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Zusammenfassung
Die Mehrheit aller orthopädischen Eingriffe wird heutzutage immer noch
konventionell von Hand durchgeführt, obwohl computer-assistierte Syste-
me schon seit mindestens zwei Jahrzehnten verfügbar sind. Orthopädische
Planungs- und Ausführungsanwendungen geben überwiegend einen festen
Arbeitsablauf vor und sind auf spezifische Interventionen maßgeschneidert.
Hierauf können einige Nachteile zurückgeführt werden, wie z. B. die hohen
Anschaffungs- und Instandhaltungskosten oder die fehlende Möglichkeit,
intraoperativ auf unvorhergesehene anatomische Gegebenheiten reagieren
zu können. Diese Dissertation beschreibt eine generische, intraopera-
tive und bildlose Planungs- und Ausführungsapplikation für beliebige
orthopädische Interventionen unter der Verwendung eines handgehalte-
nen Roboters. Dieser Ansatz ermöglicht es, die zuvor angesprochenen
Nachteile deutlich zu verbessern.

Um eine chirurgische CAD-Anwendung zu implementieren, wurden chirur-
gische Schritte analysiert und in technische Funktionen überführt. Neue
Interaktions- und Visualisierungsparadigmen erlauben es, die Anwen-
dung innerhalb des Operationssaales zu benutzen. Eine OpenIGTLink-
Implementierung ermöglicht die Benutzung zusätzlicher Eingabegeräte
und Simulationsumgebungen. Neben einem Monitor wird eine zusätzliche
Visualisierung mittels Augmented-Reality-Durchsichtbrille angeboten.
Diese erlaubt eine Visualisierung der Planung direkt am Knochen des Pa-
tienten. Hierfür wurde eine neuartige pixelweise Kalibrierung entwickelt,
welche sich von bisherigen modellbasierten Kalibrierungen abhebt. Die
Ausführung des intraoperativen Planes wird mit Hilfe eines in der Hand
gehalten Fräsroboters mit drei Freiheitsgraden durchgeführt. Hierfür
wurden angepasste Kontrollalgorithmen und Modi entwickelt. Mit Hilfe
einer Methode basierend auf Lichtschnitten werden die austauschbaren
Fräsköpfe des Roboters intraoperativ kalibriert.
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Zusammenfassung

Das Gesamtsystem erlaubt einen flexiblen Wechsel zwischen Planung und
Ausführung während die Genauigkeit des Systems in der Größenordnung
von stationären Robotern liegt. Aufgrund der generischen Arbeitsweise
des vorgestellten Ansatzes, welches dem Vorgehen bei konventionellen
Eingriffen ähnlicher ist als bisherige Systeme, kann ein Wechsel von
konventioneller zu computer-assistierter Chirurgie vereinfacht werden.
Obwohl diese Arbeit sich auf orthopädische Eingriffe konzentriert, können
diese Ansätze auf die Gegebenheiten der Neuro-, Mund-, Kiefer- und
Gesichtschirurgie angepasst werden.

Beitrag 1: OrthoCAD: Eine intraoperative CAD-Planungsanwendung für
beliebige orthopädische Interventionen

Bei orthopädischen Interventionen kommt es oft vor, dass präoperative
Planungen verworfen werden müssen, da die intraoperativ vorgefundenen
anatomischen Gegebenheiten derart sind, dass die Planung nicht exakt
umgesetzt werden kann. Darüber hinaus ist der Großteil der Planungs-
und Ausführungsapplikationen im orthopädischen Bereich maßgeschnei-
dert auf eine oder wenige Interventionen. Dies führt zu erhöhten Kosten
und zusätzlicher Trainingszeit. Es besteht demnach der Wunsch nach
einer flexiblen intraoperativen Planungsmöglichkeit, die nicht auf eine
bestimmte Intervention beschränkt ist. Da orthopädische Interventionen
aus einer Folge von wenigen elementaren Arbeitsschritten aufgebaut wer-
den können, orientiert sich das Systemkonzept an einem CAD-System.
Es können Primitive, bspw. Punkte, Linien oder Ebenen, intraoperativ
direkt am Knochen des Patienten digitalisiert werden. Diese Primiti-
ve lassen sich anschließend zu komplexeren Objekten zusammensetzen.
Punktwolken können digitalisiert werden, um somit beispielsweise den
Knochen des Patienten abzutasten. Ein Bemaßungssystem erlaubt es,
Objekte genau zu platzieren. Bereits digitalisierte Objekte können, wie
bei CAD-Systemen gängig, nachträglich verschoben und rotiert werden.
Objekte können relativ zu anderen platziert werden (bspw. eine Ebene
senkrecht zu einer Achse). Der Chirurg bedient das Gesamtsystems mit
Hilfe eines getrackten Zeigegerätes und eines Touchscreens. Die Planung
wird sowohl auf dem Touchscreen als auch ortsgenau in einer Durchsicht-
brille visualisiert.
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Zusammenfassung

Beitrag 2: Pixelweise kamerabasierte Kalibrierung einer optischen
Durchsichtbrille

Bisherige Kalibrierungen von optischen Durchsichtbrillen basieren meist
auf Punktkorrespondenzen, welche vom Benutzer aufgenommen werden.
Da dieses Vorgehen nur eine geringe Anzahl an Korrespondenzen generiert,
benutzen diese Kalibrierungen parameterbasierte Modelle. Diese weisen
jedoch vor allem im Randbereich starke Fehler auf. Die entwickelte
Kalibrierung ermöglicht es, jedes einzelne Pixel der Durchsichtbrille
ohne Parametermodell individuell und vollautomatisch zu kalibrieren.
Dabei kommen ein Monitor und präzis kalibrierte Kameras zum Einsatz.
Darüber hinaus wird die Kalibrierung des Displays von der Kalibrierung
der Augenposition getrennt. Der maximale Fehler der Displaykalibrierung
liegt bei 0,04∘, was einem Fehler von 0,33 mm in einer Distanz von
500 mm entspricht.

Beitrag 3: Erweiterbarkeit mittels OpenIGTLink

In der computer-assistierten Chirurgie ist die Auswahl verwendeter Einga-
begeräte genauso groß, wie die Vielfalt an Eingriffen. Die Benutzung der
Geräte hängt vom Chirurgen als auch von der Verfügbarkeit innerhalb der
Klinik ab. OrthoCAD benötigt nur ein Zeigegerät und einen Touchscreen.
In manchen Fällen ist es jedoch vorteilhaft, zusätzliche Eingabegeräte zu
benutzen, zum Beispiel einen 3D-Scanner, welcher dabei hilft, größere
Teile der Knochenoberfläche zu digitalisieren. Um in OrthoCAD beliebige
Geräte benutzen zu können, wurde das Netzwerkprotokoll OpenIGTLink
in das Toolkit MITK integriert, auf welchem OrthoCAD basiert. Eine
Evaluation der Übertragungsraten und der Latenzen wurde durchgeführt.
Die Ergebnisse zeigen, dass die Implementierung problemlos typische
Anwendungsszenarien zulässt.
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Zusammenfassung

Beitrag 4: Eine intraoperative Kalibrierungsmethode für beliebige navigierte
chirurgische Instrumente

In robotischen Anwendungen ist es essentiell die Position und die Grö-
ße des Endeffektors im Koordinatensystem des befestigten Trackers zu
kennen. Beispielsweise lässt sich ein Fräskopf während einer Interven-
tion austauschen bzw. seine Tiefe einstellen. Somit ist es wichtig, eine
schnelle, einfache und intraoperative Kalibrierung bereitzustellen. Bisher
werden kugelförmige Werkzeuge pivotiert und andere mittels individuell
angepassten Vorrichtungen kalibriert. In der vorgestellten Arbeit wird
das zu kalibrierende Instrument vor einer oder mehreren navigierten
Kameras um seine eigene Achse gedreht, um somit die dreidimensionale
Oberfläche mittels Lichtschnitten zu rekonstruieren. Hierbei partitioniert
ein dreidimensionales Raster den Arbeitsbereich. Mit jedem zusätzlichen
Bild werden mehr Elemente des Rasters als Hintergrund markiert. Am
Ende bleiben nur noch die Elemente übrig, welche zum Instrument selbst
gehören. Anschließend wird die Oberfläche generiert, an welche verein-
fachte Geometrien (bspw. eine Kugel) angepasst werden, damit diese
in der Planungs- und Ausführungssoftware zur Verfügung stehen. Die
Genauigkeitsanalyse zeigt, dass dieses System für Fräsköpfe genauere
Ergebnisse liefert als ein einfaches Pivotieren.

Beitrag 5: Kontrollalgorithmen für die Planungsausführung mittels in der
Hand gehaltenem Fräsroboter

In orthopädischen Interventionen werden heutzutage verschieden Typen
von Robotern eingesetzt. Stationäre Roboter, beispielsweise RIO (Stryker,
USA) oder ROBODOC (Think Surgical, USA), verbessern die Genauig-
keit, definieren allerdings einen neuen chirurgischen Ablauf. Im Gegensatz
dazu lassen sich in der Hand gehaltene Roboter einfacher in bestehen-
de Abläufe integrieren und stellen deswegen auch eine kostengünstigere
Variante dar. Ihre eingeschränkte Bewegungsfreiheit wird durch die Ge-
schicklichkeit des Chirurgen kompensiert. Der wissenschaftliche Beitrag
liegt hier in der Entwicklung von Kontrollalgorithmen für einen in der
Hand gehaltenen Fräsroboter mit drei Freiheitsgraden. Die Algorithmen
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Zusammenfassung

stellen sicher, dass der Roboter prä- und intraoperativ definierte Be-
grenzungen nicht durchdringen kann. Ein ausweichender Modus sorgt
dafür, dass der Roboter, so lange dies möglich ist, ausweicht, ohne die
Geschwindigkeit zu drosseln. Dies ermöglicht es dem Chirurgen, den
Plan präzise umzusetzen, ohne den Patienten dabei zu verletzen. Ein
halbautomatischer Modus regelt aktiv die Position des Fräskopfes, um
somit die notwendigen Bewegungen des Chirurgen zu minimieren. Die
Algorithmen wurden an einem stationären Prototyp mit drei Freiheitsgra-
den getestet. Die Analyse zeigte dabei, dass die entwickelten Algorithmen
Genauigkeiten erzielen, welche in der Größenordnung von stationären
Robotern liegen (maximale Abweichung ±0,8 mm).
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Abstract
Most orthopedic interventions are still performed in a conventional manual
way, although computer-assisted systems have been available for at least
two decades. Several possible reasons explaining this fact are identified,
which are mainly attributed to dedicated workflows in orthopedic planning
and execution applications. The focus of this dissertation is a generic,
intraoperative and image-free planning and execution application for
arbitrary orthopedic interventions using a novel handheld robotic device
(HHRD) aiming to facilitate the transition from conventional to computer-
assisted surgery.

Surgical steps are analyzed and transformed into technical functions in
order to implement a surgical CAD application. New interaction and
visualization paradigms enable the use of this application inside the OR.
An OpenIGTLink implementation allows the usage of additional input
devices and simulation environments. The surgeon can plan directly on
the patient’s bone by means of an augmented in-situ visualization based
on optical see-through glasses (OSTG). A robot control system (RCS)
is described, which allows the execution of the intraoperative plan with
an HHRD. The RCS implements different control modi considering the
fact that the surgeon holds the device. In order to calibrate the inter-
changeable tool tips of the HHRD as well as other surgical instruments,
an intraoperative reconstruction and calibration method is presented.

Several planned and executed interventions show the effectiveness of
OrthoCAD and the developed interaction and visualization approaches.
The pixel-wise OSTG calibration works well and produces higher accuracy
than previous works. The maximal deviations are less than 0.04∘, which
are 0.33 mm at a distance of 500 mm. Accuracy tests on hard-foam
blocks with a self-developed table-top robot and the presented RCS show
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maximal deviations of ±0.8 mm, which is comparable to accuracies of
stationary robots. With the presented intraoperative calibration method,
the center of instrument tips used for HHRD can be calibrated with an
RMS deviation of 0.18 mm, which is more accurate than pivoting.

An intraoperative, generic and image-free planning and execution applica-
tion, which is applicable to arbitrary orthopedic interventions, improves
many disadvantages of existing applications that are based on dedicated
workflows. Since the generic nature of the presented approach is closer to
conventional orthopedic surgeries, the presented approach can simplify
the transition from conventional to computer-assisted surgery. Although
this environment is presented in the field of orthopedics, it can be adapted
to neurological, oral and maxillofacial surgery.
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1.1 Motivation

Despite extensive research and miscellaneous innovations in the field of
orthopedic surgery, the basic surgical procedure is still the same as at
the end of the last century. Since bones adapt themselves to the new
situation, the surgical accuracy is less relevant. Many surgeons consider
the outcomes of conventional techniques generally successful [1]. The
basic procedure can be split into three phases:

1. The diagnosis and planning

2. The surgery

3. The evaluation and aftercare

In conventional orthopedic surgery, the diagnosis, the planning and the
evaluation are based on X-ray images and the surgery is carried out
without computer assistance. Since CT scans increase the radioactive
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exposure of the patient, they are only used in more complex scenarios
(fractures, revisions, tumors). The surgeon transfers the X-ray-based plan
onto the patient using conventional tools such as rulers for measurement
and saws for resection.

Computer-assisted orthopedic surgery (CAOS) utilizes the advantages
of computers to increase the accuracy and the reproducibility of inter-
ventions, which in turn should further improve the outcome. Computer
assistance is given in all three phases of a surgical treatment. The
planning is often based on computer tomography (CT) or magnetic
resonance (MR) images, the surgery is performed using robots and spe-
cial evaluation software allows comparing the actual outcome with the
planned intervention.

Most CAOS applications are dedicated to one or few surgical interventions,
which entails a predefined workflow. In case of a robotic execution, a
detailed plan is required, which results in a preoperative planning based
on CT or MRT images. Normally, the plan is visualized on a monitor
close to the situs. The level of assistance during the surgery depends on
the application and can be passive, semi-active or active.

Although such systems have been available for decades and promise
increased accuracy and improved patient outcome, the majority of in-
terventions is still performed in a conventional manual way without
computer assistance [2]. There are several possible reasons why clinics
and surgeons are critical in regard to such systems:

∙ The acquisition and maintenance of these systems entail consider-
able economic costs.

∙ Surgeons and nurses are required to carry out additional tasks not
directly related to the medical intervention (robot setup, parame-
terization, technical details, etc.).

∙ The time consumption for trainings increases since surgeon and
nurse perform a variety of different interventions whereas most
applications are dedicated to one.

∙ Increased radioactive exposure due to additional CT that is required
for a detailed plan.
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∙ A predefined workflow restricts the surgeon in his reaction to un-
foreseen anatomical conditions.

∙ Missing possibility to adapt the plan after its confirmation could
force the surgeon to abort the intervention.

∙ Surgeon is forced to continuously change his perspective between
situs and monitor due to missing in-situ visualization of the plan.

∙ Long-term improvement in operative outcome compared to conven-
tional approaches is not proven.

1.2 Goal

The improvement of these shortcomings is a key challenge for CAOS.
The goal of this work is to create a CAOS environment representing a
paradigm shift in the operative procedure. Instead of optimizing the
environment to one specific intervention by dictating a predefined work-
flow, the presented environment allows the surgeon to plan arbitrary
interventions using concepts known from computer-aided design (CAD)
systems. Preoperative imaging becomes obsolete since the surgeon digi-
tizes required objects directly in situ using a tracked pointing device. A
touch screen allows the surgeon to assemble more complex objects from
the digitized ones. The plan is visualized on the touch screen as well as
superimposed on the situs using optical see-through glasses (OSTG).

Subsequently, the plan is carried out using a milling device or a novel
handheld robotic device (HHRD) with three degrees of freedom (DoF).
The former is already available in many operating rooms (OR) and the
latter can be easily integrated since it is similar to a milling device.
An HHRD combines the advantages of a robot with the flexibility of
a handheld device and guarantees an accurate and safe intervention.
Additionally, it is not constrained in motion and orientation as a stationary
robot since it makes use of the dexterity of the surgeon. Surgeons should
be easier to convince to use such a tool since they are already trained in
using milling devices. These tools are also more cost effective and require
less space in the OR than a stationary robot.
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A robot control system (RCS) ensures a safe execution of the plan. In
case of the HHRD, the system controls the end effector’s position in such
a way that it evades planned constraints as long as the kinematics allow
it. When its maximal deflection is reached the device’s power is turned
off. Since a milling device has no joints, only its power is controlled.

The described surgical environment and procedure is more similar to
conventional interventions than the classical robotic surgery. Therefore,
this approach should help surgeons with the transition from conventional
interventions to a computer-assisted one. Although this environment is
presented in the field of orthopedics, it can be adapted to neurological,
oral and maxillofacial surgery.

1.3 Challenges

The major challenges to achieve the previously described goals of an
intraoperative and generic planning software for arbitrary orthopedic
intervention using HHRDs are:

∙ Identification of the required functionality for a generic planning
software by analyzing orthopedic interventions. Putzer et al. [3]
analyzed orthopedic interventions and found out that all interven-
tions can be assembled by a series of individual and distinct steps.
These surgical steps include the creation and the execution of the
plan. It has to be investigated if and in which way these surgical
steps can be further broken down into technical steps.

∙ Development of new and intuitive interaction paradigms adapted
to the surgical procedure, since those used in CAD applications
(e.g. (3D) mouse) might not be applicable in the OR. This includes
the digitization of objects using a navigated pointing device as
well as the object interaction on a touch screen. The fact that the
plan is not based on images further stresses the importance of an
efficient interaction.
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∙ Implementing an interface for additional input devices such as an
ultrasound (US) probe or a 3D scanner since the digitization of
larger parts of the patient’s bone can be a time-consuming task.
Such devices often run on an individual workstation, which requires
a solution based on a network communication protocol.

∙ Offering just the right amount of information and functionality
to the surgeon to prevent distraction by the multitude of objects
and algorithms available in a generic planning environment. Thus,
the information and functionality must be filtered according to the
current state of the planning procedure.

∙ Development of an in-situ visualization allowing the surgeon to
directly plan on the patient’s bone. For an accurate overlay of plan
and reality the OSTG need to be calibrated.

∙ Identification of an appropriate interface between planning and
execution software. Orthopedic surgery environments including a
robotic execution normally generate closed milling volumes based
on a preoperative plan. Since the presented environment generates
all data intraoperatively, the planning of closed milling volumes
is impractical.

∙ Development of a robust RCS optimized for handheld surgical
instruments such as a milling device or an HHRD. Compared to
classical robotic control systems, the difference is that the user
plays a major role since he holds and moves the device.

∙ Design of an autoclavable HHRD with dimensions comparable to
standard milling devices. Additionally, a robust instrument tracking
plays a major role in improving the accuracy of the final result.

∙ Development of a flexible intraoperative calibration technique for
surgical instruments. Different tool tips can be intraoperatively
inserted into a milling device as well as an HHRD. Additionally, the
position of these tips can also be adjusted. Therefore, a calibration
by the manufacturer is not feasible. The fact that the number of
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possible tips and instrument combinations is too large to provide
dedicated calibration jigs further emphasizes the importance of
such a flexible intraoperative calibration technique.

1.4 Contribution and Outline

A background and review of literature of CAOS applications and compo-
nents illustrates the contrast between the presented and previous works
(see Chapter 2). From the described goals and challenges the following
contributions are derived.

An intraoperative and generic planning application not based on pre- or
intraoperative imaging and applicable to any orthopedic intervention is
described in Chapter 3. CAD-concepts known from preoperative planning
and commercial CAD-systems are brought into the operating room. As
mentioned in the previous section, orthopedic interventions are assembled
by a series of surgical steps. These surgical steps are transformed into
technical functions. New and flexible interaction paradigms including
touch and pointer interaction and other additional devices are required,
since traditional input devices such as a computer mouse cannot be used
inside the OR. Besides the touch screen visualization, an augmented in-
situ view based on OSTG helps the surgeon to see the planned intervention
directly on the patient.

In order to guarantee an accurate overlay of the augmentation, the OSTG
have to be calibrated (see Chapter 4). The presented calibration is split
into two parts: the system calibration and the user adaptation. Whereas
the first part has to be performed once, the second part is a continuous
task. This work concentrates on the first part. The system calibration is
performed without using a parametric model, which means that every
single display pixel is calibrated individually. For this purpose the
calibration process is based on cameras and is completely automated.

Since the presented environment shall be as flexible as possible, a generic
approach is developed allowing to use additional input devices (see
Chapter 5). For example, an ultrasound probe or a 3D scanner running
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on a separate workstation and streaming the bone’s surface to the planning
software. This was realized by implementing an approach based on a
network protocol.

An intraoperative calibration method for surgical instruments (e.g. milling
device, saw) and HHRDs is described (see Chapter 6). A camera-based
method reconstructs the surface of the device’s tip relative to the de-
vice’s coordinate system. Subsequently, appropriate geometries can be
matched into the surface (e.g. a sphere) that will be used for planning
and execution. In contrast to other intraoperative calibration methods,
the proposed technique is able to calibrate arbitrary objects as long as
they do not contain cavities.

An RCS for HHRDs with multiple degrees of freedom is presented (see
Chapter 7). This system protects previously defined regions by evading
them. The milling task is more intuitive than milling with a normal
milling device, since the end effector position is corrected automatically
by the control system. This system can process arbitrarily shaped
constraints in the form of a surface rather than a closed volume or
a path, which distinguishes this approach from previous works. Different
control strategies, algorithms and modes tested on different robots and
devices (HHRD, table-top robot, milling device) are presented. Although
different robots are used, this work concentrates on the RCS and its
algorithms rather than the robot itself.

An overall evaluation shows the final results when all components work
together (see Chapter 8). Different interventions are planned and exe-
cuted with different robots. The augmented in-situ view is shown and
illustrates its effectiveness. An expert review states the importance and
the potentials of this new system.
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The word Orthopedics was originally introduced by Nicholas Andry as
the correction and prevention of deformities in children [4]. Nowadays,
it is used with a much broader meaning as treatment of illnesses and
injuries affecting the musculoskeletal system. This treatment includes
surgical and nonsurgical approaches. Surgical interventions can be split
into three phases:

1. A preoperative phase in which the image acquisition, the diagnosis
and the planning of the intervention is performed.

2. An intraoperative phase in which the intervention is executed.
3. A postoperative phase in which the aftercare and evaluation is

carried out.

In the preoperative phase the surgeon performs a diagnosis, determines
an appropriate strategy and plans the intervention. In most cases, this is
based on 2D X-ray images and executed manually or with the assistance
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(a) Diagnosis (b) Planning (c) Evaluation (d) Evaluation

Figure 2.1.: X-ray images illustrating the procedure of a surgical intervention (medial
compartment osteoarthritis). Two evaluation steps are shown, the first
after two weeks and the second after 2.5 years. [5]1

An osteotomy performed in such a way can last between two hours
and one day. It is clear that the surgeon cannot perfectly execute the
preoperative plan. Due to this, the quality of the result strongly depends

1 Published in [5] by Takeuchi et al. and licensed under Creative Commons
Attribution License (CC BY) (http://creativecommons.org/licenses/by/2.0/).
Added planning data in (b).
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of computers (see Figure 2.1a and 2.1b). The plan consists of lengths
and angles given with respect to characteristic landmarks visible in the
X-ray image and on the patient’s anatomy. The scale of the X-ray is
transferred to the patient by an additional scaling object. Normally, the
third dimension is only implicitly considered, at best by a second X-ray
image being perpendicular to the first one. Intraoperatively, the surgeon
transfers the most important landmarks, lengths and angles onto the
patient and performs the intervention according to these measurements.



2.1. Computer-Assisted Orthopedic Surgery

on the experience of the surgeon. At certain intervals, the surgery is
evaluated (see Figure 2.1c for an X-ray image taken directly after the
surgery and Figure 2.1d for one after 2.5 years).

After this brief introduction of orthopedic surgery, the following section
addresses computer-assisted orthopedic surgery and describes how exist-
ing works in this field can be classified. Subsequently, the planning and
the execution system of existing works are explained in more detail (see
Chapter 2.2 and 2.3). The visualization of the plan plays a major role in
CAOS. Chapter 2.4 describes an augmented in-situ view complementing
the standard monitor-based visualization. In Chapter 2.5, different meth-
ods to intraoperatively calibrate surgical instruments are presented. Due
to numerous interconnected systems inside the OR, different communica-
tion protocols and their advantages are described in Chapter 2.6. Finally,
a conclusion summarizes the advantages and disadvantages of CAOS.

2.1 Computer-Assisted
Orthopedic Surgery

In computer-assisted orthopedic surgery, the three previously described
phases still remain. However, many steps are executed with the assistance
of a computer, some are even completed automatically by a robotic system.
Nowadays, there is a wide variety of CAOS systems and each of them
has different requirements. Since the shape of the bone is rigid, images
can be acquired pre- and intraoperatively. Different anatomies (hip,
knee, spine, etc.) need different planning procedures and different sets of
surgical instruments. All these considerations influence the final design
of a CAOS system. [6]

In order to give an overview of works about CAOS, the classification of
Picard et al. [6] is introduced. They define a clinical classification based
on two characteristics:

1. The activeness and autonomy of the executing component (active
robots, semi-active robots, passive systems)

11
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2. The imaging requirement (preoperative image-based, intraoperative
image-based, image-free)

This classification is extended by a third characteristic: the generality
and flexibility of the surgical workflow. A CAOS application is considered
general and flexible if it is applicable to several different interventions
and if one of the following criteria is fulfilled:

1. A fully flexible surgical workflow: intraoperatively, planning steps
and their execution can be interchanged, e.g. planning of an os-
teotomy, performing the cut, planning drill holes, drilling.

2. Preoperative plan can be adapted intraoperatively.

Otherwise, it is considered to be an application with predefined work-
flow. In conventional interventions it is standard practice to change
between planning and execution. In CAOS systems it heavily depends
on the implementation.

Predefined workflows simplify the intervention and decrease the operation
time. However, they mostly limit the ability to modify the plan once it
is created. This is especially important in the following cases:

∙ intraoperative detection of anatomical structures not visible on
preoperative scans

∙ deformation of the bone during the intervention (e.g. by splintering
of the bone)

If these complications occur and the plan is unusable, the procedure has
to be aborted or performed in a conventional approach. Hence, it is
important to have the ability to modify the plan intraoperatively.

Table 2.1 shows works in the field of CAOS categorized according to
the three described characteristics. The activeness and the imaging
requirement are shown on the two axes of the tables whereas the generality
is used to categorize them in two different tables. Different presented
works and applications might fit into several of these combinations. The
majority of works use preoperative image-based planning. Moreover,

12



2.2. Planning Systems

Preoperative
Image-based

Intraoperative
Image-based Image-free

Active [7]–[12] - -
Semi-
Active [8], [13]–[17] - [18]

Passive [19], [20] [21] [22], [23]
(a) Works with predefined workflow

Preoperative
Image-based

Intraoperative
Image-based Image-free

Active - [24] -
Semi-
Active - [24] -

Passive [25] [24] [25]
(b) Works with generic workflow

Table 2.1.: Classification of CAOS systems according to Picard et al. [6] with cate-
gorized works from the review of literature.

2.2 Planning Systems

Over the years, computer-aided planning in CAOS has been used by
an increasing number of surgeons. The planning procedure comprises
the image acquisition, the diagnostics and the actual planning. Besides
the planning it also allows the simulation of several factors. Handels et
al., for example, introduced a virtual planning tool for hip operations in
orthopedic surgeries, where the influence of different operation scenarios
could be simulated [26].
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Computer-aided planning procedures can be categorized by two criteria:
the image requirements, and the generality of the plan and the planning
process. The majority of works perform the planning based on CT or MR
images, which increases the accuracy and level of detail. On the downside,
it has several drawbacks such as higher costs and increased radiation
exposure for the patient. Moreover, certain anatomical structures (e.g.
cartilage) do not appear well on CT images [25]. Since intraoperative
changes are not visible on preoperative CT scans, [21] uses intraoperative
fluoroscopy imaging. However, the drawback of increased radiation
exposure still remains. Furthermore, the level of detail of the plan
decreases due to smaller scanners in the OR.

In order to overcome these disadvantages, there are a few works perform-
ing an image-free planning. Image-free planning is always performed
intraoperatively, since the surgeon needs direct access to the bone. Nor-
mally, it also involves a navigation system in order to record landmarks
and keep track of the bone position. The surgeon uses a pointing device
for digitizing the bone surfaces and landmarks. Anatomical structures,
such as the center of the femur’s head, can be measured by kinematic
movements. The disadvantage is that the surgeon cannot verify the
intraoperative plan with a more detailed image set [27]. Picard et al. [6]
states that image-free planning reduces the costs and increases the speed
of the procedures but also directly depends on the quality of the col-
lected data.

Most works use a planning system adapted to one or few specific interven-
tions. These dedicated planning applications guide the user through the
procedure according to a rather rigid workflow, which makes individual
modifications difficult to accomplish. A generic planning application
allows the surgeon to plan any orthopedic surgery without a predefined
workflow. The following sections further describe different planning
approaches classified by the generality and the image requirements.
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Figure 2.2.: ORTHODOC planning application [28].2

2.2.1 Dedicated Planning

Dedicated planning, adapted to one or few specific interventions, allows
an optimized planning workflow. Hereby, the surgeon is guided through
the individual steps, which decreases the time consumption. However,
individual modifications of the plan not considered in the workflow are
difficult to establish. Moreover, the clinical staff has to be trained in
several applications.

Image-based

Most works in this category base their planning on a CT scan of the
patient. The surgeon segments the CT image and plans the implant
position and the resection of parts of the bone. For example, the OR-
THODOC (Think Surgical, USA) preoperative planning application that
2 Published in [28] by Yamamura et al. and licensed under Creative Commons

Attribution License (CC BY) (http://creativecommons.org/licenses/by/3.0/)
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is used in conjunction with ROBODOC allows the surgeon to choose,
translate and rotate an implant directly inside the CT image (see Fig-
ure 2.2). Additionally, markers for the intraoperative registration have
to be placed.

Subsequently, this plan is exported for the usage during the intervention.
The format of this plan depends on the instruments and the robotic
system being used. Song et al. [11] present a bone-attached surgical robot
for joint arthrosplasty, which performs the milling process automatically.
In their case, the planning application calculates the milling trajectory,
which is then sent to the robot. As opposed to this, Kneissler et al. [15]
use a power-controlled handheld milling tool. Since the surgeon holds
and moves the tool, a precalculated trajectory is not applicable. Instead,
the plan contains the regions that have to be removed and the ones not
to be harmed. Therefore, the robotic system imports the plan in form
of volumetric regions. Both works have in common that a preoperative
CT-based planning is performed.

In contrast, Gottschling et al. [29] present an intraoperative, fluoroscopy-
based planning system for complex osteotomies of the proximal femur.
During the intervention, two fluoroscopic images are recorded to recon-
struct a simple femur model. This allows the surgeon to simulate and
determine the osteotomy parameters. Besides these images, no other
imaging is needed. Compared to conventional approaches, there is an
increased overhead but the surgery is performed with higher accuracy
and lower radiation exposure.

