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Abstract

A bucketized Cuckoo hash table is a hash table which is divided into disjunctive buckets

containing k elements each. Each element is stored in a bucket dictated by one of two hash

functions. Cuckoo hash tables guarantee a constant worst-case access-time. Bucketized

Cuckoo hash tables additionally support very high load-factors. This thesis presents

multiple algorithms to construct bucketized Cuckoo hash tables, based on the Sel�ess(k)-

algorithm [CSW07]. Our algorithms work directly on the table. Thereby, we achieve

algorithms using sublinear memory and whose running time is independent of the load-

factor. We also present highly e�cient parallel versions of our algorithms. Additionally,

we combine the d-ary Cuckoo hashing [Fot+03] approach with bucket Cuckoo hashing by

adapting the Sel�ess(k)-algorithm [CSW07] to be used with more than two hash functions.

We show the performance in a number of benchmarks and compare our algorithms to a

growing and non-growing state of the art iterated insertion algorithm.
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Zusammenfassung

Eine bucketized Cuckoo Hashtabelle ist eine Hashtabelle, welche in disjunkte Zellgruppen

unterteilt ist, die jeweils k Elemente enthalten. Die Position eines jeden Elementes wird

durch eine von zwei Hashfunktionen bestimmt. Cuckoo Hashtabellen garantieren eine

konstante worst-case Zugri�szeit. Bucketized Cuckoo Hashtabellen ermöglichen zusätz-

lich sehr hohe Füllgrade. Diese Abschlussarbeit präsentiert verschiedene Algorithmen,

abgeleitet vom Sel�ess(k)-Algorithmus [CSW07], um bucketized Cuckoo Hashtabellen zu

konstruieren. Unsere Algorithmen operieren direkt auf der Tabelle. Dadurch erzielen wir

Algorithmen mit einen sublinearen Speicherplatzverbrauch und einer Laufzeit, welche

unabhängig vom Füllgrad ist. Ebenso präsentieren wir hoche�ziente parallele Versionen

unserer Algorithmen. Zudem kombinieren wir den d-ary Cuckoo hashing [Fot+03] Ansatz

mit bucket Cuckoo hashing, indem wir den Sel�ess(k)-Algorithmus [CSW07] anpassen, so

dass dieser mit mehr als zwei Hashfunktionen verwendet werden kann. Wir zeigen die

Performance unserer Algorithmen unter verschiedenen Aspekten und vergleichen sie mit

einem aktuellen wachsenden und nicht-wachsenden iterated insertion Algorithmus.
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1 Introduction

1.1 Problem

A bucketized Cuckoo hash table is a hash table which is divided into disjunctive buckets

containing k elements each. Each element is stored in a bucket dictated by one of two hash

functions. We consider the o�ine case where all elements are available at the beginning.

In our setup the elements are in a table without any order. Given two independent hash

functions we want to construct a bucketized Cuckoo hash table out of the given table.

1.2 Motivation

Hash tables are ubiquitous data structures in the �eld of computer science. Basic hash

table approaches such as separate chaining or open addressing have the problem that

for higher load-factors the access-time does not remain constant and is even linear in

the worst-case [Knu98]. Bucketized Cuckoo hash tables guarantee a constant worst-case

access-time. Each element has to be in a bucket containing k elements dictated by one

of two hash functions. Therefore, we have to check at most two entire buckets for each

access resulting in a worst-case access-time of O(2 · k) = O(1).

Additionally, bucketized Cuckoo hash tables support very high load-factors, for k = 2

approximately 80%, for k = 4 approx. 97%, and for k = 8 approx. 99.7% [CSW07] [MS17].

Therefore, they are very space-e�cient without deteriorating the access-time.

In Section 1.1 we presumed that our elements are already unordered in a table. We

chose this setup because it has real-world applications: imagine a bucket Cuckoo hashing

algorithm that fails. If it fails the table is nearly �lled with elements. The common approach

would be to allocate a new table, choose two new hash functions, copy the elements to the

new table, deallocate the old table, and then run the algorithm again.

However, instead one could simply run our algorithm with two new hash functions

on the table saving oneself the deallocation and allocation (and getting all elements in a

form where they are ready to be inserted). The setup is exactly like ours: a table �lled

with elements without any order. For load-factors close to the respective threshold this

scenario is likely.

Bucket Cuckoo hashing has practical usage in many di�erent applications. Once con-

structed, a bucketized Cuckoo hash table guarantees a constant worst-case access-time.

Therefore, it can be used in real-time systems where running time guarantees have to
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1 Introduction

be met. Additionally, they support very high load-factors which makes them relevant

for devices with limited memory. Another application is parallel disk servers, we refer

to [SEK03].

1.3 General Introduction

There are already existing implementations for bucket Cuckoo Hashing, for example our

comparison algorithm introduced in Section 2.3. What separates us from other bucket

Cuckoo Hashing algorithms is that we construct our hash table where as the other algo-

rithms insert the elements one by one. Our approach has the characteristic that it moves

elements, but once they are assigned they will not be moved again. Additionally, our

algorithms are load-factor independent (and almost work inplace).

Constructing algorithms for bucket Cuckoo Hashing already exist but so far only in

theory. We provide practical implementations. Our algorithms either apply the Sel�ess(k)-

algorithm or are derived from it. The Sel�ess(k)-algorithm was introduced by Cain, Sanders,

and Wormald in [CSW07] as a graph algorithm. We transformed it into a hashing algorithm.

We developed multiple variants that adapted the Sel�ess(k)-algorithm in di�erent ways.

Our �rst algorithm uses a full graph representation. Our next algorithm keeps the graph

partly implicit using a prehashing that tries to predict in which buckets elements will be

hashed into and then writes them in advance. We also have an algorithm keeping the graph

fully implicit. It requires di�erent iteration techniques for elements and slightly varying

from the Sel�ess(k)-algorithm. However, it still adheres to the Sel�ess(k)-algorithm as

much as possible.

A further variant we developed is an algorithm which uses a new hash function, di-

viding the table into subtables. It distributes all elements as equally as possible among

those subtables. The subtables are then independent from each other. Therefore, we can

construct them independently from each other achieving sublinear memory consumption.

We also present a highly e�cient parallelization of this part exploiting the independence

of the subtables.

1.4 Related work

The basic approach to use two hash functions instead of one originates from the balls into

bins game introduced in [Aza+99] where each ball is placed in the least full bin. Building on

this approach Pagh and Rodler introduced Cuckoo hashing [PR01], which is the underlying

principle of our hash problem. In a Cuckoo hash table the position of each element is

dictated by one out of two hash functions. Elements are inserted into a position dictated

by one out of two hash functions. If both positions are occupied a displacement strat-

egy is needed. The easiest is to randomly pick one of the occupied positions, remove the

element there, write the element to the freed-up position and reinsert the removed element.
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1.5 Overview

Cuckoo hashing can generally be divided into two di�erent settings, the o�ine case

and the online case. In the online case a number of elements are inserted and deleted over

a period of time. The insert or delete requests arrive separately. This thesis focuses on the

o�ine case where all elements are available at the beginning (see Section 1.1 for our setup).

A number of papers approach the online case, we refer to [DW05] [Fot+03] [FMM09].

The approach, to build space e�cient hash tables by assigning elements to one out of two

buckets of size k was introduced by Dietzfelbinger and Weidling in [DW05]. Building on

this approach Cain, Sanders, and Wormald introduced the Sel�ess(k)-algorithm [CSW07],

which was originally introduced in [San04], our algorithms and implementations are based

on. However, the Sel�ess(k)-algorithm was described as a graph and disk scheduling

algorithm solving the k-orientability problem [Kar98]. This thesis focuses on the hash

table problem. Therefore, our implementation approach is di�erent. The k-orientability

problem is equivalent to bucket Cuckoo hashing (see Section 2.1). There have been other

approaches to solve the k-orientability, for example the DEM algorithm [FR07] from Fern-

holz and Ramachandran.

Another approach developing Cuckoo hashing is d-ary Cuckoo hashing [Fot+03] from

Fotakis, Pagh, Sanders, and Spirakis. Instead of introducing buckets it uses more than

two hash functions. Similar to bucket Cuckoo hashing it supports very high load-factors

and guarantees a constant worst-case access-time. One of our algorithms combines this

approach with bucket Cuckoo hashing (see Section 3.5). There are also a lot of other

approaches to construct hash tables or dictionaries with a constant worst-case access-time,

we refer to [Die+94] [FKS82].

1.5 Overview

We begin this thesis with chapter 2 which covers important de�nitions, the Sel�ess(k)-

algorithm our algorithms are based on and our comparison algorithms. We continue

with chapter 3 where we present our notation of the Sel�ess(k)-algorithm. We then

present various variations of the Sel�ess(k)-algorithm as well as derived algorithms that

are very memory-e�cient or enable the usage of multiple hash functions. We also o�er

a modi�cation that can be used with any of the other variants using sublinear memory.

chapter 4 contains implementation details of our algorithms, for example implicit data

structures, behaviour exploits and di�erent element assignment approaches as well as

parallelizations. chapter 5 evaluates our algorithms regarding di�erent benchmarks such

as running time, memory consumption, load-factor independence, and e�ciency. Lastly,

chapter 6 draws a conclusion on our results and outlines future work, for instance external

algorithms.
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2 Preliminaries

In Section 2.1 we cover the de�nitions of the most important terms that are used throughout

the thesis. Section 2.2 then presents the Sel�ess(k)-algorithm taken from [CSW07]. Lastly,

Section 2.3 presents the iterated insertion algorithm we use for comparison in its growing

and non-growing version.

