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Abstract
This work is concerned with the development and the implementation of a foil air journal bearing model.
For this purpose, the numerical procedure resolving the Reynolds equation for compressible fluids has
to be coupled to a structural, compliant foil model. The presented beam-based approach is supposed
to reproduce most of the experimentally known particularities in the mechanical behavior of the foil
structure, while being at least as runtime-efficient as the commonly used simple elastic foundation model.
The developed modeling approach will be validated by comparing simulation results to data found with a
more complex reference model. In the analysis part, most notably, the top foil compliancy is shown to
deteriorate the load-carrying capacity of air bearings. Moreover, the influence of the top foil compliancy
on the dynamics of a rigid rotor supported by two foil air journal bearings will be discussed.
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INTRODUCTION
Self-acting foil air journal bearings are an upcoming tech-

nology in high-speed rotating machinery and benefit from
some major advantages compared to conventional rolling-
element bearings. Most notably, the absence of solid-to-solid
contact reduces both wear and power loss [1]. However,
air bearing rotor systems may exhibit self-excited vibrations
under certain conditions. As shown in [2], the insertion of
a compliant foil structure into the lubrication gap seems to
reduce this undesirable effect.

Currently, most foil models used for numerical investi-
gations are based on one of two widespread approaches. The
classical method neglects the segmentation of the foil structure
and assumes it to act approximately as a homogeneous linear
elastic foundation (see [1]), whereas numerous recent pub-
lications (see, e.g., [3]) rely on time-consuming FE models
aiming at more realistic simulations.

The beam-based model presented in this paper is supposed
to reproduce most of the experimentally known particularities
(see [3]) in the static and transient behavior of the segmented
foil structure, while being at least as runtime-efficient as the
simple elastic foundation model.
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Figure 1. Sketch of the foil air journal bearing model.
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1. THEORY
1.1 Bearing model
Film thickness The nominal height of the lubrication gap
between the bearing sleeve/foil (inner radius R, axial width L)
and the rotating journal (outer radius r) can be characterized in
terms of the radial clearance C = R− r . For visibility reasons,
this gap is greatly magnified in the sketch depicted in figure 1.
In order to determine the effective film thickness h(ϕ, z, t) of
the lubricant, we have to take into account the time-dependent
journal position, i.e., e(t) and Γ(t), as well as the deflection
of the compliant foil structure. At this point, the latter is
dealt with as a generalized deformation field q(ϕ, z, t), which
will be discussed and concretized in section 1.3. By means
of a simple trigonometric consideration based on the orange
triangle marked in the sketch, a nondimensional form of the
effective fluid film thickness is found to be approximately
(linearized with respect to the radial journal displacement)

H (ϕ, Z, τ) = 1 − ε(τ) cos
[
ϕ − γ(τ)

]
−Q(ϕ, Z, τ) (1)

with the nondimensional quantities

ϕ = x/R, Z = z/L, τ = t/T ,
ε(τ) = e(τT )/C, γ(τ) = Γ(τT ),
H (ϕ, Z, τ) = h(ϕ, Z L, τT )/C

and Q(ϕ, Z, τ) = q(ϕ, Z L, τT )/C.

(2)

Operating within the full fluid film lubrication regime, the
load-carrying capacity of air bearings is limited with regard
to the sustainment of a minimum film thickness throughout
the gap. This condition can be expressed by

Hmin(τ) = min
(ϕ,Z )∈[0,2π]×[−1/2,+1/2]

H (ϕ, Z, τ) > H0, (3)

where H0 is related to the surrounding surface roughnesses.

Reynolds equation The considered bearing uses ambient air
with a constant dynamic viscosity µ0 as the lubricating fluid.
As stated by the well-known lubrication theory, the pressure
distribution p(ϕ, z, t) within a thin gas film is governed by
the Reynolds equation for compressible fluids [4]. Intro-
ducing a nondimensional pressure field P = P(ϕ, Z, τ) =

p(ϕ, Z L, τT )/p0 related to the constant ambient pressure p0,
we find the partial differential equation

∂

∂ϕ

(
PH3 ∂P

∂ϕ

)
+κ2 ∂

∂Z

(
PH3 ∂P

∂Z

)
= Λ

∂ (PH)
∂ϕ

+2
∂ (PH)
∂τ

.

