

 Karlsruhe Reports in Informatics 2018,6
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Exploiting subspace distance equalities in
Highdimensional data for knn queries

Martin Schäler, David Broneske, Veit Köppen,
and Gunter Saake

 2018

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/de.

Exploiting sub-space distance equalities in
high-dimensional data for knn queries

Martin Schäler1, David Broneske2, Veit Köppen2, and Gunter Saake2

1Karlsruhe Institute of Technology, 2OVGU Magdeburg
1martin.schaeler@kit.edu, 2firstname.lastname@ovgu.de

ABSTRACT
Efficient k-nearest neighbor computation for high-dimensional data
is an important, yet challenging task. The response times of state-
of-the-art indexing approaches highly depend on factors like distri-
bution of the data. For clustered data, such approaches are several
factors faster than a sequential scan. However, if various dimensions
contain uniform or Gaussian data they tend to be clearly outper-
formed by a simple sequential scan. Hence, we require for an
approach generally delivering good response times, independent of
the data distribution. As solution, we propose to exploit a novel con-
cept to efficiently compute nearest neighbors. We name it sub-space
distance equality, which aims at reducing the number of distance
computations independent of the data distribution. We integrate knn
computing algorithms into the Elf index structure allowing to study
the sub-space distance equality concept in isolation and in combi-
nation with a main-memory optimized storage layout. In a large
comparative study with twelve data sets, our results indicate that
indexes based on sub-space distance equalities compute the least
amount of distances. For clustered data, our Elf knn algorithm de-
livers at least a performance increase of factor two up to an increase
of two magnitudes without losing the performance gain compared
to sequential scans for uniform or Gaussian data.

1. INTRODUCTION
In data analysis, efficient computation of the k-nearest neighbors

(knn) for high-dimensional data sets has long been an important, yet
challenging problem [6, 11]. With emerging applications, like sci-
entific databases or time series analytics, this importance is further
increasing. The reason is that solving the knn problem is part of var-
ious data analysis methods, including classification and clustering.

To allow for efficient knn computation, a wide range of indexing
techniques is known. Early approaches, such as R-Trees [15] or
kd-Trees [3] are known to deliver good performance only in low-
dimensional spaces [20]. State-of-the-art approaches [8, 16], such as
iDistance [17], map each point in the data set to its nearest pivot(s).
Comparative studies [8, 17] report large performance increases.
However, usually those approaches are difficult to tune as they fea-
ture various parameters and are known to be parameter sensitive [23,
27]. More importantly, distances between high-dimensional points
tend to be very similar – particularly if the number of dimensions
increases. Therefore, the mapping of points to artificial clusters does
not solve the fundamental problem of high-dimensional data sets:
often a large fraction of the data set is visited upon knn computation.

With the increasing amount of main-memory, a major cost driver
for sequential scans, fetching all points from hard disk, has vanished.
This makes sequential scans as competitor even more powerful.
Nevertheless, advances in hardware alone do not allow for efficient
analyzes of the fast growing amount of data. Hence, we require for

an approach that is expected to result in good response times for
knn computation regarding various distributions instead of reaching
peak performance for some data sets (cf. Figure 1).

Idealized knn
response time

Stochastic
distributionDense

clusters only
Totally
uniform

Mixed
Distribution

Sequential
scan

Pivot-based
approaches

Elf approach

Application field
for sub-space
distance equality

slow
er

faster

Figure 1: Intuition of the application field of indexes based on
sub.space distance equalities

The objective of this paper is to investigate how to design an
index that generally results in good performance. That is, for highly
clustered data we want to achieve, on average, at least comparable
performance to state-of-the-art indexes. In case the data set contains
uniform or Gaussian data, the average performance shall be at least
comparable to a sequential scan. We explicitly do not target at
outperforming any known approach for any possibly existing data
set. We deem such endeavor unreasonable considering decades
of knn index research and the variety of parameters to consider.
Examples for such parameters are different dimensionality, number
of points, and stochastic distribution of the data sets as well as
different knn distance functions, to name only a few.

A novel concept that gives way to approaches generally resulting
in good response times is sub-space distance equality. It is based on
the observation that all points sharing the same prefix (combination
of values) have the same distance to any query w.r.t. the sub space
defined by the prefix. Hence, if this concept is well exploited, the
number of required distance computations is highly reduced. That is,
distance computation is executed only once per sub space (not once
per point) and the sub-space distance represents a tight lower bound
for any point within that sub space. To our knowledge, the only
index that allows exploiting sub-space distance equalities is Elf [7].
Moreover, this index features a main-memory optimized storage
layout, which allows to investigate the effect of sub-space distance
equality on knn computation in isolation as well as in combination
with an optimized storage layout. Therefore, we select Elf for our
investigations.

However, so far, Elf is only known to deliver high speedups for
multi-column selection predicates (i.e., multi-dimensional range
queries) [7]. This query type is fundamentally different to knn
queries. Hence, we make non-trivial extensions in order to open
this new application field for indexes based on the concept of sub-
space distance equality. Altogether, our investigations result in the
following contributions:

1. We develop algorithms exploiting sub-space distance equali-
ties for knn computation and integrate them into the Elf index.
Thereby, we exploit the index’ genuine features at concept level
as well as the level of optimized storage layout.

2. We comprehensively examine factors affecting the performance
of our knn algorithms allowing to build optimized Elf indexes
for arbitrary combinations of data set and distance function.

3. We comprehensively investigate the performance of our algo-
rithms. To this end, we consider twelve data sets with different
properties, such as data size and stochastic distribution, reveal-
ing that our algorithms result in competitive performance for all
data sets considering highly potent competitors. The reason is
that exploiting sub-space distance equalities results in the least
amount of distance computations for all data sets.

4. We reveal that the observed speedups hold for a well-known
instance of the Minkowski metric family.

Finally, to support repeatability, all data sets and implementations
are available open source1.

2. PRELIMINARIES AND RELATED WORK
In this section, we introduce the knn problem including properties

of distance functions. Furthermore, we introduce related work.

2.1 The knn problem
Given a set of points in a d-dimensional space (Nd), a knn query

returns the k closest points to the query point according to some dis-
tance function. Formally, a query knn(q,dist(),D,k) has the
following input: a query point q ∈ Nd, a distance function dist(),
a set of points D all being ∈ Nd, and some k ∈ N with k > 0. It
returns a set S containing k points from D, where max_dist is
the largest distance of any point p ∈ S. The following holds for any
point p’ in D − S: max_dist ≤ dist(p’,q).

We map all dimensions in the d-dimensional space (Nd) to integer
numbers in interval of [0,c], where c is a user-defined granularity,
instead of the unit space Rd [0,1]. The reason is that many dist()
functions, such as the Manhattan metric, can be computed using
integer arithmetic known to be generally faster than float arithmetic.
In addition, this definition of the knn problem implies that one does
not necessarily has to use dist(). There may be some function
dist’() that is order preserving according to dist(), but easier
to compute. A common example is using the squared Euclidean
distance to avoid computing square roots.

dist(X,Q) =

(
d∑

i=1

|xi − qi|p
) 1

p

with p ≥ 1 (1)

Metrics as distance functions. Different distance functions
support different intuitions of distance. Metrics are a group of
distance functions that are well studied and used frequently. Partic-
ularly, the Minkowski metrics also referred to as Lp metrics, such
1http://www.elf.ovgu.de/knn

as the Euclidean (p=2) and Manhattan metric (p=1), are frequently
used. The general definition is given in Equation 1. Metrics have
special algebraic requirements (e.g., the triangle inequality must
hold) used by state-of-the-art indexes, such as iDistance [17]. There-
fore, we restrict the considered distance functions to metrics, even
as this is no special requirement for exploiting our concept.

