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CONSISTENT LABELING OF ROTATING MAPS∗

Andreas Gemsa, Martin Nöllenburg,† Ignaz Rutter‡

Abstract. Dynamic maps that allow continuous map rotations, for example, on mobile
devices, encounter new geometric labeling issues unseen in static maps before. We study the
following dynamic map labeling problem: The input is an abstract map consisting of a set P
of points in the plane with attached horizontally aligned rectangular labels. While the map
with the point set P is rotated, all labels remain horizontally aligned. We are interested in
a consistent labeling of P under rotation, i.e., an assignment of a single (possibly empty)
active interval of angles for each label that determines its visibility under rotations such
that visible labels neither intersect each other (soft conflicts) nor occlude points in P at any
rotation angle (hard conflicts). Our goal is to find a consistent labeling that maximizes the
number of visible labels integrated over all rotation angles.

We first introduce a general model for labeling rotating maps and derive basic geo-
metric properties of consistent solutions. We show NP-hardness of the above optimization
problem even for unit-square labels. We then present a constant-factor approximation for
this problem based on line stabbing, and refine it further into an efficient polynomial-time
approximation scheme (EPTAS).

1 Introduction

Dynamic maps, in which the user can navigate continuously through space, are becoming
increasingly important in scientific and commercial GIS applications as well as in personal
mapping applications. In particular, GPS-equipped mobile devices offer various new possi-
bilities for interactive, location-aware maps. A common principle in dynamic maps is that
users can pan, rotate, and zoom the map view. Despite the popularity of several commer-
cial and free applications, relatively little attention has been paid to provably good labeling
algorithms for dynamic maps.

Been et al. [2] identified a set of consistency desiderata for dynamic map labeling.
Labels should neither “jump” (suddenly change position or size) nor “pop” (appear and dis-
appear more than once) during monotonous map navigation; moreover, the labeling should
be a function of the selected map viewport and not depend on the user’s navigation history.
Previous work on the topic has focused solely on supporting zooming and/or panning of the
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Figure 1: Input map with five points (a) and three rotated views with some partially occluded
labels (b)–(d).

map [2, 3, 15, 19], whereas consistent labeling under map rotations has not been considered
prior to the conference version of this paper [7].

Most maps come with a natural default orientation (usually the northern direction
facing upward), but applications such as car or pedestrian navigation often rotate the map
view dynamically to be always forward facing [10]. Still, the labels, usually modeled as
rectangles, must remain horizontally aligned for best readability regardless of the actual
rotation angle of the map. A basic requirement in static and dynamic label placement
is that labels are pairwise disjoint and thus form an independent set of rectangles, which
means that in general not all labels can be placed simultaneously. For labeling point features
unambiguously, it is further required that each label rectangle contains the labeled point
(also called anchor point), either in its inside or on its boundary. Further, we do not allow
that labels occlude other input points, even if the points are unlabeled at a particular
rotation angle. Figure 1 shows a sketch of a map that is rotated and labeled, depending
on the rotation angle. The objective in map labeling is usually to place as many labels as
possible. Translating this into the context of rotating maps means that, integrated over
one full rotation from 0 to 2π, we want to maximize the number of visible labels. The
consistency requirements of Been et al. [2] can immediately be applied to rotating maps.

Our Results. Initially, we define a model for rotating maps and show some basic prop-
erties of the different types of conflicts that may arise during rotation. Next, we prove
that consistently labeling rotating maps is NP-hard, both for the maximization of the total
number of visible labels integrated over one full rotation and for the maximization of the
smallest visibility range of any label. Under the assumption of a bounded feature density in
the input map we present a 1/4-approximation algorithm and an efficient polynomial-time
approximation scheme (EPTAS) for unit-height rectangles1. We extend both algorithms to
the case of rectangular labels with the property that the ratio of the smallest and largest
width, the ratio of the smallest and largest height, as well as the aspect ratio of every label
is bounded by a constant, even if we allow the anchor point of each label to be an arbitrary
point of the label. This applies to most practical scenarios, where labels typically consist
of few and relatively short lines of text. Moreover, our algorithmic results also apply to the
extensions of the labeling model for rotating maps introduced in our follow-up paper [9].

1A PTAS is called efficient if its running time is O(f(ε) · nc) for some constant c independent of ε.
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Related Work. Most previous algorithmic research efforts on automated label placement
cover static labeling models for point, line, or area features. For static point labeling,
fixed-position models and slider models have been introduced [5, 21], in which the label,
represented by its bounding box, needs to touch the labeled point with one of its corners
or along its boundary. The label number maximization problem is NP-hard even for the
simplest labeling models [12, 17, 21], whereas there are efficient algorithms for the decision
problem that asks whether all points can be labeled in some of the simpler models. This
decision problem is NP-hard in the fixed-position model with four different positions, but
is in P if only two positions per label are allowed [5]. Approximation results [1, 4, 21],
heuristics [23], and exact approaches [13,22] are known for many variants of the static label
number maximization problem. In addition to the label number maximization problem,
there is also the label size maximization problem, where all labels need to be placed and the
optimization goal is to find the largest factor by which all labels can be scaled such that not
two labels overlap each other. As for the label size maximization problem, approximation
algorithms are known [5,23].

In recent years, dynamic map labeling has emerged as a new research topic that gives
rise to many unsolved algorithmic problems. Petzold et al. [20] used a preprocessing step
to generate a reactive conflict graph that represents possible label overlaps for maps of all
scales. For any fixed scale and map region, their method computes a conflict-free labeling
using static labeling heuristics. Mote [18] presents another fast heuristic method for dynamic
conflict resolution in label placement that does not require preprocessing. The consistency
desiderata of Been et al. [2] for dynamic labeling (no popping and jumping effects during
panning and zooming), however, are not satisfied by either of the methods as they were
mainly designed for quickly labeling a static map of arbitrary scale. Been et al. [3] showed
NP-hardness of the label number maximization problem in the consistent labeling model
and presented several approximation algorithms. Gemsa et al. [8] considered a slider model
and presented an FPTAS for labeling a one-dimensional zoomable point set, where for each
label not only a consistent visibility range but also an optimal slider position for all zoom
levels needs to be found. Nöllenburg et al. [19] studied a dynamic version of the alternative
boundary labeling model, in which labels are placed at the sides of the map and connected
to their points by leaders. They presented an algorithm to precompute a data structure that
represents an optimal one-sided labeling for all possible scales and thus allows continuous
zooming and panning. None of the existing dynamic map labeling approaches supports map
rotation.

