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Abstract Checking that a scalar potential is bounded from
below (BFB) is an ubiquitous and notoriously difficult task
in many models with extended scalar sectors. Exact ana-
lytic BFB conditions are known only in simple cases. In this
work, we present a novel approach to algorithmically estab-
lish the BFB conditions for any polynomial scalar poten-
tial. The method relies on elements of multivariate alge-
bra, in particular, on resultants and on the spectral theory
of tensors, which is being developed by the mathematical
community. We give first a pedagogical introduction to this
approach, illustrate it with elementary examples, and then
present the working Mathematica implementation publicly
available at GitHub. Due to the rapidly increasing com-
plexity of the problem, we have not yet produced ready-to-
use analytical BFB conditions for new multi-scalar cases.
But we are confident that the present implementation can
be dramatically improved and may eventually lead to such
results.

1 Introduction

1.1 The problem

Dealing with scalar potentials is one of the ubiquitous tasks
one faces when building models beyond the Standard Model
(SM). Since the discovery of the Higgs boson in 2012 [1,2],
we know that the Higgs mechanism, in some form, is at
work. What we do not know is whether it is as mini-
mal as in the SM or if the SM-like 125GeV Higgs boson
is the tip of the iceberg of a sophisticated scalar sector
[3].
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When working with multiple interacting scalar fields, one
usually builds a scalar potential and then finds its minimum
to determine the vacuum expectation value configuration.
Before minimizing the potential, it has to be made sure that
a global minimum exists in the first place. Thus, one must
verify that the potential is bounded from below (BFB).1

At tree level, the scalar potential is written as a polynomial
in scalar fields. If one keeps the scalar interactions renor-
malizable, the polynomial degree of the potential is four. By
denoting the real scalar fields generically as φi , i = 1, . . . , n,
one can represent such a scalar potential as

V (φi ) = V0 + Qi jklφiφ jφkφl , (1)

where V0 includes all lower-degree monomials and a summa-
tion over repeated indices is assumed. At large quasiclassical
values of the scalar fields, the quartic term dominates over the
lower-degree terms. Therefore, the condition for the potential
V to be bounded from below in the strong sense is equivalent
to the requirement that

Qi jklφiφ jφkφl > 0 for all vectors (φi ) ∈ R
n\{0}. (2)

Since the scalar potential depends on several free parameters,
which we collectively denote {�a}, the BFB condition (2)
carves out a region in the {�a}-space. If one wishes to build a
model based on the potential, one must make sure the selected

1 To be precise, boundedness from below is a necessary but not suf-
ficient condition for a minimum to exist. Consider, for example, the
following function of two real variables x and y:

V (x, y) = (xy − 1)2 + y4 .

It is clearly bounded from below, as both terms are strictly non-negative,
but it does not possess a global minimum. As one moves along the
hyperbole xy = 1 to large x values, V → 0 but never reaches zero.
However, we know of no multi-scalar example which makes use of this
mathematical peculiarity. Therefore, in this paper, the BFB conditions
will be understood as equivalent to the existence of a minimum.
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parameters correspond to a point inside it. Thus, the task
is to efficiently describe this region, preferably in terms of
inequalities on the parameters {�a}.

It is this task, in the general setting, that we want to attack
in this work in an algorithmic fashion.

Before we move on, let us make a few clarifying com-
ments. First, a potential can be bounded from below even if
there exist some flat directions of the quartic potential, that
is, subspaces of Rn in which the quartic term in (2) is exactly
zero. In this case, one needs to require that, within these sub-
spaces, the lower-degree terms in the scalar potential grow
and not decrease at large values of the fields. This situation
was called in [4] stability in the weak sense. Geometrically, it
corresponds to the boundary of the BFB region in the {�a}-
space, which we have just described. The solution to the BFB
problem in the strong sense, Eq. (2), is a prerequisite to estab-
lishing stability in the weak sense. Therefore, from now on,
we focus only on the BFB problem in the strong sense.

Second, one can distinguish necessary BFB conditions
and sufficientBFB conditions. Necessary BFB conditions are
the ones, which are truly unavoidable: their violation imme-
diately drives the potential to be unbounded from below.
However, satisfying a set of necessary conditions does not
automatically imply that the potential is BFB: the necessary
conditions may be too weak for that. Conversely, sufficient
BFB conditions are safe: if a parameter set satisfies them,
the potential is guaranteed to be BFB. However, they may
be overly restrictive: not satisfying a set of sufficient condi-
tions does not automatically rule out a given parameter set.
So, although a set of sufficient BFB conditions may be easy
to establish and implement in numerical scans, it will miss
potentially interesting parts of the available parameter space.

What we are looking for is a set of BFB conditions which
are, simultaneously, necessary and sufficient. They are more
difficult to establish than just a set of necessary and a differ-
ent set of sufficient conditions, but they incorporate the full
information on the allowed parameter space in a given class
of models.

Third, in quantum fields theory, quantum corrections can
destabilize a potential that would be stable in the classical
approximation. Finding the quantum corrections to the clas-
sical potential and checking their effect on stability is a sep-
arate issue, which we do not address in this work. We stress,
however, that it is an important problem for various popu-
lar multi-Higgs extensions of the Standard Model [5–7] and
that novel elaborate methods are being proposed to address it
in generic settings [8]. Fortunately, in many cases, the main
effect of quantum corrections can be absorbed into running
parameters of the renormalization-group-improved potential
{�a} without changing the polynomial structure of the poten-
tial. In these cases, the mathematical task of establishing the
BFB conditions remains unchanged.

1.2 Overview of the approaches to BFB conditions

Establishing the necessary and sufficient BFB conditions is
a technical, but notoriously difficult problem in any sophis-
ticated multi-scalar theory. There is no general, ready-to-use
solution to this problem, and various approaches have been
proposed for particular scalar sectors. Although our work
does not rely on them, we find it instructive to give a brief
overview of these approaches. We will explicitly give the
potentials and denote their coefficients by �a instead of the
more traditional notation λa because λ’s will be reserved for
the eigenvalues in the remainder of the text.

In models with few degrees of freedom or few interac-
tion terms, the exact BFB conditions can be established with
straightforward algebra. The convenient approach is to split
the degrees of freedom in the scalar field space into “radial”
and “angular” ones, factor out the radial dependence of the
quartic potential and explore the full domain of the angu-
lar coordinates. For instance, if the quartic scalar potential
depends on two fields φ1 and φ2, irrespective of their gauge
quantum numbers, via the portal-type coupling

V = �1|φ1|4 + �2|φ2|4 + �3|φ1|2|φ2|2, (3)

then one can parametrize |φ1|2 = r cos θ , |φ2|2 = r sin θ ,
with 0 ≤ θ ≤ π/2, and rewrite the potential as

V = r2(�1 cos2 θ + �2 sin2 θ + �3 sin θ cos θ), (4)

which must be positive definite for all values of θ . Since the
angular dependence can be written via the sine and cosine
of the single angle 2θ , this requirement immediately leads to
�1 > 0, �2 > 0, and �3 + 2

√
�1�2 > 0.

