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Zusammenfassung

In dem derzeitigen Wandel der Industrie in Richtung Industrie 4.0 kommt es auch
dazu, dass viele Daten produziert werden, welche wertvoll sind, da sie fiir Verbesserun-
gen in der Produktion verwendet werden kénnen. Die anfallenden Daten konnen als
Graph représentiert werden, deswegen macht es Sinn Graph-Datenbanken zu unter-
suchen.

In dieser Arbeit werden wir die Performanz von Graph-Datenbanken in einem in-
dustriellen Umfeld untersuchen. Unser Ziel ist es, herauszufinden ob die Resultate
aus bestehender Forschung in diesem Gebiet herangezogen werden kénnen um die
Tauglichkeit der Graph-Datenbanken in der Industrie zu priifen. Anstatt Graphen
dghnlich zu denen in sozialen Netzen fiir die Untersuchungen zu nutzen, wie es die
meisten Studien in diesem Gebiet tun, werden wir eine Daten-Struktur entwerfen
die den industriellen Datenraum repréasentiert und schauen uns ebenso die Besonder-
heiten eines industriellen Einsatzes einer Graph-Datenbank an, um unsere Arbeits-
lasten entsprechend zu entwerfen.

Der Yahoo! Cloud Service Benchmark (YCSB) wird erweitert um Datensétze mit
der von uns entworfenen Datenstruktur zu generieren. Fiir die Auswertung haben
wir folgende vier allgemein bekannte Graph-Datenbanken ausgewéhlt, Apache Jena,
Neodj, OrientDB und Sparksee (frither bekannt unter dem Namen DEX). Deren
Java APIs wurden genutzt um sie in YCSB einzubinden.

Wir haben die Datenbanken mit unserer Datenstruktur auf einem einzelnen Rechner
mit einem i7-3770K Prozessor und 16GB RAM ausgefiihrt und kamen zu dem Fazit,
dass aktuelle Graph-Datenbanken nicht fiir den industriellen Einsatz geeignet sind.
Sparksee konnte nicht mit dem Datensatz in voller Gréfle getestet werden, da die
kostenlose Lizenz diese Datenmenge nicht unterstiitzt. Wenn es den erreichten
Durchsatz halten konnte, wiirde es auch mit dem Datenaufkommen aus der In-
dustrie zurechtkommen. Da wir das nicht direkt testen konnten, konnen wir keine
fundierte Entscheidung diesbeziiglich treffen. OrientDB verfehlte unser gesetztes
Ziel fiir den Durchsatz nur knapp, wohingegen Jena und Neo4j weit davon entfernt
waren.

Nachdem wir die Generalisierbarkeit von Resultaten aus Graph-Datenbank Bench-
marks ausgewertet haben, konnen wir auch hier keine eindeutige Entscheidung tref-
fen, da Vergleiche mit unterschiedlichen Studien zu verschiedenen Schlussfolgerungen
fithren. Wir konnten allerdings feststellen, dass die Performanz beim hinzufiigen von
Knoten und Kanten unter anderem auch vom Lese-Durchsatz abhéngt, da diese Op-
eration gebraucht wird, um Kanten zum Graphen hinzuzufiigen. Schlie8lich scheinen
jedoch mehr Argumente dafiir zu sprechen, dass Graph-Datenbanken schlechter im
industriellen Einsatz abschneiden. Das fiihrt dazu, dass die Resultate aus anderen
Studien nicht direkt iibernommen werden kénnen.
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Abstract

In the current transition happening in the industry towards Industry 4.0, a lot of
data is produced. This data is valuable as it can be used for all kinds of improve-
ments in the production process. The accumulating data can be represented in a
graph and therefore it is worth examining graph databases.

In this thesis, we will investigate the performance of graph databases in an indus-
trial environment. Our goal is to examine whether the results of other research in
the field of graph databases can be used to determine the performance of a graph
database in the industrial internet of things. Instead of using social network graphs
as other research in this field does, we will design a data structure that represents
the industrial data space and also look at the peculiarities of an industrial use to
design our workloads accordingly.

The YCSB benchmark will be extended to create datasets with our desired data
structure. For the benchmark, we chose the following four commonly known graph

databases, Apache Jena, Neo4j, OrientDB and Sparksee (also known as former
DEX). Their Java APIs were used to integrate them into YCSB.

We evaluated the databases with our data structure on a single machine with an
i7-3770K processor and 16GB of RAM and came to the conclusion, that graph
databases aren’t suitable for an industrial application. Sparksee couldn’t be tested
with the large dataset, due to a missing license. If it could hold its throughput
it would be suitable, since we couldn’t investigate that, no solid conclusion can be
drawn. OrientDB missed the target throughput slightly, whereas Jena and Neo4]j
were far away from the target throughput.

After evaluating the generalisability of graph database benchmark results we came to
no clear conclusion, as the comparison with other research points into two different
directions. However, we can say that the insert throughput also depends on the read
performance of the database as inserting edges requires read operations. Besides
that, there were more arguments indicating that graph databases perform worse in
an industrial environment. This leads to the conclusion, that the results of other
studies cannot directly be used to determine the performance in an industrial use
case.
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1. Introduction

1.1 Problem Statement

With the growing digitalisation of the industry, more data is available and can be
used to improve production processes. The amount of data created depends on
the individual use case but still, it needs to be stored to be useful. Since there
are multiple databases available it can be difficult to choose the right one for an
individual scenario.

Current graph database benchmarks only cover social network graphs, which differ
from the data structure present in the industry, for example, in their edge to node
(e/n) ratio.

1.1.1 Use Case - Industry 4.0

There are multiple analytic algorithms to run on data to extract certain features. In
the industry, those algorithms play an important role too but in this thesis we are
looking at different aspects of the industrial use case, mainly inserting and reading
data. As far as we know an industrial data structure wasn’t used to examine the
performance of graph databases before.

In section 2.2 we will show an example given by the industry. There is no industrial
data available publicly so we have to base our design on that given example which
is visualised in figure 2.2.

1.1.1.1 Imnserting Data

To digitalise the production processes the data produced by every machine in the
production line should be stored for future analysis. And to store that data it needs
to be written into a database. Since most factories are running 24 hours a day, the
machines are producing a lot of data. Storing the data from production will be the
base load for the underlying databases.
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1.1.1.2 Reading Data

Besides using the stored data for analysis algorithms, simply reading data from the
database is another common task. An example would be to get the time at which a
specific product was processed by a specific machine to check if all parameters were
set correctly.

1.2 Question

The question of our research is, how well current graph databases are capable of
handling the amount of data created in an industrial environment. Furthermore,
we will look at how the structure effects performance to conclude whether other
research investigating the performance of graph databases can be used to determine
the performance these databases would have in an industrial environment.

1.3 Methodology

We will choose the databases to use for our testing from other studies covering
benchmarking graph databases to be able to compare the results and look at simi-
larities in behaviour. To evaluate different databases, we first will look up existing
benchmarks and choose the best one for our research. In the benchmarking pro-
gram we need to look at the creation of data and how it can be stored and retrieved.
The same exact dataset should be used for all databases equally to eliminate the
variation that comes with generating data during each benchmark run. Workloads
will be designed to investigate the performance of graph databases with industrial
data and the production environment will be simulated. With the databases and
benchmark set up, we will run the workloads and evaluate the results to conclude
whether current databases are suitable for the industrial internet of things.

1.4 Goal of this Thesis

With this thesis, we want to examine whether and if so, how well graph databases are
able to stand the load of a production line. Because every manufacturer is different
and we cannot cover all scenarios we try to cover the most important parameters
so that the suitability for the individual case can be estimated. Besides this specific
investigation we will try to conclude whether the results of research performed on
graph databases with social network graphs can be applied to the industrial use
case.

1.5 Structure

In chapter 2 we are motivating graph and the use of graph databases. The different
kinds of graph databases are explained and an example database which we are
testing is mentioned and shortly described. Also, in this chapter we are comparing
the different available benchmarking programs and their features and take a look at
research done by others in the field of graph database benchmarking.

In chapter 3 the industrial data is modelled, and its structure is analysed as well as a
reasonable amount of data is determined. Then we are figuring out how a workload
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could look like in an industrial environment. At last, we further analyse our chosen
benchmarking program and give an overview of its procedure.

Chapter 4 is focused on the design of the different extensions for the benchmark
and also the concrete data structure. For the extensions we cover the design of
the specific workloads, the design of classes to create and recreate the dataset, the
graph workload class managing the graph databases and the graph data and finally
the database bindings which are responsible for connecting the database to the
benchmarking program.

In chapter 5 the implementation of the single components is described. First, we
cover the graph data generator which includes the class for creating the graph data
as well as the class for recreating it from files. Next, the bindings are implemented
and their individual adaptions to the benchmark are highlighted. And lastly, we
explain the graph workload class that is the mediator between the created graph
data and the database bindings.

Chapter 6 focuses on running the benchmark and evaluating the results. First,
we define our objective during evaluation. Then the configuration of our system is
stated, as well as the hardware and the software side. Next the procedure of running
the benchmarks sequentially is explained following the different aspects we are test-
ing. These are grouped into "throughput” in section 6.4, "production simulation” in
section 6.5 and "retrieving under load” in section 6.6. Each group includes multiple
benchmarks in which we changed one variable at a time. The results are presented
directly after each benchmark followed by a discussion to interpret the results.

In chapter 7 we draw a conclusion over our work and give the answer to our research
question from above. Also, ideas for future research and development in this field
are presented. Finally, a summary is given at the end of this chapter.
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2. Background & Related Work

In this chapter, we will give an introduction to the different fields touched by our
research. Related work is mentioned primarily in section 2.4 as it covers the different
benchmarks and their findings.

2.1 Graphs

A graph as the literature tells us [1, p. 89] is a tuple G = (V, E) where E CV x V.
Elements of V' are called vertices and elements of E are called edges. The set of
vertices has to be non-empty, but the edge set can be. In this thesis we are focusing
on directed graphs only, although some graph databases are capable of handling
undirected graphs too. Also, there would be no benefit in using undirected edges
since our model also uses directed edges. In general graphs can have labels or weights
on their edges as stated in [1, p. 99]. For our purposes we will use labels on the
vertices and edges to ease the understanding of our data structure. In section 2.3
we will give reasons why having labels on the graph components is useful.

Figure 2.1 shows an example of a directed graph with labels on its vertices. An
equivalent representation of that graph would be

vV ={1,2,3}
E=1{(1,2),(1,3),(2,1),(3,2)}. 21)

2.2 Industrial Data

Under the term "industrial data” we understand data which is produced by machines
during the production. That could be the current settings of the machine, tempera-
tures or tolerances measured during processing or what product is currently worked
on. In chapter 3.1 the possible structure of this data is analysed.

As there is no publicly available information about how industrial data should look
like we will use the example given by our partners at SICK AG [2] as an inspiration
for our test data.

Listing 2.1 shows the graph excerpt of our given example.
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Figure 2.1: A directed graph with three labelled vertices and four edges.

?@graph”: |
{
”@id”: ”http://localhost:3000/observations /185",
?@type”: ”ssn:Observation”,
?featureOfInterest”: ”aoi:Feature”,
”observationSamplingTime”: 72016—05—18T12:55:27.9547Z" |
7"observedProperty”: |

Paoi:twisting”,
?aoi:y—shift”,
?aoi:x—shift”
?observationResult”: ”http://localhost:3000/observations/185/sensor—output”,
?observationResultTime”: 72016—05—18T12:55:27.9547Z” ,
”observedBy”: "http://localhost:3001 /AOLSMDA407” ,
?dataClass”: ”Testdata”

”@Qid”: ”http://localhost:3000/observations/185/sensor—output”,
?Qtype”: ”ssn:SensorOutput”,

”isProducedBy”: "http://localhost:3001 /equipment/AOILSMD407”,
"hasValue”: ”http://localhost:3000/observations/185/result”

”@id”: ”http://localhost:3000/observations/185/result”,

?@Qtype”: ”ssn:ObservationValue, shopfloor:Panel”
7orderNo”:”http://localhost:3000/order#0”,

"partNr”: "http://localhost:3000/part#2060817”

"hasPart”: ”http://localhost:3000/observations/185/board#3827581”
”startTime”: ”2016—05—18T12:55:27.9547Z”,

?endTime”: 72016—-05—18T12:56:27.9547Z”

”@id”: ”http://localhost:3000/observations/185/board#3827581”,

?@type”: ”shopfloor:Board”,

"hasPart”: [”http://localhost:3000/observations/185/component#C1—-1",”http://
localhost:3000/observations /185/component#C2—1"],

”boardUID”:”3827581",

”isBadBoard”: false

7@id”: ”http://localhost:3000/observations/185/component#C1—1",
?Qtype”: "shopfloor:Component”,
”componentType”: ”C0603” ,
”position”:0,
"testFeature”: |
{
"@id”: ”http://localhost:3000/observations/185/component#C0603—MENI-901—
TWISTING” |
?feature”: "aoi:twistingl”,
”analysisMode”: |
{7@id”: "http://localhost:3000/observations/185/AnalysisMode#C0603—MENI
—901-TWISTING” ,
”windowNumber”: 79017,
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?featureFlag”: 70”7,
?mode” : "MENI”
}

] )
"hasValue”: {

?Qtype”: "xsd:integer”,
?@value”: 7107

}
}7
{
”@id”: ”http://localhost:3000/observations/185/component#C0603—MENI-901—Y—
Shift”,
"feature”: "aoi:y—shiftl”,
7analysisMode”: |
{?@id”: ”http://localhost:3000/observations/185/AnalysisMode#C0603—MENI
—901-Y—-Shift”,
?windowNumber”: 79017 |
?featureFlag”: 70”7,
”mode” : "MENI”
}
I,
"hasValue”: {
?Q@Qtype”: ”xsd:integer”
’@value”: 7—177
}
}7
{
7@id”: ”http://localhost:3000/observations/185/component#C0603—MENI-901—X—
Shift”,
?feature”: "aoi:x—shiftl”,
“analysisMode”: |
{?@id”: "http://localhost:3000/observations/185/AnalysisMode#C0603—MENI
—901-X—Shift”,
?windowNumber”: 79017 |
?featureFlag”: ”70”,
”mode” : "MENI”
}
I,
"hasValue”: {
?Qtype”: "xsd:integer”,
?@value”: 720"
}
}

7@id”: ”http://localhost:3000/observations/185/component#C2—1",
?@Qtype”: ”aoi:Component”

?componentType”: ”C0603” ,

?position”:0,

"testFeature”: |

7@id”: ”http://localhost:3000/observations/185/component#C0603—MENI-901—
TWISTING” ,
?feature”: "aoi:twistingl”,
“analysisMode”: |
{7’@id”: ”http://localhost:3000/observations/185/AnalysisMode#C0603—MENI
—901-TWISTING” ,
?windowNumber”: 79017,
?featureFlag”: 70”7,
”mode” : "MENI”

}

] K

"hasValue”: {
?Qtype”: "xsd:integer”,
?@Qvalue”: 7127

}
}’
{
"@id”: ”http://localhost:3000/observations/185/component#C0603—MENI-901—-Y—
Shift”,
?feature”: "aoi:y—shiftl”,

”analysisMode”: |
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{”@id”: "http://localhost:3000/observations/185/AnalysisMode#C0603—MENI
—901-Y—Shift”,
?windowNumber”: 79017 |
7?featureFlag”: 70”7,
”mode” : "MENI”

}

] ’

"hasValue”: {
?@type”: ”xsd:integer”,
?@Qvalue”: 714”7

}

~~———

”@id”: ”http://localhost:3000/observations/185/component#C0603—MENI-901—X—
Shift”,
?feature”: "aoi:x—shiftl”,
”analysisMode”: |
{?@id”: "http://localhost:3000/observations/185/AnalysisMode#C0603—MENI
—901-X—-Shift”,
”windowNumber”: 79017,
?featureFlag”: 70”7,
”mode” : "MENI”
}
I,
“hasValue”: {
?Qtype”: "xsd:integer”,
?@value”: 7117

Listing 2.1: An excerpt showing the observation of components.