Image-free

An image-free planning application requires a navigation system. In most
cases, an optical navigation system is used. A tracking device is rigidly
attached to the patient’s bone(s) and a navigated pointing device can
be used to digitize landmarks. Moreover, anatomical structures can be
recorded by moving the patient, e.g. rotating the leg in order to find
the center of the acetabulum. Such a system is used by Lonner [18]. He
presents a system for unicompartmental knee arthroplasty. After setting
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up the navigation system, the hip center is calculated by rotating the
patient’s leg. Then, the axes of femur and tibia are digitized using a
pointing device (see Figure 2.3a). Subsequently, the surgeon flexes the
patient’s knee through a full range of motion to determine the rotational
axis of the knee (see Figure 2.3b). Finally, the surfaces of the femoral
condyle and tibial hemiplateau are digitized using the pointing device
(see Figure 2.3c and 2.3d). With this information, the system calculates
a virtual model of the knee as well as the implant position.

2.2.2 Generic Planning

A generic planning application allows the surgeon to plan any orthopedic
surgery without a predefined workflow. Such a planning application
has to contain the functionality to perform any kind of orthopedic in-
tervention. Putzer et al. [3] analyzed 30 randomly selected orthopedic
interventions and found out that the planning workflow of these inter-
ventions is assembled by 14 distinct work steps. They further verified
this finding on 243 orthopedic interventions described in Campbell’s
Operative Orthopedics atlas [30]. Therefore, a system similar to a CAD
application containing this functionality should be able to perform any
kind of orthopedic intervention.

Image-based

Brandt et al. [24] present an intraoperative planning application with
robotic execution. The planning is based on at least two X-ray images
taken from two different directions. The surgeon defines simple geometries
such as drill holes and wedges. Implants can be imported and placed
interactively. Although this planning application is generic, its usage is
limited due to a restricted set of functionality.

A more advanced application is KasOp as presented bei Münchenberg [31].
KasOp is a preoperative planning system based on CT images allowing
the surgeon to create plans consisting of different primitives such as points,
lines, polygons and trajectories. With this set of primitives it should be

17



Chapter 2. Background and State of the Art

(a) Recording of landmarks using a
pointing device

(b) Recording of the femur’s kine-
matic axis

(c) Femur surface digitization (d) Tibia surface digitization

Figure 2.3.: Image-free planning process using navigated pointing device as well as
kinematic movements to record anatomical structures [18].3

3 Published in [18] by Lonner and licensed under Creative Commons
Attribution-NonCommercial-No Derivatives License (CC BY NC ND)
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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possible to perform arbitrary orthopedic interventions despite the fact
that Münchenberg originally presented this work for cranio-maxillofacial
applications. In order to use a robot for the execution, the robot’s
trajectory has to be computed. Intraoperatively, this trajectory cannot
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be adapted anymore. Wong et al. [19] present a planning system similar
to KasOp. The difference is that this system is not cooperating with a
robot but rather guides the surgeon.

Image-free

Sati et al. [25] present an in-situ guidance system originally designed for
anterior cruciate ligament graft placement but also applicable to a variety
of other surgical procedures. The system utilizes an optical navigation
system with trackers mounted on the patient’s bone. Landmarks and
anatomical structures can be digitized using a pointing device (palpation
hook), similar to the one in Figure 2.3a. The bone surface is calculated
using the digitized points. The bone tunnels are defined by two points
on the tunnel’s axis. Since this work does not use a robotic device but
rather represents a passive navigation system, the radius of the tunnel is
not required. The surgeon simply aligns the direction of the drill with
the one of the tunnel. The absence of a robotic system also allows the
surgeon to switch freely between planning and execution.

2.3 Execution Systems and Robots

At the beginning of CAOS, research was mainly focused on active and
passive execution systems. Whereas active systems promised high accura-
cies, passive systems were characterized by their simplicity. Active robots
automatically perform certain surgical procedures, such as milling or
drilling [6]. Such robots require image-based planning and intraoperative
registration to bring the plan into relation with the anatomy. In a passive
system, the surgeon is guided and keeps full control over the system (e.g.
surgical navigation system or a cutting guide).

Over the time, active systems became less popular due to the missing
control over the robot. Instead, the focus of attention turned towards semi-
active systems. In a semi-active system, the robot shares the control with
the surgeon. Instead of the robot, the surgeon moves the end effector.
The robot only reacts in cases when the patient could be harmed or
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the surgeon is not following the plan. The following sections further
explain these three types of execution systems, their characteristics and
their differences.

2.3.1 Passive Systems

According to Picard et al. [6], passive systems are better accepted than
active robotic systems, since they are safer and easier to adopt. There
are three types of passive systems: surgical navigation, patient-specific
instruments and robotic guides. Surgical navigation guides the surgeon
by visualizing the pose of the instrument and the planned geometry,
e.g. the drill pose and the direction of the drill hole. Patient-specific
instruments as well as robotic guides implement the concept of cutting
and drilling blocks that are adapted to the patient. Whereas patient-
specific instruments are adapted to the anatomy of one patient, a robotic
guide is a generic guide attached to the patient’s bone that can hold
different positions.

Patient-Specific Instruments

Patient-specific instruments are custom-made cutting or drilling guides
adapted to the patient’s bone and the according intervention (see Fig-
ure 2.4a). In order to calculate the fitting shape, preoperative CT or
MRI scans are used. [32]

Scholes et al. [33] state that patient specific instruments for total knee
arthroplasty do not match the preoperative plan assessed by intraopera-
tive computer-assisted navigation.

Robotic Guides

Plaskos et al. [22] present a bone-mounted robot called Praxiteles (see
Figure 2.4b). This robot positions a cutting or milling guide in accordance
with the planned planes on the femur. The surgeon performs the resection
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(a) Printed patient-specific instru-
ment [34]4

(b) Praxiteles, bone-
mounted robotic cutting
guide [22]5

Figure 2.4.: Two examples of patient-specific templating approaches.

Surgical Navigation

The most common surgical navigation systems are based on optical track-
ing systems. For this purpose, three line or two area scan cameras are
used to track infrared or retroreflective LEDs as well as black and white

4 Published in [34] by Helmy et al. and licensed under Creative Commons
Attribution License (CC BY) (http://creativecommons.org/licenses/by-nc-nd/4.0/)

5 Published in [22] by Plaskos et al. and licensed by John Wiley & Sons, Inc.
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under guidance. The robot has two motorized degrees of freedom with
the motor axes arranged in parallel. The surgeon defines the cutting
planes intraoperatively by using the navigation system. Koulalis et
al. [23] compare conventional cutting guides with the automated cutting
guide called iBlock, which is based on Praxiteles. They state that using
automated cutting guides resulted in more efficient and accurate cuts.
The first clinically available drilling guide for pedicle screw insertion was
the Renaissance Guidance System (Mazor Robotics, Israel) [35]. This
guidance system is based on a hexapod platform and places the screws
with an accuracy in the range of 1 mm.

http://mazorrobotics.com


Chapter 2. Background and State of the Art

markers. Figure 2.5a shows an FP6000 navigation camera (Stryker, USA)
utilizing three line scan cameras. The position of a single LED can be
determined with a standard deviation of 0.07 mm [36]. Figure 2.5b shows
a pointing and a tracker device with active LEDs. Electro-magnetic navi-
gation systems represent an alternative to optical system. However, they
are not often used since surgical instruments, the robot and the implants
contain or consist of metal and therefore interfere with the tracking.

Sati et al. [25] use a navigated drill or drill guide to accomplish the
planned tunnels needed for the anterior cruciate ligament graft placement.
The surgeon sees the current position and orientation of the planned
tunnel and the drill visualized on a display. As soon as they coincide,
the surgeon starts the drilling process. Thus, the drill is not directly
controlled but only guided. Haider et al. [20] introduce a similar system
in which a navigated saw is used for freehand bone cutting for minimally
invasive total knee arthroplasty surgery. Their results show a 400% better
alignment than conventional jigs. Figure 2.5c shows a similar system
using a navigated saw.

Wang et al. [21] introduce a CT-free intraoperative planning and naviga-
tion system for high tibial opening wedge osteotomy aiming to support
all common osteotomy techniques around the knee joint. After the in-
traoperative measurement and planning, the osteotomy is executed with
a navigated saw and chisel. Wong et al. [19] describe a generic way of
integrating CAD planning data into computer-assisted orthopedic surgery.
Similar to the previous approaches, a navigated saw is used to perform
the planned cuts.

Normally, navigation systems are dedicated and therefore optimized for
one specific surgical intervention. For example, the eNact knee navigation
system (Stryker, USA). The setup procedure contains the assembly of the
navigation camera, the initialization of the trackers and the workspace
optimization of the navigation camera. The surgical procedure starts
by digitizing the predefined anatomical landmarks. Then, the system
calculates an automatic plan. After the surgeon confirms the calculated
plan, he can execute the cuts fitting to the implant. In case that landmarks
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(a) Stryker FP6000 naviga-
tion camera

(b) Stryker pointing and
tracker devices used
in conjunction with
the FP6000

(c) Guided Saw based on
another navigation sys-
tem [37]6

Figure 2.5.: Navigation system consisting of camera, pointing device, tracker and
execution device (saw).

2.3.2 Active Robots

Active robots can execute surgical procedures automatically and au-
tonomously. A registration is required bringing the anatomy into relation
with the plan. Since the final result depends on the quality of the plan
and, therefore, on its level of detail, the planning is based on pre- or
intraoperative images. Table 2.1 shows that almost all systems using
active robots are based on preoperative images. There is only one system
that is primarily based on intraoperative images (see [24]).

6 Published in [37] by Docquier et al. and licensed under Creative Commons
Attribution License (CC BY) (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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are digitized inaccurately, thus causing wrong cuts, the surgeon might not
detect this until the cuts are already executed. Normally, in such a case,
the only solution is to perform a conventional manual intervention.
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During the surgical procedure it is essential to know the relation between
the coordinate systems of the bone and the robot. For this purpose, an
optical navigation system can be used. In the absence of such a system,
the bone and the robot are normally rigidly fixed to the operating table.
A third approach is to mount the robot directly onto the patient’s bone.

Stationary

A stationary robot is a robot with a base that is fixed in position relative
to the floor during the intervention. One of the first clinically applied
automatic robotic systems was ROBODOC (Think Surgical, USA). The
preoperative planning is performed on a computer workstation called
ORTHODOC (see Figure 2.2). Intraoperatively, the plan is executed
using a robotic arm with 5-DoF and a high speed milling device attached
to its end effector [7]. Another early and similar approach that was
approved as clinical product was CASPAR (Maquet, Germany) [12].

Brandt et al. [38] present a compact robot for orthopedic surgery based
on a hexapod platform and intraoperative X-ray imaging. The surgeon
plans the trajectory intraoperatively on the X-ray image and the robot
subsequently executes the plan.

According to Jacofsky and Allen [27] the ROBODOC system has several
weaknesses. Intraoperatively, modifications of the preoperative plan are
only difficult to establish and there is no option to define additional
bone resections. Once the milling process is started, the surgeon can not
intervene the milling process. In case the system detects an error, the
robot stops and only continues after a series of steps that brings it into
a safe state. Clinical reports show that in many cases (approx. 10 %)
complications occurred that forced the surgeons to abort the interventions.
They state the following reasons:

∙ loosening of fixed registration pins

∙ inability to re-register the patient

∙ more than 30 minutes to recover from an error

∙ soft tissue in danger
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Picard et al. [6] state that these first generation systems use relatively
large industrial-like robots that are inadequately adapted to the operating
room and the surgical procedures. Another drawback is that the bone has
to be fixed on the operating table during the procedure due to the lack
of a navigation system. Knappe et al. [9] present a position controlled
surgical robot based on a navigation system. The patient as well as the
robot-held instrument are navigated, which allows to move the patient
during the surgery and even during the milling procedure.

Bone-Attached

Wolf and Jaramaz [10] present the Mini Bone Attached Robotic System
(MBARS) that is used for bone cavity shaping in joint arthroplasty.
The presented system is image-based and was initially implemented for
patellofemoral arthroplasty surgery. They state that the system can be
changed to an image-free approach collecting all data intraoperatively.
The robot is placed on the bone and subsequently registered with the im-
age data and the preoperative plan. The milling is executed automatically.
Song et al. [11] present a bone-attached robot based on MBARS that
uses hybrid kinematics consisting of two parallel and one serial joint.

2.3.3 Semi-Active Robots

Whereas active robots perform surgical procedures completely automatic,
semi-active robots depend on the guidance of the surgeon. Instead
of controlling the position of the end effector, the robot follows the
movement of the surgeon as long as he follows the plan. In case the
surgeon’s movement differs from the plan, the robot tries to correct this
or stops. Basically, there are two kinds of architectures: stationary robots
placed on the ground and handheld robots held by the surgeon.
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Stationary and Haptic

Harris et al. [13] present the Acrobot system. The basic difference
compared to active robots is that the surgeon holds a force sensitive
joystick mounted next to the end effector. Using this joystick, the surgeon
controls three of four axes of the device. The fourth axis is controlled
automatically to select the optimum position for side-milling actions.
The robot responds to the surgeon’s forces on the joystick by moving the
cutter to remove allowed regions or with an opposing force in order to
prevent him from removing too much bone or damaging soft tissue. The
decision is made according to a preoperative image-based plan. Due to
the absence of a navigation system, the patient’s bone has to be rigidly
fixed during the procedure. In the literature, such a robotic device is also
referred to as haptic robot.

RIO, the Robotic arm Interactive Orthopedic system (Stryker, USA) is
a Food and Drug Administration approved haptic robot with 6-DoF (see
Figure 2.6a). Hagag et al. [17, p.222f] state that RIO is not designed
to replace the surgeon but to enhance his skills. RIO defines a strict
workflow requiring a big change compared to the conventional surgery.
The procedure starts with the configuration and calibration of the robot.
Then the robot is sterilely covered, the preoperative plan is uploaded and
the navigation system and the robot are synchronized. Subsequently, the
preoperative plan is matched onto the patient by digitizing predefined
landmarks on the patient. The implant position is checked again (this is
the last moment the plan can be adjusted without major changes) and
then the resection process starts. Moreover, RIO is only approved for a
few specific interventions.

Handheld

Handheld robotic devices are tools with an end effector such as burr or
saw blade that can be dynamically relocated using one or several joints
between the end effector and the handle (see Figure 2.6b).
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(a) Haptic semi-active robot with
6-DoF, RIO [39]7

(b) Handheld semi-active robot with
1-DoF, Navio precision freehand
sculptor [18]8

Figure 2.6.: Two examples of semi-active robots.

This type of robotic device differs in several points from haptic ones:

1. Whereas stationary robots have higher degrees of freedom, HHRDs
have only a limited range of motion but instead make use of the
dexterity of the surgeon and his degrees of freedom.

2. A haptic feedback cannot be given since the surgeon holds the tool
and the device has no rigid link to the ground.

3. Another difference also resulting from the missing link to the ground
is that a navigation system is required to find the relation between
the end effector and the patient.

7 Copyright by Stryker. Published in [39]
8 Copyright by Smith & Nephew. Published in [18]

27



Chapter 2. Background and State of the Art

First approaches in this field concentrated on navigated and controlled
milling devices. Although these devices are rigid, big parts of the control
algorithm are comparable to those of robots. Kneissler et al. [15] present
such a system used for spine surgery in which the milling speed of the
device is controlled depending on its position. The workspace of the
device is defined by the preoperative plan, which is based on a CT or
MRI scan. The surgeon holds and guides the milling device as usual. As
soon as the surgeon leaves the boundaries of the plan, the milling speed is
set to 0. They state that this approach results in accuracies comparable
to robot controlled executions. Additionally, they report high-frequency
speed changes in the border area of the target geometry. Every sudden
change caused a jerk at the hand of the operator, which complicates the
handling and produces ragged edges.

By using an HHRD with at least one joint, the milling speed and the
end effector’s position can be controlled. In case the end effector is
located outside the boundaries of the workspace, its position is corrected.
In case the maximal deflection of the HHRD is reached, the milling
speed is set to 0. This decreases the frequency of the speed changes
and improves the accuracy. Brisson et al. [14] introduce the precision
freehand sculptor that uses a retractable rotary blade to control which
part of the bone is removed. The surgeon simply glides the sculptor
over the bone surface and the tool removes the defined parts. It can
handle pre- and intraoperatively defined plans and utilizes an optical
navigation system for the navigation. However, their system does not
support a partial blade retraction. The Navio precision freehand sculptor
(Smith & Nephew, UK) represents a similar device: A milling device with
retractable milling tip that either controls the speed or the exposure of the
end effector depending on the proximity to the constraints. Lonner [18]
states that this HHRD is able to place implants in unicompartmental
knee arthroplasty as accurate as stationary robots and more accurate
than conventional techniques. A different approach is presented by Kane
et al. [16]. They introduce a handheld mobile robot for craniotomy that
can actuate on the bone surface by using two wheels.
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The surgeon places a device in 6-DoF and the milling surfaces are not
just planar but also contain cavities and edges. Therefore, controlling
the exposure of the end effector might be insufficient since it only moves
the end effector along one axis (1-DoF). Hence, there should be at
least 3-DoF in order to be able to evade perpendicular to the tool axis.
Riviere et al. [40] present Micron: a 3-DoF micromanipulator with a
6-DoF inertial sensor able to compensate the surgeon’s tremor. Becker et
al. [41] implemented different control modes for Micron. Besides others,
a “standoff-regulation” mode prevents from accidental unwanted contact
by repulsing the end effector within a defined range to the center of a
sphere. This does not prevent the end effector to enter the area but only
repulses it away from the center.

Control Systems for Semi-Active Robots

Although stationary and handheld robots seem similar, their control
system differs. Stationary cooperative robots are often force-controlled:
the surgeon applies a force to the handle of the end effector and the robot
reacts with a motion. On HHRDs, force-control is not implementable
since the surgeon holds the device and no force can be applied between the
HHRD and the surgeon’s hand. Therefore, control systems for HHRDs
are normally based on the hand motion of the surgeon and the position
of the device. Another elementary difference is the relation between the
end effector position and the hand: Whereas the end effector position
of stationary robots stays rigid relative to the surgeon’s hand, it varies
in HHRDs.

A high level collaborative control strategy, called virtual fixtures (VF),
provides assistance to the user by controlling the robot in such a way
that predefined regions or targets are either protected or approached.
The name virtual fixtures was originally published by Rosenberg [42]
and is inspired by mechanical fixtures that anisotropically limit the
motion of tools, e.g. a ruler. However, virtual fixtures are more flexible
according to positioning and modification. Virtual fixtures can be split
into two categories:
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∙ Regional VF restrict the pose of the device to predefined regions in
order to prevent the device from harming this region.

∙ Guidance VF assist the user in moving the device along a specific
path or towards a specific target.

Conventionally, these virtual fixtures (constraints) are evaluated by cal-
culating the proximity (or collision) between the VF and the robot’s end
effector. Subsequently, the robot motion is determined. Rosenberg states
that virtual fixtures reduce mental workload, execution time and errors.
An extensive survey of virtual fixtures and active constraints is given
in [43]. Virtual fixtures were already applied on many types of robots
in different fields. Rosenberg originally developed VF for teleoperation
tasks, therefore it is reasonable that VF were implemented on teleoper-
ated surgical robots such as ZEUS (Intuitive Surgical, USA) [44]. Xia
et al. [45] and Haidegger et al. [46] describe the skull base neurosurgery
project from John Hopkins University, which implements VF on a sta-
tionary cooperative milling robot. Another robotic system from John
Hopkins University implementing VF is the microsurgical steady-hand
eye robot [47]. Becker et al. [41] describe a handheld microsurgical robot
based on guidance VF.

2.4 Augmented Reality

Most CAOS systems use a visualization that is shown on a monitor next
to the situs. This monitor visualization forces the surgeon to switch his
gaze between the situs and the monitor while controlling the instrument
at the same time. This requires a good hand-eye coordination [48].
Thus, an augmented reality (AR) visualization is beneficial and could
run complementary to the monitor. The surgeon looks onto the situs
and sees the plan superimposed on the anatomy. Therefore, this kind of
visualization can be used for a fast and efficient verification of accuracy
and object placing.

Chen et al. present a surgical navigation system based on optical see-
through glasses and preoperative CT scans. After the registration of
the preoperative plan with the real scene, the surgeon is able to see
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the planning directly on the anatomy of the patient [49]. In a cadaver
experiment they show that their system is accurate enough to place a
sacroiliac joint screw into the pelvis. Wang et al. perform a pilot study
about a precision insertion of percutaneous sacroiliac screws based on
the system of Chen et al. [50].

Badiali et al. present a system based on video see-through glasses and
preoperative CT scans that allows the surgeons to simulate certain bone
alignments intraoperatively [51]. Elmi-Terander et al. prove in their
cadaver-study about thoracic pedicle screw placement that a surgical
navigation system based on AR (on the screen, without see-through)
and intraoperative imaging (C-arm) is superior to free-hand techniques
referring to the overall accuracy [52]. However, since the visualization is
shown on the monitor, the surgeon has to switch continuously his gaze
between the situs and the monitor.

2.4.1 Technologies

Nowadays, there are different devices that allow the use of augmented
reality in the OR. Besides see-through glasses, a projector or a monitor
with attached camera can be used. This work concentrates on see-through
glasses since they promise a better contrast than projectors and a higher
flexibility compared to the monitor. For the purpose of an augmented
in-situ view, the monitor would be placed between the situs and the
surgeon, thus, blocking the direct view onto the situs.

There are two types of see-through glasses used for AR:

∙ Optical see-through glasses (OSTG) that allow the surgeon a direct
view through the glasses with a superimposed augmentation.

∙ Video see-through glasses in which displays are placed in front of
the surgeon’s eyes showing the augmented image originating from
an attached camera.

Figure 2.7 shows the two kind of glasses. Both glasses have advantages
and disadvantages and a completely different augmentation process. In
video see-through glasses the real-world view is captured with one or
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two miniature video cameras mounted on the glasses (see Figure 2.7b).
The images of the cameras are displayed in the background whereas the
virtual objects are rendered in the front. The advantage of these glasses
is their ability to compensate the effects caused by the processing delay,
which can be done by delaying the camera images. Thus, camera images
and virtual objects are shown at the same time. But then the movement
of the user is inconsistent with the shown movement. A delay of more
than 100 ms makes it impossible to use such a system [53]. Furthermore,
since cameras record the real world, there are digitization errors caused
by low resolutions. The fact that the cameras can not be mounted at the
eyes’ positions, introduces an error in the viewpoint for the real-world
images. This causes a shift in the perceived scene for each eye that may
lead to perceptual anomalies [53].

Optical see-through glasses allow the view onto the surrounding world
through a semitransparent mirror (combiner) placed in front of the user’s
eye. This mirror also reflects the virtual objects directly into the view
of the user and therefore it combines real- and virtual-world view (see
Figure 2.7a). Since the combiner is semi-transparent, the background
always shines through the reflected image. Therefore, a complete superim-
position of the reality is impossible. Another disadvantage is the delay of
the virtual objects caused by the processing time needed for tracking and
rendering. Some milliseconds can already disturb the user [53]. However,
real objects are always shown in the correct place and this may be crucial
for CAOS systems. In CAOS systems a direct view of the situs must be
guaranteed. For this reason, most CAOS systems using AR are based
on OSTG.

2.4.2 Limitations

Despite its advantages, AR has to be used reasonably in orthopedic
surgery. Dixon et al. show in a user study that surgeons can be blinded
by enhanced navigation (AR) in such a way that certain anatomical
structures were overseen [55]. Therefore, it is important that the shown
objects in the see-through glasses are limited to only the most important
ones. Navab et al. [56] further state that an AR visualization is only
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Figure 2.7.: Different types of see-through glasses [54].
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needed in certain moments of an intervention. In others, it might stress
the surgeon and distract from important things. Therefore, an AR
visualization needs to be workflow dependent. During certain steps of
the workflow the visualization is on; for others, when it is not needed, it
is turned off. Besides these considerations, there are certain issues that
still limit the usage of AR in CAOS:

∙ current glasses are too big and heavy to wear
∙ the mobility is restricted since the glasses are either connected to a

PC or require an additional battery pack due to battery limitations
∙ fixed depth of focus optimized for the consumer field (≈3 m) does

not fit to the working distance in CAOS (≈0.8 m)
∙ restricted field of view
∙ not autoclavable

There are many research groups and companies currently working on
improving these issues. The conflict between depth of focus and working
distance is also known as vergeance-accomodation conflict and became a
major research focus in this field [57].

2.4.3 Calibration

Optical see-through glasses are usually shipped uncalibrated and have to
be calibrated before they can be used for applications requiring accurate
overlays. Since the display itself is not able to provide feedback for the
processing unit, the user is normally an inseparable part of the eye-display
system. For this reason, the majority of calibration techniques are based
on user interaction. Janin et al. [58] described the first technique to
calibrate OSTG by relying completely on user interaction. There are
several works that improved this way of calibration [59]–[65]. Currently,
the most commonly used one was presented by Tuceryan et al. [62] and
is called SPAAM. All these works have in common that the user has to
align points, displayed on the OSTG, with defined points in the working
space. Since the system has several unknown parameters, the user has
to collect numerous point correspondences, which is a frustrating and
time-consuming task. Aside from that, it is necessary to have trained
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staff knowing the procedure. Nevertheless, the main problem is that
wrong or inaccurate point correspondences have a direct influence on the
calibration result. McGarrity et al. [66] state that wrong user interaction
often results in errors in the range of centimeters.

Owen et al. [67] split the calibration process into two phases in order to
“limit human involvement in the calibration process”:

1. An automated calibration procedure to acquire all intrinsic param-
eters of the display system

2. An adaptation to the user’s eye by gathering point correspondences

In the first phase, the OSTG are mounted on a jig with a 5 megapixel
camera behind them. At the beginning, a Tsai camera calibration [68] is
performed. Then, the OSTG are moved in front of the cameras, the setup
is covered and a pattern with known fiducials is shown on the displays.
These steps are repeated five times from different positions in order
to triangulate the virtual position of the display pixels. In the second
phase, the display system is adapted to the eye position of the user by
gathering point correspondences. Whereas several point correspondences
were necessary in previous works, Owen et al. reduced them to exactly
one. For this purpose, the user has to align a virtual crosshair displayed
on the OSTG with a known world point.

Itoh and Klinker [69] also split the calibration procedure into an “offline”
and an “online” phase. The offline phase determines the parameters of
the rigid setup of the OSTG/camera system, whereas the online phase is
based on dynamic eye tracking. The calculated eye position is then used
to adapt the offline calibration. Moser et al. [70] state in their subjective
evaluation of semi-automatic OSTG calibration techniques that Itoh and
Klinker’s calibration procedure is more accurate and stable than the
commonly used SPAAM [62] calibration.

All approaches mentioned use a parametric model similar to Tsai’s pinhole
camera model [68]: six extrinsic and five intrinsic parameters together
with coefficients for modeling distortion effects are used to describe the
OSTG displays. This model is based on the assumption that the optical
axis of the system is perpendicular to the image plane and that the
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principal point equals the distortion center. As investigated by Lee and
Hua [71], the principal point normally differs from the distortion center
and, thus, makes this model inadequate. They developed a new model
that is able to handle this fact and were the first ones considering the
radial and tangential distortion up to the third order. However, not even
their model is able to map arbitrary distortions.

Itoh and Klinker [72] divide the OSTG calibration even further. The
optics of the OSTG distort the “direct view” of the real world and the
“augmented view” from the display in different ways. Therefore, they
suggest calibrating them simultaneously but separately. Their method is
camera-based and consists of an offline learning and an online adaptation
phase. Correspondences collected from different camera positions and
given calibration patterns are used to determine two mappings, one
between undistorted and distorted viewing rays and another one between
undistorted pixels and distorted viewing rays.

Parametric models have the advantage that they can be computed with
only a few point correspondences generated by a human in the loop. At
best, accurate calibration techniques should consider as many display
pixels as possible. Although Owen et al. [67] use an automatic calibration,
they use a parametric model that defines a parabolic surface. Their
measured data points are too noisy, which is why they fit a radially
symmetrical parabolic into these points. Gilson et al. [73] also describe a
system where point correspondences are generated automatically. They
are used to perform an advanced Tsai calibration, which results in the
definition of the OpenGL frustum that is used to render the scenes in
the display.

2.5 Intraoperative Calibration of
Surgical Instruments

Computer-assisted surgery (CAS) systems often utilize tracking systems
with tracked surgical instruments. These instruments can be simple
pointing tools as well as tracked burrs or saws (active instruments)
that are used for bone resections in orthopedic surgery. In this kind
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of intervention the pointing tool can be used to define resection areas,
which are removed by the tracked instrument. To ensure that the active
instrument only removes the defined regions, a calibration is required
that not only includes the pose of the tool tip but also its surface.

Brisson et al. [14] calibrate their navigated saw with an optical-tracking-
based procedure in which the blade is registered to its tracker by touching
previously measured registration pins. They state that “the largest
sources of modelling error in this experiment were calibration errors”.

Cao et al. [74] describe a calibration technique of surgical instruments
using a stereo camera. This camera is used as tracking system and
for the calibration. Their approach is basically a pivoting of a tracked
instrument on a tracked calibration plate. Pivoting means rotating the
tracked instrument while its tip is placed in a mold on the calibration plate
(see Figure 2.8a). Hence, the path of the tracked instrument lies on the
surface of a sphere. The transformations from the tracked instrument to
the world coordinate system are used to calculate the center of this sphere.
This procedure requires no additional calibration hardware besides the
calibration plate but it is not able to determine instrument shapes. De
Leon Cuevas et al. [75] present a similar calibration that is also based
on pivoting.

Pivoting has the drawback that it can only determine the rotation center
of instruments. Due to this limitation some manufacturers have dedicated
calibration jigs that allow a more accurate calibration. Many commercially
available image-guided surgery systems also provide universal trackers,
which can be attached to an arbitrary surgical instrument [76], [77]. This
means that in principle any instrument in the OR can be used as a
navigated tool by simply attaching a universal tracker. Moreover, most
of the active instruments have interchangeable attachments that allow
the use of different instrument tips such as drill bits, burrs and blades
(see Figure 2.8b).

Tracked instruments can either be shipped precalibrated by the manufac-
turer or they are calibrated pre- or intraoperatively in the OR. The first
case does not work reliably for instruments including interchangeable
instrument tips. The position of the tip is altered every time it is changed.
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(a) Pivoting calibration plate with different molds

(b) Interchangeable instrument tips

Figure 2.8.: Calibration plate as used for pivoting instrument tips and a small
selection of interchangeable instrument tips for a milling device.

This can even be the case when exchanging a tip with a tip of identical
construction due to production tolerances or wear and tear. Therefore,
the second approach is preferable if it can be ensured that a calibration
takes clearly less than a minute.