After the publication of the conference version of this paper, rotating maps have been
further studied. Gemsa et al. [6] discussed the problem of labeling a rotating and translating
map, where only a small part of the map can be seen on screen. This is a problem that
manufacturers of modern GPS navigation devices face when implementing the algorithms
for displaying the map. They presented an NP-hardness proof as well as an approximation
algorithm for unit-square labels. The restricted case that no more than k labels may be
shown simultaneously can be solved efficiently. Yokosuka and Imai [24] investigated the
label size maximization problem for rotating maps. They presented efficient algorithms for
finding anchor points inside or on the boundary of the labels such that the label size is
maximized and no conflicts occur during a full rotation. Finally, in a follow-up paper [9],
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we have recently experimentally evaluated several labeling strategies for rotating maps and
compared the achievable activity levels for different degrees of consistency in the sense of
Been et al. [2]. Our results confirmed that the model we propose in this paper offers a good
trade-off between consistency and label activity. We further evaluated the performance
of the 1/4-approximation algorithms proposed in this paper in comparison to additional
heuristics and an exact ILP approach.

2 Model

In this section we describe our labeling model for rotating maps with axis-aligned rectangular
labels. Although this paper focuses on a theoretical understanding of one particular model,
the one introduced in the conference version of this paper, our presentation is inspired by
the more general family of models from the follow-up paper [9].

Let M be an (abstract) map, consisting of a set P = {p1, . . . , pn} of points in the
plane together with a set L = {`1, . . . , `n} of closed, axis-aligned, and not necessarily disjoint
rectangular labels in the plane. Each point pi must lie inside (or on the boundary of) its
corresponding label `i at an arbitrary but fixed position; we denote pi as the anchor of label
`i and `i as anchored at pi. Note that we do not allow movement of a label relative to its
anchor, i.e., `i must maintain the same position relative to pi.

AsM rotates, each label `i in L must remain horizontally aligned and anchored at pi.
Thus, new label intersections form and existing ones disappear during the rotation of M .
We take the following alternative perspective on the rotation of M . Rather than rotating
the point set P , say clockwise, and keeping the labels horizontally aligned, we may instead
rotate each label counterclockwise around its anchor point and keep the set of points fixed.
It is easy to see that both rotations are equivalent in the sense that they yield exactly the
same intersections of labels and occlusions of points.

We consider all rotation angles modulo 2π. For convenience we introduce the interval
notation (a, b) for any two angles a, b ∈ [0, 2π]. If a ≤ b, this corresponds to the standard
meaning of an open interval, otherwise, if a > b, we define (a, b) := (a, 2π] ∪ [0, b). For
simplicity, we refer to any set of the form (a, b) as an interval. We further define the length
of an interval I as |I| = b − a if I = (a, b) with a ≤ b and |I| = 2π − a + b if I = (a, b)
with a > b. We further extend the above definitions to the standard interval notation for
half-open and closed intervals of the form (a, b], [a, b), and [a, b].

A rotation of L is defined by a rotation angle α ∈ [0, 2π). We define the rotated
label set L(α) of all labels, each rotated by an angle of α around its anchor point. A rotation
labeling of M is a function φ : L× [0, 2π)→ {0, 1} such that φ(`, α) = 1 if label ` is visible
or active in the rotation of L by α, and φ(`, α) = 0 otherwise. We call a labeling φ valid if,
for any rotation α, the set of labels Lφ(α) = {` ∈ L(α) | φ(`, α) = 1} consists of pairwise
disjoint labels. If two labels ` and `′ in L(α) intersect, we say that they have a soft conflict
(or a label-label conflict) at α, i.e., in a valid labeling at most one of them can be active at
α. We define the set C(`, `′) = {α ∈ [0, 2π) | ` and `′ are in conflict at α} as the conflict set
of ` and `′. Further, we call the begin and end of a maximal contiguous conflict range in
C(`, `′) conflict or label events.
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For a label ` we call each maximal interval I ⊆ [0, 2π) with φ(`, α) = 1 for all α ∈ I
an active range of label ` and define the set Aφ(`) as the set of all active ranges of ` in φ. We
call an active range where both boundaries are conflict events a regular active range. Our
optimization goal is to find a valid labeling φ that maximizes the number of active labels
integrated over one full rotation from 0 to 2π. The value of this integral is called the total
activity t(φ) and can be computed as t(φ) =

∑
`∈L

∑
I∈Aφ(`) |I|.

A valid labeling is not yet consistent in terms of the definition of Been et al. [2, 3]:
for given fixed anchor points, labels clearly do not jump and the labeling is independent
of the rotation history, but labels may still flicker multiple times during a full rotation
from 0 to 2π, depending on how many active ranges they have in φ. To reduce flickering
effects, we allow each label to have only a single active range. Accordingly, we call such a
labeling consistent. Since a consistent labeling allows only one active range, this is called
the 1R-model.

We apply another restriction to our consistency model, which is based on the oc-
clusion of anchors. Among the conflicts in set C(`, `′) we further distinguish hard conflicts
(or label-point conflicts), i.e., conflicts where label ` intersects the anchor of label `′. In our
definition every hard conflict is also a soft conflict as clearly the two labels intersect as well.
If a labeling φ sets ` active during a hard conflict with `′, the anchor of `′ is occluded. This
may be undesirable in some situations in practice, for example, if every point in P carries
useful information in the map, even if it is currently unlabeled. Thus we may optionally
require that φ(`, α) = 0 during any hard conflict of a label ` with another label `′ at angle
α. In that sense, the occluded anchor dictates that the occluding label cannot be active.

The objective in static map labeling is usually to find a maximum subset of pairwise
disjoint labels, i. e., to label as many points as possible. Generalizing this objective to
rotating maps means that integrated over all rotations α ∈ [0, 2π) we want to display as many
labels as possible. This corresponds to finding a valid rotation labeling φ with maximum total
activity t(φ) over all valid rotation labelings; we call this optimization problem MaxTotal.
An alternative objective is to maximize over all valid rotation labelings φ the minimum length
min{|I| ∈ Aφ(`) | ` ∈ L} of all active ranges; this problem is called MaxMin.

We note that the 1R-model readily generalizes to the kR-model that allows at most
k active ranges per label. The version without any consistency constraints is called ∞R-
model ; it mainly serves as an upper bound for the other models. Finally, a more drastic
approach that eliminates all flickering is the 0/1-model, where every label is either active
for the full rotation [0, 2π) or never at all. Our experimental evaluation [9] showed that
the 0/1-model is too restrictive as it often only achieves 50% or less of the label activity
of an optimal solution in the ∞R-model, whereas an optimal solution for the 1R-model
achieves between 80% and 95% of the maximum activity in the ∞R-model for several real-
world instances. Hence the 1R-model is a reasonable choice that offers good solutions while
containing sufficient structure for a theoretical treatment.