This approach was used, for example, back in 1978 [9]
to establish the BFB conditions for the two-Higgs-doublet
model (2HDM) with unbrokenZ2 symmetry, which was later
dubbed the Inert Doublet Model (IDM). This model uses
two electroweak Higgs doublets φ1 and φ2, and its quartic
potential has five terms:

V = �1|φ1|4 + �2|φ2|4 + �3|φ1|2|φ2|2 + �4|φ†
1φ2|2

+�5

2

[
(φ

†
1φ2)

2 + (φ
†
1φ2)

2
]
, (5)

with all parameters being real. The BFB conditions are

�1 > 0, �2 > 0, �3 + 2
√

�1�2 > 0,

�3 + �4 − |�5| + 2
√

�1�2 > 0. (6)

In the most general 2HDM, which includes such interaction
terms as (φ

†
1φ2)(φ

†
1φ1), this method runs into the difficulty

of dealing with several competing angular functions of dif-
ferent periods. It was only after the 2HDM potential was
rewritten in the space of gauge-invariant bilinears [4,10–12],
that the BFB conditions could be established. They were first
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presented in the form of an algebraic algorithm [4] and later
written in compact closed form [13] as inequalities imposed
not on the parameters �a themselves but on four eigenval-
ues �̂i of a real symmetric 4 × 4 matrix �i j which encodes
all quartic interaction terms. The form of these conditions is
very simple and basis-invariant,

�̂0 > 0, �̂0 > �̂1,2,3, (7)

but checking them within a specific 2HDM requires first find-
ing these eigenvalues, though this step can be easily imple-
mented in numerical scans of the parameter space.

A somewhat similar systematic method of deriving the
exact BFB conditions exists for models, in which the Higgs
potential can be written in terms of independent positive-
definitefield bilinears ri . In this case, the quartic potential can
again be rewritten as a quadratic form V = �i j ri r j , but its
positive definiteness must be insured only in the first orthant
ri ≥ 0. These conditions are known as copositivity (condi-
tional positivity) criteria. They were developed in [14–16]
and applied to such cases as some 2HDMs, singlet-doublet
models, models with Z3 symmetric scalar dark matter, and
left-right symmetric models.

Beyond two Higgs doublets, in the general N -Higgs-
doublet model (NHDM), the exact BFB conditions in closed
form are still not known. Several attempts to attack the prob-
lem with the bilinear space formalism [4,17–20] did not cul-
minate in a closed set of inequalities. The technical chal-
lenge is that, with N Higgs doublets, the space of bilinears
ra , a = 1, . . . , N 2 −1, does not span the entire RN2−1 space
but only a lower-dimensional algebraic manifold, which is
described with a series of polynomial constraints. Positive-
definiteness of a quadratic form on a complicated algebraic
manifold cannot be decided with linear algebra and requires
algebraic-geometric tools, that have not been found yet.

For larger gauge symmetries and for scalars in higher-
dimensional representations, it is appropriate to analyze the
scalar potential not in the scalar fields space but in the space
of gauge orbits. This approach flourished in 1980’s with the
advent of Grand Unification models, see, for example [21–
24], and a short historical overview in [16].

In specific multi-Higgs models, in which large continu-
ous or discrete symmetry groups dramatically simplify the
potential, the exact conditions can be established [25–30].
We mention, in particular, the method developed in [28,30]
to rewrite the Higgs potential as a linear combination of new
variables, the group-invariant quartic field combinations, and
to determine the exact shape of the space spanned by these
variables. This method is similar to the so-called linear pro-
graming, and it gives the BFB constraints directly from the
description of the shape of the space available.

In certain cases, when the exact necessary and sufficient
conditions are not known but a parameter scan still needs

to be performed, it may be enough to write down a set of
sufficient conditions. They may be overly restrictive, but if a
point satisfies them, the potential is guaranteed to be positive-
definite. An example of such conditions was given for a spe-
cific 3HDM in [31]. The idea is to pick up all terms with
“angular” dependence in the scalar field space and find a
lower bound for each term separately. For example, if the
potential contains a term (φ

†
1φ2)(φ

†
1φ3) with real coefficient

�, one can place the following lower boundary on it in the
ri ≡ |φi |2 space:

�(φ
†
1φ2)(φ

†
1φ3) ≥ −|�|r1

√
r2r3

≥ −|�|r1(r2 + r3)/2. (8)

In this way, the original potentialV can be limited from below
by another potential Ṽ , which is a quadratic form in terms of
ri and for which the copositivity criteria are applicable.

In this work we present an algorithm, which in principle
solves the problem in a generic setting. The algorithm uses
elements of the theory of resultants and of the recently devel-
oped spectral theory of tensors. However, solving the prob-
lem in principle is quite different from solving it in practice.
To our best knowledge, the approach was only briefly men-
tioned in [16] but was not developed any further nor imple-
mented in any code. We have implemented the method in a
computer-algebra code, which is available at GitHub [32],
and tested it in cases, in which analytical solutions already
exist. The complexity of the algorithm implementation grows
so fast that, with limited computer resources, we could not
apply it to cases where the results are not yet known.

This does not imply, of course, that this direction is a
dead-end. The method itself is innovative but the specific
algorithm we propose is clearly not optimal. We believe that
with additional efforts, it can be seriously improved and may
eventually produce a ready-to-use solution in various popular
classes of multi-scalar models, such as the general 3HDM.

The structure of the paper is the following. In the next
Section, we present our strategy and formulate the algorithm.
Section 3 contains an introduction to the spectral theory of
tensors, its application to the BFB problem, and describes a
practical algorithm to calculate the characteristic polynomial
of a symmetric tensor. In Sect. 4, we show how this method
works. We first do it with two elementary examples, in which
all calculations can be performed manually, and then apply
the computer-algebra package to the case of a Z2-symmetric
2HDM, where the BFB conditions are known. We find agree-
ment of the results, which serves as a check of the validity
of our algorithm. We end with a discussion in Sect. 5 of how
the algorithm can be improved in the future and draw con-
clusions. The Appendix contains a pedagogical introduction
to polynomial rings and polynomial division with an appli-
cation to the theory of resultants.
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2 Algorithmic path to BFB conditions

The BFB condition (2) is formulated in terms of positive-
definiteness of the real fully symmetric order-four tensor
Qi jkl in the entire space of real non-zero vectors φi , i =
1, . . . , n. If the order of the tensor were not four but two,
Mi j , then its positive definiteness in the entire space of non-
zero vectors φi could be easily established with elementary
linear algebra. One first views the tensor Mi j as a linear oper-
ator acting in the space R

n of vectors φi , and asks for its
eigenvalues and eigenvectors:

Mi jφ j = λ · φi . (9)

For a real symmetric Mi j , there are n real eigenvalues, which
can be found from the characteristic equation

Char(M, λ) = det(M − λ · 11) = 0. (10)

The tensor Mi j is positive definite if and only if all λi are
positive: λi > 0. The calculation of the determinant is done
through well-known algorithms, and it produces a polyno-
mial for λ of degree n, whose coefficients are multi-linear
functions of each individual entry of the matrix Mi j .

The critical complication of recasting the BFB condition
(2) into constraints on the order-four tensor Qi jkl lies pre-
cisely in the fact that it has higher order. Linear algebra is of
no use anymore. One needs to develop a theory that gener-
alizes the above chain “characteristic equation → determi-
nant → eigenvalues → positivity” to the case of higher-order
tensors, and to supplement the general theory with efficient
algorithms.

This theory exists and is known as the spectral theory of
tensors. Although the issue must have been discussed ear-
lier, it was only in 2005 that Lim [33] and Qi [34], indepen-
dently from each other, constructed fruitful generalizations of
spectral theory to higher-order tensors. These and subsequent
works gave a huge boost to the field, resulting in numerous
applications in various branches of pure and applied math-
ematics, for a brief review and a pedagogical introduction,
see [35] and the very recent book [36]. We will also provide
an introduction in the following section. For the moment, we
outline the general strategy.