2.1 Definitions

Throughout this thesis h0 and h1 are two independent hash functions. G := (V ,E) repre-

sents an undirected graph where V is a set of vertices and E is a set of undirected edges

between vertices in V . The corresponding graph G′
:= (V ′,E′) represents a directed graph

constructed from G where V ′ = V and E′ is constructed by directing a subset of edges

in E. An undirected edge between v,u ∈ V is represented via {v,u} where as a directed

edge from v to u for v,u ∈ V ′ is represented via (v,u). For v ∈ V the degree of v is

de�ned as deд(v) := |{{u,v}|{u,v} ∈ E}|, for v ∈ V ′ the in-degree of v is de�ned as

deдin(v) := |{(u,v)|(u,v) ∈ E′}|. In this thesis deд(v) will always refer to deд(v) in G
and deдin(v) will always refer to deдin(v) in G′.

We use m as table-size and n as the number of elements throughout this thesis. The

load-factor is the number of elements divided through the table-size (
n
m ). The load-factor

has sharp thresholds. Above these thresholds, it is very likely that a bucket Cuckoo hashing

is impossible because of unresolvable collisions (regardless of the used algorithm). Below

these thresholds, the probability of unresolvable collisions is negligible. For k = 4 that

threshold is approx. 97% and for k = 8 it is approx. 99.7% [CSW07] [MS17].

The balanced allocation paradigm [Aza+99]: Assign m balls to n bins where each

ball can be assigned to one out of two random bins such that the maximum occupancy is

minimized. An equivalent problem is the Edge orientability problem: Given a graph G ,

construct a graph G′ by orienting all edges in G so that the maximum in-degree in V ′ is

minimal. A graph is k-orientable [Kar98] if given a graph G we can construct a graph G′

by orienting all edges in G so that for every v in V ′ deдin(v) ≤ k . Therefore, a graph is

k-orientable if the edge orientability problem can be solved so that for each vertex v in

the result graph G′ deдin(v) ≤ k is. [CSW07]

A Cuckoo hash table is a hash table where the position of each element e is dictated

by h0(e) or h1(e). We can construct such a hash table with Cuckoo Hashing: Given a set

of elements and an empty table we start to pick one of the elements e from the set. If the

position h0(e) or h1(e) is empty, then we write e to that position. If both positions already

5



2 Preliminaries

have elements a displacement strategy is needed. The easiest is to randomly pick h0 or h1
and then reinsert the element at h0(e) or h1(e) into the set of elements and write e to the

freed-up position. [PR01]

A bucketized Cuckoo hash table is a hash table which is divided into disjunctive buckets

containing k elements each. Each element is stored in a bucket dictated by one of two hash

functions. We consider the o�ine case where all elements are available at the beginning.

In our setup the elements are in a table without any order. Given two independent hash

functions we want to construct a bucketized Cuckoo hash table out of the given table.

It is equivalent to the k-orientability problem (with the same k). Each instance of the

bucketized Cuckoo hash table construction implicitly de�nes a graph in the following

way: each bucket creates a vertex. Each element e forms an undirected edge between the

buckets h0(e) and h1(e). Note that h0(e) and h1(e) can be the same bucket. Directing an

edge {b1,b2} to (b1,b2) means to assign an element which can either be hashed into b1 or

into b2 to b2. If this graph is k-orientable, then we can direct all edges so that for every v
in V ′ deдin(v) ≤ k is. Therefore, each bucket has ≤ k assigned elements and because we

directed all edges, we assigned all elements. So, we have a valid bucketized Cuckoo hash

table.

2.2 The Selfless(k) algorithm

The Sel�ess(k) algorithm solves the k-orientability problem by either giving a solution

or proving that there cannot be one [CSW07]. It does so by assigning a load-degree to

each node. Then it directs edges to nodes with minimal load-degree. The basic idea is that

directing an edge to a node with minimal load-degree is never wrong.

Given an undirected graph G the Sel�ess(k) algorithm �rst initializes a directed graph

G′ with V ′ = V and E′ = {}. Then it de�nes a load-degree for every vertex v ∈ V as

deдld(v) := deд(v) + 2 · deдin(v). If there is a vertex v with deдld(v) − deдin(v) ≤ k and

deд(v) > 0, then it takes all edges {v,w} ∈ E and moves them to E′ as (w,v). If not it

chooses a random vertex v out of all vertices with minimal load-degree out of G, chooses

a random edge {v,w} ∈ E and moves it to E′ as (w,v). This is repeated until E = {} or

the minimal load-degree becomes > 2k . If there are edges left in E after it stops, then the

k-orientability problem for the given graph and k cannot be solved. Otherwise, it yields a

valid solution. [CSW07]

6



2.3 Incremented bucketized Cuckoo hash table construction

Algorithm 1 Sel�ess(k) algorithm

1: procedure Selfless(k) algorithm
2: buildLoadDegrees()
3: while ∃e ∈ E && min. deдld ≤ 2k do
4: if ∃v : deдld(v) − deдin(v) ≤ k && deд(v) > 0 then
5: while ∃{v,w} ∈ E do
6: move it to G′ with (w,v)
7: else
8: choose v with min. deдld
9: choose edge {v,w} and move it to G′ with (w,v)

2.3 Incremented bucketized Cuckoo hash table construction

We compare our algorithms with an iterated insertion algorithm using two hash functions.

The table is divided into disjunctive buckets with space for k elements. The main idea of

the algorithm is to directly insert each element into one of its two buckets. If that is not

possible, then a displacement strategy is needed to free-up a space in one of the two buckets.

The algorithm exists in two di�erent versions, a growing and a non-growing. We mainly

use the non-growing version for comparison. Our setup was given a table �lled with

random elements and two hash functions to construct a bucketized Cuckoo hash table. To

do so, the non-growing version creates a new empty table of the same size in which the

elements are inserted. The growing version also creates a new table, but with a �xed size.

The table periodically grows by a �xed size. The advantage is that already inserted

elements can be freed in the original table. The disadvantage is that the table is always

near capacity. Therefore, the insertion time can be very high for high load-factors. Note

that in comparison to our algorithms the growing version does not work inplace, it creates

the new table at once. Because the growing version can periodically deallocate inserted

elements, it almost works inplace. Therefore, it is closer to our algorithms.

The displacement strategy for both versions is a bound breath-�rst search (abv.: BFS). Let

e be an element we want to insert and b0 = h0(e) and b1 = h1(e) its two buckets. If both

b0 and b1 are full, then the algorithm cannot simply insert e and starts the displacement

strategy, for example a bound BFS.

The BFS iterates over all elements in b0 and b1 and checks whether the other bucket

for each element has a free space. If that is the case, then the appropriate element is moved

to its other bucket and we can insert e into the freed-up position. If not we iterate over

all elements in the other buckets we just checked and so on. If a certain depth is reached

the hashing fails and breaks o�, apart from a negligible probability, for the non-growing

version, caused by a too high load-factor.
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3 Algorithms

This chapter presents our algorithms and the ways we adapt the Sel�ess(k)-algorithm. In

Section 3.1 we describe variables and algorithm-speci�c de�nitions. Section 3.2 presents

the base algorithm which all other variants either use or are derived from. Before we get

to the variants themselves, Section 3.3 explains how our priorities behave when applying

the base algorithm. This will later become important. After that Subsection 3.4.1 and

Subsection 3.4.2 present variants of the base algorithm. The third variant in Subsection 3.4.3

presents a deviation of the base algorithm to work with much less memory. Additionally, in

Section 3.5 we present a deviation of the base algorithm that enables the usage of multiple

hash functions. Lastly, in Section 3.6 we present an algorithm that uses the previous

variants to provide an easily parallelizable and cache-e�cient algorithm using sublinear

memory.

3.1 Definitions

Variables
We de�ne primin as the minimal priority. The minimal priority is the lowest out of all

priorities of buckets with a valid priority. We de�ne h as the number of hash functions,

this de�nition is only relevant for the multi hash functions algorithm.

To �x an element e means to write e into one if its two buckets h0(e) or h1(e). Each

bucket has to know its �xed elements. Unless explicitly stated otherwise �xed elements

are never moved again. To prehash an element e means to write e into one if its two

buckets h0(e) or h1(e). In contrast to �xed elements prehashed elements can still be moved

around until they are �xed.

An active bucket is a bucket that could be chosen next by the respective algorithm.

Active buckets always have the same priority which is usually primin. We de�ne the

priority of the active buckets as priactive . Activating a bucket b means to turn b into

an active bucket. Deactivating an active bucket means to turn an active bucket into a

non-active bucket. Both activating and deactivating buckets do not a�ect their priorities.

