
Solving the Graph Coloring Problem
with Cooperative Local Search

Bachelor Thesis of

Guangping Li

At the Department of Informatics
Institute of Theoretical informatics, Algorithmics II

Advisors: Dr. Tomáš Balyo
Prof. Dr. Peter Sanders

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen Stel-
len als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technologie zur
Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe.

Karlsruhe, 15th December 2016

Abstract
Tabucol is a local search algorithm to determine whether the vertices of an undi-
rected graph can be colored with k colors, such that no two vertices connected by an
edge have the same color. This thesis presents an algorithm that solves the graph
coloring problem with parallel Tabucol searches. A hypothesis was experimentally
evaluated that sharing information among the agents will improve the performance
of the parallel search. In this paper, we introduce a new matrix data structure,
which counts the repeated times of one change. This statistic matrix can help rec-
ognizing long-term cycling in the local search. The sharing of this matrix among
the agents can bring further improvement to our algorithm.

Zusammenfassung
Diese Arbeit präsentiert einen Algorithmus, der eine gültige k-Knotenfärbung für
ungerichtete Graph mit minimal k sucht. Der Algorithmus macht sich dabei einen
lokalen Algorithmus Tabucol zu Nutzung. Die Leistung mit verschiedenen Strate-
gien wurde anhand von mehreren Experimenten evaluiert und miteinander vergli-
chen. Dabei zeigt der parallel laufende Algorithmus mit geeignetem Informations-
austausch unter den Agenten eine Verbesserung in Bezug auf Leistung aus. Wir
stellen in diesem Papier eine neue Matrix Data Struktur vor, die die Wiederholung
einer lokalen Änderung zählt. Diese Statistik Matrix kann helfen, lange Zyklen in
der lokalen Suche zu erkennen. Das Teilen dieser Matrix unter den Agenten kann
eine weitere Verbesserung unseres Algorithmus bringen.

Contents

1 Introduction 1
1.1 Problem/Motivation . 1
1.2 Content . 2

2 Preliminaries 2
2.1 Definitions and Notations . 2
2.2 The algorithms for comparison . 5
2.3 The Tabucol algorithm . 6

3 Solving GCP by Tabucol 8
3.1 Data structures . 9
3.2 Improvement through randomly generated solution 10
3.3 Improvement through changing solution matrix traverse direction 11
3.4 Improvement through statistic matrix . 11

4 Our Parallel Algorithm 12
4.1 1st Approach: The pure portfolio approach . 12
4.2 2nd Approach: Forced color reducing . 12
4.3 3rd Approach: Tabu sharing . 12
4.4 4th Approach: Statistic sharing . 13

5 Evaluation 14
5.1 DIMACS standard format . 14
5.2 Benchmarks . 14
5.3 Used plots and tables . 16
5.4 Automatic parameter optimization . 16
5.5 Experiments . 18

5.5.1 Experiment 1: Random initialization vs Node-index initialization 19
5.5.2 Experiment 2: Original solver vs Solution replacement 20
5.5.3 Experiment 3: RowTraverse vs ColumnTraverse 21
5.5.4 Experiment 4: Original solver vs Statistic solver 22
5.5.5 Experiment 5: Original solver vs Parallel solver with various parameter

combinations . 25
5.5.6 Experiment 6: GCP-solver with FRC . 27
5.5.7 Experiment 7: GCP-solver with tabu share 29
5.5.8 Experiment 8: GCP-solver with statistic Matrix sharing 32
5.5.9 Experiment 9: Comparison of our GCP-solver with other algorithms . . . 32

6 Conclusion 35
6.1 Further work . 35

7 Bibliography 37

i

ii

1 Introduction

1 Introduction

1.1 Problem/Motivation

The graph coloring problem (GCP) [1] is an NP-complete problem [2]. The problem is to
assign colors to certain elements of a graph subject to certain constraints.

The vertex coloring problem is the most common GCP. The goal is to color the vertices of
an undirected graph such that no two adjacent vertices share the same color. There are many
different ways to color a graph. In most cases, one wants to color the graph with the smallest
number of colors. This number is called the chromatic number of the graph.

Figure 1: Two 3-colorings of one graph. The chromatic number of this graph is 3.

The vertex coloring problem has many applications like computer register allocation [3, 4] and
printed circuit board testing [5]. Two examples in our daily life are as follows.

1. Timetable and scheduling [6, 7]

An Example of this application is to make an exam schedule. We suppose that several exams are
going to be scheduled in a university. How to ensure the students do not have different exams
in the same time slot? This problem can be seen as a vertex coloring problem, where the exams
are represented by vertices in an undirected graph. Two exams involving the same student are
connected with an edge. Here the minimum color number corresponds to a minimum number
of time slots needed for all the exams.

Exam1 Exam2

Exam3

Exam4

Exam5

Exam6

Exam7

e1

Figure 2: An example of the application in scheduling. There are 7 exams in this example. The
edge e1 means some students take the 1st exam as well as the 6th exam.

2. Mobile Radio Frequency Assignment [8]

Assigning frequencies to radio senders is also an example of the vertex coloring problem. The
constraint is that senders received by the same location must use different frequencies. In a
graph where the senders correspond to vertices, two senders have the same receiving location

1

2 Preliminaries

are connected with one edge. The aim is to color the senders with a minimum number of colors,
which represent different frequencies.

Location1 Location2

Location3

Location4

Location5

Location6

Location7

e1

Figure 3: An example of the application in frequency assignment. There are 7 locations in this
example. The edge e1 means a sender can be received by the 1st location as well as
the 6th location.

1.2 Content

The Graph coloring problem, as a well-known NP-complete problem [2], has received a great
deal of attention and different search methods have been developed [9, 10]. This thesis con-
centrates on solving the vertex coloring problem with one of the first local search algorithms
Tabucol. Tabucol was proposed in 1987 by Hertz and de Werra [11]. As a very popular and well
performing local search algorithm, Tabucol is often used as a subroutine in hybrid algorithms
for solving GCP. This paper presents a GCP-solver which runs Tabucol iteratively on the same
graph instance. In the first part of this thesis, different techniques to improve this algorithm
are discussed. In the second part, we want to search the potential benefit of cooperative search,
in which different agents run the same algorithm in parallel and exchange information in the
search process. In this paper, Different kinds of cooperative work among agents are evaluated
and compared. Some techniques turned out to be more efficient than the original search.

2 Preliminaries

2.1 Definitions and Notations

A set is a container of unique elements. A set of 3 objects a, b, c is written as {a, b, c}. The
size of a set is the number of elements in the set.
A graph G = (V, E) [12] is a structure consisting of a finite set V of vertices and a finite edge
set E ⊆ V ×V. Throughout the paper, we use n = |V |,m = |E| if no other definitions are given.
By vi we denote the ith element in V and by ei the ith element in E. Based on the forms of
the edges, there are two types of graphs: undirected graph and directed graph. In a directed
graph, the edge set contains ordered pairs of vertices, called arrows or directed edges. An edge
e = (u, v) ∈ E represents a connection from node u to v. An undirected graph is a graph
in which edges have no orientation. The edge e = {u, v} represents a connection between the
vertices u and v. It is identical to the edge e′ = {v, u}. Two vertices are incident when they are

2

2.1 Definitions and Notations

connected by an edge. When an edge connects a vertex with itself, this edge is called a loop in
the graph.

v2

v3 v4

v5

v7

v6

v1 v2

v3 v4

v5

v7

v6

v1

Figure 4: The figure above left shows a directed graph. There are two edges between v1 and
v4. The edge (v1, v4) is represented by an arrow from v1 to v4. The edge (v4, v1) is
represented by an arrow towards v1. An undirected graph is shown in the figure above
right. There is one edge {v1, v4} between v1 and v4. The edge {v1, v4} is represented
by a line connecting v1 and v4. The edge {v1, v4} is equal to the edge {v4, v1}.

The graph coloring problem (GCP) deals with the assignment of labels called “colors” to
elements of a graph subject to certain constraints.
When used without any qualification, a coloring of a graph is almost always a proper vertex
coloring, A vertex coloring of a graph is a function c: V → {1...k}. The coloring with k colors
is called a k-coloring. The value c(vi) of a vertex vi is called the color or the index of the color
of the vertex vi. A coloring is a legal coloring when no two adjacent vertices share the same
color. Otherwise, when an edge connects two same-colored vertices in a coloring, the edge is
called a conflicting edge. A coloring with at least one conflicting edge is an illegal coloring.
The conflict number f(c) of a coloring c is the number of conflicting edges in the coloring.
In other words, f(c) = ∑ |Ei|, Ei = {(v, w) ∈ E, c(v) = c(w) = i}. The k-GCP problem is
to determine whether a legal k-coloring exists for the graph or not. The GCP problem is to
determine the smallest k, such that the graph can be colored using k colors without conflicts.
This lower bound k is called the chromatic number of G, denoted by χ(G).

v1 v2

v7

v6

e3

e5

Figure 5: The figure left above shows a 3-coloring example. This is a legal coloring without
conflicting edges. The chromatic number of the graph χ(G) is thus 3. The figure right
above is an illegal 3-coloring with conflict number 2. A Conflicting edge e5 connects
two green-colored vertices v1 and v6. The conflicting edge e3 connects two red-colored
vertices v2 and v7.

Neighboring coloring
A neighboring coloring c′ of a coloring c is a coloring differs from c in the color of one vertex v.
c(w) = c′(w) for w 6= v; c′(v) 6= c(v).

3

2 Preliminaries

Local search
A local search starts with an initial illegal coloring. To reach a neighboring coloring, the local
search makes local changes to its current coloring iteratively, hence the name local search.
Usually, each coloring has more than one neighbors. The decision which neighbor will be
reached in next step depends on some criterion. Local search is widely used in hard problems
such as the traveling salesman problem [13] and the boolean satisfiability problem [14].

initial solution

optimal solution

(v6, blue)

(v7, green)

Figure 6: Figure 10 is an example of a local search in coloring problem. Colorings are repre-
sented by nodes in a net. The search changes one color iteratively to improve the
coloring to have fewer conflicts. The initial coloring of this Example is the right col-
oring in Figure 5. The optimal coloring is the coloring shown left in Figure 5. Blue
edges represent changing v6 to blue (read from the upper node to the lower node).
Green edges represent changing v7 to green.