For this paper we consider the 1R hard-conflict model only; whenever we use the
term “optimal rotation labeling”, this refers to a valid optimal rotation labeling in this
particular model. We first give some complexity results and then develop approximation
algorithms, most notably an EPTAS for the case that the rectangular labels have bounded
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Figure 2: Two labels ` and `′ and their eight possible boundary intersection events. Anchor
points are marked as black dots.

width ratio, bounded height ratio and bounded aspect ratio. It should be noted that, while
our hardness results rely on both the hard conflicts and the restriction to a single active
range, our algorithmic results do not have this limitation and generalize to the kR-model
with or without explicit hard conflicts.

3 Properties of Rotation Labelings

In this section we show basic properties of rotation labelings. If two labels ` and `′ intersect
in a rotation of α, they have a conflict at α, i.e., in a consistent labeling at most one of them
can be active at α.

Lemma 1. For any two labels ` and `′ with anchor points p ∈ ` and p′ ∈ `′ the set C(`, `′)
consists of at most four disjoint contiguous conflict ranges.

Proof. The first observation is that due to the simultaneous rotation of all initially axis-
parallel labels in L, ` and `′ remain “parallel” at any rotation angle α. Rotation is a
continuous movement and hence any maximal contiguous conflict range in C(`, `′) must be
a closed “interval” [α, β], where 0 ≤ α, β ≤ 2π. At a rotation of α (resp. β) the two labels `
and `′ intersect only on their boundary. Let l, r, t, b be the left, right, top, and bottom sides
of ` and let l′, r′, t′, b′ be the left, right, top, and bottom sides of `′ (defined at a rotation
of 0). Since ` and `′ are parallel, the only possible cases in which they intersect on their
boundary but not in their interior are t ∩ b′, b ∩ t′, l ∩ r′, and r ∩ l′. Each of those four
cases may appear twice, once for each pair of opposite corners contained in the intersection.
Figure 2 shows all eight boundary intersection events. Each of the conflicts defines a unique
rotation angle and obviously at most four disjoint conflict ranges can be defined with these
eight rotation angles as their endpoints.

In the following we look more closely at the conditions under which the boundary
intersection events (the conflict events) occur and at the rotation angles defining them.
Let ht and hb be the distances from p to t and b, respectively. Similarly, let wl and wr
be the distances from p to l and r, respectively; see Figure 3. By h′t, h′b, w

′
l, and w′r we

http://jocg.org/


JoCG 7(1), 308–331, 2016 314

Journal of Computational Geometry jocg.org

`

t

l

b

rp
ht

hb

wl wr

Figure 3: Parameters of label ` anchored at p.

p

`

t `′

b′

d

ht + h′b

α
p′

(a) rotation of 2π − α

p`

t
`′

b′

d

ht + h′b

α
p′

(b) rotation of π + α

Figure 4: Boundary intersection events for t ∩ b′.

denote the corresponding values for label `′. Finally, let d be the distance of the two anchor
points p and p′. To improve readability of the following lemmas we define two functions
fd(x) = arcsin(x/d) and gd(x) = arccos(x/d).

Lemma 2. Let ` and `′ be two labels anchored at points p and p′ that lie on a horizontal
line. Then the conflict events in C(`, `′) are a subset of C = {2π − fd(ht + h′b), π + fd(ht +
h′b), fd(hb+h

′
t), π−fd(hb+h′t), 2π−gd(wr+w′l), gd(wr+w′l), π−gd(wl+w′r), π+gd(wl+w′r)}.

Proof. First we show that the possible conflict events are precisely the rotation angles in C.
We start considering the intersection of the two sides t and b′. If there is a rotation angle
under which t and b′ intersect then we have the situation depicted in Figure 4 and by simple
trigonometric reasoning the two rotation angles at which the conflict events occur are 2π −
arcsin((ht+h

′
b)/d) and π+arcsin((ht+h

′
b)/d). Obviously, we need d ≥ ht+h′b. Furthermore,

for the intersection in Figure 4a to be non-empty, we need d2 ≤ (wr + w′l)
2 + (ht + h′b)

2;
similarly, for the intersection in Figure 4b, we need d2 ≤ (wl + w′r)

2 + (ht + h′b)
2.

From an analogous argument we obtain that the rotation angles under which b and
t′ intersect are arcsin((hb + h′t)/d) and π − arcsin((hb + h′t)/d). Clearly, we need d ≥
hb + h′t. Furthermore, we need d2 ≤ (wr + w′l)

2 + (hb + h′t)
2 for the first intersection and

d2 ≤ (wl + w′r)
2 + (hb + h′t)

2 for the second intersection to be non-empty under the above
rotations.

The next case is the intersection of the two sides r and l′, depicted in Figure 5. Here
the two rotation angles at which the conflict events occur are 2π− arccos((wr +w′l)/d) and
arccos((wr + w′l)/d). For the first conflict event we need d2 ≤ (wr + w′l)

2 + (ht + h′b)
2, and

for the second we need d2 ≤ (wr + w′l)
2 + (hb + h′t)

2. For each of the intersections to be
non-empty we additionally require that d ≥ wr + w′l.

Similar reasoning for the final conflict events of l ∩ r′ yields the rotation angles
π − arccos((wl + w′r)/d) and π + arccos((wl + w′r)/d). The additional constraints are d ≥
wl + w′r for both events and d2 ≤ (wl + w′r)

2 + (hb + h′t)
2 for the first intersection and

http://jocg.org/


JoCG 7(1), 308–331, 2016 315

Journal of Computational Geometry jocg.org

p

`

`′d p′

r

l′

wr + w′
l

β

(a) rotation of 2π − β

p

`

`′

d

wr + w′
l

p′
r

l′β

(b) rotation of β

Figure 5: Boundary intersection events for r ∩ l′.

` `′
p p′

hard conflict range

Figure 6: Conflict ranges of two labels ` and `′ marked in bold on the enclosing circles.
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′
r)
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′
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2 for the second intersection. Thus, C contains all possible conflict
events.

One of the requirements for a valid labeling in the hard-conflict model is that no
label may contain a point in P other than its anchor point. For each label ` this gives rise
to the special class of hard conflict ranges, in which ` may never be active. We note that
by definition soft conflicts are symmetric, i.e., C(`, `′) = C(`′, `), whereas hard conflicts are
not symmetric. The next lemma characterizes the hard conflict ranges.

Lemma 3. For a label ` anchored at point p and a point q 6= p in P such that p and q lie on
a horizontal line, the hard conflict events of ` and q are a subset of H = {2π − fd(ht), π +
fd(ht), fd(hb), π − fd(hb), 2π − gd(wr), gd(wr), π − gd(wl), π + gd(wl)}.

Proof. We define a label of width and height 0 for q, i.e., we set h′t = h′b = w′l = w′r = 0.
Then the result follows immediately from Lemma 2.