A possible element e for a bucket b is an element that could be hashed into the bucket b,

meaning either h0(e) = b and/or h1(e) = b. An index for an element e is the position of e
in the table. Whenever e is moved the indexes for e have to be updated to its new table

position.

9



3 Algorithms

3.2 Base algorithm

Algorithm 2 Base algorithm

1: procedure Base algorithm
2: buildPriorityQueueWithLoadDegrees()
3: while ∃ b with priority 0 do
4: safeBucket(b)
5: while ∃ b with primin && primin ≤ k do
6: if deдin(b) == k then
7: remove b from PQ
8: continue
9: if ∃non-hashed elment e with h0(e) == b | | h1(e) == b then

10: �xElementIntoBucket(b, e)
11: priority(b)++
12: priority(getNeighbourBucket(b, e))−−
13: if priority(getNeighbourBucket(b, e)) == 0 then
14: safeBucket(getNeighbourBucket(b, e))
15: else
16: remove b from PQ
17: continue
18: procedure safeBucket(bucket b)

19: while ∃non-hashed elment e with h0(e) == b | | h1(e) == b do
20: �xElementIntoBucket(b, e)
21: priority(getNeighbourBucket(b, e))−−
22: if priority(getNeighbourBucket(b, e)) == 0 then
23: safeBucket(getNeighbourBucket(b, e))
24: remove b from PQ

The Sel�ess(k)-algorithm [CSW07] is a graph algorithm. We use a di�erent notation of

it as a hashing algorithm. We use an equivalent priority function subsuming all priorities

≤ k under priority 0. Therefore, the general idea is the same: if we have a bucket with less

or equal possible elements than space, then we �x all those possible elements. Otherwise,

we choose a bucket with space and a minimum of possible elements +2· �xed elements.

Note that we only choose buckets with priority 0 or primin. Because priority 0 is the lowest

valid priority we always choose buckets with primin. This results in active buckets always

having the priority primin, meaning priactive = primin.

Each instance of the bucketized Cuckoo hash table construction implicitly de�nes a graph

in the following way: each bucket creates a vertex. Each element e forms an undirected

edge between the buckets h0(e) and h1(e). Note that h0(e) and h1(e) can be the same bucket.

Directing an edge {b1,b2} to (b1,b2) means to assign an element which can either be

hashed into b1 or into b2 to b2. If this graph is k-orientable, then we can direct all edges

so that for every v inV ′ deдin(v) ≤ k is. Therefore, each bucket has ≤ k assigned elements
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and because we directed all edges we assigned all elements. So, we have a valid bucketized

Cuckoo hash table. We optimize the load-degree function of the Sel�ess(k) algorithm and

de�ne our load-degree function as

deдld(b) =

{
0 if deдSel f Ld(b) − k ≤ 0

deдSel f Ld(b) − k else

where deдSel f Ld is the load-degree function of the Sel�ess(k) algorithm (see Section 2.2).

When choosing a vertex v with deдld(v) = 0 we direct all edges to it as this is equivalent

to deдSel f Ld(v) − deдin(v) ≤ k .

0 ≥ deдld(v) = deдSel f Ld(v) − k and therefore deдSel f Ld(v) ≤ k . Because deдin(v) ≥ 0 we

can conclude: deдSel f Ld(v) − deдin(v) ≤ k .

We need a priority queue (abv. PQ) to support the priorization of the deдld . What PQ we

use, how we �x elements, and how we represent G depends on the respective variants

and/or implementations.

3.3 Priority e�ects

Most of the algorithms and implementations use some of the here presented e�ects in order

to work. We explain how the priactive behaves when applying the base algorithm. Note

that the priactive is equal to the primin in the case of the base algorithm. We use priactive
for clari�cation in this section because the following e�ects apply even when slightly

deviating from the base algorithm. While the base algorithm is running priactive < k + 1
because the base algorithm stops when a priactive of k + 1 is reached.

We analyse how our priactive behaves when �xing a single element into an active bucket.

Let e be an element with b0 = h0(e) as active bucket and b1 = h1(e) as other bucket. When

�xing e into b0 we increment the priority of b0 by one and decrement the priority of b1 by

one. If b1 was an active bucket before �xing e , then it gets the priority priactive − 1. This

causes the base algorithm to deactivate all active buckets except b1 and to decrement the

priactive by one. Therefore, the next time the base algorithm chooses an active bucket it

only has a single choice, b1. If b0 was the only active bucket and b1 had a priority higher

than priactive + 1 before �xing e , then there are no more buckets with priority priactive .
So, the base algorithm increments priactive by one and activates all buckets with the new

priactive . Otherwise, the priactive stays the same because either b1 gets priactive as priority

or other buckets still have priactive as priority.

Here we analyse the expected priority for each bucket. The expected priority for each

bucket is 2 · nm · k − k = 2 · load-factor · k − k . In words the expected priority is the total

amount of possible hashes divided through the total amount of space. The minus k comes

from our priority/load-degree function. Because each element produces two possible

hashes the total amount of possible hashes is 2 · n. For high load-factors the expected
priority is nearly k .
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Lastly, we analyse the overall behaviour of priactive . The base algorithm always chooses

an active bucket and increments its priority. The other bucket is random, so most likely,

its priority is higher than priactive , especially at the start where the priorities are more

diverse. Therefore, the number of active buckets decreases until there are no more buckets

with priactive . This causes the base algorithm to increment the priactive and activate all

buckets with the new priactive . This behaviour continues until the priactive gets close to

the expected priority. Buckets with a high priority are more likely to get their priority

decreased. Because they have more possible elements, it is more likely that one of their

possible elements gets �xed into its other bucket. Therefore, all priorities converge to the

expected priority.

3.4 Variants

3.4.1 Index

The index variant applies the base algorithm. Therefore, an active bucket always has primin

as priority. The general idea of the index variant is to represent the entire graph G. We

achieve that by letting each bucket store the indexes for all its possible elements, hence the

name of the variant. Now we represent G because we represent V by knowing all buckets.

And we represent E because each bucket can get its possible elements over its indexes

and calculate the other buckets. We do not need information about our neighbours in G′,
therefore, we only have to store the deдin for each bucket.

3.4.2 Hybrid

The hybrid variant applies the base algorithm. Therefore, an active bucket always has

primin as priority. The main idea of this variant is to try and prehash (see Section 3.1) every

element at the start. We do that because for each prehashed element e we only create one

index. Let us assume that e was prehashed into b = h0(e). Then we only create an index

for the bucket h1(e). Bucket b and all other buckets have to store which of their elements

are prehashed because knowing that provides the same information as an index. If we

were to create an index for b, then that index would point to a position in b because we

prehashed e into b. Therefore, creating an index for b would be redundant.

So, each bucket has to store its indexes and which elements are prehashed. We do our

prehashing after building the priorities from the load-degrees because our prehashing

takes into account the number of prehashed elements the buckets already have as well as

their priorities. How a possible element for an active bucket is chosen changes. We always

prefer prehashed elements. Only if there are no prehashed elements the indexes are used.

This is done to avoid updating indexes. Same as for the index variant each bucket has to

store the deдin.
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3.4.3 Inplace

The main idea of this variant is to remove the index data structure by relying more on

prehashing. Therefore, we never have an explicit representation ofG . This variant deviates

from the base algorithm, since the graph cannot be traversed in the same way. A major

change is that an active bucket does not always have primin.

The problem that occurs when trying to strictly apply the base algorithm is that we

run into the situation where all active buckets have no prehashed elements but still have

possible elements. We could resolve this, by scanning the table and prehashing all ele-

ments every time that occurs. That would require a lot of table scans making this variant

unfeasible for any implementation. What we are doing instead is a mixture of repeated

prehashings, smart selection of active buckets and allowing non-minimal bucket selection.

To yield equivalent results to those of the base algorithm we apply a correction at the end.

The inplace variant is segregated into �ve parts. The �rst part is the initialization which

only happens once. The second part is prehashing all elements with additional functional-

ity. The third part applies the base algorithm but it changes how we choose one of the

active buckets. The fourth part does the same but introduces a new restriction. Until part

four decides to call the last part we always call part two, then three and then four in a

loop. The last part is only called once and tries to �x all leftover elements. Then it applies

a correction, which �xes any elements that may still be leftover by moving around �xed

elements. Figure 3.1 illustrates that control �ow.

Initialization Prehashing

Base algorithm

Base algorithm
Restrictive

Final fixing
and correctionstuck

finishcontinue

Figure 3.1: Control �ow of the inplace variant

Initialization (1.) The initialization �rst calculates the expected priority and then tries

to �x elements. It does so by calculating how many possible elements each bucket has.

Then we repeatedly iterate over all elements and check whether an element could be

hashed into a bucket with number possible elements < k . If it does we �x that element

into that bucket and decrease the number of possible elements for its other bucket. This

is repeated until the number of �xed elements per iteration becomes too small (speci�ed

in Subsection 4.2.3). If all elements are �xed the algorithm stops. How many elements
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are �xed in this part depends on the load-factor. Therefore, the number of elements left

for the rest of the algorithm does too, and thus the running time of the algorithm as well.