Tabu search
Local search methods move in a neighborhood and have a tendency to get stuck in suboptimal
regions. Tabu search created by Fred W. Glover in 1986 [15] and formalized in 1989 [16][17].
The search trace is recorded in the process. The recently reached neighboring colorings are
marked as tabu colorings. The tabu colorings will not be touched in the further search to
discourage getting stuck in a region.

Hash table/map [18]
A hash table or a hash map is a directory, which maps keys to values. With the help of a hash
function, the hash table is advantageous in respect of speed. Specifically, the overall complexity
of common operations such as search, insertion or deletion is O(1).

Keys

Hash function

Values

k1

k2

kn

v1
v2

vm

A hash function is similar to a directory, which maps keys to stored values.

Figure 7: Hash table

Matrix
A p × q matrix is a function fA : {1...p} × {1...q} → R. A Matrix is normally represented by

4

2.2 The algorithms for comparison

an ordered scheme A with p rows and q columns. The value of the ith row and the jth column
in a scheme A is denoted by Aij and is equal to the function value fA(i, j).

r1

r2

ri

rp

s2s1 sj sq

Aij

.
Figure 8: A p× q matrix

Queue
The queue is an abstract data structure with two operations: enqueue where an element is
pushed in the collection and dequeue where the element added in the collection earliest and
not removed yet is removed from the queue. The elements come in the queue in one end and
come off from another end. This policy is called FIFO (first in-first out).

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6
A

↓ B

A

B

↓ A

.
Figure 9: Enqueue and dequeue under FIFO policy

2.2 The algorithms for comparison

To evaluate the performance of our algorithm, three other algorithms for solving the GCP are
used for a comparison with our algorithm (see Experiment 9 in 5.5.9). The three algorithms

5

2 Preliminaries

for comparison are DSATUR, Trick’s algorithm, and PASS.

DSATUR [19]
DSATUR is a sequential vertex coloring algorithm to color the vertices in turn until each vertex
is colored. This greedy coloring algorithm maximizes saturation degree that is the number of
colors assigned to its adjacent vertices. If multiple vertices with maximum saturation degree
exist, the one with the maximal degree in the uncolored subgraph is chosen. The DSATUR
algorithm assigns the smallest possible color to the chosen vertex in each step. There are some
variations of DSATUR. Two examples are Trick’s algorithm and PASS.

Trick’s algorithm [20]
A clique of the graph is a set of mutually adjacent vertices. Naturally, to color, a clique of k
vertices needs at least k different colors. The Trick algorithm makes use of this relationship of
cliques and coloring. The algorithm finds and colors the large cliques in the graph and then
applies the DSATUR algorithm on the uncolored subgraph.

PASS [21]
The tie breaking strategy of the DSATUR algorithm is to choose the vertex with the maximum
degree if multiple vertices with maximum saturation degree exist. The PASS algorithm is a
DSATUR-based algorithm with a different tiebreaking strategy. The tiebreaking strategy aims
to color that candidate vertex first, which has the least number of admissible colors. This strat-
egy is based on the observation, that the vertices with small admissible colors in the current
step are likely to require a new color in the further search.

We cannot find any source code for Tabucol-based algorithms. We chose these tree DSATUR-
based exact coloring algorithms for comparison because these algorithms are much employed
with their simplicity and efficiency.

2.3 The Tabucol algorithm

Tabucol was introduced in 1987 by Hertz and de Werra [11]. Since then, some modifications
are introduced to the original tabu search. The version I use in this paper is based on the paper
by Galinier P [22].
The algorithm Tabucol is a tabu search to solve the k-GCP. Formally, for a Graph G = (V,E),
Tabucol wants to find a function c : V → {1..k} with constraint: ∀ {u, v} ∈ E, c(u) 6= c(v). An
evaluation function f measures the number of conflicting edges in a coloring. In other words,
the Tabucol is to determine, whether a k-coloring c exists with f(c) = 0. The local search will
start from an initial k-coloring c. Changing the color of one vertex v to color i (c(v) 6= i ∧ ∃
w ∈ V, c(w) = i), is called one-step move [v, i]. The search space (the neighborhood) consists
of the colorings which can be reached by a one-step move. A coloring c′ resulting from [v, i] is
denoted by c+ [v, i]:

c(w) = c′(w) for w 6= v;
c′(v) = i;

Γ(c, c′) = f(c) − f(c′) measures the improvement of c′ to the current coloring c. 1 There are
(k − 1) × n neighbors of a coloring. The neighbor coloring with the highest improvement will
be chosen as the next move. The algorithm performs one-step moves iteratively and stops as

1The value of function Γ can be negative, which indicates an increase of the conflicting number.

6

2.3 The Tabucol algorithm

soon as f(c) = 0, which means c is a legal coloring.
To avoid short-term cycling, recently performed moves are marked as forbidden moves for a
given duration. The duration of the tabu status depends on the conflict number and two
parameters L and α. More precisely, the duration is f(c)× α+ L. Galinier suggests to choose
L randomly in [0, 9] and use α = 0.6. [23]

The pseudo code of Tabucol is shown below

Algorithm 1: Algorithm Tabucol
input : A Graph G = {V,E}, an integer k > 0
parameter: L, α, Timeout
output : Coloring c

1 Build a random k-coloring c′;a
2 c = c′;
3 i = 0;
4 while (f(c) 6= 0 ∧ Timeout does not occur) do
5 Evaluate all permitted neighbors of c with function Γ;
6 Choose neighbor c′′ with maximum Γ(c, c′′);
7 Mark the corresponding one-step move [v,i] of c′′ as a forbidden move with duration

L+ α× f(c);
8 Change c(v) = i;

aThis simplest option of building the initial coloring is suggested by Galinier. There is no tangible advantage
to using a greedy heuristic as he said. [22]

7

3 Solving GCP by Tabucol

3 Solving GCP by Tabucol

As mentioned in section 2 (See 2.1), the GCP is to find the smallest coloring of a graph. This
problem can be solved by solving k-GCP iteratively, in which the minimum size k is found as
shown in the following flow chart:

k = n

legal k-coloring search

reduce one color, k = k − 1.

success return k + 1

failure

Figure 10: GCP-solver

Step 1: Build an initial coloring
A legal n-coloring is obviously available. In our GCP-solver, the initial coloring is c: vi → i.
A possible alternative is to build the initial coloring randomly. In Experiment 1 in section
5 (see 5.5.1) we compare these two alternatives. Our suggestion shows some advantages in
performance.

Step 2: Solve k-GCP using Tabucol

Step 3: Reduce one color
A (k − 1)-coloring will be built by reducing the least used color in the previous k-coloring.
If some color is chosen for reduction, all the nodes in this color will be colored with other
remaining colors randomly. If only a few nodes are involved in the color reduction, the resulted
(k − 1)-coloring is more likely to be legal or illegal with few conflicting edges.

In next section, the data structure of our GCP-solver is introduced.

8

3.1 Data structures

3.1 Data structures

Tabu Map and Tabu Queue
In the process of tabu search, all the legal candidates should be considered in the order of
decreasing conflict numbers. To avoid using the forbidden candidates in the search process, a
data structure should provide whether a candidate is a tabu or not. The forbidden moves are
stored in a map, called Tabu Map. Here a one-step move [v, i] is represented by an ordered
pair (v, i).
After its duration of tabu status, a forbidden move will be freed. In the meantime, a one-step
move will be marked as a tabu move after one search step. Accordingly, a queue called Tabu
Queue will be used to update the forbidden moves stored in the Tabu Map. The size of the
Tabu Queue is L + f(n) × α.2 When the color of a vertex v is changed, (v, c(v)) is recorded
in the Tabu Map and also enqueued in the Tabu Queue. When the Tabu Queue is full, extra
forbidden moves will be popped from the other end of the Tabu Queue and will be deleted in
the Tabu Map, which means the moves are freed.

When the color of a vertex v is changed:
1. Record (v, c(v)) in the Tabu Map.
2. Insert (v, c(v)) in the back of the Tabu Queue.
3. If the queue is full (size of queue > L+ f(n)× α), we remove the oldest pair (u, i).
4. Delete (u, i) in Tabu Map. go to step 3

An alternative data structure is using an n× k Matrix T [22]. Tij stores the index of iteration,
in which the one-step move [vi, j] is marked as a tabu move. To determine whether a one-step
move [v, i] is a tabu move or not, Tij is checked in constant time. If Tij ≥ currentIter - L -
α× f(n), this move is permitted 3. Otherwise, the move is a tabu move.

Solution Matrix
Local search is a search where only small changes are made in each search step. In our situation,
only one node is involved in getting to a neighbor of the current coloring. The most time in
Tabucol is spent for finding the best one-step move in the complete neighborhood. To reuse
the calculated results, Galinier uses a matrix to record the information about the neighborhood
[22]. It is the most important data structure in our implementation. This matrix is denoted
as Solution Matrix M. The matrix M evaluates the candidate moves of the current k-coloring
c. If c(vj) = i, Mij is the number of conflicting edges incident to vj in the current solution.∑n

j=1 Mc(vj)j

2 is the conflict number of solution c; If c(vj) 6= i, Mij is the number of conflicts
involving vj in a neighbor coloring c′ of c:

c′(vj) = i.
c′(vq) = c(vq), q 6= i, q ∈ {1..n}.

Γ(j, i) = Mc(vj)j −Mij evaluates the improvement of the move [vj, i] in constant time. To find
the best one-step move, all neighbors must be evaluated by the evaluation function Γ. To find
the best one-step move, O(k×n) time will be spent scanning the Solution Matrix. This matrix
is filled at the beginning based on the initial solution and constantly changed. If the chosen

2The size of the Tabu Queue is adapted to the conflict number.
3CurrentIter is the index of the current iteration.

9

3 Solving GCP by Tabucol

one-step move is [vi, j], which means changing the color of vi from current color c(vi) to j, some
entities in matrixM must be updated. More precisely, for each incident vertex vw of vi, Mc(vi)w
will be decreased by one and Mjw will be increased by one.