Obviously, Lemma 2 and Lemma 3 can also be used to compute the conflict events
when the respective points do not lie on a horizontal line. In this case, we simply rotate
the instance by an angle α such that the (anchor) points are horizontally aligned, then we
compute the set of conflict events according to the lemma, and finally we shift the computed
angles of conflict events by −α to offset the initial rotation.

A simple way to visualize conflict ranges and hard conflict ranges is to mark, for
each label ` anchored at p and each of its (hard) conflict ranges, its corresponding circular
arc on the circle centered at p and enclosing `. Figure 6 shows an example.

In the following we show that the MaxTotal problem can be discretized in the
sense that there exists an optimal solution whose active ranges are defined as intervals
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whose borders are label events. An active range border of a label ` is an angle α that is
characterized by the property that the labeling φ is not constant in any ε-neighborhood of
α. Recall that a regular active range is an active range whose borders are both label events.

Lemma 4 (Discretization Lemma). Given a labeled map M there is an optimal rotation
labeling of M consisting of only regular active ranges.

Proof. Let φ be an optimal labeling with a minimum number of active range borders that
are not label events. Assume that there is at least one active range border β that is not a
label event. Let α and γ be the two adjacent active range borders of β, i.e., α < β < γ,
where α and γ are active range borders, but not necessarily label events. Then let Ll be
the set of labels whose active ranges have left border β and let Lr be the set of labels whose
active ranges have right border β. For φ to be optimal Ll and Lr must have the same
cardinality since otherwise we could increase the active ranges of the larger set and decrease
the active ranges of the smaller set by an ε > 0 and obtain a better labeling.

So define a new labeling φ′ that is equal to φ except for the labels in Ll and Lr:
define the left border of the active ranges of all labels in Ll and the right border of the
active ranges of all labels in Lr as γ instead of β. Since |Ll| = |Lr| we shrink and grow
an equal number of active ranges by the same amount. Thus the two labelings φ and φ′

have the same objective value
∑

`∈L
∑

I∈Aφ(`) |I| =
∑

`∈L
∑

I∈Aφ′ (`)
|I|. Because φ′ uses as

active range borders one non-label event less than φ this number was not minimum in φ—a
contradiction. As a consequence φ has only label events as active range borders.

4 Complexity Considerations

In this section we show that finding an optimal solution for MaxTotal (and also MaxMin)
is NP-hard in the 1R hard-conflict model even if all labels are unit squares and their anchor
points are their lower-left corners. We present a gadget proof reducing from the NP-complete
problem Planar 3Sat [16], which is the restriction of 3Sat for planar formulas defined
as follows. Let ϕ be a Boolean 3Sat formula and let Gϕ denote the variable–clause graph,
which contains a vertex vx for each variable x of ϕ and a vertex vC for each clause C of ϕ
such that vx and vC are adjacent if and only if C contains x or ¬x. The formula ϕ is planar
if and only if Gϕ is planar.

Every planar variable–clause graph Gϕ admits a planar grid layout where all vertices
are positioned on the x-axis and the clauses are drawn as three-legged combs above and below
the x-axis [14]; see Fig. 7. The layout fits on a polynomially bounded integer grid.

The general idea behind the reduction from an instance ϕ of Planar 3Sat is to
construct an instance Iϕ of MaxTotal whose geometric layout mimics the planar grid
layout of Gϕ and whose optimal rotation labelings are related to the satisfiability of ϕ in
the following sense. There is a value K depending only on ϕ such that ϕ is satisfiable if and
only if Iϕ admits a rotation labeling with total activity at least K.

For this reduction, we describe how to build gadgets that correspond to the variables
and clauses of the Planar 3Sat formula, called variable and clause gadgets, respectively,
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Figure 7: An instance of Planar 3Sat with a grid layout of the variable–clause graph.

as well as pipes that model the edges of Gϕ. The fact that our layout mimics the planar
grid layout of Gϕ ensures that the only pairs of labels that interact via conflicts are either
part of the same gadget or they are in adjacent gadgets, i.e., one is in a variable gadget and
one is in a pipe or one is in a pipe and the other one is in a clause gadget.

Since the gadgets need to properly correspond to Boolean variables, the gadgets can
have, in an optimal MaxTotal solution, only two possible states; one which corresponds to
true, and the other to false. Similarly, the clause gadgets should contribute the same value
to the total activity of the optimal solution if and only if at least one of the clause’s literals
is in the state true; otherwise, if all three literals are false, a clause gadget contributes
a smaller value. Obviously, we need also some kind of connection between the variable
gadgets and the clause gadgets to transmit the states of the variable gadgets. Those should
contribute to the value of the optimal solution of MaxTotal the same value regardless
of the state of the connected variable. If this is the case, then we only need to choose the
appropriate value K, for which the value of the optimal solution of the instance indicates
that the corresponding Planar 3Sat formula has a satisfying truth assignment. Since the
construction of the MaxTotal instance can be carried out in polynomial time, it follows
that MaxTotal is NP-hard. The same gadgets can also be used to prove NP-hardness of
MaxMin as we will see in the end of this section.

4.1 Basic Building Blocks

We start by constructing basic building blocks, called chain, inverter, and turn, from which
we construct our gadgets. As a preliminary step we need a special property of unit-square
labels.

Lemma 5. If two unit-square labels ` and `′ whose anchor points are their lower-left corners
have a conflict at a rotation angle α, then they have conflicts at all angles α + i · π/2 for
i ∈ Z.

Proof. Similar to the notation used in Section 3, let fd = arcsin(1/d) and gd = arccos(1/d).
From Lemma 2 we obtain the set C = {2π− fd, π+ fd, fd, π− fd, 2π− gd, gd, π− gd, π+ gd}
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of conflict events for which it is necessary that the distance d between the two anchor
points is 1 ≤ d ≤

√
2. Since arccosx = π/2 − arcsinx the set C can be rewritten as

C = {fd, π/2− fd, π/2 + fd, π − fd, π + fd, 3π/2− fd, 3π/2 + fd, 2π − fd}. This shows that
conflicts repeat after every rotation of π/2.

For every label ` we define the outer circle of ` as the circle of radius
√
2 centered at

the anchor point of `. Since the top-right corner of ` traces the outer circle we will use the
locus of that corner to visualize active ranges or conflict ranges on the outer circle. Note
that due to the fact that at the initial rotation of 0 the diagonal from the anchor point to
the top-right corner of ` forms an angle of π/4 all marked ranges are actually offset by π/4.
We now describe the building blocks and prove their basic properties.

Chain. A chain consists of at least four labels anchored at collinear points that are evenly
spaced with distance

√
2. Hence, each point is placed on the outer circles of its neighbors.