(4)

This equation involves the film thickness H = H (ϕ, Z, τ)
coming from equation (1), as well as two nondimensional
numbers

κ =
R
L

and Λ =
6µ0ω0

p0

(
R
C

)2

. (5)

The bearing number Λ represents the angular velocity ω0 of
the journal, which is calculated from the rotational speed n0
of the rotor by ω0 = 2πn0. The characteristic time scale of the
nondimensional problem is defined as T = 6µ0/p0(R/C)2.

Boundary conditions and initial condition The resolution of
equation (4) requires four boundary conditions and one initial
condition. Assuming a continuous and differentiable pressure
field, we use periodic boundary conditions in circumferential
direction, giving

P(ϕ, Z, τ) |ϕ=0 = P(ϕ, Z, τ) |ϕ=2π ,

∂P(ϕ, Z, τ)
∂ϕ

�����ϕ=0
=
∂P(ϕ, Z, τ)

∂ϕ

�����ϕ=2π
.

(6)

In axial direction, the open edges of the lubrication gap are
exposed to ambient pressure. Moreover, ambient pressure is
supposed to be prevailing throughout the fluid at t = τ = 0.
Thus, we have two additional boundary conditions

P(ϕ, Z, τ) |Z=+1/2 = P(ϕ, Z, τ) |Z=−1/2 = 1 (7)

and the initial condition

P(ϕ, Z, τ) |τ=0 = P̃(ϕ, Z ) = 1. (8)

1.2 Rotor model
Bearing force The rotor is supported by the time-dependent
bearing force F(t), which can be calculated by integrating
the pressure acting on the journal. Hence, the corresponding
nondimensional force vector f(τ) = F(τT )/(p0RL) is found
to be

f(τ) =

(
fξ (τ)
fη (τ)

)
{eξ,eη }

=

+1/2∫
−1/2

2π∫
0

P(ϕ, Z, τ)
(
sin ϕ
cos ϕ

)
{eξ,eη }

dϕ dZ .

(9)
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Figure 2. Free body diagram of the journal.
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Figure 3. Configuration of the compliant foil structure.

Equations of motion In this study, a rigid rotor of mass 2m
without unbalance is considered. Symmetrically mounted on
two bearings, the journals on each side are exposed to the
gravitational force mg, the vertical load FL and the bearing
force components Fξ (t) and Fη (t). In figure 2, a free body
diagram of the journal is depicted. When equilibrating all
external forces and inertia forces, we find the nondimensional
equations of motion

ε′′(τ) − ε(τ)γ′(τ)2 =

G cos γ(τ) + 1
M

[
− fξ (τ) sin γ(τ) −

(
fη (τ) − fL

)
cos γ(τ)

]
,

ε(τ)γ′′(τ) + 2ε′(τ)γ′(τ) =

−G sin γ(τ) + 1
M

[
− fξ (τ) cos γ(τ) +

(
fη (τ) − fL

)
sin γ(τ)

]

(10)

with two nondimensional parameters

M =
p0

36µ02L

(
C
R

)5

m and G =
36µ0

2

p02R

(
R
C

)5

g. (11)

For the calculation of ε(τ) and γ(τ), four initial conditions
are required and will be defined as

ε(τ) |τ=0 = ε0, ε′(τ)��τ=0 = ε•0,
γ(τ) |τ=0 = γ0, γ′(τ)��τ=0 = γ•0

(12)

with given ε0, ε
•
0, γ0, γ

•
0 .

1.3 Foil model
Segmented structure Figure 3 shows the configuration of the
compliant foil structure typically used in first generation foil
air journal bearings. It is composed of a thin, corrugated bump
foil (thickness tB, Young’s modulus EB, Poisson’s ratio νB)
and a thin, smooth top foil (thickness tT, Young’s modulus ET,
Poisson’s ratio νT). The bump foil consists of NB equally
spaced bumps, giving the nondimensional bump distance or
top foil segment width

LS =
lS

R
=

2π
NB

. (13)

Within the structure, relative motion or detachment between
the bump foil and the top foil are possible. They are only con-
strained at one end, where both foil components are welded to
the bearing sleeve. However, this study is focused on the foil
deflection and ignores these effects for the sake of simplicity.