There indeed exists a way—in fact, several ways—of gen-
eralizing eigenvalues and eigenvectors to tensors Qi1i2...im of
orderm (in our case,m = 4). They can be written as a system
not of linear but of polynomial equations of degree m − 1.
The eigenvalues λ are again determined by a characteristic
equation Char(Q, λ) = 0. However it is calculated not via
the determinant but via the resultant of a system of equa-
tions. The resultant is a polynomial in λ, whose coefficients
are polynomial—and not just linear—functions of the entries
of the tensor Q. It is much more complicated than the deter-

minant; in particular, its degree can be much larger than n.
However, there are algorithms for calculating resultants, that
can be implemented in computer-algebra codes.

Once the resultant is found, its roots give all the eigenval-
ues λ. It may happen that some of these real eigenvalues may
correspond to complex eigenvectors only. It just so happens
that such eigenvalues can be disregarded with respect to pos-
itive definiteness. Hence, we focus only on those eigenvalues
that produce real eigenvectors. The tensor Q is positive def-
inite if and only if all of these remaining eigenvalues are
positive.

From a computational point of view, the most challenging
and computer-time consuming step is calculating the resul-
tant for a given model. Just like for determinants, there exists
a recursive algorithm, but for non-linear equations its com-
plexity grows dramatically with the number of equations,
variables and the degree of the polynomials. The coefficient
of the characteristic polynomial may easily become so large
that usual computer packages are incapable of manipulating
such coefficients. Specialized algebraic–geometric packages
are needed for this purpose.

Once the resultant is found in its analytic form, it can be
used for any set of parameters. Checking the positivity of
those of its roots that correspond to real eigenvectors can be
done numerically in short time. In this way, even if the BFB
conditions cannot be written in a nice closed form, they can
easily be implemented in numerical scans of the parameter
space.

3 Elements of the spectral theory of tensors

In this section, we introduce the basics of the spectral theory
of tensors, which will be needed to describe the algorithm
we implemented. The presentation is based on the theory
developed by Qi [34]. A much more detailed introduction
can be found in the review [35] and the book [36].

3.1 Eigenvalues and positive definiteness

Let Q be a real, fully symmetric tensor of order m over
the vector space C

n . The elements of this vector space are
denoted by x. Although we will eventually be interested in
this tensor over the real vector spaceRn , we need the complex
space for the intermediate steps.

We call λ ∈ C an eigenvalue of Q if the system of equa-
tions

Qi1i2...im · xi2 . . . xim = λ · xm−1
i1

(11)

has non-trivial solutions x ∈ C
n\{0}. These solutions x are

then called eigenvectors. Notice that in Eq. (11) all indices
apart from i1 are summed over. The index i1 = 1, . . . , n is an
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open index; it labels the i1-th equation. Thus, Eq. (11) rep-
resents a system of n homogeneous polynomial equations of
degree m − 1 in n variables xi . The total number of eigen-
values, including multiplicity, is [34]

NQ = n(m − 1)n−1. (12)

For m = 2, the definition of Eq. (11) reduces to the eigensys-
tem of square matrices, and the total number of eigenvalues
is equal to n.

Even if the tensor Q is real and symmetric, its eigen-
values and eigenvectors can be complex. A real eigenvec-
tor is called an H-eigenvector; its associated eigenvalue—
which is unavoidably real—is called an H-eigenvalue. Do
note that in general there can be real eigenvalues which
are not H-eigenvalues, i.e. eigenvalues whose correspond-
ing eigenvectors are all complex. The existence of a real
eigenvector is necessary and sufficient for the existence of
an H-eigenvalue of a real, symmetric tensor. If one restricts
the vector space from C

n to R
n , then only the H-eigenvalues

and H-eigenvectors survive. A key theorem that links the
spectral theory of tensors with the BFB conditions is due
to Qi [34]. Suppose the real symmetric tensor Q is of even
order: m = 2k. Then H-eigenvalues exist, and Q is positive
definite,

Qi1i2...im · xi1xi2 . . . xim > 0 for all x ∈ R
n\{0}, (13)

if and only if all of its H-eigenvalues are positive. The task
of establishing the BFB conditions reduces to finding the H-
eigenvalues of the tensor Q. An alternative but equivalent
criterion is to check that none of the real negative eigen-
values, if any, corresponds to any real-valued eigenvector.
Checking this last condition may be less time consuming
since it requires eigenvector check only for a subset of all
real eigenvalues found.

We remark here that, in contrast to the eigenvalues of
matrices, the eigenvalues of tensors defined according to
(11) are not invariant under general basis rotations. In par-
ticular, the H-eigenvalues are not invariant under generic
O(n) rotations. It turns out, however, that the property of
all H-eigenvalues being positive is O(n)-invariant. It is this
property that makes them a useful indicator of positive-
definiteness in any basis.

We note in passing that in certain problems, where the
O(n) invariance of eigenvalues is crucial, one can adopt
another definition of eigenvalues, which is manifestly basis-
change invariant [33]. The problem of positive definiteness
of the tensor Q can also be formulated in terms of positivity
of these new eigenvalues. In this work, we prefer to stick
to the H-eigenvalues, as their application seems to be more
straightforward.

3.2 Characteristic polynomial and resultant

In order to find eigenvalues of the tensor Q, let us rewrite the
system of coupled homogeneous polynomial Eq. (11) in the
following form:

f1 = Q1i2...im · xi2 . . . xim − λ · xm−1
1 = 0

f2 = Q2i2...im · xi2 . . . xim − λ · xm−1
2 = 0

...

fn = Qni2...im · xi2 . . . xim − λ · xm−1
n = 0. (14)

In that way, we simply ask for non-trivial (x �= 0) solutions
to n coupled, homogeneous polynomial equations in n vari-
ables. In particular, we want to know for which values of λ

such solutions exist. For any system of homogeneous poly-
nomials f1, . . . , fn of n variables x1, . . . , xn , there always
exists a polynomial in the coefficients of f1, . . . , fn , called
the resultant Res( f1, . . . , fn), with the following property
[34]: non-zero solutions to f1 = 0, . . . , fn = 0 exist if and
only if Res( f1, . . . , fn) = 0. In the case of Eq. (14), the coef-
ficients of fi contain λ. The resultant Res( f1, f2, . . . , fn)
can then be viewed as a single polynomial in λ whose coef-
ficients depend on the entries of the tensor Q. It is called the
characteristic polynomial Char(Q, λ), and its roots give all
the eigenvalues of the tensor Q. Just as for determinants, the
value of Char(Q, λ) at λ = 0 is equal to the product of all
eigenvalues.

Resultants are much more difficult to calculate than deter-
minants. In fact, for the fields Q, R and C the calculation is
at least NP-hard [37]. Every NP-problem has an algorithm
for which the execution time scales exponentially with the
input. The calculation time is thus extremely sensitive to the
number n of polynomials and to their respective degrees.

Multivariate resultants were first studied by Macaulay
[38]. Due to him there is an algorithm that expresses the
resultant as a quotient of the determinants of two matrices.
The size of these two matrices grows rapidly with the num-
ber n and the polynomial degrees deg( fi ), which renders this
algorithm not very space efficient. A more economical algo-
rithm can be found in [39], Theorem 3.4. It uses a recursive
approach that we present now. Readers wishing to refresh
their knowledge about the ring of polynomials and polyno-
mial division can consult the Appendix 1.