We call the first two and last two labels of a chain terminals and the remaining part inner
chain, see Figure 8. A chain is horizontal (vertical) if its anchor points are horizontally
(vertically) aligned. We denote an assignment of active ranges to the labels as the state of
the chain. The important observation is that in any optimal solution of MaxTotal (and
MaxMin) an inner chain has only two different states, whereas terminals have multiple
optimal states that are all equivalent for the purpose of MaxTotal; see Figure 8. In
particular, in an optimal solution each label of an inner chain has an active range of length
π and active ranges alternate between adjacent labels. We will use the two states of chains as
a way to encode truth values in our reduction. In an optimal solution of MaxTotal, each
terminal contributes 5π/2 to the objective function. One way to achieve this is by assigning
active ranges of length π to the inner terminal labels and active ranges of 3π/2 to the outer
terminal labels, see the left terminal in Figure 8. Another possibility is to assign an active
range of π/2 to the inner terminal label (starting at the angle 0, π/2, π, or 3π/2) and 2π
to its neighboring outer terminal label, see the right terminal in Figure 8. For MaxTotal
all states behave equivalently, for MaxMin we observe that the first terminal configuration
with minimum active range π is always possible.

inner chainterminal terminal

Figure 8: Chain. It has only two states in any optimal solution of MaxTotal. One of the
states is marked by the solid blue arcs, while the other is marked by the dotted red arcs. The
solid black arcs of the right terminal show an alternative configuration that is independent
of the state of the inner chain.
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inner chain pa pb

pc

pd

inner chain/terminal

inner chain/terminal

√
2/2

√
6/2

Figure 9: Turn. A turn that splits one inner chain into two inner chains. Like the chain, the
turn has only two possible states in an optimal solution. One is marked by the solid blue
arc, while the other is marked by the red dotted arc. Connecting gadgets are indicated by
labeled arrows.

Lemma 6. In any optimal solution, any label of an inner chain has an active range of
length π. The active ranges of consecutive labels of an inner chain alternate between (0, π)
and (π, 2π).

Proof. By construction every label of an inner chain has two hard conflicts at angles 0 and π,
so no active range can have length larger than π. From Lemma 5 we know that every label
of an inner chain further has conflicts at π/2 and 3π/2. These conflicts are soft conflicts
and can be resolved by either assigning all odd labels the active range (0, π) and all even
labels the active range (π, 2π) or vice versa. Obviously both assignments are optimal and
there is no optimal assignment in which two adjacent labels have active ranges on the same
side of π.

For inner chains whose distance between two adjacent points is less than
√
2 the

length of the conflict region changes, but the above arguments remain valid for any distance
between 1 and

√
2. To ensure that each label has a maximal active range of at least 2π/3,

we need at least distance 1/ cos(π/12) =
√
6 −
√
2 ≈ 1.035. This implies that chains are

compressible in the sense that we can move some of their anchors closer together without
violating the overall behavior. We will use this freedom later to ensure that some anchors
of our constructions end up at specific positions.

Turn. The third building block is a turn that consists of four labels; see Figure 9. The
anchor points pa and pb are at distance

√
2 and the pairwise distances between pb, pc, and

pd are also
√
2 such that the whole structure is symmetric with respect to the line through

pa and pb. The central point pb is called turn point, and the two points pc and pd are called
outgoing points. Due to the hard conflicts created by the four points we observe that the
outer circle of pb is divided into two ranges of length 5π/6 and one range of length π/3.
The outer circles of the outgoing points are divided into ranges of length π, 2π/3, and π/3.
The outer circle of pa is divided into two ranges of length π. The outgoing points serve as
connectors to terminals, inner chains, or further turns. By coupling multiple turns we can
divert an inner chain by any multiple of 30◦.
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Lemma 7. A turn has only two optimal states and allows an inner chain to be split into
two equivalent parts in an optimal solution.

Proof. We show that the activity in an optimal solution for the turn is 21π/6 and that there
are only two different active range assignments that yield this solution. Note that for the
label `a the length of its active range is at most π. For `b it is at most 5π/6 and for `c and
`d it is at most π.

We first observe that `c and `d cannot both have an active range of length π since by
Lemma 5 they have a soft conflict in the intersection of their length-π ranges. Thus at most
one of them has an active range of length π and the other has an active range of length at
most 5π/6. But in that case the same argumentation shows that the active range of `b is
at most π/2. Combined with an active range of length π for `a this yields in total a sum of
20π/6.

On the other hand, if one of `c and `d is assigned an active range of length 2π/3 and
the other an active range of length π as indicated in Figure 9, the soft conflict of `b in one
of its ranges of length 5π/6 is resolved and `b can be assigned an active range of maximum
length. This also holds for `a resulting in a total sum of 21π/6.

Since the gadget is symmetric there are only two states that produce an optimal
solution for the lengths of the active ranges. By attaching inner chains to the two outgoing
points the truth state of the inner chain to the left is transferred into both chains on the
right.

4.2 Gadgets of the Reduction

In the following, we construct the variable, clause, and pipe gadgets. As mentioned before
our reduction mimics the planar grid layout ofGϕ (recall Figure 7). However, as we have seen
(recall Figures 8 and 9), the distances between anchors of our constructions involve distances
such as

√
2 and

√
6. Nonetheless, we construct our gadgets in such a way that the coordinates

of all anchor points can be expressed in the number field Q(
√
2,
√
3). This ensures two

crucial properties for the NP-hardness reduction. Firstly, this allows to encode the anchor
coordinates using a polynomial number of bits, and thus ensures that the reduction can be
carried out in polynomial time. Secondly, all our constructions are exact in the sense that
the coordinates of anchors shared by two gadgets can be expressed relative to an arbitrary
reference point in each gadget.

Variable Gadget. The variable gadget consists of an alternating sequence of two building
blocks: horizontal chains and literal readers. A literal reader is a structure that allows us to
split the truth value of a variable into one part running via a pipe towards a clause and the
part that continues the variable gadget; see Figure 10. The literal reader consists of four
turns and three terminals extended with short inner chains on both sides. The first turn
connects to a pipe and the other three are dummy turns needed to lead the variable gadget
back to the horizontal line. By vertically mirroring the literal reader we can also connect to
pipes below the variable gadget.
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turn

turn

inner chain turn

pip
e

tur
n

inner chain

terminal

terminal

terminal

Figure 10: Sketch of a literal reader where connecting gadgets are indicated by labeled
arrows. Anchor points at odd (even) positions are marked by black (white) disks.

In order to encode truth values we define the state in which the leftmost label (and
any other label at an odd position) of the leftmost horizontal chain has active range (0, π) as
true and the state with active range (π, 2π) as false. All horizontal chains and literal read-
ers of the variable gadget have an even number of labels so that the truth values propagate
consistently through the variable gadget with respect to the parity of the label positions.

Clause Gadget. The clause gadget consists of one inner and three outer labels, where the
anchor points of the outer labels split the outer circle of the inner label into three equal
parts of length 2π/3; see Figures 11 and 12. Each outer label further connects to a pipe
and a terminal. These two connector labels are placed so that the outer circle of the outer
label is split into two ranges of length 3π/4 and one range of length π/2. The terminals
can be placed such that they do not have a conflict with the other pipes or terminals; see
Figure 11b.