2.6 Communication between Devices
and Toolkits in the OR

Nowadays, a CAS OR is a network of many devices and software compo-
nents. From planning software over navigation control to robot execution
there are many components interacting with each other. These compo-
nents do not always run on the same system. For example, planning and
execution are often separated from each other since they have different
requirements. Whereas the planning software must run a visual front-end
adapted to the needs of the surgeon, the executing back-end has to run
on a real-time system. There are different protocols used in the OR but
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most of them are proprietary ones (e.g. VectorVision Link, BrainLab,
Germany, [78, p. 207ff]). Since these are designed for specific hardware
and software, the clinics are bound to the proprietary products of these
companies. In order to overcome this limitation and to create a more
modular OR for CAS, different standardized and open communication
protocols were developed (e.g. CORBA [79] or an interface based on the
OpenTracker library [80]). Tokuda et al. [81] state that they failed to be-
come standard protocols due to “overgeneralization, overabstraction and
limited portability” causing impractically long training periods. In order
to minimize this time consumption, a “simple and easy-to-implement
network protocol” was developed by Tokuda et al. [81]. The open image-
guided therapy link protocol is an open source network protocol originally
developed for IGT environments and is the de facto standard in the
medical research field. OpenIGTLink can be used for the communication
between software components and devices since it is based on TCP/IP.
It has proven its functionality in many different applications, such as
MRI-guided robotic prostate interventions for communication between
scanner, workstation and robot or neurosurgery for communication be-
tween a commercial navigation system and 3D Slicer [81]. A wide range of
toolkits such as 3D Slicer [82], IGSTK [83], MUSiiC [84], MeVisLab [85],
PLUS [86] and NifTK [87] already support this protocol.

Thus, this system allows connecting arbitrary components, which repre-
sents a flexible way to increase the functionality of a software. Zettinig
et al. [88] present a system for real-time visual servoing for interven-
tional navigation based on ultrasound. Their system relies heavily on
the OpenIGTLink protocol. On one workstation, 3D US images are
acquired using PLUS [86] and are then sent to a client workstation
running the ImFusion Suite (ImFusion, Germany). This suite is an “ex-
tendible GPU-based image processing framework for medical images”.
This system generates a volumetric representation from the incoming 2D
ultrasound images. This volumetric representation is then processed to
calculate the target position of the robot that is then sent to the robot
via OpenIGTLink.
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Another example is presented by Tauscher et al. [89] in which they use
OpenIGTLink to communicate between 3D Slicer and a KUKA robot
control workstation. Yet another good example is the combination of
PLUS and 3D Slicer [86], [90]. While PLUS is acquiring and processing
the data, 3D Slicer is used to visualize it.

2.7 Conclusion

This chapter presented a background and state of the art of computer-
assisted orthopedic surgery and its methods. System components and
technologies from the planning phase to the execution phase were shown
and explained in detail. This includes the planning, the visualization,
the intraoperative instrument calibration and the execution as well as
the communication between systems in the OR.

Although many CAOS systems have been available for the last ten to
twenty years, the majority of interventions is performed in a conventional
way. This implies that plans are based on 2D X-ray images and executed
manually without computer-assistance. The plan consists of lengths
and angles given with respect to characteristic landmarks visible in the
X-ray image and on the patient’s anatomy. In CAOS applications, this
basic procedure still remains, however, many steps are executed with the
assistance of a computer. Apart from the advantages such as the increase
of accuracy, these systems also include certain disadvantages such as high
acquisition costs and time-consuming training.

The majority of works in this field plan preoperatively and image-based
(CT or MRI), which results in a detailed plan. This in turn causes an
increased exposure to radiation and produces higher costs. Moreover,
certain anatomical structures (e.g. cartilage) and intraoperative changes
are not visible on the images. Intraoperative image-free planning rep-
resents an alternative approach. Here, all information is digitized from
measurements on the bone surface or from measurement of movements of
the bone. Intraoperative image-free planning reduces costs and increases
the speed of procedures. However, the quality of the accuracy directly
depends on the quality of the data acquisition.
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2.7. Conclusion

Active robots perform certain surgical procedures automatically. Such
a robot requires an image-based plan and intraoperative registration.
A semi-active robot shares the control with the surgeon and passive
systems simply guide the surgeon while the surgeon has the full control.
Whereas stationary robots result in higher accuracies, handheld robots are
integrated more easily into existing surgical procedures and environments.
The less degrees of freedom of handheld robots are compensated by the
dexterity of the surgeon.

Predefined workflows simplify the intervention and decrease the operation
time but they also limit the ability to modify the plan once it is created.
This might be important if anatomical structures are not visible on the
preoperative plan or if the bone is deformed during the intervention. Such
cases often invalidate the plan and, in the worst case, the intervention is
performed conventionally. However, most works concentrate on CAOS
systems with predefined workflow (image-based and image-free). There
are just a few works presenting a planning system with flexible workflow.
As shown in Table 2.1b, there is no system available with a generic and
image-free planning application utilizing a semi-active robotic system.

Optical see-through glasses enable an augmented in-situ view of the situs
that visualizes the plan directly on the patient’s bone. Examples and
technologies, showing the advantages of these systems, are described:
Instead of switching his view from the monitor to the situs, the surgeon
can concentrate on the situs during the execution of the plan. Differ-
ent calibration techniques are shown and the necessity of a pixel-wise
calibration is stressed.

A surgical instrument calibration is required since the tool tips of certain
instruments can be replaced. Dedicated calibration jigs are impracticable
due to the large number of possible tool tip/instrument combinations. For
this purpose, a flexible intraoperative calibration technique is necessary.

Different communication protocols utilized in the OR are listed and
described. It is shown that OpenIGTLink is the most used open-source
protocol in the OR. Therefore, an OpenIGTLink implementation allows
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using a variety of intelligent surgical instruments (e.g. an ultrasound
probe). Moreover, planning as well as navigation data can be streamed
to other applications.

The following chapters describe an intraoperative system for computer-
assisted surgery that can be used for arbitrary orthopedic surgeries.
An orthopedic CAD planning system forms the basis of the system.
Optical see-through glasses can be used for an augmented in-situ view
of the patient and the plan. Their calibration process is explained in
detail. A handheld robotic device allows the integration of a robotic
tool without time-consuming training. An intraoperative calibration
process for navigated instruments is presented. Additional instruments
can be added via OpenIGTLink. The overall system allows the surgeon
to perform the intervention with an accuracy that are comparable to
stationary robots.
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Nowadays, most CAOS applications are optimized and therefore limited
to only a few specific interventions. Their flexibility depends on several
factors, such as the image requirements and the way of execution (e.g.
guided or automatic). On the one hand, the optimization of the surgical
planning and execution procedure simplifies the individual intervention
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and decreases the operation time. On the other hand, every intervention
needs a different application, which requires additional training and leads
to increased costs.

OrthoCAD, a CAD system for orthopedic interventions, follows another
approach. Many orthopedic interventions are still carried out convention-
ally based on 2D X-ray images and without computer assistance. The
goal of OrthoCAD is to give the surgeon the opportunity to change from
this conventional procedure to a computer-assisted method with only
minimal changes in his workflow.

The overall workflow starts with the image acquisition that is required for
the diagnosis. After the diagnosis, the surgeon creates a preliminary plan
on the 2D X-ray image as in conventional interventions. Intraoperatively,
the surgeon repeats these planning steps in further detail directly on
the patient’s bone. Subsequently, the plan is executed. If necessary,
the surgeon can switch between planning and execution. This workflow
equals the conventional approach with the difference that the planning
is computer-assisted and the execution is guided. Additionally, together
with the robot control system (see Chapter 7), OrthoCAD offers the
execution with two different tools:

1. Power-controlled handheld navigated tools that are already available
in many ORs

2. Novel handheld robotic devices with movable end effector

The following two sections, Chapter 3.1 and 3.2, list OrthoCAD’s re-
quirements and give an overview of the system. Chapter 3.3 describes
the software architecture. The derivation of technical functions from
given surgical steps is explained in Chapter 3.4. Interaction and visu-
alization approaches suitable for the OR are presented in Chapter 3.5.
Subsequently, the features of OrthoCAD are described and illustrated in
Chapter 3.6 till 3.11. In order to evaluate the presented system, a femur
neck osteotomy is planned (see Chapter 3.13). Finally, the results of this
chapter are summarized in Chapter 3.14.
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3.1 Requirements
The following requirements were identified for OrthoCAD as an intraop-
erative CAD system for orthopedic surgeries:

1. Identification and implementation of surgical planning steps and
therefrom derived technical functions

2. The ability to switch on-the-fly between planning and execution

3. A data structure to synchronize planned constraints with the robot
control system

4. Flexible interaction and visualization paradigms adapted to ortho-
pedic interventions and the surgeon’s needs

5. Control of diverse hardware systems

a) Navigation system including trackers and pointing device as
input

b) Touch screen for visualization and interaction

c) Optical see-through glasses for in-situ visualization

6. Extensibility for new input methods such as ultrasound or 3D-
scanners

3.2 System Overview

OrthoCAD’s OR system is arranged in such a way that all inputs and
instruments are placed close to the surgeon and the situs. Figure 3.1
shows the overview of the operating room when using OrthoCAD. A
touch screen is placed next to the situs and can be positioned flexibly.
Different input instruments are available: an obligatory pointing device
and optional ones such as an ultrasound probe. If OrthoCAD is not only
used as planning and navigation system but also to execute the plan, a
milling or cutting device must be available. These devices can be simple
power-controlled or power- and position-controlled robotic devices. A
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Figure 3.1.: OrthoCAD components overview.

46

handheld as well as a stationary robot can be used to execute the plan,
however, this work concentrates on handheld robots (see Chapter 7). In
order to calibrate intraoperatively the tool tips of these devices, an optical
calibration device is available (see Chapter 6). Optionally, the surgeon
can wear optical see-through glasses for an augmented in-situ view (see
Chapter 4). The patient’s bones, the instruments and the OSTG are
tracked using an optical navigation system. The milling devices are
enabled by pressing a foot pedal.



3.3. Software Architecture

3.3 Software Architecture
The software implementation is based on open-source toolkits, particularly
the Medical Imaging Interaction Toolkit [91] and its dependencies. MITK
is a framework for interactive medical image processing and combines and
extends the features of the Insight Toolkit (ITK) [92] and the Visualization
Toolkit (VTK) [93]. Qt is used as a platform-independent application
framework. OpenIGTLink was integrated into the MITK framework (see
Chapter 5) and is used to extend the functionality of MITK by connecting
to other applications and hardware. The Armadillo C++ Library [94]
is used as linear algebra library. The robot control system uses the
Bullet Collision Detection and Physics Library as a basic framework for
the collision detection (see Chapter 7.3). The only proprietary libraries
used in OrthoCAD are the drivers necessary to connect to the Stryker
navigation system and milling device, and CUDA, which is used to
efficiently undistort the visualization of the OSTG (see Chapter 4.7).

3.4 From Surgical to Technical
Planning Steps

Putzer et al. [3] analyzed 30 randomly selected orthopedic interventions
and found out that the planning procedures of these interventions consist
of 14 distinct functions (e.g. defining a landmark or aligning a plane per-
pendicular to a certain axis). These functions are assembled in a different
order and amount depending on the procedure. They further verified
this finding on 243 orthopedic interventions from Campbell’s Operative
Orthopedics atlas [30]. The identified surgical planning steps are:

1. Define a landmark.
2. Define a plane passing through a cloud of digitized points.
3. Define a plane parallel to another one.
4. Define a plane perpendicular to a certain axis.
5. Define a line on a plane.
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6. Swing plane around an earlier defined line on plane.
7. Define a generic milling volume.
8. Define an osteotomy plane.
9. Define a drill hole.

10. Define areas, which should not be exceeded during the milling
process.

11. Define a surface deepening.
12. Convert osteotomy plane to dome-shaped cut.
13. Define milling volume from a 3D object for bone transplantation.
14. Perform free hand milling.

These steps enable the surgeon to perform any kind of orthopedic inter-
vention and are further divided into technical planning steps:

1. Define a primitive (landmark, point cloud, line segment, cylinder,
plane, wedge).

2. Apply algorithms, e.g. calculation of regression plane through point
cloud.

3. Assemble primitives to compound objects (complex cuts, osteotomy
planes, triangle meshes).

4. Place a primitive relative to another one (parallel, perpendicular,
projected, through).

5. Adjust the position and orientation of objects.
6. Show measurements (angle and distance) between objects.
7. Define objects as milling constraints.

Dome-shaping can be achieved by using the complex cut functionality.
The definition of a milling volume from a 3D object for bone transplan-
tation is not yet implemented. However, the milling volume could be
planned step by step using the previously described primitives.
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3.5 Interaction and Visualization
Any CAD system needs functionality to digitize primitives and assemble
them to more complex objects. In standard CAD systems, a keyboard
and a (3D) mouse are used as input devices. In contrast, they cannot
be used in OrthoCAD since they are not autoclavable and not easy to
drape. Therefore, a navigated pointing device and a touch screen digitize
primitives and construct compound objects, respectively. The surgeon
digitizes the primitives directly on the patient’s bone using the pointing
device. Then he selects them on the touch screen and assembles them to
new objects.

Additional to the pointing device and the touch screen, primitives can be
sent to OrthoCAD via OpenIGTLink (see Chapter 5). An OpenIGTLink
server running inside OrthoCAD allows receiving primitives sent by
external tools. This functionality was tested by receiving the bone
surface generated by an ultrasound scanner. Moreover, preoperatively
generated objects can be imported and registered.

Figure 3.2 shows the visualization on the touch screen. On the left, the
digitization menu contains the available primitives that can be digitized.
The selected primitive is added to the tip of the pointing device (see
Figure 3.3). The half circle shown inside the digitization menu is used to
switch between the planning and the execution mode. The status bar
shows information about the tracking devices and instruments such as
visibility or milling speed. Furthermore, the entries in the status bar are
clickable and can be used to call the context menu of the devices. The
main menu on the upper right corner contains the view menu and several
other entries. The most important ones are the following:

∙ import of preoperatively generated data objects
∙ export and import of the objects of the current plan
∙ visualization of all previously hidden objects in the current plan

Selecting an object on the touch screen opens the context menu as shown
exemplarily for a point in Figure 3.4a. The context menu contains options
concerning the current selection. Objects are added to the selection by
pressing the selection option followed by opening the context menu for
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Main Menu

Status Bar

Digitization
Menu

Figure 3.2.: OrthoCAD visualization and GUI. The digitization menu allows select-
ing the objects on the pointer tip (a landmark in the shown scene).
The status bar shows the tracker status of the tools. The main menu
is hidden since it is not used very often. The scene shows two point
clouds digitized on the femur and tibia around the knee joint and the
trackers attached to the two bones.

(a) Plane on pointer tip (b) Cylinder on pointer tip

Figure 3.3.: Different selection of objects in digitization menu.
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the next object. Subsequently, the selection contains both objects and
the context menu shows the options for the combination of both objects
(see Figure 3.4b). The context menu contains several levels from which
the current level and its children are shown (see Figure 3.4c).

The surgeon can interact with the virtual camera of the visualization
using two distinct methods:

1. Using touch gestures:

a) Rotation by one-finger pan, which only changes the camera
position (camera moves around the focal point)

b) Panning by two-finger pan, which changes the focal point and
the camera position (translational change of view)

c) Zooming by two-finger pinch/zoom gesture, which moves the
camera position closer to or further away from the focal point

2. Using the pointing device

In the latter case, the virtual camera is placed on the tip of the pointing
device. After finding the optimal position the surgeon confirms it using
the pointer button. On startup, the surgeon defines two virtual camera
settings of the situs using the pointing device:

1. Oriented according to the anatomy of the patient (see Figure 3.5a)
2. Oriented according to the view of the surgeon (see Figure 3.5b)

Additionally, there is a camera setting defining the view of the navigation
camera (see Figure 3.5c). By using the view menu the surgeon can easily
switch between the settings (see Figure 3.5d), which allows him to quickly
see the plan from different perspectives. The anatomical and surgeon’s
view can be adjusted whereas the navigation camera view stays rigid.

Besides the touch screen, the surgeon can use optical see-through glasses
for an augmented reality view of the situs (see Figure 3.6). The touch
screen visualizes low and high-level information whereas the OSTG only
visualizes essential information (objects and measurements). Menus are
not shown on the OSTG. Showing all information on the situs could
distract the surgeon. If the surgeon looks at the monitor the AR view is
blank and he only sees the content of the touch screen visualization.
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(a) Context menu after selecting a point (b) Context menu after selecting a point
and a line

(c) Algorithms of the selection in (b)

Figure 3.4.: Context menu in OrthoCAD. In (a) the user selected a point and chose
the “Select” option. After selecting a line, the context menu in (b)
shows the options for a combination of point and line. The user selects
“Algorithms” and sees the algorithms applicable for a point and a line.
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(a) Anatomical view (b) Surgeon’s view

(c) Navigation camera view (d) View menu

Figure 3.5.: The available views (a to c) and the view menu (d) in OrthoCAD.
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Figure 3.6.: Precise overlay in AR visualization using optical see-through glasses.

The augmented in-situ view complements the visualization on the touch
screen. Without this additional view, the surgeon operates on the situs
while looking onto the touch screen. The in-situ view improves this
issue since the visualization and point of view coincide with the situs.
Therefore, the AR visualization can be used for a fast and efficient object
placement. Even though the OSTG is calibrated, some issues remain:

1. For a good calibration the user’s eye position has to be known but
most OSTG lack the ability of eye tracking. A simple GUI is used,
which allows the user to manually move the virtual eye position
until a virtual pattern coincides with the real world.

2. Most OSTG have a fixed focus length of around 2 m, meaning that
the virtual display appears at this distance. Surgeons, however,
work at a distance of around 80 cm, which forces the surgeon to
switch his focus continuously from 80 to 200 cm.

3. Currently, these devices are still bulky and sometimes become quite
hot. However, future devices will be smaller and more efficient.

Since the AR view is complementary and not essential for the outcome
of the intervention, the surgeon can decide if he wants to wear the
OSTG or not. It is also possible to use it only temporarily during
certain procedures.
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Figure 3.7.: Overview of primitives and compound objects.

3.6 Primitives and Compound Objects

Primitives such as points, lines or planes form the basis of every CAD
software. In OrthoCAD, the following primitives can be digitized: land-
marks (points), point clouds, line segments, cylinders, planes and wedges
(see Figure 3.7a-3.7f). Planes are understood as regular polygons. A
wedge is understood as two squares sharing one edge and it can either
open symmetrically in both directions or asymmetrically.

Primitives are used to assemble compound objects, e.g. a triangle assem-
bled from three points. In OrthoCAD, the following compound objects
are available: triangle meshes, complex cuts and osteotomy planes (see
Figure 3.7g-3.7i). A triangle mesh is the most generic of these types.
The basis of a complex cut is an assembly of several rectangles sharing
one edge with the neighboring rectangle and these edges are parallel to
each other. The final complex cut results from inflating the rectangles
perpendicular to their surface normals. An osteotomy plane is defined
by two parallel planes at a certain distance. Additional to these “pure”
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compound objects, primitives can also assemble other primitives, e.g. a
line segment defined by two points or a wedge by two planes. Objects
can be created using the following list of implemented algorithms:

∙ center of mass from points

∙ intersection point from

– multiple line

– multiple plane

– line and plane

∙ closest point on

– line

– plane

∙ intersection line of two planes

∙ project line onto plane

∙ point at percentage of

– distance

– line segment

∙ parallel line through point

∙ line segment from two points

∙ plane from

– three points

– point and line

– parallel lines

∙ parallel plane through point

∙ align plane’s normal pointing
towards point

∙ regression plane from points

∙ osteotomy plane from plane

∙ wedge from

– line and plane

– plane

∙ cylinder fit of points

∙ cylinder from line

∙ merge

– surfaces

– points

∙ surface from points

∙ clip surface with planes

∙ cut out volume from surface

∙ cut out wedge from

– surfaces

– point cloud

∙ create complex cut from

– planes

– line segments

After an object is created from one or more primitives, these primitives
are hidden since they are normally not needed anymore. OrthoCAD
saves the relationships between objects. Therefore, each object knows its
parents objects. In case that they are needed additionally to the created
objects, they can be shown again. Sometimes, it might be necessary to
remove objects. In case that the removed object has parent objects, they
are shown automatically.

56



3.7. Object Representation

3.7 Object Representation
The data representation of an object is shown in Figure 3.8a. An object
is basically structured in three parts:

∙ data and mathematical parameters

∙ geometry

∙ additional properties

The data and parameters describe the object mathematically. An os-
teotomy plane, for example, is described by a hesse normal vector, a
hesse constant, a span, a thickness and the number of corners. A surface
is described by a collection of vertices and edges. In order to further
explain this structure, it is necessary to introduce the coordinate systems
concerning an object (see Figure 3.8b). Data and mathematical parame-
ters are given in index coordinates 𝐼. The index coordinate system stands
in direct relation with the object itself. In case of an osteotomy plane,
the origin of 𝐼 coincides with the center of the plane, the 𝑧-axis coincides
with the plane’s normal and the 𝑥- and 𝑦-axis lie inside the plane. Every
object is assigned to one tracking tool (tracker or pointer). The transfor-
mation 𝐹𝑇←𝐼 from index coordinates 𝐼 to tracker coordinates 𝑇 is one
of two transformations saved in the geometry of the object. The other
transformation is 𝐹𝑊 𝑇 from tracker coordinates 𝑇 to world coordinates
𝑊 . The world coordinates are defined by the navigation camera. This
separation of transformations facilitates the handling of the data object.
In a background process, the tracker to world transformations 𝐹𝑊 𝑇 of
all objects are updated. Rotating and translating an object is further
explained in Chapter 3.9 and is based on the index to tracker transfor-
mation 𝐹𝑇 𝐼 . The data and mathematical parameters are not changed
by these transformations. The third part of the data representation
is a database of properties that is basically used for management and
rendering. This includes, for example, the parent object(s), the color, the
visibility or the surface model representation (wireframe or surface).
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Figure 3.8.: Object representation.

3.8 Object-Relative Placement

Placing primitives relative to other ones is a major requirement in an
orthopedic CAD system. This feature allows the surgeon, for example,
to place a plane perpendicular to a previously digitized bone axis. This
component helps the surgeon to precisely place objects by limiting the
number of degrees of freedom of the placement. A plane, for example,
can be placed with 6-DoF (3 parameters for the position and 3 for the
orientation). If the surgeon wants to place a plane such that it passes
through a given landmark, the 3 positional DoF are fixed and he can
concentrate on finding the best orientation.
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In order to use the object-relative placement, the surgeon selects the
previously digitized primitive and chooses the placement option. Sub-
sequently, the primitive on the pointer tip is adapted accordingly. The
available options in the context menu (see Table 3.1) are object-specific,
since not all algorithms are suitable for all primitives.

Table 3.1.: Object-relative placement options with examples. Not all options are
suitable for all primitives.

Option Description Example

Perpendicular

The new primitive is perpen-
dicular to the reference object,
e.g. a plane perpendicular to
a line

Parallel
The new primitive is parallel
to the reference object, e.g. a
plane parallel to another one

Projected
The new primitive is projected
onto the reference object, e.g.
a point projected onto a plane

Through

The new primitive passes
through the reference object,
e.g. a plane passing through a
line

Through and
Cut

The new primitive passes
through the reference object
and is cut by the reference ob-
ject, e.g. a plane constrained
by a line

59



Chapter 3. OrthoCAD: Generic and Intraoperative Planning

3.9 Object Adjustment

After objects are created, they can be adjusted. This includes their pose
and geometry-dependent parameters. In case of an osteotomy plane,
configurable values are the number of corners, the span and the thickness.
In case of a cylinder, the diameter and the length can be changed. The
pose can be adjusted using handles as shown in Figure 3.9. The three
rings are used to rotate the primitive and the three arrows translate it.
The surgeon can either use these handles or the adjustment dialog next
to it. The current change (angle or distance) is shown directly on the
object and in the adjustment dialog. Several transformations can be
applied and undone.

Figure 3.9.: Direct object adjustment: The rings rotate and the arrows translate the
object. In the adjustment dialog exact numbers can be entered, changes
can be reversed and the final pose can be confirmed or canceled.
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3.10 Complex Cut Creation

Complex cuts are assembled by a series of rectangles in which two of them
share one edge that is parallel to all other shared edges. They also have a
thickness, similar to osteotomy planes. Different orthopedic interventions
utilize different cuts. Here, a hallux valgus correction shall be used as an
example. A hallux valgus is a deformity of the joint connecting the big
toe (hallux) and the foot (more specific the metatarsal). The deformity
causes the joint to further stand out in medial direction (pointing to
the other foot). Typical cuts in a hallux valgus surgery are chevron and
scarf cuts (see Figure 3.10a and 3.10b). The goal of a chevron or scarf
osteotomy for hallux valgus is to translate the deformed joint in lateral
direction (to the side) to establish a more natural position of the joint.
First, the surgeon defines the cut. Then, after the cut is prepared, the
bone can be translated along the axis of the cut. Once it is in the proper
position, the bone is fixed with one or two screws (see [95] for a more
detailed explanation).

For certain osteotomies, a dome-shaped cut is required that helps the
surgeon to correct the axis of femur or tibia. Here, the concept is similar
to a scarf cut, however, instead of moving the cut along the cut direction
it is moved around the curvature of the cut.

In OrthoCAD, an abstracted version of these cuts is implemented. Such
a cut consists of multiple planes whose surface normals lie in one plane.
Therefore, it can be defined in two distinct ways: By several parallel
line segments or by several planes with appropriate orientation. Since
OrthoCAD does not require a robotic execution system, the complex cut
cannot directly be converted into a path. Instead, the thickness of the
cut has to be specified manually. Therefore, after designing the cut, the
surgeon has to define its thickness. A dome-shaped cut is approximated
with several densely placed lines or planes.
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test

(a) Chevron cut (b) Scarf cut

(c) Abstracted complex cut

Figure 3.10.: Chevron, scarf and abstracted complex cut.

(a) Distance measurement (b) Angle measurement

Figure 3.11.: The virtual ruler and triangle.
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3.11 Virtual Ruler and Triangle

OrthoCAD allows the surgeon to measure distances or angles between
objects by using a virtual ruler or triangle, respectively. This is also a key
feature in commercial CAD tools. Currently, the two objects have to be
selected manually. However, future versions will be able to visualize the
measurements automatically depending on the focus of the surgeon.

3.12 Data Structure for Synchronization
with Robot

Once the planning is finished, the planned constraints must be sent to
the robot. For this purpose, the constraints are converted into a data
structure that the robot control system can process. The type of this
structure differs from those in existing applications. Existing applications
construct dedicated milling volumes. Since all data in OrthoCAD is
digitized intraoperatively and image-free and some structures cannot
be reached, it is not always possible to create such volumes. Therefore,
OrthoCAD follows another approach. The surgeon explicitly constructs
constraints that the executing tool cannot pass through. Thus, instead
of a volume, a surface is constructed. The synchronized data structure
consists of a collection of triangle meshes that are virtually connected to
a tracking device. Therefore, all objects that are used to constrain the
end effector movement are converted into a triangle mesh and then stored
in a database. The robot control system, as described in Chapter 7,
accesses this database. Intraoperatively, the surgeon can add, modify
and remove these constraints individually.

3.13 Exemplary Surgical Intervention

A femoral neck osteotomy is used as an exemplary surgical intervention
to evaluate the functionality of OrthoCAD. In a hip arthroplasty (hip
replacement) the femur’s head is completely removed and replaced by
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an implant (see Figure 3.12a for the theoretical plan). The acetabulum
that, together with the femur head, forms the hip joint is extended and
an implant is inserted. Before the implant can be inserted into the femur,
the head and neck have to be removed. This preparation of the femur
is called femoral neck osteotomy. The surgeon performs an osteotomy
of 1 cm, which is rotated 45∘ to the femoral axis and has a distance
to the trochanter minor of 8 mm. These values are determined by the
surgeon according to the preoperative X-ray scan and the surgeon’s
experience. The cut of 1 cm is necessary since the surgeon needs space
to remove the femur head from the acetabulum. The intraoperative
planning steps are:

1. Digitize points on femur neck for easier orientation.

2. Digitize landmark on saddle point and trochanter minor.

3. Digitize landmark on medial and lateral epicondyle.

4. Create transepicondylar axis center using medial and lateral epi-
condyle landmarks.

5. Create femur axis using transepicondylar axis center and saddle
point.

6. Define a plane passing through saddle point.

7. Enable measurements between this plane, the femur axis and the
trochanter minor.

8. Place plane in such a way that the angle between axis and plane is
45∘ and the distance to the trochanter minor is 8 mm.

9. Create osteotomy plane from this plane.

10. Set thickness of the osteotomy plane.

11. Set as constraint.
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See Figure 3.12b for the created plan in OrthoCAD. Subsequently, the
surgeon uses a saw or a milling device to resect the bone. The femur
head is removed from the acetabulum and the surgeon starts planning
the implant position. See Chapter 8.2.2 and 8.2.1 for the execution of
this intervention.

3.14 Conclusion

Most CAOS applications are dedicated to specific interventions. This,
however, requires individual training that produces increased costs. In
contrast, OrthoCAD follows a more generic approach. The surgeon is able
to plan arbitrary interventions intraoperatively and image-free. Moreover,
the surgeon can flexibly change between planning and execution. Different
levels of computer assistance are available:

∙ none (OrthoCAD is only used for planning)

∙ navigation

∙ power-controlled handheld navigated tool

∙ power- and position-controlled handheld navigated tool

The plan is visualized on a touch screen that the surgeon also uses to
construct the plan. Primitives are digitized using a pointing device. The
touch screen is used to interact with the primitives and the objects. Op-
tical see-through glasses are used for an augmented in-situ view allowing
the surgeon to see the plan directly on the patient’s bone. The software
implementation is heavily based on open-source toolkits. Features known
from commercial CAD systems, such as object-relative placement or
a virtual ruler and triangle, are implemented and adapted to the OR.
Instead of using dedicated milling volumes for the execution of the plan,
OrthoCAD only requires constraints that can be seen as walls that the
executing tool cannot pass through.
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(a) Theoretical plan (b) OrthoCAD plan

Figure 3.12.: A theoretical plan and its representation in OrthoCAD.
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Due to diverse influences mainly caused by the optics of the OSTG,
the virtual display is not a simple plane. The virtual display of the
Vuzix STAR 1200XLD, for example, is a curved surface (see Figure 4.1).
A parametric model can map such surfaces well at their centers but
normally it deviates close to the edges. Moreover, the current and
upcoming generations of OSTG mainly utilize a waveguide-based display
technology. This technology uses special components like gratings or
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Figure 4.1.: An example of a virtual OSTG display. Depicted are the virtual display
positions of the pixels. While looking through the OSTG the display
seems to be a flat surface but in reality it is curved.

In a first approach, the virtual location of every single display pixel was
triangulated in order to obtain a non-parametric calibration. Figure 4.2
shows the principal setup used for the triangulation. The triangulation
is based on the viewing rays passing through a particular pixel and the
camera’s projection centers for different camera positions (viewpoints). In
a waveguide-based OSTG, different eye positions might result in viewing
rays passing through different waveguide plates or gratings. This jumping
between gratings could falsify the triangulation. In the following sections
it is shown that the triangulation approach, as described in [98] and [99],
does not work for OSTG with more complex optics.

In this chapter, a non-parametric camera-based calibration of OSTG
is described. The calibration procedure and results were previously
published in [100] and extend the results from [99]. The calibration
process is split into two parts: a one-time system calibration and a
continuous user’s eye adaptation. The system calibration determines all
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reflectors to guide the light into the user’s field of view [96], [97]. These
optical components introduce non-linear distortions that a parametric
model cannot map appropriately. Therefore, it might be better to consider
the display pixels individually.
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Camera
Centers

Camera
Image

OSTG
Display

Pixel(𝑚, 𝑛)

Virtual Position of
Pixel(𝑚, 𝑛)

Viewing
Rays

Figure 4.2.: Triangulation of the pixels’ virtual positions. In reality the camera
centers are much closer together and camera as well as OSTG display
images overlap.