3.3 An explicit resultant algorithm

Given homogeneous polynomials f1, . . . , fn ∈ C[x1, . . . , xn]
with degrees di := deg( fi ), we define two sets of new poly-
nomials

f̄i = fi (0, x2, . . . , xn)

Fi = fi (1, x2, . . . , xn). (15)
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The polynomials f̄i are again homogeneous and of the same
degrees di but of n − 1 variables. One can use n − 1
of them to define the smaller resultant Res( f̄2, . . . , f̄n). If
Res( f̄2, . . . , f̄n) �= 0, one has

Res( f1, f2, . . . , fn) = (
Res( f̄2, . . . , f̄n)

)d1 · det M1. (16)

Here, d1 is the degree of the eliminated polynomial f1, and
the matrix M1 is defined by the map

M1 : [r ] 	→ [r ] · [F1] = [r · F1], (17)

with the quotient ringC[x2, . . . , xn]/〈F2, . . . , Fn〉 viewed as
a complex vector space of dimension D = d2 ×· · ·×dn with
elements [r ] and [F1].

Let us explain the last statement in simple terms. It says
that we need to consider the remainders r which we get
after dividing all possible polynomials in x2, . . . , xn by
the ring ideal constructed with the generating polynomials
F2, . . . , Fn . These remainders form a vector space, and a
basis for this vector space must be found. The basis vectors
(independent remainders) can be further multiplied by the
polynomial F1—the one dropped in the construction of the
ideal—and the results can be again reduced to the remainders
and expanded in the same basis. Thus, F1 acts as a linear map
in this space, and we describe it with the matrix M1, whose
determinant we calculate.

In technical terms, we first build the monomial basis of
this vector space by scanning through all possible monomi-
als ma = xe2

2 . . . xenn of ascending total degree deg(ma) =∑n
i=2 ei = 0, 1, 2, etc. Then we divide all monomials by the

ideal 〈F2, . . . , Fn〉, for which we first need to find the Gröb-
ner basis Gi (see the brief introduction in Appendix 1). At
the end, we obtain D = d2×· · ·×dn unique, non-zero, linear
independent monomial remainders ra which serve as basis
vectors [ra] of the quotient ring viewed as vector space. The
same division is repeated for the polynomials ra · F1 whose
remainders [ra · F1] can be expanded in this basis

[ra · F1] =
D∑

b=1

[rb] · (M1)ba . (18)

In this way we obtain the desired square matrix M1 and cal-
culate its determinant.

One can recursively repeat the procedure n−1 times to end
up with the resultant of a single homogeneous polynomial f̃n
in one variable xn of degree dn . The only possible form for
this polynomial is

f̃n(xn) = α · xdnn , (19)

with some α ∈ C. By definition, the resultant Res( f̃n) is
zero if and only if there are non-trivial solutions to f̃n = 0.

Therefore,

Res( f̃n) = α. (20)

Hence, after n − 1 steps the calculation of the resultant ter-
minates with a trivial relation.

If it happens that one of f̄i ≡ 0, i = 1, . . . , n, then we
must eliminate it instead of f̄1 and proceed further. But it
may also happen that two or more among f̄i ≡ 0. In this case,
we get no more than n − 2 polynomial conditions f̄i = 0
on n − 1 variables, so that the system becomes underdeter-
mined, and non-trivial solutions always exist, which implies
that Res( f̄2, . . . , f̄n) = 0.

In the following section and in the appendix, we give a
few examples of how this algorithm works.

4 Applications

4.1 Elementary example 1

We start with the simplest possible example: the quadratic
potential in two variables

V (x1, x2) = ax2
1 + 2bx1x2 + cx2

2 ≡ Qi j xi x j . (21)

The eigenvalues are defined according to

f1 := Q1 j x j − λx1 = ax1 + bx2 − λx1 = 0,

f2 := Q2 j x j − λx2 = bx1 + cx2 − λx2 = 0. (22)

These polynomials are of degrees d1 = d2 = 1. According
to the algorithm, we build two other polynomial sets:

f̄1 := bx2, f̄2 := (c − λ)x2, (23)

and

F1 := a − λ + bx2, F2 := b + (c − λ)x2, (24)

and calculate the resultant as

Res( f1, f2) = (
Res( f̄2)

)d1 · det M1. (25)

In the ring of all polynomials in x2, we define the ideal 〈F2〉,
and need to describe the space of remainders r of polynomial
division by the ideal 〈F2〉. This ideal is generated by the single
polynomial, so there is no need to search for the Gröbner
basis. This space is one-dimensional, D = d2 = 1, and
the real unit 1 can serve as the basis vector in this space.
The polynomial F1 can be divided by this ideal giving the
following remainder r :
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F1 = a − λ + bx2 = b

c − λ
F2

+
(
a − λ − b2

c − λ

)
≡ qF2 + r. (26)

Thus, the matrix M1 is just a single number describing the
linear map [1] → [1·F1] = [r ], giving M1 = a−λ−b2/(c−
λ). Finally, according to (19), the resultant Res( f̄2) = c−λ.
Therefore, the total resultant in Eq. (25) is

Res( f1, f2) = (c − λ)1 ·
(
a − λ − b2

c − λ

)

= (c − λ)(a − λ) − b2, (27)

which coincides with the usual determinant of the matrix
(Q − λ · 11). By setting this resultant to zero, we obtain the
characteristic equation, whose roots give the eigenvalues λ:

λ1,2 = 1

2

(
a + c ±

√
(a − c)2 + 4b2

)
. (28)

These roots are real and correspond to real eigenvectors,
therefore they qualify as H-eigenvalues. The BFB conditions
for the potential (21) are λ1 > 0, λ2 > 0. One can recast
these conditions into λ1 + λ2 > 0 and λ1λ2 > 0, which are
then translated into the usual expressions a > 0, c > 0, and
ac − b2 > 0.

4.2 Elementary example 2

The previous calculation was so simple because (1) we
needed just one iteration, (2) the vector space of the remain-
ders was one-dimensional, (3) the polynomial equations were
of degree 1. Let us now consider a slightly more elaborate
example:

V (x1, x2) = ax4
1 + 2bx2

1 x
2
2 + cx4

2 ≡ Qi jkl xi x j xk xl . (29)

The standard treatment of this potential resorts to the so-
called copositivity criteria [14]. One defines new variables
z1 = x2

1 , z2 = x2
2 , and rewrites the potential as a quadratic

form in terms of z1 and z2. Then one asks for the positive
definiteness of this quadratic form not on the entire (z1, z2)

real plane but only in the first quadrant, z1, z2 ≥ 0. The final
result is similar to the previous case with the third condition
being more relaxed:

a > 0, c > 0,
√
ac + b > 0, (30)

which implies that b can now be arbitrarily large provided it
is positive.

