundle top view 

 

ballooning and burst of cladding tubes #14, #15 and #16 at 
elevation 950 mm; 

intact thermocouple TFS 4/13 attached to cladding #4 

 

 QUENCH-L2; videoscope observations with camera inserted from the bundle bottom at position of corner rod B. Figure 51
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camera location in bundle; 
bundle top view 

 

ballooning and burst of cladding tubes #18  
at elevation 950 mm; 

intact thermocouple TFS 7/13 attached to cladding #7; 
pellets under burst opening of cladding #16 

 

 

 QUENCH-L2; videoscope observations with camera inserted from the bundle bottom at position of corner rod C. Figure 52
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ballooning and burst of cladding tubes #10 (top) and 
#11 (down) at elevation 950 mm;intact thermocouple 

TFS 2/13 attached to cladding #2 (top) 

 

 QUENCH-L2; videoscope observations with camera inserted from the bundle bottom at position of corner rod D.Figure 53

camera location in bundle at the position of 
withdrawn corner rod D; 

bundle top view 
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0° 

 

90° 

 

180° 

 

270° 

 

 

 QUENCH-L2; Post-test bundle view between GS3 and GS4: buckled rods.Figure 54
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 QUENCH-L2; Bending of internal rods with indication of maximal bending for each rod. Figure 55
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 QUENCH-L2; Bending of periphery rods with indication of maximal bending values. Figure 56
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 QUENCH-L2; Overview of burst positions. Figure 57
LOCA-1 LOCA-2 
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pressure 
(bar) 

 

   

 

LOCA-0: 

openings oriented 

to bundle center 

 due to strong radial T gradient 

 

LOCA-1: 

no strong orientation 

to bundle center 

 

LOCA-2: 

similar to LOCA-1 

excluding adjacent rods 

7, 8, 20 

 QUENCH-L2, -L1 and -L0; Comparison of circumferential positions of bursts. Figure 58
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L0 L1 L2 

 

 QUENCH-L2, L1, L0; Axial burst positions.  Figure 59
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rod #1 at 354°, Aburst= 29 mm², wburst=3.4 mm rod #2 at 186°, Aburst= 20 mm², wburst=2.9 mm rod #3 at 135°, Aburst= 15 mm², wburst=2.5 mm 

   
rod #4 at 163°, Aburst= 21 mm², wburst=2.9 mm rod #5 at 308°, Aburst= 21 mm², wburst=3.0 mm rod #6 at 312°, Aburst= 17 mm², wburst=2.6 mm 

 QUENCH-L2; Overview of burst structures of rods #1 - #6. Figure 60

2
m

m
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rod #7 at 248°, Aburst= 23 mm², wburst=3.1 mm rod #8 at 100°, Aburst= 24 mm², wburst=3.3 mm rod #9 at 66°, Aburst= 12 mm², wburst=1.7 mm 

   
rod #10 at 97°, Aburst= 85 mm², wburst=6.6 mm rod #11 at 147°, Aburst= 21 mm², wburst=2.8 mm rod #12 at 141°, Aburst= 19 mm², wburst=2.5 mm 

 QUENCH-L2; Overview of burst structures of rods #7 - #12. Figure 61
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rod #13 at 151°, Aburst= 15 mm², wburst=2.4 mm rod #14 at 129°, Aburst= 23 mm², wburst=3.1 mm rod #15 at 174°, Aburst= 25 mm², wburst=2.4 mm 

   
rod #16 at 188°, Aburst= 27 mm², wburst=3.4 mm rod #17 at 289°, Aburst= 66 mm², wburst=3.9 mm rod #18 at 274°, Aburst= 24 mm², wburst=3.3 mm 

 QUENCH-L2; Overview of burst structures of rods #13 - #18. Figure 62
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m
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rod #19 at 342°, Aburst= 12 mm², wburst=1.8 mm rod #20 at 230°, Aburst= 94 mm², wburst=5.5 mm rod #21 at 68°, Aburst= 16 mm², wburst=1.5 mm 

   

   

 

 

 QUENCH-L2; Overview of burst structures of rods #19 - #21. Figure 63
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875 mm, 309° 875 mm, 354° 875 mm, 39° 

   
880 mm, 309° 880 mm, 354° 880 mm, 39° 

   
875 mm, 309° 875 mm, 15° (cracks are light) 875 mm, 39° 

   
870 mm, 309° 870 mm, 354° 870 mm, 39° 

 QUENCH-L2; surface cracks (dark stripes) inside of outer oxide layer of rod #1 at burst. Figure 64
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 QUENCH-L2; Tube scanner laser profilometry. Figure 65

scanner facility

reconstructed scanned surface of rod #8:

angle step 1°; axial step 0.5 mm; scanned length 200 mm

scanner facility

reconstructed scanned surface of rod #8:

angle step 1°; axial step 0.5 mm; scanned length 200 mm
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 QUENCH-L2, Rod #1; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 66
downwards from burst (bottom).  
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 QUENCH-L2, Rod #2; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 67
downwards from burst (bottom). 
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 QUENCH-L2, Rod #3; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 68
downwards from burst (bottom). 
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 QUENCH-L2, Rod #4; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 69
downwards from burst (bottom). Spikes: thermocouple. 
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 QUENCH-L2, , Rod #5; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 70
downwards from burst (bottom). 
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 QUENCH-L2, Rod #6; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 71
downwards from burst (bottom). 
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 QUENCH-L2, Rod #7; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 72
downwards from burst (bottom).Spikes: thermocouples. 