The general idea behind the clause gadget is as follows. The inner label obviously
cannot have an active range larger than 2π/3. Each outer label is placed in such a way
that if it carries the value false it has a soft conflict with the inner label in one of the
three possible active ranges of length 2π/3; see Figure 12a for an illustration of this (for
simplicity only the left outer label and the inner label are depicted). In this example the
pipe coming from the left side transmits the truth value false. This forces the outer label
`a with anchor pa to have the active range indicated by the red dotted arc. This splits the
arc from pa to pc of the inner label’s outer circle into two arcs where one arc has length
π/2 and the other π/6. The functionality of the other outer labels is identical. Hence, if all
three pipes transmit the value false then every possible active range of the inner label of
length 2π/3 is affected by a soft conflict. Consequently, its active range can be at most π/2.
Alternatively, an outer label’s active range might get split to allow the inner label to have
an active range with length 2π/3, but then this outer label’s active range in turn can have
length at most π/2 instead of 3π/4. It is also possible that the active range of a label in the
pipe (including the turns), or in a variable might get split, but this also would again reduce
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pipe

pipe

pa
pb

pc

terminal

terminal

terminal pipe

(a) Clause gadget with one inner label
(hatched disk) and three outer labels with
their anchors pa, pb, and pc placed on the
boundary of the inner label such that the
intersect at the center of the hatched disk.

pipe

pipe

pa
pb

pc

terminal

terminal

pt1

pt2{terminal } pipe

(b) Same clause gadget as in a, but with a terminal
attached to the left outer label (consisting of two la-
bels with anchors pt1 and pt2), and a pipe attached
to the lower outer label (anchors at the center of the
solid grey circles).

Figure 11: Illustration of the clause gadget.

pa

pb

pc

(a) Soft Conflict.

pa

pb

pc

(b) Hard Conflict.

pa

pb

pc

(c) Hard Conflict.

pa

pb

pc

(d) Hard Conflict.

Figure 12: Illustration of the four conflicts of the left outer label with the inner label. The
only soft conflict is depicted in a. All remaining conflicts are hard conflicts.

the active range of that particular label to π/2. Note that there is an optimal solution of
any satisfiable instance, in which any label has an active range of at least 2π/3.

On the other hand, if at least one of the pipes transmits true, the inner label can be
assigned an active range of length 2π/3. As can be seen in the Figures 12b and 12c, when
the outer label `a with anchor pa has the active range indicated by the solid blue line (i. e.,
the attached pipe transmits the truth value true), no arc of the inner label is affected. The
inner label can have an active range that corresponds to the arc from pc to pa of length
2π/3.

Lemma 8. There must be a label in a clause or in one of the connecting pipes with an active
range of length at most π/2 if and only if all three literals of that clause evaluate to false.

Proof. The active range for the lower-right outer label that is equal to the state false is
(3π/4, 3π/2). For the two other outer labels the active range corresponding to false is
rotated by ±2/3π. Note that the outer clause labels can have an active range of at most
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3/4π and the inner clause label can have an active range of at most 2/3π. For every literal
that is false one of the possible active ranges of the inner clause label is split by a conflict
into two parts of length π/2 and π/6. This conflict is either resolved by assigning an active
range of length π/2 to the inner clause label or by propagating the conflict into the pipe or
variable where it is eventually resolved by assigning some active range with length at most
π/2.

Otherwise, if at least one pipe transmits true, the inner label of the clause can be
active for 2π/3 while the outer clause labels have an active range of length 3π/4 and no
chain or turn has a label that is visible for less than 2π/3.

Pipes. Pipes propagate truth values of variable gadgets to clause gadgets. We use three
different types of pipes, which we call left pipe, middle pipe, and right pipe, depending on
where the pipe attaches to the clause. A pipe is formed by a sequence of turns and chains.
Note that since each turn changes the direction by 30◦, we can route the pipes at any angle
that is an integer multiple of 30◦. The construction is illustrated in Fig 13.

One end of each pipe attaches to a variable at the open outgoing label of a literal
reader (marked by “pipe” in Figure 10). Initially, the pipe leaves the variable gadget at an
angle of 30◦ with respect to the positive x-axis. We first use two left turns so that the angle
is 90◦. We then attach a vertical chain to reach the target clause. For a left or right pipe
we further extend the construction by a sequence of three right turns (for a left pipe) or a
sequence of three left turns (for a right pipe); see Fig 13b. Finally, for left and right pipe,
we attach one further turns at the end so that a left pipe enters the clause gadget at an
angle of 330◦, a middle pipe at an angle of 90◦, and a right pipe at an angle of 210◦ with
respect to the positive x-axis. For clauses below the variables the pipes are mirrored.

We position our pipes such that they attach to a literal reader that represents the
state of the variable. For transmitting the state of a variable gadget, we use a pipe with an
even number of labels along its main path, to transmit its negation, we use a pipe with an
odd number of labels on the main path. Due to the alternation property of chains (Lemma 6)
this ensure that the correct state is transmitted.

Note that the horizontal position of the clause is determined by the position of the
middle pipe. The lengths of the vertical chains of all pipes and the lengths of the horizontal
chains of the left and right pipe can be chosen such that we end up sufficiently close to the
position of its clause, e.g., by enlarging chains by pairs of anchors so that a pipe gets longer
without changing its parity. In this way we can ensure that the last anchor, which attaches
to the clause, has distance at most 2

√
2 from the target clause in both x- and y-direction.

We then compress the horizontal and vertical chains by a small amount to reach the exact
target position.

4.3 Reduction

For the final reduction from Planar 3Sat it remains to put together all gadgets according
to the grid layout of the given variable–clause graph Gϕ. We place all variable gadgets on
the same y-coordinate, and all clause gadgets and pipes lie below and above the variables
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variables
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variables
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Figure 13: A layout of a part of a variable clause graph (a) and a sketch of the corresponding
gadget placement for the reduction (b).

and form three-legged “combs” as in the input layout of Gϕ. The overall structure of the
gadget arrangement is sketched in Figure 13.

At first glance it seems as if we might have a problem in describing the anchor
coordinates with polynomially bounded precision, since, for example, each variable gadget
requires us to place anchors with distance

√
2. By encoding the anchor coordinates with

algebraic numbers, however, we can avoid this problem. Recall that all our constructed
gadgets are either aligned with the coordinate axes directly or they are sloped by 15◦, 30◦,
45◦, or 60◦ with respect to an axis-parallel line through a reference point. Now it is well
known that the sine and cosine values of these angles can all be expressed as algebraic
numbers in the number field Q(

√
2,
√
3). Hence, if we choose, say, the leftmost anchor of the

leftmost variable gadget as the origin, we can express the coordinates of any other anchor
with respect to this origin as an algebraic number in Q(

√
2,
√
3).