Data Structure Relevant Operations Functions

Tabu Map
insert an element
erase an element
search for an element

store and update tabu moves

Tabu Queue
enqueue an element
dequeue en element free tabu moves after a duration

Solution Matrix C change values of few entities constantly record information of neighbors

Table 1: Overview of used data structure

Here is a pseudo code of our GCP-solver with the data structures introduced above:

Algorithm 2: original GCP-solver with data structures
input : A Graph in DIMACS standard format
parameter: L, α
output : the minimum size k, a k-coloring c

1 Build the initial coloring c with c(vi) = i and the corresponding Solution Matrix M ;
2 k = n;
3 while (k > 1) do
4 c′ = reduceOneColor(c);
5 if (Tabucol(c′) succeed (See Algorithm 3)) then
6 c = c′;
7 k = k − 1;
8 else
9 return k, c

3.2 Improvement through randomly generated solution

Generally, finding a (k + 1)-coloring is easier than finding a k-coloring. In first iterations of
our GCP-solver, a legal k-coloring can be quickly generated by reducing the least used color in
the (k + 1)-coloring to other remaining colors. The Tabucol searches take more time gradually
and the most time spent in the process is in finding a legal c-coloring and trying to find a
(c− 1)-coloring, where c is the optimal solution. The idea here comes from the observation of
time spent in Tabucol searches. It seems that the solution loses its potential in the process of
reducing colors iteratively. So it should be helpful to use a new and perhaps more potential
coloring. In our GCP-solver, we replace the current illegal solution occasionally by a new
randomly generated coloring of the same size. This randomly generated coloring will be used
for the further search.

Experiment 2 (see 5.5.2) describes the details of this suggestion and evaluates its performance.
It shows Improvement in 53% of our benchmarks.

10

3.3 Improvement through changing solution matrix traverse direction

Algorithm 3: Tabucol with data structures
1 while (f(c′) = ∑n

i=1 Mc′(vi),i 6= 0 ∧ Timeout does not occur) do
2 max = −n;
3 for (j < k,) do
4 for (i < n ∧ j 6= c′(i)) do
5 if ((i, j) not in Tabu Map ∧ Mc′(i),i −Mji > max) then
6 max = Mc′(i),i −Mji;
7 (changedColor, changedVertex) = (j, i);

8 oldColor = c′(changedVertex);
9 c′(changedVertex) = changedColor ;
10 for (i ∈ {1..n}) do
11 if (vi is incident to changedVertex) then
12 Moldcolor,vi

= Moldcolor,vi
− 1;

13 MchangedColor,vi
= MchangedColor,vi

+ 1;

14 insert (oldColor, changedVertex) in Tabu Map;
15 push (oldColor, changedVertex) in Tabu Queue;
16 while (size(Tabu Queue) > L+ α× f(c′)) do
17 Tabu Queue pops a move (u,v);
18 delete (u,v) in Tabu Map;

19 if (f(c′) = 0) then
20 return “success”
21 else
22 return “failure”

3.3 Improvement through changing solution matrix traverse direction

When searching for the best move in our implementation, the maximum element in the conflict
matrix must be found. In the pseudo code above (see Algorithm 3), the matrix is traversed row
by row. If more than one candidate with maximum improvement exists, the first one is chosen
as the next step. This matrix can also be traversed column by column. Through Experiment
3 (see 5.5.3), we found a GCP-solver with traversal by column usually gets a better result.

3.4 Improvement through statistic matrix

The Tabucol algorithm uses a tabu list to avoid short-term cycling. When the cycling is long
(longer than the size of tabu queue), the loop of one-step moves will not be recognized in the
search process. An Improvement in our implement is to use a matrix, called statistic matrix S.
The Sij represents how many times a one-step move [vi, j] was chosen as the next step. When the
search is stuck in one long-term loop, the involved entities in the statistic matrix are increased
constantly. If more than one candidate with the highest improvements exists, the candidate
with the smallest statistic value will be chosen in the next step. We can also use the entity
Sij to determine the possibility of choosing the next move randomly (see Experiment 4 in 5.5.4).

11

4 Our Parallel Algorithm

4 Our Parallel Algorithm

With different kinds of cooperative search, this section presents 4 parallel local search algo-
rithms. The algorithm is based on our GCP algorithm introduced in section 3 and the agents
cooperate by sharing different kinds of information. The Performances were compared by ex-
periments in section 5.

4.1 1st Approach: The pure portfolio approach

The local search in section 3 uses Tabucol as a subroutine to solve the graph coloring problem.
The result of the algorithm is a legal coloring of the graph of minimum size. In the algorithms,
some parameters like L, α, the search directions (see section 3.3) and whether a statistic matrix
is introduced (see section 3.4) affect the one-step moves chosen by the search. The performance
of the algorithm is different with different parameter combinations. In the pure portfolio version
of our algorithm, the agents run the GCP solver with different parameter combinations. After
collecting the solutions found by each agent, the search takes the coloring of the minimum size
as the result. This approach improved the performance compared to the parallel GCP solver, in
which all agents run with the same parameters (see experiment 5). For each graph, there is one
parameter combination that is most suitable in the aspect of the size of tabu list and the search
path of this combination is better than others. So trying different parameter combinations will
improve the performance.

4.2 2nd Approach: Forced color reducing

This approach is based on the pure portfolio approach with different parameter combinations as
shown above. This approach is called GCP-solver with forced color reducing (FCR). As its name
suggests, the agents share the minimum size found by all agents. Because of different parameter
combinations, some agents are “luckier” and decrease the size of coloring more quickly. Suppose
that one agent has already found a k-coloring, where the other agents still make an effort to
determine whether the graph is (k + i)-colorable (integer i > 0). In this approach, the lucky
agent will broadcast this message. With this notification, all agents confirm that the graph is
at least a k-colorable graph. Then the agents in the process of searching for a (k + i) (i ≥ 0)
coloring will abandon the current search and search for a legal (k − 1) coloring since a legal
k-coloring is already found. This approach saves a lot of effort and makes the search space
larger with different implementation in our experiment (see experiment 6 in section 5.5.6), the
strategy we use is to reduce the least used (i + 1) colors in the current (k + i) coloring. This
generated (k−1) coloring is used as the initial coloring in the Tabucol search for a legal (k−1)
coloring. In this paper, this strategy is called forced color reducing (FCR).

4.3 3rd Approach: Tabu sharing

One character of tabu search is using a tabu list to record the search path to avoid short-term
cycling. In previous parallel approaches, each agent manages and uses one tabu list of its own.
The idea behind this approach is to share the “traps” of local search loops. So sharing the tabu
list should be able to bring an improvement in the cooperation of agents. This approach is called
parallel GCP-solver with tabu sharing. We did an experiment to test the performance of this

12

4.4 4th Approach: Statistic sharing

approach (see experiment 7 in section 5.5.7). It shows, however, a worse performance compared
to the original parallel GCP-solver. According to our observation in the implementation, we
list 3 possible reasons:
1. Not all tabu moves are traps. Some critical moves which are necessary to get the optimal
result are only explored by a part of threads while other threads threat them as tabu moves.
The threads missing these critical steps would never contribute to the algorithm.
2. Best candidates are forbidden. In hard graphs, it is normal to have several best candidate
moves in the current solution. Some candidates involve different parts in the graph. The
solution will be optimized to the greatest extent by going over the candidate moves and the
order of the moves have no effect on the optimization. Figure 11 is an example with two best
candidates. The current coloring c has two best candidate moves m1, m2. The candidate m1 is
(v1, white). The m2 is (v2, black). The optimal coloring of the example graph will be reached
by making the move m1 then m2 or inversely. Imagine that we have two agents a1 and a2 work
with the same coloring c. The agent a1 inspects m1 and pushes m1 in shared tabu list. After
that, the agent a2 makes the move m2 and marks m2 as a tabu move. In this deadlock case, the
agent a1 cannot take m2 even it brings the best improvement on the current solution. Similarly,
agent a2 recognize m1 as a tabu move and does a compromise with other suboptimal moves.

v1 v2

Figure 11: An example with two moves m1 and m2. The candidate m1 is (v1, white). The m2
is (v2, black).

3. When a move is taken earlier by one agent, it will be ignored by other agents. The differences
in parameters make the colorings of agents more different and thus the shared tabu moves may
not be meaningful to other agents. In some cases, the tabus from other agents disturb the
choice of next moves.

4.4 4th Approach: Statistic sharing

After the analysis of the failures in the 3rd Approach with tabu sharing, we came up with the
approach with statistic matrix sharing. The intention of this sharing is to use the statistic
matrix to recognize the real traps and warn other agents when one agent is stuck in one loop.
The Tabucol search in agents follows the scheme below:
1. The agents use one common statistic matrix. The statistic matrix counts the times of moves
chosen by one agent.
2. When two best candidates exist in one solution, the move with smaller statistic matrix value
will be chosen.
3. When only one best candidate exists with a very large statistic value, the search will choose
another candidate randomly.
This approach demonstrates a big improvement. (see Experiment 8)

13

5 Evaluation

5 Evaluation

The single-threaded experiments were run on computers that had four AMD(R) Opteron(R)
processors 6168 (1.9 Ghz with 12 cores) and 256GB RAM. The computers ran the 64-bit version
of Ubuntu 12.04. The multi-threaded experiments were run on fat nodes InstitutsClusterII
(IC2) at Steinbuch Centre for Computing (SCC) of KIT. IC2 is a distributed memory parallel
computer with 480 16-way so-called thin compute nodes and 5 32-way so-called fat compute
nodes. The thin nodes are equipped with 16 cores, 64 GB main memory, whereas the fat nodes
are equipped with 32 cores, 512 GB main memory [24].