The whole calibration process is automated and works without error-
prone user interaction. Furthermore, not only the displays are calibrated
using a non-parametric approach, but also the attached or integrated
reference camera and the display calibration cameras. For this purpose,
the approach of Hoppe et al. [101] is used. Calibrating every single pixel
of the cameras and the OSTG individually, guarantees so far unmatched
accuracy and precision. Whereas Itoh and Klinker [72] explicitly calibrate
the distortion of the optics, the proposed method integrates this implicitly
by calibrating the display cameras while looking through the optics.
Additionally, both displays of the OSTG are calibrated simultaneously.
An evaluation of the calibration result is provided and compared to
previous approaches. Parts of this chapter were previously published
in [100].

The following two sections (see Chapter 4.1 and 4.2) give an overview of
the calibration procedure. The contributions of this chapter are: 1. A
calibration method that (a.) maps every single display pixel to individual
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parameters of the OSTG system except for the user’s eye position, which
has to be found continuously while the user wears the OSTG. This work
concentrates on the system calibration. See [69] for an implementation
of a continuous eye adaptation.
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viewing rays (Chapter 4.4 and 4.5), (b.) calculates a precise distortion map
and an optimized OpenGL frustum (Chapter 4.6 and 4.7) and (c.) can
be rendered in real time (Chapter 4.8). 2. A calibration procedure
that is completely automated (Chapter 4.3). 3. A demonstration of the
previous triangulation approach by [99] with two different OSTG and its
drawbacks (Chapter 4.9.1 and 4.10.1). 4. An accuracy analysis of the
proposed method (Chapter 4.9.2 and 4.10.2).

4.1 Procedure

The final result of the presented calibration is an optimized OpenGL
frustum together with a collection of projection centers and distortion
maps that can be interpolated in order to account for the user’s current
eye position. The procedure can be split into three steps, which are
repeated for nine different display camera positions:

1. (Re-)calibration of all cameras (including relative transformations
and optimized projection centers)

2. Determination of the display cameras’ viewing rays for all display
pixels (together with the optimized OpenGL frustum for the center
position)

3. Calculation of the distortion map for the rendered OpenGL image

It can already be noted that the OpenGL frustum is only optimized
for the center position. In all other camera positions it is reused with
adapted projection centers. This does not lead to any inaccuracies since
the distortion maps account for any deviation originating from the linear
projection model.

4.2 Coordinate Systems

Figure 4.3 shows a schematic overview of the calibration coordinate
systems. This figure and the following sections refer to these coordi-
nate systems:
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𝑊 . . . calibration coordinate system of the reference camera used
for observing the scene in front of the OSTG

𝑆 . . . calibration coordinate system of an optional camera form-
ing a stereo camera system with the reference camera

𝐿 . . . calibration coordinate system of the left display camera
𝑅 . . . calibration coordinate system of the right display camera
𝐻 . . . ancillary coordinate system not rotated with respect to

𝑊 but translated in such a way that its origin equals the
approximate projection center of the left or right camera

𝐸 . . . OpenGL’s eye coordinate system with 𝑧𝐸 pointing inside
the user’s eye

𝐶 . . . OpenGL’s clip coordinate system
𝑁 . . . OpenGL’s normalized device coordinate system
𝐺 . . . OpenGL’s pixel coordinate system
𝑃 . . . pixel coordinate system of the left or right OSTG display
𝐾 . . . pixel coordinate system of the left or right display camera

Reference
Camera 𝑊

Left “Eye”
Camera 𝐿

Right “Eye”
Camera 𝑅

Optional Cam-
era 𝑆 for Stere-
oscopy

Right
Display

Left
Display

OpenGL
Frustum

𝑧𝐻

𝑧𝐸

𝑥𝐸

𝑥𝐻

𝑧𝑅𝑧𝐿

𝑥𝑅𝑥𝐿

𝑧𝑆𝑧𝑊

𝑥𝑆𝑥𝑊

𝑝𝑊

Figure 4.3.: Schematic overview showing the coordinate systems used in this cali-
bration. 𝑝𝑊 is the approximate projection center of the camera.

71



Chapter 4. High Accuracy Pixel-Wise Calibration of OSTG

(a) Front view (b) Rear view (c) Rear view with monitor showing sinu-
soidal pattern

Reference
Camera 𝑊

Left “Eye”
Camera 𝐿

Epson
BT-200

X Linear
Stage

Z Linear
Stage

Y Linear
Stage

Monitor

Figure 4.4.: The hardware setup used for the calibration.

4.3 Setup

The calibration was tested on two OSTG: the STAR 1200XLD (Vuzix,
USA) and the Moverio BT-200 (Epson, Japan). The attached reference
camera is a DMK22AUC03-F (The Imaging Source, Germany) and the
displays are calibrated by two 1.3 MP cameras (MQ013MG-E2, XIMEA,
Germany). The non-parametric monitor-based camera calibration (see
Chapter 4.4) was performed using a BDM4065UC monitor (Philips,
Netherlands). See Figure 4.4 for the hardware setup.

The automation of the calibration process is implemented using three
translation stages. Two of them are used to place the display cameras
at different x- and y-positions behind the displays. The third one places
the whole setup at different distances with respect to the monitor used
for the camera calibration.

The BT-200 consists of the glasses that are connected to an Android-
based control unit. When using the control unit, the images needed for
the calibration are transferred via USB or WLAN using a streaming app
(e.g. IDisplay). Since this produces high latencies, the control unit was
replaced with the conversion board DM484CS (Colorado Video, USA),
which allows connecting the BT-200 directly to the PC.
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Linear Stage 𝑦𝑊

𝑥𝑊

𝑑𝑊

𝑧𝑊

�⃗�𝑖𝑊 (𝑢, 𝑣)�⃗�0𝑊 (𝑢, 𝑣)

Figure 4.5.: Schematic setup of the non-parametric monitor-based camera calibration.
The direction 𝑑𝑊 is parallel to the linear stage.

4.4 Camera Calibration

The display cameras are used to measure feature points lying behind
the optical components of the OSTG. Therefore, these optics become an
integral part of the camera, which means that the display cameras have
to be calibrated while looking through the OSTG. Since the cameras are
moved with respect to these optical elements, they have to be recalibrated
for each of the nine positions. See Section 4.11 for more details.

In order to be able to calibrate the OSTG as accurate as possible, an
accurate camera calibration is crucial. Therefore, the camera calibration
is performed using the non-parametric monitor-based calibration method
described in [101]. The basic idea behind this calibration approach is
that the viewing rays of the camera pixels are calibrated individually and
independently from each other instead of using a pinhole model together
with radial and tangential distortion parameters. The automation process
of this model-free calibration is implemented using a linear stage and an
off-the-shelf monitor (see Figure 4.5).
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The camera is attached to the linear stage and observes the monitor show-
ing a horizontal alternatively vertical sinusoidal gray value pattern that is
shifted horizontally alternatively vertically by one period in 𝑁 equidistant
steps. Each pixel (𝑢, 𝑣) observes two gray value oscillations 𝑔𝑛(𝑢, 𝑣) with
0 ≤ 𝑛 ≤ 𝑁 − 1 that are approximated by 𝑔𝑛(𝑢, 𝑣) ≈ 𝑏 + 𝑎 cos

(︀
𝜙 − 2𝜋𝑛

𝑁

)︀
.

Solving the underlying minimization problem results in 𝜙 = atan2(𝑎𝑠, 𝑎𝑐)
with

𝑎𝑐 = 2
𝑁

𝑁−1∑︁
𝑛=0

𝑔𝑛(𝑢, 𝑣) cos
(︂

2𝜋𝑛

𝑁

)︂
(4.1)

𝑎𝑠 = 2
𝑁

𝑁−1∑︁
𝑛=0

𝑔𝑛(𝑢, 𝑣) sin
(︂

2𝜋𝑛

𝑁

)︂
(4.2)

This relative phase shift (within one period) is accurate even if the
measured oscillation is not perfectly sinusoidal (e.g. compressed or
clipped). Subsequently, it can be converted to a monitor pixel using
𝑝 = 𝑃

2𝜋 · 𝜙 where 𝑃 is the period width alternatively height in monitor
pixel. It is straightforward to convert this relative to an absolute phase
shift by adding or subtracting multiples of 𝑃 whenever phase shift jumps
occur. By multiplying the results with the pixel width alternatively
height the metric coordinates are calculated.

All this results in accurate 3D world points �⃗�0𝑊 (𝑢, 𝑣) for each camera
pixel where the z-coordinate of the first monitor position is set to zero.
This step is repeated several times for different camera positions. Given
that the normalized direction 𝑑𝑊 of the linear stage is parallel to the
normal direction of the monitor, only the z-coordinate of the subsequently
measured monitor points �⃗�𝑖𝑊 (𝑢, 𝑣) has to be adjusted according to the
relative movement along the stage. If this is not the case, this direction
can either be measured or reconstructed from rotated test positions of the
monitor. The correct 3D position can then be found by de-shearing the
measured points. Finally, the viewing rays are calculated as regression
lines through the measured world points �⃗�𝑖𝑊 (𝑢, 𝑣). These viewing rays
are shown in Figure 4.6.
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Figure 4.6.: An example of a non-parametric camera calibration. Depicted is every
10th pixel. In the upper left corner a zoom to the approximate projection
center is shown.

Since the monitor defines the calibration coordinate system, all simulta-
neously calibrated cameras are calibrated in the same coordinate system.
In other words, the coordinate systems 𝐿, 𝑅, 𝑆 and 𝑊 are all the same.
Nevertheless, the following algorithm is written in terms of different
calibration coordinate systems in order to be able to allow for other
calibration methods.

This pinhole-model-free calibration technique results in the absence of a
definite projection center (see Figure 4.6). Nevertheless, it is still possible
to calculate the approx. projection center 𝑝𝐿 or 𝑝𝑅 by intersecting all rays
in a least-squares sense and to use these points as origin for OpenGL’s
eye coordinate system 𝐸.

4.5 Cosine Pattern Calibration

After calibrating the cameras, they can be used to find the viewing rays
of all OSTG display pixels in 𝐿 and 𝑅 coordinates, alternatively. This is
realized using the same calibration technique. A series of horizontally
and vertically shifted cosine patterns is displayed on the OSTG display.
Each camera pixel observes two phase-shifted gray value oscillations.
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(a) Rendered cosine pattern (b) Recorded cosine pattern

Figure 4.7.: Example of a cosine pattern shown on the display and recorded by a
camera.

The resulting phase shifts are used to calculate the observed OSTG
display pixel position (𝑥𝑃 , 𝑦𝑃 ) with subpixel accuracy. For an overview
of alternative patterns see [102]. Figure 4.7 shows the rendered cosine
pattern and how it is seen by one of the display cameras.

In summary, this calibration results in a mapping between non-integer
display pixel positions (𝑥𝑃 , 𝑦𝑃 ) and integer camera pixels (𝑥𝐾 , 𝑦𝐾). Sub-
sequently, a reverse bilinear interpolation is used to inverse this map:
for each integer display pixel 𝑥𝑃 = 𝑚 and 𝑦𝑃 = 𝑛 with 𝑚, 𝑛 ∈ N0 and
𝑚 ≤ 𝑤 − 1 and 𝑛 ≤ ℎ − 1 the corresponding non-integer camera pixel
(𝑥𝐾 , 𝑦𝐾) is calculated with subpixel accuracy. Here, the width 𝑤 and
height ℎ of the OSTG displays were introduced. Figure 4.8a depicts
this mapping.

The camera calibration is now used to calculate the viewing rays corre-
sponding to the found camera pixel positions (𝑥𝐾 , 𝑦𝐾). All in all, this
results in a mapping between integer OSTG display pixels 𝑥𝑃 = 𝑚,
𝑦𝑃 = 𝑛 and the corresponding viewing rays �⃗�𝐿(𝑚, 𝑛) = �⃗�𝐿 + 𝑠 · 𝑑𝐿 and
�⃗�𝑅(𝑚, 𝑛) = �⃗�𝑅 +𝑠 ·𝑑𝑅 of the left and right display camera, respectively.
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(a) Camera coordinate system 𝐾 with respect to OSTG display coor-
dinate system 𝑃 .
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(b) OpenGL’s normalized device coordinate system 𝑁 and pixel coordinate
system 𝐺 with respect to OSTG display coordinate system 𝑃 .

Figure 4.8.: The pixel coordinate systems used in this calibration.
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4.6 Frustum Optimization
Initially, the correspondences between OSTG display pixels �⃗�𝑃 and the
corresponding viewing rays �⃗�𝐿 and �⃗�𝑅 are used to calculate an optimized
OpenGL frustum for a specific viewpoint of the left and right OSTG
display, respectively. Then, the frustum and the correspondences are used
to define distortion maps for the rendered images such that each image
pixel is located at exactly the right position. This approach ensures that
the rendering process is both fast and precise.

In the following paragraphs, the description will concentrate on the
OSTG’ left display. The right display is processed analogously. The
transformation chain between camera 𝐿 and the clip coordinates of the
OpenGL frustum is defined as:⎛⎜⎜⎝

𝑥𝐶

𝑦𝐶

𝑧𝐶

𝑤𝐶

⎞⎟⎟⎠ = 𝐹𝐶𝐸 · 𝐹𝐸𝐻 · 𝐹𝐻𝑊 · 𝐹𝑊 𝐿 ·

⎛⎜⎜⎝
𝑥𝐿

𝑦𝐿

𝑧𝐿

1

⎞⎟⎟⎠ (4.3)

𝐹𝑊 𝐿 is the rigid transformation from the left eye camera coordinates 𝐿
to the reference camera coordinates 𝑊 , which results from calibrating
the two cameras. In case of a simultaneous non-model-based calibration,
this transformation equals identity, since all cameras are automatically
calibrated in the same coordinate system. The ancillary coordinate
system 𝐻 is not rotated with respect to 𝑊 but only translated into
the approximate projection center of the left alternatively right camera.
Therefore, the transformation from 𝑊 to 𝐻 is

𝐹𝐻𝑊 =
(︂

𝐸3 −𝑝𝑊

0⃗𝑇 1

)︂
(4.4)

where 𝑝𝑊 = 𝐹𝑊 𝐿 · 𝑝𝐿 is the approximate projection center of the left
camera in 𝑊 coordinates and 𝐸3 the 3 × 3 identity matrix. 𝐸 and 𝐻
share the same origin. Therefore, the transformation from 𝐻 to 𝐸 equals

𝐹𝐸𝐻 =
(︂

𝑅𝐸𝐻 0⃗
0⃗𝑇 1

)︂
(4.5)
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𝑅𝐸𝐻 is the corresponding rotation matrix and will be optimized by this
algorithm. 𝐹𝐶𝐸 is the well known OpenGL projection matrix

𝐹𝐶𝐸 =

⎛⎜⎜⎝
2𝑛
𝑟−𝑙 0 𝑟+𝑙

𝑟−𝑙 0
0 2𝑛

𝑡−𝑏
𝑡+𝑏
𝑡−𝑏 0

0 0 − 𝑓+𝑛
𝑓−𝑛

2𝑓𝑛
𝑓−𝑛

0 0 −1 0

⎞⎟⎟⎠ (4.6)

with the parameters 𝑙 (left), 𝑟 (right), 𝑏 (bottom), 𝑡 (top), 𝑛 (near) and
𝑓 (far) defining the OpenGL frustum.

The origin of the pixel coordinate system 𝑃 describing the OSTG display
is located in the center of pixel (0, 0), which can be found in the upper
left corner. 𝑥𝑃 points right along the columns and 𝑦𝑃 points down along
the rows of the OSTG image. In contrast to that, the origin of OpenGL’s
pixel coordinate system 𝐺 is located in the lower left corner of pixel (0, 0),
which is located in the lower left corner of the image. 𝑥𝐺 points right
along the columns and 𝑦𝐺 points up along the rows of the image (see
Figure 4.8b).

It can be easily derived that 𝑥𝐺 = 𝑥𝑃 + 0.5 and 𝑦𝐺 = ℎ − 0.5 − 𝑦𝑃 .
Furthermore, OpenGL’s pixel coordinates can be transferred to normal-
ized device coordinates using 𝑥𝑁 = 2

𝑤 · 𝑥𝐺 − 1 and 𝑦𝑁 = 2
ℎ · 𝑦𝐺 − 1 (see

Figure 4.8b). The still missing link between 𝑁 and 𝐶 is

𝑥𝑁 = 𝑥𝐶

𝑤𝐶
and 𝑦𝑁 = 𝑦𝐶

𝑤𝐶
(4.7)

Given an OSTG pixel (𝑥𝑃 , 𝑦𝑃 ) and the corresponding viewing ray of
the left camera �⃗�𝐿 + 𝑠 · 𝑑𝐿, the pixel coordinates can be transformed to
normalized device coordinates (𝑥𝑁 , 𝑦𝑁 ). Then a specific point on the
viewing ray �⃗�𝐿 is chosen and transformed to 𝐻 using �⃗�𝐻 = 𝐹𝐻𝑊 ·𝐹𝑊 𝐿·�⃗�𝐿.
The transformation from 𝐻 to 𝐶 can be written in the form⎛⎝𝑥𝐶

𝑦𝐶

𝑤𝐶

⎞⎠ = 𝑃𝐶𝐸 · 𝑅𝐸𝐻⏟  ⏞  
=:𝑄

·

⎛⎝𝑥𝐻

𝑦𝐻

𝑧𝐻

⎞⎠ with 𝑃𝐶𝐸 =

⎛⎝𝑓𝑥 0 𝑥0
0 𝑓𝑦 𝑦0
0 0 −1

⎞⎠ (4.8)
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with the abbreviations 𝑓𝑥 = 2𝑛
𝑟−𝑙 , 𝑓𝑦 = 2𝑛

𝑡−𝑏 , 𝑥0 = 𝑟+𝑙
𝑟−𝑙 , 𝑦0 = 𝑡+𝑏

𝑡−𝑏 and
the (3 × 3)-matrix 𝑄. This leads to the following equations for the nine
unknown elements of 𝑄:

𝑥𝑁 = 𝑥𝐶

𝑤𝐶
= 𝑞11𝑥𝐻 + 𝑞12𝑦𝐻 + 𝑞13𝑧𝐻

𝑞31𝑥𝐻 + 𝑞32𝑦𝐻 + 𝑞33𝑧𝐻
(4.9)

𝑦𝑁 = 𝑦𝐶

𝑤𝐶
= 𝑞21𝑥𝐻 + 𝑞22𝑦𝐻 + 𝑞23𝑧𝐻

𝑞31𝑥𝐻 + 𝑞32𝑦𝐻 + 𝑞33𝑧𝐻
(4.10)

which can be rewritten as

𝑥𝐻𝑞11 + 𝑦𝐻𝑞12 + 𝑧𝐻𝑞13 − 𝑥𝑁 𝑥𝐻𝑞31 − 𝑥𝑁 𝑦𝐻𝑞32 − 𝑥𝑁 𝑧𝐻𝑞33 = 0 (4.11)
𝑥𝐻𝑞21 + 𝑦𝐻𝑞22 + 𝑧𝐻𝑞23 − 𝑦𝑁 𝑥𝐻𝑞31 − 𝑦𝑁 𝑦𝑁 𝑞32 − 𝑦𝑁 𝑧𝐻𝑞33 = 0 (4.12)

All in all, each correspondence between an OSTG display pixel 𝑥𝑃 = 𝑚,
𝑦𝑃 = 𝑛 and a corresponding point �⃗�𝐿(𝑚, 𝑛) on the viewing ray of
this pixel results in two equations for the nine unknown elements of 𝑄.
This overdetermined homogeneous linear equation system can be solved,
for example, by means of an eigenvector analysis. Since the equation
system is homogeneous, 𝑄 can only be found up to a so far unknown
scaling factor.

By defining the row vectors of matrix 𝑅𝐸𝐻 to be �⃗�𝑇
1 , �⃗�𝑇

2 and �⃗�𝑇
3 matrix

𝑄 equals⎛⎝�⃗�𝑇
1

�⃗�𝑇
2

�⃗�𝑇
3

⎞⎠ =

⎛⎝𝑓𝑥 0 𝑥0
0 𝑓𝑦 𝑦0
0 0 −1

⎞⎠ ·

⎛⎝�⃗�𝑇
1

�⃗�𝑇
2

�⃗�𝑇
3

⎞⎠ =

⎛⎝𝑓𝑥 · �⃗�𝑇
1 + 𝑥0 · �⃗�𝑇

3
𝑓𝑦 · �⃗�𝑇

2 + 𝑦0 · �⃗�𝑇
3

−�⃗�𝑇
3

⎞⎠ (4.13)

It can be seen that the normalized third row �⃗�𝑇
3 of 𝑅𝐸𝐻 equals −�⃗�𝑇

3 .
Therefore it is necessary to scale 𝑄 such that its third row is normalized:
𝑄 → 1

|𝑞3| · 𝑄. Furthermore, it is known that

det(𝑄) = det(𝑃𝐶𝐸) · det(𝑅𝐸𝐻)⏟  ⏞  
=1

= −𝑓𝑥 · 𝑓𝑦 (4.14)

Since 𝑓𝑥 and 𝑓𝑦 are positive scaling factors, it can be concluded that
det(𝑄) has to be negative. Therefore, if det(𝑄) > 0, 𝑄 has to be replaced
by −𝑄.
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Utilizing the fact that the row vectors of a rotation matrix are normalized
and perpendicular to each other, the scalar products of �⃗�3 = −�⃗�3 with
the first and second row of 𝑄 result in:

�⃗�𝑇
1 · �⃗�3 =

(︀
𝑓𝑥 · �⃗�𝑇

1 + 𝑥0 · �⃗�𝑇
3

)︀
· �⃗�3 = 𝑥0 (4.15)

�⃗�𝑇
2 · �⃗�3 =

(︀
𝑓𝑦 · �⃗�𝑇

2 + 𝑦0 · �⃗�𝑇
3

)︀
· �⃗�3 = 𝑦0 (4.16)

With 𝑓𝑥 · �⃗�1 = �⃗�1 − 𝑥0 · �⃗�3 =: ℎ⃗1 and 𝑓𝑦 · �⃗�2 = �⃗�2 − 𝑦0 · �⃗�3 =: ℎ⃗2 it follows
that

𝑓𝑥 =
⃒⃒⃒⃗
ℎ1

⃒⃒⃒
, 𝑓𝑦 =

⃒⃒⃒⃗
ℎ2

⃒⃒⃒
, �⃗�1 = ℎ⃗1

𝑓𝑥
, �⃗�2 = ℎ⃗2

𝑓𝑦
(4.17)

In a final step, the positive z-coordinates of the near and far clipping plane
𝑛 and 𝑓 can be chosen such that the particular scene elements lie inside
this region. Now the whole transformation chain from 𝐿 to 𝑃 including
the projection matrix 𝐹𝐶𝐸 of the optimized OpenGL frustum are known
and can be used to render the scene and to calculate a distortion map
such that the pixels of the rendered scene appear at their exact location
(see below). If desired, the frustum parameters 𝑙, 𝑟, 𝑡 and 𝑏 can be derived
from 𝑛, 𝑓𝑥, 𝑓𝑦, 𝑥0 and 𝑦0 as follows:

𝑙 = 𝑛

𝑓𝑥
(𝑥0 − 1) 𝑟 = 𝑛

𝑓𝑥
(𝑥0 + 1) (4.18)

𝑏 = 𝑛

𝑓𝑦
(𝑦0 − 1) 𝑡 = 𝑛

𝑓𝑦
(𝑦0 + 1) (4.19)

4.7 Calculating the Distorsion Map

After calculating the optimal OpenGL frustum, it is possible to render
a specific scene given in 𝑊 coordinates. The resulting image J is ren-
dered off-screen and not displayed to the user but taken as texture or,
more specifically, pixel source for the actual and precise image D, which
accounts for distortion effects of any kind.

A specific integer pixel of image D with array indices (𝑚, 𝑛) with 𝑚, 𝑛 ∈
N0 ranges from 𝑚 to 𝑚 + 1 alternatively 𝑛 to 𝑛 + 1 in 𝐺 coordinates.
In 𝑃 coordinates, this pixel is located at the integer position 𝑥𝑃 = 𝑚
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and 𝑦𝑃 = ℎ − 1 − 𝑛 (see Figure 4.8b). Since the corresponding viewing
ray �⃗�𝐿(𝑚, ℎ − 1 − 𝑛) = �⃗�𝐿 + 𝑠 · 𝑑𝐿 of this pixel is known, the position in
image J, where the information for this pixel has been projected on, can
be calculated as

𝑥𝐺(𝑚, 𝑛) = 𝑤

2 ·
(︂

𝑥𝐶

𝑤𝐶
+ 1

)︂
𝑦𝐺(𝑚, 𝑛) = ℎ

2 ·
(︂

𝑦𝐶

𝑤𝐶
+ 1

)︂
(4.20)

with �⃗�𝐶 = (𝑥𝐶 , 𝑦𝐶 , 𝑤𝐶)𝑇 = 𝐹𝐶𝐿 · �⃗�𝐿(𝑚, ℎ − 1 − 𝑛). The collection of
all 𝑥𝐺(𝑚, 𝑛) and 𝑦𝐺(𝑚, 𝑛) is called distortion map and used to find the
correct pixel color for all pixels of image D using bilinear interpolation
in image J. This correction can be performed independently for each
pixel and is therefore parallelizable. High frame rates are achieved by
executing this algorithm on the graphics card using CUDA.

Remark: The distortion map is calculated using specific points �⃗�𝐿 on
the viewing rays �⃗�𝐿 + 𝑠 · 𝑑𝐿. As long as the viewing rays share the same
projection center, neither the OpenGL frustum optimization nor the
distortion map depend on the choice of the parameter 𝑠. Given that
the OSTG’s optical elements result in the absence of a joint projection
center (which can be calibrated using non-model based camera calibration
techniques), the distortion map gets depth dependent.

4.8 Accounting for the Eye Position

So far, the calibration is correct for the viewpoint of the left resp. right
camera. Now it has to be taken into account that the user’s eye positions
do not coincide with these viewpoints. While viewpoint displacements
perpendicular to the displays result in negligible projection errors, even
small displacements parallel to the displays result in significantly mis-
matched overlays.

Therefore, the calibration process described above is performed nine
times with nine different camera positions lying on a rectangular (3 × 3)-
grid (see Figure 4.9). In a subsequent step, the user’s eye position is
(dynamically) set within this rectangle and the calibration parameters are
interpolated between four of the nine calibrated positions. As mentioned
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𝑠
𝑟

user defined
position

calibrated
positions

�⃗�0

�⃗�3

�⃗�1

�⃗�2

-1 1

-1

1

Figure 4.9.: The calibrated and the user defined positions on a (3 × 3)-grid. The dis-
tortion map parameters of the user defined eye position are interpolated
between the neighboring calibration positions.

in the previous section, this interpolation process runs on a GPGPU
in real time. Since it is difficult to interpolate the OpenGL frustums
resp. projection matrices 𝐹𝐶𝐸 , only the frustum of the center position
is optimized. The resulting projection parameters are used for all nine
viewpoints. This does not lead to undesired inaccuracies, since the
individual distortion maps of all nine positions account for all projection
and distortion errors. But it is absolutely essential to use the correct
projection centers 𝑝𝑊 for all nine positions, which result from calibrating
the left resp. right camera.

Given that the user’s eyes are not tracked (which requires another calibra-
tion step for aligning this tracking coordinate system with 𝑊 ), the user
has to perform an initial one-time adjustment of his eye-position. This
can be realized by moving the eye position away from the initial center
position (left, right, up, or down) until a displayed sample image matches
a real calibration object. In fact, he defines a certain position between
−1 and 1 in horizontal and vertical direction where (0, 0) equals the
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calibrated center position, (1, 1) equals the upper right position, etc. (see
Figure 4.9). The projection center as well as all entries of the distortion
maps are then interpolated bilinearly in the correct quadrant using

�⃗�𝑟𝑒𝑠 = (1 − 𝑟) · (1 − 𝑠) · �⃗�0 + 𝑟 · (1 − 𝑠) · �⃗�1 + (1 − 𝑟) · 𝑠 · �⃗�2 + 𝑟 · 𝑠 · �⃗�3 (4.21)

where �⃗�𝑟𝑒𝑠 can either be the interpolated projection center 𝑝𝑊 or the
pixel coordinates of the distortion map (𝑥𝐺, 𝑦𝐺).

4.9 Experiments

Two different experiments were performed: 1. An evaluation of the
triangulation approach described in [99] using OSTG with complex optical
elements. 2. An accuracy analysis of the proposed method.

4.9.1 Evaluation of Triangulation Approach

To evaluate the triangulation calibration method, two different OSTG
were calibrated:

∙ the STAR 1200XLD by Vuzix using a single planar light-guide

∙ the BT-200 by Epson using several free-form light-guides

If the triangulation method is generally valid, it must apply that the
pixel locations are independent from the eye position. Therefore, the
selection of viewpoints should not influence the calibration result. In the
case of the triangulation approach, five viewpoints (Center, Center Right,
Center Left, Top Center, Bottom Center) are used. For this evaluation
nine viewpoints (the ones from the proposed calibration) are calibrated.
From these nine positions two independent calibrations are calculated:

(+) Center, Center Right, Center Left, Top Center, Bottom Center

(×) Center, Top Right, Top Left, Bottom Right, Bottom Left

If there is a difference between these two, the calibration result is view-
point dependent. Therefore the triangulation method is not applicable.
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4.9. Experiments

4.9.2 Accuracy Analysis of Proposed Method

In order to evaluate the presented calibration technique, an accuracy
analysis is performed. The monitor that was used for calibrating the
involved cameras (see [101] for further details) now displays filled circles
at certain 3D positions. These positions are known since the cameras
are calibrated in the world coordinate system 𝑊 that is defined by the
monitor. The corresponding 3D scene consisting of the collection of
circles with given radii at known positions is rendered as described in
Chapter 4.1. The left and right display camera can now be used to find the
centers of the circles shown on the monitor (with OSTG overlay switched
off) and the OSTG display (with monitor switched off), successively. This
results in a set of center deviations given in camera pixels. This accuracy
analysis was performed six times with different settings:

1. Camera viewpoint at calibrated center position with distortion map
switched off

2. Camera viewpoint at calibrated center position with distortion map
switched on

3. Camera viewpoint at intermediate point with interpolated distortion
map switched off

4. Camera viewpoint at intermediate point with interpolated distortion
map switched on

5. Camera viewpoint at calibrated top right position with distortion
map switched off

6. Camera viewpoint at calibrated top right position with distortion
map switched on

All results are converted from deviations in camera pixels to viewing
angle deviations and absolute deviations in millimeter at a distance of
500 mm. For this test a Epson Moverio BT-200 was used.
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4.10 Results
The following sections describe the evaluation results of the two previously
explained experiments.