Let us rederive these results via resultants. The eigenvalues
are defined according to

f1 := ax3
1 + bx1x

2
2 − λx3

1 = 0,

f2 := bx2
1 x2 + cx3

2 − λx3
2 = 0. (31)

These polynomials are of degrees d1 = d2 = 3. The two
auxiliary polynomial sets are

f̄1 ≡ 0, f̄2 := (c − λ)x3
2 , (32)

and

F1 := a − λ + bx2
2 , F2 := bx2 + (c − λ)x3

2 . (33)

The ideal 〈F2〉 is again generated by a single polynomial in
one variable, and we do not need to search for the Gröb-
ner basis. The vector space of remainders of the polyno-
mial division of all polynomials in x2 by this ideal is three-
dimensional. The basis vectors can be chosen r1 = 1,
r2 = x2, r3 = x2

2 . Higher powers of x2 can be divided giving
remainders in this space; for example

x3
2 = 1

c − λ
F2 +

(
− b

c − λ

)
x2, (34)

which is equivalent to −b/(c−λ) · r2. We can then calculate
the action of F1 in this space:

1 · F1 = a − λ + bx2
2 = (a − λ) · r1 + 0 · r2 + b · r3,

x2 · F1 = (a − λ)x2 + bx3
2

= 0 · r1 +
(
a − λ − b2

c − λ

)
· r2 + 0 · r3,

x2
2 · F1 = (a − λ)x2

2 + bx4
2

= 0 · r1 + 0 · r2 +
(
a − λ − b2

c − λ

)
· r3. (35)

The matrix M1 is

M1 =
⎛
⎝
a − λ 0 0

0 q 0
b 0 q

⎞
⎠ , where q := a − λ − b2

c − λ
. (36)

Knowing that Res( f̄2) = c − λ, we can calculate the full
resultant as

Res( f1, f2) = (
Res( f̄2)

)d1 · det M1

= (c − λ)3 · (a − λ)

(
a − λ − b2

c − λ

)2

= (c − λ)(a − λ)
[
(c − λ)(a − λ) − b2

]2
.

Solving Char(Q, λ) = 0 yields six eigenvalues in accordance
with Eq. (12):

λ1 = a, λ2 = c,

λ3,4 = λ5,6 = 1

2

(
a + c ±

√
(a − c)2 + 4b2

)
. (37)
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all of which are always real. In order to find which of them
are relevant for the BFB check, we need to find their eigen-
vectors. This can be done by substituting eigenvalues back
into the original Eq. (31). We find that λ1 corresponds to
x ∝ (1, 0), λ2 corresponds to x ∝ (0, 1). Thus, they qualify
for H-eigenvalues and produce conditions a > 0 and c > 0.

For the remaining eigenvalues, the discussion requires
some care. If b = 0, no additional eigenvalues appear; thus,
we can safely consider b �= 0. In this case, the eigenvectors
lie on the rays x2 = k · x1 with the proportionality coefficient
defined by

k2 = 1

2b

(
c − a ±

√
(a − c)2 + 4b2

)
, (38)

where the ± sign is the same as in (37). Since the square root
is always larger than |c− a|, we always get one positive and
one negative expressions for k2. Since we are looking for the
real solutions, k must be real, and we always keep only one
k2, depending on the sign of b. Thus, we get the additional
H-eigenvalue:

b > 0 ⇒ λ = a + c + √
(·)

2
, k2 =

√
(·) + c − a

2b
,

b < 0 ⇒ λ = a + c − √
(·)

2
, k2 =

√
(·) − c + a

2|b| , (39)

where
√

(·) denotes
√

(a − c)2 + 4b2. This additional H-
eigenvalue must also be positive for the potential to satisfy
BFB conditions. However, in the former case, b > 0, the con-
ditions we have already established a > 0, c > 0, guarantee
that this extra λ is positive. No extra constraint is needed
in this case. In the latter case, b < 0, the condition λ > 0
is a new one and it restricts the absolute value of the neg-
ative parameter b: |b| <

√
ac. In this way, we recover the

copositivity result (30).
We can draw several observations from this example.

First, we see that the degree of the characteristic polynomial
quickly grows for non-linear equations. Fortunately, we had
to perform only one iteration in this example, and the degree
stopped at six. In more elaborate situations, even with two
iterations, the degree will grow very fast. At each iteration,
the resultant is factorized into a secondary resultant and a
determinant of a matrix M . However it does not imply that
the final expression for the resultant could be easily factorized
into these blocks. We saw that det M1 was not a polynomial
in λ on its own because it contained λ in the denominator.
It required two extra powers of c − λ to become a poly-
nomial. Therefore, for situations slightly more sophisticated
than the elementary examples considered, we may easily run
into higher-order polynomials in λ whose solutions cannot
be written in closed algebraic form.

This leads us to the conclusion that one should abandon
the hope to represent the BFB conditions in such elaborate

situations in terms of explicit inequalities for the parameters
of the potential. The final analytical form of the exact BFB
conditions will be Char(Q, λ) = 0, and one would need
to resort to numerical methods to find all real solutions of
the characteristic equation. Fortunately, numerically solving
polynomial equations in a single variable can be done in short
time even for very high-degree polynomials.

Another observation is that eigenvalues themselves do not
provide the final answer; one also needs to check the corre-
sponding eigenvectors. Whether a given real eigenvalue is
an H-eigenvalue or not depends on the numerical values of
the tensor entries. This is an additional complication for the
fully analytic treatment of the problem but it can be resolved
in reasonable time with numerical methods.

We wrap up this example by noticing that even if one
considers, instead of Eq. (29), the most general quartic poly-
nomial in two real variables, the resultant can still be found
analytically with the same strategy. This case, however, has
also been studied previously, [16].

4.3 Implementation

The above two elementary examples were simple enough
to be done by hand. Although the calculations become much
more involved in less trivial examples, the algorithm remains
unchanged and can be implemented in a computer-algebra
code. We did it within the Mathematica [40] and Macaulay2
[41] platforms, and our Mathematica package BFB [32] is
publicly available at GitHub. In this subsection we describe
its implementation and the challenges we had to tackle.

The algorithm for testing BFB conditions of a given scalar
potential V includes the following steps:

1. Rewrite the potential V in terms of real scalar fields x ∈
R
n , extract the tensor of quartic couplings Qi jkl , and set

up the polynomials fi = Qi jkl · x j xk xl − λ · x3
i .

2. Calculate Char(Q, λ) = Res( f1, f2, . . . , fn).
3. Find all real roots λ ∈ R of Char(Q, λ) = 0.
4. Check all non-positive roots λ ≤ 0 for non-trivial, real

solutions x ∈ R
n\{0} to the equations f1 = f2 = · · · =

fn = 0.
5. The potentialV is bounded from below if and only if there

are no such real solutions for the non-positive roots.

In step 1, it is important to make sure that all real fields
xi can span the entire real space and not just a subset of
it. If this condition is not met, the algorithm may only yield
sufficient but not necessary constraints on the scalar potential
parameters, simply because positive definiteness of Q in the
entire space may be too restrictive. It is this requirement
that impedes its application in the space of gauge-invariant
bilinears in multi-Higgs-doublet models.
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Step 2 is the key step of the algorithm and it is more
complicated. The usual computer-algebra packages such as
Mathematica and Maple have implementations for the cal-
culation of resultants for two polynomials in at most two
variables. They do not have a general implementation for
the calculation of multivariate resultants. One way to pro-
ceed would be to implement the resultant algorithm pre-
sented in Section 3.3 within Mathematica or Maple, rely-
ing on their support for polynomial division algorithms such
as finding Gröbner bases etc. An alternative procedure is
to use a more specialized computer algebra system such as
Macaulay2 [41], which is designed for problems in algebraic
geometry. It allows for the symbolic manipulation of poly-
nomials and the calculation within quotient rings and ideals
over the field of integers or rational numbers. The imple-
mentation of multivariate resultants is provided as a package
called Resultants [42]. The currently tested version of BFB
[32] uses this package.

At step 3, for analytic Higgs potential parameters, it is not
clear if it is in general possible to decide whether a root is
real or not. Hence, most of the time this has to be decided
after numeric values have been chosen.

