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Abstract

One of the most successful approaches to automated planning is the translation to proposi-

tional satis�ability (SAT). This thesis evaluates incremental SAT solving for several modern

encodings for SAT based planning.

Experiments based on benchmarks from the 2014 International Planning Competition

show that an incremental approach signi�cantly outperforms non-incremental solving.

Although, planning speci�c heuristics and advanced scheduling of makespans is not used,

it is possible to outperform the state-of-the-art SAT based planning systems Madagascar

and PDRPlan in the number of solved instances.
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1 Introduction

Planning is the task of �nding a sequence of actions, i.e. a plan, that leads to the desired

goal. To automate this process is a major aspect in arti�cial intelligence and there are

numerous approaches to solve this problem. One of the most successful approaches is to

use a satis�ability (SAT) solver to solve the planning problem after it has been transformed

into a SAT formula. This method was introduced by Kautz and Selman [23] in 1992 and is

still competitive.

The reasons for the success of SAT based planning are twofold: First, the performance

of SAT solvers does increase every year, as can be seen in the yearly SAT competitions.

And second, improvements to the method of SAT based planning itself have been made,

such as new and more e�cient encodings [6, 21, 40, 41].

A major obstacle in SAT based planning is that a SAT formula can only encode plans

up to a �xed length, but the length of the searched plan is not known beforehand. One

possible solution is to �nd upper bounds to the length of the plan. These upper bounds are

usually too large to be practically useful but recent advances in this area are promising [1].

The classical solution is to use multiple calls to a SAT solver. This method can be

improved by using an incremental SAT solver, which allows solving similar formulas and

to carry over useful information between solve steps.

This thesis studies incremental SAT solving, for SAT based planning. A preview of the

results can be found in Figure 1.1: The developed tool is competitive to state-of-the-art

SAT based planners solely by using a recent SAT solver, as the non-incremental variant

shows. By using incremental SAT solving the performance and number of solved instances

can be improved further.

The thesis starts with Section 2 that provides an introduction to incremental SAT

solving and SAT based planning. Section 3 discusses related approaches that try to keep

Figure 1.1: Cactusplot comparing the implemented tool to state-of-the-art SAT based

planners Madagascar and PDRplan on IPC 2014 benchmarks.
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1 Introduction

information between multiple calls as well as related applications of incremental SAT

solving.

Section 4 provides insights on incremental SAT solving and demonstrates its capabilities

and pitfalls on a well studied theoretical problem. An especially interesting result of this

section will be that incremental SAT solving is faster than solving the �nal instance directly.

How to employ an incremental SAT solver for planning in di�erent ways is described in

Section 5 and contains a completely new approach that lead to a publication at the 27th

International Conference on Automated Planning and Scheduling (ICAPS 2017) [18]. The

di�erent approaches are evaluated in Section 6: It is shown that the incremental approach

improves the state-of-the-art. In addition, this section contains experiments to gather

insights on which information is especially useful to carry over and analyzes the potential

for further techniques. Finally, the thesis is concluded in Section 7.

2



2 Foundations

2.1 SAT Basics

The de�nitions of this section are based on [42]: A Boolean variable is either false (0) or

true (1). A literal is either a Boolean variable or the negation (¬) of a Boolean variable.

A clause is a disjunction (∨) of literals or the empty clause (⊥). Clause may be written

as a set of literals, where the empty clause ⊥ does not contain any literals. A formula in

conjunctive normal form (CNF) is a conjunction (∧) of clauses and may be written as set

of clauses. An example for a CNF formula is (x1 ∨ ¬x2) ∧ (x2 ∨ x3). As the structure of a

CNF is �xed it is clear that ∧ is the top-level operator and the brackets may be left out, i.e.

x1 ∨ ¬x2 ∧ x2 ∨ x3 is the same formula as above. Written as sets it is {{x1,¬x2}, {x2,x3}}.
The set of all variables in a literal, clause or formula X is denoted by vars(X ).

Not every Boolean formula is in CNF but in this thesis all formulas will be in CNF or it

is trivial to transform them into CNF.

An assignment σ assigns each variable a truth value. Respectively a partial assignment

only assigns some variables a truth value. An assignment can be generalized for CNF

formulas. Usingv to denote a variable, l a literal,C a clause and F a formula in CNF the gen-

eralization can be de�ned as follows: σ (¬v) := ¬σ (v), σ (⊥) = 0, σ (C) = σ ( ∨
l∈C

l) := ∨
l∈C

σ (l)

and σ (F ) = σ ( ∧
C∈F

C) := ∧
C∈F

σ (C). An assignment σ is satisfying a formula F in CNF if

σ (F ) = 1. A formula is satis�able if there is a satisfying assignment. Finding a satisfying

assignment or showing that no such assignment exists is known as SAT solving.

For example σ (x1) = 0,σ (x2) = 0,σ (x3) = 1 is a satisfying assignment of the formula

(x1 ∨ ¬x2) ∧ (x2 ∨ x3) and therefore the formula is satis�able.

To refute a formula, i.e. to show a formula is unsatis�able, it is not necessary to test all

possible assignments. Instead, a proof system such as resolution can be used. Resolution

consists of a single rule: For a variable x and clauses (C ∨ x), (¬x ∨ D) it is possible to

derive the new clause containing all literals of C and D:

C ∨ x ¬x ∨ D

C ∨ D
(2.1)

If a formula is unsatis�able, then it is always possible to derive ⊥ with this rule [42].

The sequence of derived clauses to show ⊥ is called transcript.

De�nition 1. Given a CNF formula F , a clause C is a logical consequence of F , written
F |= C if and only if every satisfying assignment of F is also a satisfying assignment of C

Note that if F is an unsatis�able formula then ⊥ is a logical consequence of F , i.e. F |= ⊥.

Sometimes we will talk about the conjunction of the negation of all literals of a clause C .

This is the same as the negation of the clause by De Morgan’s law: ¬C = ¬( ∨
l∈C

l) = ∧
l∈C
¬l .

3



2 Foundations

Lemma 1. F |= C if and only if F ∧ ¬C |= ⊥.

Proof. ” ⇒ ” F |= C and let σ be a truth assignment such that σ (F ) = 1 ⇒ σ (C) = 1 ⇒

∃l ∈ C : σ (l) = 1⇒ σ (F ∧ ¬C) = σ (F ) ∧
l∈C
∧ ¬σ (l) = 0.

” ⇐ ” F 6 |= C then there is a truth assignment σ such that σ (F ) = 1 and σ (C) = 0

⇒ ∨
l∈C

σ (l) = 0 ⇒ ∀l ∈ C : σ (l) = 0 ⇒ 1 = ∧
l∈C

σ (¬l) = σ ( ∧
l∈C
¬l) = σ (¬C) ⇒

σ (F ∧ ¬C) = 1. Therefore, σ is a satisfying assignment of F ∧ ¬C and F ∧ ¬C 6 |= ⊥

2.2 Incremental SAT Solving

The idea of incremental SAT solving is to utilize the e�ort already spent on a formula to

solve a slightly changed but similar formula. The assumption based interface [14] has two

methods that change the internal state of the solver. One adds a clause C and the other

solves the formula with additional assumptions in form of a set of literals A:

add (C)
solve (assumptions = A)

Note that we will add arbitrary formulas, but they will be transformable to CNF trivially.

Thereafter, they can be added with multiple calls to add . The method solve determines

the satis�ability of the conjunction of all previously added clauses under the condition

that all literals in A are true. Note that it is only possible to extend the formula, not to

remove parts of the formula. However, this is not a restriction. If we want to add a clause

C we plan to remove later we add it with the negation of a fresh variable a, i.e. a variable

not used before. This is called using an activation literal: Instead of adding C we add

(¬a ∨C). If the clause needs to be active, a is added to the set of assumptions for the solve

step. Otherwise, no assumption is added and the solver can always satisfy the clause by

assigning false to a.

The solver is allowed to extend the set of clauses F in its internal state with a new

clauseC , ifC is a consequence of F , i.e. F |= C . Such a clause will be called a learned clause.
As clauses can not be removed, learned clauses will be valid for all subsequent calls of

solve . This is important as a common technique is con�ict driven clause learning (CDCL)

[44], where new clauses are added based on con�icts, which arise for partial assignments

during the solve-step. To retrieve the learned clauses there is a method learned(·):

learned(i) := {C | C is a learned clause from the i-th call to solve}

Bene�ts from incremental SAT solving can arise from di�erent information stored by

the solver, such as:

• clauses learned from con�ict driven clause learning (CDCL) [44]

• stored metrics to select the branching variable, i.e. choosing the next variable

to assign a value to, such as the variable activity in the heuristic variable state
independent decaying sum (VSIDS) [27]

• watched literals [27], an implementation technique for lazy clause evaluation

4



2.3 Planning

• phase saving in CDCL [33], i.e. storing the last partial assignment used to decide if

true or false should be assigned to the branching variable

That it is sound to reuse learned clauses with the assumption based interface becomes

clear when considering the following lemma:

Lemma 2. Let F1, F2 be CNF formulas, C a clause and a fresh Boolean variable a, i.e. a <
vars(F1),a < vars(F2). It holds: If F1 ∧ (a ∨ F2) |= C and a < C then F1 |= C .