After that the PQ is initialized.

Prehashing of elements (2.) Despite of its name this part not only prehashes elements but

also �xes some, although a minority. In this part we iterate over all elements and, similar

to the hybrid variant, try to prehash them taking into account the number of prehashed

elements and the priorities of their respective buckets. There are two exceptions where we

�x an element instead of prehashing it. It can occur that a bucket with a priority smaller

than priactive still has space and possible elements. If we come across a possible element

for such a bucket we �x it directly into that bucket. This situation is not possible in the

hybrid variant.

It is important that we �x this element and do not prehash it. If we were to prehash

it and its other bucket has priactive as priority and only this element as possible element

we could get stuck. The other situation where we �x an element is if one of its buckets is

full. In that case we �x the element into the other bucket.

Application of the base algorithm (3.) When choosing an active bucket we check whether

it has prehased elements or not. We only choose active buckets with prehashed elements.

If an active bucket does not have prehashed elements we skip it. If it also has no more

possible elements, then we remove it from the PQ. Although we have no indexes we are

able to check if a bucket has no more possible elements by calculating backwards from its

priority and deдin.

If all active buckets have no prehashed elements, then we continue with the fourth part.

If we have very few (speci�ed in Subsection 4.2.3) active buckets, then we increase the

priactive by one, activate all buckets with the new priactive , and call part four. Therefore,

active buckets may have a higher priority than primin. This is a deviation of the base

algorithm, but to continue in this part would require an expensive table scan (prehashing),

which we are able to avoid or postpone making it easier, faster, and better.

Restrictive choosing of buckets (4.) The idea behind this part is to follow the base algo-

rithm but to choose from the active buckets in a way that guarantees that we do not

decrease the priactive . Note that priactive may not be primin, see last part. To achieve that

we only �x prehashed elements that could be hashed into an other bucket with a higher
priority than priactive . Every active bucket with no such prehashed elements is skipped.

Therefore, we can never create a bucket with priactive − 1 and no prehashed elements

which caused the stop in part three. If priactive is one smaller than the expected priority,

then we repeat that for a su�cient (speci�ed in Subsection 4.2.3) degree of precision or

time and then call the last part, the �nal �xing and correction. Otherwise, we repeat it

to a certain precision (speci�ed in Subsection 4.2.3) and then do the second and then the

third part again.
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Progress in part three and four It is important that part three and/or part four �x a sub-

stantial amount of elements before part two is called again. If they would not do that,

then the time spent on the table scan (prehashing) in part two would make this algorithm

unfeasible for any implementation. To ensure the progress in part three and/or four we

take a look at progress-hindering situations for each part and analyse how the other part

behaves in the situation.

The only progress-hindering situation that can occur for part four is if the possible ele-

ments for the active buckets do not or only have very few other buckets with a higher

priority. We can now conclude that those possible elements have to have buckets with

priactive as their other bucket. After this part part two does a prehashing and prehashes

those possible elements to one of their active buckets. If an active bucket has a possible

element with a bucket with a higher priority than priactive as its other bucket, then part

two will prehash it to the active bucket.

This creates active buckets of the following nature: they either have a prehashed ele-

ment or they have no prehashed elements and their only possible element is prehashed

into an other active bucket. Note that buckets with multiple possible elements and no

prehased elements are possible but very unlikely because the prehashing algorithm would

have to prehash all those multiple possible elements to their other buckets who have the

same priority.

This means when we �x an element into an active bucket we most likely create a bucket

with priactive − 1. But the important thing is that we do not run into the stopping situation

of part three because that bucket with priactive − 1 will either have a prehased element

or its only possible element was �xed into the other bucket leaving it with no possible

elements and we can remove it from the PQ.

In every other situation part four guarantees our progress. Interference from buckets

with a lower priority than priactive is minimal because there can only be very few of those

buckets. Additionally, part two �xes elements into those buckets whenever it is called

guaranteeing progress for them and raising their priority.

Final hashing and correction (5.) This part gets called from the fourth part with non-�xed

elements leftover. If the fourth part ran with a very high degree of precision, then we

have the following situation: Apart from a negligible number of buckets every bucket

has either priactive or priactive + 1. Note that as before priactive might not be primin. Every

leftover element, apart from a negligible number, can either be hashed into two buckets

with priactive or two buckets with priactive + 1. Otherwise, the fourth part could have �xed

it and would not have changed to part �ve.

We now call our prehashing algorithm from part two except that we �x the elements

instead of prehashing them. Because we deviated from the base algorithm and our pre-

hashing algorithm, although precise on two separate priorities, is not perfect either, we
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may have elements that we cannot �x. To �x those we apply a correction that scans the

table and �nds these non-�xed elements. We then remove them from the table and store

them. Afterwards we insert them using a bound BFS. If the BFS fails, then our hashing

failed, most likely because of a too high load-factor.

3.5 Multi Hash Functions

The base algorithm is not designed to be used with more than two hash functions. We

o�er a variation that can be used with multiple hash functions. A trivial solution would

be to apply the base algorithm (described in base1), but that yields a result with elements

leftover that could not be �xed. We can �x those using a BFS with multiple hash functions.

Our variation decreases the number of leftover elements signi�cantly, see our experi-

mental results in Section 5.7. To clarify the development of our algorithm we labelled its

di�erent versions. When running the base algorithm we see an interesting e�ect with the

priorities. As explained in Section 3.3 the priorities grow towards the expected priority the

further the algorithm progresses and if the priactive decreases it only does so by one with

only one bucket having the new priactive .

base1: h is the number of hash functions we use. Therefore, the expected number of possi-

ble elements for each bucket is h ·k resulting in an expected priority of h ·k · load-factor−k .

We can run the base algorithm if we do everything we did for the single other bucket of

the �xed element for all other buckets of the �xed element. When doing so, our priactive
�rst rises to the expected priority but then starts getting smaller and smaller again.

base2: If we take a close look at the base algorithm we can see why. When �xing a

possible element into an active bucket we increase that buckets priority by one. Because

the element could have been hashed into h − 1 other buckets, we decrease the priority of

h − 1 buckets by one, assuming they are still in the PQ. So, �xing an element decreases

the sum of all priorities by h − 2. For h ≥ 3 that results in lowering the expected priority
and thereby causing the decrease of the priactive at the end. To counteract that e�ect, we

increase the priority of an active bucket that we �x into by h − 1 instead of 1. This keeps

the sum of all priorities constant and yields a better result.

base3: Our second modi�cation changes how the possible element that is �xed into

an active bucket is chosen. The idea is to prefer possible elements that can be hashed into

fewer other buckets because some of their other buckets are full. To do so, we prioritize

the possible elements of each bucket by giving each element the priority of how many of

its other buckets are still in the PQ. At the start that is always h − 1. As later on buckets

that are full and have possible elements get removed from the PQ this changes. There

are h priorities for the possible elements. When choosing a possible element for an active

bucket now we always choose that with the lowest priority.

�nal: Building on the last modi�cation we let the priorities of the elements also a�ect
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the priorities of the buckets. Decrementing the priority of a bucket when decrementing

the priority of a possible element has worked badly in practice. Therefore, we consider

only one of the priorities for a possible element as extra special, the priority 0. When a

possible element for a bucket has priority 0 it means that it can only be �xed into that

bucket because all its other buckets are full. What we do now is when we decrement a

priority for an element for a bucket to 0 we also decrement the priority of that bucket by

h − 1. That together with all the other modi�cations of the base algorithm leads to a good

heuristic with very few leftover elements before the correction. The leftover elements are

�xed using a BFS with multiple hash functions.

3.6 Two level

The two level variant o�ers a modi�cation which allows it to be used with any of the

above variants. The idea behind it is to run the variants from above on smaller subtables

using only sublinear memory. Ideally, we also try to pro�t from cache-e�ects. Additionally,

this makes our algorithm easily parallelizable, since, the subtables can be constructed

independently.

It starts by dividing the given table into

√
m subtables. Then it uses an additional hash

function to assign each element to a subtable. After this is done, it assigns the free space

on a percentage basis for each subtable as the number of elements of the subtable divided

through the number of all elements. On each of those subtables we run one of the variants

from above.

Because we calculate our subtables sequentially, we only consume the memory of the

respective variant on that subtable. Our memory for each of the variants from above is

linear in its table size. Our subtable size is

√
m, therefore we have a memory consumptions

which is linear in

√
m. So, our memory consumption is sublinear.

We can �nd any element by �rst �nding the subtable of the element using our addi-

tional hash function with which we assigned the element to a subtable. We can then

determine the two buckets of the element in its subtable using h0 and h1. To support that,

we also need to store the beginning and ending of each subtable. This also only uses

sublinear memory because we only have a sublinear number of subtables (

√
m).
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This chapter presents the di�erent implementations of the algorithms presented in chap-

ter 3. Section 4.1 focuses on structures all implementations have in common. Subsec-

tion 4.2.1 presents the implementation of the index variant. It covers a lot of data structures

and concepts that the other implementations reuse. Subsection 4.2.2 provides the imple-

mentation details of the hybrid variant. Subsection 4.2.3 presents the implementation for

each part of the inplace variant. In Section 4.3 we present our implementation of the multi

hash functions variant and explain why we cannot use previously used structures. Lastly,

we present the implementation of our two level variant in Section 4.4 using only sublinear

memory. In Section 4.5 follow some notes on its parallelization using OpenMP.