2.2 Related work
There is a large variety of different approaches. Therefore, we

do not focus on specific approaches, but on underlying concepts
and name well-known examples for each concept. For specific
approaches, we refer to large-scale comparisons cited in each group.

Classic indexing techniques. Approaches like R-Tree [15]
or kd-Tree [3] have given way to various improvements [4, 9, 19].
There are large studies or surveys addressing this topic comprehen-
sively, like [6, 11, 20]. All of these approaches use geometric forms
defined on the full-space, which is the primary reason why they
tend to degenerate to a sequential scan for high-dimensional data.
Nevertheless, to show differences, we include one approach from
this group in our comparative studies. The number of dimensions
they can efficiently support varies, but usually is deemed between
10 and 20 [6, 26].

As solution, optimized sequential searches are proposed, such as
the VA-File [26]. Their core idea is using a compressed representa-
tion of the data that fits into main-memory allowing to filter points
efficiently. The data itself resides on hard disk being multiple orders
of magnitudes slower than main memory. This difference is known
as access gap. However, with increased main-memory capacities,
usually the whole data set fits into main memory. Conceptually,
one could transfer this idea, such that data resides in main memory
and the VA-file in a higher cache level (i.e., L3 cache). However,
the speed difference between L3 cache and main memory usually
does not exceed one order of magnitude, i.e., the access gap is much
smaller and its exploitation therefore less promising. To this end,
we do not consider such concepts.

Metric indexing with pivots. The AESA approach introduced
the idea of pivot-based indexing [18]. Generally, the idea is to deter-
mine several pivot points. Then, one maps any point in the data set
to its nearest pivots. Due to these mappings the triangle in-equality
between query point, pivot, and data point can be used for com-
puting a lower bound of the distance between query point and data
point using any metric [8, 25]. Thus, lower bound computation is
a simple addition and subtraction of pre-computed values. Various
approaches rely on this principle. The most comprehensive com-
parison is [16]. A particularly relevant approach is iDistance [17],
assigning one-dimensional indexes to the pivot-point mappings. To
this end, it allows to efficiently traverse promising candidates and
prune not relevant ones. Based on the one-dimensional index, it can
be used for data on hard disk or in main memory [23, 27]. We are
particularly interested in revealing differences between approaches
relying on pivots and approaches relying on sub-space distance
equalities. To this end, besides response time, we measure the num-
ber of points for that the index computes the exact distance, which is
also independent of the hardware and programming language used.

Approximate approaches. There are various approximate ap-
proaches that deliver an approximation of the correct k-nearest
neighbor satisfying certain bounds, such as [1]. A large group of
approaches is locality sensitive hashing (LSH) [10, 13]. We do not
consider this group, since our objective is to find the correct nearest
neighbors.

3. KNN COMPUTATION WITH SUB-SPACE
DISTANCE EQUALITIES

In this section, we first introduce the concept of sub-space dis-
tance equalities and explain two effects allowing to exploit it for
efficient knn computation. Moreover, we briefly describe Elf as
an index featuring sub-space distance equalities. Finally, we intro-
duce two knn computing algorithms aiming at exploiting sub-space
distance equalities in Elf. With the help of these algorithms, we
examine how to optimally exploit sub-space distance equalities for
knn computation.

3.1 Sub-space distance equalities
To explain the concept of sub-space distance equality and its

exploitation for knn computation, assume some n-dimensional data
set, with n > 2 and sort it to some dimension order. That is, we
do not only sort according to one dimension, but according to all.
For simplicity of explanation, let us assume that we sort according
to dim1, . . . , dimn. As a result, we observe that all points having
the same value in the first dimension (dim1) are found next to each
other. However, that does not only hold for points having the same
value in the first dimension, but for all points sharing the same prefix.
A prefix preu refers to the first u dimensions, i.e., it projects the n-
dimensional point to a u-dimensional one. It is important to note that
all points sharing the same prefix preu are represented by the same
point in the corresponding u-dimensional sub space. Consequently,
they also have the same distance to any possible query point in that
sub space. For illustration, consider the (ordered) example data set
Figure 2b. We observe that points T1 and T2 have the same prefix
until dimension dim1. Consequently, in the one-dimensional sub
space consisting only of the first dimension, the distance to any
query point q is dist(q[1], T1[1]) = dist (q[1] = T2[1]), where
q[1] refers to the value of q in the first dimension. This is what we
call a sub-space distance equality.

3.1.1 Two effects for knn computation
Sub-space distance equality features two effects that can be ex-

ploited for efficient knn computation. The first effect is re-use of
sub-space distances. One can compute sub-space distances for each
set of points having the same prefix only once, instead of computing
it for each point. The second effect is, one can use the sub-space
distance in a u-dimensional sub space as lower bound for the full-
space distance. We now outline both effects and how iteratively
computable metrics allow exploiting these effects. Finally, we give
examples which metrics are iteratively computable.

A metric is iteratively computable iff, given two arbitrary n-
dimensional points p and q, the distance dist(p,q) can be com-
puted as dist(p[1],q[1]) ⊕ dist(p[2],q[2]) ⊕ . . .⊕
dist(p[n],q[n]).

Re-use of sub-space distances. In case ⊕ is associative, we can
re-use the sub-space distance as follows: we compute the l − 1
dimensional sub-pace distance for all points P with the same prefix
prel−1. Then, we split P , such that we group all points having
the same prefix prel. Next, to compute the sub-space distance for
each newly created group, one only needs to add their distance in l,
which is dist(p[l],q[l]), as all points in such a group have
the same value in dimension l. To optimally exploit this effect,
one needs to maximize the number of sub-space distance equalities,
which can be done by selecting a respective dimension order.

Lower bound. One can exploit this effect, if dist(p[n],q[n])
is positive, i.e., ≥ 0. As a result, any sub-space distance is a lower
bound for the full-space distance. Consequently, in case the sub-
space distance of a set of points exceeds or is equal to max_dist
(the distance of the currently found kth nearest neighbor), those

points cannot be part of the query answer. To optimally exploit
this effect, one needs to provoke large sub-space distances, also by
selecting a respective dimension order.

Unknown characteristics of both effects. Considering both
effects, we state it is not intuitively clear how to find a dimension
order that optimizes either effect. To this end, we investigate how
to select the dimension order, which we name the dimension order
selection problem in Section 4.1. To examine this problem, we
design knn computing algorithms exploiting both effects.

Existing iterative metrics. We find various metrics whose
computation is iterative, such as the Manhattan, Chebychev, or
Hamming distance. However, generally the class of Lp metrics,
such as the Euclidean metric, is not iterative. Nevertheless, due
to the definition of the knn problem (cf. Section 2.1), we do not
require for the actual distance values, but only the correct k-nearest
neighbors (in the right order). Hence, we can use a replacement
distance function dist’() that is order preserving w.r.t. dist().
For instance, we can use the squared Euclidean distance, which is
iterative and requires less computational effort. As this is possible
for every Lp metric, this allows us to benefit from the concept
of sub-space distance equality for various, well-known metrics.
Note, knn computation is possible for non-iterative distances as
well. In such cases, we need to compute the distance considering
the whole sub space instead of simply adding dist(p[n],q[n])
per dimension.