0

150

300

450

600

750

900

1050

1200

0

5

10

15

20

25

30

200 300 400 500 600 700 800 900 1000 1100 1200 1300

T
e

m
p

e
ra

tu
re

, 
K

S
tr

a
in

, 
%

Elevation, mmcircumferential strain of rod #7 T of rod #7 at burst time of rod #7

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

160 180 200 220 240 260 280 300 320 340

D
ia

m
e

te
r,

 m
m

Angle, °

967 mm

964 mm

962 mm

961 mm

960 mm

959 mm

958 mm

950 mm

900 mm

750 mm

201 mm

rod # 7

opening



 

97 

 

 

 QUENCH-L2, Rod #8; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 73
downwards from burst (bottom). 
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 QUENCH-L2, Rod #9; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 74
downwards from burst (bottom). 
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 QUENCH-L2, Rod #10; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 75
downwards from burst (bottom). 
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 QUENCH-L2, Rod #11; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 76
downwards from burst (bottom). Spikes: thermocouple. 
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 QUENCH-L2, Rod #12; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 77
downwards from burst (bottom). 
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 QUENCH-L2, Rod #13; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 78
downwards from burst (bottom). 
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 QUENCH-L2, Rod #14; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 79
downwards from burst (bottom). 
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  QUENCH-L2, Rod #15; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 80
downwards from burst (bottom). Spikes: thermocouple. 
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 QUENCH-L2, Rod #16; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 81
downwards from burst (bottom). 
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 QUENCH-L2, Rod #17; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 82
downwards from burst (bottom). 
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 QUENCH-L2, Rod #18; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 83
downwards from burst (bottom). 
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 QUENCH-L2, Rod #19; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 84
downwards from burst (bottom).Spikes: thermocouples. 
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 QUENCH-L2, Rod #20; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 85
downwards from burst (bottom). 
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 QUENCH-L2, Rod #21; longitudinal changing of circumferential strain (top); azimuthal diameter Figure 86
downwards from burst (bottom).
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 Blockage of coolant channel for QUENCH-L0, L1 and –L2 bundles. Figure 87
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 QUENCH-L2; Results of eddy-current measurements of axial layer thickness distribution for inner Figure 88
rods. 

 

 

 

 QUENCH-L2; Results of eddy-current measurements of axial layer thickness distribution for outer Figure 89
rods.
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 Comparison of cladding oxidation degree for tests QUENCH-L0, -L1 and -L2: total thickness of outer ZrO2 and α-Zr(O) layers (tangential average of Figure 90
eddy-current measurements). 
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 QUENCH-L2; layer thickness for two opposing circumferential positions of rod #7 (post-test eddy current measurements). Figure 91
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optical view of cladding inner surface downwards from burst opening 

 

neutron radiography below burst opening: localization of hydrided region (dark) 

 

 QUENCH-L2; ultrasound measurement of wall thickness for rod #8. Figure 92
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 QUENCH-L2; metallographic results for oxidation of inner and outer surfaces of cladding #8. Figure 93
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854 – 870 mm 838 - 854 mm 822 - 838 mm 807 - 822 mm 

 

 QUENCH-L2; optical mapping of inner surface of clad #8 below burst opening. Figure 94
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below burst opening: circumference cracks in oxide layer (left); EDX: oxygen in ZrO2 (right) 

  
oxide layer boundary:  circumference cracks in oxide layer (left); EDX: oxygen in ZrO2 (right) 

  
pellet middle: metal surface (left); EDX: oxygen in α-Zr(O) (right) 

  
tungsten ring between pellets: metal surface (left); EDX: tungsten indication (right) 

 

 QUENCH-L2; cladding inner surface of rod #8 along a line of contact between pellets and cladding Figure 95
under the burst opening. 
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 QUENCH-L2; Metal-vapour-phase deposition on the pellet surface.Figure 96
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 Mechanism of secondary hydrogenation.Figure 97
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rod #1 
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inside H-band 

1080 wppm 
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rod #9 

no pronounced 
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500 wppm 

 QUENCH-L2; Hydrogen bands on neutron radiographs of inner rods and maximum hydrogen content measured by neutron tomography. Figure 98
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 QUENCH-L2; Neutron radiographs of outer rods and maximum hydrogen content measured by neutron tomography. Figure 99
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rod #1 rod #2 rod #3 rod #4 rod #5 rod #6 rod #7 rod #8 rod #9 

 QUENCH-L2; tomography results for inner rods: hydrogen bands above burst opening and hydrogen spots below burst opening. Figure 100
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rod #12 rod #13 rod #14 rod #16 rod #17 rod #18 rod #20 rod #21 

 QUENCH-L2; tomography results for outer rods: no hydrogen bands and spots; formation of tungsten (evaporated from heaters) strips. Figure 101
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 102
each cross section slice of 75 µm width) in rod #1: hydrogen band above and hydrogen spot below burst opening. 
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 UENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 103
each cross section slice of 75 µm width) in rod #2: hydrogen band above and hydrogen spot below burst opening, tungsten rings at the inner cladding 
surface between pellets. 