5.1 DIMACS standard format

All the graphs used in experiments are in the DIMACS standard format [25]. This format is
a widely used format to test and compare graph coloring algorithms. A DIMACS file contains
the description of an instance using three types of lines4:

1. Comment line: Comment lines give information about the graph for human readers, like the
author of the file or related works. A comment line starts with a lower-case character c and
will be ignored by programs:

c # this is an example of the comment line #

2. Problem line: The problem line appears exactly once in each DIMACS format file. The
problem line is signified by a lower-case character p. For a graph G = (V, E), the problem line
in its DIMACS file is:

p edge |V| |E|

3. Edge Descriptor: An edge {u, v} in the graph is described in an edge Descriptor:
e u v

5.2 Benchmarks

The graphs used in our experiments are from the DIMACS benchmark collection [27, 28]. In
the following experiments, 68 graphs are used. Some names of the graphs contain generation
involved information:

dsjcX.Y and dsjrX.Y: Graphs generated by Johnson et.al [10]. X in the file name denotes
the number of vertices. The probability that two nodes are incident is given by Y.
flatX_K: Graphs generated by J Culberson. The graphs are generated by partitioning its
vertices in K nearly same sized sets and adding edges which connect vertices in different sets.
So the chromatic number is theoretically smaller or equal to K.
le450_K: Graphs with 450 vertices and chromatic number K [6].
c*: Huge graphs with more than 4 million edges.

4Only unweighted undirected simple graphs are tested in our experiments. For other descriptors and details
of the DIMACS format, see [26].

14

5.2 Benchmarks

c This is a DIMACS file of the graph in Figure 6

p edge 7 11

e 1 3

e 1 2

e 2 7

e 2 6

e 1 6

e 1 4

e 1 5

e 4 5

e 3 5

e 5 6

e 6 7

Figure 12: A DIMACS file example of the graph in Figure 5

latin_square_10 and school*: A latin square graph (and class scheduling graphs respec-
tivelly) generated by Gary Lewandowski for the second Dimacs challenge.
r*.X: Random graphs. The suffix “c” denotes the complement of a graph.
queenX_Y: Graphs translated from Stanford GraphBase with ID: gunion(board(X,Y,0,0,-
1,0,0),board(X,Y,0,0,-2,0,0),0,0).
milesX: Graphs translated from Stanford GraphBase with ID:miles(128,0,0,0,X,127,0).
jean: Graphs translated from Stanford GraphBase with ID: book(jean,80,0,1,356,0,0,0).
fpsol2.i.*, inithx.i.*, mulsol.i.*, zeroin.i.*: Graph generated from a register problem based
on real code.
brockX_*: Graphs with X nodes generated by Mark Brockington and Joe Culberson.

In our experiments, the graphs are divided into 4 classes according to their size and complexity
for the graph coloring problem 5. For huge graphs in the first class, the timeout is set to 20
minutes. For the second class, the timeout is 4 minutes. For the third class 2 minutes and for
fourth class 1 minute.

class 1 (4 graphs): c2000.5, r1000.5, dsjc1000.9, c4000.5.

class 2 (3 graphs): dsjc1000.5, r1000.1c, latin_square_10.

class 3 (53 graphs):
miles250, jean, queen8_8, le450_5a, le450_5b, queen9_9, le450_5c, le450_5b, queen8_12,
queen10_10, queen11_11, queen12_12, queen13_13, queen14_14, queen15_15, le450_15b,
miles500, queen16_16, le450_15c, le450_25a, le450_25b, le450_15d, dsjc1000.1, school1,
school1_nsh, zeroin.i.2, zeroin.i.3, fpsol2.i.3, fpsol2.i.2, inithx.i.2, inithx.i.3, miles750, mul-
sol.i.2, mulsol.i.3, mulsol.i.4, mulsol.i.5, miles1000, mulsol.i.1, zeroin.i.1, inithx.i.1, dsjc500.5,
fpsol2.i.1, miles1500, brock400_1, brock400_2, brock400_3, dsjr500.1c, flat1000_60_0,
flat1000_50_0, flat1000_76_0, brock800_1, brock800_2, brock800_4, dsjr500.5.col.

5In the experiments, the performance of the algorithms after a time interval was compared.

15

5 Evaluation

class 4 (7 graphs): dsjc500.1, le450_25c, le450_25d, dsjc250.5, flat300_28_0, r250.5, dsjc500.9.

5.3 Used plots and tables

Different plots and tables are used to illustrate the results of the following experiments.

Comparison Table
See Table 3 for example.
A comparison table shows the different results of algorithms. The first column contains the
names of graphs. The fields of a comparison table in the following columns corresponds to the
coloring sizes found with an algorithm.

Scatter Plot
See Figure 13 for an example.
A scatter plot compares the results of two algorithms. Similar to the comparison table, only
the graphs with a difference in two algorithms are shown in the scatter plot. The x-axis shows
the color sizes for an algorithm, denoted by x-axis algorithm. The vertical axis to the left shows
the color sizes for y-axis algorithm. A graph with color size u in x-axis algorithm and color
size v in y-axis algorithm corresponds to a mark (u, v). The line x = y divides the plot into
two parts. The marks in the upper part (x < y) correspond to graphs with better results for
the x-axis algorithm. The opposite corresponds to better results for the y-axis algorithm. In
Figure 13, the part above the diagonal line contains more marks than the lower part, which
means x-axis algorithm is better than the y-axis algorithm.

Cactus Plot
See Figure 14 for an example.
In a cactus plot, the problems are indexed in an ascending order of color size. The y-axis shows
the result sizes of the graph. Each algorithm corresponds to a curve in different colors. The
point (u, v) on a curve means a v-coloring is found in the corresponding algorithm for the uth
graph.
Advantage Plot
See Figure 15 for an example.
An Advantage plot shows the advantage of algorithms to an comparison algorithm. The y-axis
gives the ordered percentage difference. A relative difference upper the line x = 0 corresponds
to an advantage of the algorithm in the corresponding graph. The opposite is true for an
advantage of the comparison algorithm.

5.4 Automatic parameter optimization

The parameter combinations used in the experiments are generated with the help of the al-
gorithm parameter optimization tool SMAC [29] (sequential model-based algorithm configu-
ration). SMAC ran our algorithms on our instances (class 4 as training instances, class 1 as
test instances.) using different parameter combinations and seeds. In this simulation process,
the performance of different combinations was evaluated. With the help of SMAC, 32 optimal
parameter combinations were found. The 32 parameter combinations used in our experiments
are as follows:

16

5.4 Automatic parameter optimization

Table 2: parameter combinations

Index L α Initialization Replace Traverse Statistic
1 9 0.38 Node-Index true Column true
2 1 0.77 Node-Index true Column true
3 11 0.90 Node-Index true Column true
4 17 0.59 Random true Column true
5 18 0.42 Node-Index false Column false
6 4 0.92 Node-Index true Column true
7 16 0.76 Node-Index false Row false
8 17 0.47 Node-Index false Column false
9 2 0.60 Node-Index true Column false
10 2 0.54 Node-Index false Column true
11 5 0.46 Random true Column true
12 11 0.63 Random true Column true
13 7 0.83 Node-Index true Column true
14 8 0.98 Node-Index false Row true
15 18 0.58 Node-Index true Column false
16 13 0.90 Node-Index false Column true
17 20 0.56 Node-Index true Column false
18 10 0.95 Node-Index true Column true
19 15 0.55 Node-Index true Row true
20 17 0.39 Node-Index true Column true
21 18 0.52 Node-Index false Column true
22 11 0.32 Node-Index true Column true
23 15 0.62 Node-Index false Column true
24 6 0.94 Random true Column true
25 9 0.94 Node-Index false Column false
26 12 0.96 Node-Index true Column true
27 16 0.58 Node-Index false Column true
28 9 0.45 Node-Index false Column true
29 19 0.95 Node-Index true Column true
30 18 0.31 Node-Index true Column false
31 6 0.50 Node-Index false Column false
32 15 0.93 Node-Index false Column false

For a single thread algorithm, we use the first parameter combination. In a multi-threaded al-
gorithm, the ith thread uses the ith parameter combination. The parameter L and α determine
the size of the tabu List with L+f(n)×α. For the initial solution generation, two choices exist:
randomly generated initialization and node-index initialization (see section 3). The solution
matrix is traversed row by row or column by column (see section 3.3). The combinations with
“statistic = true” use the statistic matrix while searching and participating statistic sharing
(see section 4.4).

17

5 Evaluation

5.5 Experiments

In experiment 1 to experiment 4, we compare strategies of the single-thread GCP-solver shown
in section 3. The results are in table 3. The original solver is an implementation of algorithm
2 with the data structures shown in section 3.1. Experiment 1 compares this original Solver,
which uses a randomly generated initial solution with a GCP-solver with the strategy “Node-
Index initialization” (see section 3). Experiment 2 compares our original solver with the solver
with the strategy “replacement” (see section 3.2). Experiment 3 compares the original solver,
which traverses the solution matrix row by row with a solver with the column traversal (see
section 3.3). Experiment 4 proves the advantage of adding the data structure statistic matrix
(see section 3.4). The results of these experiments are summarized in table 3.
Experiments 5 to 8 are about the parallel GCP solver. The experiments perform with 1 core,
2 cores, 4 cores, 8 cores, 16 cores and 32 cores. The experiments use our single-thread GCP
solver with Node-index initialization and the 3 advantageous strategies we found (see sections
3.2, 3.3, 3.4) for comparisons. Experiment 5 compares this single-thread GCP solver with
multi-threaded solver with different parameter combinations, denoted as the pure portfolio
GCP-solver. Experiments 6 to 8 compare our pure portfolio GCP-solver with the parallel solver
with cooperation. Experiment 6 tests the performance of the parallel solver with minimum color
size sharing among agents. Experiment 7 shows the solver with shared tabu list, which turns
out to be a failed attempt. In experiment 8, the parallel solver with shared statistic matrix is
compared with the pure portfolio solver.
In experiment 9, we compare our parallel GCP-solver with all found advantageous coopeartion
with three DSATUR-based algorithms (see section 2.2).

18

5.5 Experiments

5.5.1 Experiment 1: Random initialization vs Node-index initialization

Experiment 1 compares two different strategies of initialization in our GCP-solver. Our sug-
gestion is to use c: vi → i as the initial solution. Another alternative is to build a coloring
randomly. In table 3, the column “Original solver” uses the random initialization. The column
“NodeIndex” contains the results with the Node-index initialization. In 29 of the 68 graphs,
there is a performance difference between two initializations. 24 graphs get a better result with
our version. 5 graphs get a better result with a random initial solution.

 10

 100

 1000

 10 100 1000

N
o
d

e
In

d
e
x

Random

Figure 13: Two suggestions have very similar performance since all points are close to the
diagonal. The fact that most points are over the diagonal shows that our suggestion
has marginal advantages over random initialization. Every graph in Table 3 with
different results is plotted as a green cross.