Fluid-structure interaction In foil air journal bearings, the
pressurized fluid inside the lubrication gap interacts with both
the journal and the foil structure. When neglecting inertia
effects for the latter because of the thin foil geometry, the
deformation field q(ϕ, z, t) at any given time can be deduced
directly from the current pressure distribution p(ϕ, z, t). On
the other hand, the foil deflection affects the pressure field via
the Reynolds equation. It has been shown that the behavior
of the compliant foil structure can be represented in good
approximation by a plane model with respect to the axial
direction [3]. In this context, we are furthermore interested
in the calculation of a nondimensional plane deformation
field Q(ϕ, Z, τ) = Q(ϕ,τ) as a function of P(ϕ, Z, τ), which
can be inserted into equation (1).

Average pressure loads Working henceforth with plane foil
models, we define an average pressure function with respect
to the axial direction, giving

P(ϕ,τ) =

+1/2∫
−1/2

P(ϕ, Z, τ) dZ . (14)

Taking advantage of the segmented foil structure, we introduce
discrete pressure loads with respect to the circumferential
direction. As marked in the sketch depicted in figure 3, we
define the average pressure acting on the n-th bump

PB,n (τ) =
1

LS

(n+1/2)LS∫
(n−1/2)LS

+1/2∫
−1/2

P(ϕ, Z, τ) dZ dϕ (15)

and the average pressure acting on the n-th top foil segment

PT,n (τ) =
1

LS

(n+1)LS∫
nLS

+1/2∫
−1/2

P(ϕ, Z, τ) dZ dϕ. (16)
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Figure 4. Sketch of the segmented foil model.

Beam theory Both the bump foil and the top foil will be
represented by beam-based models. According to the Euler-
Bernoulli theory, we establish the differential equation

d4V (ϕ,τ)
dϕ4 = −

P(ϕ,τ) − 1
δ

(17)

for the determination of the nondimensional deflection curve
V (ϕ,τ) = v(ϕ,τT )/C. The stiffness is expressed by the non-
dimensional flexural rigidity δ = Et3C/[12(1 − ν2)p0R4].

Bump stiffness The bumps will be modeled as linear elastic
springs. It has been shown that their curved geometry can be
approximated by means of a simple beam model [5], which
reveals the nondimensional equivalent spring stiffness

KB =
EBC

2
(
1 − ν2

B

)
p0R

(
tB

lB

)3

. (18)

From this, we can calculate the deformation

V B,n (τ) =
f B,n (τ)

KB
(19)

resulting from a nondimensional vertical force f B,n (τ) =

FB,n (τT )/(p0RL) acting on the apex of the n-th bump.

Simple elastic foundationmodel A commonly used modeling
approach in the available literature considers the foil structure
as a simple, homogeneous elastic foundation [1]. In this work,
we will refer to a slightly modified version of this model, in
which the deformation field does not vary in axial direction.
The actual displacement is assumed to be proportional to the
average pressure, calculated by equation (14), giving

QW(ϕ,τ) = −
P(ϕ,τ) − 1

KW
. (20)

The nondimensional foundation stiffness

KW =
EBC

2
(
1 − ν2

B

)
p0RLS

(
tB

lB

)3

=
KB

LS
(21)

is deduced from the nondimensional bump stiffness KB stated
by equation (18) and does not take into account any of the

properties of the top foil. The displacements calculated with
the simple elastic foundation model are completely decoupled
in circumferential direction. In a certain way, the use of a
plane model imitates a coupled deformation in axial direction
and prevents non-physical contact between the journal and
the top foil at the open bearing edges, despite the prevailing
ambient pressure.

Runtime-efficient segmented model The fundamental idea
behind the presented runtime-efficient model is to decouple
the bump foil from the top foil, the latter being furthermore
divided into separated segments. In a first step, each bump is
then considered independently and the corresponding spring
displacement V B,n (τ) is estimated by the use of equation (19)
with the acting force (deduced from equation (15))

f B,n (τ) = LS
[
PB,n (τ) − 1

]
. (22)

In a second step, illustrated by figure 4, each top foil segment
is modeled as a beam charged by PT,n (τ) (see equation (16)).
Local coordinates for the description of the n-th top foil
segment are introduced by ϕn = ϕ−2πn/NB. With the already
known bump deformations, we set displacement boundary
conditions for the beam’s deflection curve V S,n (ϕn , τ), giving

V S,n (ϕn , τ)���ϕn=0
= V B,n (τ),

V S,n (ϕn , τ)���ϕn=LS
= V B,n+1(τ).