Proof. F1 ∧ (a ∨ F2) |= C ⇔ F1 ∧ (a ∨ F2) ∧ ¬C |= ⊥. If a is set to 1 then (a ∨ F2) is satis�ed

but as the formula is unsatis�able and a does not occur in F1 nor in C it follows that

F1 ∧ ¬C |= ⊥ ⇔ F1 |= C .

From this lemma follows that every learned clause is either guarded by an activation

literal or follows from clauses without an activation literal. For SAT practitioners this

might not be surprising: the variable a is fresh and therefore might not be removed with

resolution. Note however that this result is independent of the underlying solver and

would still hold if the solver is not based on resolution.

2.3 Planning

Planning problems are described by a �nite state space, actions that manipulate the states

and an initial and a goal state. Automated planning is the process of �nding a plan, i.e. a

sequence of actions.

2.3.1 The SAS+ Formalism

There are di�erent formalisms to describe a planning task such as STRIPS [16], ADL [31],

PDDL [26] and SAS+ [5]. Based on the SAS+ formalism a planning task can be de�ned in

the following way [6]:

A planning task is a tuple (X ,O, sI , sG) where:

• X = {x1, . . . ,xn} is a set of variables with �nite domain dom(xi). A state assigns

each variable with a value and a partial state is an assignment of values to a subset

of all variables.

• O is the set of actions (or operators). An action A is a symbol that has a precondition

pre(A), which must hold before its execution, and an e�ect or postcondition post(A),
which holds after the execution of the action. pre(A) and post(A) are partial states.

Applying an action A to s , i.e. s′ := apply(A, s), therefore requires that pre(A) ⊆ s
and post(A) ⊆ s′. Moreover, no variable but the ones de�ned in post(A) may change.

• sI is a state that describes the initial state

• sG is a partial state that describes the goal

The planning problem is to �nd a sequence of actions that transform the initial state to

a state that contains the goal state.

5



2 Foundations

2.3.2 Planning as SAT

The basic idea of solving planning as SAT [23] is to express whether a plan of length i
exists as a Boolean formula Fi such that: if Fi is satis�able then there is a plan of makespan i ,
i.e. a plan with i steps. Additionally, a valid plan must be constructible from a satisfying

assignment of Fi . To �nd a plan the plan encodings F0, F1, . . . are checked until the

�rst satis�able formula is found, which is called sequential scheduling. There are also

alternative ways of scheduling the makespan: For example using an exponential step size

and only solving formulas F2, F4, F8, F16, . . . or solving di�erent makespans in parallel and

�nish as soon as a solvable instance is found [37].

The variables of the plan encoding Fi are divided into i + 1 groups called time points
with the same number of variables N , x@tj represents variable x at time point tj . The

clauses of Fi are divided into four groups:

• initial clauses I: satis�ed in the initial state t0
• goal clauses G: satis�ed in the goal state ti
• universal clausesU: satis�ed at every time point tj
• transition clauses T : satis�ed at each pair (t0t1, t1t2, . . . , ti−1ti ) of consecutive time

points

The clauses of I,G,U operate on the variables of one time point and T operates on

the variables of two time points. T(tj , tk) indicates that the transition clauses are applied

from time point tj to time point tk and similarly for I,G,U. The plan encoding Fi for

makespan i can be constructed from these clause sets:

Fi = I(t0) ∧

(
i−1
∧
k=0
U(tk) ∧ T (tk , tk+1)

)
∧U(ti) ∧ G(ti)

AsU is never used alone we can simplify Fi to

Fi = I(t0) ∧

(
i−1
∧
k=0
T ′(tk , tk+1)

)
∧ G′(ti)

where

T ′(tj , tk) := U(tj) ∧ T (tj , tk) (2.2)

G′(tk) := U(tk) ∧ G(tk) (2.3)

This partitioning is natural and is used similarly in planning [45] and bounded model

checking [15]. To my best knowledge all SAT encodings for planning can be expressed in

terms of these four sets of clauses. However, this might not be true for future encodings,

although it is hard to imagine something di�erent. This thesis and the developed planning

tool does only work with this abstraction as the presented principles are independent from

the concrete encoding.

6



2.3 Planning

2.3.3 Example: Solving the SAT Representation

To get a better idea we will consider a small example that is not based on planning directly

but uses the same concepts: There are two variables x1,x2 such that x1 does change its

state with every transition and x2 is false unless itself or x1 was true in the time point

before. The initial state is x1 = 0 and x2 = 0, the goal state is x1 = 0 and x2 = 1. This can

be described as:

I(t) := (¬x1@t) ∧ (¬x2@t) (2.4)

T(t , t ′) := (¬x1@t ∨ ¬x1@t ′) (2.5)

∧ (x1@t ∨ x1@t ′) (2.6)

∧ (x2@t ∨ x1@t ∨ ¬x2@t ′) (2.7)

G(t) := (¬x1@t ∧ x2@t) (2.8)

The task is to construct a formula Fi as described in the previous section and �nd the

smallest makespan i for which the formula is satis�able.

To solve this problem the �rst step is with one time point: F0 = I(t0) ∧ G(t0). This

formula is obviously not satis�able. The second step is F1 = I(t0) ∧ T (t0, t1) ∧ G(t1). The

goal can still not be reached as I(t0)∧T (t0, t1) |= x1@t1∧¬x2@t1. The third and �nal step

is F2 = I(t0)∧T (t0, t1)∧T (t1, t2)∧G(t2)which is satis�able. I(t0)∧T (t0, t1)∧T (t1, t2) |=
¬x1@t2 and as we have seen before x1 is true at t1 so x2 can be set to true at t2. Note how

it is intuitively possible to use information from earlier steps to solve later steps. Doing

this within a SAT solver is the idea behind incremental SAT solving.

2.3.4 SAS+ in SAT Based Planning

A possible encoding of the SAS+ formalism is as follows: For each variable x ∈ X and

each value v ∈ dom(x), there is a boolean variable bxv which is only true if x = v . For

each action A ∈ O there is a boolean variable aA indicating that action A is applied. The

universal clauses are used to ensure that only one action is applied in each time point and

each variable has only one value:

U(t) := exact-one({aA@t | A ∈ O}) ∧ ∧
x∈X

exact-one({bxv@t | v ∈ dom(x)}) (2.9)

The exact-one constraint ensures that exactly one literal of a given set of literals L is

true. A simple encoding for this constraint is exact-one(L) := ( ∨
l∈L

l) ∧ ∧
y,z∈L:y,z

(¬y ∨ ¬z).

The initial state and the goal state can be directly transformed into the according clauses:

I(t) := ∧
(x=v)∈sI

bxv@t (2.10)

G(t) := ∧
(x=v)∈sG

bxv@t (2.11)

7



2 Foundations

(a) Initial State (b) Goal State

(c) Possible First Move (d) Invalid State

Figure 2.1: Towers of Hanoi with 3 Discs

The transition clauses have two parts: The �rst part ensures that pre- and postcondition

hold when an action is applied and the second part ensures that nothing changes, i.e. no

variable is set if it was not set before, unless there is an action supporting this change.

T(t , t ′) := ∧
A∈O

[(
∧

(x=v)∈pre(A)
¬aA@t ∨ bxv@t

)
∧

(
∧

(x=v)∈post(A)
¬aA@t ∨ bxv@t ′

)]
∧ ∧

x∈X ,v∈dom(x)
(¬bxv@t ′ ∨ bxv@t ∨ ∨

A∈O :
(x=v)∈post(A)

aA@t)
(2.12)

The presented encoding of SAS+ to SAT is very straight forward (it is the SAS+ version

of the direct encoding [23] and uses notation from the relaxed-relaxed exist encoding [6]).

The encodings used for evaluation are actually more sophisticated. A very important

technique is to allow the execution of multiple actions within one transition. This is

possible if the actions do not interfere, known as forall-semantics (∀), or if there is an

applicable order to all actions in one transition, known as exist- semantics (∃). The work

of Rintanen, Heljanko, and Niemelä [40] contains a more detailed description of these

approaches.

2.3.5 Example: Towers of Hanoi

The towers of Hanoi is a puzzle game. There is an arbitrary number of disks with di�erent

sizes and three sticks. The initial state is that all disks are on one stick and are ordered by

size, with the smallest disk on top as in Figure 2.1a. The goal state is the same but with all

disks moved to the second stick as in Figure 2.1b. It is only allowed to move one disk at a

time and a larger disk may never lie upon a smaller disk. Such an invalid game state is

shown in Figure 2.1d. A valid �rst move is shown in Figure 2.1c.