 10

 100

 1000

 0 5 10 15 20 25 30

C
o
lo

rs

Problem

Random
NodeIndex

Figure 14: Our suggestion shows advantages especially for small graphs.

19

5 Evaluation

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30

Im
p

ro
v
e
m

e
n
t

Problem

0
improvement

Figure 15: advantage plot NodeIndex: Random

5.5.2 Experiment 2: Original solver vs Solution replacement

The GCP-solver introduced in section 3 runs within a time interval t. In our suggestion, the
current coloring will be replaced by a randomly generated coloring of the same size when a
Tabucol search fails after bt/2c.

Comparing the original GCP-solver and our suggestion which replaces the current illegal solu-
tion after half of the time interval, our suggestion shows improvement in 36 graphs. The results
are shown in Table 3 (column “Replacement”).

 10

 100

 1000

 10 100 1000

R
e
p

la
ce

Original

Figure 16: The points below the diagonal show an advantage of our suggestion.

20

5.5 Experiments

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35

Im
p

ro
v
e
m

e
n
t

Problem

improvement
0

Figure 17: The improvement of our suggestion is very small (most relative differences are under
0.1%). However, this suggestion is adopted because of its universal improvement
(more than 53% graphs are improved with our suggestion).

5.5.3 Experiment 3: RowTraverse vs ColumnTraverse

In our Implementation, we use the conflict matrix to evaluate the one step moves. The sug-
gestion RowTraverse traverses the matrix row by row to find the best candidate. If more than
one best candidates exist, it will always choose the first one for the next move. Our suggestion
called ColumnTraverse traverses the conflict matrix column by column and uses the first best
candidate for the next move. In experiment 3, the ColumnTraverse shows advantages in more
than half of the graph instances (see table 3 column “Ctraverse”).

 10

 100

 1000

 10 100 1000

R
o
w

Tr
a
v
e
rs

e

ColumnTraverse

Figure 18: The scatter plot compares the RowTraverse and ColumnTraverse. The advantage
of ColumnTraverse concentrates on small graphs. For large graphs, two traverse
directions get similar results.

21

5 Evaluation

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40 45

Im
p

ro
v
e
m

e
n
t

Problem

0
improvement

Figure 19: 43 graphs of our instances get small differences by RowTraverse and ColumnTra-
verse. 38 graphs get better results with ColumnTraverse and 5 graphs benefit from
RowTraverse.

5.5.4 Experiment 4: Original solver vs Statistic solver

In our GCP-solver, we add an n× n statistic matrix to record the repeated steps in the past.
The aim of adding this statistic matrix is to avoid long-term cycling of the local search in a
neighborhood. When a cycling is longer than the length of the tabu list, the original GCP-
solver will be stuck in the cycling, while the solver with statistic matrix can realize this and
jump out of this cycling by choosing candidates which are not involved in this cycling. In
Experiment 4, the original GCP-solver is compared with a GCP-solver with statistic matrix S.
The Sij corresponds to how many times [vi, j] is chosen as the best move. When a move [vi, j]
is chosen for the next step in the search, Sij is increased by one. If two best candidates exist,
the corresponding entities in the statistic matrix will be compared. The candidate which is less
used before will be chosen as the next move. When the value of one entity in statistic matrix
reaches a predefined upper bound (In our experiment, the upper bound is n), the suboptimal
candidate will be used in the next move. The results of this experiment are in table 3 (see
column “Statistic”).

22

5.5 Experiments

 10

 100

 1000

 10 100 1000

O
ri

g
in

a
lS

o
lv

e
r

StatisticSolver

Figure 20: Scatter plot of 44 graphs in our benchmark with differences between the original
GCP-solver (OriginalSolver) and the solver with statistic matrix (StatisticSolver)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 5 10 15 20 25 30 35 40 45

Im
p
ro

v
e
m

e
n
t

Problem

0
improvement

Figure 21: 39 graphs of 68 graph instances (57% graphs) get a better result with help of a
statistic matrix. 5 graphs (7% graphs) get a better result without statistic matrix.

23

5 Evaluation

G
ra
ph

O
rig

in
al

N
od

e-
In
de

x
R
ep

la
ce

C
tr
av
er
se

St
at
ist

ic
O
ur

so
lv
er

m
ile

s2
50

8
8

8
8

8
8

je
an

10
10

10
10

10
10

qu
ee
n8

_
8

11
11

10
10

10
10

le
45
0_

5a
11

11
11

10
10

10
le
45
0_

5b
11

11
11

10
11

11
qu

ee
n9

_
9

12
11

10
12

12
11

le
45
0_

5c
13

12
12

12
12

12
le
45
0_

5d
14

11
11

10
11

12
qu

ee
n8

_
12

13
13

13
13

13
13

qu
ee
n1

0_
10

13
13

13
13

13
13

qu
ee
n1

1_
11

14
14

14
14

14
14

qu
ee
n1

2_
12

15
15

15
15

15
15

qu
ee
n1

3_
13

16
16

16
16

16
16

ds
jc
50
0.
1

17
16

16
16

16
16

qu
ee
n1

4_
14

17
18

17
17

17
17

qu
ee
n1

5_
15

19
18

18
18

18
18

le
45
0_

15
b

19
19

19
18

18
18

m
ile

s5
00

20
20

20
20

20
20

qu
ee
n1

6_
16

20
20

20
20

20
20

le
45
0_

15
c

26
26

26
25

25
25

le
45
0_

25
a

26
26

26
25

26
25

le
45
0_

25
b

25
25

25
26

26
25

le
45
0_

15
d

31
32

26
31

31
26

ds
jc
10
00
.1

26
26

26
26

31
26

sc
ho

ol
1

43
34

34
27

29
33

sc
ho

ol
1_

ns
h

34
31

31
30

31
29

ze
ro
in
.i.
2

31
31

30
30

30
30

ze
ro
in
.i.
3

31
31

31
30

30
30

fp
so
l2
.i.
3

38
30

30
31

31
30

fp
so
l2
.i.
2

37
31

31
31

31
30

in
ith

x.
i.2

40
31

31
31

31
31

in
ith

x.
i.3

38
31

31
31

31
31

le
45
0_

25
c

32
32

31
31

31
31

le
45
0_

25
d

32
32

32
31

31
31

G
ra
ph

O
rig

in
al

N
od

e-
In
de

x
R
ep

la
ce

C
tr
av
er
se

St
at
ist

ic
O
ur

so
lv
er

m
ile

s7
50

32
32

31
31

31
31

m
ul
so
l.i
.2

31
31

31
31

31
31

m
ul
so
l.i
.3

32
31

31
31

31
31

m
ul
so
l.i
.4

31
31

31
31

31
31

m
ul
so
l.i
.5

31
31

31
31

31
31

ds
jc
25
0.
5

36
36

35
36

35
35

fla
t3
00
_
28
_
0

40
40

39
39

39
39

m
ile

s1
00
0

42
43

42
42

42
42

m
ul
so
l.i
.1

49
49

49
49

49
49

ze
ro
in
.i.
1

49
49

49
49

49
49

in
ith

x.
i.1

58
55

55
54

54
54

ds
jc
50
0.
5

62
62

62
62

61
61

fp
so
l2
.i.
1

66
65

65
65

65
65

r2
50
.5

73
71

72
71

72
71

m
ile

s1
50
0

73
73

73
73

73
73

br
oc
k4

00
_
1

86
85

85
83

84
84

br
oc
k4

00
_
2

87
86

84
85

84
84

br
oc
k4

00
_
3

85
85

84
85

85
84

ds
jr
50
0.
1c

97
96

97
95

96
96

fla
t1
00
0_

60
_
0

10
8

10
8

10
7

11
1

10
7

10
6

fla
t1
00
0_

50
_
0

10
7

10
7

10
7

11
1

10
7

10
6

fla
t1
00
0_

76
_
0

10
7

10
7

10
7

11
1

12
8

10
7

ds
jc
10
00
.5

11
0

11
0

10
8

10
8

10
8

10
8

r1
00
0.
1c

12
5

12
3

12
1

12
3

12
3

12
3

br
oc
k8

00
_
1

12
5

12
4

12
4

12
4

12
3

12
3

br
oc
k8

00
_
2

12
5

12
5

12
4

12
4

12
4

12
4

br
oc
k8

00
_
4

12
4

12
6

12
4

12
5

12
4

12
4

la
tin

_
sq
ua

re
_
10

13
6

13
4

13
4

13
6

13
3

13
3

ds
jr
50
0.
5

13
5

13
5

13
5

13
5

14
3

13
4

ds
jc
50
0.
9

15
1

15
0

14
9

14
8

14
9

14
9

c2
00
0.
5

19
8

19
7

19
5

19
4

19
4

19
4

r1
00
0.
5

26
8

26
6

26
4

26
5

27
7

26
3

ds
jc
10
00
.9

27
3

27
2

27
0

26
9

26
9

26
9

c4
00
0.
5

35
6

35
6

35
3

35
3

35
2

35
2

Ta
bl
e
3:

T
he

or
ig
in
al

G
C
P-

so
lv
er

us
es

a
ra
nd

om
ly

ge
ne
ra
te
d
in
iti
al

so
lu
tio

n.
It

tr
av
er
se
st

he
so
lu
tio

n
m
at
rix

ro
w

by
ro
w
.T

he
or
ig
in
al

so
lv
er

is
im

pl
em

en
te
d
w
ith

th
e
da

ta
st
ru
ct
ur
e
sh
ow

n
in

3.
1,

st
at
ist

ic
m
at
rix

no
t
in
cl
ud

ed
.

24

5.5 Experiments

5.5.5 Experiment 5: Original solver vs Parallel solver with various parameter
combinations

Our parallel implementation uses OpenMP to support shared memory multiprocessing. Our
pure portfolio approach takes advantage of flexible parameter combinations. The slave threads
execute the GCP-solver with different parameter combinations in parallel. Then the result of
each agent is written in a shared memory. The master thread compares the results and chooses
the result with minimum size as the final result.