(23)

Moreover, we suppose that the shape of the top foil adapts to
the supporting horizontal bump apices and set

dV S,n (ϕn , τ)
dϕn

������ϕn=0

=
dV S,n (ϕn , τ)

dϕn

������ϕn=LS

= 0. (24)

By integrating equation (17) for each segment with these
boundary conditions, we obtain a piecewise deflection curve

V S,n (ϕn , τ) =
PB,n (τ)−1

KW
− 3

KW

[
PB,n (τ) − PB,n+1(τ)

] (
ϕn

LS

)2

+ 2
KW

[
PB,n (τ) − PB,n+1(τ)

] (
ϕn

LS

)3

+
PT,n (τ)−1

24δT
ϕ2
n (LS − ϕn )2.

(25)
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Figure 5. Sketch of the reference foil model.

The deformation field is eventually found to be a combination
of the piecewise deflection curves from equation (25) and can
be stated as a function of the global coordinate ϕ by

QS(ϕ,τ) = −V S, bNB
ϕ
2π c

*.
,
ϕ − 2π

⌊
NB

ϕ
2π

⌋

NB
, τ

+/
-

(26)

with the floor function
⌊
NB

ϕ
2π

⌋
for finding the correct segment.

Reference model In order to validate the segmented foil
model, a reference model (similar to models found in the
available literature [3]) is implemented. A self-explanatory
sketch is depicted in figure 5, showing the top foil modeled
as a cantilever beam, which is supported by multiple springs.
In this model, the coupled deformation of the beam and the
springs is calculated without introducing any kind of cutoff

distance. Thus, the pressure at any given point even affects the
deformation field on the opposite side of the bearing, resulting
in increased computational times.

2. ANALYSIS
Discretized state vector The domain of the lubrication gap
(ϕ, Z ) ∈ [0,2π] × [−1/2,+1/2] is discretized using a uniform
computational grid with Nϕ × NZ grid points. As for the
numerical analysis, the discrete pressure values as well as the
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Figure 6. Foil deformation (using segmented foil model).

journal state variables are collected in a nondimensional and
discretized state vector

S(τ) =
(
ε(τ) ε′(τ) γ(τ) γ′(τ) P0,0(τ) . . . PNϕ−1,NZ−1(τ)

)>
.

Due to the negligence of the foil structure’s inertia effects, the
discrete deformation values are not directly included in this
state vector. Instead of that, they can be deduced from the
current pressure distribution at any given time, using either
equation (20), equation (26) or the reference model. The latter
is analytically evaluated with Maple, due to its rather complex
deflection curve.

Time integration scheme The differential equation for the
state vector dS(τ)/dτ = k(S(τ)) is resolved using an explicit
Euler method as the time integration scheme. The function k
is deduced from equation (4) and equation (10). Most notably,
we establish a spatially discretized form of the Reynolds
equation, giving

dPi, j (τ)
dτ = 1

2Hi, j (τ)

[
δ
δϕ

(
Pi, j (τ)Hi, j (τ)3 δPi, j (τ)

δϕ

)
+ κ2 δ

δZ

(
Pi, j (τ)Hi, j (τ)3 δPi, j (τ)

δZ

)
− Λ

δ(Pi, j (τ)Hi, j (τ))
δϕ

+ 2Pi, j (τ)
[
ε′(τ) cos (i∆ϕ − γ(τ))

+ ε(τ)γ′(τ) sin (i∆ϕ − γ(τ))
] ]

with δ (...)i, j
δϕ =

(...)i+1, j−(...)i−1, j
2∆ϕ ,

δ (...)i, j
δZ =

(...)i, j+1−(...)i, j−1
2∆Z .

(27)

The described concepts are implemented as a C++ program.

3. RESULTS
3.1 Configuration
Model parameters In this section, some numerical simulation
results will be shown and discussed. Table 1 lists the data for
a first generation test bearing, which is commonly referred
to in the available literature (see, e.g., [3]). These parameters
are converted to nondimensional values, according to the
formulae presented in section 1, and will be used as nominal
values for the following investigations.
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Figure 7. Pressure distribution (using segmented foil model).