3.1.2 Distinction of sub-space distance equalities to
other approaches

Relying on sub-space distance equalities for knn computation is
fundamentally different from existing approaches. For illustration of
the difference, let us consider R-trees and their derivatives, like R+-
tree [24], R∗-tree [2], M-tree [9], X-tree [4], using n-dimensional
geometrical objects to index sub spaces. Knn computation with these
indexes has two problems: 1) expensive distance re-computation
and 2) considerably large tree depths. First, descending the tree,
the geometrical objects used for indexing the space shrink in every
dimension. This means that also their whole n-dimensional distance
to the query point has to be recomputed in each descending step.
Second, the depth of the tree is not limited to a specific depth but is
restricted to the number of points and fan out. Both points lead to a
hardly definable computational complexity converging to visiting
all tree nodes as dimensionality increases [14, 5].

In contrast, this is different when exploiting sub-space distance
equalities, as we iterate along dimensions refining the currently
found distance. Hence, the previously computed sub-space distance
does not change and can be reused for the currently investigated
dimension.

3.2 Elf as MCSP index
To our knowledge, Elf is the only index that features sub-space

distance equalities and allows to study the effect of sub-space dis-
tance equalities in isolation and in combination with a main-memory
optimized storage layout. Therefore, it is the starting point for our
own investigations. Originally, Elf is proposed to efficiently evaluate
multi-column selection predicates named MCSPs. MCSPs are pred-
icates that include several (but not necessarily all) attributes of one
table [7]. Thus, it is designed for a different purpose, and we have
to extend that approach with knn-computing capability exploiting
sub-space distance equalities as defined in Section 3.1. To this end,
we introduce its conceptual design and memory layout. Based on
that, we develop knn computing algorithms in Section 3.3.

D1 D2 D3 D4 TID
0 1 0 1 T1

0 2 0 0 T2

1 0 1 0 T3

(a) Running example data

1 2

0 1
Dimension D1

Dimension D2

(1)

(2) (3)

 T2 T1 0

0 T3 1

Dimension D3

Dimension D4
(5) 0(4) +

0

01

(b) Conceptual Elf

[02] -[12] 1 -[6] -2 -[9] 0 1ELF[00]

0 91 2 3 4 5 6 7 8
(1) (2) (4)

T1
(5)

0

0 10 T2ELF[10]
(3)

0 T3

(c) Memory layout of Elf
Figure 2: Example data, conceptual Elf, and Elf memory layout

3.2.1 Conceptual design
We illustrate the design of Elf with the data set in Figure 2a. Each

tuple in the data set has 4 dimensions and a TID to uniquely identify
a tuple. Conceptually, Elf incrementally indexes existing values in
sub spaces. That is, the first level in Elf (i.e., the root level) refers
only to the first dimension. The second level refers to the first and
the second dimension. Hence, it indexes a two-dimensional sub
space of the whole data set. The third level therefore refers to a
three-dimensional sub space etc. The order of dimensions thereby
is the only parameter. Each node of Elf, called DimensionList,
contains entries of the form [Value, Pointer] ordered according to
Value. The first level of the tree consists of one root node that
contains every unique value of the first dimension – for instance, the
values 0 and 1 of D1 in the Elf in Figure 2b. Each entry is the start
of one path.

All tuples having the same value in the first dimension are in
the same path. More generally, all tuples having the same prefix
are found in the same path. For example, all tuples represented by
DimensionList (5) have the prefix 0 in the first dimension and 1
in the second dimension. Constructing the tree in this manner spans
a tree with d levels where d corresponds to the number of indexed
dimensions. However, due to the curse of dimensionality [5], the
more dimensions are indexed, the more sparsely populated (i.e.,
shorter) are the DimensionLists in deeper levels. The worst
case is that we have a linked-list like tree, which Elf counters with
the concept of MonoLists [7].

Whenever one encounters a tree level t in some path such that
there only remains one tuple in it (i.e., there is no fanout), the
build algorithm creates a MonoList. That is, from level t to d
(where t < d) Elf stores all values adjacent to each other. In
Figure 2b, DimensionLists (3), (4), and (5) are MonoLists,
because there is no fanout since each of these DimensionLists
correspond to only one tuple. The benefits of MonoLists are that
they reduce storage costs and improve data locality [7].

3.2.2 Optimized memory layout
It is possible to build Elf with a main-memory optimized stor-

age layout as shown in Figure 2c. To this end, one linearizes
Elf into an array, using a preorder traversal. In Figure 2c, we

present the linearized Elf from Figure 2b. The first linearized
DimensionList is a hash map storing pointers to the underlying
DimensionLists. The second DimensionList stores values
and pointers of the DimensionList (2), where values in brackets
represent pointers within the array. To minimize storage consump-
tion, one does not store length information of a DimensionList.
Instead, the most significant bit (MSB) of the last value denotes
the end of a DimensionList. We visualize this with a negative
value. For example, the −2 at offset 4 denotes the last entry of
DimensionList (2). Similarly, a negative pointer indicates that
the following DimensionList is a MonoList.

For our own investigations, the optimized storage layout offers
two interesting examinations possibilities. First, we can investigate
whether different linearizations yield different performance, and sec-
ond quantify the effect of the best linearization strategy comparing
it to its unoptimized version.

3.3 Knn algorithms for Elf
We now introduce two knn algorithms exploiting sub-space dis-

tance equalities within Elf. The algorithms are optimized for differ-
ent properties of the data. The first algorithm aims at minimizing
the number of distance computations. To this end, it aims at fast
converging towards the final distance of the kth nearest neighbor
allowing to prune entire sub trees within Elf. By contrast, the sec-
ond algorithm aims at data sets that deteriorate towards scanning
an entire Elf optimally exploiting the data layout. The results in
Section 4.1.4 allow selecting the best algorithm for a given data set.

1 KnnConverge (q , k , dim , d imLis t , s u b S p a c e D i s t)
2 f o r (each elem i n d i m L i s t) / / f i n d b e s t match
3 i f (d i s t (elem . v , q [dim])−>minimal) b r e a k
4 newDis t <− s u b S p a c e D i s t + d i s t (q [dim] , elem . v)
5 i f (newDist>=m a x d i s t) r e t u r n / / p rune a l l
6 i f (i s M o n o L i s t (elem . p))
7 knnElfMono (q , k , dim +1 , elem . p , newDis t)
8 e l s e
9 KnnConverge (q , k , dim +1 , elem . p , newDis t)

10 e lemRight<−elem ; e lemLef t<−elem
11 w h i l e (! done){ / / s e a r c h in− and o u t w a r d s
12 e lemRight<−e l emRigh t . n e x t
13 newDist<−s u b S p a c e D i s t + d i s t (q [dim] , e l emRigh t . v)
14 i f (newDist>=m a x d i s t | | e l emRigh t . l a s t)
15 doneRight<−t r u e
16 e l s e
17 / / r e c u r s i v e c a l l l i k e i n Line 6−9
18 / / s i m i l a r f o r e l e m L e f t
19 i f (doneRigh t&d o n e L e f t) done <− t r u e
20 }
21
22 KnnOptLayout (q , k , dim , d imLis t , s u b S p a c e D i s t)
23 elem <− d i m L i s t . f i r s t
24 do{
25 newDist<−s u b S p a c e D i s t + d i s t (q [dim] , elem . v)
26 i f (newDist>=m a x d i s t) c o n t i n u e / / p rune
27 e l s e
28 i f (i s M o n o L i s t (elem . p))
29 knnElfMono (q , k , dim +1 , elem . p , newDis t)
30 e l s e
31 KnnOptLayout (q , k , dim +1 , elem . p , newDis t)
32 }w h i l e (! elem . l a s t) / / r e a c h e d end}

Figure 3: Elf knn algorithms with different optimizations

3.3.1 Knn algorithm optimizing pruning power.
The first knn algorithm KnnConverge in Figure 3 aims at

traversing Elf such that max_dist converges fast against the dis-
tance of the kth nearest neighbors. This optimizes Elf’s ability

to prune sub trees that do not contain query solutions. To this
end, an Elf is traversed in a greedy manner starting by invoking
KnnConverge for the first dimension list. In each list, the algo-
rithm searches for the best sub tree (best match), which has mini-
mum distance to the query point q. The algorithm first examines
the corresponding sub tree of that element. Then, it examines the
remaining dimension elements in the current dimension list itera-
tively. That is, in the first iteration one element to the left and one
to the right are examined. The sub trees are only examined in case
their sub-space distance is smaller than the (full-space) distance of
the current kth nearest neighbor being max_dist. The algorithm
stops, in case there are no more solutions to the left and right or in
case the best match already does not contain a query answer (Line
5). Note, knnElfMono computes the distance for the remaining
dimension of one point.