This puzzle with three disks can be encoded as SAS+ in the following way: There is a

variable for each disk and one fore each stick. These variables encode which disk is placed

8



2.3 Planning

on top of the disk or stick:

X := {on-disk1, on-disk2, on-disk2,

on-stick1, on-stick2, on-stick3}
(2.13)

for i ∈ {1, 2, 3} :

dom(on-sticki) := {disk1, disk2, disk3, nothing}
(2.14)

for i ∈ {1, 2, 3} :

dom(on-diski) := {diskk | 0 < k < i} ∪ {nothing}
(2.15)

The subscript indicates the size of the disk, p.a. disk1 is smaller than disk3 and on-disk3 =

disk1 encodes that disk1 is on top of disk3. The domains are designed such that states as

shown in Figure 2.1d can not be represented. Initial and goal state are de�ned by:

I := {on-stick1 = disk3, on-stick2 = nothing, on-stick3 = nothing,

on-disk3 = disk2, on-disk2 = disk1, on-disk3 = nothing}
(2.16)

G := {on-stick1 = nothing, on-stick2 = disk3, on-stick3 = nothing

on-disk3 = disk2, on-disk2 = disk1, on-disk3 = nothing}
(2.17)

Finally, there is an action for each move, i.e. for each possible combination of:

• a disk to move

• an origin, where the disk is currently on

• a destination where the disk will be moved to

More formally: The set of all actions O := {move(diski , src, dst) | for src, dst ∈ X ,

i ∈ {1, 2, 3} such that diski ∈ dom(src) ∩ dom(dst)}. With the pre- and postconditions

de�ned as follows:

pre(move(diski , src, dst)) := {on-diski = nothing, src = diski , dst = nothing} (2.18)

post(move(diski , src, dst)) := {src = nothing, dst = diski} (2.19)

For example, there is one action move(disk1, on-disk2, on-stick2) for moving disk one

from disk two to stick two as in Figure 2.1c. Note, that for this action it is not relevant

where disk two is placed on, as long as nothing is placed on stick two. A solution is:

move(disk1, on-disk2, on-stick2), move(disk2, on-disk3, on-stick3),

move(disk1, on-stick2, on-disk2), move(disk3, on-stick1, on-stick2),

move(disk1, on-disk2, on-stick1), move(disk2, on-stick3, on-disk3),

move(disk1, on-stick1, on-disk2)

9
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Transforming this problem into SAT leads to the following clauses:

I(t) :=bon-stick1

disk3

@t ∧ bon-stick2

nothing
@t ∧ bon-stick3

nothing
@t

∧bon-disk3

disk2

@t ∧ bon-disk2

disk1

@t ∧ bon-disk1

nothing
@t

(2.20)

G(t) :=bon-stick1

nothing
@t ∧ bon-stick2

disk3

@t ∧ bon-stick3

nothing
@t

∧bon-disk3

disk2

@t ∧ bon-disk2

disk1

@t ∧ bon-disk1

nothing
@t

(2.21)

U(t) := exact-one({aA@t | A ∈ O}) ∧ ∧
x∈X

exact-one({bxv@t | v ∈ dom(x)}) (2.22)

T(t , t ′) := ∧
src,dst∈X ,i∈{1,2,3}:

diski∈dom(src)∩dom(dst)

¬amove(diski ,src,dst)@t ∨ bon-diski
nothing

@t

∧ ¬amove(diski ,src,dst)@t ∨ bsrc
diski

@t

∧ ¬amove(diski ,src,dst)@t ∨ bdst
nothing

@t

∧ ¬amove(diski ,src,dst)@t ∨ bsrc
nothing

@t ′

∧ ¬amove(diski ,src,dst)@t ∨ bdst
diski

@t ′

∧ ∧
x∈X ,v∈dom(x)

(¬bxv@t ′ ∨ bxv@t ∨ ∨
A∈O :

(x=v)∈post(A)

aA@t)

(2.23)
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3 RelatedWork

3.1 Planning

3.1.1 Lemma Reusing

Lemma reusing [28] is the foundation for reuse of learned clauses in the context of

planning. The idea is to extract learned clauses, when the SAT encoding for makespan n is

unsatis�able and add them to the SAT encoding for makespan n + 1. This is comparable

to the later introduced Single Ended Incremental approach but does not need activation

literals. Instead, there are limitations on the learned clauses and the encoding. This is to

ensure the reusability of learned clauses. A problem Nabeshima et al. encountered is that

reusing all learned clauses may be harmful. With the use of an incremental SAT solver

both aspects are delegated to the SAT solver.

3.1.2 Single Call to SAT Solver

Another approach to retain learned clauses is to use a single call to a SAT solver [35]. To

get a solution with the smallest makespan it is necessary to change the SAT solver such

that it assigns the action variables in the right order. Encoding all possible makespans into

one encoding is usually not feasible due to memory constraints. Therefore, the approach

requires an upper bound to the makespan, which is not necessary when using incremental

SAT solving. The disadvantage is that additional SAT solver calls are necessary if no plan

is found within the provided upper bound, in which case no information is reused.

3.1.3 Incremental Solving for Refinement

Finally, incremental satis�ability modulo theories (SMT) solving was used for planning [11].

However, the focus of Dantam et al. is to add information about the physical feasibility of

an action based on motion planning. The focus of this thesis is to preserve learned clauses

while increasing the makespan.

3.2 Model Checking

The goal of model checking is to verify that property P holds in every state reachable

from the initial state. This can be veri�ed by checking whether the goal state de�ned by

G := ¬P is reachable. As in planning, one outcome is that the goal state is reachable. In

this case the path from initial to goal is a counterexample for P holding in every state.

The other outcome is that the goal state is not reachable. This outcome is of great interest

11



3 Related Work

for model checking as it veri�es that the property P does hold in every state. Therefore,

it is necessary to either employ mechanisms to detect that the goal state is unreachable

or to set an upper bound to the number of analyzed transitions. The latter case is called

bounded model checking.

Incremental SAT solving is an established technique in SAT based model checking. It

was �rst applied for temporal induction [14], which is similar to SAT based planning but

allows detecting if the goal state is unreachable.

3.2.1 Property Directed Reachability

A more recent use of incremental SAT solving in model checking is for property directed

reachability (PDR) known by the IC3 algorithm [9, 13].

The basic idea is to maintain a set of abstractions A@ti , more precisely an over-

approximation, for each time point that encodes states reachable at time point ti in form of

a CNF: If a state is reachable at ti then it is represented by a satisfying assignment of A@ti .
To guarantee that A@ti is an over-approximation it is required that A@t0 := I(t0) and

A@ti∧T (ti , ti+1) |= A@ti+1. If abstractionA@ti contains the goal state, i.e. A@ti∧G(ti) 6|= ⊥,

then it is either to weak and it is necessary to re�ne it, or it is possible to construct a

solution. This is realized by a call to refine with the goal state. Note that states are simply

represented by a set s@ti of literals at time point ti . Adding the state to a formula simply

means adding the conjunction of its literals and the negation is a clause containing the

negation of all literals. If the goal state is not contained at ti it is checked whether it is

contained at ti+1, i.e. the abstraction depth is increased.

Algorithm 1 Basic Idea of Re�ne.

1: A@ti , over-approximation for states reachable at time point ti

This function tries to re�ne the abstraction A@ti such that the given assignment s@ti
does not satisfy the abstraction anymore, or returns an assignment for each time point,
that shows that the given assignment is reachable.

2: function refine(s@ti )
3: if i = 0 then return s@ti
4: while true do
5: if A@ti−1 ∧T (i − 1, i) |= ¬s@ti then
6: A@ti ← A@ti ∧ ¬s@ti
7: return re�ned

8: else
9: s@ti−1 ← partial assignment of variables at ti−1

satisfying A@ti−1 ∧T (i − 1, i) ∧ s@ti
10: r ← re�ne(s@ti−1)
11: if r is not re�ned then
12: return r ∪ s@ti

Algorithm 1 describes the basic idea of the re�nement step. However, it does not

contain important optimizations, that are necessary for an e�cient implementation. The

12
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basic optimizations are listed below. Please refer to [19] for an overview of more recent

variations.

Subsumtion of Abstractions. If the transition allows to keep the state from one time

point to another than all states reachable at ti are reachable at ti+t as well. Therefore, it is

reasonable to enforce A@ti |= A@ti+1. This can be realized syntactically by making sure

that if a clause C is contained in A@ti than it is also contained in A@tk for 0 ≤ k < i as

well (note that clauses restrict the reachable states).

PushingClauses Forward. Finding a good strengthening, i.e. clause, of the abstraction

is very important. If C@ti ∈ A@ti then it is possible to add C@ti+1 to A@ti+1 if A@ti ∧
T (i, i + 1) |= C@ti+1. The clause is pushed forward.

Detecting Unreachability. A �x-point is reached if the goal state is not contained

in A@ti or A@ti+1 and both abstractions contain the same clauses. Checking that both

abstractions contain the same clauses is a pure syntactic operation. Such a �x-point is

reached eventually if the goal state is unreachable and if the optimizations subsumtion of

abstractions and pushing clauses forward are used.