4.10.1 Triangulation Method

Figure 4.10 shows the results of the evaluation of the triangulation
approach. The results for the Vuzix OSTG are as expected. The pixels
are located on a curved surface (Figure 4.10a), which appears to be a
rectangular grid from the user’s perspective (Figure 4.10c). Figure 4.10e
shows the difference between the two calibrations (+) and (×). It is
shown that the pixels in the center of the display are influenced by the
different configurations while the border pixels seem to be steady. The
difference is up to 400 mm.

The calibration of the Epson BT-200 produced a corrugated surface (Fig-
ure 4.10b) that also appears to the user as rectangular grid (Figure 4.10d).
Figure 4.10f shows that the calibration differences of the BT-200 are
much higher than the ones of the Vuzix OSTG. Besides being up to three
times larger, they are also more uneven and unsymmetrical. In this case
the border area has larger differences than the center.

4.10.2 Proposed Method

Figure 4.11 and Figure 4.12 show the overlay of circles drawn on the
OSTG display. Whereas Figure 4.11 shows an overview, Figure 4.12
shows the close-up of circles in the upper right corner of the right OSTG
display for the upper right calibration position. Each image represents
one test. Figure 4.12a shows the overlay in the upper right position
without distortion map correction. It is apparent that the calculated
frustum is not able to produce a good overlay. Figure 4.12b shows the
same situation with the distortion map switched on, which demonstrates
a perfect overlay.
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Figure 4.10.: Results of the calibration method presented in [99] for two different
OSTG (Vuzix STAR 1200XLD and Epson BT-200): (a) and (b) show
the positions of the virtual display pixels, (c) and (d) show the virtual
display seen from the user’s perspective and (e) and (f) show the
difference of two calibrations with different calibration viewpoints. All
values are given in millimeters.
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(a) Test (5)

(b) Test (6)

Figure 4.11.: OSTG overlay with distortion map switched off (a) and on (b). Shown
is only the region of interest (845×540 pixel) of the camera image.

(a) Test (5) (b) Test (6)

Figure 4.12.: Close-up (125×125 pixel) on the OSTG edge area showing an overlay
with distortion map switched off (a) and on (b).
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Test Number of Reprojection error Angular error Absolute error
circles [pixel] [arcmin] [mm]

mean max. mean max. mean max.
1. 247 0.77 3.55 1.27 5.86 0.19 0.85
2. 248 0.24 0.80 0.40 1.31 0.06 0.19
3. 244 1.75 4.65 2.89 7.67 0.42 1.12
4. 248 0.53 1.37 0.88 2.26 0.13 0.33
5. 240 2.58 4.88 4.26 8.04 0.62 1.17
6. 244 0.46 0.79 0.76 1.30 0.11 0.19

Table 4.2.: Results of the accuracy analysis given in arcminutes (1 arcmin = 1
60

∘),
camera pixel and mm. The absolute error in mm depends on the distance
and is calculated for 500 mm.

Table 4.2 and Figure 4.13 show the deviations between the center positions
of the monitor circles and the overlaid ones. The maximal deviations in
Test (1), (3) and (5) are in the range of 3.5 to 5 pixel. However, by using
the distortion map to correct the pixels, the maximal deviation decreases
to under 1.4 pixel or 2.26 arcmin. These values translate to a deviation
of 0.33 mm at a distance of 500 mm. All results are generated with the
Epson Moverio BT-200 and averaged over the left and right display.

4.11 Conclusion

Drawback of a triangulation-based approach The performed tests
show that the triangulation-based calibration works for the STAR 1200-
XLD but not for the BT-200. Whereas the STAR 1200XLD uses a simple
curved mirror, the BT-200 uses three free-form light guides. The results
show that different eye positions cause different results. In the case of
the BT-200, it results in a completely different calibration. The STAR
1200XLD is also influenced by a different viewpoint setup, though only at
its center. These results show that the triangulation approach only works
for OSTG with simple optics and that it is not a universal approach.
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Figure 4.13.: The reprojection errors in pixel for each test.

Comparison with the direct/augmented view distortion method The
calibration described by Itoh and Klinker [72] might seem similar to the
proposed method but differs in several points:

1. The proposed method considers the distortion of the direct view
implicitly, whereas [72] calculates it explicitly. This is discussed in
more detail in the following paragraph.

2. The direct view correction [72] uses a 4×11 asymmetrical circle
grid, whereas the proposed method utilizes the full resolution of
the calibration monitor and camera. Thus, the proposed method
collects many more point correspondences.

3. In the proposed method a given world point is projected onto
the 2D image plane using the optimized OpenGL frustum. The
resulting 2D point is subsequently corrected with the distortion
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maps. This approach ensures that the rendering process is both
precise and fast. In [72] the projection function is not a simple
perspective projection. In order to find the resulting 2D point, a
light-field regression function is utilized that maps undistorted 3D
light rays to distorted 2D points. They state that their approach is
not running in real time and that a sampling approach similar to
ray tracing could improve this.

4. The cameras in the proposed method are calibrated with a non-
parametric approach, whereas [72] utilizes cameras with a standard
calibration model.

Camera calibration through the OSTG optics The integrated reference
camera with coordinate system 𝑊 is used to observe the scene in front
of the user. Given that this camera observes something at point �⃗�𝑊 that
should be overlaid, the pixel that lies on the viewing ray from the eye’s
projection center 𝑝𝑊 through this world point has to be found. For this
purpose, the user’s eye position and the display’s pixel positions or pixel
directions in 𝑊 coordinates are needed.

It can be assumed that the display pixels in 𝑊 coordinates are located
straight in front of the (left) glass as shown in Figure 4.14. Given that a
precalibrated camera was used to measure these locations or directions
of the display pixels, it would make the user believe that these pixels
are displaced as shown in the same figure. Intersecting the viewing ray
from the real projection center 𝑝1𝑊 through �⃗�𝑊 with the displaced pixel
positions would result in the incorrect overlay pixel �⃗�1𝑊 since from the
user’s viewpoint, the overlay pixel is left whereas the to be overlaid world
point is right.

Therefore, the display camera 𝐿, which is used for calibrating the OSTG
display pixels, has to be calibrated through the optical elements of the
OSTG such that it observes the scene in front of the display exactly
the same way as the OSTG user observes it. This results in the fact
that the display camera appears to be at the virtual camera position 𝐿′.
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Reference
Camera 𝑊

Left “Eye”
Camera 𝐿

Virtual
Camera
Position 𝐿′

Real
Display Pixels

Displaced
Display Pixels

Optical
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�⃗�𝑊

�⃗�2𝑊

�⃗�1𝑊

𝑝2𝑊

𝑝1𝑊

Figure 4.14.: Exemplary OSTG system stressing the necessity to calibrate cameras
through the optics.

Intersecting the viewing ray from the virtual projection center 𝑝2𝑊

through �⃗�𝑊 with the real display pixel positions yields the right overlay
pixel indicated with �⃗�2𝑊 in Figure 4.14.

It can be argued that it is still possible to precalibrate the intrinsic
(projection) parameters of camera 𝐿 to place it behind the left display
and to optimize the rigid transformation 𝐹𝑊 𝐿′ from the virtual camera
position 𝐿′ to 𝑊 . This could be implemented by placing a calibration
object in front of camera 𝑊 and camera 𝐿′ looking through the left
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display. But due to the fact that the distortion effects of the left display
were not part of the camera calibration of 𝐿′, camera 𝐿′ now observes
a distorted calibration object that does not fit to the one observed by
camera 𝑊 .

In short, if camera 𝐿 is placed behind the display in order to measure
something that lies in front of the display, the displacement and distortion
effects of the display become an integral part of camera 𝐿. Therefore,
camera 𝐿 has to be calibrated through the display. Only in this case
camera 𝑊 and camera 𝐿 observe the same measurable scene lying in
front of the glasses.

Itoh and Klinker [72] use these effects the other way round. They calibrate
their cameras in advance, which makes them independent from the optics.
Then, they record the scene from different viewpoints and calculate a
mapping between undistorted viewing rays and distorted ones. Therefore,
both methods include the influence of the optics: Itoh and Klinker [72]
explicitly calculate it, whereas the proposed method implicitly includes
it in the camera calibrations and the final distortion maps.

Accuracy comparison with previous works Figure 4.15 shows the ac-
curacy of a simultaneous direct and augmented view distortion cali-
bration [72], a triangulation-based non-parametric calibration [99] and
the proposed calibration. The results from previous works have to be
compared carefully, since all of them used different OSTG. However,
Figure 4.15 shows that the proposed calibration is at least a factor of
two more accurate than the other approaches.

Compared to the resolution of the human eye A healthy human eye
has a resolution of 0.6 to 0.8 arcmin. This means that two objects cannot
be distinguished from each other if the angle between them is smaller than
the resolution. For the best case (0.4 arcmin, see Test (2) in Table 4.2),
this means that the user cannot spatially differentiate between the real
object and its overlay as long as the eye position is detected correctly.
However, the maximal errors of up to 2.26 arcmin (Test (4)) are still
visible to the user.
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Figure 4.15.: Accuracy comparison between different calibration methods. The
red and blue plots represent the mean and the maximal angular
errors, respectively. Values for the simultaneous direct and augmented
view distortion calibration (D/AVD) and for the triangulation-based
approach are taken from [72] and [99], respectively. All values are
given in arcmin.

Number of calibration viewpoints Although a fixed number of nine
different calibrated viewpoints was suggested, it is straightforward to
extend the presented method to an arbitrary number of viewpoints. The
processing time is not influenced by a higher number of viewpoints,
though the memory need increases.

Evaluation by the user The proposed method only covers the system
calibration and disregards the continuous eye tracking adaptation. All
presented results were observed by cameras in a static scenario. The
final accuracy, however, will also depend on how well the user’s eyes
are tracked.

Summary A camera-based method for calibrating OSTG was presented
in this chapter. The calibration is automated and therefore completely
interaction-free. It results in an optimized rendering frustum together
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with an arbitrary number of distortion maps from different viewpoints.
In order to render a scene the current eye position is needed. It is used
to adapt the frustum and to interpolate the distortion map. Then the
scene is rendered off-screen and subsequently corrected by using the
distortion map. It is shown that the proposed method works well and
produces so far unmatched accuracy. The maximal deviations are less
than 2.26 arcmin, which are 0.33 mm at a distance of 500 mm.

It is shown that a triangulation of the display pixels is not possible in
OSTG with free-form light-guides as used in the Epson BT-200. However,
for OSTG using simple light-guides (e.g. STAR 1200XLD by Vuzix) a
triangulation is applicable.

In this work the calibration and the rendering was performed on the PC
and the rendered scene was streamed to the OSTG device. In future, the
device shall use these calibration results (frustum and distortion maps)
by itself. Moreover, an eye tracking will be implemented and the accuracy
of the whole setup will be evaluated in a user study.
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In CAOS, the amount of different input devices is as high as the diversity
of interventions. Their usage depends on the preferences of the surgeon
and the availability inside the clinic. OrthoCAD only requires a pointing
device and a touch screen. However, in certain cases it is beneficial to use
additional devices, for example a 3D scanner, which helps to digitize a
larger part of the bone’s surface. In order to allow OrthoCAD to perform
any CAOS intervention, a method to allow arbitrary input devices was
integrated. The same applies to the other data flow direction. The
planning data and additional other information inside OrthoCAD can
be provided to different execution devices as well as visualization or
simulation environments (e.g. MATLAB).

For this purpose, OpenIGTLink is used as protocol allowing arbitrary
input and consumer devices to be connected to OrthoCAD. They can con-
nect at runtime and send or receive single data objects or streams of data.
As explained in Chapter 3, OrthoCAD is based on MITK. OpenIGTLink
was integrated into MITK, since an efficient implementation required
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adaptations of core components of MITK. The integration was con-
tributed to the official open sourced MITK repository. Additionally, a
performance analysis was carried out. This implementation, together
with the results, were previously published in [103].

This chapter starts with the requirement analysis (Chapter 5.1), followed
by the architectural overview (Chapter 5.2) and the methodology for
validating the developed architecture (Chapter 5.3). The results of the
validation are presented, discussed and finally concluded (Chapter 5.4
and 5.5).

5.1 Requirements

In order to connect to arbitrary input and output devices and send or
receive data from them, the OpenIGTLink protocol was integrated into
MITK, which so far did not support OpenIGTLink. Thereof, the following
requirements were derived for MITK-OpenIGTLink as a communication
layer for MITK:

Extensibility The new module must easily integrate into the pipeline
structure of MITK and its modules to allow for interchangeabil-
ity of e.g. data processing methods. Using new and customized
OpenIGTLink message types must be possible.

Flexibility The data transmission and its processing inside the MITK
pipelines have to be connected in a flexible way in order to easily
exchange the processing steps.

Performance High frame rates and low latency are necessary for real-
time applications. The US image data transfer shall run with
30 Hz, since typical real-time US devices run with such frame rates.
Tracking data shall be transmitted with up to 1000 Hz in order
to cover robotic applications [81]. The latency for tracking data
caused by MITK shall be one order of magnitude smaller than the
latency caused by the tracking device, which is the time from when
the tracking device is sampled until tracking data is available on
the PC.
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Application-wide availability The module should provide an application-
wide availability of all filters and devices that are necessary for an
OpenIGTLink connection. This makes multiple configurations of
the same component unnecessary.

Portability MITK-OpenIGTLink should be implemented in C++ and
run on Windows, Linux and Mac.

Robustness Messages must not be discarded as long as the user wants
to process all of them. It must be configurable to keep only the
latest message or all.

Usability The module must be easy to integrate for developers and the
resulting application or plugin should be easy to use for the end user.

5.2 Architecture

OpenIGTLink support is implemented as a module within the MITK
toolkit providing standardized independent communication across toolkits
and medical devices. The implementation complies with the MITK
software process [91] using a continuous integration, a database for
tracking changes and a dedicated release process with manual tests at
the application level.

An architectural overview of MITK-OpenIGTLink is given in Figure 5.1.
MITK-OpenIGTLink is structured in the following three layers:

Network Layer: handles the communication with the OpenIGTLink SDK

Processing Layer: processes incoming and outgoing messages

Application Layer: handles the management of connections

Figure 5.1 shows the classes used to connect MITK pipelines to other
OpenIGTLink devices. A pipeline is a concatenation of processing filters,
where each filter does a particular job and sends the result to the next
stage of the pipeline. This approach is based on ITK [104]. In ITK,
pipelines are implemented as pull-pipelines, meaning that the processing
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is triggered on demand by any filter inside the pipeline (in general the last
one). This stands in contrast to a push pipeline in which the processing
is started from the first pipeline component.

Figure 5.1.: The MITK-OpenIGTLink layered architecture. The network layer wraps
the OpenIGTLink classes and manages the communication. The process-
ing layer connects the OpenIGTLink device to the processing pipeline.
The OIGTLDeviceSource is used for 1-to-1-connections, whereas the
OIGTLMessageProvider can handle several conversion filters and sup-
ports streams. The OIGTLDeviceSource is statically coupled to the
conversion filters, whereas the OIGTLMessageProvider is only loosely
coupled to them. Both versions can run in parallel but normally only
one of them is used.
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5.2.1 OpenIGTLink SDK

The OpenIGTLink SDK consists of two parts: a low level C library and
a higher level C++ library. OpenIGTLink is designed to run on top
of the transmission control protocol (TCP) stack. As an alternative
to TCP, the user datagram protocol (UDP) is supported. There is no
session management, which is the reason why an OpenIGTLink message
contains all necessary information for the receiver to interpret it (data
type, etc.). This simplifies the protocol but also increases the overhead
of each message. Besides the standard messages for exchanging tracking
data, images, control and monitor information, custom message types can
be defined. The protocol version 2 also specifies a querying mechanism
used to request single messages or streams of a given message type.

5.2.2 Network Layer

The network layer interfaces with the OpenIGTLink protocol and en-
capsulates its implementation as provided in the SDK. It contains all
classes for establishing and managing OpenIGTLink communications
and messages.

Client-Server Architecture

The central class in the network layer is the OIGTLDevice. An OIGTLDe-
vice is responsible for the communication with other toolkits or devices
supporting OpenIGTLink. For sending and receiving messages it uses the
OpenIGTLink sockets. The device runs three different threads to contin-
uously check for new connections, receive messages and send messages.
This allows the server to accept new client connections while it is already
communicating with other clients. The OpenIGTLink client-server ar-
chitecture is implemented by two specializations of the OIGTLDevice:
OIGTLClient and OIGTLServer.

101

http://openigtlink.org/library.html


Chapter 5. OrthoCAD I/O Services

In OpenIGTLink a server can connect to an arbitrary number of clients
but each client can only connect to one server. Server and clients are
classified by their role during the connection establishment and not during
the connection itself. The client is the device that requests the connection
with the server. During the connection both devices (client and server)
can request or send data.

Messages

Incoming and outgoing messages are stored in an OIGTLMessageQueue.
These queues can be configured in two different modes. Depending on
the application, it might be necessary to process all incoming messages or
only the latest one. The outgoing message buffer is used when messages
are created faster than they can be sent. An additional command queue
stores the incoming commands. The standard defines four different
querying commands:

∙ a message requesting a single object of the specified data

∙ a message informing that the requested data is not available

∙ a message requesting a stream of the specified data

∙ a message stopping the current stream

The query mechanism that results from these command messages can
be used for a two-way communication, e.g. to send control commands
to an US machine and receive image data. This query mechanism is not
used by all existing OpenIGTLink implementations. In these cases the
stream automatically starts as soon as client and server are connected to
each other. To be compatible with such implementations it is possible to
configure MITK-OpenIGTLink to also send messages upon connection.
The commands are received and sent from the OIGTLDevice, however,
the handling of these commands is done in the processing layer.

Custom message types can be created and have to be registered in the
OIGTLMessageFactory before they can be used. This can be done at
compile and at run time. Standard types are automatically added to the
factory at compile time.
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Figure 5.2.: Sequence diagram for the query of an image. An OIGTL device is
requesting an image. The message provider looks for available im-
age sources inside the module context, connects itself to the fitting
conversion filter (ImageToOIGTLMessageFilter) and requests an im-
age. Subsequently the image is provided, converted and sent to the
requesting device.

The factory is registered as a C++ Micro Service allowing a system-wide
access to the factory. C++ Micro Services are a low level mechanism for
a service-oriented modular system [91] . The goal of this architecture is
to hide complex tasks behind a simple service interface and to provide
it to other components during run-time. After registering a service in
one module it is available to other modules. The selection of services
is based on properties and priorities and is managed by the so-called
module context. In this way functionality can be easily extended by
registering a new service with a higher priority.
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5.2.3 Processing Layer

The processing layer holds the components establishing the connection
between ITK style pipeline filters and the OpenIGTLink devices in
the Network Layer. This conversion is important since existing MITK-
IGT components are mainly implemented as such filters. The first
step, a so-called conversion filter, converts either MITK data types into
OpenIGTLink messages or vice versa. Custom conversion filters can be
easily integrated, however, for the most common data types used in MITK,
conversion filters are already available. In the second step, the message
has to be sent or received. Alternatively, MITK-OpenIGTLink can also
be used without the pipeline by directly sending OpenIGTLink messages
to the OIGTLDevice as indicated in Figure 5.1 by the connection from
the application layer to the OIGTLDevice. This might be useful if the
pipelining concept is not used.

5.2.4 Application Layer

The application layer consists of ready-to-use MITK plugins and the
MITK-OpenIGTLinkUI module. The latter contains several Qt GUI
widgets that allow the developer to easily integrate the new module into
his application. An OpenIGTLinkManager widget, for example, can be
used to manage the OpenIGTLink devices. In addition to these new
plugins, existing plugins for IGT and US applications were updated in
such a way that, instead of hardware devices, these modules can also
connect directly to OpenIGTLink network devices.
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5.3 Performance Analysis

In order to assess the performance of latency and frame rate parameters
in realistic and reproducible environments, two recently set up high-end
computers1 were used. To neglect any falsification caused by the network,
the two PCs were directly connected to each other.

The experiments were performed on Linux. Time synchronization between
both computers was achieved by using the precision time protocol [105]
and its implementation, the precision time protocol daemon (PTPd).
PTPd is open-source and only available on Linux.

Previous experiments with the OpenIGTLink protocol [81], [87] mainly
focused on the network performance. Clarkson et al. and Tokuda et al.
tested the latency from the generation of the OpenIGTLink message to
the receiving in a second PC. In contrast, the proposed analysis covers
the whole pipeline, from the data generation in MITK to the rendering
of the data in the other MITK instance.

In order to evaluate the latency of all steps of the pipeline presented before,
six measurement points (MP) are defined as illustrated in Figure 5.3. In
each MP the current timestamp and the index of the current message were
recorded. The rendering process was considered in the tests by performing
the tests one time with rendering and one time without. However, in
both cases the messages are received, converted and processed in the
pipeline. There is no MP inside the rendering, since it normally runs
slower than the processing. Certain processes need to run with high
frame rates (e.g. 500 Hz), whereas the rendering is limited by the refresh
rate of the monitor (typically 60 Hz). For this analysis the rendering was
set to 30 Hz.

1 CPU: Core i7-5960X 3.5 GHz 8 cores, RAM: 32 GB, Storage: SSD, GPU: Geforce
GTX970 4 GB PCI-E x16, OS: Ubuntu 14.04
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Figure 5.3.: Measurement points used for the performance analysis.

5.3.1 Experiment 1: Transmission of Tracking Data

In order to test the transmission, 10000 messages containing tracking
data in 16 channels with four frame rates of 128, 256, 512 and 1000 Hz
were transmitted. The tracking data was previously generated and read
from file. During this experiment the rendering was turned off, since
it is application-specific how this data is visualized. In the easiest case
every channel could be rendered as a single point. However, on a modern
computer this would not have an influence on the test results.

5.3.2 Experiment 2: Transmission of Image Data

An US stream was simulated by transmitting 1000 grayscale image
messages with an US-typical resolution of 640×480 with varying frame
rates of 16, 32, 64, 128, 256 and 512 Hz. The images were taken from
a standard USB webcam. All measurements were performed two times,
with rendering enabled and with rendering disabled.
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5.3.3 Experiment 3: Transmission of HD Image Data

Similar to Experiment 2, 1000 grayscale image messages with a Full-HD
resolution of 1920×1080 with frame rates of 16, 32, 64 and 128 Hz were
transmitted. All measurements were performed two times, with rendering
enabled and with rendering disabled.

5.4 Results

The first part of this section depicts two usage scenarios based on the
MITK-OpenIGTLink module as they are used in OrthoCAD. The second
part shows the results of the tests described above.

5.4.1 Usage Scenarios

The integration of the OpenIGTLink protocol into MITK allows several
interoperability usage scenarios. They range from intra-toolkit communi-
cation on the same computer to intra-toolkit communication on different
platforms and communication with medical devices and robotic systems.
The next two sections present use cases used in OrthoCAD.

Interfacing with Visualization and Simulation Environments

Through MITK-OpenIGTLink, OrthoCAD can now be easily connected
to other toolkits to exchange data and additional information. OrthoCAD,
for example, interacts with a simulation environment running in MATLAB
(see Figure 5.4). This environment is used to experiment on new control
strategies and algorithms for an HHRD (see Chapter 7.6). Additionally,
it can be used to compare the real control system with the simulation.
The two applications can run on different platforms (e.g. Windows and
Linux) and on different CPU instruction set architectures (x86 or x64).
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Figure 5.4.: OrthoCAD streaming data to an HHRD simulation environment in
MATLAB. Both toolkits can run on different platforms. After connec-
tion OrthoCAD automatically starts streaming data.
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Figure 5.5.: OrthoCAD receiving input data from an US workstation. US worksta-
tion extracts the bone surface and sends it to OrthoCAD.
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Interfacing with Arbitrary Input Devices

Through MITK-OpenIGTLink, arbitrary input devices can now be uti-
lized in OrthoCAD. After the surgeon selected the OpenIGTLink input
method inside the OrthoCAD GUI, the application listens to connected
input devices. Once the data is received and understood it is added to
the data storage. This is illustrated by interfacing OrthoCAD with an
ultrasound workstation (see Figure 5.5). The US workstation runs an
image processing framework that is able to extract the bone’s surface
shown in the US scans. This surface, in form of a point cloud consisting
of the vertices, is sent to OrthoCAD and is subsequently visualized there.
Whereas OrthoCAD runs on a Windows workstation, the US application
runs on Linux.

5.4.2 Performance Analysis

In the following sections, the results of the performance tests are shown
for the tracking data transfer (Section 5.4.2), the image transfer (Sec-
tion 5.4.2) and the HD image transfer (Section 5.4.2). For each of those
individual evaluations, the results are presented in two ways. First, a
boxplot diagram is given showing the latency produced by the compo-
nents of the pipeline. Since these values do not change significantly from
one test run to another, only one diagram per experiment is shown. Each
test run uses a different frame rate and calculates the mean values for
transmitting 10000 tracking or 1000 image messages. Second, tables
showing the average, median, minimal and maximal values of the test
runs are given.

Tracking Data Transfer

Figure 5.6 shows a boxplot diagram of Experiment 1. The first boxplot
shows the time required for data generation. The second and fourth
boxplot show the time a message lies in a buffer. As explained above this
is not processing time but idle time and has a major influence on the
total result. The third boxplot is the time the message is sent from one
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socket to the next one. The fifth one is the time necessary to convert the
incoming message into an MITK datatype and the sixth boxplot shows
the total latency from generation till conversion. As shown in the figure,
the two buffers produce the highest latencies in the pipeline. The higher
the frame rate the lower the buffer idle time and, thus, the lower the
total latency. This behaviour can also be seen in Table 5.1. The average
latencies, depending on the frame rate lie between 2.81 and 7 ms.
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Figure 5.6.: Experiment 1: Latency in transmission of tracking data. 10000 messages
with tracking data of 16 channels were sent at 1000 Hz. The average
total latency was 2.81 ms.

Frame rate Average Median Min Max
[Hz] [ms] [ms] [ms] [ms]

128 7.00 8.38 1.89 10.65
256 3.13 3.08 1.95 6.19
512 2.90 2.84 1.64 4.81
1000 2.81 2.76 1.48 4.65

Table 5.1.: Measurement result for tracking data with different frame rates and
10000 recorded messages.
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Image Transfer

Figure 5.7 shows the result for Experiment 2 in which image data with a
fixed resolution of 640×480 pixel was sent over the network. Compared
to Experiment 1, the major part of the latency is not produced by the
buffers but by the network itself. The average latency, depending on
the frame rate and if rendering is enabled, lies between 10.5 and 21 ms
(see Table 5.2 and 5.3). Until 128 Hz the rendering only causes minor
latencies. However, for higher frame rates it causes a significant increase
in latency of almost 100 %.
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Figure 5.7.: Experiment 2: Latency in transmission of image data (640×480 pixel).
1000 messages were sent at 128 Hz with disabled rendering. The data
transmission is the most time consuming step.
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Frame rate Average Median Min Max
[Hz] [ms] [ms] [ms] [ms]

16 13.77 13.75 12.44 15.20
32 13.01 13.00 11.57 14.96
64 12.57 12.58 10.65 14.42
128 11.55 11.54 9.66 13.79
256 10.55 10.31 8.54 23.01
512 11.20 10.52 8.36 25.43

Table 5.2.: Measurement result for image data with different frame rates and 1000
recorded messages (rendering disabled).

Frame rate Average Median Min Max
[Hz] [ms] [ms] [ms] [ms]

16 14.17 14.11 11.12 18.68
32 13.66 13.57 10.69 19.09
64 12.60 12.61 8.99 17.80
128 12.64 12.48 9.56 20.57
256 18.36 18.84 8.87 30.86
512 21.71 14.28 8.47 53.44

Table 5.3.: Measurement result for image data with different frame rates and 1000
recorded messages (rendering enabled).

HD Image Transfer

Figure 5.8 shows the latencies for Experiment 3 in which HD grayscale
image data with a fixed resolution of 1920×1080 pixel was sent over
the network. Due to the increased message size, the major part of the
latency is produced in the network itself. The average latency, depending
on the frame rate, lies between 65 and 69.5 ms (see Table 5.4). Unlike
the results in Experiment 2, these results are only slightly influenced by
the rendering.
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Figure 5.8.: Experiment 3: Latency in transmission of HD image data. 1000 messages
were sent at 128 Hz with disabled rendering. The data transmission is
by far the most time consuming step.

Frame rate Average Median Min Max
[Hz] [ms] [ms] [ms] [ms]

16 69.45 69.57 60.75 74.72
32 60.86 60.86 51.07 71.13
64 68.90 68.96 50.29 84.47
128 65.09 64.99 55.21 75.95

Table 5.4.: Measurement result for HD image data with different frame rates and
1000 recorded messages.
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5.5 Conclusion
The experiments were carried out under Linux utilizing the PTPd im-
plementation. Due to a missing open-source alternative on Microsoft
Windows and missing hardware for OS X, tests were not performed on
these platforms.

Tokuda et al. [81] state that the frame rate of tracking devices is in the
range of 40 - 375 Hz and the one for robotic applications in the order
of kHz. The experiments show that tracking data can be sent with
more than 1000 Hz. The highest measurable frame rate in the test setup,
1000 Hz, resulted in a latency of 2.81 ms on average. In contrast, the
lowest measured frame rate was 128 Hz and resulted in a latency of 7 ms.
According to Teather et al., an NDI Polaris tracking system has a latency
of approximately 75 ms [106]. Wu and Taylor state that electro-magnetic
tracking systems have an even higher latency [107]. Considering these
tracking latencies an additional latency of 7 ms is acceptable.

The fact that the latency is decreasing with increasing frame rates is due
to the implemented buffers that cause a big part of the total latency. This
means that the faster the buffers are polled, the lower the latency will
be. Therefore, the latency can be decreased by running the ”consuming“
pipeline with a higher frame rate than the transmission, e.g. the trans-
mission runs with 128 Hz and the pipeline with 512 Hz. Another way to
improve this behavior could be to couple the message reception with the
pipeline by triggering the pipeline update once a message is received.

According to [81], around 32 Hz are sufficient for real-time US imaging.
The implementation measures up to 512 Hz with enabled rendering and
a median latency of 14 ms. HD grayscale images were processed with
128 Hz and a latency of 66 ms. Theoretically, HD RGB images could
be sent with up to 43 Hz (128/3 ≈ 43), which is still more than the
recommended 32 Hz. Therefore, the presented implementation is able to
cover most applications utilizing image messages.

Enabling the rendering of transmitted images only showed differences
in Experiment 2 but not in Experiment 3. In Experiment 2, US image
data was transmitted with up to 512 Hz and a difference occurred for
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frame rates higher than 128 Hz. In Experiment 3, HD image data was
transmitted with up to 128 Hz. It is assumed that the PCs are able to
transmit and process images up to 128 Hz, independent of the image size,
but they are partly overloaded for higher frame rates. This is based on
the fact that the increase in processing time does not correlate with the
increase in image size when comparing US with HD images. In MITK the
handling of US and HD images is exactly the same, since the management
differentiating between the image sizes for rendering purposes is running
on the GPU and does not influence the measurement.