TFS 2/13 

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

902 912 922 932 942 952 962 972 982 992 1002 1012 1022 1032 1042

H
y
d

ro
g

e
n

 c
o

n
c
e

n
tr

a
ti

o
n

, 
w

p
p

m

Elevation, mmslice mean slice max



 

127 

 

 

 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 104
each cross section slice of 75 µm width) in rod #3: hydrogen spot below burst opening, tungsten rings between pellets. 
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 105
each cross section slice of 75 µm width) in rod #6: hydrogen band above and hydrogen spot below burst opening. 
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 106
each cross section slice of 75 µm width) in rod #9: hydrogen band above and hydrogen spots below burst opening. 
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 107
each cross section slice of 75 µm width) in rod #13: tungsten rings at the inner cladding surface between pellets. 
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 108
each cross section slice of 75 µm width) in rod #14: tungsten rings at the inner cladding surface between pellets. 
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 109
each cross section slice of 75 µm width) in rod #16: tungsten rings at the inner cladding surface between pellets. 
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 110
each cross section slice of 75 µm width) in rod #18: areas with low hydrogen content. 
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 111
each cross section slice of 75 µm width) in rod #20: tungsten rings at the inner cladding surface between pellets. 
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 QUENCH-L2; correspondence between reconstruction of tomography image and plots of mean and maximal hydrogen concentrations (calculated for Figure 112
each cross section slice of 75 µm width) in rod #21: areas with low hydrogen content above burst opening. 
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rod #1: 875 mm rod #2: 958 mm 

  
rod #3: 961 mm rod #6: 869 mm 

  
rod #8: 875 mm rod #9: 887 mm 

 

 QUENCH-L2; comparison of tomography images at the axial middle of burst opening with initial Figure 113
(pre-test) cladding cross section (OD=10.75 mm; wall thickness 725 µm).
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 QUENCH-L2; claddings after tensile tests. Figure 114
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 Failure modes of post tensile tested QUENCH-LOCA claddings; left: M5® (QUENCH-L2) and right: Zircaloy-4 (QUENCH-L0 and QUENCH-L1).Figure 115
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 QUENCH-L2; results of tensile tests with claddings of the inner rodgroup. Figure 116

 

 QUENCH-L2; results of tensile tests with claddings of outer rods.Figure 117
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Appendix A. Results of single effect tests 

A. Pshenichnikov, J. Stuckert 

Several investigations of specially hydrogenated cladding tubes were performed for detailed analysis of 
microstructure and its influence on mechanical properties of tubes. 

1 Metallographic investigations 

Change in the microstructure of M5® alloy was investigated by means of light microscopy with interference 
contrast.  

At first several probes were annealed in argon to detect a degree of an annealing impact on the 
microstructure. Samples were heat treated in the LORA furnace at the temperatures of 600, 700, 800, 900 and 
1000 °C during 8 minutes and then withdrawn to the air atmosphere. The mass gain of these probes (due to 
post-test oxidation in air) was used as the reference one to calculate the hydrogen content in further 
hydrogenated probes. If there were any mass gain due to gas mixture impurities, they were automatically 
included in the reference mass and thus not affect the result of the hydrogen content estimation. 

The other probes were charged to different hydrogen contents in argon/hydrogen gas mixture under 
temperatures of 600-900 °C. Table 1 shows the experimental results for each probe. Hydrogen content was 
calculated on the basis of mass gain with a correction of gain during temperature treatment in pure argon 
without hydrogen. 

The length of all tube samples was 150 mm. 

Table A1. Parameters of investigated samples. 

Name Temperature H2 duration  H2 rate H2 (mass gain) 

 °C min cm³/min wppm 

H22M5 600 2 530 306 

H23M5 600 6 530 1955 

     

H19M5 700 2 530 1700 

H20M5 700 4 530 1858 

H21M5 700 8 530 3555 

     

H1RM5 800 4 530 590 

H14M5b 800 8 530 2643 

H15M5 800 16 530 4523 

     
H12M5 900 4 2673 4538 

 
Preparations for metallography were made in the following order: the samples were embedded into epoxy 
and then grinded with abrasive paper 500, 800, 1000, 2400, 4000 for approximately 45 seconds each. Then 
samples were polished with 3 μm diamond particles under load of 25N during 6 minutes and then etched in 
two stages: 
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1st stage. Etch polishing with cotton swab during 15-20 seconds in solution of 45 ml glycerin; 45 ml HNO3; 10 
ml HF. 

2nd stage. Immerse etching during 10 seconds in solution of 60 ml glycerin; 10 ml HNO3; 20 ml HF. 

Then the specimens were rinsed in running water for 5 minutes. 

After this treatment one can see microstructure without deformed layer which is always a problem during 
zirconium alloy sample preparation. 

1.1 Metallographic investigations of M5 samples annealed in Ar 

  
as received 600 °C 

  
700 °C 800 °C 

  
900 °C 1000 °C 

Figure A1 M5 samples annealed during 8 minutes in argon at different temperatures. 