Theorem 1. MaxTotal is NP-hard in the 1R hard-conflict model even if all labels are
unit squares and their anchor points are their lower-left corners.

Proof. For a given planar 3-SAT formula ϕ we construct the MaxTotal instance as de-
scribed above. By construction of the hard conflicts in our basic building blocks (chains
and turns), we know that in any optimal labeling each label in such a building block has
exactly two choices for its active range, both of equal length. Similarly, the inner labels of
the clause gadgets have three choices for their active range, all of equal length. Hence we
can sum these upper bounds on the lengths of the active ranges for all labels in our entire
construction to obtain an upper bound K on the total activity.

It remains to show that ϕ is satisfiable if and only if this upper bound K can be
achieved as the total activity of our construction. In fact, in any basic building block the
respective upper bound on the total activity is achieved if and only if all active ranges are
assigned correctly, i.e., corresponding to a truth assignment. Hence by Lemma 8 every
unsatisfied clause forces its inner label to have an active range of only π/2 instead of the
upper bound 2π/3. Thus we know that ϕ is satisfiable if and only if the MaxTotal instance
has a total activity of at least K (in fact, the total activity must be exactly K since this
is also an upper bound). Constructing and placing the gadgets can be done in polynomial
time and space, which concludes the proof.
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We note that the same construction as for the NP-hardness of MaxTotal can also
be applied to prove NP-hardness of MaxMin. The maximally achievable minimum length
of an active range for a satisfiable formula is 2π/3, whereas for an unsatisfiable formula the
maximally achievable minimum length is π/2 due to Lemma 8. This observation also yields
that MaxMin cannot be efficiently approximated within a factor of 3/4, unless P = NP.
We summarize this in the following corollary.

Corollary 1. MaxMin is NP-hard in the 1R hard-conflict model even if all labels are
unit squares and their anchor points are their lower-left corners. Moreover, there exists
no efficient approximation algorithm with an approximation factor larger than 3/4 for this
problem, unless P = NP.

In the conference version of this paper [7] we erroneously claimed that MaxTotal
is contained in NP and thus the (corresponding decision) problem is NP-complete. Although
it seems that due to the discretization lemma we can simply guess and verify a solution in
polynomial time, we encounter the problem that in order to find the value of the guessed
solution we potentially need to sum up irrational numbers. This, unfortunately, cannot be
done in polynomial time on a Turing machine, and hence, we fail to show membership of
MaxTotal in NP.

5 Approximation Algorithms for MaxTotal

In the previous section we have established that MaxTotal is NP-hard. Unless P = NP
we cannot hope for an efficient exact algorithm to solve the problem. In the following we
devise a 1/4-approximation algorithm for MaxTotal and then refine it to an EPTAS. For
both algorithms we initially assume that labels are congruent unit-height rectangles with
constant width w ≥ 1 and that the anchor points are the lower-left corners of the labels.
Afterwards we argue how to drop this restriction. Let d be the length of the label’s diagonal,
i.e., d =

√
w2 + 1.

Before we describe the algorithms we state one important requirement for our al-
gorithms and three derived properties that apply even to the more general labeling model,
where anchor points are arbitrary points within the label or on its boundary, and where the
ratio of the smallest and largest width and height, as well as the aspect ratio are bounded
by constants:

(i) the number of anchor points contained in any rectangle is at most proportional to its
area,

(ii) each label has conflicts with O(1) other labels,
(iii) each label has O(1) conflict events with other labels, and finally,
(iv) there is an optimal MaxTotal solution where all active ranges are bounded by label

events.

Property (i) is a fundamental requirement for our algorithms and demands that the
point set P is not too dense. In fact, property (i) is usually true in practice, e.g., if we
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assume that P is a set of features that admits a conflict-free labeling in some static view of
the map M as we show in Lemma 9. Lemma 10 proves property (ii) using a simple packing
argument. Property (iii) follows from Property (ii) and Lemma 1. Property (iv) follows
immediately from Lemma 4.

Lemma 9. If M is an input map in which the label set L consists of pairwise disjoint labels
(corresponding to a valid labeling of the entire point set P at rotation angle 0) then the
number of anchor points in the interior or on the boundary of any rectangle R with width W
and height H is at most proportional to the area of R.

Proof. We consider the non-rotated mapM , in which, by assumption, all labels are pairwise
disjoint. Let the smallest label height be hmin, the smallest label width be wmin and the
smallest label area be amin. There can be at most d2W/wmine + d2H/hmine independent
labels intersecting the boundary of R such that their anchor points are contained in R. All
remaining labels with an anchor point in R must be completely contained in R, i.e., there
can be at most dW · H/amine such labels. Hence, the number of anchor points in R is
bounded by a constant.

Lemma 10. Each label ` has conflicts with at most a constant number of other labels.

Proof. For two labels ` and `′ to have a conflict their outer circles need to intersect and
thus the maximum possible distance between their anchor points is bounded by twice the
maximum diameter of all labels in L. By the assumption that the height ratio, width ratio,
and aspect ratio of all labels in L is bounded by a constant this diameter is bounded by a
constant, too. Hence we can define for each label ` a constant-size area around its anchor
point containing all relevant anchor points. By Lemma 9 this area contains only a constant
number of anchor points.

5.1 A 1/4-approximation for MaxTotal

The basis for our algorithm is the line stabbing or shifting technique by Hochbaum and
Maass [11], which has been applied before to static labeling problems for (non-rotating) unit-
height labels [1, 21]. Consider a grid G where each grid cell is a square with side length 2d.
We can address every grid cell by its row and column index. Now we can partition G into
four subsets by deleting every other row and every other column with either even or odd
parity. Within each of these subsets we have the property that any two grid cells have a
distance of at least 2d. Thus no two labels whose anchor points lie in different cells of the
same subset can have a conflict. For an illustration see Figure 14.

For a cell c we call the area that is not contained in c but within distance of at
most d to c the border of c. To compute an optimal solution for the labels contained in c
we must also consider anchor points that lie in this area since during a full rotation a label
may intersect such an anchor point. We have marked the border of the cell in row 2 and
column 3 in blue in Figure 14.

We say that a grid cell c covers a label ` if its anchor point lies inside c. By Prop-
erty (i) only O(1) labels are covered by a single grid cell. Combining this with Properties (ii)
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Figure 14: Example for the 1/4-approximation. Depicted are all grid cells and one of the
four different subinstances (the even numbered rows and the odd numbered columns are
selected). The blue area depicts the area in which the anchor points lie which may be
important for the labels in the cell the blue area surrounds.

and (iii) we see that the number of conflict events of the labels covered by the same cell is
constant. It remains to determine the number of conflict events that are due to anchors in
the border of the cell. It is easy to see that all anchors contained in the border of a cell lie
inside a rectangle with dimensions 4d×4d. Again by Property (i) we know that the number
of anchor points is bounded by a constant and hence we can conclude that the number of
conflict events contributed by these anchor points is also constant. This implies that the
total number of conflict events per cell remains constant.