Generalization of the Strengthening. In Line 6 the over-approximation is strength-

ened to avoid that the same assignment can be generated again. It can happen that not all

variables of s@ti are necessary to show that this state is unreachable. In this case, removing

assignments of unnecessary variables before strengthening A@ti does not only ensure

that s@ti is no longer part of reachable states as before but also that similar unreachable

states are no longer part of the over-approximation.

Inductive Generalization of the Strengthening. This technique is used in combina-

tion with the subsumtion of abstractions. If A@ti−1 ∧ ¬s@ti−1 ∧T (i − 1, i) |= ¬s@ti and

A@t0 |= ¬s@t0 then ¬s@t0 is inductive relative to A@ti−1 and can be added to A@tk for

0 ≤ k ≤ i [9].

Rescheduling of Counterexamples. If re�ne produces a counter example s@ti , then

it is known that it is a predecessor to the goal state. Therefore, it is also of interest whether

s@tk for k > i is feasible as well. This can be checked before the abstraction depth

is increased and thereby allows to �nd paths to the goal state that are larger than the

abstraction depth.

No Unrolling. The algorithm does only work with at most two time points in each call

to the SAT solver. Therefore, it is not necessary to have di�erent variables for di�erent

time points. Instead, variables can be shared and activation literals can be used to activate

the clauses for the abstraction to be used.

3.2.2 Incremental Preprocessing

An important technique in SAT solving is to perform preprocessing such as subsumtion,

variable elimination [12] and blocked clause elimination [22] to reduce the number of

variables and clauses and thereby make the problem easier for a SAT solver. The problem

in incremental SAT solving is that it is not generally known which clauses will be added

and which assumptions will be used. Thereby, it could happen that clauses or literals are

removed, which are necessary for later steps. Due to the strict structure of formulas in

bounded model checking it is possible to use look-ahead to determine which variables will

be used for assumptions and to connect clauses between steps. These variables will be
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excluded from simpli�cation steps to guarantee equisatis�ability [25]. These results are

directly transferable to SAT based planning.
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4 Case Study: Refutation of the
Pigeonhole Principle with Incremental
SAT Solving

When using the sequential scheduling of makespans for SAT based planing, the most time

is spent on refuting the formulas Fi one after the other, i.e. showing them unsatis�able.

The Pigeonhole Principle (PHP) is used to get a better insight on the capabilities and

pitfalls of incremental SAT solvers in this scenario. The advantage of the PHP is that it

allows to generate an arbitrary number of formulas that are hard to solve for SAT solvers.

4.1 Encodings of PHP

The pigeonhole principle PHP
p
h

is the classical problem of �tting p pigeons into h holes,

where each hole takes at most one pigeon. We will always use h := p − 1 so that the

problem is unsolvable. For n ∈ N we use Gn := {0, 1, . . . ,n − 1} as the set of all natural

numbers smaller than n.

To encode PHP
p
h

the variable Pi,j for i ∈ Gp, j ∈ Gh is used to describe that pigeon i is in

hole j. The trivial SAT encoding consists of two di�erent kinds of clauses:

∨
j∈Gh

Pi,j for i ∈ Gp (4.1)

¬Pi,j ∨ ¬Pk,j for i,k ∈ Gp : i , k ; j ∈ Gh (4.2)

Equation (4.1) states that each pigeon has a hole and (4.2) that there is at most one

pigeon in each hole. For these formulas it is known that resolution refutation is hard, i.e.

the proof has exponential size [20].

There are more sophisticated approaches for the encoding of the at most one constraint

(see [17] for an overview) and those encodings lead to improvements in solving times.

If combined with rules to break symmetries, the encoding can be refuted trivially by

state-of-the-art SAT solvers [24].

There is a 3-SAT variant of (4.1), i.e. each clause has at most three literals in it. Hi,j for

i ∈ Gp ; j ∈ Gh+1 is a helper variable. Note that this encoding is still exponentially hard [2].

¬Hi,j ∨ Pi,j ∨ Hi,j+1 for i ∈ Gp ; j ∈ Gh (4.3)

Hi,0 ∧ ¬Hi,h for i ∈ Gp (4.4)

While the presented formulas are exponentially hard for resolution, there are other

proof systems such as extended resolution [46] that allow a polynomial refutation [10].
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The rough idea of extended resolution is to add an auxiliary variable a and for two existing

literals b, c add the clauses for a ↔ b ∧ c . It is possible to simulate extended resolution by

adding the additional clauses manually.

The idea is to add clauses with the extended resolution that allows to reduce the problem

of �tting n pigeons into n − 1 holes to �tting n − 1 pigeons into n − 2 holes and so on, until

2 pigeons are tried to be �tted in 1 hole. The latter is obviously unsatis�able (even for a

SAT solver). Therefore, variables Pni,j for 1 < n ≤ p are used to encode that pigeon i �ts in

hole j, in the problem of �tting n pigeons to n − 1 holes.

The clauses for encoding PHP
p
h

with h = p − 1 for the simulated extended resolution

are as in Equations 4.1 and 4.2, where the variables Pi,j are replaced with P
p
i,j . And for

n ∈ N : 1 < n < p the following clauses are added to simulate the extended resolution [10]:

Pni,j ∨ ¬P
n+1
i,j ¬Pni,j ∨ P

n+1
i,j ∨ P

n+1
i,n−1

Pni,j ∨ ¬P
n+1
i,n−1 ∨ ¬P

n+1
n,j ¬Pni,j ∨ P

n+1
i,j ∨ P

n+1
n,j

(4.5)

Note that for n ∈ N : 1 < n ≤ p it is possible to resolve clauses encoding PHP
n
n−1 based

on the variables Pni,j in a few steps [10]:

∨
j∈Gn−1

Pni,j for i ∈ Gn (4.6)

¬Pni,j ∨ ¬P
n
k,j for i,k ∈ Gn : i , k ; j ∈ Gn−1 (4.7)

4.2 Studied Algorithms

4.2.1 Incremental Versions of the Pigeonhole Principle

The goal is to refute PHP
p
h
, with h := p − 1 so that the formulas are unsatis�able. Therefore,

we �x the number of pigeons p and increase the number of holes h′ with each successive

call to the solve method until we reach the �nal number of holes h.

With the standard SAT encoding (4.1), (4.2) it is necessary to remove clauses (4.1) after

each call, as they are only valid for the speci�c number of holes, they were added for. As

mentioned earlier, it is possible to remove clauses by using activation literals. This leads

to the �rst incremental implementation:

Algorithm 2 Naive Incremental Encoding

Make PHP incremental by �xing the number of pigeons and increasing the number of

holes in each step. Deactivate invalid at-least-one constraints.

1: for h′ := 1; h′ ≤ h; h′ := h′ + 1 do

2: add
(
∧

i∈Gp
(¬ah′ ∨ ∨

j∈Gh′
Pi,j)

)
. add at-least-one

3: add
(
∧

i,k∈Gp :i,k

(
¬Pi,h′−1 ∨ ¬Pk,h′−1

) )
. add at-most-one

4: solve (assumptions = {ah′})
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Note that the literals Pi,j occur only in clauses that also contain an activation literal.

This is problematic, as clauses learned from a con�ict in CDCL based SAT solving can

be inferred with resolution, but all resolved clauses will contain the activation literal.

Therefore, all learned clause are not useful in later steps as the activation literal is not

assumed and they can be satis�ed by setting the activation literal to true. It is still possible

to get a bene�t from incremental SAT solving: Usually, other information, beside learned

clauses, is kept in successive incremental calls such as variable activity.

It is possible to overcome the described limitation by introducing helper variables Hi,j ,

that allow to extend the critical clause (4.1). Hi,j encodes that pigeon i is in hole j or later,

i.e. Hi,j → ∃j′ ≥ j : Pi,j ′ . Note that this approach results in the 3SAT encoding of PHP
p
h
.

Algorithm 3 Incremental 3SAT Encoding

Make PHP incremental by �xing the number of pigeons and increasing the number of

holes using the 3SAT encoding to extend the at-least-one constraint.

1: add

(
∧

i∈Gp
(Hi,0 ∧ ¬Hi,h)

)
. upper and lower bound

2: for h′ := 1; h′ ≤ h; h′ := h′ + 1 do

3: add
(
∧

i∈Gp
(¬Hi,h′−1 ∨ Pi,h′−1 ∨ Hi,h′)

)
. extend at-least-one

4: add
(
∧

i,k∈Gp :i,k

(
¬Pi,h′−1 ∨ ¬Pk,h′−1

) )
. add at-most-one

5: solve (assumptions = {¬Hi,h′ | i ∈ Gp})

4.2.2 Guiding Refutation with Incremental SAT Solving

An intriguing fact is that adding the Equations in 4.5 simulating extended resolution is not

helpful for SAT solvers [32]. However, for any n it should be trivial to resolve the clauses

for PHP
n
n−1 based on variables Pni,j (Equations 4.6, 4.7) if the clauses for PHP

n+1
n based on

Pn+1i,j have been learned already.