It is very important to understand the difference between hydrogen-induced and thermal-induced changes in 
microstructure. A series of annealing tests were performed in Ar atmosphere. The samples were threated 
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under temperatures of 600, 700, 800, 900 and 1000 °C during 8 minutes and then were quickly cooled in air. In 
the following images the structure evolution of these samples is presented (Fig. A1). 

The structure of as-received sample is usual grain structure with average grain size of about 2.5 µm across. 
Due to anisotropic properties of zirconium and his alloys one can see that nearly the half of the grains were 
etched with different speed. Some grains are bright and the others are dark due to orientation to polarised 
light. This is exactly what can be expected from texturized zirconium tube wall material. 

Treatment in pure Ar at 600 °C during 8 min changed the structure of as-received sample. The grain shape 
tends to become equiaxed with the size of 3 - 5 µm. The structure is typical for annealed specimen below the 
temperature of phase transformation. After treatment in Ar atmosphere at 700 °C during 8 minutes the 
microstructure is the similar as it was at 600 °C. Some grains become larger up to 8 µm due to started 
recrystallization. After treatment at 800 °C the grains become almost equiaxed and polygonal; one can see 
that the size is also increased up to 8 µm; some grains can be up to 15 µm. 

After treatment at 900 °C the traces of the beginning of α → β - transformation was observed; the structural 
parameters have been changed. Small 3 - 5 µm grains clean from inclusions, which were absent at the previous 
stage, are formed simultaneously with black and white stripy regions result from reverse β → α martensitic 
type of transformation during cooling phase. After 8 minutes at 1000 °C microstructure was fully transformed. 
All the grains transformed into needles and combined to large recrystallized regions. These regions obviously 
consisted of the same-oriented sub-grains due to the same shade of grey on the image. The inclusion particles 
migrated towards the boundaries of various types thus arranging themselves into thin chains. The size of the 
big regions of same-oriented sub-grains was about 100 µm. 
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1.2 Results on metallographic observations of hydrogenated M5 

In the presence of hydrogen completely different consequence of structure development was detected (Fig. 
A2 and Fig. A3). 

  
as - received 600 °C, 120 s 

  
600 °C, 360 s 700 °C, 120 s 

  
700 °C, 240 s 700 °C, 480 s 

Figure A2 M5 samples hydrogenated at 600 and 700 °C during different durations. 

The grain structure of sample hydrogenated at 600 °C during 120 s in argon-hydrogen atmosphere is not 
changed: average grain size was about 2.5 µm across. The black segmented stripes of 3.5 µm length and 0.2 
µm width were observed. They are oriented in the tube longitudinal direction. Several stripe segments have 
declination of up to 45° to the longitudinal direction. These black stripes are supposed to be hydrides as there 
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were no such features in annealing experiments. This probe has the lowest level of absorbed hydrogen. 
Obviously no phase transformation was take place at all. And all hydrogen is probably precipitated as hydrides. 
In order to detect the presence and spatial distribution of the second phase it is necessary to perform the 
electron back scattered diffraction investigation, which enable phase map reconstruction and detailed analysis 
of the  

The grain structure of sample hydrogenated at 600 °C during 360 s changed slightly. The grain boundaries have 
become non - equilibrium.  Grain size is of approximately 2.5 µm. Here the very beginning of the phase 
transformation can be observed.  

Microstructure after Hydrogenation during 120 s at 700 °C has almost the same appearance as for 600 °C 
360 s. The same features can be observed. The structure of grain boundary has changed. A process of 
recrystallization started to emerge, because the grain size raised a little and here it is about 3.2 µm. One can 
see a lot of beta phase nuclei.  

The sample hydrogenated at 700 °C during 240 s shows significant phase transformation with acicular prior β -
 phase structure. Needles are approximately 12 µm length and 1.6 µm wide. But there are also the small 
islands of previous α - phase.  

  
800 °C, 240 s 800 °C, 480 s 

  
800 °C, 960 s 900 °C, 240 s 

Figure A3 M5 samples hydrogenated at 800 and 900 °C during different durations. 

The sample hydrogenated at 700 °C during 480 s minutes shows the structure completely transformed to the 
β - phase. The needles became longer (30 µm) and thinner (1 µm). There are also α - islands with characteristic 
size of about 15 x 8 µm. The only question is whether these needles are hydrides or these are zirconium 
needles result from β → α reverse martensitic transformation.  



Metallographic investigations 

145 

The structure of samples hydrogenated at 800 °C during 240 s and 480 s is very similar to corresponding 
samples hydrogenated at 700 °C. In the case of 480 s treatment full β - transformation occurred with 
formation of wide and relative long needles.  

The sample hydrogenated at 800 °C during 960 s was completely β - transformed. The needles become longer 
with straighter edges. The average needle length was about 35 µm and 1.5 µm width. But several needles 
were as long as 70 µm. The islands of α - phase were filled with small black stripes, which were obviously 
emerged due to rearrangement of second phase particles. Between the needles there are also black regions 
full of the same shaped stripes. These stripes must be also additionally investigated by means of electron back 
scattered diffraction analysis. 

The structure morphology and needle dimensions of sample hydrogenated at 900 °C during 240 s were all the 
same as for 800 °C and 960 s hydrogenation. 