Algorithm 4: parallel GCP-solver with different parameter combinations
input : A Graph in DIMACS standard format, number of agents t
parameter: parameter combinations {p1, p2, ..., pt}
output : Solution s

1 start t agents;
2 Each agent runs GCP-solver with parameter combination pindex_of_t;
3 solutions {s1, s2, ..., st} found by agents are collected and compared;
4 Output the coloring of the minimum size from {s1, s2, ..., st};

In experiment 5, we compare our pure portfolio GCP-solver with a single-threaded GCP-solver.
The parallel GCP-solver with t threads use the first t parameter combinations in table 2.

 10

 100

 1000

 10 100 1000

3
2

t

1t

Figure 22: The scatter plot compares our single-threaded GCP-solver and the pure portfolio
solver with 32 threads. Most points are under the diagonal. One outlier (the huge
graph c4000.5) is on the right top, which seems to be caused by the time spent on
swapping to hard disk when RAM is full.

1t 2t 4t 8t 16t 32t
best 0 8 9 23 29 34
unique 0 0 2 0 1 9

Table 4: For a pure portfolio approach, the numbers of times of getting the minimum size among
all the solvers are recorded in the row “best”. The row “unique” records the times of
getting the unique minimum size. This table is based on the 40 graphs shown in table
5.

25

5 Evaluation

Graph 1t 2t 4t 8t 16t 32t
queen8_8 11 11 11 10 10 10
le450_5a 11 11 11 10 10 10
le450_5b 11 11 11 10 10 10
queen9_9 11 11 10 11 11 11
le450_5c 12 11 11 11 11 12
le450_5d 12 11 11 11 11 11
queen8_12 13 13 13 13 12 12
queen10_10 13 13 13 13 12 12
queen11_11 14 14 14 14 14 13
queen14_14 18 17 17 17 17 17
le450_15b 19 19 19 18 17 17
queen16_16 20 20 20 20 19 19
le450_15c 26 26 26 26 26 25
school1 34 34 34 31 31 31
school1_nsh 31 31 31 31 31 30
zeroin.i.2 31 31 31 30 30 30
le450_25c 32 32 31 31 31 30
le450_25d 32 32 32 31 31 31
miles750 32 32 32 31 31 31
dsjc250.5 36 36 36 35 35 35
flat300_28_0 40 39 39 39 39 39
miles1000 43 42 42 42 42 42
inithx.i.1 55 54 55 54 54 57
dsjc500.5 62 61 61 61 61 61
r250.5 73 73 71 71 71 70
brock400_1 85 85 85 84 84 84
brock400_2 86 85 85 85 85 84
brock400_3 85 85 85 84 84 84
dsjr500.1c 97 97 96 93 93 93
flat1000_60_0 108 107 107 106 106 106
flat1000_50_0 107 107 107 107 106 106
r1000.1c 124 124 124 124 122 123
brock800_1 124 124 124 124 124 123
brock800_2 125 125 125 124 124 124
brock800_4 126 124 125 124 124 124
latin_square_10 134 134 134 132 132 134
dsjc500.9 150 150 150 150 150 149
c2000.5 195 195 195 195 195 194
r1000.5 266 266 264 264 264 264
c4000.5 356 357 355 363 412 412

Table 5: 40 graphs get different results when GCP-solver uses different numbers of threads.
The column nt (n ∈ {1, 2, 4, 8, 16, 32}) is for the corresponding results of the pure
portfolio GCP-solver with n threads. The GCP-solver with one thread is identical to
the original GCP-solver introduced in section 3. The graphs in the table are ordered
with color size found in the original GCP-solver.

26

5.5 Experiments

5.5.6 Experiment 6: GCP-solver with FRC

In experiment 6 the approach forced color reducing (FRC) was tested. There is a global
variable kmin shared by all agents. It represents the minimum size of the legal coloring found
by the agents. The GCP-solver_FCR runs Tabucol iteratively on several agents with different
parameter combinations. In the process, the minimum size is shared among the agents. The

pseudo code is as follows:

Algorithm 5: A parallel GCP-solver with forced color reducing
input : A Graph G in DIMACS standard format, number of agents t
parameter: parameter combinations {p1, p2, ..., pt}, Timeout
output : Solution s

1 kmin = n;
2 start t agents;
3 //in t Agents
4 c = initialColoring(G, k);
5 k = n− 1;
6 while (Timeout does not occur) do
7 Tabucol(c, k); //search a k-coloring based on c and set the new coloring as c
8 if (k < kmin ∧ Tabucol(c, k) succeed) then
9 kmin = k;
10 k = k − 1;
11 c = reduceOneColor(c, k) //reduce the least used color in the current coloring

The results of our experiment are shown in table 7. 49 graphs get different results when GCP-
solver_FCR uses different numbers of threads. Generally, the result is improved with the
increase in the number of threads. For the graph c400.5, the results with 16 threads and 32
threads are unusual. A possible cause is that the swapping to hard disk in this huge graph
takes a lot of time.

1t 2t 4t 8t 16t 32t
best 2 8 18 24 32 45
unique 0 0 1 1 2 14

Table 6: As the number of threads increases, the numbers of times of getting the minimum size
among all the solvers are increased. The table left is based on the 49 graphs shown in
table 7.

27

5 Evaluation

Graph 1t 2t 4t 8t 16t 32t
queen8_8 11 10 10 10 10 10
le450_5b 11 10 11 10 10 10
queen9_9 11 12 11 11 11 11
le450_5c 12 12 12 11 11 10
le450_5d 12 12 12 11 11 10
queen8_12 13 13 13 13 12 12
queen10_10 13 13 13 13 12 12
queen11_11 14 14 14 14 14 13
queen12_12 15 15 15 15 15 14
dsjc500.1 16 16 16 16 15 15
queen14_14 18 18 17 17 17 17
queen16_16 20 20 20 19 19 19
le450_15c 26 26 26 25 25 25
le450_25a 26 25 25 25 25 25
le450_25b 25 26 25 25 25 25
le450_15d 26 26 26 25 25 25
dsjc1000.1 26 26 26 26 25 25
school1 34 36 33 34 33 31
school1_nsh 31 32 32 31 29 30
zeroin.i.2 31 31 30 30 30 30
zeroin.i.3 31 31 30 30 30 30
fpsol2.i.2 31 30 30 30 30 30
le450_25c 31 32 31 31 31 30
le450_25d 31 31 31 30 31 31
miles750 32 32 32 31 31 31
dsjc250.5 36 35 35 35 35 35
flat300_28_0 39 39 40 39 39 38
miles1000 43 43 42 42 42 42
dsjc500.5 62 62 62 61 61 61
r250.5 73 73 71 71 71 71
brock400_1 85 85 85 84 84 83
brock400_2 85 85 85 85 84 84
brock400_3 86 86 85 84 84 84
dsjr500.1c 95 94 94 96 95 94
flat1000_60_0 107 107 107 107 107 106
flat1000_50_0 107 106 106 106 106 106
flat1000_76_0 109 108 107 107 107 107
dsjc1000.5 109 110 109 108 109 107
r1000.1c 126 126 125 123 120 119
brock800_1 125 124 124 123 123 123
brock800_2 125 124 124 124 124 124
brock800_4 126 124 124 124 123 123
latin_square_10 136 134 132 133 132 132
dsjr500.5 136 136 135 135 135 134
dsjc500.9 152 150 149 149 149 149
c2000.5 195 196 195 195 195 194
r1000.5 268 267 266 264 263 264
dsjc1000.9 271 271 270 270 270 268
c4000.5 356 362 354 357 386 406

Table 7: GCP-solver_FCR28

5.5 Experiments

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 5 10 15 20 25 30 35 40 45 50

Im
p

ro
v
e
m

e
n
t

Problem

0
2t
4t
8t

16t
32t

Figure 23: This advantage plot presents the improvement of GCP-solver through sharing the
global minimum color size among all the agents. The result with 32 threads shows
big and stable improvement.

5.5.7 Experiment 7: GCP-solver with tabu share

Experiment 7 tests the approach of tabu sharing (see 4.3). All the agents run the GCP-solver
independently and the final result is the minimum size among the agents. The only difference
of this approach from the pure portfolio GCP-solver is that all agents share one tabu list, which
is built with the parameter combination of the original GCP-solver (L = 9 and α = 0.38). We
compare the results of tabu shared GCP-solver with different numbers of threads (see Table 9).

1t 2t 4t 8t 16t 32t
best 52 32 18 11 7 5
unique 25 4 0 0 0 0

Table 8: GCP-solver with tabu sharing is a suggestion with bad performance. The more threads
share the tabu list, the worse the performance of the search is. The statistical data
here are based on table 9.

29

5 Evaluation

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 10 20 30 40 50 60

Im
p

ro
v
e
m

e
n
t

Problem

0
2t
4t
8t

16t
32t

Figure 24: Advantage plot

 10

 100

 1000

 0 10 20 30 40 50 60

C
o
lo

rs

Problem

1t
32t

Figure 25: The performance of 32-thread tabu sharing GCP-solver is always worse than the
performance of single-threaded GCP-solver