In figure 2.2 the provided example is visualised partially. It shows the observation
of a product.

2.3 Graph Databases

There is a variety of database types available and the main categories are SQL and
NoSQL databases. A short description of SQL databases would be “A relational
database organizes data in tables (or relations). A table is made up of rows and
columns. A row is also called a record (or tuple). A column is also called a field (or
attribute). A database table is similar to a spreadsheet.” ([3])

NoSQL databases, on the other hand, are able to store any kind of data in any
record. They don’t rely on a specified schema and they are able to scale horizontally
at the expense of consistency. [4]

Graph databases are a type of NoSQL databases. They use graph theory to store
their data as described in section 2.1. Every vertex and every edge has an unique
identifier (id) in the database. Properties can be assigned to edges and nodes as
key /value pairs. Additionally, edges store a reference to the start and end node they
are attached to. [5]

The labels mentioned at the end of section 2.1 can be seen as the properties assigned
to a vertex or edge. To map a production line in which the elements like machines
and products have their own real-world ids, a property can be used to store these
ids as key/value pairs. Later a particular machine, for example, can be looked up
by its id. That is crucial to find the data stored in the database.




2.3. Graph Databases 9

.Observations

obSeNedB\j resujt
Sensor
output

has\’ alue

Napao“pold

&0

has
&F %,), Part Production
° Z machine
Order#0 Part#206 Board#325

Figure 2.2: An example graph representing the observation of a board created after
the example shown in listing 2.1.

In the following subsections 2.3.1 through 2.3.3 we will discuss the different types
of graph databases and give examples of real databases which operate by that type.
All databases used in this thesis support the ACID! principle and transactions.

2.3.1 RDF /Triplestores

First on our list are RDF stores also known as triple stores.

RDF (Resource Description Framework) is a model for data interchange on the web.
It is able to merge data even with different schemas, it also supports the evolution of
a schema over time. The linking structure of the web is extended by RDF by it using
URIs? to name relationships and resources connected by those relationships. [6, p. 4]

This linking structure forms a directed, labelled graph, where the edges
represent the named link between two resources, represented by the
graph nodes. This graph view is the easiest possible mental model for
RDF and is often used in easy-to-understand visual explanations. ([7])

Triplestores store semantic facts as subject - predicate - object triples, also referred
to as statements using RDF. These statements form a network of data, which can
be seen as a graph. [6, p. 4]

short for atomicity, consistency, isolation, durability. It should guarantee data validity.
2abbreviation of Universal Resource Identifier, used to identify abstract of physical re-
sources. https://tools.ietf.org/html/rfc3986
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2.3.1.1 Apache Jena TDB

“Apache Jena (or Jena in short) is a free and open source Java framework for building
semantic web and Linked Data applications. The framework is composed of different
APIs interacting together to process RDF data.” ([8])

Jena stores its information in statements as triples of subject, predicate and object.
This structure can be seen as a graph, with the subject and the object being vertices
and the predicate as an edge between them.

Jena TDBs dataset consists of the node table, triple and quad indices and the prefix
table. The node table contains the representation of RDF terms and provides a
mapping from Node to Nodeld and the other way around. Triple and quad indices
are indices for the default graph and named graphs respectively. The triple indices
contain three indices for the three parts of a statement. Each index has all informa-
tion about the triple, there is no secondary index. Prefixes table are mainly used in
presentation and serialisation of the triples in RDF/XML or Turtle. [9]

2.3.2 Document Stores

As the name suggests the data model of document stores consist of documents which
can have fields without depending on a defined schema. [10] It aggregates data in
those documents and transforms them internally into a searchable form. [11]

2.3.2.1 OrientDB

OrientDB is a mix of a document store and a graph store, as stated in their manual
“OrientDB is a document-graph database, meaning it has full native graph capa-
bilities coupled with features normally only found in document databases.” ([10])
It’s designed as a robust, highly scalable database with a wide possible set of use
cases. [10] OrientDB doesn’t require a fixed schema and therefore supports schema-
less and schema-mixed models. It uses an indexing algorithm called MVRB-Tree,
which derived from the Red-Black Tree and the B+ Tree and therefore it supports
fast insertions as well as fast lookups. [12]

2.3.3 Graph Stores

Graph stores organise their data as graphs. References with foreign keys known
from relational databases are mapped as relationships in graph databases. Each
node in the database model contains a list of relationship-records to represent their
connection to other nodes. [13]

2.3.3.1 Neo4j

Neo4j is a native graph database and was built as such from the ground up. It
organises its data in a graph structure and has nodes, relationships and attributes
as directly accessible data structures. It can assign attributes to both nodes and
edges. Neodj is transactional and fulfils the ACID properties. [14]
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2.3.3.2 Sparksee

The user manual describes Sparksee as follows, “Sparksee is an embedded graph
database management system tightly integrated with the application at code level.”
([15]) Sparksee is implemented in C++ and provides a Java API.

Sparksee encodes its nodes and edges as collections of objects, which all have a unique
identifier. It implements two types of structures, bitmaps and maps. Adjacency
matrices are converted into multiple small indices, which improves the out-of-core
workloads. Sparksee uses also efficient 1/O and cache policies. The bitmaps, in
which the adjacency list of each node is stored, are typically sparse in graphs and
they are compressed to save space. Attributes, which are stored in a B-Tree, are
supported for both nodes and edges. Two maps are used. One which maps the
object id to the attribute and the other one mapping the attribute value to the
object ids that have that value. [16]

2.4 Graph Database Benchmarks

As the need to compare similar programs exists, benchmarks are needed to hand
results over certain aspects of the program to aid decision making. Graph databases
are no exception to that. There are multiple benchmarks for graph databases avail-
able and some are outlined shortly in the following subsections 2.4.1 to 2.4.3. In
section 3.3, we choose a benchmark for our work.

2.4.1 LDBC: Graphalytics

Benchmark specifications, practices and results for graph data management systems
are established by an industry council called "The Linked Data Benchmark Council”
(LDBC). Their Graphalytics benchmark facilitates a choke-point design to evaluate
the crucial technological challenges present in system design. One example would
be the "large graph memory footprint” as mentioned in [17, p. 2].

Graphalytics uses Datagen to create social network graphs, which are easy to un-
derstand for their users. [17, p. 3]

The workloads implemented in Graphalytics represent common graph algorithms
such as "breadth-first search”, "weakly connected components” or “single-source
shortest paths” to name just a few. [18, p. 7]

Figure 2.3 shows the architecture of the Graphalytics benchmarking software. The
user can configure the available benchmarks inside Graphalytics with a benchmark
configuration (2). Parameters for the algorithm included in (1) can be specified and
the system under test (4) can be set up. The system on which the benchmark runs
has to be provided by the user. The harness service (5) coordinates the benchmark
configuration and the benchmarking process. The dataset for the benchmark has
to be provided by the user or can be generated by using the available workload
generators. [18, p. 11]



12 2. Background & Related Work

@ i | Benchmark Workload Generator Reference | !
Graphalytics: Description Datagen) Graph50Q Drivers i
Team T T B bl e e X Bublic
Workload gﬁip Driver
wo|o... Archives .Dfit_?f?[‘_‘fi‘!.?.'f..”.ti Delft Repositories
8 Benchmark| Core :
System Config, [ | Hamness | Workload Data Driver Code :
Customer/ | (eyoervices l ...............
DevOp i T Driver
Rgsulﬁs e i
Validation| |:
Results i —
Public Lo Monitoring&
Analysis&l_ ! .
Results ysisdle L &3« | 5ggging ‘ ]
Modeling :@Results
1 '-.-.D.a.t?_b.aﬁ‘?--_@m ............

Figure 2.3: The architecture of the Graphalytics benchmark. [18; p. 11]

2.4.2 YCSB

The Yahoo! Cloud Serving Benchmark (YCSB) wasn’t designed specifically for
graph databases, but rather for key/value and cloud stores. The client is extensible
so that new workloads, databases and generators can be integrated. [19]

The core workload is designed to use simple CRUD? operations on any database
with no special structure of the generated data.

The architecture of YCSB can be seen in figure 2.4. The client contains a Workload
executor that uses Generators to create a dataset and executes operations on
the database. Each Client thread calls the Workload executor to perform an
operation on the database. Workload files can be specified to set the amount of
data and the mix of operations to use for that workload. To tell YCSB which
database should be used command-line parameters are passed to the client. The
benchmark supports two phases, a load phase to fill the database with initial data
and a transaction phase to execute operations on the database.

2.4.3 XGDBench

It is a graph database benchmark for cloud computing systems. It is designed to
work in the cloud and in future exascale clouds. XGDBench is an extension of YCSB
for graph databases. This benchmark is written in X10, a “programming language
that is aimed for providing a robust programming model that can withstand the
architectural challenges posed by multi-core systems, hardware accelerators, clusters,
and supercomputers” ([20]).

XGDBench also focuses on social networks for their data structure. The data is
generated by a procedure called "Multiplicative Attribute Graph” (MAG). See [21]
for more information.

This benchmark specifically targets read, update and graph traversal operations for
its performance aspects. [20, p. 366]

3CRUD stands for the basic operations on persistent storage, these are Create, Read, Update,
Delete.
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Figure 2.4: The architecture of YCSB. Recreated and modified from [12, p. 25].

In figure 2.5 the architecture of the XGDBench benchmark is illustrated. The general
workflow is similar to the one from YCSB, because this benchmark is based on
YCSB. The workload is executed in two phases. The load phase fills the database
with data and the transaction phase executes operations on the database.
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Graph DBs in Cloud
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Figure 2.5: The architecture of the XGDBench benchmark. [20, p. 367]
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2.5 Related Work

A number of studies have been conducted to test the performance of NoSQL databases,
which we will discuss in this section.

2.5.1 Evaluation of NoSQL Systems using YCSB

Abubakar et al. [12] haven’t focused their research on graph databases, but they
used OrientDBs document API. They compared the NoSQL databases MongoDB,
ElasticSearch, OrientDB and Redis.

Three different workloads were used in their study, each concentrating on one op-
eration, which were inserts, reads and updates. The dataset size has been varied
between 1000 and 100000 records with a record size of 1KB.

The results of the insert workload can be seen in figure 2.6.
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Figure 2.6: Time needed to insert different dataset sizes. [12]

Their insert workload shows that OrientDB was the slowest among the examined
databases across all dataset sizes. Redis was the fastest in this category. The read
workload had no consistent order for the databases. For every dataset size a different
database was the best with ElasticSearch as the fastest for the largest dataset.

2.5.2 HPC Scalable Graph Analysis Benchmark

Dominguez-Sal et al. [16] implemented the HPC Scalable Graph Analysis Benchmark
and tested the performance of four different graph databases. In their research they
examined Neodj, Jena (RDF), HypergraphDB and DEX (Sparksee).

Four different workloads were implemented covering insert performance, look-up of a
set of edges, building subgraphs by utilising breadth first search and lastly traversal
performance.

They used a dataset generated by the R-MAT algorithm with the parameters a =
0.55,b=0.1,¢= 0.1 and d = 0.25. The final dataset had a composition of nodes to
edges of N = 205¢@¢) and F = 8 x N with weights on the edges uniformly distributed
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with a maximum value of 2(5°@¢) The largest dataset they used was 22° = 1048576
nodes, because most databases wouldn’t finish execution within 24 hours for larger
sets.

Their insert results are shown in figure 2.7.
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Figure 2.7: Throughput results of Dominguez-Sal et al. [16]

They found that DEX was over one order of magnitude faster for insert and scan
operations then the second-best database, which was Neo4j. Besides that, they
found out that Neo4j had scalability problems for some operations on larger datasets.
Overall DEX performed best for most operations and was close to Neo4j where it
was the fastest.

2.5.3 XGDBench

Dayarathna et al. [20] introduced a benchmark for cloud computing systems called
XGDBench. They used the MAG algorithm for their dataset generation, which
outperforms the R-MAT algorithm in terms of creating a realistic network structure.
The node count, edge count and cluster prominence of the generated dataset can be
seen in figure 2.8.

They focused their research on the examination of online social networks and used
workloads based on read, update and traversal operations. Five workloads were
specified, three of which focus on read operations. One has a mix of 50% read and
50% update operations and the last one reads the neighbours of a vertex trying to
mimic the loading of a friend list of a person.

The evaluation of their implementation of the MAG algorithm shows that it had
a high cluster prominence which means it represents the social affinities found in
real social networks. The graphs created with it follows the power-law distribution
which is good for realistic benchmarking scenarios.

A performance evaluation was executed on Allegrograph, Neo4j, OrientDB and



16 2. Background & Related Work

TABLE III
CLUSTER PROMINENCE
MAG R-MAT
Vertices Edges Cluster Edges Cluster
(Scale) prominence (Cp) prominence (Cp)
1024 (10) 23077 24.00 2704 6.33
2048 (11) 121298 23.33 3912 3.33
4096 (12) 413281 29.33 1218 1.33
8192 (13) 1634377 26.67 8782 3.33
16384 (14) | 6363791 36.67 15974 3.67

Figure 2.8: Comparison of edge count and cluster prominence between MAG and
R-MAT. [20]

Fuseki, which is a SPARQL? server providing a HTTP interface to Jena.