Algorithm 4 Extended Resolution Incrementally Guided

Make a solve step for each clause that is to be derived during extended resolution.

. Add the pigeonhole formulas and the clauses from extended resolution:

1: for Clause C in all Equations from 4.2 to 4.5 do
2: add(C)

. Guide the proof search using the incremental SAT solver:

3: for n := p − 1; n > 1; n := n − 1 do . increase proof depth

4: for Clause C in Equations 4.6 and 4.7 do
5: solve (assumptions = ¬C)
6: solve (assumptions = ∅)
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The idea of this algorithm is to assume the negation of a clause to be learned. Note that

the negation of a clause is a conjunction of literals, which can be interpreted as a set of

assumptions. Clauses learned during this process may be helpful in later steps.

As we will see later, this is working astonishingly well. However, it has the clear

disadvantage that we have to know beforehand how the refutation should look like. This is

�ne for a well studied problem such as the pigeonhole problem but for other applications

of incremental SAT solving it is not applicable.

Instead, a more general strategy called exhaustive incremental SAT solving is proposed:

After the formula is shown unsatis�able for a set of assumptions, every subset of the

assumptions is tested for unsatis�ability. The idea is that this approach leads to learned

clauses, which are more restrictive and therefore more helpful in later solve steps. In

case of the pigeonhole principle, we already know that the formula is only unsatis�able if

the number of holes is smaller than the number of pigeons p, i.e. the current number of

holes h′ plus the number of unrestricted helper variables Hi,h′ needs to be smaller than the

number of pigeons (p − n + h′ < p ⇔ h′ < n, where n is the number of restricted helper

variables and p − n the number of unrestricted helper variables).

Algorithm 5 Exhaustive Incremental 3SAT Encoding

Make a solve step for every subset of assumptions from Algorithm 3.

1: procedure multiSolve(p, h’)

2: for n := p; n > h′; n := n − 1 do
3: . note that the order is relevant as smaller n imply larger ones

4: for from {¬Hi,h′ | i ∈ Gp} choose n into L do
5: solve (assumptions = L)

The complete algorithm is the same as Algorithm 3, where the call to solve (·) is replaced

with a call to multiSolve(·). Note that although not every subset of assumptions is tested,

this results in an exponential number of calls to solve.

4.3 Evaluation

For the evaluation the incremental approaches described in the previous section are

compared to solving the di�erent encodings of PHP
p
h

with h = p − 1 directly. The di�erent

algorithms have been implemented and the implementation along with the experimental

results are available at GitHub
1
. The experiments were run on a computer with two Intel

®

Xeon
®

E5-2683 v4 CPUs (32 cores with 2.10GHz) and 512 GB of memory. Each instance

solving a benchmark had a runtime limit of 900 seconds and resource limitation to 1 CPU

core and 8 GB of memory. All times are wall clock time. The incremental version of

glucose [3, 4] (a minisat [14] based solver) is used for the experiments — in the version

submitted to the incremental track of the SAT competition 2016.

It turned out, that the solving time is very depended on clause and variable order. To

counter this e�ect the calls to the SAT solver are randomized as described in Section 6.2.

1https://github.com/StephanGocht/incphp
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4.3 Evaluation

Figure 4.1: Runtime average for solving PHP
p
p−1 with di�erent encodings. The number of

pigeons p is on the x-axis.

Every experiment was run 10 times and the plots show average values. Note that the

standard deviation is rather high, for example for the runtime of the non incremental

encoding it is as follows: 15 pigeons ≈ 141, 14 pigeons ≈ 88 and for 13 pigeons ≈ 4. This

should be kept in mind, when interpreting the plots as they only provide a rough indication

on the performance.

Nonetheless, we can make the following observations from Figure 4.1: The standard

encoding is not very bene�cial compared to the 3SAT encoding, no matter if it is used

incrementally or not. The reason is that the helper variables lead to smaller clauses, which

seem to be better for the SAT solver. Due to the exponential growth of the solving time

the overhead for the naive incremental encoding is negligible. In Figure 4.3a we can see

that the time needed for subsequent steps of the algorithm is increasing monotonously

after an initial phase. This is a common behavior for other applications of incremental

SAT solving as well, as the search space is usually increasing with an increasing number

of incremental steps. In Figure 4.2a we can see, what was already stated earlier: Every

learned clause contains the negation of the assumed literal. In Figure 4.2b we can see

that the negation of the assumed literal is always learned as a clause, i.e. after calling

solver (ah′) there is a learned clause ¬ah′ .
For the incremental 3SAT encoding, let us have a look at Figure 4.3c �rst. In contrast

to the behavior of the naive incremental encoding, the time needed for the last solve

step is decreasing, when we reach a higher number of holes. This is uncommon, and an

investigation of the phenomena showed, that the reason is that the �nal assumptions are

actually added as clauses. If we remove the upper bound clauses of the form ¬Hi,h , we

get a similar behavior as for the naive incremental approach as shown in Figure 4.3d. To

investigate this further, consider the modi�ed version of non-incremental 3SAT, which

does not add the upper bound permanently, but assumes them before solving the instance.

In Figure 4.1 these variants are su�xed with nu. The hit on runtime is signi�cant and

we can conclude, that for the tested solver it is bene�cial to have unit clauses instead of

assumptions. Overall, the performance of the incremental 3SAT encoding seems to be
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(a) Ratio of learned clauses containing the nega-

tion of an assumed literal to the number of

learned clauses.

(b) Ratio of calls to solve, where the negation of

assumed literals was learned as a clause to

the number of calls to solve.

Figure 4.2: Analysis of learned clauses.

better than the non-incremental 3SAT encoding, although it is performing more work, as

it is not only showing that n pigeons do not �t in n − 1 holes, but also that they do not �t

in a number of holes less than n − 1.

As already shown in earlier work, adding the clauses from extended resolution does not

bring any bene�t on its own. However, the incremental algorithm guides the SAT solver

very well, so that it is able to refute the formula in no time (Figure 4.1). Even for 30 pigeons

the refutation is taking less than two seconds. Figure 4.2b shows that most of the assumed

clauses are actually learned and Figure 4.3b shows that the reduction to fewer pigeons

and fewer holes becomes easier with increasing proof depth. This is not surprising as

the number of clauses to infer decreases. Overall this shows that the extended resolution

proof is followed, which explains the good performance, as the extended resolution proof

is sub-exponential.

Finally, we have the exhaustive incremental 3SAT encoding. Its performance tends to

be worse than the non-incremental 3SAT encoding (Figure 4.1). A view to Figure 4.2b

shows, that in contrast to the incrementally guided extended resolution only a third of the

assumptions are learned as a clause. However, the solver is intended to learn them all. To

change this behavior it is possible to manually add the negation of an assumption as a

clause after it is shown unsatis�able, i.e. to force the learning of the clause.

This approach outperforms the other algorithms, except the incremental extended

resolution (Figure 4.1). An interesting property of this approach is that the time spent

on solving an increasing number of holes is no longer growing monotonically but rather

reaches a high, somewhere in the middle. The explanation is that the number of performed

solve steps is largest if the number of holes is half of the number of pigeons. For the

exhaustive incremental version without forced learning this behavior exists for small

number of pigeons as well but is clearly disturbed as the number of missing clauses

increases with higher number of pigeons (See Figure 4.3e and 4.3f).
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(a) Naive Incremental Encoding (b) Extended Resolution Incrementally Guided

(c) Incremental 3SAT Encoding (d) Incremental 3SAT Encoding without Upper

Bound

(e) Exhaustive Incremental 3SAT Encoding (f) Exhaustive Incremental 3SAT Encoding with

Forced Learning

Figure 4.3: This �gure shows the time needed for all solve steps per iteration of the outer

loop of the listed algorithm. Each color in a plot shows the refutation of PHP
n
n−1

for di�erent n.

4.4 Conclusion

In this section we studied di�erent algorithms using incremental SAT solving for the

refutation of pigeonhole formulas. The results are:

• It is better to use unit clauses instead of assumptions, when applicable. This might

be a solver speci�c issue as there are approaches to overcome this handicap with

additional book keeping [29].

• Extending the formula incrementally can be faster than solving the formula directly.