4.1 Common structures

To store the deдin we use an array of size m/k , which stores for each bucket how many

�xed elements it has. We store the �xed elements in the beginning of each bucket b.

Therefore, the �xed elements of b are in the interval [b,b +deдin(b)) (see Figure 4.2). Thus,

they do not have to be explicitly marked.

Since k is usually 4 or 8 and at most 16 some values are bound. We can exploit this.

Priorities and the deдin are both bound by k . Therefore, we can use the smallest possible

uint type for them, which would be unit8_t in C++. Other values like indexes and buckets

are bound bym or by m/k . To save memory as well as increasing the cache-performance,

we want to choose the smallest uint or int that can hold every value. We achieve that

by letting each variant have template parameters for uint types and/or int types with set

default-types. The best types are automatically initialized for each variant.

4.2 Variants

4.2.1 Index

The index variant uses indexes for each bucket, therefore we need to store them. The

easiest way to do so is to use a two-dimensional vector and to let each bucket store its

indexes in a vector. Each index access would then require two array accesses. We always

choose an arbitrary active bucket, therefore the access-pattern of indexes is random. This

means the cache access will produce the consecutive cache misses that cannot be pipelined.

Our solution is to use a one-dimensional array where each bucket stores a �xed number

of indexes. The main advantage is that each index access only needs one instead of two
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array accesses and therefore approximately half the time. Let c · k be the number of

indexes we store for each bucket. The idea is to store indexes for a bucket b in the interval

[b · c · k, (b + 1) · c · k). So, all indexes for b are at b + x with x < c · k in our index array.

We de�ne that x as a relative index for b. Two problems can now occur: Bucket b may

not have c · k indexes or it has more than c · k indexes.

We solve both problems through structuring and rebuilding of our index array and using

an additional array. The idea is to store which indexes in our index array are valid. For

that we use an array of size m/k which stores for each bucket the last relative index or -1

if it has no indexes. We know that the relative index is bound by c · k − 1. As mentioned

before k can be taken as ≤ 16. Therefore, we can use int8_t as data type for the last relative

index array.

Now let x be the relative index for a bucket b. We structure our index array similar

to our �xed elements in our table by keeping all valid indexes in the beginning of our

index array. This means all valid indexes are in the interval [b · c · k,b · c · k + x] in our

index array. Everything in (b · c · k + x , (b + 1) · c · k) is invalid. If we need an index for a

bucket we always check our last valid index array. If it is ≥ 0 we use the index on that

relative position and decrease our last valid index by one. Therefore, indexes are always

worked o� from back to front.

Deleting an index is equivalent to invalidating it. If we delete an index at a relative

index < x , then we have to maintain our structure. We do so by swapping our index that

we want to delete with the index at the last valid relative index and then decrement the

last valid relative index by one. We can see the behaviour of our index arrays when �xing

an element at our �xing examples in Figure 4.1, Figure 4.3, and Figure 4.4.

Now let us look at a bucket with more than c · k indexes. Let b be a bucket with i
indexes where i > c · k and i > 2 · k . Therefore, its initial priority is i − k > k and we

are unable to store all indexes for b in our index array. Additionally, we delete indexes

for b before it becomes active because our algorithm only chooses active buckets with a

priactive ≤ k . If we only delete indexes that were stored in our index array this leads to the

following situation: b still has space but no valid indexes although it still has indexes that

were not stored. We could do a rebuild of both index arrays, but how can we di�erentiate

b from a bucket that has no more indexes? Each rebuild for such a bucket needs a whole

table scan which would cost us a lot of time.

Our solution is to set before every build of the index arrays the last entry, that would be

relative index c · k − 1, for each bucket to the maximum int of the used int-type. When

building the indexes we �ll up the indexes from bottom to top for each bucket. We build

the indexes by iterating over all elements and creating indexes for both buckets for all

non-�xed elements. That means that the last entry for a bucket is only overwritten if the

bucket has ≥ c · k indexes. When reaching a bucket with a last valid index of −1 later we

check for that last entry. If it is set to maximum int, we know that the bucket has no more

indexes and that we do not have to do a rebuild. If it is not we know it was overwritten
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by an index and we do a rebuild. This may still lead to an unnecessarily early rebuild but

keeps the number of rebuilds close to the minimum.

We chose c as 2.5 because it keeps the number of rebuilds very low. Changing the factor c
would either lead to more rebuilds (if c is decreased) or to less rebuilds (if c is increased).

It is important to mention that this introduces a slight dependency on the load-factor. The

lower the load-factor the more likely all buckets can store all their indexes. Therefore, we

have to do less rebuilds of our index arrays which makes it faster.

The second thing we discuss is what kind of PQ we use and how we �x elements. From

Section 3.3 we know that the priactive is bound and is either staying the same, increasing

by one or decreasing by one with only one bucket having the new decreased priactive . We

exploit that e�ect by using an implicit PQ. Our PQ only keeps the active buckets explicitly

using a vector. In an extra array we store the priority for all buckets. Buckets that are full

or have no more possible elements are marked by having the priority -1. When choosing

one of our active buckets we always pick the last entry of our vector.

Apart from adjusting the priority array a priority increase is a simple pop_back from

a vector because the only increases happen when �xing into an active bucket and we

always pick the last entry of the vector when doing so. A priority decrease is only an

insert in our vector if the new priority of the bucket is the priactive .

When the priactive increases, we iterate over all buckets in our priority array to build

the vector with the active buckets new because all buckets with the new priactive are

activated. This is actually faster than a normal bucketPQ as the number of rebuilds is

bound by the maximal priactive which is bound by k .

A priority decrease on an active bucket b has to be handled now. If we were to fol-

low the base algorithm we would decrease the priority of b resulting in a decrease of the

priactive with b being the only active bucket. This would require a rebuild of our active

buckets vector. Also b would get chosen next by the algorithm, get an element �xed and

its priority increased by one. If no other bucket got the new priactive , then the priactive
would increase and we would have to rebuild our active buckets vector again.

To avoid these rebuilds of our active buckets vector we directly �x an element into b
and do not adjust its priority. This is equivalent to doing a priority decrease and following

the base algorithm because the priority and the number of �xed elements of b are the same

afterwards. We also �xed an element just like the base algorithm. If another active bucket

gets a priority decrease we do the same for it. Otherwise, we have the same priactive and

active buckets as the base algorithm.

Fixing an element into a bucket b, an example can be seen in Figure 4.1, consists of

the following steps: Through our last valid index array we get a relative index for our

index array. We use that to get the actual index of an element from our index array. We

swap the content at b+ deдin with the element at our index. If the swapped out content
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was an element we update its indexes. Then we delete the index of our �xed element from

its other bucket. We increment the deдin for b by one. We also adjust our index arrays

for b by decreasing the last valid index by one which marks the index we used as invalid.

We can do this because we always choose the last valid index in our index array. And we

have to do the PQ operations, a priority increase for b and a priority decrease for the other

bucket.
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Figure 4.1: Fixing by index
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4.2.2 Hybrid

The main idea of the hybrid variant was to try and prehash every element at the start and

to create only one index per prehahsed element. To support indexes and a PQ we choose

the same implementation as the index implementation (see Subsection 4.2.1). We have one

additional array of size m/k which stores for each bucket how many prehashed elements

it has. The idea is that for a bucket b in the interval [b,b + deдin) are �xed elements, in

[b + deдin, b + deдin + prehashedElements) are prehashed elements and at the rest of the

bucket are either elements or free space. An example can be seen in Figure 4.2.

xxxxxxxxxxxxxxxxxxxxxx︸ ︷︷ ︸

︷ ︸︸ ︷
xxxxxxxxxxx

︷ ︸︸ ︷
xxxxxxxx

...

b · k

∗ ∗3
b− 1 b b + 1

...

......

k = 8

∗ ∗4
b− 1 b b + 1......

fixed prehashed

k elements

foreign element or free space

number of number of
prehashed elementsfixed elements

Figure 4.2: Fixed and prehashed arrays

Our initial and only prehashing happens after we built our PQ and before we start

choosing active buckets. It is separated into two parts. In the �rst part we iterate

over all elements and prehash each element to the bucket with the smaller priority +
number of prehashed elements. If both values are equal we always prefer the bucket that

was calculated by h0. If we prehash an element, then only its other bucket gets an index.

Elements that cannot be prehashed are skipped.