Their performance evaluation of the databases, shown in figure 2.9, shows that the
databases performed really badly, except for OrientDB, which was at least double
as fast as the next best database for any workload.

Average Throughput for Data
Loading

Throughput (operations\s)
=
S

Allegrograph Neo4j OrientDB | Fuseki
Figure 2.9: Throughput results of the XGDBench Benchmark. [20]

The benchmark was only executed with 1024 nodes, as some databases performed
very poorly which made execution with more vertices not feasible.

2.5.4 Graphalytics

Capota et al. [17] created a data generator, chose workloads based on choke-points
and also conducted a benchmark on four graph databases.

The choke-points are technological challenges the graph databases are struggling
with. They designed the data generator to create datasets that can help evaluate

4SPARQL is a language to query and manipulate RDF data. https://www.w3.org/TR/2013/
REC-sparql11-overview-20130321/
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those choke-points. The data generator supports specification of the clustering co-
efficient, which is important for social networks, as they indicate the presence of
communities in the graph.

Datagen, as the data generator they developed is called, is able to create a graph
with 1.3 billion edges in 3 hours on their machine and the creation of large datasets
should also be archivable with relatively cheap hardware. The execution time for
dataset creation is shown in figure 2.10.
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Figure 2.10: Time needed for creation of datasets with different numbers of
edges. [17]

They implemented five algorithms, which are general statistics, breadth-first search,
connected components, community detection and graph evolution. Those were exe-
cuted on the following platforms, Hadoop MapReduce, Giraph, GraphX and Neo4;j.
The results are shown in figure 2.11.

MapReduce is capable of performing all workloads if given enough time, but it was
up to two orders of magnitude slower than Giraph and GraphX. Neo4j performed
best at breadth-first search on a dataset with many edges compared to the number of
nodes but failed on all workloads using the dataset created by their data generator.
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In this chapter we will analyse the data that could occur in an industrial use case,
including its structure and amount. Further we will examine possible workloads for
our graph databases in section 3.2.

At the end of this chapter in section 3.3 we will choose one benchmark for our
research.

3.1 Data

As described in section 2.2 we have to work with the data coming from production
machines. Figure 2.2 shows how that data could look like.

Additionally, our partners at SICK AG [2] gave us the following key data of a product
example.

e A component carrier is produced every three minutes.

e A component carrier has up to 64 circuit boards.

e A circuit board has up to 128 components.

e A component is tested for up to 128 test features.

With this information we will calculate the amount of data in subsection 3.1.2

3.1.1 Data Structure

Looking at the graph in figure 2.2 and the example given by SICK we can see that
the data looks much like a tree with some cross edges. A root node at the top and
multiple children connected to it with multiple children each. The given excerpt
from figure 2.2 shows a part of a testing procedure for a board with components.
Three properties of each component were observed.

We keep this structure in mind for our design in section 4.1, where we will compose
the data structure for our implementation and evaluation.
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3.1.2 Data Amount

To evaluate the amount of data created during production we need to know how
much is produced per time unit. With the parameters mentioned in 3.1 we can
calculate the maximum number of data points produced every three minutes.

Nnpodes = TcomponentCarrier
+ NcomponentCarrier X Neircuit Board
+ NcomponentCarrier X NcircuitBoard X Necomponent

+ ncomponentC’arrier X NeircuitBoard X ncomponent X Nygest

— =14+1x64+1x64x12841 x64 x 128 x 128
< =1x (1464464 x 128+ 64 x 128 x 128)

< =1+64+64 x 128+ 64 x 128 x 128

< =1464x (1+ 128+ 128 x 128)

< =1+4+64x (14128 x (1+ 128))

< =1+464x (14 128 x 129)

<= =1+64 x 16513

< = 1056833

(3.1)

To calculate the target throughput the databases have to archive, we need to know
how many edges are between the different nodes. Therefore, we need a finished
data structure. In the next chapter in section 4.2.2.2 we will calculate the target
throughput in ¢ for the workload design.

We can extract the size of each data point from our given example. Each measure-
ment is only two to three characters long, however the other values range from 1 to
around 75 characters. The size for our workload should therefore be in that range.

3.2 Workloads

Workloads should represent the mix of operations executed on a database. There are
two main uses for a database in an industrial environment, the first one is described
in section 3.2.1. Another one is presented in section 3.2.2. The given examples are
based on what we think would represent the industrial use of databases.

In section 4.2 we will specify the workloads for our evaluation, the following subsec-
tions should only motivate the specific use cases.

3.2.1 Inserting Data into the Database

It isn’t rare that production runs 24h a day, therefore data is produced all around
the clock. Because of that the ability to store data quickly is a decisive point in
choosing a database. As the machines operate, data is continuously written to the
database.
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3.2.2 Retrieving Data from the Database

Besides the previous mentioned continuous writing of data into the database, re-
trieving data from the database would be the next common use for it. That could
be in the form of looking up a certain product produced in the past, to retrieve its
test parameter values or to get all products made by a specific machine to check if
some are faulty.

3.3 Benchmark Comparison

To choose a benchmark for our upcoming research we will look at the following
aspects of each benchmark.

Data Structure - What is the structure of the generated data?

Workloads - What are the workload operations?

e Programming Language - Is it written in a well-known programming language
or do we have to learn it first.

Community - Is there a community for support?

The result of our comparison is shown in the following table 3.1.

Benchmark | Data Structure | Workloads Programming Community
Language

Graphalytics | Social Network | Algorithm Java small!
based

YCSB No specific | CRUD based Java big?

structure

XGDBench | Social Network | Read, Update | X10 none’
and Graph
Traversal

18 contributors and 16 forks on GitHub https://github.com/ldbc/ldbc_graphalytics

2108 contributors and 1278 forks on GitHub https://github.com/brianfrankcooper/YCSB

31 contributor and 1 fork (which is from us) on GitHub https://github.com/miyurud/
XGDBench

Table 3.1: Aspects of the different databases.

Since we aren’t using a social network structure for our data the graph generators in
Graphalytics and XGDBench don’t aid us much, as the generators would be difficult
to extend because of their use of complex algorithms to create that structure in the
generated data ([22], [20]). YCSB on the other hand doesn’t serve any particular
structure presumably as they aren’t designed for graph databases and therefore don’t
need a particular structure on their data. So YCSB should be easy to extend with
our data model.

For the workload aspect Graphalytics uses common algorithms which doesn’t rep-
resent out workload scenario. XGDBench and YCSB offer a good set of operations,
with insert, read, and scan operations.


https://github.com/ldbc/ldbc_graphalytics
https://github.com/brianfrankcooper/YCSB
https://github.com/miyurud/XGDBench
https://github.com/miyurud/XGDBench
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Only XGDBench uses another programming language then the other benchmarks
namely X10, which has to be learned from the ground up and therefore the code
quality would suffer.

Lastly the community aspect. Here YCSB stands out with many contributors and
an overall more active community than the other two.

All observed aspects indicate that YCSB would suit our goal the best. The generator
and the workloads should be easily extendable since they have an open design®.

3.4 YCSB

In this section we will describe the internal workflow of a benchmark run in YCSB.

YCSB separated the execution into two parts. The first part is the load phase in
which the initial data is written to the database. Then comes the transaction phase
where database operations are performed.

Figure 3.1 shows the classes involved in executing a benchmark run with YCSB. The
Client takes the workload file and command-line parameters to set up the database
and create ClientThreads. These ClientThreads call the Workload class to perform
an operation on the database, which is wrapped in the DBWrapper. Measurements
are made through the DBWrapper by stopping the time for every operation made on
the database. To store the measurements classes from the measurements package
are used.

1
c Workload ‘ c DB ‘ 5

Package measurements
1 1| 1 Dl 1 1 1 1

1 1l 1i 14 15

c ClientThread ‘ c DBWrapper ‘

i
1‘ 1‘7

c StatusThread ’

lI
1
%" = Client

Figure 3.1: Class diagram of the main classes involved in YCSB.

The workload file specifies some parameters of the workload. These are among
others, the workload class to use, how much data should be added in the load

4See com.yahoo.ycsb.Workload and com.yahoo.ycsb.generator.Generator in https://github.
com/brianfrankcooper/YCSB
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phase, how much operations should be executed in the transaction phase and what
percentage of the operations should be inserts, reads, updates, scans or deletes.

The measurements can be saved as histograms each covering one particular opera-
tion. There is also a summary printed out to the console or a file depending on the
parameters you set that additionally lists the overall time for the benchmark, times
of the individual operations and some more meta information.
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4. Design

In this chapter we will design the data structure of our test data, as well as the
workloads to simulate a typical industrial use of a database.

After that we will plan our extension for YCSB in section 4.3, both for the internals
of the benchmark and the bindings to connect the databases with the benchmark.

At the end in section 4.4 and 4.5 we will outline tools to support execution of the
benchmark and evaluation of the results.

4.1 Data Structure

To design a schema for our data structure we had a meeting with other researchers
at our institute. The result of our session can be seen in figure 4.1. In the centre
left we see "Features of Interest” which could be mapped to the "testFeature” edge
in the industrial example of figure 2.2 as it depicts an observation of a product. At
the bottom we see a "M” which stands for "Machine”, its connection to "P. Schritte™
shows that this machine does 1 to n production steps. Every production step is
associated with a component which consists of a PCB? that has different parts, a
version and a file after which it was created.

As the model shows too much detail in some areas without giving a good overview of
an industrial data schema, we had to reiterate over it and get rid of some complexity
where we don’t need it for our purposes.

The meeting gave us a better understanding of how a production facility could
handle its data and with that in mind and the objective to design a simpler schema
that includes to most necessary parts of production the model shown in figure 4.2
was created.

At the top is the Factory, which has an Orders node that represents the folder
for all Orders received by the Factory. A Machine and a Design are linked to
the Factory, these represent the production machine and the design template for

lgerman for production steps
2short for printed circuit board
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Figure 4.1: The first design of a data schema for industrial data. Created by re-
searchers at our institute.

products made by that machine. A Product has incoming edges from the Design it
is made after, the Machine it was produced by and the Order for which it is created.
Variable x determines how many Products are made for each Order. The Product
was made at a specific Date and consists of one or multiple Components depending
on the value of variable y. Every Component undergoes a test suite (Tests) which
contains of a number of Test Parameters, which number is defined by z.

For easier reference we will call x productsPerOrder, y componentsPerProduct and
z testParameterCount.

4.2 Workloads

Our workload design will be separated into three parts. In subsection 4.2.1 we
discuss the design of workloads aimed to reveal the ability to store large amounts of
data. Subsection 4.2.2 will investigate the suitability of a database to be used in an
industrial use case for storing data. We will design workloads to examine how well
the databases can retrieve data under load in subsection 4.2.3. Finally, we will give a
summary over all workloads we are going to run on the databases in subsection 4.3.6

4.2.1 Throughput
To explore the throughput of the databases we will change some variables over the
course of the different workloads. These variables are

e using an index on the key

e the size of a single property of the node

e using no edges.
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Figure 4.2: The final design of the data schema.
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The last variable sounds counter intuitive, since edges add meaning to the data, but
by eliminating them we want to see if edges could be a cause of delay, because to
add an edge the start and end node need to be known and therefore be retrieved at
first.

We will go over the different variables in the following subsections and motivate
their purpose.

4.2.1.1 Index

For this category we will use different dataset sizes in terms of their number of
nodes. We will use steps of multiplication by 10 from 1000 nodes to 10000000
nodes, to examine if the throughput changes, as the database is filled with data.

Switching from indexed to not indexed we want to inspect how the throughput is
effected by not using an index. Indexing is important to retrieve data more quickly
for the cost of write speed. With this workload we will see if there is a sacrifice in
write throughput, as to store an edge, two nodes have to be looked up. We will
only use an index on the node and edge key, which will be used to search that graph
component? in the database. Indexing the other properties would have no benefit
in our example.

For this workload we will use a node property size of 10B. That is small enough to
not have an impact on performance but large enough to represent most of the data
stored in the properties of our example.

4.2.1.2 Node Property Size

After retrieving the number of nodes that represents an acceptable execution time,
we will vary the next variable which is the property size. We will go from 10B used
in the index benchmarks to up to 1MB, again in steps of multiplying by 10 (10B,
100B, 1KB, ..., IMB). We want to examine if there is a drawback for throughput
when storing more information in the nodes and at which point the size is too large.

The typical property size is between 1B (1 character) and roughly 75B (75 charac-
ters) according to our example in listing 2.1.

The use of properties isn’t limited to short strings, that is why we will investigate if
larger amounts of data influence the throughput more than linearly.

We will use an index on the keys, because that represents the use in the industry
and since we aren’t indexing the growing values there will be no impact from using
it.

4.2.1.3 No Edges

In subsection 4.2.1 we already justified why we will investigate the throughput with
an exclusive use of nodes in the dataset. To summarise, the use of this workload is
to see if there is a big difference in using edges and therefore determine how the e/n
ratio effects the throughput.

As in subsection 4.2.1.2 we will use a suitable large dataset in terms of node count
resulting from the first workloads. We will use the same node size as in 4.2.1.1 and
an index to be able to compare the result directly to the corresponding one from
that workload.

3

a node or an edge of the graph
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4.2.2 Production Simulation

Related to production we will investigate the impact of the structure and the general
suitability for an industrial use. The next two subsections will cover those aspects
in more detail.

The property size will be set to 50B, which should be enough to cover on average
most values stored in the database.

4.2.2.1 Structure

For production we have some variables to investigate, which affect the structure of
our data and the e/n ratio. We have three layers which we can scale up horizontally
by increasing the corresponding parameters, which are

e productsPerOrder, this spreads the data graph apart at a level closer to the
root

e componentsPerProduct, this changed the width in the middle of the graph

e testParameterCount, which widens the graph at the lowest level.

For production simulation we will first examine if the data structure impacts per-
formance of the databases. To investigate this aspect, we will change the width
of the graph with the variables mentioned above. We will use the numbers from
section 3.1 as the maximum width, which would be productsPerOrder = 64, com-
ponentsPerProduct = 128 and testParameterCount = 128. In the first workload
we will set all variables to one, the next one will use productsPerOrder = 16, com—
ponentsPerProduct = 32 and testParameterCount = 32. The third and last one
will use the maximum width mentioned above. By this variation we will cover the
minimum and maximum with an additional result in the middle to see if there are
any changes in performance.