3.3.2 Knn algorithm optimizing data locality.
The second knn algorithm is optimized for data sets, where prun-

ing, for instance due to the curse of dimensionality, is difficult.
To this end, this algorithm does not search for the best match in
each dimension list. It strictly follows the data layout of Elf and
thus, optimizes data locality. Therefore, it starts at the first element
of each dimension list, examines its corresponding sub tree, and
then, continues with the next element. As a result, this algorithm
is more similar to a sequential scan which benefits primarily from
data locality. However, we still benefit from sub-space distance
equalities reducing the number of distance computations and we
also check whether we can prune. Note, traversing Elf results in
some overhead that a sequential scan does not have. Particularly,
for high-dimensional uniform and Gaussian data, where sequential
scans outperform any known indexing approach. So far, we hypoth-
esize that due to this algorithm Elf is more robust towards the curse
of dimensionality than other indexing approaches and examine this
in Section 5.

3.4 Research questions
Since exploiting sub-space distance equalities is a novel concept,

we aim at revealing in-depth insights by means of systematic experi-
ments in the following section. In particular, we firstly investigate
how both effects from Section 3.1 using different dimension orders
affect knn computation and secondly quantify the influence of the
optimized storage layout. Considering Elf as foundation for our
investigation results in the following research questions (RQ):

1. RQ1: How to optimally exploit the two effects, sub-space dis-
tance equalities induce, using a respective dimension order within
Elf?

2. RQ2: How to quantify the effect of Elf’s optimized data layout
and its interaction with an appropriate knn algorithm?

The results of these micro benchmarks are used in Section 5 for
our comparative studies considering different data sets, distributions,
and Euclidean metric.

4. PERFORMANCE FACTOR TUNING
In this section, we examine the factors that are relevant for Elf’s

knn performance. In Section 3.4, the two research questions directly
refer to performance factors: RQ1 directly translates to the question
of how to order the dimensions in Elf. RQ2 aims at finding an
optimal storage layout and quantifying the effects of the storage
layout in general. In the following, we conduct a set of micro
benchmarks, to answer these RQs. The results allow to build an
optimized Elf for any data set.

4.1 Dimension-order selection problem
The dimension order is the only parameter of the Elf build algo-

rithm. From [7, 22], we know how to construct an optimized di-
mension order for MCSP-evaluation and predict Elf’s performance.
Unfortunately, the situation for knn queries is different. For knn
queries, we have to descent all paths as long as the remaining sub
tree can contain at least one query solution. Moreover, it is unknown
whether one needs to optimize Elf for the re-using sub-space equali-
ties effect (i.e., maximizing the number of prefix redundancies) or
the lower bound effect that allows pruning. The latter one means
maximizing the sub-space contrast generally minimizing the number
of prefix redundancies. Thus, both targets are in contrast to each
other. Our goal is to find an approach that allows to determine a good
dimension order in a reasonable amount of time. What makes this
investigation particularly challenging is that the number of possible
dimension orders grows exponentially.

Our investigation procedure is as follows. First, we examine one
data set in detail and then generalize results. To this end, we take the
D16

r real-world data set (cf. Table 1) and create a new data set for
that we can sample all possible (n!) dimension orders and construct
the respective Elf. We call this data set micro benchmark data set.
In addition, we restrict the empirical investigation to the Euclidean
metric, which is often used for such investigations.

4.1.1 Influence of the dimension order
The first set of experiments aims at studying the problem com-

prehensively. To this end, we answer the question: Does the order
matter, quantify the difference of a good, normal, and bad dimension
order, and the probability of finding either class by chance.

300 400 500 600 700 800 900
0

20

40

60

80

Response Time Range in ms

A
m

ou
nt

of
D

im
en

si
on

O
rd

er
s

µ = 516, σ = 100, N = 363

a) Response time histogram of all sampled dimension orders

0 50 100 150 200 250 300 350
0

200

400

600

800

Sample Permutation ID

R
es

po
ns

e
Ti

m
e

in
m

s

b) Pattern of the response time distribution
Figure 4: Results of the sampling method.

Sampling method. For our micro benchmark data set having
nine dimensions, testing all 9! dimension order permutations and
determining the response times for retrieving all k nearest neigh-
bors for all 16k points in a statistical sound manner is not possible
(approx. 126 computing days). Hence, we sample the space of the
existing permutations taking every 1,000th permutation resulting

Genetic Sampling
Fastest 312 ms 317 ms
Avg Top 10 330 ms 335 ms
Slowest 870 ms 809 ms
Avg Slowest 10 850 ms 751 ms

1 2 3 4 5 6 7 8 9 10111213
300

400

500
First permutation faster

than from sampling

Round

R
es

po
ns

e
Ti

m
e

in
m

s

Pos
1
Pos

2
Pos

3
Pos

4
Pos

5
Pos

6
Pos

7
Pos

8
Pos

9
0 %

20 %

40 %

60 %

80 %

100 %
Dim 0
Dim 1
Dim 2
Dim 3
Dim 4
Dim 5
Dim 6
Dim 7
Dim 8

a) Method’s example results b) Results from genetic optimization c) Commonalities of fast dimension orders
Figure 5: Results from genetic optimization and how they relate to the dimension order.

in 363 samples. We depict a histogram of the sampled response
times in Figure 4a) revealing how the response times are distributed.
By contrast, Figure 4b) visualizes whether there are regularities
in the permutation space regarding the response times. Based on
the results shown in Figure 4a), we conclude that the dimension
order indeed has a significant influence on the response time. The
fastest order requires 317 ms, the average is about 516 ms, and the
slowest ones more than 800 ms for finding all nearest neighbors
for all points. For comparison, the response time of a sequential
scan is 1,380 ms. Hence, guessing a dimension order definitely
results in a better performance than a sequential scan. However, as
the response times are distributed in a skewed Gaussian manner,
probabilities are high not to select a fast order. The pattern of the
distribution w.r.t. the linearized permutation space in Figure 4b) (i.e.,
the order of the permutation and their corresponding response time),
reveals a mixture of local and global regularities (i.e., similar orders
have similar response times). Hence, the dimension-order selection
problem is a well-suited problem for genetic optimization.

Genetic method. Our goals with this method are twofold. First,
we intend to find a method that is applicable on larger data sets (i.e.,
particularly higher number of dimensions) that cannot be sampled
efficiently. Second, we want to explore the edges of the response
time distribution in more detail. In particular, we investigate com-
monalities of the fastest and slowest permutation in order to predict
a good dimension order analytically.