30

5.5 Experiments

Graph 1t 2t 4t 8t 16t 32t
queen8_8 10 11 11 11 11 12
le450_5a 11 11 11 11 12 12
le450_5b 10 11 11 11 11 11
queen9_9 11 11 11 12 12 12
le450_5c 12 13 13 15 15 14
le450_5d 12 13 14 14 14 14
queen8_12 12 13 13 14 13 14
queen10_10 13 13 13 13 14 14
queen11_11 14 14 14 15 15 15
queen12_12 15 15 16 15 16 17
queen13_13 16 16 17 17 17 18
dsjc500.1 16 16 16 17 18 17
queen14_14 17 18 18 18 19 19
queen15_15 18 18 19 19 20 20
le450_15b 17 18 19 19 20 20
queen16_16 20 20 20 20 21 22
le450_15c 26 26 26 27 28 28
le450_25a 25 25 26 26 27 28
le450_25b 25 25 25 26 26 26
le450_15d 26 26 27 27 29 28
dsjc1000.1 26 26 27 27 29 28
school1 33 32 33 35 35 37
school1_nsh 29 30 31 33 34 35
zeroin.i.2 30 30 30 30 30 31
zeroin.i.3 30 30 30 30 31 31
fpsol2.i.3 31 30 30 30 30 31
fpsol2.i.2 30 30 31 31 30 31
le450_25c 31 32 32 32 33 34
le450_25d 31 32 32 33 34 34
miles750 31 31 32 31 32 32
dsjc250.5 36 36 36 38 38 39
flat300_28_0 40 40 40 41 42 42
miles1000 42 42 42 43 42 42
zeroin.i.1 50 49 49 49 49 49
dsjc500.5 61 62 61 64 66 68
fpsol2.i.1 65 65 65 65 65 66
r250.5 70 70 72 73 75 75
miles1500 73 73 73 73 73 73
brock400_1 84 85 86 88 91 93
brock400_2 85 86 86 88 89 92
brock400_3 84 86 86 88 89 93
dsjr500.1c 96 95 96 100 102 101
flat1000_60_0 107 107 109 111 113 116
flat1000_50_0 107 107 108 109 111 116
flat1000_76_0 107 108 108 110 113 114
dsjc1000.5 109 110 111 112 114 118
r1000.1c 124 123 127 129 129 140
brock800_1 124 125 126 127 129 132
brock800_2 124 125 125 128 129 134
brock800_4 124 125 125 127 130 132
latin_square_10 135 136 137 138 145 145
dsjr500.5 133 135 136 137 138 139
dsjc500.9 150 150 151 152 156 159
c2000.5 195 196 197 199 203 207
r1000.5 261 264 265 266 269 272
dsjc1000.9 267 271 270 275 278 284
c4000.5 353 356 356 362 372 545

Table 9: GCP-solver with tabu sharing. For c400.5, the performance with 32 thread is poor
because of much memory swapping.

31

5 Evaluation

5.5.8 Experiment 8: GCP-solver with statistic Matrix sharing

The statistic matrix is an important data structure in our implementation of GCP-solver to
avoid long-term cycling in the local search. In experiment 4 5.5.4, we found that with help of
statistic matrix, the performance of our search in 55% graphs is improved (see table 11).

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40 45

Im
p
ro

v
e
m

e
n
t

Problem

0
2t
4t
8t

16t
32t

Figure 26: The improvement of GCP-solver through statistic matrix sharing is big. The im-
provement is however not stable.

1t 2t 4t 8t 16t 32t
best 7 14 22 27 32 36
unique 1 0 0 2 4 6

Table 10: With more threads, the performance of our GCP-solver is improved through statistic
matrix sharing. With 8 threads, more than half of the graphs have reached their
minimum color size in local search.

5.5.9 Experiment 9: Comparison of our GCP-solver with other algorithms

In experiment 9, we compare our parallel GCP-solver with forced color reducing and statistic
sharing with three other DSATUR-based algorithms: DSATUR algorithm, PASS algorithm,
and TRICK algorithm (see table 12). The source code of DSATUR and PASS is supplied by
Fabio Furini [30]. The source code of the algorithm TRICK is provided by Michael Trick [20]
(see details in 2.2). The benchmark graphs are tested with the same timeout as in our GCP
solver algorithm (see 5.2).

32

5.5 Experiments

graph 1t 2t 4t 8t 16t 32t
queen8_8 11 10 10 10 10 10
le450_5b 11 10 11 10 10 10
queen9_9 11 12 12 11 11 11
le450_5c 12 11 11 11 11 11
le450_5d 12 11 11 11 11 11
queen8_12 13 13 13 12 12 12
queen10_10 13 13 13 12 12 12
queen11_11 14 14 13 14 14 13
dsjc500.1 16 15 15 15 15 15
queen14_14 18 17 17 17 17 17
queen16_16 20 19 20 19 19 19
le450_15c 25 26 25 25 25 25
le450_25a 26 25 25 25 25 25
le450_25b 26 25 25 25 25 25
le450_15d 26 25 26 25 25 25
dsjc1000.1 26 26 25 25 25 25
school1 34 28 30 29 28 27
school1_nsh 31 30 29 29 28 28
zeroin.i.2 31 30 30 30 30 30
fpsol2.i.3 31 31 30 30 30 30
le450_25c 31 31 30 31 31 30
miles750 31 31 31 31 31 32
dsjc250.5 35 35 34 34 35 34
flat300_28_0 39 39 39 39 38 38
inithx.i.1 54 54 54 54 54 57
dsjc500.5 61 61 61 61 61 60
r250.5 71 70 70 71 70 70
brock400_1 84 85 86 85 83 84
brock400_2 84 85 84 84 84 84
brock400_3 85 84 84 84 84 83
dsjr500.1c 96 97 96 95 93 93
flat1000_60_0 106 107 106 106 106 106
flat1000_50_0 106 106 106 104 105 106
flat1000_76_0 107 107 106 107 106 106
dsjc1000.5 108 109 108 107 107 107
r1000.1c 123 123 122 122 121 122
brock800_1 123 124 124 122 123 123
brock800_2 124 125 125 123 124 123
brock800_4 124 124 123 124 123 123
latin_square_10 133 134 132 132 133 133
dsjr500.5 134 135 135 134 134 133
dsjc500.9 149 149 148 148 147 148
c2000.5 194 194 194 194 194 193
r1000.5 263 263 263 261 261 260
dsjc1000.9 269 268 268 267 266 267
c4000.5 352 353 353 353 412 407

Table 11: 46 of our 68 benchmark graphs have a different performance with GCP-solver using
statistic matrix sharing. The GCP-solver with one thread is identical to the GCP-
solver using a statistic matrix. Through experiment 4, we know the statistic solver
itself brought an improvement to original GCP-solver.

33

5 Evaluation

Graph 1t 2t 4t 8t 16t 32t DSATUR PASS TRICK
miles250 8 8 8 8 8 8 8 8 8
jean 10 10 10 10 10 10 10 10 10
queen8_8 11 10 10 10 10 10 9 9 9
le450_5a 10 10 10 10 10 10 8 9 9
le450_5b 11 10 11 10 10 10 9 9 9
queen9_9 11 12 11 11 11 11 10 10 10
le450_5c 12 11 11 11 11 10 9 5 5
le450_5d 12 11 11 11 11 10 10 9 8
queen8_12 13 13 13 12 12 12 12 12 12
queen10_10 13 13 13 12 12 12 12 12 12
queen11_11 14 14 13 14 14 13 13 13 13
queen12_12 15 15 15 15 15 14 15 15 15
queen13_13 16 16 16 16 16 16 16 16 16
dsjc500.1 16 15 15 15 15 15 15 15 15
queen14_14 18 17 17 17 17 17 18 17 17
queen15_15 18 18 18 18 18 18 19 20 18
le450_15b 18 18 18 18 18 18 16 16 16
miles500 20 20 20 20 20 20 20 20 20
queen16_16 20 19 20 19 19 19 20 19 19
le450_15c 25 26 25 25 25 25 23 23 23
le450_25a 26 25 25 25 25 25 25 25 25
le450_25b 25 25 25 25 25 25 25 25 25
le450_15d 26 25 26 25 25 25 23 23 23
dsjc1000.1 26 26 25 25 25 25 26 26 -
school1 34 28 30 29 28 27 14 14 14
school1_nsh 31 30 29 29 28 28 24 14 14
zeroin.i.2 31 30 30 30 30 30 30 30 30
zeroin.i.3 30 30 30 30 30 30 30 30 30
fpsol2.i.3 30 30 30 30 30 30 30 30 30
fpsol2.i.2 30 30 30 30 30 30 30 30 30
inithx.i.2 31 31 31 31 31 31 31 31 -
inithx.i.3 31 31 31 31 31 31 31 31 -
le450_25c 31 31 30 31 31 30 27 28 28
le450_25d 31 31 31 30 31 31 27 27 27
miles750 31 31 31 31 31 31 31 31 31
mulsol.i.2 31 31 31 31 31 31 31 31 31
mulsol.i.3 31 31 31 31 31 31 31 31 31
mulsol.i.4 31 31 31 31 31 31 31 31 31
mulsol.i.5 31 31 31 31 31 31 31 31 31
dsjc250.5 35 35 34 34 35 34 - - 35
flat300_28_0 39 39 39 39 38 38 41 40 39
miles1000 42 42 42 42 42 42 42 42 42
mulsol.i.1 49 49 49 49 49 49 49 49 49
zeroin.i.1 49 49 49 49 49 49 49 49 49
inithx.i.1 54 54 54 54 54 54 54 54 -
dsjc500.5 61 61 61 61 61 60 63 64 63
fpsol2.i.1 65 65 65 65 65 65 65 65 65
r250.5 71 70 70 71 70 70 66 67 -
miles1500 73 73 73 73 73 73 73 73 73
brock400_1 84 85 85 84 83 83 90 90 89
brock400_2 84 85 84 84 84 84 90 91 91
brock400_3 85 84 84 84 84 83 90 89 90
dsjr500.1c 95 94 94 95 93 93 - - 88
flat1000_60_0 106 107 106 106 106 106 111 113 -
flat1000_50_0 106 106 106 104 105 106 114 112 -
flat1000_76_0 107 107 106 107 106 106 114 111 -
dsjc1000.5 108 109 108 107 107 107 116 114 -
r1000.1c 123 123 122 122 120 119 - -
brock800_1 123 124 124 122 123 123 133 132 -
brock800_2 124 124 124 123 124 123 132 131 -
brock800_4 124 124 123 124 123 123 131 -
latin_square_10 133 134 132 132 132 132 130 140 -
dsjr500.5 134 135 135 134 134 133 131 134 130
dsjc500.9 149 149 148 148 147 148 - - 160
c2000.5 194 194 194 194 194 193 208 204 -
r1000.5 263 263 263 261 261 260 250 245 -
dsjc1000.9 269 268 268 267 266 267 297 300 -
c4000.5 352 353 353 353 386 352 377 376 -

Table 12: comparison with DSATUR, PASS, and TRICK. The column nt is for n-thread GCP-
solver with forced color reducing and statistic sharing. “-” means no result at the
timeout. 50 of 68 (73%) benchmark graphs get best results with our solver. 20 of 68
(29%) benchmark graphs get unique best results with our solver.