The metallography showed different details of microstructure, however, it was not possible to detect the 
hydrides. In a couple of specimens there were a lot of black stripes detected that looked very similar to 
hydrides described in literature and their morphological characteristics were measured. The next step should 
be the XRD analysis to verify the presence of hydrides and their crystal structure. This analysis will help to 
identify the phases, which are present. An additional method of electron back scattered diffraction analysis 
should be used to characterize the spatial distribution of the phases detected by XRD. 

1.3 X - Ray diffraction analysis of hydrogenated M5. 

X - ray diffractometry (XRD) analysis was applied to investigate the phases existing in the tested tubes 
including possibly precipitated hydrides. All samples were analysed at room temperature on conventional 
Seifert C3000 diffractometer equipped with a Meteor 1D linear detector and a MZ4 goniometer. As commonly 
applied in this technique, a monochromatic radiation corresponding to the copper CuKα emission line was 
used (E = 8047 eV, λ = 0.15406 nm). Measurements were made not on the surface of the tube but in the 
middle of the tube wall. At first the tube wall was grinded and polished to reach the half of its thickness in 
order to diminish the effect of the surface layer and to detect the presence of new phases in the bulk. Radial 
direction of the tube was parallel to the incident beam. Lattice parameters were calculated by DICVOL06 
software after the whole profile fitting and background subtraction procedures by means of WinPLOTR 
program package. 

XRD - profiles of as-received state showed that M5 diffraction peak positions were in very good agreement 
with the data for α-Zr obtained from International Centre for Diffraction Data database. No signs of any other 
phases were present. 

X-ray pattern of hydrogen-free sample presented on all of the following figures (Fig. A4-A9) as a reference one. 
The main point of analysis was to find the peaks of γ, δ and ε zirconium hydride phases. For every phase 
reference peak data (angle and relative intensity) were taken out of the database and plotted on each figure 
for convenience. The numbers are 34-0690 for γ -, 34-0649 for δ - and 17-0314 for ε-hydride.  

All kinds of treatments listed above in the Table 1 led to formation of hydrides. Simultaneously with hydrogen 
content the developing of a hydride pattern started with the two peaks of {111}δ and {111}γ. They emerged 
always together, providing the δ - hydride peak was in all cases higher than γ - hydride. After the development 
of the main peak {111}δ further peaks with the lower intensity such as {200}δ and {220}δ started to develop. 
The peaks which used to have lower intensity can be visible only if the peak which normally has the highest 
intensity is enough developed. That is why for γ - phase the next visible peak {200}γ emerged only at the level 
of 8000 wppm H. Further increase of hydrogen content did not lead to formation of new peaks but to growth 
of the intensities of the already existing ones. In spite of a high content of β - stabiliser hydrogen at high 
hydrogen content there were no sign of β - Zr peaks observed. All β - Zr transforms into α - Zr + δ - and γ -
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 hydrides – in well accordance with the Zr – H equilibrium phase diagram. There was no evidence of ε - phase 
presence. 

The peak position analysis gave the following result. All hydride peaks were shifted to the right from the table 
data values. It means that hydrides were elastically hydrostatically compressed in the zirconium matrix. In the 
case of zirconium peaks some of them were shifted from their values to the left, as for example {002}α and 
{102}α. The rest of the peaks (for example {100}α and {110}α) were exactly on their table values position. It 
means that the lattice of zirconium is inhomogeneously elastically or plastically distorted to accommodate the 
origination of hydrides without destruction. 

The hydride pattern development described above is fulfilled for all investigated temperatures. No influence of 
temperature factor on the hydride peaks was detected.. 

There was a change in relative intensity of zirconium peaks after all the treatments. Main zirconium lines 
{100}α, {002}α, {101}α were changed significantly. In particular after 360 s minutes of 700 °C treatment peaks 
{002}α and {101}α have exchanged their intensities. So the peak α {002} α became 50% of its initial intensity 
and {101} α raised up to 100%. In turn the intensity of {100}α increased constantly during all the times and 
temperatures of treatment. As the peak intensity always tend to reach the intensity value of an annealed 
stress-free specimen it is obvious that temperature treatment and phase transformation have played the 
major role in the observed texture reorientation. 
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Figure A4 Sample H22M5: hydrogenation during 120 s at 600 °C, hydrogen content 306 wppm. 
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Figure A5 Sample H23M5: hydrogenation during 240 s at 600 °C, hydrogen content 1955 wppm. 



 

149 

 

 

Figure A6 Sample H19M5: hydrogenation during 120 s at 700 °C, hydrogen content 1700 wppm. 
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Figure A7 Sample H20M5: hydrogenation during 240 s at 700 °C, hydrogen content 1858 wppm. 
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Figure A8 Sample H21M5: hydrogenation during 480 s at 700 °C, hydrogen content 3555 wppm. 
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Figure A9 Sample H12M5: hydrogenation during 240 s at 900 °C, hydrogen content 4538 wppm. 
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Figure. A10 Relative intensity evolution of α-Zr peaks. 