Similarly to the calculation of resultants, performing step
4 can be rather involved. It reduces to a proof of existence
of real solutions for a given set of polynomial equations.
In the univariate case this problem can be tackled by the
Sturm sequence. For the more interesting multivariate case,
the decision problem of real solutions has been solved by the
Tarski-Seidenberg theorem [43]. The implementation of BFB
uses Mathematica’s function called FindInstance to construct
a real solution if possible.

In practice there are two different scenarios for which one
would apply this algorithm. Firstly, to have a numerical check
of boundedness for a given point in the parameters space of
the Higgs potential. The Higgs potential will have numeric
coefficients from the beginning.

Secondly, one would want to derive analytic constraints
that can be later evaluated numerically. The algorithm in
step 2 can in principle produce the characteristic polyno-
mial Char(Q, λ) in analytic form for any model. However,
because calculating resultants is NP-hard [37], this step can
be very challenging. We saw that calculating the resultant in
analytic form within the IDM, which is discussed below, eas-
ily exceeds the time scale of several weeks with the current
implementation of BFB. We are confident that this imple-
mentation is not the most optimal one, and we hope that
more efficient algorithms can be applied.

Next, even if the characteristic polynomial Char(Q, λ) is
known in analytic form, its degree can easily grow far above
four, which may preclude expressing its roots in an analytic
way. Thus, at this stage, one would need to resort to numeri-
cal methods and explore the parameter space with numerical
scans. Fortunately, numerically solving a polynomial equa-

tion in a single real variable can be done in relatively short
time. We found that, for the IDM case, numerical calculations
in step 3 and 4 take at most a few seconds.

4.4 Inert Doublet Model

The quartic part of the Higgs potential of the Inert Doublet
Model, which makes use of two Higgs electroweak doublets
φ1, φ2 ∈ C

2, is given by Eq. (5). The analytic BFB conditions
were first derived in [9] and are given in (6).

We treated this problem with the BFB package [32]. The
scan of the parameter space was done numerically. This
means that we did not attempt to derive the analytical expres-
sion of the characteristic polynomial but, for each point in the
scan, the Higgs potential parameters were assigned numeri-
cal values before running the algorithm. To reduce the com-
plexity of the problem, the SU(2) symmetry of the Higgs
potential was exploited. A given potential value V at a cer-
tain point x ∈ R

8 of variables can be equally expressed by
a different point x′ ∈ R

8 if the two points are connected
through an SU(2) transformation of the two Higgs doublets.
Hence by an appropriate choice of transformation, one can
make three of the eight variables vanish. This eliminates flat
directions of the potential and corresponds to the calculation
of constraints in unitary gauge.

In Fig. 1 we show the exclusion plots in a selection of two
parameter planes; additional plots can be found in [44].

The green region is excluded by the analytic constraints
of Eq. (6). The yellow region is allowed. Black dots are those
points from the numerical scan which were approved by the
package BFB. They perfectly agree with the analytical con-
ditions.

It is worth mentioning that Macaulay2 [41] allows one
to calculate the resultant not only over a field but also over
the ring of integers. This is on average faster because the
intermediate polynomial division steps require the division of
the coefficients. Within the ring of integers this is effectively
done by a modulo operation which is much faster than an
actual division. The computation time varied from 3 to 8 h
per parameter space point. Almost the whole time was spent
for the calculation of the resultant. We also observed a strong
dependence of the calculation time on the complexity of the
input parameters: simpler coefficients such as 1/10 would
result in a faster calculation than coefficients like 743/999.

According to (12), for the five-variable version of the
IDM, the degree of the characteristic polynomial is equal
to NQ = 5 × 34 = 405. Hence the initial parameters
will approximately be raised to this total power making
the resulting numerator and denominator a huge number
which cannot be stored in CPU registers. For instance, with
�1 = �2 = �3 = 1, �4 = 9.01587 and �5 = −10.2132
the largest coefficient of the characteristic polynomial is
≈ 3.452 × 101137. Thus, special libraries for integer manip-
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Fig. 1 Exclusion plot for two parameter planes: (i) with �1 = �5 = 5,
�4 = 1 and (ii) with �1 = �2 = �3 = 1. The green region is excluded
by analytic constraints, the yellow region is allowed. Black points are
allowed according to a parameter scan with BFB [32]

ulation, which emulate the CPU’s arithmetic logic unit, have
to be used. The runtime of the remaining algorithm, after
the calculation of the characteristic polynomial, is negligi-
ble. For the above parameter point, calculating and testing
all H-eigenvalues takes no longer than 3 s.

5 Discussion

5.1 The present situation

Checking that scalar potentials are BFB is a notoriously dif-
ficult problem, which impedes efficient exploration of many
models with extended scalar sectors. Analytical BFB con-
ditions are known only in special and rather simple cases.
For example, in models with three Higgs doublets the BFB
conditions remain unknown beyond the few cases with large
symmetry groups.

In this work we presented and developed a novel approach
to establishing the BFB conditions of generic polynomial
scalar potentials, which, to our best knowledge, was briefly
mentioned only in [16] and was not pursued any further by
the HEP community. The method relies on certain unconven-
tional mathematical methods such as the theory of resultants
and the spectral theory of tensors. In this approach, the BFB

conditions are equivalent to calculating a well defined char-
acteristic polynomial and checking that its real roots satisfy
certain conditions. We described an explicit algorithm of cal-
culating the characteristic polynomial and illustrated it with
two elementary cases, where all calculations can be done
manually. We also implemented the algorithm in a Mathemat-
ica package BFB [32] which is publicly available at GitHub.
We validated its performance with the case of the Inert Dou-
blet Model, for which the conditions are known analytically,
and we found perfect agreement.

Unfortunately, we have not yet produced ready-to-use ana-
lytical results for other, more complicated cases, where the
BFB conditions are at present unknown. This is in part due to
the intrinsic complexity of the problem: it is NP-hard and the
computation time grows exponentially with the input infor-
mation. However, we also believe that our current implemen-
tation is not the most optimal one, and we hope that it can
be dramatically improved in the future. Since the approach
is novel, we call for a community effort in optimizing this
approach.

5.2 Directions for future work

The algorithm presented in this work is capable of construct-
ing BFB constraints for any Higgs potential. The bottleneck
of runtime is the calculation of the characteristic polyno-
mial. We see four possible improvements that may increase
the speed drastically.

First, the current implementation of BFB [32] uses no
parallelization even though there is great potential to do so.
This is mainly because the whole calculation of the resul-
tant is outsourced to the computer algebra system Macaulay2
[41]. There are two critical algorithms that may be subject to
improvement: the calculation of the Gröbner bases and the
calculation of the resultant. Both of them are under steady
investigation of the mathematical community. For Gröbner
bases, there are Faugére’s algorithms F4 [45] and F5 [46]
both of which are highly parallelizable. Macaulay2 includes
already four different algorithms for the calculation of the
resultant. The algorithm presented in Sect. 3.3 from [39],
Theorem 3.4, is one of them. Part of it is the calculation
of the intermediate matrices Mi . Currently, the elements are
obtained in a linear way on one CPU only. However, each row
can be calculated independently. For the IDM test of Sect.
4.4, M1 already has 81 rows, so here is a huge potential for
parallelization. Also, the calculation of the basis of the quo-
tient ring is a simple scan through low degree polynomials
and can be distributed over any number of cores. Macaulay2
implements also the classic algorithm by Macaulay [38]. It
is less space efficient but may be more time efficient when
it comes to the calculation of resultants of polynomials with
many variables. Furthermore, Macaulay2 implements a vari-
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ation of these two algorithms that makes use of polynomial
interpolation (see for instance [47,48]).