In our second part we iterate over all elements again and create indexes for all elements

that are not prehashed. Combining the two steps has proven to be slower as non-prehashed

elements are likely to be moved around in the �rst part. So, if we were to create indexes

for them, then we would always have to update indexes when moving them around which

is expensive.
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During the algorithm the �xing of an element can happen in three di�erent ways. The

�rst and easiest way which the hybrid algorithm tries to do as much as possible is to �x a

prehashed element into a bucket b. Figure 4.3 shows an example of that. Such a �xing con-

sists only of incrementing the deдin of b, decrementing the number of prehashed elements

for b by one and deleting the index of that element out of its other bucket. And we have

to do the PQ operations, a priority increase forb and a priority decrease for the other bucket.

The second and most costly way to �x an element is �xing an element by index which is

prehashed in its other bucket. An example is in Figure 4.4. Let b be the bucket we want

to �x into. As we always prefer �xing prehashed elements we can be sure that b has no

prehashed elements. Through our last valid index array we get a relative index for our

index array. We use that to get the actual index of an element from our index array. In our

case that element is prehashed in its other bucket, otherwise it would have two indexes

and we would proceed with �xing by index.

We have to consider three elements here. In order to maintain a valid prehashed in-

terval we have to swap the element with the last prehashed element in its other bucket and

then swap it into b. It is implemented by moving every element to the right position. After

that we decrement the number of prehashed elements for the other bucket and increment

the deдin for b. We also adjust our index arrays for b by decreasing the last valid index

by one which marks the index we used as invalid. We can do this because we always

choose the last valid index in our index array. We also have to update the index for the

last prehashed element in its other bucket because we moved it. If the content that we

swapped out of b was an element we also have to update its indexes. And we have to do

the PQ operations, of course. The third way an element can be �xed is if it has two indexes

just like in the index implementation. The �xing is therefore analogue and can be looked

up at Figure 4.1 and Subsection 4.2.1.
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Figure 4.3: Fixing the �rst prehashed element

26



4.2 Variants
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4.2.3 Inplace

Similar to the hybrid implementation, we have an array to store the number of prehashed

elements for each bucket. The intervals for �xed and prehashed element for a bucket

are identical to those of the hybrid implementation (see Subsection 4.2.2 and Figure 4.2).

We also use an implicit PQ like the hybrid and the index implementation do (see Subsec-

tion 4.2.1). We do that for the same reasons. With the common structures this covers all

our data structures. In Subsection 3.4.3 we segregated the inplace variant into �ve parts.

We now present the implementation details for each part.

Initialization (1.) In Subsection 3.4.3 we said that we calculate the expected priority and

in Section 3.3 we calculated the expected priority as 2 · load-factor · k − k . The problem is

that our algorithm goes in its �nal phase when our priactive reaches expected priority − 1.

Therefore, we need to round the expected priority. After much experimenting we decided

for the rounding strategy to round down if the expected priority < ∗ ∗ ,1 and to round up

otherwise. This is done to avoid going into the �nal phase too early or too late.

For the �xing in the �rst part we do not create an extra array. We just use our array

that stores the priorities for each bucket to store the number of possible elements. We

can do that here because we do not need priorities here. We stop our �xing and continue

when we �x ≤ 4% of all elements in an iteration. When we �x an element we decrease

the number of possible elements only for its other buckets, not for our own. When we

are done, the priority array contains the number of possible elements plus the number of

�xed elements which would be the deд(b) + deдin(b) for each bucket b. To initialize the

PQ we just iterate over all buckets and add for each entry b in our priorities deдin(b) − k
which results in our our priority function deд(b) + 2 · deдin(b) − k . Now the initialization

is done, note that we do not have anything stored explicitly for our PQ at this point.

Prehashing of elements (2.) This part always requires a rebuild of the active buckets

which we are keeping explicit and therefore does that at the end. The reason is that we

also �x elements directly and have to adjust the PQ. To do that implicitly over the priority

array is no problem. But as we might �x into an active bucket we would have to adjust

the active buckets vector. The access is in our case random. Therefore, the access-time is

linear in vector length which is too slow for us. Additionally, the fourth part is usually

run before this one and changes, for the same reason, the priority array without adjusting

the active buckets vector as well. So, at the end of this part we rebuild the vector of active

buckets by iterating over our priority array and adding each bucket with priactive to the

vector.

We always try to �x an element before trying to prehash it like the hybrid variant does

it. Therefore, we check for each element if it has a bucket with a priority < priactive or if

one of its buckets is full. If that is the case we directly �x it into the appropriate bucket.

Otherwise, we do a prehashing like the hybrid implementation does it (see Subsection 4.2.2)

except that we do not create indexes.
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Application of the base algorithm (3.) This part is much like the application of the base

algorithm in the index and hybrid implementation. Because we also have an implicit PQ,

we also have to deal with a priority decrease of an active bucket. We do that almost in the

same way as the other implementations do it. The only di�erence is that if a bucket has no

prehashed elements, then we actually decrease its priority by one without adjusting the

priactive and active buckets and call part four. We leave the bucket in the active buckets

vector as part four does not use the vector and part four either �nishes or calls part two

which rebuilds the vector.

The other way to call part four is if we run into the situation where all our active buckets

have no prehashed elements. We either call part four directly or increment the priactive by

one if we have less than 10 active buckets. We chose this number to only make a small

deviation of the base algorithm while gaining a lot of performance by not calling part two.

In opposition to the index and hybrid implementation, we go through our active buckets

vector from the start to the end. We do that because we cannot always choose the last

bucket as it may not have prehashed elements. If we perform a priority increase or a delete

when a bucket becomes full we simply overwrite the current position in the vector with

the last element of the vector and call a pop_back on the vector. A priority decrease only

adds to the end of the vector if the new priority is the priactive . In both cases we also have

to adjust the priority array. Another advantage to this approach is that new active buckets

are looked at last. Because they had a higher priority before it is more likely that they

have no prehashed elements.

Restrictive choosing of buckets (4.) This part �rst decides whether it will �nish the algo-

rithm or call part two and then three again. It does so, as stated in Subsection 3.4.3, by

checking whether the priactive is one smaller than our calculated expected priority. As men-

tioned before, we do not use the active buckets vector. Instead, we iterate over all elements

and if a non-�xed element has a bucket with priactive and a bucket with a higher priority,

then we �x that element into the bucket with priactive and adjust the priority array. Note

that we ignore our prehashing here and destroy the prehashing structure which is why, un-

less we call part �ve, part two has to be called after this part in order for part three to work.

With a counter we keep track of how many elements we �x in an iteration. In the

�nishing mode, we iterate 52 times over all elements or until 0 elements have been �xed

in an iteration because then we would have the exact same situation for the next iteration

and would �x no elements again. The 52 is a �nishing-guarantee and was chosen to ensure

performance as well as keeping the number of elements �xed in the last iteration low.

After that we call part �ve, the �nal �xing and correction.

In the non-�nishing mode, we do at least three iterations. We iterate once and then

check through the counter if we were able to �x an element into a bucket for more than

1% of all buckets. If that is the case, then we do another iteration with the same check at

the end. As soon as that fails for the �rst time, except for the beginning, we do one more
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iteration and then call part two and three. If it fails at the beginning, we do two more

iterations and then call part two and then three.

Final fixing and correction (5.) This part does a normal prehashing at �rst except that it

�xes the elements instead of prehashing them. After that it performs a correction, which

iterates over all elements and checks whether they are in the right bucket. If they are not,

then we remove them from the table and store them in a vector. After that we iterate

over our vector and insert the elements into the table following the same strategy as the

iterated insertion algorithm:

Let e be an element we want to insert and b0 = h0(e) and b1 = h1(e) its two buckets.

If both b0 and b1 are full, then we cannot simply insert e and start a bound BFS. The

BFS iterates over all elements in b0 and b1 and checks whether the other bucket for each

element has a free space. If that is the case, then the appropriate element is moved to

its other bucket and we can insert e into the freed-up position. If not we iterate over all

elements in the other buckets we just checked and so on. As we would run endlessly if a

hashing is impossible, we have loд10(n) as a bound for our depth.

We implement our BFS using a vector where each bucket is inserted in the order we

looked at it. Because each bucket has the same number of elements and therefore the

same number of other buckets that we check, we are able to determine our parent bucket

by using our current index in the vector and our start and end position of our current

iteration. That enables us to calculate all buckets of the chain backwards as soon as we

�nd a bucket with space.

4.3 Multi Hash Functions

In Section 3.5 we intruduced a priorization of elements for active buckets. We now need

to support that priorization. Therefore, modifying the inplace variant is not an option as

we do not have indexes and each bucket may only have a part of its possible elements as

prehashed elements. Modifying the hybrid variant could work but we would have massive

problems and overhead with the prehashed elements again as a changing priorizations

there is di�cult. Imagine a prehased element with a lower priority than an indexed element

destroying the whole concept of the hybrid variant that prehashed elements always get

preferred.

That leaves us with modifying the index variant or implementing something entirely

new as the only viable solutions. We chose to modify the index variant because it already

provides a concept for index structures. As in Section 3.5 h will represent the number of

hash functions we use.

To represent our new index structure we use a two-dimensional vector. We choose that

over a three-dimensional vector with the bucket as �rst dimension, the index priority

as second and the indexes as the third because our solution will be faster as we will
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only require two instead of three array-accesses each time we need an index. Our �rst

dimension is h · amount of buckets big and represents both buckets and index priorities.