The change in the texture observed by means of X-ray diffraction is in agreement with change in the 
microstructure of metal previously observed by optical metallography. It was already seen that from 120 to 
240 s there were only α - Zr grains of initial size with narrow boundaries to observe. But after 240 s of 
treatment at 700 °C microstructure evolution towards prior β - phase becomes more pronounced and grain 
boundaries become unstable and the process of structure evolution is going further with the increasing 
treatment time and temperature (Fig. A10). According to the structures observed, change in the intensities 
was related to the course of α - β transformation together with recrystallization (grain boundaries 
desintegration) and reorientation and regrouping of small grains into big regions of nearly the same 
orientation. Texture evolution processes went quicker in the presence of β - stabilizer hydrogen because of his 
impact on the temperature boundary of phase transformation. 

2 Microhardness test results 

To evaluate the influence of synchronously developing processes of annealing and hydrogenation on the 
material properties the microhardness of hydrogenated and annealed specimens were measured. The tests 
were performed with Fischerscope Testing device. The values of microhardness, elastic modulus and elastic 
strain were obtained. It should be mentioned, that HV value is not pure Vickers hardness, but it was obtained 
by calculation of HV = 0.0945 HIT, where HIT is a maximal depth of the Vickers pyramid. It means that HIT also 
includes elastic part of strain. Using this method one can obtain an estimation of HV according to 
DIN EN ISO 14577. 

Microhardness tests have demonstrated a complex effect of hydrogen and temperature during the treatment 
(Fig. A11). All specimens annealed in argon atmosphere have almost the same level of about 195 HV Vickers 
hardness even after cooling from 900 °C. It is normal because there was no additional diluted element inside 
the structure to change its internal stress state.  

In the presence of hydrogen the microhardness started to increase from the very beginning already at 600 °C. 
The one of the main possible reasons for microhardness increase is β - quenching of oversaturated solid 
solution of hydrogen in zirconium matrix and martensitic type of structure transformation into prior β - phase 
together with hydride phase formation which occur during cooling phase of the experiment. The 
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metallographic investigation of the samples hydrogenated at 600 and 700 °C to low hydrogen content 
detected the traces of β - transition in small local regions near to grain boundaries, where hydrides have 
probably formed. The volume fraction of prior β - structure will obviously define the overall microhardness 
level as it defines the place of preliminary hydride precipitation. The temperature and hydrogen together 
boosted the β - phase formation process. So at 800 and 900 °C there was more β - phase after short 
hydrogenation time period and in turn more prior β - phase after cooling with the fast increase of 
microhardness already at low hydrogen level due to homogeneous hydride redistribution. But there is an 
upper limit of about 320 HV for all curves in performed tests at high hydrogen content that is why it can be 
considered as the hydride microhardness level. 

 

 

Figure A11 Microhardness of M5 hydrogenated to various hydrogen content under various temperature 

.
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3 Tension test results 

M5 samples charged with hydrogen to different content were subjected to uniaxial tension under strain rate 
of 7*10-4 s-1at room temperature. Details on the treatment of each sample are summarized in table 2. 

Table A2. Hydrogenated samples of Zircaloy-4 and M5 for tension test. 

Name Temperature 
Duration 

in H2 
H2 (mass gain) 

Elongation at 
rupture 

Ultimate 
tensile 

strength 

 
°C min wppm % MPa 

Zircaloy-4 samples 

As-
delivered 

0 0 0 13.7 690 

Annealed 
in Ar 

700 30 0 33.7 500 

M5 samples 

As-
delivered 

0 0 0 25.1 510 

H1RM5 800 4 590 6.6 690 

H14M5-a 800 8 2645 2.2 695 

H14M5-b 800 8 2643 3.0 710 

H14M5-c 800 8 3949 0.9 555 

H15M5 800 16 4523 0.4 310 
 

As-delivered Zircaloy-4 tube showed approximately 13% of strain and 700 MPa of ultimate stress as it is seen 
in the Fig. A12a. Annealing during 30 minutes in Ar atmosphere has led to the reduction of maximal 
engineering stress down to 500 MPa and strain to rupture has risen up to almost 35%, which is normal for 
annealed Zircaloy-4. 

As one can see in the Fig. A12b all degrees of treatment in hydrogen mixed with argon atmosphere have led to 
a rapid reduce of plasticity. After 120 and 240 s high plasticity reduction but fracture of alloy is still looks 
plastic. At the time of 360 and 480 s the material is very brittle and overall strain is less than 3 and 1 % 
respectively. But in the case of 800 and 900 °C treatment after the same time periods the plasticity of alloy still 
remained not less than 4-5%. 

The samples of M5 treated at 800 °C have shown nearly the same behavior. One can see the strong plasticity 
reduction and at the same time sufficient material hardening. The maximal stress is at the level of 700 MPa.  
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 a) 
 

 b) 
Figure A12 Stress-strain curves of zircaloy-4 samples charged with hydrogen at different temperatures: a) 

as-delivered and annealed in Ar; b) 800 °C M5 hydrogenated vs annealed in Ar, during different 
time intervals. 

So it can be concluded that not the treatment time but the level of hydrogen content is responsible for 
plasticity reduction. It is shown in Fig. A13a that 500 wppm of hydrogen rapidly reduces plasticity by 2 times. 
Also we can observe small increase in maximal stress (Fig. A13b). So the approximate level of 1000 wppm 
leads to further reduction of plasticity and quasi-brittle fracture and 3000 wppm leads to high reduction of 
plasticity and to brittle fracture. 
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 a) 
 

 b) 

Figure A13 Dependences of maximal strain to rupture a) and maximal stress vs hydrogen content in 
wppm. 