The results from the genetic method depicted in Figure 5, are
consistent with those of the sampling method. Hence, we claim that
we studied the effect of the dimension-order selection problem on
the response time of Elf for this data set in a comprehensive way.
Now, we investigate how to predict a good dimension order. In
particular, the best-found dimension order has a response time of
312 ms, which is only 5 ms faster than the fastest permutation from
the sampling method. By contrast, the slowest permutation found
requires 870 ms compared to 809 ms.

In Figure 5b), we show a box plot visualizing the response time
distribution of the resulting population. After 9 rounds of the genetic
algorithm, the population already contains a dimension order that
yields faster response times than any order observed with sampling.
In round 13, the genetic method delivers a set of 50 dimension
orders, where the slowest order has a response time of 326 ms. We
analyze these permutations for commonalities to find a practical
method to predict a good dimension order. As starting point, we
visualize for these orders the frequency of occurring dimensions for
each position in Figure 5c). From the figure, we see that all good
dimension orders start either with [8,2,...] or [2,8,...]. That is either

the 8th or 2nd dimension must be first and the other one second. These
are the same regions in the permutation space identified as having
minimum response time being encircled in Figure 4. Interestingly,
inverting a fast dimension order results in a slow dimension order.
The slowest ones we found are in fact inverse to the fastest ones.

4.1.2 Investigating the dominant performance factor
Based on the insights of the prior method, we now analyze what

is the factor in Elf to optimize to achieve good response times using
the dimension order. Therefore, we formulate hypothesis H1 and
H2, each expecting one performance factor to be the decisive one:

Hypothesis H1 A high number of sub-space distance equalities is
the primary factor for good performance.

Hypothesis H2 The pruning power of Elf is the primary factor for
a good performance.

To confirm or reject the hypotheses, we first compute one perfor-
mance indicator for each of them and then examine how they are
related to fast and slow dimension orders.

H1: Elf compression factor quantifying sub-space equal-
ities. The first indicator, the Elf Compression Factor (ECF), quanti-
fies how many nodes we do not store compared to simple sequential
storage of the data set. Therefore, it counts the number of prefix re-
dundancies and normalizes the result. We explain this indicator with
the help of the example data set D having four points: p1=(1,2,3),
p2=(1,2,2), p3=(1,1,1), p4=(2,1,1). First, we count every observed
prefix redundancy: There are three points (p1, p2, and p3) having the
value 1 in the first dimension. Hence, we can eliminate two prefix
redundancies. In the second dimension, only the prefix (1,2) exists
twice. Hence, we observe one additional prefix-redundancy. Next,
we compute the maximum number of dimension elements
used to normalize the result, which is equivalent to the worst case.
In Elf that would occur in case there are no prefix redundancies at
all. Hence, the number is the product of the dimensionality of the
data set and the number of points, in this case: 12. As a result, for
D we get a value of 3

12
. Thus, a value close to zero indicates high

compression, while values close to 1.0 mean almost no compression.

Rejection of ECF as dominant factor. Our experimental
results reveal that the ECF of all 9! dimension orders are approxi-
mately uniformly distributed between the values [0.173, 0.257] with
an average of 0.208. The ECF values for the fastest 50 dimension
orders found in the genetic optimization are in the interval [0.215,

0.240] with an average of 0.227. This interval covers 110,000 di-
mension orders, being roughly one third of all orders. Therefore,
there only is some tendency for fast dimension orders to have an
ECF rate that is higher than the average. However, even for the
highest ECF rate, there are more than 16,000 dimension orders that
have a higher ECF rate. For the slow dimension orders, we observe
an inverted tendency. That is, they generally have lower ECF than
the average. As a result, this is not the dominant factor and thus
cannot be used to predict a good dimension order.

H2: Sub-space contrast quantifying the pruning power.
The second indicator (SSCp

u – Sub-Space Contrast) denotes the
average distance according to dist() between two points in D
for the first u-dimensional sub space of a given dimension order
p. We compute SSCp

u as the sum of the distances of all point pairs
and normalize by the number of pairs. For larger data sets, we use
a sample of the data. Based on the definition of SSCp

u, its value
is the same for all dimension orders if u refers to the whole space
(full-space contrast). However, in case pruning power is the decisive
property influencing the response time of Elf, we need to maximize
the sub-space contrast for small values of u to get large distances in
high levels of Elf by selecting a respective dimension order.

u=0 u=1 u=2 u=3 u=4 u=5 u=6 u=7 u=8
0

5,000

10,000

15,000 Full-space contrast

SS
C

va
lu

e

Predicted fastest (382 ms) Predicted slowest (838 ms)
Genetic fastest (312 ms) Genetic slowest (870 ms)
Expected SSC

Figure 6: Dimension order selection: Exemplary SSC indicators for
different values of u.

Confirmation of SSCp
u as dominant factor. We confirm the

Hypothesis H2 that the pruning power is the dominant factor in case
the fastest 50 dimension orders found in the genetic optimization
are among those that converge fast against the full-space contrast for
small values of u. By contrast, for the 50 slowest dimension orders,
we require to observe the opposite behavior.

In Figure 6, we depict exemplary SSCp
u values for four dimension

orders and a baseline (black line). The baseline assumes that the
full-space contrast is uniformly distributed among all sub spaces,
i.e., the delta between all SSCp

u and SSCp
u+1 is always the same.

We observe for the two fast example permutations that the SSC for
small u is significantly higher than the baseline. For the fastest per-
mutation, we found that this is the maximally achievable SSC value
for u < 3. We make the opposite observation for slow dimension
orders. That is, their SSC values are consistently smaller than those
of the baseline. For both groups of permutations found in the genetic
optimization, these observations hold for all members of the group.
In addition, further tests reveal that dimension orders having consis-
tently similar SSC values as the baseline, have a median response
times. Hence, we confirm SSCp

u as the dominant performance factor
and use it to analytically predict a good dimension order.

4.1.3 Determining good dimension orders
We revealed that the pruning power, indicated by large SSCp

u

for small values of u, is the decisive performance factor. From
investigating the impact of the dimension order problem on the
response time, we know there is a set of fast permutations with
similar response time. Hence, it is reasonable not to aim at finding
the best permutation, but a reasonably good one. To determine good
orders, we propose two algorithms.

Local estimates. The first algorithm, local(), aims at fast
identification of a good dimension order, but does not take corre-
lated dimensions into account. It works either on the computed
SSCp

1 values or a respective estimate, which depends on the applied
distance function dist(). For Lp metrics, we use the variances
of the dimensions as estimate. Having, the estimates (or correct
SSC values) the dimensions are sorted putting the one with largest
estimate first. The resulting order directly forms the dimension order.
We can only rely on the variance if the following holds: Given three
values c, v1, v2: dist(c, v1) > dist(c, v2)←→ |c−v1| > |c−v2|. Us-
ing an example that means, it is required that according to dist()
the value v1 = 0 is always further away from c = 10 than the value
v2 = 1. Using the Hamming distance, v1 and v2 would have the
same distance, as both values are not equal to the compared value c.
In Figure 6, the fast and the slow predicted dimension order (dashed
lines) are computed using this algorithm with variance as estimator.
Predicting a fast order results in a permutation having a response
time of 381 ms, meaning that there are 8.3% of all permutations
faster than the predicted one. This is arguably not an optimal result,
but the ratio of invested time and achieved response time compared
to an average response time of 516 ms is decent.