Second, as one can probably already conclude, not only
the possibility of parallelization may speed up the process of
resultant calculations, but also the choice of the respective
algorithm. There is a multitude of publications on this topic.
Depending on the specific form of the input polynomials
there might exist much faster algorithms than the presented
one. For instance, Macaulay proposed a modified version of
his algorithm that can be used if all polynomials share the
same degree [49]. This is applicable to the current case of
Higgs potential boundedness and should definitely be tested.
It is this approach that might bypass the NP-hardness [37] of
resultant calculations for Higgs potential boundedness.

Third, the scalar potentials we encounter are gauge invari-
ant, and this implies a certain redundancy when writing them
in terms of real fields. For example, for the IDM test of Sect.
4.4, we used the SU(2) symmetry of the Higgs potential to
reduce the number of variables from 8 to 5. It is plausible
that additional symmetries of other multi-Higgs models can
be exploited in a similar way. Furthermore, since the BFB
check can be performed in any basis, one may take advan-
tage of the basis-change freedom to switch to a basis that is
more convenient. This may result in a further reduction of
variables or parameters. Another symmetry driven approach
is the usage of E-eigenvalues [35], which are, unlike H-
eigenvalues, invariant under orthogonal transformations. A
short discussion of the implications with respect to Higgs
potential boundedness can be found in [44].

Lastly, when performing the scans of the parameter space,
one can use the ring of integers instead of a field of num-
bers for the polynomial coefficients. As we saw with the
IDM example in Sect. 4.4, this option changes the runtime.
Rational numbers Q might be the worst choice because they
incorporate an inefficient division algorithm (finding great-
est common divisors etc.) and have a bad scaling with pow-
ers (numerator and denominator can get very large). Inte-
gers Z are more efficient when it comes to the used divi-
sion operations (modulo operations) but still possess a bad
scaling with powers. Macaulay2 only allows for these two
options. The field of real numbers R may be an intermedi-
ate solution that trades accuracy for runtime. The division
algorithm is not as fast as for integers but calculations of
powers are faster and more space efficient (floating point
numbers store powers separately). Currently there exists no
implementation of resultant algorithms that work with both
analytic parameters and real numbers. There is a working
framework called MARS [50] that can handle the calcula-
tion of the resultant numerically. It is possible to perform
a scan over a bounded range of values for the eigenval-
ues λ and test for the numerical vanishing of the resultant.
This is numerically unstable though, since the resultant is
in general a high-degree polynomial in λ and accuracy will

play an important role here. Nevertheless, this is a feasible
approach.

The long term goal is to have an algorithm that can
produce the analytic form of the characteristic polynomial
for various Higgs potentials. It is true that computing this
polynomial in a specific model, for example, in 3HDM,
even after parallelization and optimizaiton may require much
computer time. However, once the characteristic polynomial
is calculated in its full analytic form, it can be published
and distributed, and it can be readily used for all subse-
quent checks of BFB conditions in this model. Such “mining
of characteristic polynomials” is definitely worthy of extra
efforts.
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Appendix A: Polynomial rings, division and resultants

In this section, we remind the reader of basic notions on the
ring of polynomials, their division, and the theory of resul-
tants, the objects which indicate when a system of polynomial
equations has non-trivial solutions. To keep the material eas-
ily readable, we will expose it in plain language and reduce
the formal notation to the bare minimum.

Appendix A.1: Polynomial rings

A polynomial in one variable x is an expression of the form

g := a0 + a1 · x + a2 · x2 + · · · + am · xm, (A.1)

with the coefficients ai belonging to some field F, e.g. Q,
R, or C. The non-negative integer m is called the degree
of the polynomial. The collection of all polynomials of all
degrees forms an algebraic structure called the polynomial
ring F[x]. A ring has richer structure than a vector space,
because its elements, in addition to summation and multi-
plication by another number from the field F, can also be
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multiplied among themselves, with the result staying inside
the ring. However, unlike fields, polynomial rings may lack
multiplicative inverses.

Similarly, one can define a polynomial ring in sev-
eral variables x1, . . . , xn over the same field; it is denoted
as F[x1, . . . , xn]. The polynomial f ∈ F[x1, . . . , xn] is
called multivariate, while g ∈ F[x] is univariate. A mono-
mial in F[x1, . . . , xn] is a product of powers of the form
xd1

1 xd2
2 . . . xdnn . Its (total) degree is the sum of all individual

powers: d = ∑
i di . Clearly, any polynomial is a linear com-

bination of monomials. The degree of a multivariate polyno-
mial is the highest degree among all of its monomials.

Appendix A.2: Ideals and polynomial division

Just as for groups or vector spaces, rings can have subrings,
which are subsets closed under all of its operations. However,
rings also contain another important substructures called ide-
als. A polynomial ideal is a subring I ⊆ F[x] such that I is
closed under multiplication by the whole ring: if i ∈ I and
r ∈ F[x], then r · i ∈ I .

Ideals are closely related to polynomial division. Consider
first univariate polynomials. The following theorem holds:
for all f, g ∈ F[x], there are unique q, r ∈ F[x] such that

f = q · g + r, (A.2)

with either r = 0 or deg(r) < deg(g). One calls q the quo-
tient and r the remainder of the (Euclidean) polynomial divi-
sion of f by g. If r = 0, then f is divisible by g. The set of all
f that are divisible by g forms an ideal I , which is denoted as
I := 〈g〉. By Hilbert’s basis theorem, every univariate ideal
has this form, see, for example, [39], p. 4.

For a multivariate polynomial ring R := F[x1, . . . , xn],
every ideal is also of the form

I = 〈g1, g2, . . . , gm〉
= {q1 · g1 + q2 · g2 + · · · + qm · gm | qi ∈ R} (A.3)

for some m ∈ N. The polynomials gi are called generators
of I . Polynomial ideals are always finitely generated. How-
ever, the relation of ideals to polynomial division, that is,
representing f as

f = q1 · g1 + q2 · g2 + · · · + qm · gm + r, (A.4)

with some remainder r becomes more subtle.
Consider, for example, F[x1, x2] and try to divide f =

x2
1 x2 + x1x2

2 + x2
2 by g1 = x1x2 − 1 and g2 = x2

2 − 1. Then,
the decomposition (A.4) is not unique:

f = (x1 + x2) · g1 + 1 · g2 + (x1 + x2 + 1)

f = x1 · g1 + (x1 + 1) · g2 + (2x1 + 1). (A.5)

The uniqueness of the qi and r is lost compared to the univari-
ate case. To understand why this happened one has to look at
the explicit algorithm used to derive these results. In the first
example of Eq. (A.5), the term (x1 + x2) · g1 cancels both of
the terms of highest degree in f , while in the second example
x1 · g1 only cancels the first one. For univariate polynomials
there is no ambiguity in deciding what the leading order term
is.

To restore the uniqueness for the multivariate case, one
first has to introduce a monomial ordering, which would
uniquely identify a leading term for every polynomial. Sev-
eral options are possible. For example, the lexicographic
order starts by ordering the variables themselves, x1 > x2 >

· · · > xn , and then demands that

xd1
1 xd2

2 . . . xdnn > xe1
1 xe2

2 . . . xenn (A.6)

if in the difference (d1, . . . , dn) − (e1, . . . , en) the left-most
non-zero entry is positive. This is analogous to the ordering
of words in dictionaries.