The keys of the graph components will be indexed, because indexing these values
should be done to later work on that data more efficiently, which is necessary for
the industry.

4.2.2.2 Suitability

To examine whether a database is suitable for the industry it should be able to store
the data faster than it is coming from the machines. In section 3.1.2 we calculated
that 1056833 nodes would be written to the database every three minutes.

Now that we have our data structure we can calculate how many edges are contained
in that graph and finally how many inserts have to be performed every second. We
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will count the incoming edges for every node and also use the variables x, y and z
from the structure in 4.1.

Nedges = NOrder + 3 X NpProduct + N Product
X (Npate + NComponent X (NTests + NTestParameter))
— =1+3xz+aox(1+yx(l+z2) | z=064,y=1282=128
— =143 x64+64x(1+128x (1+128))
= =1+192+64 x (1+ 128 x 129) (4.1)
= =1+192+ 64 x (1 +16512)
< =1+192+ 64 x 16513
<— =1+192 + 1056832
<— = 1057025

Together with the number of nodes we can calculate the total amount of elements
being inserted into the database, as shown in equation 4.3.

Niotal = Mnodes T Nedges
< = 1056833 + 1057025 (4.2)
< = 2113858

To convert that into our target throughput we divide that number by three minutes.

1
Ntarget = Ntotal X m
1
=211 - 4.3
= 3858 x 505 (4.3)

1
<= = 11743,66—
s

First, we will set up a dataset with that number of nodes and insert it into the
database. That will allow us to compare the time needed to store all data with our
three-minute limit. If the database should take more than three minutes, it wouldn’t
be suitable, since data is produced faster than it can be stored.

We will use the structure with the maximum width, because it represents the in-
dustrial use case the best regarding the information given by our partners at SICK

AG [2].

4.2.3 Retrieving under load

There would be no point in storing data if it isn’t retrieved at some point. To inves-
tigate the performance of reading and scanning (more on that in subsection 4.2.3.2)
data from the database, the following workloads are designed.

As mentioned in section 4.2.1.1 indexing is important for retrieving data, therefore
we will use it as a variable for this workload category. By doing so we want to
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examine if the price we pay while writing is justified by the performance gain in
retrieving data.

The node amount will be determined by the first workload investigating the through-
put, to not take up too much time testing these features.

We want to retrieve both nodes and edges, because either could be useful, since the
edges also can have informations stored in them.

4.2.3.1 Reading

Reading single values is the basic operation when it comes to retrieving data from
a database. Since the database will be under constant load, because of production
delivering data all the time, we will use 5% of the total operations executed in this
workload for read operations, the rest will be insert operations.

4.2.3.2 Scanning

Scanning a graph can be done in multiple ways, one of them is depth first search [23],
to retrieve values associated with connected nodes. For example, you could start
scanning from a machine to get the test features of its produced products.

As in subsection 4.2.3.1 we will use a mix of 5% scan operations and 95% insert
operations, to simulate the constant load present in an industrial environment.

The number of steps to do during scanning will be 1000 as that was the default
value set in YCSB and it should also represent a good amount of data to read.

4.2.4 Summary

In this subsection we will give an overview over all workloads and their variables.

For the workloads measuring the throughput productsPerOrder, componentsPer-
Product and testParameterCount will all be set to 1. Their overview is shown in
table 4.1

The workloads to investigate the suitability for the industry are shown in table 4.2.
For these workloads the property size is fixed to 50B and an index is used on all
workloads. Edges are also used in these workloads to reflect the use in the industry.

The remaining workloads to examine the ability to retrieve data, are shown in ta-
ble 4.3. These workloads will use an appropriate dataset size regarding execution
time and a property size, as in the production simulation, of 50B. A simple struc-
ture is used to investigate the basic capabilities of data retrieval, that means prod-
uctsPerOrder, componentsPerProduct and testParameterCount are set to 1.
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Aspect Node Count Node Size Index Only Nodes
1. With Index | 1000 10B True False
2. With Index | 10000 10B True False
3. With Index | 100000 10B True False
4. With Index | 1000000 10B True False
5. With Index | 10000000 10B True False
1. Without | 1000 10B False False
Index
2. Without | 10000 10B False False
Index
3. Without | 100000 10B False False
Index
4. Without | 1000000 10B False False
Index
5. Without | 10000000 10B False False
Index
1. Node Size X 100B True False
2. Node Size | x 1KB True False
3. Node Size | x 10KB True False
4. Node Size | x 100KB True False
5. Node Size X 1MB True False
1. No Edges X 10B True True

Table 4.1: Workloads to investigate the throughput. x is a placeholder for a suitable
dataset size in terms of execution time.

4.3 Extension of the Benchmark

To be able to execute the introduced workloads and use the data structure designed
above, we need to extend the YCSB benchmark. For the benchmark to be able to
execute our workloads the way we want them to be executed the following parts of
the benchmark need to be extended

Generation of the dataset

Database bindings.

Generation of random graph components
Generation of an operation order

Workload to use the generated dataset

In the following subsections we will go in more detail over the different areas we are
planning to modify.
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Aspect Node Count productsPer- | components- test-
Order PerProduct Parameter-

Count

1. Structure X 1 1 1

2. Structure X 16 32 32

3. Structure X 64 128 128

1. Suitabil- | 1056833 64 128 128

ity (three

minutes)

2. Suitability | 21136660 64 128 128

(hour)

3. Suitability | 507279840 64 128 128

(day)

4. Suitability | 3550958880 64 128 128

(week)

5. Suitability | 15218395200 | 64 128 128

(month)

6. Suitability | 185157141600 | 64 128 128

(year)

Table 4.2: Workloads to simulate production. Again, x represents a placeholder for
a suitable dataset size.

Aspect Index Insert Propor- | Read Propor- | Scan Propor-
tion tion tion

1. Reading True 95% 5% 0%

2. Reading False 95% 5% 0%

1. Scanning True 95% 0% 5%

2. Scanning False 95% 0% 5%

Table 4.3: Workloads to investigate capability to retrieve data under load.

4.3.1 Graph Data Generator

YCSB doesn’t include a graph data generator, therefore we need to create one that
fulfils our needs.

The generator should create a dataset with the structure mentioned in section 4.1
and store the data for future reproduction when using the benchmark with the next
database.

The two parts of the generator, one that creates and stores the data and one that
recreates the data, are designed in subsection 4.3.1.1 and 4.3.1.2 respectively.

Generally, to represent a graph in YCSB we need some classes to represent nodes,
edges and the graph. In section 2.1 we mentioned that a graph is a tuple of a set
of nodes and a set of edges. That can be directly mapped to a class with two lists,
one for nodes and the other one for edges. We want the nodes to have a key for
identification, a label to match it with an object that could exist in the real world
and a value, which will represent the data stored in the node. The size of this value
should be directly linked to the property size from 4.2.1.2. An edge should also have
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a key for identification, a label to add meaning to it and a start and an end node,
represented by their identification keys.

The generator of the dataset should decide whether it should create a new one or
recreate the dataset, by looking at the existing files.

4.3.1.1 Storing the Dataset

We want to control the size of the dataset with our variables mentioned in the
workload section 4.2 so this generator should create small subgraphs with only one
node and its corresponding edges every time it is called for a new value. By storing
the current state of the created graph in the generator class, we can always determine
the next subgraph to create.

The modify the structure of the graph with our three variables, these need to be
passed into this class and used during subgraph creation.

To restore that data also one node at a time we will store each created subgraph in
a file, for that we will serialise the graph and deserialise it when we are restoring the
data.

To disable edges for the workload from subsection 4.2.1.3 we can simply skip the
step of creating and adding them to the graph.

4.3.1.2 Restoring the Dataset

The recreation of the data should be easily accomplishable by deserialising it from
the created file during creation of the dataset. Since the single subgraphs were stored
in the file, we can pass them to the workload directly after deserialising them.

To avoid memory issues with larger datasets the subgraphs shouldn’t be read all at
the beginning but rather on demand, by deserialising only one line when called.

4.3.2 Random Graph Component Generator

Reading and scanning operations require a point to start with in the data, that’s why
we need the key of some component in the graph. The kay can be randomly chosen,
but the node or edge associated with it has to be present in the database. Therefore,
we need to somehow store the keys of the graph components we have already inserted
into the database. That could be done in the GraphDataGenerator mentioned in
subsection 4.3.1.1, because it touches all generated components anyways.

Because we want to retrieve edges and nodes randomly we have to pick the kind
of graph component randomly every time it is required. As in 4.3.1.1 and its sub-
sections, every created value needs to be stored to be retrieved later on. The data
needed for this generator isn’t as complex as a graph and can therefore be stored
directly in a file line by line for easy storing and restoring. That also means, that we
can read the files at the beginning of the run, so it is more quickly accessible during
the benchmark without using too much memory.

For the workload which requires the absence of edges a method should be defined
to return only a randomly chosen node.

Figure 4.3 shows an activity diagram of the generator returning a random graph
component.
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component is
Nodoe P ! Edge

file for nodes is present file for edges is present
No

Yes

(get maximum node identifier from GraphDataGenerator) [get maximum edge identifier from GraphDataGeneratorj

(read node identifier from file) \ [read edge identifier from filej

(pick random node identifier in range [1..maxNodeId]] (pick random edge identifier in range [1..maxEdgeId])

return component

Figure 4.3: Activity diagram of the RandomGraphComponentGenerator, showing the
process of storing and restoring a random graph component.

4.3.3 Operation Order Generator

To fix the execution order of inserting and retrieving data to and from the graph,
we need to save the operations too. That can be done by simply storing the name
of each operation in a file as it appears and reading it from there when running the
benchmark.

In YCSB there is already a DiscreteGenerator® that takes pairs of weights and
values and returns, distributed according to the weights, a value. This can be used
to get the operations to run on the database.

Figure 4.4 visualises the procedure to return the next operations.

4.3.4 Graph Workload

The GraphWorkloads task is to coordinate the different generators and to execute the
workload as specified. To be able to store the generated dataset in a specific folder
on the system the workload class should take a path to a folder and instrument the
generators to store their data in that folder and recreate it from there respectively.

This class will be the interface between the client calling Workload: :doInsert and
Workload: :doTransaction and the database. The Workload: :doInsert method
will only insert a subgraph into the database. To do so the workload class needs
to get the subgraph from the GraphDataGenerator and redirect its value to the
database. For the Workload: :doTransaction method, the workload has to be able
to call the available methods on a database which are

4com.yahoo.ycsb.generator.DiscreteGenerator
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getNextOperation()
files present

(read next line from file get next operation from DiscreteGenerator)

(save operation to fiIe)

return operation

Figure  4.4: Activity  diagram  of the  OperationOrderGenera-
tor: :getNextOperation.

e DB::insert(String table, String key, Map<String, Bytelterator> values)

e DB:read(String table, String key, Set<String> fields, Map<String, Bytelter-
ator> result)

e DB::scan(String table, String key, int recordcount, Set<String> fields, Vec-
tor<HashMap<String, Bytelterator>> result)

e DB::update(String table, String key, Map<String, Bytelterator> values)
e DB::delete(String table, String key).

We will only use the first three for our workloads, but the other ones should be
implemented too, to support future workloads. To determine which operation should
be executed the OperationOrderGenerator from subsection 4.3.3 will be used.

We see that a table is given as an argument, in a graph database we don’t have
tables as in relational databases, so we can use it to distinguish between nodes and
edges, by simply passing the string "node” or "edge” to the database. Next is a key,
which we can use to pass the key identifier of the graph component to the database.
The values map will contain the values of the graph components parsed into a map
when inserting data and vice versa for the result map and vector when retrieving
data from the database. Our data design doesn’t focus to much on the individual
properties nodes and edges could have, therefore we will simply read all fields of
the graph component.

DB::insert
As described above, the DB: : insert method will take a value from the GraphData-
Generator and insert it into the database.
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DB::read

The read operation will pick a random graph component with the RandomGraph-
ComponentGenerator, use its kind (node or edge) as the table argument and the
key identifier as the key argument.

DB::scan

Scanning also requires a random component which will be chosen by the Random-
GraphComponentGenerator. The mapping is also the same as in DB: :read for the
table and key arguments. recordcount will be set to 1000 as that is the default
value specified by the CoreWorkload® and that value represents a good depth for
scanning.

DB::update

For this operation we need a randomly picked graph component from the Random-
GraphComponentGenerator to get a valid key identifier. Only the property value
should be changed during update, not the identifier nor the label. That means that
only nodes will be changes, as edges have no property value assigned to them.

DB::delete
Delete takes a random graph component via the RandomGraphComponentGenerator
and calls the delete method of the database with the kind and key of the component.

To avoid calling these methods with edges when the workload specifies to not use
them, a parameter which can be set should determine whether a random graph com-
ponent or random node should be picked by the RandomGraphComponentGenerator.

Since the client only calls Workload: :doTransaction to execute one of the various
database operations the OperationOrderGenerator should be called to generate
the next operation.

4.3.5 Bindings

To ensure compatibility with other workloads present in YCSB we will extend the DB
class and implement the methods used for other databases. Because graph databases
are slightly different we will explain how each database will map the arguments of
the DB methods to their own API in the following subsections.

The basic functions we need from our database are

1. creating a node

2. creating an edge

3. adding properties to a node

4. adding properties to an edge

5. getting a node by its identifier
6. getting an edge by its identifier

7. getting the values of a node

5com.yahoo.ycsb.workloads.CoreWorkload
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8. getting the values of an edge

9. getting the outgoing edges of a node
10. getting the start node of an edge
11. removing a node

12. removing an edge

Generally, the DB operations can then be implemented using these functions. A
generic implementation is shown in listing 4.1. Every database will take a path to a
folder in which it will store its internally used files. Also, if indexing is available as
an option the database should take that as a parameter to set itself up accordingly.