• The negation of assumed literals are often learned as clauses and allow to guide the

solver for the solution of a problem, if written down properly this is not surprising:

if solving formula F with assumptions ¬C is unsatis�able F ∧ ¬C |= ⊥ then F |= C .
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• It is possible to exhaust the search space at earlier steps, which leads to a signi�cant

bene�t for solving later steps. This might be transferable to planning but naive

approaches have not been successful and are not contained within this thesis.
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5 Incremental Planning Encodings

5.1 Single Ended Incremental Encoding

With non-incremental SAT solving the plan encodings are newly generated for each

makespan and the SAT solver does not learn anything from previous attempts. With an

incremental SAT solver it is possible to append a new time point in each step. The trivial

way is to add an activation literal to the goal clauses. This allows activating only the latest

goal clause and extend the formula by one transition in each step.

step (0) :
add

(
I(0) ∧ [¬a0 ∨ G

′(0)]
)

solve (assumptions = {a0})
step (k) :

add
(
T ′(k − 1,k) ∧ [¬ak ∨ G

′(k)]
)

solve (assumptions = {ak})

We will call this approach single ended incremental encoding as it can be understood as a

single stack: New time points are pushed to the top. The bottom of the stack contains the

�rst time point with the initial clauses and the goal clauses are only applied to the time

point at the top. Intermediate time points are linked together with transition clauses.

This solution still has one disadvantage: The solver will not be able to apply clauses

learned from the goal clauses in future steps as the goal clauses will not be activated.

5.2 Double Ended Incremental Encoding

To learn clauses from the goal state as well, two stacks can be used instead of one, which will

be called double ended incremental encoding. One stack contains the time point with initial

clauses at the bottom, the other contains the time point with the goal clauses at the bottom.

New time points are pushed alternating to both stacks. The time points at the top of both

stacks are linked together with link clauses, such that they represent the same time point,

i.e. each variable has the same value in both time points: L(j,k) := ∧N
l=1
vl@j ⇔ vl@k .
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t0 = I tΩ = G

t1 tΩ−1

t2 tΩ−2

t3 tΩ−3

T (t0, t1)

{T (t1, t2)

{T (t2, t3)

{

¬a0∨L(t0,tΩ)︷ ︸︸ ︷

¬a2∨L(t1,tΩ−1)︷ ︸︸ ︷

¬a4∨L(t2,tΩ−2)︷ ︸︸ ︷

¬a6∨L(t3,tΩ−3)︷ ︸︸ ︷

}
T (tΩ−1, tΩ)

}
T (tΩ−2, tΩ−1)

}
T (tΩ−3, tΩ−2)

step 0 step 2 step 4 step 6

Figure 5.1: Visualization of the double ended incremental encoding. For clear arrangement,

link clauses are only shown for every other step. The colors show which clauses

are new in the particular step. All clauses from previous steps are present as

well.

Activation literals ensure that only the latest link is active.

step (0) :
add

(
I(0) ∧ G′(Ω) ∧ [¬a0 ∨ L(0,Ω)]

)
solve (assumptions = {a0})

step (2k + 1) : add tk+1

add
(
T ′(k,k + 1) ∧ [¬a2k+1 ∨ L(k + 1,Ω − k)]

)
solve (assumptions = {a2k+1})

step (2k) : add tΩ−k

add
(
T ′(Ω − k,Ω − k + 1) ∧ [¬a2k ∨ L(k,Ω − k)]

)
solve (assumptions = {a2k})

Note that Ω is neither a precomputed number nor a �xed upper bound but a symbol

which always represents the last time point and Ω − k is the kth time point before the last.

In step zero there is no transition between the �rst time point 0 and the last time point Ω.

Therefore, both time points are the same. In step one there is one transition between the

�rst and the last time point. In step two there are two transitions in between and so on.

This is visualized in Figure 5.1.

With this encoding the solver is able to learn new clauses based on both, initial and

goal state. The motivation is that connecting initial and goal state with too few transitions

causes the con�ict. Therefore, we add new transitions in between initial state and goal

state instead of adding a new goal state.

5.3 Lemma Transformation

Instead of only reusing learned clauses from previous solve steps it is even possible to

go one step further: If a learned clause is only based on transition clauses and not on
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5.3 Lemma Transformation

initial or goal clauses than this clause can be transformed to other time points as well, if

they have the same transition clauses. This idea of transforming learned clauses to newly

added time points was already presented for SAT based bounded model checking with

non-incremental SAT solving [43].

De�nition 2. For a natural number ∆t , a clause C , a formula F and time points t0, t1, . . .
transform is de�ned as:

transform(C,∆t) := {x@(ti+∆t ) | x@ti ∈ C}

transform(F ,∆t) := {transform(C,∆t) | C ∈ F }

For example transform(T ′(t1, t2), 1) = T ′(t2, t3). Adding these transformed clauses is

sound in the following way:

Theorem 1.

∧
k∈Gn
T ′(tk , tk+1) |= C

⇒ ∧
k∈Gn
T ′(tk+l , tk+1+l ) |= transform(C, l)

Proof. Assume ∧
k∈Gn
T ′(tk , tk+1) |= C then it holds ∧

k∈Gn
T ′(tk , tk+1) ∧ ¬C |= ⊥ and there

is a resolution refutation with transcript R. We construct R′ by applying transform(C, l)
to every clause C in the transcript R. R′ is now a transcript of a resolution refutation

for ∧
k∈Gn

T ′(tk+l , tk+1+l ) ∧ ¬transform(C, l) |= ⊥ and therefore ∧
k∈Gn

T ′(tk+l , tk+1+l )∧ |=

transform(C, l).

This can be used to construct the following algorithm, assuming that the initial and

goal clauses are only unit clauses.

step(0) :

solve
(
assumptions = I(t0) ∪ G

′(t0)
)

step(k) : add tk

add
(
T ′(tk−1, tk)

)
for i < k ;C ∈ learned(i) :

∆t := k − i

add
(
trans f orm(C,∆t)

)
solve (assumptions = I(t0) ∪ G′(tk))

This encoding is basically the single ended encoding with two di�erences: The initial

clauses are not added but only assumed, and we have additional clauses based on the

learned clauses of the previous steps. It is sound to add these transformed clauses because

of Theorem 1.

If the initial or goal clauses are not unit clauses than they can be added with activation

literals in which case it is safe to transform clauses that do not contain the activation literal

by Lemma 2. A similar technique can be used for the double ended incremental encoding.
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6 Evaluation

6.1 Benchmark Environment

All benchmark problems from the agile track of the 2014 International Planning Competi-

tion (IPC) [47] are used for evaluation: 280 problems are divided into 14 domains with 20

problems each. These benchmarks are chosen because it is the latest planning competition.

The agile track is selected because the SAT based planner Madagascar participated in

this track and is one of the most relevant competitors for our approach in SAT based

planning. Two variants of Madagascar scored second and third place in this competition.

The benchmark problems are provided in form of Planning Domain De�nition Language

(PDDL) �les. PDDL is a standardized description for planning problems.

Di�erent SAT based planners can be used to transform the planning problems into the

SAT encoding. The used SAT encodings of Madagascar [40] (∀, ∃) and Freelunch [6, 7] (∃2
,

reinforced) are represented in terms of initial clauses I, transition clauses T , universal

clausesU and goal clauses G as described in Section 2.3.2.

The tool IncPlan, which was developed for this thesis, is used to solve the problems

with the di�erent encodings. To do so it relies on an arbitrary incremental SAT solver that

supports the Re-entrant Incremental Satis�ability Application Program Interface (IPASIR).

This interface was introduced in the 2015 SAT Race [8]. For the non-incremental encoding

the provided feature to reset the SAT solver is used. The paper presenting the results of

this thesis [18] used COMiniSatPS 2Sun nopre [30] as solver as it was the solver performing

best on the planing problems, from solvers competing in the Incremental Library Track of

the 2016 SAT Competition. However, to get deeper insights it was necessary to modify

the solver, which was easier for glucose [3, 4] (a minisat [14] based solver) which is used

for the experiments presented in this section.

Finally, the SAT based planner used for the encoding to SAT is used to construct the

plan from the satisfying assignment of the SAT solver. A graphical overview of this system

is shown in Figure 6.1.

The systems used to perform the evaluation have two Intel
®

Xeon
®

X5355 CPUs (4

cores with 2.66GHz) and 24GB memory. Each instance solving a benchmark had a runtime

limit of 300 seconds and resource limitation to 1 CPU core and 8 GB of memory. At most

two instances run on each machine, each on its own CPU.

The rest of this chapter contains several scatter plots to compare di�erent variants.

They will all have a common structure: They show a data point for each problem. Trivial

and di�cult problems are not shown, i.e. problems solved by none of the approaches or

solved within one second by both. If a problem is only solved by one approach within the

time limit but not the other it is plotted behind the 300-second mark. One con�guration is

faster than the other if the problem is plotted on the opposing side. For easier reading of
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PDDL

Madagascar

Freelunch incplan

∀,∃ - Encoding

∃2, reinforced - Encoding

I,G,U , T

. . .

IPASIR
SAT-solver

Figure 6.1: System Overview

the logarithmic scale there are multiple diagonal lines, indicating that one approach is n
times faster than the other.

6.2 Randomizing Input through the Incremental SAT Interface

The order of clauses and naming of variables in a CNF can have an e�ect on the performance

of the SAT solver, also the problem does not change when clauses are reorderd or variables

are renamed. The evaluation takes place on very similar formulas and therefore it is

important to counteract the e�ects of clause ordering and variable renaming.