Computational Analysis of Foil Air Journal Bearings Using a Runtime-Efficient Segmented Foil Model — 6/9

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

-π -π/2 0 π/2 π

Q

φ

Undeformed foil
Deformation at Z = 0

Angular journal position

κ = 0.5, Λ = 0.5

ε = 0.9, ε′ = 0, γ = 1, γ′ = 0

Segmented model

Foundation model

Reference model

Figure 8. Foil deformation along the bearing centerline for different foil models.

Grid dependency study As a preliminary investigation, we
have carried out a grid dependency study for the numerical
solution of the Reynolds equation. For a rigid bearing, the
pressure distribution found with 41 × 9 grid points does not
change significantly after a further refinement. However, the
segmented foil model is supposed to induce important film
thickness variations within the scale of one segment width
(see figure 6). In order to capture the reaction of the pressure
distribution to this effect, we use 183 × 9 grid points in the
considered case with NB = 26 bumps. As expected, the
pressure field depicted in figure 7 reveals local pressure drops
resulting from the top foil sagging between the bumps. Due to
fewer calculations of the average pressure, the segmented foil
model needs less computational time than the plane, simple
elastic foundation model on the same grid (40 s vs. 50 s using
an Intel® Core™ i5 CPU for the calculations in section 3.2).

3.2 Comparison of the foil models
Approach In this investigation, the journal remains at the
constant position ε(τ) = 0.9, γ(τ) = 1 and the equations of
motion are not taken into consideration (commonly referred
to as a quasi-stationary simulation). The time integration of
the Reynolds equation is then carried out until a converged
equilibrium state is reached. Subsequently, the predictions
for the deformation field, the film thickness and the pressure
distribution can be compared for the different foil models.

Deformation The plot in figure 8 visualizes the deformation
field as predicted by the different foil models. For obvious
reasons, the maximum deformation appears in the region

of maximum pressure for the marked journal position (dark
red square). Due to the assumption of a uniform stiffness,
the simple elastic foundation model (dotted line) generates
a smooth curve, which represents only the compliancy of
the bump foil. Being based on the same bump stiffness
definition, both the runtime-efficient segmented model (solid
line) and the reference model (chain dotted line) predict
deformations in the same order of magnitude. Apparently, the
use of uncoupled deformations in circumferential direction

Parameter Symbol Value

Axial bearing width L 38.10 mm
Bearing radius R 19.05 mm
Lubrication gap clearance C 50 µm

Ambient pressure p0 1013.25 hPa
Dynamic viscosity µ0 1.85 × 10−5 Ns/m2

Rotational speed n0 500 s−1

Rotor mass 2m 2 × 185 g
Gravity g 9.81 m/s2

External load 2FL 2 × 30 N

Number of bumps NB 26
Bump width 2lB 2 × 1.778 mm
Foil thickness tB, tT 101.6 µm
Young’s modulus EB,ET 214 GPa
Poisson’s number νB, νT 0.29

Table 1. Parameters used for the numerical simulations.
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Figure 9. Film thickness along the bearing centerline for different foil models.
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Figure 10. Pressure distribution in axial direction and along the bearing centerline for different foil models.
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does not induce crucial inaccuracies within the simple elastic
foundation model. Moreover, the coincidence between the
deformation field predicted by the segmented model and
the one predicted by the reference model proves that the
simplifying assumptions behind the former are reasonable.
Besides the ripple-like effect resulting from the top foil sag-
ging between the bumps, both models estimate slightly smaller
bump displacements as a result of the local pressure drops.

Film thickness The plot in figure 9 shows the resulting film
thickness for all three foil models. As stated by equation (1),
the effective film thickness of the lubricating fluid depends
on both the journal position and the deformation of the foil
structure. For the simple elastic foundation model (dotted
line), the curve’s appearance is only slightly different from the
cosine function known from rigid bearings. The segmented
model (solid line) and the reference model (chain dotted line)
show the additional effect of the top foil deformation. Being
only visible in the thinnest zone of the lubrication gap, the
global importance of this ripple-like effect seems to be small
compared to the journal position’s influence.