We will cover the implementation of the individual methods in section 5.6. The
following subsections will only mention specialities regarding the corresponding
database.

public class Database extends DB {
private Node creatingANode(String key);
private Edge creatingAnEdge (String key, Node startNode, Node endNode);
private void addingPropertiesToANode(Node node, Map<String , Bytelterator> values)

private void addingPropertiesToAnEdge (Edge edge, Map<String, Bytelterator> values
)

private Node gettingANodeBylItsIdentifier (String key);

private Edge gettingAnEdgeByltsIdentifier (String key);

private HashMap<String , Bytelterator> gettingTheValuesOfANode(Node node);

private HashMap<String, Bytelterator> gettingTheValuesOfAnEdge(Edge edge);

private List<Edge> gettingTheOutgoingEdgesOfANode (Node node) ;

private Node gettingTheStartNodeOfAnEdge (Edge edge);

private void removingANode(String key);

private void removingAnEdge(String key);

private void doDepthFirstSearchOnNodes(Node node, int recordcount, Vector<HashMap
<String , Bytelterator>> result) {
if (result.size() >= recordcount) {
return;

}

result .add (gettingTheValuesOfANode (node) ) ;
List <Edge> edges = gettingTheOutgoingEdgesOfANode (node) ;

for (Edge edge : edges) {
Node startNode = gettingTheStartNodeOfAnEdge (edge);
doDepthFirstSearchOnNodes (startNode , recordcount, result);
}
}

private void doDepthFirstSearchOnEdges(Node node, int recordcount, Vector<HashMap
<String , Bytelterator>> result) {
if (result.size() >= recordcount) {
return;

}

List <Edge> edges = gettingTheOutgoingEdgesOfANode (node) ;

for (Edge edge : edges) {
result .add(gettingTheValuesOfAnEdge (edge));

Node startNode = gettingTheStartNodeOfAnEdge (edge);
doDepthFirstSearchOnNodes (startNode , recordcount, result);
}
}
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@QOverride
public Status insert(String table, String key, Map<String, Bytelterator> values)

switch(table) {
case ”"Node”:
Node node = creatingANode (key) ;
addingPropertiesToANode (node, values);
break;
case "Edge”:
Node startNode = gettingANodeByltsIdentifier (values.get(”startNode”).toString
0);
Node endNode = gettingANodeByltsIdentifier (values.get(”endNode”).toString ());
Edge edge = creatingAnEdge (key, startNode, endNode);
addingPropertiesToAnEdge (edge, values);
break;
default:
return Status .NOT_FOUND;
}

return Status.OK;

}

@QOverride
public Status read(String table, String key, Set<String> fields , Map<String,
Bytelterator> result) {
switch(table) {
case ”Node”:
Node node = gettingANodeByltsIdentifier (key);
result gettingTheValuesOfANode (node) ;
break;
case "Edge”:
Edge edge = gettingAnEdgeBylItsIdentifier (key);
result = gettingTheValuesOfAnEdge (edge) ;
break;
default:
return Status.NOT_FOUND;

return Status.OK;

}

@Override
public Status scan(String table, String startkey, int recordcount, Set<String>
fields , Vector<HashMap<String , Bytelterator>> result) {
switch(table) {
case ”"Node”:
Node node = gettingANodeByltsIdentifier (startkey);
doDepthFirstSearchOnNodes (node, recordcount, result);
break;
case "Edge”:
Edge edge = gettingAnEdgeBylItsldentifier (startkey);
Node startNode = gettingTheStartNodeOfAnEdge (edge);
doDepthFirstSearchOnEdges (startNode , recordcount, result);
break;
default :
return Status .NOT_FOUND;
}

return Status.OK;

}

@Override
public Status update(String table, String key, Map<String, Bytelterator> values)

switch(table) {

case "Node”:
Node node = gettingANodeByltsIdentifier (key);
addingPropertiesToANode (node, values);
break;

case “Edge”:
Edge edge = gettingAnEdgeBylItsIdentifier (key);
addingPropertiesToAnEdge (edge, values);
break;

default :
return Status .NOT_FOUND;

}

return Status.OK;
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}

@Override
public Status delete(String table, String key) {
switch(table) {
case ”"Node”:
removingANode (key) ;
break;
case "Edge”:
removingAnEdge (key) ;
break;
default:
return Status .NOT_FOUND;
}
return Status.OK;
}
}

Listing 4.1: Generic example of a database implementation with the use of graph
data.

4.3.5.1 Apache Jena

Apache Jena uses transactions to work on the database, therefore we will need to
open and close them as we insert or retrieve data from the database. Transactions
can be opened for either read or write operations, to guarantee data validity.

To get access to the data over Jena we can use the TDBFactory: :createDataset
method to get a Dataset which hands us a Model that represents the data. All
operations are executed on this Model.

Jena has no option to disable indexing, so we can’t use it for the workloads which
have an index as their variable. But we can still compare its performance to the
indexed and not indexed results of the other databases.

In Jena we will use the following mapping for the method arguments.

key

Should be used on the Model retrieved from the Dataset to create a Resource,
which would represent a node or create a Property to form an edge. To retrieve
data the Model: : createResource or Model: : createProperty method can be used
as well, because if the passed key is already used on another node, the returned node
will be equal to the already existing node.

values

Properties can be stored as so-called Statements, which represent a triple as men-
tioned in section 2.3.1.1. The subject will be the graph component itself, the pred-
icate will be the identifier of the value in the map and the value will be the object
of the statement.

4.3.5.2 Neodj

To index the keys of the nodes and edges we have to create an index with an Index
Manager. Over this Index the graph components have to be inserted and retrieved.

Neo4j also uses transactions, but we don’t have to set them as read or write trans-
actions, because it will mark it accordingly to the called methods.

The mapping for this database will be as follows.
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key

Nodes will use the key as a native Label and also set it as a specific property. The
property is needed to retrieve a node, as we have to find a node by passing a label,
the property key and the property value to the database. Edges should use the key
as the edge type, that way they can be retrieved more easily, as the type can be
directly returned by an edge to compare it to the key we are looking for.

values
Neodj directly supports setting properties with a key and a value, therefore we can
directly store the values as properties in the graph components of Neo4j.

4.3.5.3 OrientDB

OrientDB also supports indexing specific keys, in contrast to Neo4j the index only
needs to be enabled to be used.

Transactions are also part of OrientDB, as in Neo4j they are initially not read or
write specific, but adapt as the corresponding methods are called.

OrientDB supports creating a vertex with a key and a map of values directly, but the
values of the values map need to be mapped to a String, because ByteIterators
aren’t supported. Edges will take the key, a start and end node and a label. The
label has to be set to a constant value over all edges, because edges have to be looked
up by the label and the key, but the label is only handed in the DB: : insert method.
The edge properties can be set after creating the edge by passing the string map of
properties.

4.3.5.4 Sparksee

Sparksee only has a very low-level API, which uses ids for all its nodes, edges and
attributes.

As with OrientDB the index has only to be activated on the specific fields.

key

Nodes are created with a type, which can be the same for all nodes. After creating
the node its attributes have to be set, here we will add the key to identify the node.
Edges are created similarly except they need a start and end node during creation.
The graph components can be retrieved by looking up the component with the
attribute identifier and the corresponding value, which is the key.

values

The values can be set as Attributes to a graph component, by the attribute and its
corresponding value. An Attributes has to be created first with a type it belongs
to, which will be a node or an edge and a key, which can be the key in the values
map.

4.3.6 Summary

To sum up our design decisions we will give an overview of the different parameters
each class should take and why in table 4.4.

The general workflow of the generators is shown in figure 4.5.
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Class Parameters Purpose
GraphDataGenerator folder, "productsPer- | Return subgraphs that

Order”, "componentsPer- | form the data structure
Product”,  "testParam- | described in 4.1.
eterCount”,  "noEdges”
and "nodePropertySize”
RandomGraph- folder Return a randomly cho-
ComponentGenerator sen graph component al-

ready in the database.

OperationOrderGenerator

folder

Return operations to ex-
ecute on the database.

GraphWorkload

folder, recordcount and
"noEdges”

Run the workloads on the
databases with the help
of the different genera-
tors.

ApacheJena

dbFolder

Use the Jena TDB API
to create and access the
database.

Neodj

dbFolder and "uselndex”

Use the Neodj API to
create and access the
database.

OrientDB

dbFolder and "uselndex”

Use the OrientDB API
to create and access the
database.

Sparksee

dbFolder and "uselndex”

Use the Sparksee API
to create and access the
database.

Table 4.4: Overview of command-line parameters and the purpose of every class.

4.4 Execution Tool

YCSB has a script to run one workload on one database. We have many workloads
and multiple databases, therefore it would save us a lot of time during evaluation,
if all workloads were executed on all databases sequentially.

That could be implemented as a script that takes the databases and their parameters
together with the workload description files and executes one after another. The
results should be saved in a specified folder.

4.5 Evaluation Tool

To gather the results another script should iterate through the result folders of each
database and workload and collect the results in a file for further evaluation.
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instance is Recorder

Figure 4.5: Generic activity diagram showing how the generators will work.

StoringGenerator::nextValue()

Create value according to schema)

(Store value in fiIeJ
CRecreate value from file)
(rm )
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5. Implementation

In this chapter we will cover how we implemented the different classes to execute
our workloads. We will start with the graph and its components, then move on to
the different generators for the graph data, the random graph components and the
operation order. Then we will show the workload class in section 5.5 and finally
describe the database bindings in section 5.6.

The code of our implementation is available on GitHub!.

In figure 5.1 we see a diagram of the YCSB benchmark with our added implementa-
tions. The classes we added are inside the red border on the right side. In Package
db we added the bindings for our four databases.

5.1 Graph

As mentioned in section 2.1 a graph simply contains two lists, one for nodes and one
for edges. This class is only a container for those two lists.

To extract some shared values of nodes and edges, we added an abstract class Graph-
Component, that holds the identifier and the label of the graph component.

5.1.1 Node

The Node class assigns the identifiers by counting the created nodes and incrementing
the counter for every new node. If the property value of a node isn’t set, a call to
Node: :getHashMap will randomly fill the property with the amount of characters
specified by the nodePropertySize parameter.

5.1.2 Edge

As the Node class the Edge class also uses a counter field to assign the correct
identifier to each edge. Additionally, the ids of the start and end Node are stored in
fields.

Thttps://github.com/ChristianNavolskyi/YCSB
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5.2 Generator

The general workflow of a generator was mentioned at the end of section 4.3.6. Be-
cause all three generators share that behaviour we created an abstract class Stor-
ingGenerator?, that extends the generic Generator<V>? class and adds methods to
check if the files are present for recreation or not.

Every generator offers a create method, in which it will check for present files and
set up the correct implementation (recorder or recreator) for the GraphWorkload®.
The generator classes are all abstract and use abstract methods to call the underlying
implementation. How this is useful will be described in the implementations of the
different kinds of generators.

The abstract generator classes also contain the values needed for both implementa-
tion types (recorder and recreator), to avoid code duplication.

5.2.1 Graph Data

The nextValue call encapsulates the call to get the subgraph from the underlying
implementation and also stores the returned identifiers of the created nodes and
edges for the RandomGraphComponentGenerator®.

The Gson® used in both implementations of this abstract class is initialised here with
the GraphAdapter”.

Since there are two phases of the benchmark (see section 3.4) the generator needs
to know from what point it should move on with creation. When the current phase
is the transaction phase, it will call the underlying implementation to create the
amount of data that was created during the load phase, to equalise the progress of
the generator. That is also important for the RandomGraphComponentGenerator,
because the identifiers of the graph components created by the GraphDataGenerator
are kept there for it to use them.

5.2.2 Random Graph Component

Calling nextValue on a RandomGraphComponentGenerator will invoke the imple-
menting class to choose between a node and an edge. Then a random graph com-
ponent of that type is chosen. A random node can also be picked directly, as it’s
needed for the GraphWorkload: :update method, since it only will use nodes.

5.2.3 Operation Order

Here the generator only holds common fields shared by the recorder and the recre-
ator.

com.yahoo.ycsb.generator.StoringGenerator

com.yahoo.ycsb.generator.Generator

com.yahoo.ycsb.workloads.GraphWorkload
com.yahoo.ycsb.generator.graph.randomcomponents.RandomGraphComponentGenerator
com.google.gson.Gson

com.yahoo.ycsb.generator.graph.GraphAdapter

~N O Ot s W N
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5.3 Recorder

For every generator we have a creator that creates the initial values for the workload
and stores them in a corresponding file for the recreator presented in section 5.4.

How the creation of the values is implemented in each generator is described in the
following subsections 5.3.1 to 5.3.3.

5.3.1 Graph Data

As shown in figure 4.5 when GraphDataGenerator: :nextValue® is called to create
the next subgraph, the GraphDataRecorder is called and creates the subgraph ac-
cording to the diagram shown in figure 5.2. Each subgraph is then serialised and
the string coming from serialisation is written into a file line by line.

Table 5.1 shows how the parameters x, y and z of the data structure from figure 4.2
are implemented in that schema. They all affect when the specific if block is executed
at the end of figure 5.2 to reset the corresponding values for the if blocks above.
The creation of a subgraph can be seen in a loop, in every iteration another if-
condition is fulfilled to return the next value.

’ Variable \ Usage ‘

X Determines after how many products the order is fulfilled
y Determines after how many components a product is finished
Z Determines after how many tests all test parameters are finished

Table 5.1: Implementation of the structure variables in the creation of the dataset.

The serialisation process is done in the GraphAdapter that implements both a Json-
Serializer® and a JsonDeserialzer!’ with a Graph as the generic argument. Since
a graph object contains two lists, these lists are serialised into JsonElements'!, which
will be retrieved as a string by calling Gson: :toJsonTree. The following listing 5.1
shows the Java code used to implement the serialisation of a graph.

@Override

public JsonElement serialize (Graph graph, Type typeOfSrc, JsonSerializationContext
context) {

JsonObject result = new JsonObject () ;

JsonElement nodeJsonElement = gson.toJsonTree(graph.getNodes(), nodeListType);
JsonElement edgeJsonElement = gson.toJsonTree(graph.getEdges(), edgeListType);

result .add(nodes, nodeJsonElement);
result .add(edges, edgeJsonElement);

return result;

Listing 5.1: Serialisation of a Graph object.

8com.yahoo.ycsb.generator.graph.GraphDataGenerator
9com.google.gson.JsonSerializer
10com.google.gson.JsonDeserialzer
" com.google.gson.JsonElement
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createGraph()
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-
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(create new Order with edges]

,/&
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(create Tests with edges) Yes

(create TestParameter with edges)

SN

Reset parameters if needed

Order is finished
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Figure 5.2: Activity diagram of the creation process for the dataset.

5.3.2 Random Graph Component

To choose between a node and an edge a random number between zero and one
will be picked (r € Ny Ar € [0,1]) and stored in a file. To select a random graph
component the GraphDataGenerator will be asked what the last id was and then a
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random value between zero and that number will be generated. That value will also
be stored in a file corresponding to the type of the graph component.