A common technique is to randomize the order of clauses, the order of literals within

the clauses and the naming of the variables in a CNF. This technique is transferable

to incremental SAT solving but it is important to keep in mind that clauses are added

for a speci�c call to solve , for example if the calls to the interface are add (C1), add (C2),

solve (A1), add (C3), solve (A2) then it is wrong to change the order such that C1,C2 are

added after solve (A1) or C3 is added before. On the other hand changing the order in

which C1,C2 are added is perfectly �ne. Additionally, it is important to keep track of

renamed variables as they might be used later on in added clauses or assumptions. This

leads the decoration of the incremental SAT interface described in Algorithm 6, which is

used throughout the experiments.

6.3 Speedup due to Incremental SAT Solving

The main hypothesis behind this thesis is that incremental SAT solving is bene�cial

when applied to SAT based planning, where a series of similar formulas has to be solved.

The evaluation clearly supports this hypothesis: Figure 6.2 shows that the incremental

approaches are able to solve the given problems faster than the non-incremental approach.

Additionally, the incremental approaches are able to solve more problems as can also be

seen in Table 6.1. This is especially true for the double ended incremental approach.

28



6.3 Speedup due to Incremental SAT Solving

Algorithm 6 Randomized Incremental Interface.

1: Fnew ← ∅, set of clauses added since last call to solve
2: V ← ∅, set of all known variables

3: r : V → {x1,x2, . . . ,x |V |}, one to one mapping representing the variable renaming

4: procedure addrnd(C)

5: Fnew ← Fnew ∪C

6: procedure solvernd(A)

7: Vnew ← [vars(A) ∪ vars(Fnew)] \V
8: rnew : Vnew → {x |V |+1,x |V |+2, . . . ,x |V |+|Vnew |} is a random one to one mapping

9:

10: r ← r ∪ rnew

11: V ← V ∪Vnew

12: Fnew ← r (Fnew)

13:

14: for C ∈ Fnew in random order do
15: add (C), where literals in C are randomly ordered

16: result← solve (assumptions = r (A))
17: Fnew ← ∅

18: return result

19: procedure learnedrnd(i)
20: return r−1(learned(i))
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6 Evaluation

(a) Single Ended Incremental vs.

Non-Incremental

(b) Double Ended Incremental vs.

Non-Incremental

Figure 6.2: Comparison of Incremental and Non-Incremental Solving

The bene�t of incremental SAT solving in terms of runtime (Figure 6.2) is mostly

independent from the used encoding, although the reinforced and the forall encoding seem

to pro�t more from the incremental encodings than the exist and relaxed-relaxed-exist

encoding. The same holds regarding the number of solved instances (Table 6.1): ∀ + 8,

reinforced +7, ∃ + 4, R2∃ − 5 instances solved.

Comparing the bene�ts in terms of runtime of the two incremental encodings in Figure

6.2a and 6.2b it seems that the double ended incremental encoding is even more bene�cial

than the single ended incremental encoding. The direct comparison in Figure 6.3a con�rms

this observation.

Note that there are 279 problems solved by both approaches, thereof 136 are solved

faster by the single ended version. However, remember that the axis are logarithmic: Only

28 problems have a speedup of more than 1.3 compared to the double ended encoding. On

the other hand the double ended approach has 74 problems that have a speedup of more

than 1.3 compared to the single ended encoding. In other words: using the double ended

encoding has a small overhead on some problems but leads to large performance gains in

others.

A simple explanation for the overhead is that the chosen encoding with the link clauses

causes the overhead. Consider the following to evaluate this: Use the double ended

encoding but instead of adding transition clauses alternating to both sides, the transition

clauses are only added to the side with the initial clauses. This variant will be called

forward search, the reasons for the naming will be more clear in the next chapter.

The single ended incremental approach and forward search are conceptually identical

and are only di�erent in the way the goal clause is added: In the single ended incremental

approach the goal clauses are directly assumed, while forward search assumes the goal

clauses indirectly through the link clauses.
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(a) Single vs. Double Ended Incremental (b) Single Ended Incremental vs.

Forward Search

Figure 6.3: Comparison of Incremental Variants

The results of comparing the single ended approach to forward search can be found

in Figure 6.3b. They show that this small di�erence in the encoding leads to quite some

variance regarding the run time with a tendency in favor of the single ended approach.

This result justi�es the notion of an overhead during the comparison between the single

and double ended encodings.

Figure 6.4 contains a comparison of the approaches for unsolved instances, but compares

the largest makespan shown to be unsatis�able instead of comparing the runtime. This

sows that much larger makespans can be proven unsatis�able with the incremental ap-

proaches. However, the double ended incremental encoding is not able to prove signi�cant

larger makespans than the single ended incremental encoding.

(a) Non-Incremental vs.

Single Ended Incremental

(b) Non-Incremental vs.

Double Ended Incremental

(c) Single Ended Incremental vs.

Double Ended Incremental

Figure 6.4: Comparison on Reached Makespan for Unsolved Instances
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(a) Forward vs. Backward Search (b) Comparing the double ended incremental

encoding (bidirectional search) to the best

of forward and backward search.

Figure 6.5: Comparison of Forward, Backward and Bidirectional Search

6.4 An Alternative View

The motivation for the double ended encoding was that clauses and other information

derived from the goal clauses can not be carried over between solve steps. Another

explanation for the performance gains compared to the single ended incremental approach

can be made when viewing the problem from the perspective of classical, explicit state

exploration search [34]: In a forward search the reachable states are explored starting from

the initial state until the goal state is reached. Similarly, it is possible to do a backward

search, that starts from the goal state and explores states that can reach the goal state until

the initial state is reached. It is also possible to start from both sides and exploring both

directions simultaneously. The search is complete when a state is found that is reachable

from the initial state and from which the goal state is reachable. This approach is called

bidirectional search. The advantage of bidirectional search in explicit state exploration is

that it can lead to signi�cant fewer states to be considered.

These concepts can be transferred to incremental SAT based planning with the double

ended encoding: It is a forward search when transitions are only added to the side with

initial clauses as the search is extended from the start. The other way round, when

transitions are only added to the side with the goal clauses it is a backward search. And

�nally, adding transitions alternating to both sides as proposed is a bidirectional search.

Note that the notion of directional search is only reasonable if there is a basis to start

from, a direction and especially information carried over between steps. Therefore, it can

not be applied to non-incremental SAT based planning.

Figure 6.5a compares SAT based forward and backward search implemented in the

double ended incremental encoding as described above. While the direction does not

matter for most problems there are clearly problems that bene�t from forward or from
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6.5 Potential of Scheduling Makespans

(a) Comparing the double ended incremental

encoding to only solving the �rst satis�able

makespan.

(b) Comparing the double ended incremental

encoding to non-incrementally solving the

last unsatis�able and the �rst satis�able

makespan.

Figure 6.6: The �gures show the potential of scheduling makespans. Only problems solved

by both approaches are considered and only the time spent within the SAT

solver is considered, especially not the encoding time.

backward search. However, it is usually not known beforehand which direction is more

bene�cial.

Nonetheless, this view raises the question whether the advantage of the double over

the single ended encoding is only due to the fact that some problems are better solved in

backward direction. After all, the double ended encoding is half backward search. Figure

6.5b compares the double ended incremental encoding to forward search or backward

search, depending on which is faster. This comparison shows only a slight tendency in

favor of the double ended encoding, which means that the advantage of the double over

the single ended encoding is partially due to the fact that some problems are better solved

in backward direction.

6.5 Potential of Scheduling Makespans

An important technique in SAT based planning is scheduling makespans as described in

Section 2.3.2. To evaluate the potential of this technique within incremental SAT solving

the following two questions are considered for non-incremental solving:

1. How long does it take to generate a solution, when the makespan is known?

2. How long does it take at least to prove the found makespan is minimal? To prove

makespan i minimal it is necessary to show that Fi is solvable and that Fi−1 is

unsolvable. Note that the minimal makespan is already known for this experiment.
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Figure 6.6 compares these times with the double ended incremental encoding, which in-

fers the minimal makespan itself. Note that for the double ended incremental encoding the

time for solving all makespans is considered while the time answering the questions does

only consider the time for solving one, respectively two, makespans non-incrementally.

It is often much easier to �nd a solution if Fi is solvable, then showing previous formulas

unsatis�able. This is the main motivation behind scheduling makespans and is re�ected

in Figure 6.6a. Interestingly it is not always true: with the incremental approach it is

sometimes faster to solve Fi for all makespans up to i than just solving Fi for the �rst

solvable. Therefore, scheduling makespans will not always be bene�cial when using the

double ended incremental approach.

If we are interested in �nding the minimal makespan as in Figure 6.6b then it is advisable

to use the double ended incremental encoding without scheduling makespans, as this is

faster than just solving the satis�able and the last unsatis�able instance. This also shows

that it is easier to solve the formula Fi if previous instances have already been solved. The

same e�ect was observable for incrementally solving the pigeonhole formulas in section 4.