A direct comparison between the presented results and the previously
published experiments of Clarkson et al. [87] and Tokuda et al. [81] is
not possible since they concentrated on the network performance and
their OpenIGTLink implementation. The presented analysis, on the
contrary, covers the whole pipeline, from the data conversion in MITK
to the rendering of the data in the other MITK instance. Clarkson
and Tokuda state a latency of around 0.3 ms or 0.36 ms, respectively,
for a tracking data transfer with 128 Hz, whereas the presented results
show a latency of 7 ms. [87] and [81] measure the time from creating an
OpenIGTLink message at the sender host until the end of the deserial-
ization at the receiver host. These measurements are very interesting
concerning the OpenIGTLink interface but do not give information about
the performance of an application. They do not include visualization nor
management of messages. In the presented tests the application-specific
latency is measured: generation of real data (as MITK data types), con-
version into messages, transmission and vice versa on the receiving side.
Moreover, buffers are implemented to easily integrate OpenIGTLink into
the pipelined structure of MITK. The most time-consuming component
in the tests by [87] and [81] is the networking. In the 128 Hz tracking
data test, an average network latency of 0.19 ms was reached. Creation,
serialization and deserialization can be considered as less time consum-
ing as the networking, which means that the implementation performs
similarly to [87] and [81].
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For image data transfers with frame rates higher than 512 Hz the network
load was so high that the PTPd synchronization packages arrived delayed.
In this scenario, two separate network connections might be necessary,
one for the data and one for the synchronization.

This chapter described how OrthoCAD can utilize arbitrary input devices
and how the data inside OrthoCAD can be used in external applications
(e.g. for testing and verification). The communication between these
environments and devices is based on OpenIGTLink. Therefore, a new
software module was integrated into MITK, which represents the base of
OrthoCAD. Performance tests were carried out and the usage scenarios
in OrthoCAD were explained. MITK-OpenIGTLink was released as
open source together with the MITK toolkit release 2016-03. MITK and
OrthoCAD can now be combined with other toolkits in a plug-and-play
manner.
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CAOS systems often utilize navigation systems and tracked surgical
instruments. These can be simple pointing devices as well as tracked
burrs or saws (active instruments). As shown in Chapter 2 such tools
are used for bone resections in orthopedic surgery. A pointing device can
be used to define resection areas, which are removed by an active and
tracked instrument. To ensure that the active instrument only removes
the defined areas, a calibration is required that not only includes the
pose of the instrument tip but also its surface. The following chapter
concentrates on medical applications, however, it can also be applied in
other fields.
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Many active instruments allow using different tool tips such as drill bits,
burrs and blades. Every time the tip is changed the tool has to be
recalibrated. Other works calibrate their tracked tools by touching previ-
ously measured registration pins [14] or by pivoting the instrument [74].
Commercial products often utilize dedicated calibration jigs that allow a
fast and accurate calibration. The fact that all these methods only work
for a limited amount of tips emphasizes the importance of a flexible and
generic intraoperative calibration technique.

The final goal is to reconstruct the 3D surface of the instrument tip in
the coordinate system of the integrated or attached tool tracker (see
Figure 6.1). By rotating the instrument in front of one or more cameras,
which are calibrated in the coordinate system of an attached tracker,
the instrument surface is reconstructed. In contrast to pivoting, the
proposed technique is able to calibrate arbitrary objects as long as they
do not contain cavities. A first version of this technique was previously
published in [108].

Chapter 6.1 summarizes the different coordinate systems of the hardware
components. Before the (tracked) camera can be used to determine the
3D surface of the instrument tip, it has to be calibrated once with respect
to the attached tracker (see Chapter 6.2). The instrument calibration is
described in Chapter 6.3. Subsequently, the accuracy analysis is described
in Chapter 6.4 and the results are provided in Chapter 6.5. Chapter 6.6
concludes the presented calibration approach.

Tracker Tracker

Milling Device

Calibration
Sphere

Adjustable and
Replaceable Tip

1cm

Figure 6.1.: The tracked calibration sphere and a milling device with adjustable and
interchangeable instrument tip.
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6.1 Setup

The calibration setup is shown in Figure 6.2. An instrument, in this case
a simplified drill, with an attached tracker is held in front of a tracked
camera. Both trackers are tracked by the navigation system defining
the world coordinate system. In order to improve the contrast of the
camera scene, a lighted white background is used. This background is
rigidly attached to the camera. For simplification the setup only shows
one camera, however the algorithms also work with two or more. The
following coordinate systems are used:

𝐶 . . . coordinate system in which the camera was calibrated
(in mm)

𝐴 . . . coordinate system of the tracker attached to the camera(s)
(in mm)

𝐺 . . . coordinate system of the voxel grid (in voxel indices)
𝑆 . . . coordinate system of the scaled voxel grid (in mm)
𝑁 . . . coordinate system of the tracker attached to the tool (in mm)
𝑊 . . . coordinate system of the navigation system (in mm)
𝐼 . . . coordinate system of the camera image (in pixel indices)

For the accuracy analysis a USB3 industry camera MQ013MG-ON
(XIMEA, Germany) with 1.3 megapixel and a lens with a focal length of
10 mm was used. The navigation system was an FP6000 (Stryker, USA)
using trackers with active LEDs.

6.2 Tracked Camera Calibration

Before the tracked camera can be used to calibrate the instrument, the
transformation 𝐹𝐴𝐶 from the camera calibration coordinate system 𝐶 to
the coordinate system 𝐴 of the attached tracker has to be determined.
The camera was calibrated with the approach of Hoppe et al. [101], which
calibrates every single pixel individually without using a parametric
model. See Chapter 4.4 for a more detailed description. This calibration
provides straight lines given by two points �⃗�𝑛𝑒𝑎𝑟,𝐶(𝑢, 𝑣) and �⃗�𝑓𝑎𝑟,𝐶(𝑢, 𝑣)
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for each single camera pixel (𝑢, 𝑣). The calibration pattern as used in a
standard pinhole-model calibration [68], [109] is replaced by a monitor
showing a horizontal and vertical cosine pattern, which is shifted by
one period. The resulting camera images are used to calculate monitor
positions �⃗�𝑖,𝐶(𝑢, 𝑣) resulting in a regression line for each camera pixel
(𝑢, 𝑣). �⃗�𝑛𝑒𝑎𝑟,𝐶(𝑢, 𝑣) indicates the beginning of the calibrated region and
�⃗�𝑓𝑎𝑟,𝐶(𝑢, 𝑣) its end. In case of the setup used in the analysis section, the
near points are approximately 70 mm, the far points 130 mm in front of
the camera.

120

Figure 6.2.: Overview showing the hardware (navigation system, tracked instrument,
tracked camera, illuminated background) and its coordinate systems.



6.2. Tracked Camera Calibration

In order to find the rigid transformation 𝐹𝐴𝐶 , a tracked calibration sphere
is moved in front of the camera. The center of the calibration sphere
𝑝𝑁 was previously determined by pivoting. With every frame {𝐹𝐴𝑊 ,
𝐹𝑁𝑊 , Image} two transformations and one image are recorded. The
two transformations 𝐹𝐴𝑊 and 𝐹𝑁𝑊 are the transformations from the
navigation system 𝑊 to the trackers 𝐴 and 𝑁 and are used to transform
𝑝𝑁 into coordinate system 𝐴 by applying 𝑝𝐴 = 𝐹𝐴𝑊 · 𝐹−1

𝑁𝑊 · 𝑝𝑁 . The
camera image shows the calibration sphere (similar to Figure 6.3a). It is
used to determine the center of the sphere in image coordinates 𝑝𝐼 . The
corresponding line 𝑙𝐶 in camera calibration coordinates 𝐶 is given by
the camera calibration. Thus, given a set of 𝑀 lines {𝑙𝐶𝑖} and 𝑀 sphere
centers {𝑝𝐴𝑖} the transformation 𝐹𝐴𝐶 is calculated using an iterative
closest point algorithm:

1. Transform the original points 𝑝𝐴𝑖 into camera coordinates 𝐶 using
the previous estimation 𝐹𝐶𝐴 ⇒ 𝑝𝐶𝑖 . In the first iteration the
identity transform is used.

2. Calculate their closest points �⃗�𝐶𝑖 on the according lines.

3. Calculate the transformation 𝐹𝐶𝐴 by matching the two point clouds
𝑝𝐴𝑖 and �⃗�𝐶𝑖 in a least square sense.

4. Repeat steps 1. to 3. until convergence.

(a) Example camera image (b) Projected centers of grid voxels

Figure 6.3.: Example camera image and projected centers of grid voxels.
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6.3 Tracked Instrument Calibration
The goal of this calibration is to find the 3D surface of the tracked
instrument given in coordinate system 𝑁 of the integrated or attached
tracker. The algorithm can be split into the following parts:

1. Record image/transformation pairs.

2. Binarize the recorded images.

3. Determine a 3D voxel grid, which contains the instrument tip, and
the transformation 𝐹𝑁𝐺 from grid to tracker coordinates.

4. Calculate the voxel-based visual hull of the instrument tip.

5. Calculate its 3D surface.

6. Optionally, fit a user-selected geometry (e.g. a sphere) into the
surface.

First, the tracked instrument is rotated in front of the tracked camera.
With every frame {𝐹𝑁𝐴, Image}, a camera image (see Figure 6.3a) and
a transformation 𝐹𝑁𝐴 from coordinate system 𝐴 of the camera tracker
to coordinate system 𝑁 of the tracked instrument is recorded.

Second, binarize the input images using an Otsu [110] calculated threshold.
The background pixels have the value 1 and the instrument tip 0.

Third, a 3D voxel grid has to be determined that contains the bounding
box of the instrument tip with an additional margin. The coordinate
systems 𝐺 and 𝑁 of the grid and the tracker are not rotated with
respect to each other but only scaled and translated. Therefore, the
transformation 𝐹𝑁𝐺 is defined as:

𝐹𝑁𝐺 = 𝐹𝑁𝑆 · 𝐹𝑆𝐺 =

⎛⎜⎜⎝
1 0 0
0 1 0 �⃗�𝑁𝑆

0 0 1
0 0 0 1

⎞⎟⎟⎠ ·

⎛⎜⎜⎝
𝑠𝑥 0 0 0
0 𝑠𝑦 0 0
0 0 𝑠𝑧 0
0 0 0 1

⎞⎟⎟⎠ (6.1)

The scaling factors 𝑠𝑥, 𝑠𝑦 and 𝑠𝑧 are chosen by the user and define the
resolution of the reconstruction, which has a major influence on the
final accuracy. The extents of the grid are calculated by a series of
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geometric steps: In the images the bounding boxes of the instrument
tip are calculated. The corners of these bounding boxes are transformed
into the coordinates of the instrument tracker 𝑁 (see Figure 6.4). The
extents of the grid are defined as the bounding box including all the
transformed corner points plus an additional margin. The transformation
�⃗�𝑁𝑆 represents the center of the grid. For a detailed description of this
algorithm see [108].

Forth, now the 3D voxel grid is defined such that it contains the instrument
tip. The next goal is to find all grid voxels that belong to it (visual hull).
The algorithm is a voxel-based version of the one described by Martin

Figure 6.4.: The reconstructed tool inside the calculated bounding box given in
coordinate system 𝐺 with 𝑠𝑥 = 𝑠𝑦 = 𝑠𝑧 = 0.25. Surface points (*) and
the transformed bounding box corner points (+) are depicted.
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Figure 6.5.: The visual hull adaptation process of the instrument tip, in this case a
burr. Only voxels with values smaller or equal to 1 are backprojected.

A voxel value of 0 means that this voxel belongs to the instrument,
whereas a maximum value of 𝑀 , where 𝑀 is the number of collected
images, means that it is part of the background. Values between 0 and 1
can be added to the voxel since the backprojection of the voxels is done
with subpixel accuracy and, therefore, an interpolation is necessary. The
basic procedure can be summarized as follows:

1. Transform each voxel position �⃗�𝐺𝑖 into coordinate system 𝑁

�⃗�𝑁𝑖 = 𝐹𝑁𝐺 · �⃗�𝐺𝑖 with 𝑖 = 0, ..., 𝐻 − 1 (6.2)

where 𝐻 is the number of voxels in the grid.

2. For each image/transformation pair 𝑗 and each voxel 𝑖
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and Aggarwal [111]. In all 𝑀 binary images the instrument tip is shown
as black and the background as white pixels (see Figure 6.3). By using
the camera calibration the white background pixels can be converted into
a set of lines. Each of these lines intersects with voxels in the grid and
removes a part of it. With every new image there are more lines that
remove parts of the grid until only the visual hull is left. However, this
version implies that every pixel in all images from all viewpoints has to
be checked, which is not performing well. Thus, the inverse approach is
implemented. Instead of intersecting the pixel lines with the grid, the
grid voxels are projected back into the images. The pixel value at the
projected voxel position is added to the voxel’s value. This process is
shown in Figure 6.5.



6.4. Accuracy Analysis

a) Transform each voxel position �⃗�𝑁𝑖 into camera coordinates

�⃗�𝐶𝑖𝑗 = 𝐹𝐶𝐴 · 𝐹𝐴𝑁𝑗 · �⃗�𝑁𝑖 (6.3)

b) Use the camera calibration to find the pixel position �⃗�𝐼𝑖𝑗

corresponding to the calculated �⃗�𝐶𝑖𝑗 . Figure 6.3b shows these
backprojected pixels for one specific image.

c) Since �⃗�𝐼𝑖𝑗 are given with subpixel accuracy their gray values
are interpolated. These values are added to the corresponding
grid voxels.

Fifth, a marching cubes algorithm as described in [112], which takes a
threshold as input parameter, is used to calculate the surface of the tool.

Sixth, optionally CAD models or geometries (e.g. a sphere) can be fitted
into this 3D surface in order to have a simplified representation that
reduces computation time in certain applications.

6.4 Accuracy Analysis

Different tests were carried out to determine the accuracy of the proposed
calibrations:

1. The previously described calibration sphere was pivoted several
times to find its sphere center. This position was used as ground
truth.

2. The tracked camera calibration (TCC) was performed using the
calibration sphere and compared to the pivoting average of the
first test. The position of the sphere was found by calculating
the intersection point of the lines {𝑙𝐶} passing through the circle
centers shown on the recorded images.

3. The tracked instrument calibration (TIC) was performed using the
calibration sphere and compared to the pivoting average of the first
test. To find the sphere center and radius, a sphere was matched
into the calculated 3D surface.
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Figure 6.6.: Hardware setup.

6.5 Results

Tables 6.1 to 6.3 show the results of the five tests. The deviations of the
position shown in Table 6.1 prove that the proposed TCC is as accurate
as the one of pivoting. The distance between the average pivoting center
and the average center resulting from the TCC is only 0.035 mm and
therefore in the same magnitude as the deviations.

In Table 6.2 the TIC of the calibration sphere is compared to pivoting.
The RMS deviations of the sphere centers calibrated using TIC are four
times higher than those of the pivoting. The absolute difference between
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4. A spherical burr instrument was pivoted in order to find its position.

5. The TIC was carried out for the spherical burr instrument. To
find the burr center and radius, a sphere was matched into the
calculated 3D surface.

Figure 6.6 shows the hardware setup used for these tests. Note that only
one of the two cameras was used for the analysis.



6.5. Results

Test Calibration Number of Position deviation Δ𝑃 𝑜𝑠

calibration RMS max
1 Pivoting 10 0.039 0.068 -
2 TCC 5 0.044 0.069 0.035

Table 6.1.: The results of test 1 and 2: The position deviations for the pivoting and
the TCC using the calibration sphere. Δ𝑃 𝑜𝑠 is the absolute distance
between the two average positions. All values are given in 𝑚𝑚.

Test Calibration Number of Position dev. Radius dev. Δ𝑃 𝑜𝑠 Δ𝑅

calibration RMS max RMS max
1 Pivoting 10 0.039 0.068 - - - -
3 TIC 5 0.164 0.299 0.015 0.025 0.31 0.0091

Table 6.2.: The results of test 1 and 3: The position and radius deviations for the
pivoting and the TIC using the calibration sphere. Δ𝑃 𝑜𝑠 is the absolute
distance between the two average positions and Δ𝑅 the difference of the
reconstructed radius to the measured one. All values are given in 𝑚𝑚.

The position errors in Table 6.3 show that for an instrument tip that is not
perfectly spherical the TIC computes positions with smaller RMS values
than the pivoting. The error distribution of the radius reconstruction was,
by magnitude of 10, smaller than the position reconstruction. In the last
column the radius was compared to the measured one (caliper). Since
the tip has a fluted surface, the measured radius is the maximal radius of
the burr edges and not the average. Therefore, the reconstructed radius
differs from the measured one.

The marching cubes algorithm needs a threshold. Ideally, this threshold
should be chosen to be 0.5 in the middle between 0 (black, part of the
instrument tip) and 1 (white, part of the background). Empirical tests
showed that a threshold of 0.1 yields the most accurate results. Figure 6.7
shows the original instrument tip and the result of the marching cubes
algorithm for a burr and a saw.
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the pivoting centers and the TIC centers is 0.31 mm. However, the radius
was reconstructed with an RMS error of 0.015 mm and the absolute
difference to the measured one is only 0.0091 mm.
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Test Calibration Number of Position dev. Radius dev. Δ𝑃 𝑜𝑠 Δ𝑅

calibrations RMS max RMS max
4 Pivoting 10 0.31 0.43 - - - -
5 TIC 5 0.18 0.25 0.013 0.023 0.80 0.19

Table 6.3.: The results of test 4 and 5: The position and radius deviations for the
pivoting and the TIC using a burr. Δ𝑃 𝑜𝑠 is the absolute distance between
the two average positions and Δ𝑅 the difference of the reconstructed
radius to the measured one. All values are given in 𝑚𝑚.

(a) Original burr
with a diame-
ter of 6 mm

(b) Reconstructed
burr given in
coordinate
system 𝐺,
𝑠 = 1

6
mm

pixel

(c) Original saw
with a width
of 25 mm and
a thickness of
2.5 mm

(d) Reconstructed saw
given in coordi-
nate system 𝐺,
𝑠 = 1

2
mm

pixel

Figure 6.7.: Images of the original burr and saw and their reconstructed surfaces.
In both examples the scaling factors were the same in all directions
𝑠𝑥 = 𝑠𝑦 = 𝑠𝑧 = 𝑠.
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6.6 Conclusion

Whereas rigid instruments can be calibrated preoperatively, instruments
with an interchangeable instrument tip must be calibrated intraopera-
tively, inside the OR and every time the tip is interchanged or adjusted.
Therefore, it is important that the calibration is intuitive and time-
efficient. The procedure as described in this chapter utilizes a Cartesian
voxel grid to reconstruct the instrument tip. Regions of interest as well as
uninteresting regions (background) have the same resolution. Hence, the
processing of the background also consumes time. This means that the
current time consumption depends on the grid size and the grid resolution,
which in turn depends on the scaling factor 𝑠 (see Equation 6.1). The
calibration of the sphere-shaped burr as shown in Figure 6.7b approxi-
mately takes 40 s with previously recorded transformation/image pairs.
Future work will integrate an octree-based image processing, which is
more time-efficient due to the fact that regions of interest are processed
with high resolution, whereas uninteresting regions are sampled with
low resolutions.

In this chapter, three different kinds of instrument tips were reconstructed:
a simple sphere-shaped burr, a fluted sphere-shaped burr and a saw blade.
The first two were chosen since they can also be calibrated using the
pivoting calibration. The third one proofs that non-sphere-shaped tips
can be reconstructed. In general, the presented procedure is only able
to calibrate tips that do not contain cavities but — to the author’s
knowledge — tips with cavities are of little avail.

The used navigation system, is an active system utilizing infrared LEDs.
A single LED can be tracked with a standard deviation of 0.07 mm.
However, the tracking of the instrument tip center depends on the LED
configuration, on how many LEDs are visible and on the distance of the
instrument tip to the LEDs. Assuming the following case:

∙ a symmetrical configuration with three times three LEDs

∙ in average four LEDs are visible
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∙ the center of the instrument tip is located at a distance of 178 mm
from the center of the LEDs

In this case the center of the instrument tip can be tracked with an
accuracy of approx. 0.42 mm RMS. The exemplary instrument with
attached tracker shown in Figure 6.1 has such a configuration. The
presented calibration technique is able to determine the center of the
instrument tip with an RMS deviation of 0.18 mm.

By using only one camera the tracked instrument has to be rotated by
180∘. This is a limitation for instruments whose trackers do not have a
180∘ visibility. In order to eliminate this drawback two or more cameras
can be used. This also contributes to speeding up the calibration process
since the user has to rotate the instrument less.

In case the calibration is performed intraoperatively in the OR, it is
important that the calibration station can be kept sterile. This can
be achieved by placing the setup under a transparent and sterile cover
such that the camera(s) look through a transparent panel of known
thickness and refraction index, which can be accounted for in the camera
calibration process.

A camera-based calibration method for tracked instruments was presented.
The presented approach works generically and precisely. The accuracy was
demonstrated in several tests and by comparing it to a pivot calibration.
Moreover, the surface reconstruction of two completely different tools
was shown, a burr and a saw blade. Hence, the presented method is
also able to calibrate non-spherical instrument tips. This emphasizes
the advantage over the pivoting technique that is only able to calibrate
spherical instrument tips.
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Since the first orthopedic intervention was performed with ROBODOC
20 years ago [113], robotic systems became an integral part of many
orthopedic interventions. Stationary robots improve the accuracy but
also require adapted surgical workflows. Handheld robotic devices (see
Figure 7.1), however, are easily integrated into existing workflows and
represent a more economical solution. Their limited range of motion is
compensated by the dexterity of the surgeon.

This chapter presents a robot control system for HHRDs with multiple
degrees of freedom. The RCS implements the concept of virtual fixtures
by protecting pre- and intraoperatively constrained regions from being
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handle joint burr

Figure 7.1.: A handheld robotic device with three degrees of freedom and a milling
end effector.

The presented control system can process arbitrarily shaped constraints
(planes, wedges, triangle meshes in general). These constraints are non-
closed surfaces that do not represent closed volumes as used in other
works. These constraints are defined using OrthoCAD (see Chapter 3).

The following section shows an overview of the system and the software
architecture of the robot control system. Chapter 7.2 describes and
illustrates different control modes. Chapter 7.3 to 7.5 explain the collision
detection, the position control algorithm and the speed control algorithm
in further detail, since they play a major role in this system. The analysis
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penetrated by the end effector (e.g. a burr). In order to evade these
constrained regions, the joints as well as the device’s power is controlled.
There are two ways to react in case that the end effector collides with one
of the constraints: First and as long as possible, the end effector retreats
in order not to intersect the constraint (see Figure 7.2). Second and
in case this is not possible anymore, the end effector’s power is turned
off to put it into a safe state. By using the degrees of freedom of the
HHRD the frequency of the on/off switching of the device’s power is
decreased and almost eliminated. The milling task is more intuitive since
the end effector position is corrected automatically by the control system.
Moreover, the system is based on the control of the device’s position
rather than the applied force.



7.1. Architecture

constraint

target
position

home
position

ball joint with
retraction

3-DoF
milling device

tracker

reference
tracker

navigation
system

𝑅

𝐴
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Figure 7.2.: A 3-DoF milling device evading a constraint by adjusting the end effector
position accordingly. The home position is the position in which the
tool is located when there are no intersecting constraints. The target
position is the corrected position that does not intersect the constraints.

7.1 Architecture

The RCS consists of several components that are responsible for control-
ling the HHRD (see Figure 7.3): the path, the behavior, the kinematic
and the motor controller. Additional to the controllers there are two
components for reading input data and providing data to components
outside the RCS. The path controller receives the planning data and
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of the system is conducted using a table-top robotic milling device (see
Chapter 7.7 and 7.8). Finally, the results are shown, discussed and
concluded in Chapter 7.9 and 7.10.
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the current transformations as well as the calibrated home position. Ac-
cording to a predefined path, an offset is added to the home position.
The behavior controller receives this adapted position and computes
the target position as well as the end effector speed (see Chapter 7.4
and 7.5) These parameters are passed to the kinematic controller, which
calculates the joint parameters according to a kinematic model (inverse
kinematics). These joint parameters are sent to the motor controller
that communicates with the motors. Besides this forwarding pipeline,
there is also one for feedback. The motor controller reads the current
joint parameters and passes them to the kinematic controller, which then
computes the current position (forward kinematics) and passes it to the
behavior controller.

The path and the behavior controller are completely independent from the
hardware and can be applied to tools with any degrees of freedom. The
position control algorithm performs a collision detection (see Chapter 7.3)
to find a valid position in which the tool does not intersect any constraint.
The kinematic model of the kinematic controller must be adapted to the
hardware. Additional to the forward and the inverse kinematics, it must
also perform plausibility checks for the reachability of a given position.
It simply ensures that the computed parameters are within a range that
the hardware can reach. In case that these parameters are outside the
reachable range, the motor controller turns off the end effector.

The subsequent sections refer to the following coordinate systems:

𝐴 . . . coordinate system of the tracker attached to the HHRD
(in mm)

𝑅 . . . coordinate system of the reference tracker attached to the
patient’s bone (in mm)

𝑊 . . . coordinate system of the navigation system (in mm)

The RCS currently expects spherical burrs, however, differently shaped
burrs can also be used after adapting the collision detection algorithm.
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RCSOrthoCAD

Calibration

Planning

Interaction

Visualization

Motor
Controller

Kinematic
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Path
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Calibration
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Parameter
Provider

Navigation
System HHRD

Figure 7.3.: Overview of the software components of the RCS and OrthoCAD. The
path controller receives the planning data from OrthoCAD and the
current position from the navigation system. It adapts the home position
according to the predefined path and passes it to the behavior controller.
The behavior controller computes the speed and target position. The
kinematic controller calculates the joint parameters and passes them
to the motor controller. The motor controller updates the HHRD and
reads the current joint parameters. The calibration provider imports
the calibrations and updates the controllers. The parameter provider
collects calculated parameters and supplies them to the visualization
on request.
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7.2 Control Modes
The RCS can run in three different modes depending on the available
robot and the surgeon’s selection. The most basic mode is the power-
controlled mode (PCM) in which only the end effector’s speed of rotation
is controlled. The position of the end effector stays rigid. This implies
that the end effector stops running as soon as the target position differs
from the home position (see Figure 7.4a). This mode can also be used for
rigid tools (0-DoF). In the evasive mode (EM), the end effector’s position
is controlled. As explained in the previous sections, the end effector
deflects in order to avoid penetrating a constraint (see Figure 7.4b). As
soon as the end effector reaches its maximal deflection, the power of the
end effector is turned off. This stops the milling process and therefore
protects the patient. The smoothing mode (SM) is similar to the evasive
mode with the difference that the end effector moves along a predefined
path (see Figure 7.4c). In the standard case this is a circular path lying
in the xy-plane of the end effector’s coordinate system. Due to this
movement, smoother surfaces are milled.

The controllers are set up depending on the control mode. The path
controller is inactive in the power-controlled and evasive mode but modi-
fies the home position in the smoothing mode. The behavior controller
is running independently of the mode. The kinematic model inside the
kinematic controller has to be adapted to the hardware and the mode. In
the case of the power-controlled mode, a kinematic model with 0-DoF has
to be set. Therefore, the only difference between the power-controlled and
the evasive mode is the kinematic model. The motor controller depends
only on the hardware and not on the mode.

7.3 Collision Detection Algorithm

The collision detection component finds any collision between the end
effector movement and the defined constraints. A constraint is a surface
consisting of one or more triangles. A typical discrete approach (a
posteriori) finds a collision after it occurred. A continuous approach
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(a) Power-controlled (b) Evasive (c) Smoothing

Figure 7.4.: Behavior of control modes. The dashed line represents a slow movement
of the robotic device by the surgeon. The big sphere represents a
constraint. The smaller sphere represents a spherical end effector. The
pink area indicates the milling area. In the case of the power-controlled
mode, the end effector stops as soon as the constraint is touched. By
using the evasive mode, the end effector is able to move around the
constraint. While using the smoothing mode, the end effector moves
around in circles.

The convex hull of a linear sphere movement trajectory is a capsule.
Therefore, the presented algorithms are optimized for finding collisions of
capsules with given triangle meshes. For simplicity and optimization this
collision detection is performed in the triangle’s base coordinate system
𝑇 . In this coordinate system, the first triangle corner coincides with the
origin, the second one lies on the positive x-axis and the third one lies in
the xy-plane with a positive y-coordinate (see Figure 7.5).
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(a priori) predicts the movement of the objects and finds a collision
before it occurs. In the presented setup, a continuous approach cannot be
applied, since there are two movements: the movement of the human hand
and the movement of the end effector (caused by the joints). Whereas
the movement of the end effector is controlled, the human movement
is difficult to predict, since there is only an optical navigation system
without additional sensors (tremor prediction normally uses high-speed
6-DoF gyroscopes, see for example [41]). Therefore, a discrete approach
that calculates the collision for a given sphere movement (spherical end
effector) is used.
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Figure 7.5.: Optimized base coordinate system of the capsule triangle collision
algorithm. The z-coordinate is always 0, �⃗�0 and �⃗�1 lie on the x-axis
and �⃗�0 is located in the origin of the coordinate system. The plane in
which a triangle lies is split into seven regions by nine line segments.
The lines are defined by their normals �̂�0 to �̂�8. The region in which a
projected point �⃗� lies is indicated by the sign of the distances to the
lines. If a point lies inside the triangle, the distance to line 0, 1 and 2 is
positive. If a point lies beneath line 0, the distance to line 0 and 4 is
negative and the one to line 3 is positive.

The sphere movement is defined by the start position 𝑝 and the target
position �⃗� of the sphere center (see Figure 7.6). The algorithm returns
a factor 𝑠 that indicates how far the sphere can move from 𝑝 to �⃗� until
it collides with the triangle. The factor 𝑠 is given in percent: 0.0 means
that the sphere at position 𝑝 already collides with the triangle whereas
1.0 means that the sphere can move from 𝑝 to �⃗� without intersecting the
triangle. A complete overview of all parameters is shown in Figure 7.7.
These parameters are:

�⃗�: The move vector from 𝑝 to �⃗�, �⃗� = �⃗� − 𝑝

�⃗�: The normal vector of the triangle
�⃗�: The point of contact of the sphere on the triangle
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𝑠

constraint

𝑝 �⃗�

Figure 7.6.: The sphere movement (capsule) from 𝑝 to 𝑞 and the factor 𝑠 indicating
how far the sphere can move.

The collision detection algorithm consists of two parts. First, the nearest
point on the triangle �⃗� is calculated in order to know if the movement �⃗�
points towards the triangle. This is the case if �⃗�𝑇 · �⃗� < 0. In case the
movement points towards the triangle, the second part of the algorithm is
executed to find 𝑠min and �⃗�. Figure 7.8 shows a flowchart of the collision
detection algorithm.
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�⃗�: The “best guess” position is the position of the sphere center where
it touches the triangle

�⃗�: The nearest point to 𝑝 on the triangle (independent of �⃗�)
�⃗�: The “away vector” from �⃗� to 𝑝, �⃗� = 𝑝 − �⃗�. �⃗� is only parallel to �⃗�

if �⃗� lies inside the triangle. This vector is independent from the
movement and only depends on the initial position 𝑝

�⃗�: The vector from �⃗� to �⃗� that is called “move plane normal”. It defines
the plane in which the sphere can move without intersecting the
triangle. �⃗� only equals the triangle normal �⃗� in certain cases. The
move plane normal depends on the movement of the sphere
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(a) Example 1: Collision inside the triangle
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𝑠
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(b) Example 2: Collision on the edge of the triangle

Figure 7.7.: Two examples of a sphere movement colliding with a triangle. All
parameters calculated in the collision detection are shown. Note the
difference between the vectors �⃗�, �⃗� and �⃗� as well as the points �⃗� and �⃗�.
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Figure 7.8.: The collision detection algorithm calculating the collision between a
capsule and a triangle. For simplicity reasons invalid cases are not shown.