The idea is that each bucket b gets the indexes [b · h, (b + 1) · h) assigned and that the

vector at b + x represents indexes with priority x for the bucket b.

Before we continue we should talk about what kind of PQ we are using because the

other contents in this section depend on that. In the implementations above, we have seen

only one type, an implicit PQ. We have to use an explicit PQ because one essential condition

of the implicit PQ from above is missing. What the implicit PQ from above exploited was

that if thepriactive decreases, then only one bucket can have that newpriactive and be active.

That is not the case here because we decrease the priority for up to h − 1 buckets when

�xing an element. So, h−1 buckets can have that new priactive . Additionally, if the element

that we �x into a bucket with the new priactive could also be �xed into another one of

those buckets with the new priactive , then our priactive would further decrease by one. So,

to simply save those buckets with the new priactive in a vector, which could grow h − 2
buckets per �xed element at worst, instead of the variable from the implicit PQ from above

is not an option. That leaves us with an explicit PQ.

For the same argument that k is our maximalpriactive in the other implementations (h−1)·k
is our max. priactive here. To represent our PQ explicitly we use a two-dimensional vec-

tor. The �rst dimension represents the priorities and is bound by (h − 1) · k with the

exception that PQ entries in the last bucket of the PQ represent priority (h − 1) · k or
higher. To support a constant random access time we use the priority array that we know

and another array which stores for each bucket the index of the bucket in the second di-

mension of our PQ vector. When moving in the PQ these arrays have to be adjusted as well.

We iterate over the active buckets in the same way as the index and the hybrid implemen-

tation. The only new thing we have to consider is what happens if a bucket becomes full

and still has indexes left? Then we have to update the priority of the indexes for their

other buckets. We do that by decreasing them by one which is done by moving them in

the �rst dimension of our two-dimensional index vector. When an index gets priority 0 its

bucket has to be moved down by h − 1 in the PQ as well.

4.4 Two level

In Section 3.6 we divided our table into

√
m subtables. In practice it is important to keep

all subtable sizes above 70 · 103 because for anything below the probability that a valid

hashing is impossible no longer negligible is. Therefore, we divide the table in our imple-

mentation into the maximum potence of two which is smaller than the minimum of

√
m

and m/(70 · 103) guaranteeing a goal subtable size ≥ 70 · 103. We do that e�ciently by

using the most signi�cant bit and bit shifts.

After that the number of elements per subtable is calculated using h0. Because our number
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of subtables is 2
z

with z ∈ N0 we can do that very e�ciently by assigning each element

to the subtable h0(e) AND z. Then the actual size of the subtables is calculated by giving

each subtable the percentage of their number of elements/n free space. Therefore, the

load-factor for each subtable is guaranteed to be the same, apart from minimal variations

caused by rounding. The only thing that we have to store permanently throughout using

the hash table are the beginnings of each subtable in the table which we do through an

array. Now we actually write each element to its subtable.

Every table entry has the same probability for h0(e) for a random element e . There-

fore, all of our subtables have about the same size. Because our goal subtable size is

≥ 70 · 103 the variety is small. Lastly, we call one of the variants from above on each

subtable.

4.5 Parallelization

We parallelize the two level implementation with OpenMP. Thereby, we exploit that the

subtables can be calculated independently, which makes it very easy for us to parallelize.

We parallelize the �rst part, the calculation of the subtables, by letting each thread calculate

the subtables for his elements and then adding them recursevily. This only gives little, but

some, gain as this calculation is already very fast in its sequential version. We decided to

keep the moving of the elements sequentially. An e�cient parallelization for this part is

rather complicated and there are already well developed algorithms such as the inplace

parallel partitioner used in [Axt+17] which can be used here.

Our main parallelization happens now. Each subtable has about the same size and the

same load-factor. Therefore, the same variant has about the same speed on any subtable.

Because of that and because all of our subtables are independent of each other we can

easily parallelize here by letting the subtables be constructed in parallel where each thread,

if possible, constructs the same number of subtables.
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In this chapter we see how our implementations behave regarding running time, memory

consumption and changing parameters such as load-factors and number of elements.

Section 5.1 presents the legend that is used throughout this chapter. In Section 5.2 we

describe common parameters for all tests. Section 5.3 presents the running times of our

implementations. Section 5.4 then analyses the running time behaviour with varying

load-factors. In Section 5.5 we examine the memory consumption of our variants. We

analyse the e�ciency of our parallelization in Section 5.6. Lastly, we look at the average

error rates of our multi hash functions algorithm in its di�erent versions in Section 5.7.

5.1 Legend

Figure 5.1: Legend

The legend in Figure 5.1 applies to all diagrams throughout this chapter and is not ex-

plicitly used below. Note that for diagrams showing the level variants or parallel variants

"index" describes the variant that is used by the two level or parallel implementation.

The index variant with the cyan colour and the square markers uses index vectors for a

full graph representation. The index variant with the red colour and the circle markers

combines prehashing, which is predicting where elements should be �xed into and then

writing them in advance, with indexes for a partly implicit graph representation. Both

variants apply the base algorithm. The inplace variant with the green colour and the trian-

gle markers uses prehashing to keep the graph fully implicit and does not have indexes.

To do so, it slightly deviates from the base algorithm.

The iterated insertion algorithm with the black colour in its non-growing version, with the

dark grey colour in its growing version, and the pentagon markers inserts all elements one

by one and resolves collisions using a BFS. The non-growing version creates a new table
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at once, whereas the growing version creates a table which periodically grows. Therefore,

the growing version is closer to our algorithms.

5.2 Common parameters/hardware specs

All tests are executed with 70 · 103 · 2n elements where n ∈ N0. The reason behind that is

that with less than 70 · 103 elements there is a good chance for load-factors close to the

respective threshold that a bucket Cuckoo hashing with the chosen hash functions is not

possible as there is not enough variety. Therefore, we chose 70 · 103 as our basis. All time

measurements are averaged over 5 iterations. Our tests were run on a system consisting

of 2 Intel Xeon CPU E5-2683 v4 @ 2.10GHz processors with 16 cores each and 2 threads

per core.

5.3 Running times

Figure 5.2 shows a running time plot for the di�erent variants. We chose not to include

the growing version of the iterated insertion algorithm because it has a very high running

time for these very high load-factors. We can see that the hybrid version is the fastest of

our implementations. The cause is that the hybrid implementation has to update much

less indexes than the index variant because every prehashed element that is �xed does

not cause any index updates. The only extra work compared to the index variant is the

prehashing itself and the extra work for every wrong prehashed element.

It is not really surprising that the inplace implementation is mainly the slowest. It requires

repeated prehashing which costs the most of its running time. Additionally, the very high

load-factors we chose here increase the di�culty even further because our prehashing

loses in precision.

In Figure 5.3 we see a running time plot for the two level implementation with the di�erent

variants. We chose not to include the growing version of the iterated insertion algorithm

again for the same reason as before. For all these n’s we are in the case where we try to

achieve an optimal subtable size of 70 · 103. Therefore, our running time is proportional to

the variant used on that subtable size (see Figure 5.2) leading to the level hybrid being the

fastest.

5.4 Load-factor independence

Figure 5.4 shows a running time plot for changing load-factors. As we can see the growing

iterated insertion algorithm is exponentially dependent on the load-factor. For a load-factor

of 83% and higher any of our variants easily outperform it. The growing iterated insertion

algorithm stops sooner than the others in our plots because it is unfeasible for load-factors

close to their respective threshold.
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Figure 5.2: Variant running times

Figure 5.3: Level variant running times

To get a better look at how our implementations behave regarding each other and the

non-growing iterated insertion algorithm we take a look at Figure 5.5 which is the same

plot without the growing iterated insertion algorithm. As we can see the index and hybrid

variant are independent of the load-factor. The slight tendency of the index variant to

be a bit faster for low load-factors can be explained by the one-dimensional array for

the indexes, see Subsection 4.2.1, which we have to rebuild less often for lower load-factors.

The behaviour of the inplace-variant is dependent on the load-factor. For load-factors

between 80% and 98%, however, the inplace-variant is stable. For load-factors higher than

98% our prehashing loses in precision causing the rapid growth of the running time. For

low low-factors our instant �xing (see Subsection 4.2.3) becomes more e�ective, leaving

the rest of the algorithm with less elements. Additionally, our prehashing algorithm works

better. Therefore, the running time decreases.
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Figure 5.4: Load-factor behaviour

Figure 5.5: Load-factor independence of our variants

Figure 5.6: Load-factor independence of our level variants

We do not outperform the iterated insertion algorithm. Considering that we work

inplace on the table this is not really surprising because insertions in buckets with space

still require us to swap elements out of there and, depending on the variant, may also
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require us to update indexes, which is costly.

The level variants show the same characteristics as their underlying variants, see Figure 5.6.