6.6 Importance of Reused Information

To evaluate which information is important to reuse in incremental planning the SAT

solver has been modi�ed to perform one or all of the following actions after each call to

solve:

• remove all learned clauses

• reset variable activity

• reset phase

As can be seen in Figure 6.7a removing all the described information leads to a loose of

performance for a lot of the problems, also some problems are solved faster. The reason

for the outliers can be found in Figure 6.7d: resetting the variable activity introduces a

lot of variance in the results, although there is no clear tendency. A similar result can be

found for removing the phase in Figure 6.7c, but the e�ects are much smaller. Removing

the learned clauses on the other hand is clearly disadvantageous (Figure 6.7b). However,

the learned clauses are not important for all problems and removing them leads to small

improvements in that case. This can be explained by the fact that overall fewer clauses

need to be considered by the solver.

A very important result is that learned clauses are not the only reason for improved

performance when using an incremental SAT solver: The e�ect of removing the learned

clauses is not large enough. This can also be seen in Figure 6.8, where the non-incremental

approach is compared with the double ended incremental approach with removing learned

clauses.

As phase saving and variable activity do not have a clear e�ect and therefore are ruled

out as reasons for the speed up, it is left for future work to analyze the e�ect of other

information reused by the solver. Possible reasons among others are watched literals and

time saved by avoiding the input overhead of adding the same formula over and over

again.
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6.6 Importance of Reused Information

(a) Removing Learned Clauses, Resetting Phase

and Variable Activity

(b) Removing Learned Clauses

(c) Resetting Phase (d) Resetting Variable Activity

Figure 6.7: The �gures show the e�ect of not reusing certain information when applying

the double ended incremental encoding.
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Figure 6.8: Double Ended Incremental vs.

Non-Incremental with Removed

Learned Clauses

Figure 6.9: Overhead of assuming the ini-

tial clauses of the single ended

encoding.

6.7 Lemma Transformation

This section evaluates the performance of transforming learned clauses to appended time

points as described in section 5.3. The described algorithm requires that initial and goal

clauses are all unit and only assumed. All problems do have the initial and goal clauses as

unit clauses. However, as we have already seen in Section 4 for the pigeonhole formulas

assuming unit clauses instead of adding them has a noticeable impact on the runtime. To

suppress this e�ect the results for transforming learned clauses will be compared to a

variant of the single ended encoding, where the initial clauses are only assumed. This

variant is called no transformation. As for the pigeonhole formulas, this results in an

increased solve time as can be seen in Figure 6.9.

The size and number of learned clauses, which are transformed, may in�uence the

results. Therefore, di�erent limits have been tested: up to 5, 50 or 1000 literals per clause.

Clauses, which are larger than the limit, have not been transformed.

There are some problems which bene�t from transforming clauses with up to 50 literals

(Figure 6.10c). Actually, most of these problems lay in only two domains: Thoughtful and

CityCar as can be seen in Figure 6.10d. It is clearly not bene�cial when too many clauses

are added, as the overhead due to the additional causes is getting to high. This is re�ected in

Figure 6.10b where quite some problems perform worse than without transforming clauses.

On the other hand there is also no clear trend, when too few clauses are transformed

(Figure 6.10a).

Concluding, it can be bene�cial to transform learned clauses but the overhead is too

large to justify the moderate improvements, that only occur in some domains. It might be

possible to improve these results with careful domain depended tuning or by �nding a

feature for how many clauses to transform.
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6.7 Lemma Transformation

(a) Transforming Clauses With

Up to 5 Literals

(b) Transforming Clauses With

Up to 1000 Literals

(c) Transforming Clauses With

Up to 50 Literals

(d) Transforming Clauses With

Up to 50 Literals

Only Domains Thoughtful and CityCar

Figure 6.10: Comparing the transformation of learned clauses to not transforming any

learned clauses.
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(a) Comparison to MpC. (b) Comparison to PDRplan.

Figure 6.11: Comparison to existing tools.

6.8 Comparison to State of the Art

This section compares the double ended incremental approach to the existing state-of-the-

art planners Madagascar and PDRplan. Madagascar is a SAT based planner that competed

in the last International Planning Competition 2014 and reached the second and third

place in the agile track. Its variant MpC uses advanced scheduling of makespans [37],

planning speci�c heuristics [38, 39] and an own SAT solver implementation optimized for

planning [36]. PDRplan [45] is based on property directed reachability for planning but

replaced the calls to an of the shelf SAT solver with planning speci�c methods. Note that

PDRplan does not support all necessary features and could therefore be only compared on

domains Transport, Thoughtful, Parking, Floortile, Childsnack and Barman.

The cactusplot in the introduction (Figure 1.1) compared the double ended incremental

encoding to MpC and PDRplan and shows the potential of the double ended incremental

approach. Especially, that more problems can be solved within the given time limit, as can

be seen Table 6.1 as well.

However, Figure 6.11 shows that the double ended incremental encoding is quite com-

plementary to the two tools it is compared to: Some problems are better solved by MpC or

PDRplan while others are not solved by these two tools but are solved by the double ended

incremental encoding. Note that this is not only due to the incremental encoding but the

tendency is already present when using the non-incremental encoding. It is very domain

dependent which solver is best. This can be seen in Table 6.1, that shows the number of

solved instances for each domain.

For example the domains barman, ged and parking have been solved by MpC but not

by the incremental approaches. The explanation can be found in Table 6.2: These domains

require rather large makespans (more than 100), while domains solved by the double ended

incremental ∃ encoding required a makespan of 20 at most. The simplest explanation
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MpC 3 5 7 8 20 11 5 14 4 4 5 86

PDRplan 1 - 6 - 10 - - - 0 - 13 30

∃ non-incremental 0 7 19 13 20 0 5 20 0 1 5 90

single ended 0 7 17 14 20 0 6 20 0 2 5 91

double ended 0 7 18 19 20 0 7 20 0 2 5 94

∀ non-incremental 0 7 16 12 15 0 3 20 0 1 5 79

single ended 0 7 18 13 8 0 4 20 0 2 5 77

double ended 0 7 18 19 15 0 5 20 0 2 5 87

R2∃ non-incremental 0 7 19 1 15 0 1 20 0 1 5 69

single ended 0 7 17 1 14 0 1 20 0 1 5 66

double ended 0 7 17 0 15 0 1 18 0 1 5 64

reinf. non-incremental 0 7 13 1 10 0 3 3 0 1 5 43

single ended 0 7 16 2 8 0 4 3 0 3 5 48

double ended 0 7 16 2 10 0 4 3 0 3 5 50

Table 6.1: Number of problems solved within 300 seconds by default Madagascar (MpC),

PDRplan and the four tested encodings.
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MpC min 225 19 4 9 6 319 4 4 112 6 19

max 2,559 19 9 319 27 2,559 19 4 225 9 27

incr. ∃ min - 18 3 8 7 - 5 1 - 6 15

max - 18 3 14 20 - 8 1 - 7 19

Table 6.2: Minimal and maximal makespan of instances solved within 300 seconds by

default Madagascar (MpC) and double ended incremental ∃ encoding.
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6 Evaluation

is that MpC can reach those higher makespans due to its non-sequential scheduling of

makespans. To evaluate this the non-incremental approach is used to directly solve the

makespan known to be satis�able by MpC. However, the used SAT solver did not �nd a

solution within an extended time limit of 10 minutes for any of the problems in the domains

barman, ged and parking. Therefore, scheduling of makespans alone is not su�cient to

solve these instances.
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7 Conclusion

This thesis investigated the use of incremental SAT solving for SAT based planning by

evaluating di�erent incremental encodings for planning and the pigeonhole principle. The

latter was used as a case study to provide insights on incremental SAT solving on a series

of unsatis�able formulas. Some of these results can be transferred to planning as well.

The evaluation showed that incremental SAT solving is bene�cial for SAT based planing.

The presented approaches in combination with a state-of-the-art SAT solver can not only

compete with state-of-the-art SAT based planning tools but also complements them by

solving di�erent problem instances.

The acceleration reached is partially but not solely caused by learned clauses. As phase

saving, and variable activity for the VSIDS heuristic could be eliminated as reasons for the

speed up it is necessary to investigate further techniques such as watched literals, which

is left for future work.

The use of incremental SAT solving for SAT based planning opens the following research

directions:

• When parallelizing the search for a plan with multiple SAT solvers it is possible to

share clauses, even between solvers that try to solve di�erent makespans, due to the

use of activation literals.

• An incremental SAT solver allows to produce multiple solutions for the same formula,

by adding a new clause that removes the previous solution. This can be utilized to

generate di�erent plans.

Clearly de�ned interfaces make it possible to combine the presented approaches with

arbitrary SAT encodings for planning and with arbitrary SAT solvers that support the

standardized IPASIR interface. This way the presented approaches will pro�t from future

development in both areas.
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