5.3.3 Operation Order

The OperationOrderRecorder!? receives a DiscreteGenerator!®, which supplies

the string values for the operations that will be saved in a file and then returned to
the caller.

5.4 Recreator

To retrieve the values stored by the recorder classes described in section 5.3 the
upcoming recreators are needed.

5.4.1 Graph Data

If the files for the dataset are present the GraphDataRecreator will be called to
return the next subgraph. It does that by deserialising the next line with the
Gson: :fromJson method which uses the GraphAdapter described in subsection 5.3.1
together with a Type!®. The code of the GraphAdapter to deserialise a Graph is
shown in listing 5.2.

@Override
public Graph deserialize (JsonElement jsonElement, Type type,
JsonDeserializationContext context) throws
JsonParseException {
Graph graph = new Graph() ;
JsonObject jsonObject = jsonElement.getAsJsonObject () ;

JsonElement jsonNodes = jsonObject.get (nodes);
JsonElement jsonEdges = jsonObject.get (edges);

List <Node> nodeList = gson.fromJson (jsonNodes, nodeListType);
List <Edge> edgeList = gson.fromJson(jsonEdges, edgeListType);

nodeList . forEach (graph :: addNode) ;
edgeList .forEach (graph::addEdge);

return graph;

Listing 5.2: Deserialisation of a Graph object.

This class uses a BufferedReader!® to read the file line by line, to avoid extensive
memory usage with larger datasets.

5.4.2 Random Graph Component

At the beginning the files will be read and their values will be stored in three different
Iterator<String>s'® one for the type and the other two for the identifiers of the
different kinds of graph components.

When a value is required the corresponding Iterator<String> returns the next
value in the list and increments its pointer.

12
13

com.yahoo.ycsb.generator.operationorder.OperationOrderGenerator
com.yahoo.ycsb.generator.DiscreteGenerator
java.lang.reflect. Type

15java.io. BufferedReader

16java.util.Iterator <E>




5.5. Graph Workload 51

5.4.3 Operation Order

As the RandomGraphComponentRecreator from subsection 5.4.2, this recreator reads
the file directly during initialisation and stores the values in an Iterator<String>.

Every time OperationOrderRecreator: :nextValue is called the next line from the
Iterator<String> is returned.

5.5 Graph Workload

During initialisation the GraphWorkload creates the three generators mentioned in
section 5.2, by using the create method. That way it will receive the correct type
(recorder or recreator) for each generator. This process is shown in figure 5.3

GraphWorkload::init

(Ioad para meters)——)(create graphDataGenerator)

return GraphDataRecorder

\ /

files present

return RandomGraphComponentRecorder)

(return RandomGraphComponentRecreator

\ /

(create operationOrderGenerator)

(return OperationOrderRecreator

Figure 5.3: Initialisation of the generators used in the GraphWorkload.

It also parses the parameters to get the values for noEdges, the property size of
a node, how many fields should be scanned (recordcount) and the folder. The
noEdges parameter is needed to execute the operations on the correct available
graph components. The property size is stored to be retrievable by the Node to
know how many random characters it should generate. The recordcount option is
needed for the scan operation. Lastly the folder is used to create the folder for
the dataset if it isn’t present and also pass it to the individual generators.
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In the load phase the Client!” calls GraphWorkload: :doInsert. The GraphWork-
load then retrieves a subgraph from the GraphDataGenerator by calling Graph-
DataGenerator: :nextValue, separates it into its graph components and calls the
DB: :insert method with each individual component to add them to the database
one by one.

If the Client calls GraphWorkload: :doTransaction the GraphWorkload will first
get the operation to execute on the database by the OperationOrderGenerator.
After that it has an implementation for every available database operation. The

general workflow for the GraphWorkload: :doTransaction method is shown in fig-
ure 5.4.

doTransaction(DB db)

[get operation from OperationOrderGenerator)

operation is insert

(get subgraph from GraphDataGenerator)

(get random graph component from RandomGraphComponentGenerator)

Gnsert nodes from subgraph into db

\ (execunon operation on db with graph component)

|nsert edges from subgraph into db)

Figure 5.4: Overview of the execution of the different database operations separated
into insert and other operations.

doTransactionInsert
Works as in the doInsert method, by taking a subgraph from the GraphDataGen-
erator and inserting its components one by one into the database.

17com.yahoo.ycsb.Client



5.6. Graph Database Bindings 53

doTransactionRead

Depending on the noEdges option the RandomGraphComponentGenerator will be
asked for a graph component, if the option is false and a node if the option is
true. With the identifier of the graph component, its type and its available fields
the database is queried to look up those fields of the specified component.

doTransactionScan

As in the doTransactionRead method a graph component is chosen from the Ran-
domGraphComponentGenerator depending on the set noEdges option. Then the
necessary arguments from the graph component will be passed to the DB::scan
method, alongside the specified recordcount.

doTransactionUpdate

The update method isn’t used by our workloads, but to make the GraphWorkload
accessible to other workloads we implemented it as follows. A random graph com-
ponent is picked and the DB: :update method of the database is called. If the graph
component is a node its property value will be randomly assigned.

We didn’t implement the delete method of the database, as we won’t use it in our
workloads and the CoreWorkload that we used as reference also didn’t use it.

5.5.1 Parameters

This subsection covers the naming of the parameters in the code.

’ Our name \ Name in the code
folder datasetdirectory
productsPerOrder productsperorder
componentsPerProduct componentsperproduct
testParameterCount testparametercount
recordcount maxscanlength
noEdges onlynodes
nodePropertySize fieldlength

Table 5.2: This table shows the name the parameters as they can be found in the
YCSB project.

The dbFolder option is different for each database and will be mentioned in the
corresponding binding subsection. The same goes for the useIndex option.

5.6 Graph Database Bindings

In this section we will describe the different binding implementations, their special-
ities and how they implemented the different operations mentioned in section 4.3.5.
Table 5.3 shows the available options for the different databases.

At the beginning of each subsection we will show how we initialised the database
and how the instance to work with the database is retrieved.
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’ Database \ Folder option \ Index option
Apache Jena outputdirectory -
Neo4j neodj.path neo4j.index
OrientDB orientdb.url orientdb.index
Sparksee sparksee.path sparksee.index

Table 5.3: Parameter names of the different databases for the database folder and
the index option.

5.6.1 Apache Jena

In the following listing 5.3 the initialisation and the beginning of a transaction with
the retrieval of a model to work on the data is shown.

String outputDirectory = getDirectoryFromProperties();
Dataset dataset = TDBFactory.createDataset (outputDirectory); // Create dataset,
represents the database.

dataset .begin (ReadWrite ' WRITE) ; // Starts a write transaction, ReadWrite . READ is
used for read operations.

try {
Model model = dataset.getDefaultModel(); // Needed to access the database.

performOpertaionOnModel () ;
dataset .commit () ;

} finally {
dataset.end(); // Finish transaction.

Listing 5.3: Implementation of the initialisation and model retrieval in Jena.

To modify the database with Jena we need to start a transaction and specify whether
it is a read or a write transaction. After that we retrieve the model of the database
to work on the data. After we are done with our operation we need to commit or
abort the transaction, similar to a relational database.

creating a node
A node is created by calling Model: : createResource'® with an AnonId!® that re-
ceives the key as an argument.

creating an edge

To create an edge we use the Model: :createProperty method with the key as the
argument. To connect the edge with their start and end node, we have to add this
triple to the model by calling Model: : add with the start node, the edge and the end
node.

adding properties to a node

Properties are mapped as statements in Jena and to create those we use the Model: :
createStatement method that takes the node, the key for the property and the
property value as arguments. After all statements are created we add them to the
model with Model: :add and the list of statements as the argument.

Borg.apache.jena.rdf. model.Model
Yorg.apache.jena.rdf. model. Anonld
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adding properties to an edge
To add properties to an edge, we use the Property: :addProperty method on it
with the key of the property and its value as the arguments.

getting a node by its identifier

Retrieving a node is done by creating a resource with the same identifier. Jena will
look up the database whether one already exists, and the returned node will be equal
to an existing one.

getting an edge by its identifier
Similar to retrieving a node from the database we create a property with the key,
that returns an existing edge if one exists for that key.

getting the values of a node/an edge

To get the values associated with a node, we create a SimpleSelector?’, which can
be used as a query on the database. We supply it the node and the key of the value
and leave the object of the query empty, so it looks up the matching values for the
object.

getting the outgoing edges of a node
To get these edges we list the properties of the node.

getting the start node of an edge
To do this, we take the start property of the edge and look up that node on the
dataset.

removing a node
Removing a node is done by calling Model: :removeAll twice, once with the node
as the subject and once with the node as the object of the statement. That will
remove all statements associated with that node, which effectively removes the node
from the database.

removing an edge
Here we also call Model: :removeAll but the with edge as the predicate of the
statement.

5.6.2 Neodj

If an Index?! should be used we create two of them, one for Nodes?? and one for
Relationships® (edges). Neo4j also uses transaction, but we don’t need to specify
their kind. At the end of a transaction we call Transaction: :success?* to finish
the transaction.

An example of our implementation is shown in the following listing 5.4. The start
and end of a transaction for an operation are implemented as in the if-block of the
listing.

20org.apache.jena.rdf.model.SimpleSelector
2lorg.neodj.graphdb.index.Index<T extends PropertyContainer>
22org.neodj.graphdb.Node

Zorg.neodj.graphdb.Relationship

24org.neodj.graphdb. Transaction
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String path = getPathFromProperties () ;
boolean uselndex = shouldUselndex () ;

GraphDatabaseService graphDblInstance = new GraphDatabaseFactory () .
newEmbeddedDatabase (new File (path)); // Creates to object to access the
database.

if (uselndex) {
try (Transaction transaction = graphDblInstance.beginTx()) { // Start a
transaction .
IndexManager index = graphDblnstance.index ();
nodelndex = index.forNodes(”nodes”);
relationshipIndex = index.forRelationships(”relationships”);
transaction.success(); // End a transaction.

}
}

Listing 5.4: Implementation of the initialisation and beginning of a transaction.

creating a node

We create a node with the GraphDatabaseService: :createNode®® method, where
we specify the key as the Label?® of the node. If an Index is used, we add the
node to the index after creation. After that we add the identifier of the node as a
property to be able to look the node up by its identifier.

creating an edge
For this we have to first create a RelationshipType®’ with the key as the name
of the relationship. Then we create a relationship from the start node to the end
node by calling Node: :createRelationshipTo. Finally, we add the edge to the
relationship Index.

adding properties to a node/an edge

Both Nodes and edges are PropertyContainers®®, which support the setting of prop-
erties, by calling PropertyContainer: :setProperty with the key of the property
and its value.

getting a node by its identifier

When an Index is used a node can be looked up on it with Index: :get, the key
for the identifier and the identifier value. Without an Index we call GraphDatabas-
eService: :findNode with the Label, the key for the identifier and the identifier as
arguments.

getting an edge by its identifier

With an Index a Relationship can be found similar to a node. Without an index
we have to iterate over all Relationships in the graph and check their types to
match the key.

getting the values of a node/an edge
The PropertyContainer: :getAl1Properties method supplies all values set to the
node or edge. We can simply parse the Map<String, Object>?’ returned by it to
the needed Map<String, BytelIterator>.

250org.neodj.graphdb.GraphDatabaseService
26org.neodj.graphdb.Label

2Torg neodj.graphdb.RelationshipType
28org.neodj.graphdb.PropertyContainer
Pjava.util. Map<K, V>
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getting the outgoing edges of a node
Nodes offer a method to get their Relationships in a specified Direction®® with
Node: :getRelationships.

getting the start node of an edge
Relationships also offer a method to directly get their start node with Relation-
ship::getStartNode.

removing a node/an edge
To remove a Node or a Relationship, we look it up, remove it from the correspond-
ing Index and then call Node: :delete or Relationship: :delete respectively, to
remove it from the database.

5.6.3 OrientDB

To create an index in OrientDB we call OrientGraph: : createKeyIndex3! with the
key of the identifier and the graph component classes, once with Vertex3? and once
with Edge®*. As Neo4j OrientDB uses transactions to execute operations on the
database, which have to be closed after finishing the operation by calling Orient-
Graph: :shutdown.

An example of our implementation covering the initialisation and retrieval of an
OrientGraph for a transaction is shown in listing 5.5.

String url = getURLFromProperties () ;

OrientGraphFactory factory = new OrientGraphFactory (url, userName, password); //
Create object to access database.

if (uselndex) {
OrientGraph graph = factory.getTx(); // Start a transaction.

if (graph.getIndexedKeys(Vertex.class).size() = 0) {
graph.createKeyIndex (nodeldIdentifier , Vertex.class);
}
if (graph.getIndexedKeys (com.tinkerpop.blueprints.Edge.class).size() = 0) {
graph.createKeyIndex(edgeldIdentifier , com.tinkerpop.blueprints.Edge.class);
}
try {
performOperationOnGraph () ;
} finally {

graph.shutdown(); // End a transaction.

Listing 5.5: Implementation of the initialisation and the retrieval of an OrientGraph
for a transaction.

creating a node

To add a node, we simply call OrientGraph: :addVertex with the key and the value
map we want to put in. Before we add the value map, we have to transform the
ByteIterator®! values to Strings with the Object: :toString method.

3%0rg.neodj.graphdb.Direction
31com.tinkerpop.blueprints.impls.orient.OrientGraph
32com.tinkerpop.blueprints. Vertex
33com.tinkerpop.blueprints. Edge
34com.yahoo.ycsb.Bytelterator
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creating an edge

An edge is created by calling OrientGraph: :addEdge with the key, the start node,
the end node and a label, which we will simply set to "Edge”, because the label of
our values map will be set as a property.

adding properties to a node
As mentioned in “creating a node”, the values for the properties are directly passed
during creation.

adding properties to an edge
We can add the values to an edge by calling OrientElement: :setProperties
with the map of string values.

35

getting a node by its identifier
A node is looked up by OrientGraph: :getVertices with the identifier key and the
identifier value.

getting an edge by its identifier
Edges can be retrieved similarly, by calling OrientGraph: :getEdges with the ac-
cording parameters.

getting the values of a node/an edge
The properties of an OrientElement can be obtained by calling OrientElement: :
getProperties. The values of the returned map are then cast to ByteIterators.

getting the outgoing edges of a node
The edges of a node can be gathered by calling OrientVertex: : getEdges with the
specified direction.

getting the start node of an edge
The procedure is analogous to that of getting the outgoing edge of a node. We call
OrientEdge: :getVertex with the specified direction.

removing a node
The OrientGraph: :removeVertex method can be used to delete a vertex from the
database.

removing an edge
As to remove a node, the OrientGraph provides a method to remove an edge inter-
nally, that means the connected nodes aren’t removed.