Greedy determination. The second algorithm greedy() of-
fers reasonable execution times and considers correlated dimensions
and sub spaces reducing the sub-space contrast. The main difference
is that we compute the SSC in an iterative way. First, the dimension
with the highest SSC value is determined and forms the already
known part of p. Then, by probing all concatenations of the current
already known permutation and all remaining dimensions, the al-
gorithm selects the concatenation having the maximum SSC value.
Interestingly, for the micro benchmark data set and the Euclidean
metric the result is the same as for the first algorithm, but the exe-
cution cost are by far higher. For this second algorithm, for each
of the d iterations, we compute in every step u the SSC value of
d-u possible sub spaces. This requires, for each possible sub space
to compute the pair-wise distance for all points in the data set, i.e.,
this algorithm’s complexity is higher than O(|D|2). As extension,
one could also probe the i best concatenations from each iteration.
However, the execution time increases exponentially, e.g., in case i
= d one would test all permutations.

Table 1: Benchmark data sets from [21]
Dim Size real-world property uniform Gaussian
16 11k D16

r dense D16
u D16

G

43 412k D43
r clustered D43

u D43
G

50 130k D50
r sparse D50

u D50
G

51 3446k D51
r clustered D51

u D51
G

4.1.4 Empiric generalization
So far, we examined the influence of the dimension order parame-

ter with one data set resulting in the insight that we can determine

good dimension orders using the SSC value. Now, we aim at gen-
eralizing this result. To this end, we use the same benchmark data
sets (cf. Table 1) as used in [21]. It consists of 12 data sets. There
are four groups, where the dimensionality and size of all data sets
within one group is identical. For each group there are three data
sets with different stochastic distributions. One data set contains
real-world data, the others are uniform and multivariate Gaussian
data. We now investigate whether we can rely on the SSC value in
general.

We use the local() algorithm to find good dimension orders.
Hence, a slow dimension order is the inverse permutation of the
fast one. In Table 2, we depict the results. For space reasons, we
only depict the results for all real-world data sets and the whole
16-dimensional group. This is valid as for any other group the
results for the uniform and Gaussian data are, as expected, nearly
the same. In particular, this table contains the quotient of the average
response times of the slow and fast dimension orders as ∆Tresp. In
addition, it contains the deviation from the SSC values of a good
dimension order to the expected SSC value named ∆SSC. It is
defined as

∑d
dim=1 SSCfast

dim - SSCexp
dim normalized by dividing it

by SSCexp
dim. Intuitively, this can be interpreted as the (normalized

discrete) integral of the predicted and the expected SSC graphs in
Figure 6. Generally, the assumption formulated in Hypothesis H1 is:
the larger the difference between predicted and actual SSC value,
the better Elf performs. On the other hand differences close to zero
predict no observable difference in ∆Tresp, i.e., for this data set the
dimension order does not matter.

Table 2: Comparison of delta between SSC and response time
Data set D16

r D16
u D16

G D43
r D50

r D51
r

∆SSC 0.99 0.17 0.18 21.45 11.65 1.24
∆Tresp 2.50 1.10 1.10 26.60 41.79 1.76

Based on the results in Table 2, we confirm that one can generally
rely on the SSC value. First, for small ∆SSC values, such as 0.17,
we observe nearly no difference of the response times of the fast
and slow dimension orders, i.e., a ∆Tresp value close to 1. Second,
for a larger ∆ SSC value, we generally observe larger ∆Tresp. In
summary, the answer regarding RQ1 (cf. Section 3.4) is that we
need to optimize for large ∆SSC. Then, the corresponding good
dimension order in combination with KnnConverge forms an
optimized Elf. In case, ∆SSC is small, we use KnnOptLayout
and the dimension order is not relevant.

4.2 The influence of the Elf data layout
Besides the concept of sub-space distance equality, Elf features an

optimized storage layout. In this section, we investigate whether the
same layout as for MCSP computation shall be used and quantify
the effect on response time. To this end, we conduct a second
micro benchmark. We use an Elf without optimized storage layout
and in addition test an alternative layout with both knn algorithms
from Section 3.3. Recapitulate, the main difference between both
algorithms is that KnnConverge is optimized to converge to the
final distance of the kth nearest neighbor faster by iterating first over
each dimension list and then traverse the closest sub tree first. By
contrast, the KnnOptLayout is optimized to exploit data locality
in Elf and does not iterate twice over all values.

4.2.1 The memory layouts
We consider three layouts: MCSP, Depth-first, and List. The

first is an Elf with optimized layout as shown in Figure 2c. The
optimization objective is to speedup examination of one dimension
list, by storing all its values and pointers adjacent to each other. The

second layout minimizes the cost for jumping to the next level (i.e.,
next dimension). We depict the resulting Elf for the example data
from Figure 2a in Figure 7. The core difference is highlighted in
yellow being the second dimension list split into parts. Note, the size
of Elf remains the same in both layouts. The third layout considers
dimension lists as lists potentially scattered across the memory. That
is, there is no optimized layout.

[02] -[12] 1 -[7] 0 1 -2 -[2]ELF[00]

0 91 2 3 4 5 6 7 8
(1) (2) (4)

T1
(5)

0

0 10 T2ELF[10]
(3)

0 T3

Figure 7: Alternative depth-first memory layout of Elf

4.2.2 Results
We examine for each layout the average response time for the

best 50 permutations from the genetic optimization of Section 4.1.1.
Again for each permutation, we compute a robust mean value ensur-
ing that numbers are statistically sound.

Table 3: Average response time for different memory layouts
Layout: MCSP Depth-first List
KnnOptLayout 1152 ms 1176 ms 2513 ms
KnnConverge 383 ms 460 ms 722 ms

The results indicate that optimizing the convergence of the knn
algorithm KnnConverge is more important than finding a good
dimension order. This is visible in Table 3. Even for the best dimen-
sion order from the genetic optimization, the response times using
KnnConverge are consistently slower than the slowest permuta-
tion found in the prior section using KnnOptLayout. However,
for the List Elf, without optimized storage layout, the response times
are by factor 2 slower. Interestingly, there is no observable difference
for knn Algorithm KnnOptLayout between the two Elf variants
with optimized memory layout. However, for KnnConverge we
observe a difference. It results from iterating twice over a dimension
list. Hence, using the depth-first layout means that KnnConverge
needs to jump twice over the memory for every dimension list, while
the sub tree is adjacent. For the default layout the only jump is per-
formed examining the sub tree, while the dimension list values are
stored adjacent to each other. To quantify the difference, recapitulate
that the response times for the permutations are normally distributed
(cf. Figure 4) with a mean of 516 ms using the first layout. With
460 ms for the top 50 permutations of the depth-first memory layout,
this value is only slightly better the average of the first layout. In
summary, we conclude that using the same layout as proposed in [7]
is expected to result in the best performance being the answer re-
garding RQ2 from Section 3.4. Hence, we apply it in the remainder
of the paper.

5. COMPARATIVE STUDIES
The answers regarding the research questions RQ1 and RQ2 in

Section 4 allow to build optimized Elf indexes. Based on these
insights, we compare the Elf approach to state-of-the-art and well-
known competitors using different data sets in a systematic way.
To this end, we first introduce the study design ensuring a fair
comparison. Then, we present evaluation results.

5.1 Study design
Ensuring a fair comparison of different approaches in main-

memory environments is a non-trivial task. To this end, we explain
how we ensure a fair comparison first.

5.1.1 Index and measurement selection
Besides the sequential scan, which is known to be a highly-potent

competitor due to the curse of dimensionality, we use iDistance [17]
as state-of-the-art indexing approach for metric spaces. We use
the kd-Tree [3] as classical indexing approach, which is known
to work well in main memory settings due to its small size and
simple algorithm particularity compared to members of the R-Tree
family [15]. Finally, we also include an Elf without optimized
memory layout named List Elf to examine the effect of the optimized
memory layout.