The four different subsets of grid cells divide a MaxTotal instance into four subin-
stances, each of which decomposes into independent grid cells. If we solve each subset
optimally, at least one of the solutions is a 1/4-approximation for the initial instance due to
the pigeon-hole principle.

Determining an optimal solution for the labels covered by a grid cell c works as
follows. We compute, for the set of labels Lc ⊆ L covered by c, the set Ec of label events
(conflict events due to the soft/hard conflicts with labels covered by c and the conflict events
due to hard conflicts with the anchors in the border of c). Due to Property (iv) we know
that there exists an optimal solution where all borders of active ranges are label events.
Thus, to compute an optimal active range assignment for the labels in Lc we need to test
all possible combinations of active ranges for all labels ` ∈ Lc. For a single cell this requires
only constant time.

We can precompute the non-empty grid cells by simple arithmetic operations on the
coordinates of the anchor points and store those cells in a binary search tree. Since we have
n anchor points there are at most n non-empty grid cells in the tree, and each of the cells
holds a list of the covered anchor points. Building this data structure takes O(n log n) time
and then optimally solving the active range assignment problem in the non-empty cells takes
O(n) time.

Theorem 2. There exists an O(n log n)-time algorithm that yields a 1/4-approximation
of MaxTotal for congruent unit-height rectangles with their lower-left corners as anchor
points.
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5.2 An E�cient Polynomial-Time Approximation Scheme for MaxTotal

We extend the technique for the 1/4-approximation to achieve a (1− ε)-approximation. Let
again G be a grid whose grid cells are squares of side length 2d. For any integer k we can
remove every k-th row and every k-th column of the grid cells, starting at two offsets i and
j (0 ≤ i, j ≤ k − 1). This yields collections of meta cells of side length (k − 1) · 2d that are
pairwise separated by a distance of at least 2d and thus independent. In total, we obtain k2

such collections of meta cells. For an illustration see Figure 15.

For a given ε ∈ (0, 1) we set k = d2/εe. Let c be a meta cell for the given k and
let again Lc be the set of labels covered by c, and Ec the set of label events for Lc. Then,
by Properties (i) and (ii), the number |Lc| of labels inside c is in O(1/ε2) and the number
|Ec| of conflict events for the all labels inside c is in O(1/ε4). The same upper bound on
the number of conflict events holds for anchor points in the border of the meta cell c. By
Property (iv) there are for each label O(1/ε8) possible combinations of conflict events to
define a potential active range. Since we need to test all possible active ranges for all labels
in Lc, it takes O(2O(1/ε2 log 1/ε8)) time to determine an optimal solution for the meta cell c.

For a given collection of disjoint meta cells we determine (as in Section 5.1) all O(n)
non-empty meta cells and store them in a binary search tree such that each cell holds a list
of its covered anchor points. This requires again O(n log n) time. So for one collection of
meta cells the time complexity for finding an optimal solution is O(n2O(1/ε2 log 1/ε8)+n log n).
There are k2 such collections and, by the pigeon hole principle, the optimal solution for at
least one of them is a (1−ε)-approximation of the original instance. This yields the following
theorem.

Theorem 3. There exists an EPTAS that computes a (1−ε)-approximation of MaxTotal
for congruent unit-height rectangles with their lower-left corners as anchor points. Its time
complexity is O((n2O(1/ε2 log 1/ε) + n log n)/ε2).

We note that this EPTAS basically relies on properties (i)–(iv) and that there is
nothing special about congruent rectangles anchored at their lower-left corners. Hence we
can generalize the algorithm to the less restrictive labeling model, in which the ratio of the
label heights, the ratio of the label widths, and the aspect ratios of all labels are bounded by
constants. Furthermore, the anchor points are not required to be label corners; rather they
can be any point on the boundary or in the interior of the labels. Finally, we can even ignore
the distinction between hard and soft conflicts, i.e., allow that anchor points of non-active
labels are occluded. Properties (i)–(iv) still hold in this general model. The only change in
the EPTAS is to set the width and height of the grid cells to twice the maximum diameter
of all labels in L.

Corollary 2. There exists an EPTAS that computes a (1−ε)-approximation of MaxTotal
in the general labeling model with rectangular labels of bounded height ratio, width ratio, and
aspect ratio, where the anchor point of each label is an arbitrary point in that label. The
time complexity of the EPTAS is O((n2O(1/ε2 log 1/ε) + n log n)/ε2).
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Figure 15: Illustration for our EPTAS for k = 4. The blue area is the border of the meta
cell spanning columns and rows 4-6.

6 Conclusion

We have introduced a new model for consistent labeling of rotating maps and proved NP-
hardness of the active range maximization problem. We could, however, show that there
is an EPTAS for the MaxTotal problem that works for rectangular labels with arbitrary
anchor points and bounded height ratio, width ratio, and aspect ratio.

We note that our algorithmic techniques can also be applied for the kR-model where
k active ranges per label are allowed and, moreover, the special treatment of hard conflicts
is not mandatory. Thus, the EPTAS essentially applies to all kR-models with and without
hard conflicts. However, our NP-hardness proof heavily relies on the properties of hard
conflicts and the presence of only a single active range per label. We cannot make any
assertions on the computational complexity of MaxTotal or MaxMin for the kR-model
with k ≥ 2 or even the 1R-model without hard conflicts. We leave this question open for
future work. A further open question is to study approximation algorithms for inputs that
do not satisfy the property of having a bounded density of point features. Our EPTAS does
not extend to this case.

An interesting variation of our problem is to start with a static labeled map (say
at rotation angle 0) and optimize the total active ranges such that each active range must
contain this angle. While our EPTAS easily extends to this case, the complexity result does
not and it is open whether this problem remains NP-hard.
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Another interesting open question and an important challenge in practice is to com-
bine map rotation with zooming and panning and to study the arising algorithmic labeling
problems in theory and practice. The aspect of temporal consistency must play an impor-
tant role in this challenge in order to avoid distracting visual effects. Our approach using a
single active range per label can in fact be extended to combinations of interaction modes.
However, once the space of possible map views becomes multi-dimensional (scale, rotation
angle, and possibly more dimensions), a single global pre-computed (multi-dimensional) ac-
tive range per label is unlikely to be practically relevant as user interactions simply might
not pass through these active ranges in most cases. Rather we expect that relatively local
consistency concepts for individual interaction sequences will be more useful in practice.
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