5.6.4 Sparksee

The index can be activated on certain attributes by calling Graph: : indexAttribute3®
with the attribute and AttributeKind.Indexed?’ as arguments. Sparksee uses Ses-
sions® as transaction, these have to be closed at the end of a transaction.

In the following listing 5.6 we show how we implemented the initialisation, the
activation of an index and the retrieval of a graph instance to work on the database.
After the graph is retrieved any operations on the database can be executed, in our
example we initialised the index.

35
36
37
38

com.tinkerpop.blueprints.impls.orient.Orient Element
com.sparsity.sparksee.gdb.Graph
com.sparsity.sparksee.gdb. AttributeKind
com.sparsity.sparksee.gdb.Session
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String path = getPathFromProperties () ;
boolean uselndex = shouldUselndex () ;

Sparksee sparksee = new Sparksee(new SparkseeConfig()); // Create object for
database access.

if (new File(path).exists()) {
database = sparksee.open(path, false);
} else {
database = sparksee.create (path, ”SparkseeDB”);

}
try (Session session = database.newSession()) { // Start a transaction. The try—
with—resource block closes the session automatically at the end.
Graph graph = session.getGraph(); // Obtain Graph to work on the database.
nodeldAttribute = getAttribute (graph, getNodeType(graph), ”sparksee.nodeld”);
edgeldAttribute = getAttribute (graph, getEdgeType(graph), ”sparksee.edgeld”);
if (uselndex) {
try {
graph.indexAttribute (nodeldAttribute , AttributeKind.Indexed);
graph.indexAttribute (edgeldAttribute , AttributeKind.Indexed);
} catch (RuntimeException e) {
// The presence of an index cannot be queried, so we will catch and ignore
the exception that is thrown when an index already ezists.
e.printStackTrace () ;
}
}
}

Listing 5.6: Implementation of the initialisation and starting of a session.

creating a node

To create a node, we first create a type for the node, which is the same for all nodes.
Then we call Graph: :newNode and set a identifier attribute to store the key in the
node.

creating an edge

Here we have to look up the two corresponding nodes and then create an edge type,
that is the same for all edges. We then create an edge by calling Graph: :newEdge
with the type, the start and the end node. Lastly the identifier for the edge is set
as an attribute.

adding properties to a node/an edge
To add attributes, we have to create an attribute in the database with the name of
the property. Then we call Graph: : setAttribute with that attribute and its value.

getting a node/an edge by its identifier

Retrieving a graph component works by creating a Value®’ with the key of the com-
ponent, which is then passed to the Graph: :findObject method with the attribute
specifying a node or an edge identifier.

getting the values of a node/an edge

The attributes of a graph component are obtained by calling Graph: : getAttributes,
which hands us an AttributeList?® that is then looked up for the attributes we
want.

39
40

com.sparsity.sparksee.gdb.Value
com.sparsity.sparksee.gdb. AttributeList
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getting the outgoing edges of a node
To get the edges connected to a node, we call Graph: :neighbors with the node,
the type of edge and the direction.

getting the start node of an edge
The EdgeData: : getHead method serves us the start node.

removing a node/an edge
To remove a graph component from the database we look the component up and
then call Graph: :drop on it, to delete it from the database.
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This chapter will cover the execution and evaluation of our benchmark with the
workloads specified in section 4.2. In section 6.3 we will show which workloads we
will compare with each other. We will present the results of each workload and have
a discussion on them directly after that.

A conclusion will be drawn in section 7.1 of the next chapter.

6.1 Objective

The main goal is to find out, whether databases are capable of handling produc-
tion workloads. Besides that, we will investigate whether we can generalise graph
database benchmark results by comparing our results with the results of other stud-
ies examining the performance of graph databases with social network graphs. The
generalisation would allow for a performance evaluation of graph databases in an
industrial environment with the results from benchmarks performed with social net-
work graphs.

We will measure the average time per operation. With that we can calculate the

throughput in %ﬁms, which we will use to compare the different databases.

6.2 Setup

In this section we will describe the software and hardware we used to execute the
benchmark.

6.2.1 Hardware

The machine we used for the benchmark was configured as shown in table 6.1.

6.2.2 Software

The versions of the software components we used are shown in table 6.2.
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’ Component \ Description

CPU Intel i7-3770K @ 3.5GHz

RAM 16GB DDR3 @ 1.600MHz

Storage Seagate ST2000DL003 2 TB 5900rpm, only a 400GB partition was
used

GPU NVIDIA GeForce GTX 670

Table 6.1: The hardware specifications of the machine used for the benchmark.

’ Software \ Version

Ubuntu 17.10

Java 1.8.0_171
OpenSSH 7.5p1

YCSB 0.14.0-SNAPSHOT
Apache Jena 3.6.0

Neo4j 3.3.4

OrientDB 2.2.33

Sparksee 5.2.3

Table 6.2: The software specifications of the machine used for the benchmark.

6.3 Overview
In figure 6.1 the execution process is illustrated and explained with the following

enumeration.

Step 1: One workload is chosen from the set of workloads.

Step 2: The dataset is created for that workload.
Step 3: One database is chosen from the set of databases.

Step 4: The workload is executed on the database with the created dataset.

Step 5:

Step 6:
Step 7:

Step 8:

The results of the benchmark run are stored in a folder specific to the
constellation of workload, database and execution pass.

Repeat from Step 4 three times.
Repeat from Step 3 until all databases ware benchmarked.

Repeat from Step 1 until all workloads have been executed.

In table 6.3 and 6.4 the groups of workloads we are comparing with each other
are shown. The naming of the workloads is similar to the naming introduced in
section 4.2.

After execution we have to combine the results from the various folders for further
examination. Figure 6.2 illustrates this process of evaluation. With all the results
in one place we filter the measurements for those we want and calculate the average
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Figure 6.2: Workflow of the evaluation process.

over the three benchmark runs. Next, we group the measurements as shown in ta-
bles 6.3 and 6.4.

Finally, we create the diagrams shown in the ”"Results” subsections and interpret
them to draw a conclusion in the "Discussion” subsections of the following sections.
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Section | First workload Other workload(s) | Units of measurement
6.4.1 1. With Index 2.-5. With Index Inserts/second, total time
6.4.1 1. Without Index | 2.-5. Without Index | Inserts/second

6.4.1 n.! With Index | n. Without Index Inserts/second

6.4.2 1. Node Size 2.-5. Node Size Inserts/second, database
size
6.4.3 n. With Index 1. No Edges Inserts/second

Ithe workload with the largest possible number of nodes in terms of execution time

Table 6.3: Overview for the throughput workloads.

Section | First workload | Other workload(s) Units of measurement
6.5.1 1. Structure 2.-3. Structure Inserts/second

6.5.2 x.? Suitability | - Total time

6.6 1. Reading 2. Reading Reads/second

6.6 1. Scanning 2. Scanning Scans/second

6.6 1. Structure 1. Reading & 1. Scanning | Operations/second

2every workload will be evaluated

Table 6.4: Overview for the production and retrieval workloads.

The standard derivation isn’t shown in the diagrams, as it is around 5% for OrientDB
and below 1% for the other databases, which is too small to be seen in the figures.

6.4 Throughput

In this section we will examine the combinations of workloads mentioned in table 6.3.
The throughput will show us how well suited the graph databases are in general for
applications heavily using insert operations.

Note that in order to insert an edge the start and end node have to be looked up.

6.4.1 Probing Node Count

Here we will compare how the throughput, of the databases changes when increasing
the number of nodes we are inserting into it. We will also look at the execution time,
to determine a reasonable large dataset in terms of execution time for the upcoming
benchmark runs.

The throughput is listed in inserts per seconds, which includes both inserting nodes
and inserting edges.

Apache Jena has no option to turn off indexing as mentioned in section 2.3.1.1, but
it is still shown in the diagrams as reference.

6.4.1.1 Results

The first figure 6.3 shows how the different databases perform with an increasing
dataset size. Apache Jena and Neo4j only have values for 1000 and 10000 nodes,
because execution with more than 10000 nodes would take too much time. Sparksee
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only delivered results up to 100000 nodes, because the free license only included
database sizes with up to 1000000 elements and a workload with 1000000 nodes
would contain 2333333 elements in total.

In figure 6.4 we see the execution time of the different databases. At 10000 nodes
Apache Jena and Neo4j took almost an hour for one run, because of that we didn’t
run it with 100000 nodes or more.

Tables 6.5, 6.6 and 6.7 show the measured numbers from figures 6.3, 6.4 and 6.5
respectively.

Database/# Nodes | 1000 10000 100000 1000000 10000000
Apache Jena 8,86 7,21 T T T

Neodj 11,50 8,75 T T T
OrientDB 884,1 2317,07 5672,69 10112,36 | 8572,34
Sparksee 15109,17 | 17829,1 16425 L L

Table 6.5: Throughput in inserts/s, rounded to two decimal places, of the workload
using an index for the different dataset sizes. T indicates that too much time would
be needed; L indicates license issues.

Database/Time (s) | 1000 10000 100000 1000000 10000000
Apache Jena 263 3238 T T T

Neod;j 203 2667 T T T
OrientDB 3,64 10 41 231 2722
Sparksee 0,15 1,31 14 L L

Table 6.6: Execution time in seconds of the workload using an index for the different
dataset sizes. T indicates that too much time would be needed; L indicates license

1ssues.

Database/# Nodes | 1000 10000 100000 1000000 10000000
Apache Jena 8,79 7,41 T T T

Neodj 12,3 8,83 T T T
OrientDB 1020,81 2357,49 4616,85 9395,86 8415,18
Sparksee 4715,63 635,17 63,37 L L

Table 6.7: Throughput in inserts/s, rounded to two decimal places, of the workload
using no index for the different dataset sizes. T indicates that too much time would
be needed; L indicates license issues.

Figure 6.5 shows the throughput over different dataset sizes without using an index.
In figure 6.6 we see a comparison of using an index and not with a dataset size of
10000 nodes.

6.4.1.2 Discussion

Figure 6.6 shows us, that there is no performance change for Jena, Neo4j and Ori-
entDB in using an index or not. Sparksee shows a significant drop in throughput
without the use of an index. That is what we expected, because the throughput
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Figure 6.3: This figure shows the throughput in inserts/second of every database
over different dataset sizes.
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Figure 6.4: The execution time of the databases is shown over different dataset sizes.
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Figure 6.5: This diagram shows the throughput in inserts per second while using no
index.
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Figure 6.6: The throughput at a fixed dataset size to compare between indexing and
not.

also contains insertions of edges, for which nodes have to be looked up, which is
faster with an index. For the other databases the lack of difference in performance
might be, because the benefit of using an index to retrieve the nodes for an edge is
equalised by the time it takes to insert the nodes into the index.

The throughput is quite stable for most databases, except OrientDB which grows in
throughput until 1000000 nodes and keeps stable for larger datasets. That means,
that the performance of the databases does scale for larger datasets.

G inserts mserts

If we compare the archived throughput with our target throughput of 11743, 6
we see that Sparksee exceeds our target with 16435”56”5 OrientDB misses our goal
slightly, it only archived a throughput of 8572’”56”5 w1th the largest dataset. Jena
and Neo4j didn’t even reach 100""3%“. These throughput values are measured with
another data structure and node size than the one we will use for the suitability
workload. We will investigate the factors differentiating this workload from the
suitability workload and reference these results again in section 6.5.2.2.

)

From these results alone, without looking at read performance separately we can
say, that an index is useful, even for insert operations, because to insert an edge two
nodes need to be looked up, which is faster if an index is used.

6.4.2 Probing Node Size

In this subsection we will take a look at how the databases perform with different
node property sizes. We will pick a dataset size of 10000 nodes, as all database have
a reasonable execution time with that number of nodes.

By investigating the performance under node size variation, we will see whether
the databases can store large numbers of data in each node. That can be useful
depending on the use case, in our example given by the industry only a two-digit
number is stored, but it could be desirable to store longer numbers or more complex
information.

6.4.2.1 Results

In figure 6.7 we see, how an increasing node size has an impact on insert throughput.
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Sparksee only has values for node sizes up to 1K B, because the property we used
to store the value of the node only supports up to 2048 characters or Bytes.

Figure 6.8 shows the size of the database folder, in which the database stores its

files.

Tables 6.8 and 6.9 show the numbers used for the figures 6.7 and 6.8 respectively.

Node Size | 10 100 1000 10000 100000 | 1000000
(Byte)/Database

Apache Jena 7,21 9,66 7,83 7,54 6,21 4,92
Neo4j 8,75 11,47 8,31 8,59 8,17 4,06
OrientDB 2317,07 | 2521,90 | 3141,73 | 1976,84 | 487,21 | 14,10
Sparksee 17829,10 | 17155,63 | 15670,67 | x X X

Table 6.8: Throughput in inserts/s, rounded to two decimal places, of the workload
using different node sizes. x indicates issues when storing large values.

Node Size (Byte)/Database | 10 | 100 | 1000 | 10000 | 100000 | 1000000
Apache Jena 15 |16 | 25 113 994 9600
Neodj 24 129 |49 244 2200 22000
OrientDB 75| 77T |98 172 1300 9500
Sparksee 47 | 6 15 X X X

Table 6.9: Database sizes of the workload using different node sizes. x indicates
issues when storing large values.
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Figure 6.7: Insert throughput over different node sizes with 10000 nodes total.

6.4.2.2 Discussion

Figure 6.7 shows that the throughput of Jena and Neo4j is quite low and it doesn’t
show much difference with larger node sizes, but at 1M B we can see that the per-
formance decreases even more.

For OrientDB we see good performance up to 1K B. It starts to decline for node
sizes of 10K B and above with a significant drop in throughput at 1M B.
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Figure 6.8: The size of the database folders over growing node sizes with 10000
nodes total.

Sparksee has the highest throughput of all four databases, but it could only handle
sized of up to 2K B or 1K B in our test scenario. In that range the other databases
also show no noteworthy change in performance, so we can’t draw a conclusion about
the behaviour of Sparksee with larger node sizes.