Observation of zirconium hydrides by Electron Back Scatter Diffraction (EBSD) 

158 

4 Observation of zirconium hydrides by Electron Back 
Scatter Diffraction (EBSD) 

In spite of the results on hydrogenation of Zr and investigation of zirconium hydrides there was still no 
possibility to say the exact place of hydrides in the microstructure and their bulk distribution. The chance to 
detect hydrides after above-shown scenarios of structure transformation by means of optical methods is 
vanishing. Especially in the case of acicular structure which strongly prevents the analysis of hydride 
morphology and distribution. The analysis of literature has shown that no one has performed the investigation 
by means of electron back scattered diffraction (EBSD) of hydrogenated M5 particularly under the LOCA 
temperature modus. 

The EBSD method is a relatively new technique which can be used to obtain the data on the type and 
orientation of local volume of tens of nanometre scale. It allows reconstructing a phase map and an 
orientation distribution map of a hundred micrometre scale region combining the resolution of TEM and a 
field of investigation of hundreds of material grains. On the basis of the neighbouring grain orientation the 
information on grain boundary type and its overall length can be obtained. This technique is very powerful in 
detecting the phases in two phase material. 

It should only be mentioned, that this method differs only the crystal lattice, but not to what kind of phase it 
belongs to. One should consider some possible phases to look for. That is why EBSD was used only in 
conjunction with XRD. Only the coupled investigation allows full exclusion of errors in phase detection which 
could happen by means of EBSD. The material phase composition, the type of lattice and the distance between 
the characteristic planes were determined from XRD peak position. These type of phase and lattice parameter 
values were used during EBSD analysis to detect exactly this phases in the EBSD - map. 

Data obtained by means of such tandem analysis helps 1) to detect hydrides, their morphology and 
distribution in different types of structure; 2) to establish crystallographic relation between Zr matrix and 
hydride; 3) detect the position and interrelation between γ - and δ - hydrides; 4) understand the mechanism of 
embrittlement. In the present report only the first point will be investigated. 

The radial-axial section of the tube wall was cut from the middle part of the hydrogenated tube for 
investigation. The material preparation for EBSD - measurements was the same as used for metallography. The 
details of EBSD analysis were as follows. 

After hydrogenation in α - region of the phase diagram at 600 °C to 306 wppm H the hydrides were already 
good detectable (Fig. A14). Only δ - hydrides were detected in the microstructure without any sign of γ – 
hydrides probably due to their low amount according to comparison of XRD peak intensities. Most of the 
hydrides at low hydrogen content looked like needles and grew along the grain boundaries (inter-granular). 
Image analysis gives 98% Zr, 2% δ - ZrH1.66. 
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Figure A14 Phase map of the sample H22M5 (600 °C, 2’) with 306 wppm H hydrogenated in α - Zr region 
of phase diagram (red – α - Zr, yellow – δ - ZrH1.66, black – undetectable zones). 

Hydrogenation degree of 4523 wppm H is in the field of β at 800 °C in the phase diagram. At this 
hydrogenation degree there were large needles of α - Zr detected which could be easily taken for hydrides. 
Though the hydrides look like needles, but they fill rather the volume between two Zr needles. This type of 
structure is usually called Widmanstätten pattern. It can be seen in the Fig. A15 and Fig. A16 the hydride 
detection is very complicated without EBSD on this type of structure. The γ - hydride needles (Fig. A15 blue 
colour) were detected only when the peak intensity on the XRD - diagram was relatively high. A volume 
fraction of Zr metal in the form of needles which result from martensitic transformation during cooling is lower 
than one of hydride. Image analysis gives 48% Zr, 50% δ - ZrH1.66, 2% γ - ZrH. 

 
Figure A15 Phase map of the sample H15M5 (800 °C, 16’) with 4523 wppm H hydrogenated in β - Zr region 

of phase diagram (red – α - Zr, yellow – δ - ZrH1.66, blue – γ - ZrH, black –  undetectable 
zones). 

On the example of these two samples one can see how different can be the structure of hydrogenated sample 
of M5 in spite of that in the phase diagram only α - Zr and δ - hydrides are presented. The further 
investigations in understanding the hydrogen embrittlement should include thorough analysis of grain 
orientation, grain boundary spectra. The crystallographic relation between Zr matrix and hydride as well as 
interrelation between γ - and δ - hydrides should be established. Also the role of alloy components should be 
investigated. 
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Figure A16 An example of hydride detection by means of EBSD and impossibility to do this by means of 
optical analysis. Phase map of the sample H15M5 with 4523 wppm H combined with SEM 
image. 
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Appendix B. Relation of experimental data to the ECR 
criterion modified by GRS 

J. Stuckert 

According to the definition, the ECR (Equivalent Cladding Reacted) shows the weight increase of 1 cm² cladding 
tube due to absorbed oxygen (ratio of mole fractions of oxygen and the metal in 1 cm² of the tube):

ECR = (mO/MO2)/(( τcl*ρZr)/MZr), 

with mO – oxygen in 1 cm² of tube [g], τcl – initial thickness of tube [cm], ρ – density [g/cm³], M - molar mass. 

