

BOY-127 TP 1

Numerische Simulation von Tropfenaufprallvorgängen im Hinblick auf die Bildung von Flüssigkeitsfilmen bei der SCR Abgasnachbehandlung

Xuan Cai, Martin Wörner, Bettina Frohnapfel

Boysen Doktorandentage, 17.-18.05.2018, Altensteig

Institut f. Technische Chemie u. Polymerchemie (ITCP) Institut f. Katalyseforschung u. -technologie (IKFT) Institut f. Strömungsmechanik (ISTM)

Outline

- Introduction and motivation
- Numerical simulations of
 - Single droplet impact and rebound
 - Coalescence of droplets
- Summary and outlook

Motivation

Numerical simulation of droplet impact and film formation on wall

Numerical method and code

Phase-field method

- Gas-liquid-interface has a certain thickness ("diffuse-interface")
- Phase distribution is described by an order parameter C
- Coupling of Cahn-Hilliard equation and Navier-Stokes equations
- Particularly suitable for modelling of wetting process

Code phaseFieldFoam

- in the open-source CFD Software OpenFOAM implemented
- Development in cooperation with Dr. H. Marschall (TU-Darmstadt)

Dacqmin, J. Comput. Phys. 1999, 155: 96-127

Darschall, Cai, Wörner and Deutschmann, 2015, 10th Int. OpenFOAM® Workshop, Ann Arbor, Michigan

Rebound on micro-structured surface

Micro-structure \rightarrow super-hydrophobicity \rightarrow rebound

2D Axisymmetric Simulation for smooth surface

3D Simulation for micro-structured surface

18 million cells and 800,000 CPU hours!

📖 Fink, Cai, Stroh, Bernard, Kriegseis, Frohnapfel, Marschall and Wörner, Int. J. Heat & Fluid Flow, 2018, 70, 271-278

Rebound on smooth surface

- Very large contact angle $\theta_{eq} \rightarrow$ super-hydrophobicity \rightarrow rebound
- Validation against experiment Zang et al. (2013), θ_{eq} = 163°
- Droplet impacts with $D_0=2.1$ mm, $U_0=0.61$ m/s

Zang et al. Soft Matter **2013**, 9(2): 394-400

Rebound on smooth surface

- Very large contact angle $\theta_{eq} \rightarrow$ super-hydrophobicity \rightarrow rebound
- Validation against experiment Zang et al. (2013), θ_{eq} = 163°

Contact time

 Richard et al. (2002) correlated *Tc* with droplet radius *D*₀

$$T_{\rm C} = 2.6 \left(\frac{\rho}{\sigma}\right)^{1/2} \left(\frac{D_0}{2}\right)^{3/2}$$

Richard et al. *Nature* **2002** 417: 811-811.

AdBlue[®] droplet onto wall Physical properties Spray: p_{inj}, T_{inj} • $\rho_{\rm L} = 1090 \, \rm kg/m^3$ Drops: • $\mu_{\rm L}$ = 1.3 mPa s v_d, d_d, T_d Q_e • $\sigma_{\rm L} = 0.073 \, {\rm N/m}$ T_g, p, v_g evaporation Typical operating conditions: solid secondary $25 \ \mu m \le D_0 \le 800 \ \mu m$ deposit droplets $0 < U_0 \le 10 \text{ m/s}$ Impact D_0 Contact angle U_0 $90^\circ \le \theta_{eq} \le 170^\circ$ Deposition Rebound

Regime map for physical parameters

 Regime map for impact velocity U₀ and equilibrium contact angle θ_{eq} (Each symbol ■ or ● represents one simulation)

Coalescence of droplets

Droplet impacts onto another droplet that has already deposited on surface

Coalescence of water droplets

Head-on coalescence versus coalescence with a given offset s

Coalescence of water droplets - crown formation

The comparison of the experiment and present 2D axisymmetric phase-field simulation

L Fujimoto et al. Intl. J. Multiphase Flow 2001 27: 1227-1245

Summary and outlooks

- The numerical code is validated for single droplet rebound process
- Rebound regime maps obtained by our simulation campaign show:
 - contact angle↑, impact velocity↑, diameter↑ or Weber↑
 → rebound occurrence↑
- Outlooks
 - Contact angle hysteresis model with specification of θ_a and θ_r
 - Film formation