Pressure The plot in figure 10 depicts the pressure field
for the different models. For the simple elastic foundation
model (dotted line), the shape of the pressure distribution is
similar to the results known from rigid bearings. The curves
corresponding to the segmented model (solid line) and the
reference model (chain dotted line) are once again very similar.
Both of them show the already mentioned zones of local
pressure drops, resulting from the top foil sagging between
the bumps, which opens a pathway for the lubricating fluid to
escape out of the gap, thus decreasing the pressure.

3.3 Load-carrying capacity
Approach As stated by equation (3), the load-carrying capa-
city of foil air journal bearings is limited by the surface rough-
nesses, meaning that the minimum film thickness must not fall
below a certain limit H0 for a given load. Thus, load-carrying
capacity curves are supposed to show the minimum film thick-
ness in the lubrication gap as a function of the bearing force.
In this investigation, such curves are established by carrying
out multiple simulations (each one of them is represented by
a black square on the corresponding curve). During these
simulations, the journal is moved step-by-step along the radial
direction, calculating each time both the minimum film thick-
ness and the resulting bearing force.

Effect of the foil structure The plot in figure 11 shows that
the simple elastic foundation model (dotted line) predicts the
best load-carrying capacity, being even higher than the one
found for a rigid bearing model (dashed line), in particular
for high loads. On the other hand, the load-carrying capa-
city curves found with the segmented foil model (solid lines)
cover a wide performance range. While the one found with
nominal parameter values is situated even below the curve of
a rigid bearing, another simulation with doubled top foil thick-
ness exhibits a load-carrying capacity almost as good as the
simple elastic foundation model does. We deduce from this
observation that the escaping air plays a crucial role and that
the top foil compliancy has a detrimental effect on the load-
carrying capacity of the bearing. As to simulations carried out
with the simple elastic foundation model, the load-carrying
capacity seems to be systematically overestimated.



Computational Analysis of Foil Air Journal Bearings Using a Runtime-Efficient Segmented Foil Model — 9/9

0,00

0,25

0,50

0,75

1,00

1,25

1,50

Initial journal position
Journal trajectory

Equilibrium journal position
Undeformed foil at Z = 0

Deformed foil at Z = 0
Pressure at Z = 0

κ = 0.5, Λ = 0.5, M = 5, G = 0.005, fL= 0.4
Segmented model

(a) Nominal top foil thickness.

0,00

0,25

0,50

0,75

1,00

1,25

1,50

κ = 0.5, Λ = 0.5, M = 5, G = 0.005, fL= 0.4
Segmented model

Initial journal position
Journal trajectory

Equilibrium journal position
Undeformed foil at Z = 0

Deformed foil at Z = 0
Pressure at Z = 0

(b) Reduced top foil thickness.

Figure 12. Influence of the top foil stiffness on the journal’s trajectory.

3.4 Journal trajectory
Effect of the foil structure The plot in figure 12a shows the
journal’s trajectory after dropping the rotor from the center
position using nominal parameter values. Again, both the
deformation and the pressure field exhibit a ripple-like shape
(shown for the equilibrium position). In a second simulation,
we decrease the top foil stiffness and obtain the modified
trajectory which is depicted in figure 12b. Resulting from the
deteriorated bearing force caused by larger top foil deflections,
the second trajectory covers a broader area and takes more
time to reach the equilibrium position, which is also farther
away from the bearing center. Thus, we conclude that the top
foil compliancy has to be taken into consideration in order to
carry out realistic transient rotor dynamics simulations.

CONCLUSION
The developed and implemented segmented foil model

permits us to perform static and transient simulations of foil
air journal bearings. In contrast to the commonly used simple
elastic foundation, this model also takes into account the top
foil sagging between the bumps and the resulting ripple-like
film thickness variations. The observed local pressure drops
can be explained by the air escaping out of the bearing as the
top foil is deflected. Thanks to the piecewise calculation of
beam deflection curves, the established model turns out to
be more runtime-efficient than the simple elastic foundation
model. Most notably, we have shown that the compliancy
of the top foil has a detrimental effect on the bearing’s load-
carrying capacity. Thus, simulations with the simple elastic
foundation model tend to overestimate the bearing force.
Moreover, we have seen that the rotor’s transient behavior
is crucially influenced by this effect.

Further investigations will consider friction and damping
effects coming from relative motion between the top foil, the
bump foil and the bearing sleeve. Besides, the foil behavior at
the open bearing edges may be studied in order to validate the
assumption of a plane model.
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