Speedup as comparison measure. We use two different measure-
ments for each triple of index, metric, and data set. The first is the
average response time for executing 1,000 knn queries. To ensure
statistical soundness, the 1,000 points are randomly selected. We
repeat each experiment five times. Each experiment returns the
median of ten measurements, i.e., we compute ten executions of
1,000 knn queries. The average response time is the average of all
five experiment medians. We normalize this average response time
by the average response time of the sequential scan leading to the
speedup of each index over the sequential scan. As usual, a speedup
value smaller than 1.0 indicates that the corresponding approach
is slower than the sequential scan, while higher values indicate the
factor of performance improvement over the sequential scan.

Number of distance computations. For a hardware-independent
comparison, we measure the average number of points per query for
that an index computes the real distance to the query point, named
M . As for the response time, we normalize the measurement Mn

by the number of points visited by the sequential scan (i.e., the data
set size). Hence, a value close to 1.0 indicates that nearly all points
are examined. Due to sub-space distance equalities, for Elf, dis-
tances are not computed point-, but attribute-wise (cf. Section 3.1).
Therefore, we count every distance computation per attribute, i.e., in-
vocation of dist(elem.v,q[dim]) as found in the algorithms
in Figure 3. Then, we divide by the number of dimensions of the
data set. This is valid, since for a worst-case Elf without sub-space
distance equalities (i.e., the values in the first dimension are unique),
Elf performs a sequential scan resulting in the same Mn value the
sequential scan has. Note, the M values of Elf and List Elf are
identical.

5.1.2 Benchmark data sets
We rely on the same data sets as used in [21], already used

in Section 4.1.4, to evaluate different dimensionality, stochastic
distributions, and amount of points in the data set. These data sets are
particularly well suited to evaluate indexes in a systematic way, as
there are four groups of data sets, where each group consists of three
data sets. The groups have different number of dimensions reaching
from 16 to 51 and different size reaching from 11,000 points to
3,446,000 points. To give an example, in group D50 all data sets
have 50 dimensions and 130,000 points, whereas in group D51 all
data sets have 51 dimensions and 3,446,000 points. Within each
group, there is one data set containing uniform data, one containing
multivariate Gaussian data, and one real-world data set. To improve
readability, we use the following notation Dx

y to refer to a specific
data set, where x ∈ {16, 43, 50, 51} indicates dimensionality of the
data set and y ∈ {u,G, r} its stochastic distribution. For example,
D51

r refers to the real-wold 51 dimensional data set, whereas D50
u

denotes the 50 dimensional uniform data set.

5.1.3 Intrinsic and extrinsic validity
All index implementations are tuned to the same extent. The

same holds for auxiliary structures such as the result set. In addition,
we evaluated different number of queries and different values for

parameter k revealing that their influence is negligible. For brevity,
we only show the results for k = 10. Furthermore, we tested
implementation variants for each index selecting the fastest one and
repeated the experiments on different hardware all resulting in the
same findings. Finally, we executed index-specific parameter tuning
for each data set. For Elf that is finding a good dimension order. For
iDistance, tuning is difficult as there are three parameters (number
of partitions, partition center selection, ∆r) and their influence is
not easy to predict [23]. Our tuning results are consistent with [23,
17].

The evaluation is performed on an Intel Core i5 with 2.6 GHz
clock frequency having 20 GB RAM. We use Java 8 following the
guidelines from [12] for Java benchmarking.

5.2 Results
The Euclidean metric is one of the most often used Lp metrics

with p = 2. Hence, we use it in our evaluation.

Sp
ee

du
p

w
.r.

t.
se

qu
en

tia
ls

ca
n

0.01

0.1

1

10

100
16 dim. densely pop. 43 dim. clustered pop.

Elf

iDista
nce

kd-Tree

List
Elf

0.01

0.1

1

10

100
50 dim. sparsely pop.

Real Artificial

Elf

iDista
nce

kd-Tree

List
Elf

51 dim. clustered pop.

Figure 8: Speedup for Euclidean metric

Table 4: Distance computation number Mn Euclidean metric
Mn D16

r D43
r D50

r D51
r D16

G D43
G D50

G D51
G

Elf 0.002 0.001 0.001 0.004 0.265 0.367 0.491 0.371
iDistance 0.013 0.010 0.008 0.061 0.877 1 0.999 1
kd-Tree 0.078 0.023 0.163 0.209 0.961 1 1 1

5.2.1 Real-world data sets
In Figure 8, we depict the speedups for all data sets. Recapitulate

that a value of 1 on the y-axis means that the respective approach is
as fast as the sequential scan. A value of 10 in the logarithmic scale
indicates that the approach is ten times faster than the sequential
scan. In the results, we observe for all real-world data sets (in blue)
that Elf consistently outperforms the sequential scan by several
factors, which also holds for the iDistance. The highest speedup
we observe is using Elf for the 43-dimensional real-world data set
having a speedup of factor 68.23. In three out of four real-world
data sets Elf is the fastest approach. For the 51-dimensional data
set using Elf results in a speedup of about factor 10 compared to
a sequential scan. However, the iDistance is two times faster for
that highly clustered data set. We argue that this is explained by
the way the iDistance works (cf. Section 2.2): In case its partition
centers (by proper optimization) correspond to existing clusters, we
found an optimal data set for such indexes. For the List Elf and the
kd-Tree, we observe that even for real-world data the sequential scan

outperforms them for two and three data sets, respectively. We also
observe a clear superiority of Elf (with optimized memory layout)
to its un-optimized counter part.

Considering the results in Table 4, we conclude that the speedups
are explainable by the reduction of distance computations using
indexing approaches. Interestingly, the ratio of Mn between the
approaches approximately is the same as their difference in speedup.
For valid interpretation why Mn values are comparable among all
approaches, it is required to discuss a detail for the iDistance that
also applies to any other metric indexing approach. Elf, kd-Tree, and
sequential scan compute distances using squared Euclidean distance
(i.e., omit the square root) referred to as dist’(). This is not
possible for iDistance as the triangle in-equality used for pruning
points only works with a metric, which dist’() is not. However,
upon knn query execution (not upon build) we can in most cases
rely on dist’(). Only in the case we found a new kth neighbor,
i.e., when we need to update dist_max of the result S, we have to
additionally compute the square root. These updates are by orders of
magnitudes smaller than M , so for nearly all distance computation
also iDistance can rely on faster dist’() instead of dist().

5.2.2 Gaussian and uniform data sets
In Figure 8, we depict the results for the multivariate Gaussian

data sets in red. Note, the results for the uniform data sets are almost
the same. Hence, for brevity we only depict the Gaussian results, but
our observations and interpretations also hold for respective uniform
data sets.

Generally, as expected, most approaches have severe issues reach-
ing the performance of the sequential scan. The only exception is
Elf. It is the only index that (slightly) outperforms the sequential
scan for one of the data sets (the largest one having 51 dimensions
and 3 million points) and reaches comparable speedups for the re-
maining ones. The largest difference (speedup factor of 0.61) is
observed for the 16-dimensional Gaussian data, which we deem
acceptable for the following reasons. First, all other indexes are
by far slower. The next fasted index is the kd-Tree with a speedup
factor of 0.13 being nearly an order of magnitude slower. Due to
the small size of the data set, the sequential scan highly benefits of
the large cache sizes of todays CPU. By contrast, tree-based indexes
suffer for the concept related issue that they do not read memory
sequentially, but jump across it. This is nevertheless an interesting
result, as we expect the cache sizes to grow in future as well as main
memory latency to decrease where such issues become relevant also
for larger data sets.