Still, choosing the lexicographic ordering does not com-
pletely restore the uniqueness in the above example. How-
ever, instead of thinking of Eq. (A.4) as a division of f by
a given set of polynomials gi , one can think of it as a divi-
sion by the ideal 〈g1, . . . , gm〉. In this way, one can define
an equivalent set of polynomials, which span the same ideal
and for which uniqueness is restored. That is, for every set
of gi , there exists a set of g̃i called a Gröbner basis such that

I = 〈g1, g2, . . . , gm〉 = 〈g̃1, g̃2, . . . , g̃m̃〉 (A.7)

and it holds that for any f ∈ I there exists a g̃i such that the
leading term of f is divisible by the leading term of g̃i . In a
sense, a Gröbner basis is the smallest generating set for I ; it is
a convenient choice to make division unique. There exists an
algorithm due to Buchberger (see for example [39], p. 15),
which allows one to find a Gröbner basis algorithmically.
Most computer algebra systems like Mathematica (function
call: GroebnerBasis) and Maple (package: Groebner, func-
tion call: Basis) implement this or similar algorithms.

In the above example (A.5) with the lexicographic order-
ing, the Gröbner basis for 〈g1, g2〉 is given by g̃1 = x1 − x2,
g̃2 = g2 = x2

2 −1. The ideals spanned by both pairs are equal
because g1 = x2 g̃1 + g̃2 and, conversely, g̃1 = x2g1 − x1g2.
The division of f by 〈g1, g2〉 can be performed as a division
by polynomials g̃i using the lexicographic ordering, resulting
in

f = (x1x2 + 2x2
2 )g̃1 + (2x2 + 1)g̃2 + 2x2 + 1. (A.8)

A different ordering may lead to a different Gröbner basis
and a different remainder.
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Appendix A.3: Quotient ring as a vector space

Consider a polynomial ring R = F[x1, x2, . . . , xn] and an
ideal I = 〈g1, g2, . . . , gm〉, where gi already indicate its
Gröbner basis. Every polynomial f ∈ R can be uniquely
divided by the ideal I producing a remainder r , see Eq. (A.4).
Different polynomials f1 and f2 can produce the same
remainder r , if f1 − f2 ∈ I . Therefore, one can consider
the remainder r as the smallest representative of an equiva-
lence class of remainders, denoted by [r ], which represents
all polynomials f ∈ R such that their division by the ideal I
gives r .

The collection of all such equivalence classes also forms
a ring called the quotient ring

Q = F[x1, x2, . . . , xn]/〈g1, g2, . . . , gm〉. (A.9)

Calculations in it are the same as the ones in F[x1, . . . , xn]
modulo the ideal I . Hence, [r1] + [r2] = [r1 + r2] and [r1] ·
[r2] = [r1·r2]. Practically, one takes two representatives f1 ∈
[r1] and f2 ∈ [r2], performs the calculations, and divides the
outcome by I .

In certain situations, one can also view the quotient ring
Q as a C vector space spanned by a finite monomial basis.
This is the case for the quotient ring used in (17), i.e. for
calculating resultants. Let D := dim Q and consider now
any polynomial f ∈ F[x1, x2, . . . , xn], which is a repre-
sentative element of the equivalence class [ f ]. By multiply-
ing elements [r ] ∈ Q by [ f ], one obtains other elements
[r · f ], which also belong to the same vector space Q. Thus,
f induces a linear map M f in the vector space Q. If a basis
{[ra]} is chosen in the vector space Q, one can describe this
map with a matrix M acting on the basis vectors according
to

[ra] → [ra · f ] =
D∑

b=1

[rb] · Mba . (A.10)

Appendix A.4: Working with resultants

To get some practice with quotient space calculations, which
are needed for the algorithm presented in Sect. 3.3, let us
consider the following system of three homogeneous poly-
nomials

f1 = x3 − xyz + y2z

f2 = x2 + yz

f3 = y2 + z2 (A.11)

We construct two other sets of polynomials:

f̄1 = f1(0, y, z) F1 = f1(1, y, z)

= y2z, = y2z − yz + 1,

Table 1 Remainders r of a polynomial division of low degree mono-
mials by the Gröbner basis G2,G3

1 y z y2 yz z2 y3 y2z yz2 z3

r = 1 z3 z −z2 −1 z2 z −z3 −z z3

f̄2 = f2(0, y, z) F2 = f2(1, y, z)

= yz, = yz + 1,

f̄3 = f3(0, y, z) F3 = f3(1, y, z)

= y2 + z2, = y2 + z2. (A.12)

We then build the ideal 〈F2, F3〉 and, adopting the lexico-
graphic ordering, find its Gröbner basis:

G2 = z4 + 1, G3 = y − z3. (A.13)

The quotient ring and vector space C[y, z]/〈F2, F3〉 has
dimension D = deg( f2) · deg( f3) = 4. Table 1 shows a
list of remainders r for a division of low degree monomials.

It allows us to select the four basis vectors [r1] = [1],
[r2] = [z], [r3] = [z2] and [r4] = [z3]. Now consider the
products ra · F1 and perform their polynomial division by
G2,G3:

r1 · F1 = (y − 1) · G2 + (yz − z − 1) · G3

+ (2 − z3)

r2 · F1 = (yz − z − 1) · G2 + (yz2 − z2 − z) · G3

+ (1 + 2 · z)
r3 · F1 = (yz2 − z2 − z) · G2 + (yz3 − z3 − z2) · G3

+ (z + 2 · z2)

r4 · F1 = (y2 − z2 − y) · G2 + (−z3 − y + 1) · G3

+ (z2 + 2 · z3) (A.14)

and expand the remainders in the same basis vectors [ra]:
[r1 · F1] = [2 − z3] = 2 · [r1] − 1 · [r4]
[r2 · F1] = [1 + 2 · z] = 1 · [r1] + 2 · [r2]
[r3 · F1] = [z + 2 · z2] = 1 · [r2] + 2 · [r3]
[r4 · F1] = [z2 + 2 · z3] = 1 · [r3] + 2 · [r4]. (A.15)

Thus, F1 acts in this vector space with the matrix M1 given
by

M1 =

⎛
⎜⎜⎝

2 1 0 0
0 2 1 0
0 0 2 1

−1 0 0 2

⎞
⎟⎟⎠ (A.16)

with determinant det(M1) = 17. Therefore, the first step of
the algorithm of Sect. 3.3 gives

Res( f1, f2, f3) = (
Res( f̄2, f̄3)

)3 · 17. (A.17)
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The second step starts with f̄2, f̄3 in Eq. (A.12), from which
we construct

f̃2 = 0, F̃2 = z,

f̃3 = z2, F̃3 = 1 + z2. (A.18)

The quotient ring C[z]/〈F̃3〉 viewed as a vector space has
dimension deg( f̄3) = 2, and its basis vectors are [1] and
[z]. In this space, F̃2 acts as a linear map with the following
matrix:

M2 =
(

0 −1
1 0

)
. (A.19)

We have det(M2) = 1. Finally, using that Res( f̃3) = 1, we
obtain Res( f̄2, f̄3) = 12 · 1 = 1, so that the overall resultant
of the system (A.11) is equal to Res( f1, f2, f3) = 17. Since it
is non-zero, the system of equations fi = 0 does not possess
non-trivial solutions.
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