The oxidation degree of claddings after the QUENCH-LOCA tests was measured by means of eddy-current 
method, which gives the summarized thickness of ZrO2 and α-Zr(O) layers. Both Cathcart-Pawel correlations, 
for the mass gain as well as for the layer thicknesses, are known; therefore, there is direct correspondence 
between eddy-current data (in µm) and ECR (in wt%). This correspondences for the regions of hydrogen bands 
in claddings of the QUENCH-L0, -L1 and -L2 bundles are depicted in Tables B1, B2 and B3, correspondingly. The 
tables include also more conservative ECR values calculated by Baker-Just correlation. Hydrogen contents 
included in tables are results of the neutron tomography measurements.

Table B1 Results of the QUENCH-L0 test 

rod  
# 

Elevation of 
hydrogen band, 

mm 

ZrO2+α-Zr(O) 
eddy current, 

µm 

ECR (Cathcart-
Pawel), % 

ECR (Baker-
Just), % 

Hydrogen 

(*point max), 

wppm 

1 955 33 2.10 2.35 2560 

3 937 22 1.35 1.52 2140 

7 970 24 1.48 1.66 1940 

14 960 9 0.57 0.64 1050 

*point=x*y*z=3*3*1 pixels, pixel size: 14 µm

Table B2. Results of the QUENCH-L1 test 

rod  
# 

Elevation of 
hydrogen band, 

mm 

ZrO2+α-Zr(O) 
eddy current, 

µm 

ECR (Cathcart-
Pawel), % 

ECR (Baker-
Just), % 

Hydrogen 

(*point max), 
wppm 

2 907 22 1.35 1.52 1800 

3 930 23 1.42 1.59 1115 

4 990 12 0.74 0.83 730 

5 930 19 1.21 1.36 755 

6 925 17 1.05 1.18 795 

7 940 16 1.00 1.13 695 

8 908 15 0.96 1.07 1435 

9 895 14 0.86 0.96 1270 

* point=x*y*z=3*3*1 pixels, pixel size: 44 µm
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Table B3. Results of the QUENCH-L2 test 

rod  
# 

Elevation of 
hydrogen band, 

mm 

ZrO2+α-Zr(O) 
eddy current, 

µm 

ECR (Cathcart-
Pawel), % 

ECR (Baker-
Just), % 

Hydrogen 

(*point max), 

wppm 

1 848 17 1.09 1.12 920 

2 931 14 0.87 0.89 545 

3 934 13 0.82 0.84 550 

6 896 16 1.02 1.05 560 

9 902 18 1.14 1.16 785 

* point=x*y*z=3*3*1 pixels, pixel size: 75 µm

The relation between these data and GRS curve for the boundary between ductile and brittle claddings [B1] 
shows, that practically all hydrogenated claddings of three bundle tests correspond to ductile region of 
diagram (Fig. B1). 

Figure B1. Bundle data in relation to GRS “ductile – brittle” diagram. 

Reference 

[B1] J. Herb, J. Sievers, H.-G. Sonnenburg. Ermittlung der Festigkeit von Brennstab-Hüllrohren aus Zry-4, M5, 
ZIRLO und Zry-4-low-tin anhand von Ringdruckversuchen. GRS Report GRS-A-3698. April 2013. 
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The overall objective of the QUENCH-LOCA bundle test series is the investigation of ballooning, burst 
and secondary hydrogen uptake of the cladding under representative design basis accident 
conditions as well as detailed post-test investigation of cladding mechanical properties to analyze 
the material behavior with respect to embrittlement. The QUENCH-LOCA-2 bundle test with M5® 
claddings was performed according to a temperature/time-scenario typical for a LBLOCA in a 
German PWR with a maximal heat-up rate of 8 K/s, a cooling phase lasting 120 s and the terminated 
with 3.3 g/s/rod water flooding. The maximum temperature of 1400 K was reached at the end of the 
heat-up phase at elevation 850 mm. The tangential temperature difference across a rod was up to 70 
K on the burst onset. Due to the low ballooning degree the maximum blockage ratio of the cooling 
channel (15% at 960 mm) was lower in comparison to the reference test QUENCH-LOCA-1 performed 
with Zircaloy-4 claddings (about 23%). The cladding burst occurred at temperatures between 1050 
and 1195 K (similar to QUENCH-LOCA-1). During quenching, following the high-temperature phase, 
no cladding fragmentation was observed (residual ductility is sufficient). 

The post-test neutron tomography of claddings showed that pronounced hydrogen bands inside 
QUENCH-LOCA-2 claddings (secondary hydriding) were observed only for five inner claddings and 
only in two cases the hydrogen concentration was higher than 1000 wppm (about 1100 wppm). Nine 
claddings (one from inner rods and eight from outer rods) failed during tensile tests due to stress 
concentration at the burst position – similar to rods of the QUENCH-LOCA-0 commissioning bundle 
with hydrogen concentration < 1500 wppm. All other claddings failed due to fracture after necking at 
elevations outside of the ballooning region. 