Examining Mn in Table 4 reveals that all competitors degenerate
to sequential scans for D43

r , D50
r , and D51

r . The same holds for
their uniform counterparts. This is different for Elf, which does
not compute more than half of the distances for any data set. The
maximum Mn value with 0.491 is observed for D51

r , which means
that on average 49% of all distances are computed. Hence, even for
such data sets using Elf results in comparable performance.

5.2.3 Interpretation
Overall, our results indicate that Elf delivers the best performance

for real-world data sets, even if not the best for all data sets, which
we argue is hardly possible. However, there is a consistent improve-
ment of several factors compared to a sequential scan. Moreover,
for Gaussian and uniform data, we state Elf is the only approach
that results in comparable performance to a sequential scan, i.e., is
resistant to the curse of dimensionality. This becomes visible as for
no data set more than 50% of all distances are computed. Therefore,
we conclude that selecting Elf as index to speedup Euclidean metric

computation (e.g., within a clustering approach) for data sets with
unknown distribution is a good choice.

6. CONCLUSIONS AND FUTURE WORK
For many data analysis tasks, like clustering or outlier detection,

computation of the k-nearest neighbors is required and computation-
ally expensive. A novel concept that has the potential to significantly
reduce the number of distance computations, independent of the
stochastic distribution of the data, is exploiting sub-space distance
equalities. The core result of this paper is that, in case one exploits
sub-space distance equalities properly, one can expect to compute at
maximum about 60% of the distance values. This is important as
even state-of-the-art approaches face severe issues to outperform a
simple cache conscious sequential scan if dimensionality increases.

To investigate the potential of our novel concept, we rely on Elf,
in index featuring sub-space distance equalities combined with a
main-memory optimized storage layout. Our results allow to build
optimized Elf indexes by maximizing the sub-space contrast with
Elf’s dimension order parameter. In a comparative study with 12
data sets having different properties, we reveal that using Elf results
in competitive performance for all data sets considering highly
potent competitors. Our results reveal that for real-world clustered
data the minimum performance increases compared to a sequential
scan is factor 2, while the largest ones are more than two magnitudes.
The competitors do not achieve this. Furthermore, even for Gaussian
and uniform data, no more than 61% of the distances are computed
and, in any case, the smallest number of distances of all approaches
are computed. The reason is that sub-space distance equalities
represent tight bounds (i.e., points instead of regions), which are
incrementally refined per tree level. Moreover, as the distances are
computed attribute-wise instead of point-wise, we can furthermore
reduce the number of computed distances. Finally, if a large number
of distances have to be computed, Elf benefits from its optimized
storage layout, which naturally converges to a row-store-like (i.e.,
cache conscious) structure. This suggests that one can expect good
performance using an index based on sub-space distance equalities,
such as Elf, in general.

For future work, we are interested in studying the relationship
and existence of order-preserving iterative versions of various well-
known distance function. First results indicate that the requirements
of Elf towards the applied distance function are less strict than those
metric approaches have, which require a metric.

7. REFERENCES
[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu.

An optimal algorithm for approximate nearest neighbor
searching fixed dimensions. J. ACM, 45(6):891–923, 1998.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: An efficient and robust access method for points and
rectangles. In Proc. Int’l Conf. on on Management of Data
(SIGMOD), pages 322–331. ACM, 1990.

[3] J. Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, 1975.

[4] S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree: An
index structure for high-dimensional data. In Proc. Int’l Conf.
on Very Large Data Bases (VLDB), pages 28–39. Morgan
Kaufmann, 1996.

[5] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When
is “nearest neighbor” meaningful? In Proc. Int’l Conf. on
Database Theory (ICDT), pages 217–235. Springer, 1999.

[6] C. Böhm, S. Berchtold, and D. Keim. Searching in
high-dimensional spaces: Index structures for improving the

performance of multimedia databases. ACM Comput. Surv.,
33(3):322–373, 2001.

[7] D. Broneske, V. Köppen, G. Saake, and M. Schäler.
Accelerating multi-column selection predicates in
main-memory - the Elf approach. In Proc. IEEE Int’l Conf. on
Data Engineering (ICDE), pages 647–658, 2017.

[8] L. Chen, Y. Gao, B. Zheng, C. Jensen, H. Yang, and K. Yang.
Pivot-based metric indexing. Proc. VLDB Endow.,
10(10):1058–1069, 2017.

[9] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Proc.
Int’l Conf. on Very Large Data Bases (VLDB), pages 426–435.
Morgan Kaufmann, 1997.

[10] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In Proc. An’l Symp. on Computational
Geometry (SCG), pages 253–262. ACM, 2004.

[11] V. Gaede and O. Günther. Multidimensional access methods.
ACM Comput. Surv., 30(2):170–231, 1998.

[12] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous Java performance evaluation. In Proc. Conf. on
Object-oriented Programming Systems and Applications
(OOPSLA), pages 57–76. ACM, 2007.

[13] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In Proc. Int’l Conf. on Very Large
Data Bases (VLDB), pages 518–529. Morgan Kaufmann,
1999.

[14] S. Guhlemann, U. Petersohn, and K. Meyer-Wegener.
Reducing the distance calculations when searching an M-Tree.
Datenbank-Spektrum, 17(2):155–167, 2017.

[15] A. Guttman. R-trees: A dynamic index structure for spatial
searching. SIGMOD Rec., 14(2):47–57, 1984.

[16] M. Hetland. The Basic Principles of Metric Indexing, pages
199–232. Springer, 2009.

[17] H. Jagadish, B. Ooi, K.-L. Tan, C. Yu, and R. Zhang.

iDistance: An adaptive B+-tree based indexing method for
nearest neighbor search. ACM Trans. Database Syst.,
30(2):364–397, 2005.

[18] M. Micó, J. Oncina, and E. Vidal. A new version of the
nearest-neighbour approximating and eliminating search
algorithm (AESA) with linear preprocessing time and memory
requirements. Pattern Recogn. Lett., 15(1):9–17, 1994.

[19] S. Omohundro. Five balltree construction algorithms.
Technical Report TR-89-063, International Computer Science
Institute, 1989.

[20] H. Samet. Foundations of multidimensional and metric data
structures. Morgan Kaufmann, 2006.

[21] M. Schäler, A. Grebhahn, R. Schröter, S. Schulze, V. Köppen,
and G. Saake. QuEval: Beyond high-dimensional indexing à
la carte. Proc. VLDB Endow., 6(14):1654–1665, 2013.

[22] J. Schneider. Analytic performance model of a main-memory
index structure. CoRR, abs/1609.01319, 2016.

[23] M. Schuh, T. Wylie, J. Banda, and R. Angryk. A
comprehensive study of iDistance partitioning strategies for
kNN queries and high-dimensional data indexing. In Proc.
British Nat’l Conf. on Databases (BNCOD). Springer, 2013.

[24] T. Sellis, N. Roussopoulos, and C. Faloutsos. TheR+-Tree: A
dynamic index for multi-dimensional objects. In Proc. Int’l
Conf. on Very Large Data Bases (VLDB), pages 507–518.
Morgan Kaufmann, 1987.

[25] J. Uhlmann. Satisfying general proximity/similarity queries
with metric trees. Inf. Proc. Letters, 40(4):175–179, 1991.

[26] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis
and performance study for similarity-search methods in
high-dimensional spaces. In Proc. Int’l Conf. on Very Large
Data Bases (VLDB), pages 194–205. Morgan Kaufmann,
1998.

[27] C. Yu. High-dimensional Indexing: Transformational
Approaches to High-dimensional Range and Similarity
Searches. Springer, 2002.

	2018,6_Titelbl.doc.pdf
	KIT_2018_06_Report_IPD.pdf