7.3.1 Nearest Point on Triangle Algorithm

In order to calculate the nearest point �⃗� to the sphere center 𝑝 on the
triangle, the center 𝑝 is transformed into base coordinates (𝑢𝑥, 𝑢𝑦, 𝑢𝑧)𝑇

and dropped into the xy-plane (𝑢𝑥, 𝑢𝑦)𝑇 . This point may lie in one of
seven possible regions: inside the triangle, perpendicular above or below
one of the triangle sides or such that one of the triangle corners is nearest.
These seven regions are defined by nine straight lines (see Figure 7.5).
The combination of oriented distances to these lines

𝑑𝑖 = �̂�𝑇
𝑖 · �⃗� − 𝑐𝑖 (7.1)
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where �̂�𝑖 is the unit normal vector of the line, 𝑐𝑖 the corresponding
Hesse constant and �⃗� an arbitrary point in the xy-plane, can be used to
distinguish the seven regions. In coordinates 𝑇 , this results in

𝑑0 = 𝑦
𝑑1 = 𝑛1𝑥 · (𝑥 − 𝑥1)+ 𝑛1𝑦 · 𝑦
𝑑2 = 𝑛2𝑥 · 𝑥+ 𝑛2𝑦 · 𝑦
𝑑3 = 𝑥
𝑑4 = 𝑥 − 𝑥1
𝑑5 = 𝑛1𝑦 · (𝑥 − 𝑥1)− 𝑛1𝑥 · 𝑦
𝑑6 = 𝑛1𝑦 · (𝑥 − 𝑥2)− 𝑛1𝑥 · (𝑦 − 𝑦2)
𝑑7 = 𝑛2𝑦 · (𝑥 − 𝑥2)− 𝑛2𝑥 · (𝑦 − 𝑦2)
𝑑8 = 𝑛2𝑦 · 𝑥− 𝑛2𝑥 · 𝑦

(7.2)

Figure 7.5 shows the regions and the corresponding signs of the oriented
distances. Depending on the determined region, the nearest point �⃗� on
the triangle is calculated:

𝑑0 ≥ 0, 𝑑1 ≥ 0, 𝑑2 ≥ 0 → �⃗� = (𝑢𝑥, 𝑢𝑦, 0)𝑇

𝑑0 < 0, 𝑑3 ≥ 0, 𝑑4 < 0 → �⃗� = (𝑢𝑥, 0, 0)𝑇

𝑑4 ≥ 0, 𝑑5 < 0 → �⃗� = (𝑥1, 0, 0)𝑇

𝑑1 < 0, 𝑑5 ≥ 0, 𝑑6 < 0 → �⃗� = (𝑢𝑥 − 𝑑1𝑛1𝑥, 𝑢𝑦 − 𝑑1𝑛1𝑦, 0)𝑇

𝑑6 ≥ 0, 𝑑7 < 0 → �⃗� = (𝑥2, 𝑦2, 0)𝑇

𝑑2 < 0, 𝑑7 ≥ 0, 𝑑8 < 0 → �⃗� = (𝑢𝑥 − 𝑑2𝑛2𝑥, 𝑢𝑦 − 𝑑2𝑛2𝑦, 0)𝑇

𝑑3 < 0, 𝑑8 ≥ 0 → �⃗� = (0, 0, 0)𝑇

(7.3)

7.3.2 Triangle Intersection Algorithm

The goal of this algorithm is to calculate how far the sphere can move
from 𝑝 to �⃗� without intersecting the constraints. The best guess position
in which the sphere touches a constraint is defined as �⃗� = 𝑝 + 𝑠min · �⃗�
with �⃗� = �⃗� − 𝑝. Additional to these parameters, the move plane normal
�⃗� is determined.
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Surface Intersection Intersecting the line from 𝑝 to �⃗� with the plane
𝑧 = 𝑟′ (with 𝑟′ = 𝑟 for 𝑚𝑧 < 0 and 𝑟′ = −𝑟 otherwise) results in
𝑠𝐹 = 𝑟′−𝑝𝑧

𝑚𝑧
, �⃗�𝐹 = 𝑝 + 𝑠𝐹 · �⃗� and �⃗�𝐹 = (𝑏𝐹 𝑥, 𝑏𝐹 𝑦, 0)𝑇 .

Edge Intersection Let �⃗�𝑖 and �⃗�𝑗 be the start and end position of the
currently considered triangle edge. Then the edge itself is described by
�⃗�𝑖 + 𝑡 · 𝑑 with 𝑑 = �⃗�𝑗 − �⃗�𝑖 and 0 ≤ 𝑡 ≤ 1. In case the sphere touches the
edge, the distance of a point 𝑝 + 𝑠𝐸 · �⃗� to the edge equals 𝑟:⃒⃒(︀

(𝑝 + 𝑠𝐸 · �⃗�) − �⃗�
)︀

× 𝑑
⃒⃒

|𝑑 |
= 𝑟 (7.4)

With ℎ⃗1 = (𝑝 − �⃗�) × 𝑑 and ℎ⃗2 = �⃗� × 𝑑 this results in

𝑠𝐸1,2 = −𝑏 ±
√

𝐷

𝑎
with 𝐷 = 𝑏2 − 𝑎 · 𝑐, 𝑎 = ℎ⃗𝑇

2 · ℎ⃗2, 𝑏 = ℎ⃗𝑇
1 · ℎ⃗2 and

𝑐 = ℎ⃗𝑇
1 · ℎ⃗1 − 𝑟2 · |𝑑|2 (7.5)

The best guess position �⃗�𝐸1,2 = 𝑝 + 𝑠𝐸1,2 · �⃗� projected onto the edge
�⃗�𝑖 + 𝑡 · 𝑑 results in the point of contact �⃗�𝐸1,2 = �⃗�𝑖 + 𝑡𝐿1,2 · 𝑑 with

𝑡𝐿1,2 = 𝑑𝑇 · (⃗𝑏𝐸1,2 − �⃗�𝑖)
𝑑𝑇 · 𝑑

(7.6)

Corner Intersection The distance of a corner �⃗� to a point on the line
𝑝 + 𝑠𝐶 · �⃗� is 𝑑 = |𝑝 + 𝑠𝐶 · �⃗� − �⃗�|. In case the sphere touches the corner,
this distance equals 𝑟 and therefore |𝑝 + 𝑠𝐶 · �⃗� − �⃗�| = 𝑟.

With ℎ⃗ = 𝑝 − �⃗� this results in

𝑠𝐶1,2 = −𝑏 ±
√

𝐷

𝑎
with 𝐷 = 𝑏2 − 𝑎 · 𝑐, 𝑎 = �⃗�𝑇 · �⃗�, 𝑏 = �⃗�𝑇 · ℎ⃗ and

𝑐 = ℎ⃗𝑇 · ℎ⃗ − 𝑟2 (7.7)

The best guess is �⃗�𝐶1,2 = 𝑝 + 𝑠𝐶1,2 · �⃗� and the point of contact coincides
with the corner point �⃗�𝐶 = �⃗�.
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Selection of the Applicable Case From all possible and valid factors 𝑠
the smallest one has to be determined:

𝑠min = min{{𝑠𝐹 | 0 ≤ 𝑠𝐹 ≤ 1} ∪
{𝑠𝐸 | 0 ≤ 𝑠𝐸 ≤ 1 ∧ 0 ≤ 𝑡𝐿 ≤ 1} ∪
{𝑠𝐶 | 0 ≤ 𝑠𝐶 ≤ 1}}

(7.8)

The corresponding best guess and point of contact are chosen and the
move plane normal is �⃗� = �⃗� − �⃗�.

7.4 Position Control Algorithm

Finding and correcting the end effector position such that the constraints
stay untouched is the elementary task of this component. As long as
there is no constraint close to the end effector, the target position �⃗� and
the home position coincide. If the user holds the HHRD in such a way
that the home position collides with the constraint, the target position
must be adapted. The distance between target and home position is
minimized without intersecting any constraint. The calculated target
position is saved and used as the last valid position �⃗� in the next iteration.
In order to prevent the end effector from sticking on the constraint, the
end effector slides along the constraint until the distance between the
home position �⃗� and the last valid position �⃗� is minimized.

Figure 7.9a shows an example of a movement �⃗� → �⃗� that collides with
the constraint after a certain distance. In this case, the algorithm moves
the sphere until it touches the constraint and finishes.

Consider the example in Figure 7.9b. The last valid position �⃗� touches one
of the constraints. Therefore, �⃗� is projected onto the touched constraint.
The projected point is called projected target position �⃗�1 where the
subscript identifies the phase number 𝑘 with 0 ≤ 𝑘 ≤ 2. Due to the fact
that the new movement �⃗� → �⃗�1 could intersect other constraints, another
collision detection has to be performed. Given that 𝑠min > 0 for this new
movement, the movement can be executed partially. The target position
is calculated by �⃗� = �⃗� + 𝑠min · (�⃗�1 − �⃗�).
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Figure 7.9.: Four individual sphere movements �⃗� → �⃗� and how the position control
algorithm finds the target position �⃗�. The blue movement (⃗𝑙 → �⃗�) would
be the optimum without considering constraints. The red one (⃗𝑙 → �⃗�) is
the final movement of the end effector. The dashed orange ones (⃗𝑙 → �⃗�)
are theoretical intermediate movements. In (a) the end effector can
move partially and on a direct way towards the home position. In (b) a
direct movement is not possible. A collision is detected and a second
phase is started. In the second phase, the movement is projected and the
end effector can move partially until it hits the second constraint. In (c)
a direct movement is not possible, since the direct movement intersects
both constraints. In the second phase, the movement is projected onto
the line defined by the two constraints and the end effector can move.
In (d) a direct movement is not possible. A collision with the lower
constraint is detected and a second phase is started. In the second
phase, the movement is projected onto the constraint. The resulting
projection causes another collision and a third phase is started. In the
third phase, the movement is projected onto the line defined by both
constraints and the end effector can move.
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Since the projected movement could intersect other constraints (or the
same constraint in other points), the collision detection has to be per-
formed once in each phase. Performing a collision detection up to three
times in one iteration guarantees that the HHRD does not execute a
movement that is not previously checked against all constraints. This
multi-phased architecture is attributed to the special nature of an HHRD.
In each iteration, the home position and the last valid position have to
be considered, since they are moving relative to each other.

This iterative position control algorithm can be summarized in the fol-
lowing steps (see Figure 7.10):

1. Calculate the projected target position �⃗�𝑘 according to the inter-
sected triangles from the previous phases and the movement from �⃗�
to �⃗�. In the first phase, �⃗� equals �⃗�.

2. In case the projected target position �⃗�𝑘 equals the last valid position
�⃗�, the algorithm terminates.

3. Otherwise, a collision detection for the sphere movement from
the last valid position to the projected target position �⃗� → �⃗�𝑘 is
performed.

4. The smallest allowed movement is determined (triangles from pre-
vious phases are ignored).

5. If there is a possible movement (𝑠min > 0), the target position is
set and the algorithm terminates.

6. Otherwise, the next phase is started with step 1.

7.4.1 Move Plane Normal versus Triangle Normal

Every touched triangle defines a move plane normal �⃗� and a factor 𝑠
indicating how far the end effector can move from �⃗� to �⃗�𝑘. The move
plane normal defines the plane in which the end effector is allowed to
move relative to the triangle without intersecting it. Every move plane
normal restricts the space in which the end effector can move. If there
are two different move plan normals with 𝑠 = 0, the space is restricted to
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the direction of the intersection line of the two planes. In this case, the
end effector could subsequently move in this direction. This case occurs
in Figure 7.9c and 7.9d. In case there are three different move plane
normals (all with 𝑠 = 0), they intersect each other in one point, which
means that the end effector is completely restricted. In this case, the
projected target �⃗�𝑘 equals the last valid position �⃗�. One example would
be a movement through the tip of a tetrahedron while touching the three
faces of the tip.

The position control algorithm uses the move plane normal to compute
in which direction the end effector is allowed to move. The move plane
normal �⃗� is the vector from the contact point �⃗� to the sphere center �⃗�.
Therefore, it is parallel to the triangle’s normal when the point of contact
�⃗� lies inside the triangle and differs if �⃗� lies on one of the triangle’s edges
or corners. Figure 7.11 describes the importance of using the move plane
normal instead of the triangle normal. Using the move plane normal, the
sphere slides around the edge of the triangle. This behavior produces
smoother movements around corners and edges.
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Figure 7.10.: The position control algorithm. Inputs are the home position �⃗� and the
last valid position �⃗�. The output is the target position �⃗�. Every collision
of the current movement from �⃗� to the projected target position �⃗�𝑘

produces one pair of �⃗�𝑘,𝑖 with corresponding 𝑠𝑘,𝑖. After the smallest
allowed movement is found, only the move plane normals with an 𝑠 of
𝑠min,𝑘 are stored in Λ𝑘.
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constraint

last valid
position

home position home position &
last valid position

�⃗� �⃗� �⃗� �⃗� �⃗� �⃗� �⃗� �⃗� �⃗� �⃗�

(a) Sphere movement using the trian-
gle’s normal

constraint

last valid
position

home position home position &
last valid position

�⃗� �⃗� �⃗� �⃗� �⃗� �⃗� �⃗� �⃗�
�⃗�

�⃗�

(b) Sphere movement using the move
plane normal

Figure 7.11.: Difference between using the triangle normal �⃗� (left) and the triangle’s
move plane normal �⃗� (right). At the beginning both approaches show
the same results. They differ as soon as the sphere passes the edge
of the triangle. �⃗� is the vector from the nearest point on the triangle
to the sphere center. This vector defines a plane in which the sphere
is allowed to move. The triangle’s normal is constant. Therefore,
by using the move plane normal the sphere moves around the edge,
whereas in case of the normal it continues straight until it can pass
the triangle without collision.

7.4.2 Finding the Smallest Allowed Movement

The collision detection algorithm returns a move plane normal �⃗�𝑘,𝑖 with
corresponding factor 𝑠𝑘,𝑖 for every collision (with 0 ≤ 𝑖 < 𝐶𝑘). Different
triangles can be intersected at different distances. Since only the closest
collisions matter, the move plane normals corresponding to the smallest
allowed movement defined by 𝑠min,𝑘 are searched. It is possible that
several triangles can be intersected at the same distance. Hence, the
result of this search is a matrix

Λ𝑘 = (�⃗�𝑘,0 ... �⃗�𝑘,𝑀𝑘−1) with 𝑀𝑘 ≤ 𝐶𝑘 (7.9)

containing the move plane normals corresponding to 𝑠min,𝑘.
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Moreover, it is important that the hit triangles from the previous phase,
represented by Λ𝑘−1, are ignored, since they are implicitly included in
the projected movement (the projection was calculated according to the
previous triangles). In the first phase, there are no previous triangles.

Eventually the case occurs that �⃗� → �⃗�𝑘 collides with a constraint. If 𝑠min >
0 the algorithm calculates the target position �⃗� = �⃗� + 𝑠min · (�⃗�𝑘 − �⃗�) and
finishes the iteration (see Figure 7.9a). If 𝑠min = 0 the end effector cannot
move on the given movement direction and the next phase is started.

7.4.3 Defining the Movement According to
Detected Constraints

Depending on the found constraints, the current move vector �⃗� → �⃗� is
projected onto planes, lines, or points. Figure 7.12 shows a flowchart of
the projection algorithm (Section 7.4.4 explains the outlined cases).

Before calculating the projection it has to be determined how restricted
the space already is. This determination depends on the current phase.
In the first phase (𝑘 = 0) the space is not yet restricted, and therefore
no projection is necessary:

�⃗�𝑘 = �⃗� (7.10)

In the second phase (𝑘 = 1) the space is restricted by the move plane
normals found in the first phase Λ0 = (�⃗�0,0 ... �⃗�0,𝑀0−1). In order to find
the vector space defined by the move plane normals, a singular value
decomposition (SVD) is applied:

SVD(Λ𝑇
0 ) = 𝑈0Σ0𝑉 𝑇

0 (7.11)

Σ0 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜎0,0 0 0

0 𝜎0,1 0
0 0 𝜎0,2
0 0 0
: : :
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (7.12)
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SVD((𝑁𝑘−1 Λ𝑘)𝑇 ) = 𝑈Σ𝑉 𝑇
𝑘 ,

𝑉𝑘 = (�⃗�𝑘,0 �⃗�𝑘,1 �⃗�𝑘,2),
𝑁𝑘 = (�⃗�𝑘,0 ... �⃗�𝑘,𝑊𝑘−1)

with correspond. 𝜎𝑘,𝑖 > tol

Merge move
plane normals

Λ𝑘 → (Λ𝑘−1 Λ𝑘)
𝑊𝑘

No Projection
add 0⃗ to list

Project move
onto direction
and add to list

Project move
onto all planes
and add to list

Project move
onto all

directions
and add to list

Project move
onto plane

and add to list

Remove invalid
projections

3

2

1

Figure 7.12.: The algorithm that defines the movements according to the given
restrictions. To provide greater clarity the indices are incremented
by 1. Inputs are the right-singular vectors 𝑁𝑘−1 and the move plane
normals Λ𝑘 as well as the movement from the last valid position �⃗� to
the home position �⃗�. The output is a list of possible projected target
positions {�⃗�𝑘+1,𝛾} with corresponding move plane normals Λ𝑘,𝛾 . The
outlined parts are executed when the special cases are considered.

The vectors of 𝑁0 can form three different restrictions with three different
projections (with �⃗� = �⃗� − �⃗�):
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𝑉0 = (�⃗�0,0 �⃗�0,1 �⃗�0,2) (7.13)

The interesting part of the decomposition is matrix 𝑉0 which is a 3 × 3
matrix whose column vectors are the right-singular vectors of Λ0. Each
right-singular vector �⃗�0,𝑖 corresponds to one singular value 𝜎0,𝑖, 𝑖 = 0, 1, 2.
The vectors belonging to non-zero singular values define how the move-
ment is restricted. They are stored in matrix 𝑁0 = (�⃗�0,0 ... �⃗�0,𝑊0−1) with
𝑊0 being the number of non-zero singular values 𝜎0,𝑖.



7.4. Position Control Algorithm

1. There is one right-singular vector �⃗�0,0 with 𝜎0,0 > 0 (𝑊0 = 1)
that defines a plane onto which the move vector is projected (see
Figure 7.9b).

�⃗�1 = �⃗� + �⃗�𝑇 · �⃗�0,0

�⃗�𝑇
0,0 · �⃗�0,0

· �⃗�0,0 (7.14)

2. There are two right-singular vectors �⃗�0,0 and �⃗�0,1 with 𝜎0,𝑖 > 0
(𝑊0 = 2) that define a line onto which the move vector is projected
(see Figure 7.9c).

�⃗�1 = �⃗� + �⃗�𝑇 · 𝑑

𝑑𝑇 · 𝑑
· 𝑑 with 𝑑 = �⃗�0,0 × �⃗�0,1 (7.15)

3. There are three right-singular vectors with 𝜎0,𝑖 > 0 that define a
point, the move vector is 0⃗.

�⃗�1 = �⃗� (7.16)

The third phase (𝑘 = 2) is similar to the second one. Additional to
the move plane normals from the second phase Λ1 = (�⃗�1,0 ... �⃗�1,𝑀1−1),
the right-singular vectors from the first phase 𝑁0 are used as inputs for
the SVD:

SVD((�⃗�1,0 ... �⃗�1,𝑀1−1 �⃗�0,0 ... �⃗�0,𝑊0−1)𝑇 ) = 𝑈1Σ1𝑉 𝑇
1 (7.17)

Since the vectors belonging to non-zero singular values 𝑁1 are the result
of the singular value decomposition of matrix (𝑁0 Λ1), they implicitly
contain the vectors of matrix Λ1. Therefore, the vectors of 𝑁1 can
only form two different restrictions with two different projections (with
�⃗� = �⃗� − �⃗�):

1. There are two right-singular vectors �⃗�1,0 and �⃗�1,1 with 𝜎1,𝑖 > 0
that define a line onto which the move vector is projected (see
Figure 7.9d).

�⃗�2 = �⃗� + �⃗�𝑇 · 𝑑

𝑑𝑇 · 𝑑
· 𝑑 with 𝑑 = �⃗�1,0 × �⃗�1,1 (7.18)
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2. There are three right-singular vectors with 𝜎1,𝑖 > 0 that define a
point, the move vector is 0⃗.

�⃗�2 = �⃗� (7.19)

An example shall further clarify this algorithm. In the first phase, there
are no restrictions from previous phases. Therefore, the movement �⃗� → �⃗�0
with �⃗�0 = �⃗� is checked in the collision detection. It is assumed that four
collisions with 𝑠min = 0 and the following move plane normals are found:

�⃗�00 =

⎛⎝0.267
0.535
0.802

⎞⎠ , �⃗�01 =

⎛⎝0.402
0.723
0.562

⎞⎠ , �⃗�02 =

⎛⎝0.402
0.723
0.562

⎞⎠ , �⃗�03 =

⎛⎝ 0.248
0.287

−0.925

⎞⎠
(7.20)

In the second phase, an SVD is performed in order to calculate the
restriction following out of the move plane normals. The results are

Σ =

⎛⎝1.753 0 0
0 0.964 0
0 0 0.000

⎞⎠ , 𝑉0 =

⎛⎝−0.304 −0.431 0.850
−0.587 −0.618 −0.523
−0.751 0.658 0.065

⎞⎠
(7.21)

The singular values show that the movement is restricted in two directions,
which are the first two columns �⃗�0,0 and �⃗�0,1 of 𝑉0. Therefore, the new
projected target position �⃗�1 is calculated according to Equation 7.15.
It is assumed that the collision detection checks the movement from
�⃗� → �⃗�1 and finds another collision with a move plane normal �⃗�1,0 and
corresponding 𝑠min = 0.

In the third phase, another SVD is calculated considering the following
inputs:

�⃗�1,0 =

⎛⎝0.640
0.768

0

⎞⎠ , �⃗�0,0 =

⎛⎝−0.304
−0.587
−0.751

⎞⎠ , �⃗�0,1 =

⎛⎝−0.431
−0.618
0.658

⎞⎠ (7.22)
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Note that the previous constraints �⃗�0,0, �⃗�0,1, �⃗�0,2 and �⃗�0,3 are ignored,
since they are implicitly included in �⃗�0,0 and �⃗�0,1. The SVD results in

Σ =

⎛⎝1.411 0 0
0 1.000 0
0 0 0.101

⎞⎠ , 𝑉1 =

⎛⎝ 0.584 0.051 0.810
0.812 −0.042 −0.582

−0.005 −0.998 0.066

⎞⎠
(7.23)

All three singular values are unequal 0 meaning that the movement is
completely restricted (�⃗� = 0⃗). Therefore, the projected target position
�⃗�2 equals the last valid position �⃗�.

7.4.4 Special Projection Cases

The assumptions from the previous section generate valid move vectors,
however, the performed projections do not allow a natural interaction.
There are certain cases where it is not sufficient to check projections
defined by the right-singular vectors of the constraints. Valid and more
optimal projections exist that are calculated by using the move plane
normals. The example in Figure 7.13 shows two planes defining a projec-
tion onto a line. It is obvious that certain home positions cause different
projections. The movement �⃗� → �⃗�𝐵 has to be handled differently than
the movement �⃗� → �⃗�𝐴 since the end effector would stick on the line even
when the user movement indicates that he wants to slide the end effector
along the constraint. Hence, it might be better to project the movement
onto one of the two planes instead of projecting it onto the line.

As explained above, the number of right-singular vectors in 𝑁𝑘−1 indicates
how to project. Additional to the standard cases from the previous section
(see Figure 7.12), different movement projections are calculated and added
to a list of possible projections:

1. If there are two right-singular vectors, the movement can be pro-
jected onto the constraints themselves (the move plane normals �⃗�
of the constraints are retrieved from Λ𝑘−1).

153



Chapter 7. Control System for Handheld Robotic Devices with 3-DoF

�⃗�

�⃗�𝐴

�⃗�𝐶 �⃗�𝐶

�⃗�𝐵 �⃗�𝐵

�⃗�𝐷

(a) All possibilities

�⃗�
�⃗�𝐴

�⃗�

�⃗�𝐵

�⃗�𝐵′

�⃗�

�⃗�′

�⃗�1�⃗�2

(b) Example: �⃗�𝐴 is �⃗� projected onto the
line, �⃗�𝐵 is �⃗� projected onto plane 1
(valid), �⃗�𝐵′ is �⃗� projected onto plane
2 (invalid). Prefer �⃗�𝐵 to �⃗�𝐴

Figure 7.13.: Different projection cases. Two constraints are touched by the end
effector (see (a)). The shown home positions �⃗�𝐴, �⃗�𝐵 , �⃗�𝐶 , �⃗�𝐷 result in
different projections. �⃗� → �⃗�𝐷 represents a movement away from the
constraints, therefore, no projection is necessary. �⃗� → �⃗�𝐶 intersects
only with one of the two constraints and the movement is projected
onto the plane defined by the constraint. �⃗� → �⃗�𝐴 intersects both
constraints, which is why it has to be projected onto the intersection
line defined by the constraints. Even �⃗� → �⃗�𝐵 also causes a collision
with both constraints, the movement can be projected onto one of the
two constraints and the resulting move vector does not collide with
any of the two (see example in (b)). Therefore, it is important to also
check the projections onto the individual constraints even when two
different constraints are intersected.

Now there is a list of possible projections that have to be tested against
all move plane normals in Λ𝑘−1. Invalid ones are removed from the
list. A projection is invalid if the angle between the move plane normal
and the projected movement is greater than 90∘. An angle of 90∘ is a
parallel movement to the plane defined by the move plane normal. An
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2. If there are three right-singular vectors, the movement �⃗� → �⃗� is
projected onto all possible lines calculated by combining the move
plane normals �⃗� in Λ𝑘−1. As in the previous case, the movement is
also projected onto all constraints.



7.5. Speed Control Algorithm
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Figure 7.14.: The speed of the end effector depending on the deflection.

7.5 Speed Control Algorithm

The speed controller determines the speed of the end effector depending on
the deflection of the tool, which is calculated by the kinematic controller
(see Figure 7.14). As long as the HHRD can deflect, the maximal speed
is set. As soon as one of the joints approximates its maximal deflection,
the speed is decreased. If its maximum deflection is reached, the speed is
set to 0. The deceleration of the speed is audible and gives the surgeon
an additional feedback. Subsequently, he can reposition the HHRD to
recover the maximal speed.
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angle smaller than 90∘ indicates that the movement points away from
the plane defined by the move plane normal. For the example shown in
Figure 7.13b, the following angles apply:

^(�⃗�, �⃗�1) = 90∘, ^(�⃗�, �⃗�2) < 90∘, ^(�⃗�′, �⃗�1) > 90∘, ^(�⃗�′, �⃗�2) = 90∘
(7.24)

Therefore, �⃗�𝐵 is valid but �⃗�𝐵′ is invalid, since it lies behind the first plane.
This is only a fast check and does not replace the collision detection.
Finally, the projection with the longest allowed movement is chosen.
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(a) OrthoCAD (b) MATLAB simulation front-end

Figure 7.15.: OrthoCAD and MATLAB environment showing the same scene. The
blue and the green sphere represent the home position and the last
valid position. The plane as well as the tracking data is transmitted
via OpenIGTLink.

7.6 Test and Simulation Environment

In order to guarantee a correct behavior in extreme cases, a multitude of
configurations is checked in unit tests and by using a simulation environ-
ment. Unit tests are implemented for the most important components
such as the collision detection and the controllers. A simulation environ-
ment is implemented in MATLAB allowing to compare the behavior of
the robot with the predefined simulation (see Figure 7.15). This environ-
ment receives positions and transformations as well as the constraints
from OrthoCAD. During the runtime of the RCS, parameters inside the
simulation environment can be adapted. By using this environment,
misbehaviors can be found faster than in the control system.
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7.7 Table-Top Prototype

Since the actual HHRD was not yet available, a robot consisting of an
xyz-linear stage was used for the tests. This prototype (see Figure 7.16)
is composed of four linear stages (CCM Rails, China), which are driven
by three intelligent NEMA23 motors (Technosoft Motion, Switzerland),
and an orthopedic milling device (Stryker, USA). The communication
between the motors and the PC is implemented via CAN. The CAN
bus uses the maximal baud rate of 1 Mbps. The attached milling device
allows the surgeon to easily exchange the end effector. The linear stages
have a pitch of 75 mm per revolution. The motors can run with up to
11.7 revolutions per second, which allow speeds of up to 877 mm per
second. Although the working volume of the robot could be much larger,
it is restricted (by software) to a cube with an edge length of 25 mm.
This cube resembles the working volume of the target device.

The calibration of the translational table-top prototype consists of three
steps:

1. Homing the translation stages

2. Calibration of the transformation 𝐹𝐶𝐴 from tracker coordinates 𝐴
to linear stages coordinates 𝐶

3. Pivoting of the end effector to find the home position �⃗�𝐴

The homing of the device finds its maximum deflection and its center
position (home position). Since the tracker coordinates 𝐴 do not coincide
with the axes orientation of the prototype, the transformation 𝐹𝐶𝐴 from
coordinate system 𝐴 to 𝐶 has to be found. For this purpose the reference
tracker is rigidly attached to the tool shaft, whereas the tool tracker
stays untouched. The tool shaft is moved to the maximum deflection
in all three directions while recording the poses of the trackers (𝐹𝑊 𝑅,
𝐹𝑊 𝐴). This results in 3𝑁 transformations where 𝑁 is the number of
recorded transformation per axes. The transformation from the reference
tracker to the tool tracker is calculated by 𝐹𝐴𝑅 = 𝐹−1

𝑊 𝐴 · 𝐹𝑊 𝑅. The
origin is extracted from these transformations. For all three records
the extracted origins are used to calculate a regression line. The three
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Figure 7.16.: A prototype consisting of four translation stages driven by
three motors.
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calculated directions are part of the transformation matrix from 𝐴 to 𝐶.
The translation is zero. Finally, the end effector is pivoted to find the
home position �⃗�𝐴. During the pivoting calibration, the end effector’s tip
is placed in a tracked mould. The user rotates the tool while keeping the
end effector in the mould. After the calibration, the end effector position
can be calculated from the recorded transformations. As a last step its
radius has to be specified manually. In order to calibrate the radius (or
the shape) of the end effector, an optical calibration, as described in
Chapter 6, is used.
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7.8 Accuracy Tests

Two different geometries, used in different surgical interventions, are
milled and evaluated. Both geometries are milled utilizing the power-
controlled, the evasive and the smoothing mode. The geometries are
loaded as CAD files to guarantee the reproducibility of test results.
Polyurethane hard foam blocks (240 kg/m3) are used as milling medium,
since its characteristics are comparable to those of bones. A burr with a
radius of 2.5 mm is used.