34

6 Conclusion

6 Conclusion

The scheme of finding a legal k-coloring of a graph and then reducing the size in search itera-
tively to find the minimum color size, is universally applicable to GCP algorithms. Our paper
presents a parallel cooperative algorithm to solve GCP with this scheme. The local search used
in our algorithm is a tabu search called Tabucol.

In section 3, we discuss the three steps of this scheme: solution initialization, k-GCP solution
and color reduction. To each step, we give a suggestion in implementation to improve the
performance of our algorithm. In 3.2, we compare the GCP-solver with a randomly generated
initial solution and the version with an n-coloring which takes node indices as the initial color
indices. The interesting fact is that the node-index initialization is advantageous in the result
and also in execution time because of its simplicity. For the k-GCP solution, we discuss the
way of choosing the next move if several critical moves exist with the maximal improvement.
For the color reduction, we always reduce the least used color in the current solution. Apart
from discussing the process of the GCP-solver, we introduce the data structures in our im-
plementation. We add a matrix data structure called statistic matrix in our implementation,
which supports the recognition of long-term cycling in tabu search and therefore improves the
performance of our GCP-solver.

Most graphs get better results with the suggestions in our single-threaded GCP-solver. How-
ever, some graphs get better results with the original GCP-solver. With this observation, we
make our GCP-solver parallel with different parameter combinations in agents. In this way, the
agents run the search with some different settings and then take advantage of the reasonable
combinations of the suggestions.

In section 4, we discussed the exchange of information among the agents in a parallel search.
The first approach is minimum size exchange, in which the agents exchange the found color
size. The approach, whose initial purpose is to save search time, was found experimentally to
bring also an improvement on results.
Then we shared the information of the local search cycling among the agents. We tested the
exchange of statistic matrix in the search process since tabu list sharing turned out to be a
failed attempt. We found the statistic matrix sharing brings further improvement.

With experiments, the hypothesis was evaluated that certain information exchange among
agents can improve the performance of the parallel search.

6.1 Further work

While this thesis has demonstrated the potential of cooperation of parallel searches for the
GCP, many opportunities of other investigation directions remain. This section presents some
of these directions.

Using different search strategies
In our algorithm, we use the k-GCP algorithm Tabucol as the subroutine. In further research,
the agents can use a different search strategy. It is to investigate, whether our introduced

35

6 Conclusion

cooperation is only beneficial for our tabu local search or generally applicable.

Using different cooperation strategies
In this thesis, the cooperation is limited to information exchange. Some other directions like
generic population-based metaheuristic are definitely worth further research.

Using different algorithms in agents
In our GCP-solver, all the agents run the same GCP algorithms. An interesting topic is the
cooperation of agents, which run different GCP algorithms.

36

7 Bibliography

7 Bibliography

References

[1] M. Kubale, Graph colorings, vol. 352. American Mathematical Soc., 2004. (Page 1).

[2] M. R. Gary and D. S. Johnson, “Computers and intractability: A guide to the theory of
np-completeness,” 1979. (Pages 1, 2).

[3] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.
Markstein, “Register allocation via coloring,” Computer languages, vol. 6, no. 1, pp. 47–
57, 1981. (Page 1).

[4] F. C. Chow and J. L. Hennessy, “The priority-based coloring approach to register allo-
cation,” ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 12,
no. 4, pp. 501–536, 1990. (Page 1).

[5] M. Garey, D. Johnson, and H. So, “An application of graph coloring to printed circuit
testing,” IEEE Transactions on circuits and systems, vol. 23, no. 10, pp. 591–599, 1976.
(Page 1).

[6] F. T. Leighton, “A graph coloring algorithm for large scheduling problems,” Journal of
research of the national bureau of standards, vol. 84, no. 6, pp. 489–506, 1979. (Pages 1,
14).

[7] D. de Werra, “An introduction to timetabling,” European journal of operational research,
vol. 19, no. 2, pp. 151–162, 1985. (Page 1).

[8] A. Gamst, “Some lower bounds for a class of frequency assignment problems,” IEEE
transactions on vehicular technology, vol. 35, no. 1, pp. 8–14, 1986. (Page 1).

[9] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird, “Minimizing conflicts: a heuristic
repair method for constraint satisfaction and scheduling problems,” Artificial Intelligence,
vol. 58, no. 1-3, pp. 161–205, 1992. (Page 2).

[10] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, “Optimization by simulated
annealing: an experimental evaluation; part ii, graph coloring and number partitioning,”
Operations research, vol. 39, no. 3, pp. 378–406, 1991. (Pages 2, 14).

[11] A. Hertz and D. de Werra, “Using tabu search techniques for graph coloring,” Computing,
vol. 39, no. 4, pp. 345–351, 1987. (Pages 2, 6).

[12] R. J. Trudeau, “Introduction to graph theory (corrected, enlarged republication. ed.),”
1993. (Page 2).

[13] T. Stutzle and H. Hoos, “Max-min ant system and local search for the traveling sales-
man problem,” in Evolutionary Computation, 1997., IEEE International Conference on,
pp. 309–314, IEEE, 1997. (Page 4).

[14] W. Zhang, “Configuration landscape analysis and backbone guided local search.: Part i:
Satisfiability and maximum satisfiability,” Artificial Intelligence, vol. 158, no. 1, pp. 1–26,
2004. (Page 4).

[15] F. Glover, “Future paths for integer programming and links to artificial intelligence,”
Computers & operations research, vol. 13, no. 5, pp. 533–549, 1986. (Page 4).

37

References

[16] F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1, no. 3, pp. 190–206,
1989. (Page 4).

[17] F. Glover, “Tabu search—part ii,” ORSA Journal on computing, vol. 2, no. 1, pp. 4–32,
1990. (Page 4).

[18] T. H. Cormen, Introduction to algorithms. MIT press, 2009. (Page 4).

[19] D. Brélaz, “New methods to color the vertices of a graph,” Communications of the ACM,
vol. 22, no. 4, pp. 251–256, 1979. (Page 6).

[20] “Trick’s graph coloring algorithm.” http://mat.gsia.cmu.edu/COLOR/color.html. Ac-
cessed: 2017-03-8. (Pages 6, 32).

[21] P. San Segundo, “A new dsatur-based algorithm for exact vertex coloring,” Computers &
Operations Research, vol. 39, no. 7, pp. 1724–1733, 2012. (Page 6).

[22] P. Galinier and A. Hertz, “A survey of local search methods for graph coloring,” Computers
& Operations Research, vol. 33, no. 9, pp. 2547–2562, 2006. (Pages 6, 7, 9).

[23] P. Galinier and J.-K. Hao, “Hybrid evolutionary algorithms for graph coloring,” Journal
of combinatorial optimization, vol. 3, no. 4, pp. 379–397, 1999. (Page 7).

[24] “Ic2 - hardware and architecture.” https://wiki.scc.kit.edu/hpc/index.php/IC2_-_
Hardware_and_Architecture#Architecture_of_IC2. Accessed: 2017-02-09. (Page 14).

[25] D. S. Johnson and M. A. Trick, Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, October 11-13, 1993, vol. 26. American Mathematical Soc.,
1996. (Page 14).

[26] “Clique and coloring problems graph format.” http://www.or.uni-bonn.de/lectures/
ss12/praktikum/ccformat.pdfl, 1993. (Page 14).

[27] “Graph coloring instances.” http://mat.gsia.cmu.edu/COLOR/instances.html. Ac-
cessed: 2017-01-14. (Page 14).

[28] “Dimacs graphs: Benchmark instances and best upper bounds.” http://www.info.
univ-angers.fr/pub/porumbel/graphs/. Accessed: 2017-01-14. (Page 14).

[29] “Smac: Sequential model-based algorithm configuration.” http://www.cs.ubc.ca/labs/
beta/Projects/SMAC/. Accessed: 2017-03-10. (Page 16).

[30] “Source code of dsatur and pass.” http://www.lamsade.dauphine.fr/coloring/doku.
php. Accessed: 2017-03-8. (Page 32).

38

http://mat.gsia.cmu.edu/COLOR/color.html
https://wiki.scc.kit.edu/hpc/index.php/IC2_-_Hardware_and_Architecture#Architecture_of_IC2
https://wiki.scc.kit.edu/hpc/index.php/IC2_-_Hardware_and_Architecture#Architecture_of_IC2
http://www.or.uni-bonn.de/lectures/ss12/praktikum/ccformat.pdfl
http://www.or.uni-bonn.de/lectures/ss12/praktikum/ccformat.pdfl
http://mat.gsia.cmu.edu/COLOR/instances.html
http://www.info.univ-angers.fr/pub/porumbel/graphs/
http://www.info.univ-angers.fr/pub/porumbel/graphs/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://www.lamsade.dauphine.fr/coloring/doku.php
http://www.lamsade.dauphine.fr/coloring/doku.php

	1 Introduction
	1.1 Problem/Motivation
	1.2 Content

	2 Preliminaries
	2.1 Definitions and Notations
	2.2 The algorithms for comparison
	2.3 The Tabucol algorithm

	3 Solving GCP by Tabucol
	3.1 Data structures
	3.2 Improvement through randomly generated solution
	3.3 Improvement through changing solution matrix traverse direction
	3.4 Improvement through statistic matrix

	4 Our Parallel Algorithm
	4.1 1st Approach: The pure portfolio approach
	4.2 2nd Approach: Forced color reducing
	4.3 3rd Approach: Tabu sharing
	4.4 4th Approach: Statistic sharing

	5 Evaluation
	5.1 DIMACS standard format
	5.2 Benchmarks
	5.3 Used plots and tables
	5.4 Automatic parameter optimization
	5.5 Experiments
	5.5.1 Experiment 1: Random initialization vs Node-index initialization
	5.5.2 Experiment 2: Original solver vs Solution replacement
	5.5.3 Experiment 3: RowTraverse vs ColumnTraverse
	5.5.4 Experiment 4: Original solver vs Statistic solver
	5.5.5 Experiment 5: Original solver vs Parallel solver with various parameter combinations
	5.5.6 Experiment 6: GCP-solver with FRC
	5.5.7 Experiment 7: GCP-solver with tabu share
	5.5.8 Experiment 8: GCP-solver with statistic Matrix sharing
	5.5.9 Experiment 9: Comparison of our GCP-solver with other algorithms

	6 Conclusion
	6.1 Further work

	7 Bibliography