In figure 6.8 we see that the database size grows linearly with the node size, from
10K B and above. For smaller node values the overhead of the database itself deter-
mines the size of the database.

When we look closely at the values of Neodj, we can see that they are above the
other databases. In fact, at 1M B node size, which would result in 10GB data for
10000 nodes, Neodjs database folder had a size of 22G'B, so the overhead is more
than the data itself.

6.4.3 Difference without Edges

In this subsection we will investigate how the absence of edges impacts performance.
These workloads do not represent a real-world scenario, but they will provide us
knowledge about how the e/n ratio effects throughput, as for every edge its start
and end node have to be looked up.

6.4.3.1 Results

Table 6.10 and figure 6.9 show a comparison of all databases between using edges
and not with a dataset size of 10000 nodes.

Database With Edges | Without Edges
Apache Jena | 7,21 9,95

Neod;j 8,75 6,66

OrientDB 2317,07 1425,64
Sparksee 17829,1 19592,96

Table 6.10: Comparison of throughput measured in inserts/s, rounded to two deci-
mal places, between using edges and not.
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Figure 6.9: Comparison of insert throughput between using edges and not.

6.4.3.2 Discussion

Figure 6.9 shows an unexpected behaviour, as the throughput of Neo4j and Orient DB
is even higher when using edges, whereas Apache Jena and Sparksee show a decrease
in performance. The largest differences can be seen for OrientDB and Sparksee, but
as their results point in two different directions we can only say, that it depends on
the database whether more edges affect the throughput negatively.

6.5 Production Simulation

The workload results presented in this section will cover the production specific
variables. The first one is product complexity and the other one execution time.

6.5.1 Product Complexity

The product complexity describes, how much the tree representing our data structure
is widened at the three different levels shown in section 4.1.

The wider the data structure becomes the less edges we have per node and also
we have more edges coming from one node to other nodes (one Order with mul-
tiple Products for example). With that we can investigate the generalisation of
graph structure, to see whether other benchmark results from workloads with social
network graphs can be used in an industrial application.

6.5.1.1 Results

In table 6.11 and figure 6.10 we see the impact different data structures have on the
insert throughput. "Simple” refers to the structure variables (x, y, z) set to (1, 1, 1),
"More Complex” represents (16, 32, 32) and "Most Complex” (64, 128, 128).

6.5.1.2 Discussion

As we see in figure 6.10 the structure of the data as we modelled it, does affect the
throughput of most databases, except Sparksee. The throughput of the other three
databases decreased with a more complex structure and a lower e/n ratio.
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Database Simple More Complex | Most Complex
Apache Jena | 9,42 8,01 7,58

Neodj 11,44 11,64 8,5

OrientDB 2606,5 2330,12 2118,38
Sparksee 17345,38 | 17463,8 17576,06

Table 6.11: Throughput in inserts/s, rounded to two decimal places, of the workload
comparing different structure parameters.
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Figure 6.10: Shows the difference in insert throughput over changing data structure.

That fits into our findings from section 6.4.3.2 where Neo4j and OrientDB showed
a higher throughput with edges, because the "Most Complex” workload has a lower
e/n ratio. Jena also seems to suffer from less edges per nodes, what is contradictory
to the experiment with no edges, as Jena performed better without edges.

To draw a conclusion about the comparability with other related work using social
network graphs, which have a much higher e/n ratio, we can at least say, that
depending on the database, more edges can benefit the performance.

6.5.2 Production Suitability

The production simulation will finally show, whether the databases we chose are
capable of storing the necessary amount of data in the specified time interval.

In the discussion of this section we will also investigate the throughput based on the
previous workloads.

6.5.2.1 Results

Table 6.12 and figure 6.11 show how long OrientDB took, to store three minutes of
production data (1056833 nodes). Sparksee is mentioned with a theoretical time,
since it only allowed us to store 1000000 elements. We took the throughput during
inserting these 1000000 elements and calculated the time it would need to complete
the whole workload.

Only OrientDB and Sparksee were used in these workloads, because Apache Jena
and Neo4j would take much too long to insert that number of nodes.
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Database | Time (s) | Throughput (ops/sec)
OrientDB | 263 8042,84
Sparksee | (134) 15789,47

Table 6.12: Time needed to execute three minutes of simulated production. The
value in parentheses indicates a theoretical value, which was calculated with the
throughput reached until the license ran out of size.
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Figure 6.11: Shows the execution time with a dataset that represents three minutes
of production.

6.5.2.2 Discussion

We only executed three minutes of production simulation, because the throughput
of OrientDB doesn’t grow anymore above 1000000 nodes (6.4.1). Therefore the
one-hour workload wouldn’t succeed either.

Figure 6.11 shows us, that OrientDB didn’t manage to store three minutes of pro-
duction simulation in the specified time.

Sparksee could theoretically store that amount without exceeding the time limit.
Since the free license didn’t allow for that amount of data, we used the average until
the limit was reached. Of course, it could be that the throughput of Sparksee drops
with an increasing number of elements in the database, but we couldn’t investigate
that.

The difference of this workload compared to the first workload we discussed in
section 6.4.1 is the structure and the node size. The results of 6.4.2 and 6.5.1 show,
that the structure has a slight impact on the throughput and the node size has no
impact below 10K B, since we used 5058 we can compare this to the throughput
measured in 6.4.1.

By doing so we see that Sparksee, theoretically, exceeds our target throughput of
1174325t - OrientDB would have a throughput of 10112, 36 with a simple
structure, but since our "most complex” structure decreases OrientDBs throughput
even more to only 8042, 84””%“’, it would be even less suitable.
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6.6 Retrieving under load

This section will cover the results about retrieving data while the database is under
load. First, we will take a look at how using an index is affecting the read and scan
throughput. Then we will compare the throughput of the different operations (6.14)

and their impact on the insertion throughput (6.15).

6.6.1 Results

In tables 6.13, 6.14 and figures 6.12, 6.13 we see the throughput of read and scan

operations while using an index and not.

Database Index No Index
Apache Jena | 47 49,11
Neodj 954,77 795,94
OrientDB 8484.44 | 7816,22
Sparksee 12411,84 | 989,3

Table 6.13: Throughput in reads/s, rounded to two decimal places, of the workload

using a mix of read and write operations.

Database Index | No Index
Apache Jena | 43,568 | 42,56
Neod;j 574,17 | 495,58
OrientDB 308,93 | 319,89
Sparksee 174,28 | 135,41

Table 6.14: Throughput in scans/s, rounded to two decimal places, of the workload
using a mix of scan and write operations.
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Figure 6.12: Shows the throughput of read operations with and without the use of
an index.

Figure 6.14 shows the throughput of the different operations. In figure 6.15 and ta-
ble 6.15 we see the impact of the read and scan operations on the insertion through-
put.
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Database Only Insert | With Read | With Scan
Apache Jena | 9,42 6,35 7,15

Neo4j 11,44 7,08 7,03
OrientDB 2606,5 2180,7 1546,69
Sparksee 17345,38 17162,63 17139,49

Table 6.15: Throughput in inserts/s of insert operations, rounded to two decimal
places, of the workloads using only insert, read or scan operations.
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Figure 6.14: Throughput in operations/s of the different operations.

6.6.2 Discussion

First, we will discuss the results regarding the use of an index and not.

For read operations, figure 6.12 shows, that all databases benefit from using an
index, except Apache Jena which always uses an index and is only presented as
reference. Sparksee shows the biggest difference in throughput of read operations,
whereas the other databases only show a slight decrease in performance without an
index. That was what we would expect, since an index really benefits these kinds of
operations, although we expected the increase with the use of an index to be higher
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Figure 6.15: Throughput in inserts/s without and with other operations.

for Neo4j and OrientDB. The reason for that behaviour could be, that the dataset
size is too small to show a difference between using an index and not.

Similar results can be seen for the scan operations, shown in figure 6.13. The absence
of an index doesn’t show much effect here either. That could be the case, because
scan operations only use one read operations for the start node and then traverse
the graph, which isn’t affected by the index.

The comparison of the different operations, shown in figure 6.14, shows us where
the strengths and weaknesses are of the different databases.

Apache Jena and Neo4j are the slowest when it comes to inserting nodes, but they
are much faster in retrieving nodes, with Neo4j even being the fastest of all for in
graph traversal.

This also explains why Neo4j and OrientDB have a higher throughput when using
edges, because they can look up the edges much faster than they can insert a node.
That also concludes, that the insertion part of creating an edge is cheap compared
to inserting a node.

OrientDB and Sparksee seem to be a good choice when inserting and reading is the
main concern of the application.

When we compare the results of Apache Jena from its read performance to its scan
performance, we see almost no difference in performance, which means it is even
faster than Neo4j in graph traversal, but it is limited by the relatively slow read
operation at the beginning of the scan operation.

The last figure 6.15 shows us, that using other operations on the database does effect
insert throughput, except for Sparksee. It seems to stay stable in its throughput
even when other operations are being used.

Jena and Neo4j are low in throughput anyways, but they still suffer from other
operations being executed regularly. OrientDB has a slightly worse throughput when
using read operations and even worse with scan operations. That is important to
know for an industrial application, where read and scan operations are executed more
or less regularly, because the database would decrease in its general performance.
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6.7 Related Work and Generalisability

In this section we will compare our results with the findings of our related work as
it’s suitable. Our main goal is to investigate whether the difference in structure and
e/n ratio has an impact on performance. If that isn’t the case we can assume, that
benchmark results from research on social network graph can be used to evaluate
the performance of a graph database in an industrial environment.

The key point we will investigate is how the number of edges in relation to the
number of nodes affects the throughput performance of the databases. In social
network graphs this number is quite high at around 8 [16, p. 41] to 22 [20], whereas
our graph structure contains an e/n ratio of 1.3 to ~ 1 (depending on the variables
x, vy and z (higher variable values lead to a ratio closer to 1) or 0 when we compare
to the workload without edges.

By comparing our finding with the ones from Dominguez-Sal et al. [16], which can
be seen in figure 6.16, we see, that all databases performed much better than in our
experiment. The throughput of Neo4j and Jena is well above 100""5%“ and Sparksee
also reaches a higher throughput with 29770"‘3%“.

Our findings would suggest, that their performance for Sparksee and Jena should
be lower than ours and Neo4j would perform better, but since all databases perform
better something else has to be different in their case.

The better performance could be the results of a lack of information stored in the
nodes, as the paper only mentions weights on the inserted edges we cannot surely
tell whether that is the case.

With this comparison we would conclude, that graph databases perform worse in
an industrial environment, where graphs that have a lower e/n ratio compared to a
social network graph.

Therefore, the results of other benchmarks executed on graph databases with social
network graph cannot be used to determine the throughput in an industrial applica-
tion, as we can’t tell how much throughput is sacrificed by storing any information
in the nodes. We investigated the impact of different node sizes, but to measure the
throughput with absolutely no information in the nodes a different implementation
would be required which doesn’t use the methods to store information in the nodes.

The research of Dayarathna et al. [20] used a e/n ratio of 22 with a node count of only
1024. Comparing their results shown in figure 6.17 with our results from figure 6.3
leads to the conclusion, that the databases perform better with an industrial graph
structure and less edges.

But by looking closer at the data and our findings from the workload using no edges
in section 6.4.3.2 we would expect that the results would be better for OrientDB
and Neodj since they both performed better with more edges.

Overall this comparison leads to the conclusion, that graph databases perform better
with industrial data structures.

If we look at our own findings in figure 6.9 we can come to the following conclusion.
The better the read performance is compared to the insert performance, the bet-
ter the graph database performs with more edges. That would correlate with
Dominguez-Sal et al. [16], as they have a higher e/n ratio and better throughput.

To generalise our finding based on the comparison with other research in this field,
no clear conclusion can be drawn as the results diverge.
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Figure 6.16: Throughput results of Dominguez-Sal et al. [16].
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Figure 6.17: Throughput results of the XGDBench Benchmark [20].

When taking into account our findings about the dependency between insert and
read operations, we can say that other benchmark results can be used to evaluate
the suitability of a database for the industrial environment when the insert and read
throughputs are listed.
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7. Conclusion and Future Work

After conducting our experiments and evaluating the results, we will finally end with
a conclusion and give ideas for future research in this field. At the end a summary
is given about the research we have done.

7.1 Conclusion

In this section we will draw a conclusion regarding the suitability for the industrial
data space and the generalisability of graph benchmarking results measured with
social graphs.

7.1.1 Suitability

From our findings we can say, that no database is able to store the necessary amount
of data as we dimensioned it, within the specified time frame.

Sparksee could be capable of handling our calculated amount, but we couldn’t test
it at scale, because of its license limitations.

7.1.2 Generalisability

With our results and the comparison with other research in this field, we can say that
the throughput of a graph database depends not only on the insert performance,
but among others, also on read throughput as it is needed to insert edges into the
database.

It is indirectly possible to transfer the throughput measured on social network graphs
to throughput in an industrial application. For this the read throughput relative to
the insert throughput has to be taken into account as well as the e/n ratio.
Besides that, there are other factors affecting throughput, as our comparison in
section 6.7 shows.
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7.2 Future Work

Our investigations on the throughput of graph databases with data from the indus-
trial internet of things couldn’t lead to a solid conclusion about the comparability
between performance results measured with social network graphs and industrial
graphs.

Therefore, a study should be conducted that investigates the impact of different e/n
ratios covering also different graph properties as the clustering coefficient for exam-
ple to evaluate which graph properties effect the throughput of graph databases in
which way.

7.3 Summary

The purpose of this thesis was to investigate the suitability of current graph databases
for the use in an industrial environment and furthermore examine whether the results
from graph database benchmarks can be generalised to be applied on the industrial
use case.

To do so available database benchmarks have been looked up alongside with graph
databases analysed in other studies. A lack of results for the industrial data space
was found and a data structure was designed to represent the industrial use case for
a graph database. Also, an available benchmark was extended to produce datasets
with that structure. Workloads were designed to mirror the use of a graph database
in an industrial environment. During execution of the workloads with the designed
data structure on the graph databases, their throughput under different situations
was measured and compared with other studies.

The results show that most current databases aren’t suitable for application in the
industry. Sparksee was the only database able to reach the target throughput for
insert operations. OrientDB missed the target only slightly, whereas Apache Jena
and Neo4j were far from being able to store the amount of data in the specified time.

No clear conclusion can be made about the generalisation of benchmark results of
graph databases, as the comparison with other research points in opposite directions.
However, by considering the read throughput relative to the insert throughput an
estimation can be made about the performance of a graph database in an industrial
application.
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