First, a cuboid of 30 mm×30 mm×15 mm is removed from the test block.
Such a bone removal could be used to deepen the bone surface in order
to place an implant. Second, a half sphere with a radius of 15 mm is
milled. Such an intervention is used in hip arthroplasties (hip replacement
surgery) where the diameter of the acetabulum has to be increased in
order to place an implant.

The milled geometries are sampled using the previously mentioned navi-
gation system FP6000 by Stryker with the corresponding pointing device.
The pointer tip can be localized with a standard deviation of 0.15 mm.

For the first test, the cuboid bottom plane is recorded. Its regression
plane is calculated and analyzed. For the second test, a sphere with the
given radius of 15 mm is matched into the point cloud of the half sphere.

7.9 Results

Figure 7.17 shows the difference between a cuboid milled with the power-
controlled, the evasive and the smoothing mode. Whereas the power-
controlled mode produced ragged edges and cratered surfaces, the evasive
mode produced clearer edges and smoother surfaces. The smoothest
surfaces are milled using the smoothing mode.

Table 7.1 and 7.2 show the error measures for the cuboid and the half
sphere tests. The corresponding boxplots are shown in Figure 7.18 and
7.19. For each test, between 900 and 3500 points were digitized.
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(a) PCM, top view (b) EM, top view (c) SM, top view

(d) PCM, cross-sect. view (e) EM, cross-sect. view (f) SM, cross-sect. view

Figure 7.17.: Cuboids milled with a 5 mm burr and different modes. (a) and (d)
show the result using the power-controlled mode, whereas (b) and (e)
were milled with the evasive mode. (c) and (f) represent the smoothing
mode. Note that the smoothing mode produces smoother surfaces
than the other two modes. It is also visible that the smoothing and
the evasive mode show sharper edges.

The results show that all three modes produce RMS errors of less than
0.6 mm. The deviations and their variances show that the smoothing
mode produces the best results and that the evasive mode is more accurate
than the power-controlled mode. The improvement is most visible in the
minimal and the maximal deviation. In the cuboid tests, the smoothing
mode produces much smoother surfaces than the evasive mode. However,
in the half sphere tests, this difference is not so clear anymore. In one test,
the RMS error using the smoothing mode is even worse than using the
evasive mode. This is probably caused by the fact that the end effector
oscillates around its shaft and that the shaft, in case of the cuboid tests,
points perpendicular to the surface, whereas in case of the half sphere
tests it does not. Therefore, it can be assumed that the smoothing mode
only produces smoother surfaces when the shaft points perpendicular to
the surface.
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Figure 7.18.: Deviations to regression plane of different trials and different modes.
PCM stands for power-controlled mode, EM for the evasive mode and
SM for the smoothing mode.
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Figure 7.19.: Deviations to sphere-fit of different trials and different modes, ra-
dius was given (from CAD file), center was fitted. PCM stands for
power-controlled mode, EM for the evasive mode and SM for the
smoothing mode.
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Trial Mode Number of 𝛿rms 𝛿var 𝛿max 𝛿min
points [mm] [mm2] [mm] [mm]

1 PCM 2010 0.44 0.20 -1.31 1.70
1 EM 1411 0.36 0.13 -1.08 1.05
1 SM 1567 0.16 0.03 -0.62 0.61
2 PCM 1294 0.49 0.24 -1.92 1.42
2 EM 1596 0.41 0.17 -1.19 1.24
2 SM 2657 0.21 0.04 -0.80 0.64
3 PCM 2366 0.49 0.24 -1.31 1.59
3 EM 2640 0.39 0.15 -1.28 1.34
3 SM 2367 0.18 0.03 -0.54 0.70

Table 7.1.: Deviations to regression plane of different trials and different modes. EM
stands for the evasive mode, PCM for power-controlled mode and SM
for the smoothing mode.

Trial Mode Number of 𝛿rms 𝛿var 𝛿max 𝛿min
points [mm] [mm2] [mm] [mm]

1 PCM 2077 0.40 0.16 -1.35 1.59
1 EM 3444 0.29 0.08 -0.88 1.15
1 SM 941 0.32 0.11 -0.85 1.11
2 PCM 1778 0.54 0.29 -1.95 1.67
2 EM 1489 0.43 0.19 -1.24 1.49
2 SM 1648 0.37 0.14 -0.98 1.39
3 PCM 2455 0.60 0.36 -1.94 1.91
3 EM 2175 0.58 0.34 -1.35 1.96
3 SM 1466 0.51 0.26 -1.28 1.56

Table 7.2.: Deviations to sphere-fit of different trials and different modes, radius
was given (from CAD file), center was fitted. EM stands for the evasive
mode, PCM for power-controlled mode and SM for the smoothing mode.
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7.10 Conclusion

This chapter described a robot control system for HHRDs used in or-
thopedic surgery. This system protects previously defined regions from
being penetrated by the HHRD. Different modes can be used depending
on the hardware and the current task. A power-controlled mode simply
turns off the device’s speed when penetrating a constraint, whereas the
evasive mode adapts the end effector’s position to evade the constraint. A
smoothing mode, similar to the evasive mode, oscillates the end effector
around its home position. Constraints can be arbitrarily shaped (convex,
concave) and do not have to form a closed volume. As a prototype, a
table-top robotic milling device is utilized. The accuracy analysis shows
that the presented control algorithms work robustly and accurately and
that the quality of the milled objects depends on the used mode. The
smoothing mode produces the best results, whereas the power-controlled
mode has the biggest deviations.

The experiments show that the RMS deviations, while using the evasive
mode, are less than 0.6 mm. The minimal and maximal deviations range
between -1.4 mm and 2.0 mm. One source for the high range of deviations
is the latency of the prototype and the navigation camera. A future
prototype will improve these latencies. The smoothing mode further
decreased these deviations to a range of -0.8 mm to 0.7 mm. The results
of the evasive mode are comparable to the ones presented by Brisson et
al. [14]. They state the minimal and maximal deviation with -1.7 mm
and 1.2 mm. Xia et al. [45] use a cooperative stationary robot for skull
base surgery. They perform accuracy tests on a cadaver with penetration
errors of 1-2 mm and maximal errors of up to 3 mm. They further state
that previous tests on foam blocks produced better results.

Additionally, the tests have shown that the milling speed of the device
has a strong influence on the accuracy of the power-controlled mode. The
higher the speed was, the better the results became. The presented tests
were executed with a milling speed of 50000 rounds per minute. When
the burr starts turning while touching the bone, it might happen that
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the burr gets caught in the bone. With a lower speed, the starting burr
causes a movement of the whole tool whereas a higher speed is able to
remove the material.

A semi-automatic mode could further improve the usage and handling
of such devices. The HHRD automatically removes material inside its
workspace (restricted by the individual kinematics) while the user simply
holds the device close to the to-be-milled structures. As soon as the
material is removed, the user has to move the HHRD to the next part.

The simulation of an HHRD with a table-top robotic tool works for
testing the algorithms, however, it is difficult for the operator to see
the possible range of motion of the tool. In case of HHRDs held by the
operator, the range of motion is directly visible. In case of the table-top
robotic tool, the theoretical range of motion is much bigger and is only
limited by software bounds. Another prototype will improve this by
placing the robot in such a way that the milling device points towards
the table surface.
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Before the evaluation of the overall system is described and discussed,
the evaluations from the previous chapters are summarized:

OrthoCAD, as an intraoperative, image-free, and generic planning ap-
plication for orthopedic surgery, was evaluated by means of a planning
of a femoral neck osteotomy. The individual planning steps are de-
picted and illustrate the functionality and capacity of OrthoCAD (see
Chapter 3.13).

For the pixel-wise OSTG calibration two experiments were carried out
(see Chapter 4.9 and 4.10). The first experiment tested the pixel tri-
angulation approach on two different OSTG. The second experiment
included a series of tests to calculate the accuracy of overlays using the
presented pixel-wise calibration. The former experiment showed that the
triangulation approach works well on OSTG with simple optics, such
as the STAR 1200XLD, but fails on OSTG with more complex optics,
such as the BT-200. In the latter experiment a series of tests with differ-
ent camera/eye positions were carried out. The tests showed that the
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presented calibration allows overlays with a maximal error of 1.4 pixel
or 2.26 arcmin, which translates to 0.33 mm at a distance of 500 mm.
Compared to other works it is by a factor of two more accurate. However,
this result has to be considered with care since all compared works used
different devices.

In order to evaluate the intraoperative instrument calibration with its
two calibration steps, different objects were calibrated and compared to
each other (see Chapter 6.4 and 6.5). For the tracked camera calibration
a sphere was calibrated using the presented technique and by pivoting.
The results show almost identical accuracies. In a second step the
sphere’s surface was reconstructed and used to calculate the sphere’s
center position. In this test the presented approach is four to five times
more inaccurate than pivoting. However, pivoting is not able to determine
the sphere’s surface. The same was repeated for a burr. In this case
the presented approach is by a factor of 1.7 more accurate than pivoting
since the burr is not completely spherical.

The OpenIGTLink implementation was evaluated according to its latency
and frame rate in different scenarios (see Chapter 5.3 and 5.4.2). Tracking
data (16 channels) can be transferred with a frame rate of 1000 Hz and a
latency of 2.81 ms, US streams with 512 Hz and 14 ms latency and HD
grayscale US streams with 128 Hz and 66 ms. These values were measured
in real application scenarios meaning that there was a data producer and
a data consumer, e.g. a navigation system and a visualization.

Milling tests with simple geometries in hard foam blocks show the accuracy
and quality of the table-top robotic prototype and its control algorithms
(see Chapter 7.8 and 7.9). Cuboids and half spheres were milled and
compared to their CAD model. A power-controlled mode with rigid
burr was compared to an evasive mode with position controlled burr
(3-DoF). Additionally, a smoothing mode was tested. The results show
that all three modes produce RMS errors of less than 0.6 mm. However,
the variances show that the smoothing mode produces the best results
and therefore smoother surfaces. All three modes produce surfaces that
are accurate enough for orthopedic interventions and much better than
manually milled surfaces.
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Whereas these quantitative evaluations focused on individual algorithms
and processes, this chapter describes the evaluation of the overall system
and the collaboration of their components. Even though most of the
following evaluations do not determine accuracies, they demonstrate that
the complete system from the planning over the visualization to the
execution works without any problems. To demonstrate that OrthoCAD
works with different kind of robots, a table-top and a hand-held one
are used.

Clinical tests were not performed yet. However, the whole system was
developed under a collaboration with the Medical University of Innsbruck.
Therefore, the system was used, evaluated and improved by surgeons.
The feedback was positive throughout.

Chapter 8.1 describes the evaluation of the augmented in-situ view in col-
laboration with OrthoCAD and the table-top robot TTR. In Chapter 8.2,
a femur neck osteotomy and a tibia wedge osteotomy are carried out
using the TTR and a proprietary HHRD. Subsequently, in Chapter 8.3,
the accuracies of the two robots are compared on the basis of milling tests
performed on foam blocks. Chapter 8.4 contains an expert review of the
presented system, which states the system’s importance and opportunities.
Finally, in Chapter 8.5, the evaluation results are summarized.

8.1 Augmented In-Situ View

Figure 8.1 shows an augmented in-situ view visualizing the surgical plan
directly on the bone of the patient. The figures visualize a femoral neck
osteotomy before and after the milling process. For these experiments, an
Epson Moverio BT-200 was used and connected to the PC as described
in Chapter 4.3. The figures also illustrate that only the most important
objects are visualized on the OSTG (osteotomy planes, femur axis, land-
marks and measurements between them). Menus and trackers are not
visualized since menus cannot be used in this view and trackers already
exist in the real scene. Occlusion effects are not applied and it remains
a point of discussion if they are beneficial (important measurements or
structures could be hidden).
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(a) Plan before execution (b) Plan after execution

Figure 8.1.: Augmented in-situ view of femoral neck osteotomy using OrthoCAD and
the presented OSTG. Note that the images are taken from different trials.

After the planning phase the TTR is used to resect parts of the bone
(see Figure 8.2). The augmented in-situ view visualizes a virtual end
effector superimposing the real one. The home position of the end effector
is visualized in white whereas the current position is visualized in red.
This helps the surgeon to see how far the end effector is deflected. This
might be a redundant information in case of an HHRD since the surgeon
sees the deflection directly, however, in case of a bigger robot where the
deflection is not directly visible, e.g. the presented TTR, this information
is important. In this example, the surgeon defined a planar constraint
perpendicular to the femoral neck. The shown scene is recorded after
the surgeon has already removed the femoral head. It is visible how the
constraint caused the robot to deflect.

8.2 Exemplary Interventions

The previous section evaluated the system consisting of OrthoCAD,
OSTG and TTR according to how well the plan shown on the OSTG
overlays the patient’s bone. The goal of the following sections is to
evaluate OrthoCAD in collaboration with two different robots. For this
purpose, tests on bone imitations were performed. These imitations
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(a) Superimposed end effector (b) Evasive movement of end effector

Figure 8.2.: Augmented in-situ view of robot execution. The home position of the
end effector is superimposed in white whereas the current position is
shown in red.

8.2.1 Execution with Table-Top Robot

In a first stage, OrthoCAD was evaluated using the presented TTR
prototype with 3-DoF as described in Chapter 7.7. This prototype
consists of three translational joints. Even though the working volume
could be much bigger, it is restricted (by software) to a cube with an edge
length of 25 mm. This cube represents a working volume as it is used for
HHRDs. This prototype was used in conjunction with the control system
presented in Chapter 7.

Femoral Neck Osteotomy

In order to show the functionality of OrthoCAD together with the de-
veloped control system, a femoral neck osteotomy is performed. This
procedure represents a preparation for a hip arthroplasty (hip replace-
ment) in which the femur’s head is completely replaced by an implant.
Before the implant can be inserted into the femur, the head and the
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(a) First trial (b) Second trial

Figure 8.3.: Milling procedure of femoral neck osteotomy in several steps using TTR.

(a) First trial (b) Second trial

Figure 8.4.: The results of the femoral neck osteotomy using TTR.
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neck have to be removed. This resection is performed by removing an
approximately 1 cm thick cut from the femur neck. The cut of 1 cm is
necessary to make space to remove the femur head from the acetabulum.
Since the femur head is disposed after surgery, only one tracker is required.
See Chapter 3.13 for the detailed explanation of this intervention as well
as the planning data.

Figure 8.3 shows the milling procedure in several steps. This image
sequence illustrates how the instrument tip evades from the defined
constraints. Figure 8.4 shows the results of the intervention.

Wedge Osteotomy on Tibia with Malunion

A wedge osteotomy is performed on a tibia with a midshaft malunion.
Malunions are bone fractures that healed in an unacceptable way, thus
causing impairment and pain. This includes several misalignments like
twists, bents, shortages of the bone or several of these. From a certain
level on, malunions have to be corrected in a surgery. In case a larger
part of the malunion has to be removed, filling material has to be inserted
to guarantee the correct length of the bone.

In the following case, a midshaft malunion of a tibia caused a bent of
approximately 27∘ (see Figure 8.5a). The first step to correct the tibia
pose is to remove the biggest parts of the malunion. In the following
example the surgeon decided to cut out a wedge that comprises the
malunion. The wedge is chosen such that the two planes of the wedge
are perpendicular to the axes of the two tibia parts (see Figure 8.5b).
Since the resulting bone is too short, filling material must be inserted.

Figure 8.6 shows the milling procedure in several steps. This image
sequence illustrates how the instrument tip evades from the defined con-
straints. In a real surgery two trackers would be required guaranteeing
that both sides of the bone are milled with the maximal accuracy. How-
ever, in these tests only one tracker was attached. Figure 8.7 shows the
results of the intervention.
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(a) Tibia with midshaft
malunion

(b) OrthoCAD plan: the two lines ending at the
points represent the axes of the two tibia parts

Figure 8.5.: A tibia with midshaft malunion and the planned wedge osteotomy.

8.2.2 Execution with a Proprietary HHRD

In a second stage, OrthoCAD was evaluated using a proprietary HHRD
prototype with 3-DoF. In contrast to the previous translational prototype,
the proprietary one consists of two rotational and only one translation
joint (similar to the one shown in Figure 7.1). The working volume of
this device is specified by a cube with an edge length of approximately
25 mm. The rear part of the device is used to hold it and is rigid. The
rotational joints are located at the end of the handle. The front segment
of the device can be translated along the device’s axis.

This prototype was used in conjunction with the proprietary control
system. Therefore, the plan was sent to the proprietary control system
once it was completed. The planning procedure in OrthoCAD works as
usual and for the user there is no visible difference.
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(a) First trial (b) Second trial

Figure 8.6.: Milling procedure of tibia wedge osteotomy in several steps using
the TTR.

Figure 8.7.: The results of the tibia wedge osteotomy using the TTR.
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(a) First trial

(b) Second trial

Figure 8.8.: Milling procedure of femoral neck osteotomy shown in several steps and
from two different perspectives using the proprietary HHRD.

(a) First trial (b) Second trial

Figure 8.9.: The results of the femoral neck osteotomy using the proprietary HHRD.
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Femoral Neck Osteotomy

As described in Chapter 8.2.1, a femoral neck osteotomy was performed.
Figure 8.8 shows the milling procedure in several steps and from two dif-
ferent perspectives. These image sequences illustrate how the instrument
tip evades from the defined constraints. Figure 8.9 shows the results of
the intervention.

Wedge Osteotomy on Tibia with Malunion

As described in Chapter 8.2.1, a correction of a tibia with midshaft
malunion was performed. Figure 8.10 shows the milling procedure in
several steps. These image sequences illustrate how the instrument tip
evades from the defined constraints. Figure 8.11 shows the results of
the intervention.

Figure 8.10.: Milling procedure of tibial wedge osteotomy in several steps using the
proprietary HHRD.

8.3 Accuracy Comparison between
TTR and HHRD

In order to compare the accuracy of the presented TTR with the propri-
etary HHRD the accuracy tests described in Chapter 7.8 were repeated
using the HHRD. A cuboid as well as a half sphere were removed from a
test block. In both cases the evasive mode was used. Figure 8.12 and
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Figure 8.11.: The results of the tibial wedge osteotomy using the proprietary HHRD.
An identical tibia is shown as reference.

8.4 Expert Review

To conclude this chapter, an expert review of one of the clinical partners
is presented. As mentioned previously, OrthoCAD was developed in
cooperation with the department for experimental orthopedics of the
Medical University of Innsbruck. Prof. Dr. Michael Nogler is the head
of this department and the main medical advisor of OrthoCAD. His
complete review can be found in Appendix A.

Nogler describes that orthopedic surgery can be split into two parts:
osteotomy and osteosynthesis. The former separates the bone into two
or more parts whereas the latter combines the pieces again. In between,
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8.13 show the accuracies of the bottom plane of the milled cuboid and
the surface of the milled half sphere, respectively. In general, the HHRD
produces smoother surfaces and has less outliers. However, the difference
in accuracy is stronger in the cuboid tests than in the half sphere tests.
One reason that explains the accuracy improvement using an HHRD is
the higher update rate of its control system. Whereas OrthoCAD and
the presented control system run on the same computer under Windows,
the HHRD control system runs on a separate computer using a real-time
operating system.
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Figure 8.12.: Deviations to regression plane of milled cuboid using the evasive mode
running on a TTR and an HHRD.
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Figure 8.13.: Deviations to fitted sphere of milled half sphere. The radius was read
from the CAD file and the center was fitted. In all cases the evasive
mode was used.
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the biomechanical situation of the bone is adapted by placing the bone
parts accordingly. This principle resembles procedures known from
wood or metal processing. In these sectors the material is processed
using computer-assisted technologies. In the orthopedic sector, however,
manual interventions are still standard. In the last years such systems
improved and will probably be used more frequently in the future. The
drawback of all these systems is that they are limited to one or two
procedures. A computer-assisted planning and execution application for
arbitrary interventions was missing so far.

OrthoCAD represents such a system and is the first approach to formu-
late a general platform for orthopedic surgery. It represents a change
of paradigm in the operational actions of orthopedic surgery. For the
first time a surgeon can use a CAD system in the sterile environment.
With a robot the execution of the plan is possible. This causes a se-
vere improvement in accuracy and precision compared to conventional
manual systems.

8.5 Conclusion

This chapter presented the evaluation of the intraoperative planning and
execution environment that can be employed in arbitrary orthopedic
interventions. The first part summarized the evaluations of all individual
components whereas the second part described different evaluations
concerning the overall system:

∙ The augmented in-situ view is evaluated by planning and executing
a femoral neck osteotomy using the OSTG and the table-top robot.
It is shown that accurate overlays are guaranteed and that the
visualization is only showing the most important information. Oc-
clusion effects are not applied and it remains a point of discussion
if they are beneficial.
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∙ Two exemplary osteotomies, the first one on the femoral neck and
the second one on a tibia with malunion, were planned in OrthoCAD
and executed using the TTR and a proprietary HHRD. All tests
were successful and demonstrate that the presented system does
not depend on a specific robot.

∙ Milling tests on foam blocks with both robots were carried out in
order to compare their results. Both robots produce results that are
more accurate than conventional methods. The HHRD produces
smoother surfaces than the TTR, which is explainable by a more
optimized and faster processing (Microsoft Windows vs. real-time
operating system).

Furthermore, an expert opinion emphasizes the importance and the op-
portunities of this new system. The review results from the collaboration
with the Medical University of Innsbruck. The feedback of all other
involved surgeons was positive throughout.
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The presented system for an intraoperative planning and execution of
arbitrary interventions contributes to several different fields of science
and engineering: computer science; robotics; electrical, control and
mechanical engineering; and medicine. Thus, it is characterized by its
interdisciplinarity. The level of contribution varies per field. The main
contributions are in the field of computer science and medicine and can be
summarized as computer-assisted surgery. Concerning computer science,
the following domains are involved: image processing, photogrammetry,
machine vision, computer graphic and augmented reality. In the field
of medicine, this work mainly addresses orthopedic surgery but also
traumatology and neurosurgery.

This chapter summarizes the essential aspects of the presented work. The
results are discussed and future work shows how the proposed system
can further be improved.
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9.1 Summary

Although CAOS systems have been available for at least two decades, most
interventions are still carried out in a conventional manual way. Several
possible reasons explaining this fact were identified, which include the
costs of these systems, the missing flexibility, the additional training and
in case of a robotic execution, an increased radioactive exposure due to
additional CT scans needed for a detailed planning. Therefore, surgeons
and clinics regard this topic with a certain amount of skepticism.

In order to improve these drawbacks, a new system called OrthoCAD is
proposed that improves several of these disadvantages. The presented
system allows the surgeon to plan and execute arbitrary orthopedic
interventions. The planning is performed intraoperatively without the
requirement of additional imaging. Known concepts from commercial
CAD-applications influenced the design of the planning software. Since
normal input devices (keyboard and mouse) are not applicable in the
OR (not sterilizable), new interaction concepts were presented. For this
purpose, a touch screen as well as a navigated pointing device are used.
In order to evaluate the functionality of OrthoCAD, a planning of a
femoral neck osteotomy was performed.

In addition to the pointing device and the touch screen, arbitrary input
devices can be connected to OrthoCAD via the OpenIGTLink protocol.
This is demonstrated by an ultrasound workstation that, first, extracts the
bone’s surface from an US scan and, second, transmits it to OrthoCAD.
A performance analysis shows the latency and frame rate of this protocol
in real application scenarios.

Another important requirement was the development of a system that
visualizes the planning data directly on the situs in order to prevent a
continuous change of perspective from the patient to the monitor and
vice versa. Therefore, an augmented in-situ view based on OSTG and
a corresponding calibration technique were developed. The presented
method calibrates display pixels individually without utilizing a model.
The procedure is camera-based and runs completely automatic. Two
approaches were discussed and evaluated. It is demonstrated that the first
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approach, which triangulates the display pixels, works well for OSTG with
simple optics but fails for more complex ones. The second approach using
the viewing rays of the display pixels works well for all tested OSTG and
produces better accuracies than existing works. The evaluation together
with OrthoCAD shows that this calibration allows an accurate overlay
helping the surgeon to perform the intervention.

Subsequent to the planning procedure, the plan can be safely executed
using different robots. For this purpose, a robot control system was
developed. It guarantees that defined regions are not penetrated by
the end effector. The surgeon can choose between different modes with
distinct characteristics. In the evasive mode, the end effector evades
the planned regions as long as the kinematics allow it. If the maximal
deflection is reached, the power of the device is turned off. The smoothing
mode resembles the evasive mode with the difference that the end effector
oscillates around its axis. This results in milled surfaces with a higher
smoothness. This control system was evaluated by milling different
geometries inside a foam block. The results show that the evasive mode
produces more accurate results than a rigid milling device and that the
smoothing mode improves the surface quality even more.

Initial tests were conducted using a navigated milling device. Since the
HHRD was not yet available, a first robot prototype with an attached
milling device had to be developed. Finally, just shortly before the end
of this research work, the HHRD was available for tests. Due to this
reason, some of the methods were evaluated only with the self-developed
prototype whereas some others were tested with both. The evaluation
shows that devices running with the robot control system as well as the
HHRD produce accurate results. Among all tested devices the HHRD
produces slightly better results.

In contrast to existing specialized CAOS applications, the described
generic and intraoperative planning and execution system for arbitrary
orthopedic interventions provides the following benefits:

∙ lower price, due to the fact that only one generic application is used
instead of several specialized ones and that the mechanics of an
HHRD are simpler than the ones of a stationary robot with 6-DoF
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∙ higher flexibility, due to the generic approach and the possibility
to switch between planning and execution

∙ lower training time, since personal is only trained on one application
instead of several ones and an HHRD is similar to a standard milling
device that is already available in many ORs

∙ lower radioactive exposure, due to image-free planning

By improving these points it might be easier for surgeons and clinics to
switch from conventional manual methods to computer-assisted inter-
ventions. This is confirmed by the collaborating experts of the Medical
University of Innsbruck. They further state that by migrating to this
innovative approach the outcome of interventions is improved. It can be
summarized that all requirements are met.

9.2 Future Work

In the near future, the presented system can offer surgeons an easier
migration from conventional to computer-assisted surgery. The presented
solution can be extended in a variety of ways and adapted to special
conditions. One option would be to adapt the application in such a way
that it can be used in other medical disciplines such as neuro- or oral
and maxillofacial surgery. Prior to clinical use, a number of extensions
and improvements are required. Hereby, the following aspects seem
particularly promising and important:

Currently, the surgeon has to manually select which objects are annotated
with measurement values. In a future version, measurements should be
visualized automatically according to predefined criteria. This is not
trivial, since the interest and focus of the surgeon have to be identified.
If there are only a few measurements shown, the wanted one might be
missing. In case there are too many, the surgeon might not find the
important one.
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It was shown that the augmented in-situ view is useful and beneficial for
orthopedic interventions. However, OSTG still have disadvantages that
will be improved by upcoming generations (weight, field of view, depth
of focus, etc.). Therefore, the surgeon will be able to wear the OSTG
during the complete intervention without disturbing him.

The calibration of OSTG is often split into two parts, a one-time system
calibration and a continuous eye adaptation. The presented approaches
were focusing on the system calibration. In order to guarantee an accurate
overlay over a longer time, the patient’s eye must be tracked and its
location continuously updated.

A semi-automatic mode could further improve the usage and handling of
HHRDs. The HHRD automatically removes material inside its workspace
(defined by its kinematics) while the user simply holds the device close
to the structures that have to be removed. As soon as the material is
removed the user continues moving the HHRD.

The proprietary control system and HHRD produces slightly better results
than the presented control system together with the table-top robot. An
improved control system should further decrease the inaccuracy of the
presented system. For this purpose, the control system should be moved
to a real-time operating system. Additionally, the optical navigation
should be extended with additional sensors (e.g. gyroscopes) to increase
the tracking frame rate.

As described before, this work concentrates on the control system and not
the robot’s hardware. Currently, HHRDs are still a matter of research
with almost no commercial products available. Besides others, the key
challenges are to further miniaturize the devices and to find a way
for autoclaving.
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Michael.nogler@i-med.ac.at  Innsbruck, am 13.01.2017 

 

Betrifft: Beurteilung des OrthoCAD Systems aus orthopädisch chirurgischer Sicht 

 

Die Orthopädie beschäftigt sich in ihrem chirurgischen Teil mit der Bearbeitung von Knochen. Hierbei 

müssen Knochen mit unterschiedlichen Verfahren getrennt (Osteotomie) und nach 

Positionskorrektur wieder verbunden werden (Osteosynthese). Ziel dieser Verfahren ist es in der 

Regel, die biomechanische Situation zu verändern. Hierzu werden Achsen korrigiert, d.h. der 

getrennte Knochen wird in seiner Position verändert und in dieser veränderten Position wieder 

zusammengefügt. 

Grundsätzlich gleichen diese Verfahren denen in der Mechanik bzw. im Handwerk wie etwa der Holz- 

oder Metallbearbeitung. In diesen Bereichen wird schon seit vielen Jahren nicht mehr freihändig, 

sondern auf der Basis von computerunterstützten Plänen, Material automatisiert bearbeitet. Eine 

solche CNC Technologie hat sich in der Orthopädie noch nicht durchgesetzt, alle Arbeiten erfolgen 

rein manuell. Allerdings gibt es in den letzten Jahren sehr vielversprechende Ansätze, 

computergesteuerte Frässysteme auch in der Knochenbearbeitung zu etablieren. Dabei sind 

zahlreiche technische Hürden zu nehmen. Insbesondere die Tatsache, dass es unmöglich ist, das 

Werkstück (den Knochen) einzuspannen zu fixieren ist eine große Schwierigkeit. Computerbasierten 

Navigationssysteme, die den Knochen in seiner Position präzise verfolgen können, erreichen aber 

mittlerweile eine Genauigkeit und Brauchbarkeit, die auf ihren intraoperativen Einsatz in größeren 

Zahlen hoffen lässt. 

Alle bisher vorgestellten und eingeführten Systeme kranken aber daran, dass sie eine sehr enge 

Fokussierung auf meist nur eine oder zwei Prozeduren haben. Was in der Orthopädie fehlt, ist ein 

generelles Modell zum Einsatz von computerbasierten Planung und Umsetzung dieser Planungen 

operative Verfahrensschritte. 
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Appendix A. Review Dr. Nogler

Das System OrthoCAD ist der erste bekannte Versuch eine allgemeine Plattform zu formulieren, in 

der es möglich ist, intraoperativ computerbasierten Operationsschritte zu planen. Das System basiert 

auf intraoperativen Positionsbestimmungen von relevanten Knochen-Landmarken. Diese 

Landmarken werden zu einer komplexen Darstellung des Knochens im Raum kombiniert und 

erlauben mit einem auf den Chirurgen als User zugeschnittenem User Interface die intraoperative 

Konstruktion der geplanten Osteotomie in Echtzeit. Das System stellt einen kompletten 

Paradigmenwechsel im operativen Vorgehen in der Orthopädie dar. Zum ersten Mal ist es dem 

Chirurgen möglich während der Operation im sterilen Umfeld ein CAD – System zu verwenden. Und 

mit einem intraoperativen Stresssystem ist dann die korrekte Umsetzung der Planung möglich. Dies 

bedeutet eine massive Erhöhung der Präzision und Wiederholgenauigkeit in der Orthopädie im 

Vergleich zu den bisherigen rein Hand geführten Systemen. 

 

 

Michael Nogler 
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