5.5 Memory consumption

Figure 5.7 shows how much heap memory each variant consumes. This test was done

with approximately 144 million elements and a single iteration. Tests with more itera-

tions concluded that the memory behaviour of the variants is almost constant. Therefore,

we chose to only take one iteration here to keep the plot simpler. The data type for

our keys and our elements is uint64_t. Note that the memory consumption of our vari-

ants is independent of the data type the elements have, whereas the iterated insertion

algorithm always uses at least 2 · table memory. Therefore, the iterated insertion algo-

rithms memory consumption is dependent on the element type. The light-blue coloured

area is the space the table needs. During the algorithms it is a constantly allocated memory.

To get a better view, let us look at the memory consumption without the table mem-

ory (see Figure 5.8). As designed the inplace variant uses far less memory than all others.

The reason for that is that the inplace variant does not use indexes in any form which take

up most of the memory in the other variants. Additionally, we never store buckets with

priority expected priority− 1 in our PQ vector which make up most of the buckets towards

the end. Except for the PQ, which is a vector and for the most part kept implicit, all data

structures at the index and hybrid implementation are arrays. Therefore, the main part of

the allocation happens instantaneously. The rise later happens because more and more

buckets get the actvpr , an e�ect explained in Section 3.3. The slightly higher memory

consumption by the hybrid variant is caused by the extra array for the prehashed elements,

see Subsection 4.2.2.

The slightly higher memory consumption for k = 4 happens because we have twice

as much buckets than for k = 8. Although it does not a�ect our primary index array

because the indexes per bucket are dependent on d (see Subsection 4.2.1), it does a�ect

our other data structures such as the deдin array, the number of prehashed elements and

also the memory of our implicit PQ because we simply have more buckets. The iterated

insertion algorithm shows the same e�ect but for di�erent reasons. The BFS simply has to

run deeper because more buckets are full.
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Figure 5.7: Memory consumption with the table

Figure 5.8: Memory consumption without the table

Figure 5.9: E�ciency
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5.6 E�iciency

Figure 5.9 shows an e�ciency diagram for our parallel versions. Note that this e�ciency

diagram only considers the parallel part of our algorithm, as explained in Section 4.5 the

sequential part can be parallelized using an inplace parallel partitioner, we refer to the

one used in [Axt+17]. We can see that we are highly e�cient because our e�ciency keeps

very close to the maximum.

The high parallelism is achieved through our main parallel part which is running the

variants on the subtables. We do not need any synchronization or have any dependencies

between the subtables. Therefore, the only overhead that our parallel part has is the thread

management which is compared to the rest of the algorithm negligible. However, e�ciency

losses can occur if threads do not �nish simultaneously. At these load-factors that are

close to their respective thresholds this can occur if in one or more subtables the elements

are adversely spread across the buckets.

5.7 Multi hash functions

Table 5.1 and Table 5.2 show the average error rate and average time per one million

elements for the di�erent versions of our algorithm (as de�ned in Section 3.5) before the

correction is applied (the correction corrects all errors for the parameters in our tables). We

vary the load-factor for two di�erent numbers of elements. As we can see our modi�cations

decreased the error rates signi�cantly.
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Version Load-factor n · 70−1 · 10−3 ◦time · 106 · n−1 ◦ errors

base1 99.65% 2
7

1.571 7376.8

base2 99.65% 2
7

1.623 1450.0

base3 99.65% 2
7

1.906 8.0

�nal 99.65% 2
7

1.878 1.0

base1 99.65% 2
10

1.882 58881.2

base2 99.65% 2
10

1.982 11506.0

base3 99.65% 2
10

2.136 69.4

�nal 99.65% 2
10

2.094 8.4

base1 99.90% 2
7

1.564 10980.6

base2 99.90% 2
7

1.586 3880.6

base3 99.90% 2
7

2.055 179.4

�nal 99.90% 2
7

1.929 22.0

base1 99.90% 2
10

1.855 88327.8

base2 99.90% 2
10

1.889 30922.2

base3 99.90% 2
10

2.118 1400.4

�nal 99.90% 2
10

2.153 184.6

base1 99.95% 2
7

1.637 12089.0

base2 99.95% 2
7

1.642 4721.6

base3 99.95% 2
7

1.885 358.6

�nal 99.95% 2
7

1.909 55.2

base1 99.95% 2
10

1.868 96657.8

base2 99.95% 2
10

1.877 38046.8

base3 99.95% 2
10

2.150 2712.0

�nal 99.95% 2
10

2.149 415.8

base1 99.98% 2
7

1.625 12763.6

base2 99.98% 2
7

1.578 4538.8

base3 99.98% 2
7

1.958 634.4

�nal 99.98% 2
7

1.893 111.8

base1 99.98% 2
10

1.857 102122.2

base2 99.98% 2
10

1.875 43374.0

base3 99.98% 2
10

2.119 5071.8

�nal 99.98% 2
10

2.125 877.2

Table 5.1: Error measurements of our di�erent versions for k = 8 and h = 3
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5.7 Multi hash functions

Version Load-factor n · 70−1 · 10−3 ◦time · 106 · n−1 ◦ errors

base1 97.09% 2
7

1.476 335.0

base2 97.09% 2
7

1.498 0.0

base3 97.09% 2
7

1.569 0.0

�nal 97.09% 2
7

1.611 0.0

base1 97.09% 2
10

1.764 2669.8

base2 97.09% 2
10

1.824 0.0

base3 97.09% 2
10

1.884 0.0

�nal 97.09% 2
10

2.084 0.0

base1 99.65% 2
7

1.504 7360.8

base2 99.65% 2
7

1.504 1401.0

base3 99.65% 2
7

1.615 9.6

�nal 99.65% 2
7

1.690 1.2

base1 99.65% 2
10

1.788 58918.8

base2 99.65% 2
10

1.835 11450.6

base3 99.65% 2
10

1.956 77.2

�nal 99.65% 2
10

2.033 9.8

base1 99.90% 2
7

1.466 11061.2

base2 99.90% 2
7

1.504 5219.2

base3 99.90% 2
7

1.663 177.2

�nal 99.90% 2
7

1.845 22.0

base1 99.90% 2
10

1.775 88283.0

base2 99.90% 2
10

1.846 30848.0

base3 99.90% 2
10

2.008 1397.4

�nal 99.90% 2
10

2.056 179.6

base1 99.95% 2
7

1.504 12314.4

base2 99.95% 2
7

1.505 4702.6

base3 99.95% 2
7

1.670 355.2

�nal 99.95% 2
7

1.735 54.8

base1 99.95% 2
10

1.800 96641.2

base2 99.95% 2
10

1.832 38047.2

base3 99.95% 2
10

2.001 2912.8

�nal 99.95% 2
10

2.053 422.2

Table 5.2: Error measurements of our di�erent versions for k = 4 and h = 3
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6 Conclusion

6.1 Overview

Our goal was to implement an algorithm solving the bucketized Cuckoo hashing problem

inplace and independent of the load-factor. We presented multiple algorithm-variants

doing so based on the Sel�ess(k)-algorithm [CSW07]. These variants either work with a

full graph representation or by predicting where elements should be �xed into. One variant

even uses a combined approach. We then went further and introduced an algorithm which

divides our table into subtables that can then be constructed independently from each other

achieving sublinear memory consumption. Our parallelization of this implementation

exploiting the independence of the subtables has proven to be highly e�cient. Note that

we only tested the e�ciency for the parallel parts of our algorithms, for the sequential

part of our algorithms we referred to a parallel inplace partitioner (see Section 4.5 and

Section 6.2).

6.2 Future work

As proposed in Section 4.5 the parallelization of the sequential part of our parallel algorithm

using a parallel inplace partitioner, for example the one used in [Axt+17], would be a great

improvement because then we would have a fully parallel algorithm. The e�ciency of our

parallel parts is near one which means the overall e�ciency would be solely dependent

on the parallel inplace partitioner.

An aspect which we did not cover in this thesis are external algorithms. Let M be the

available fast memory (e.g. RAM) and B be the block size of the large external memory.

For our analysis we count the number of block accesses. Let H be the memory our table

needs. Similar to parallelizing the two level variant of our algorithm (see Section 4.4 and

Section 4.5) we could externalize it. We would have to adjust the dividing in the subtables

though by introducing an upper bound so that no subtable takes up more than M − x
memory where x represents additional memory for the respective variant. This subtable

size should also be set as a new goal subtable size.

Because the subtables are calculated independently, it would be enough to keep only

one subtable in the memory, construct it, write it back and then get the next subtable. All

of our variants use less than 2 · table memory, therefore this part of our algorithm would

have an optimal running time ofO( H
M−x ·2 ·

M−x
B ) ≤ O( HM

2

·
M
2

B ) = O(
H
M ·

M
B ) ≤ O(2 · HB ) = O(

H
B )

with any of our variants (each subtable is read once and written once and we have ≤ H
M−x +1
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6 Conclusion

subtables). The calculation of the subtable sizes takes up O(HB ) time as well because we

simply have to iterate once over the entire table and have to keep one counter per subtable.

We achieve that by loading our table block-wise, hence the running time.

The critical part to externalize is the moving of the elements to their appropriate subtables.

However, one could use an external partitioner, we refer to [Hu+14], or implement an

external partitioner speci�c to our problem.
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