
A HETEROGENEOUS FPGA/GPU ARCHITECTURE FOR REAL-TIME

DATA ANALYSIS AND FAST FEEDBACK SYSTEMS

M. Vogelgesang∗, L. Rota,L.E. Ardila Perez, M. Caselle, S. Chilingaryan, A. Kopmann, M. Weber

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

We propose a versatile and modular approach for a real-

time data acquisition and evaluation system for monitoring

and feedback control in beam diagnostic and photon sci-

ence experiments. Our hybrid architecture is based on an

FPGA readout card and GPUs for data processing. To in-

crease throughput, lower latencies and reduce overall system

strain, the FPGA is able to write data directly into the GPU’s

memory. After real-time data analysis the GPU writes back

results back to the FPGA for feedback systems or to the CPU

host system for subsequent processing. The communication

and scheduling processing units are handled transparently

by our processing framework which users can customize

and extend. Although the system is designed for real-time

capability purposes, the modular approach also allows stan-

dalone usage for high-speed off-line analysis. We evaluated

the performance of our solution measuring both processing

times of data analysis algorithms used with beam instrumen-

tation detectors as well as transfer times between FPGA and

GPU. The latter suggests system throughputs of up to 6 GB/s

with latencies down to the microsecond range, thus making

it suitable for fast feedback systems.

INTRODUCTION

The repetition rates of modern linear accelerators such as

European XFEL and TELBE [1, 2] cause increasing chal-

lenges for the development of detectors and beam diagnostics

tools. With the recent developments of fast analog to digital

readout systems, beam diagnostics has therefore become a

big data problem. Although FPGAs emerged as ideal devices

to perform on-line data analysis on large amounts of data, the

implementation of particular data analysis algorithms still

requires specific in-depth knowledge of the hardware and is,

compared to software solutions, associated with significantly

higher development costs despite efforts of FPGA vendors.

At the same time, the data transmission link between the

detector and the computational units or external storage is

typically the bottleneck that limits the amount of data that

can be processed in a given time frame.

Processing the acquired data off-line is a potential solution

for most applications, however as soon as on-line monitoring

or a feedback control loop is an essential part of the appli-

cation, stable real-time data analysis with guaranteed low

latencies is required. In case of on-line monitoring, data

must be transferred to the processing machine as fast as pos-

sible with low variance in time. Conventional systems either

based on a local temporary storage or network interconnects

are not suitable due to insufficient transfer times.

∗ matthias.vogelgesang@kit.edu

DGMA FFT Filter IFFT . . .

FFT Filter IFFT

Figure 1: Overview of multi-GPU data stream processing:

after inserting the data into a buffer within the DGMA filter,

the data processing steps consisting of filtering in the fre-

quency domain can be executed on separate GPUs for higher

throughput.

In this paper, we will present a hardware/software architec-

ture that bridges fast data acquisition using FPGAs and fast

data processing with GPUs. Using direct memory accesses,

we can decrease latency as well as increase throughput by uti-

lizing the entire connection bandwidth. This data acquisition

infrastructure is accessible from within our data processing

framework which – in this particular use case – is used to

analyse digitized spectrometer data in a heterogeneous com-

pute environment. It automatically distributes data among

multi-core CPUs and GPUs and uses multi-level parallelism

to achieve a higher processing throughput than conventional

single-threaded computing. The processing pipeline is flexi-

ble and can be re-arranged as well as extended by the user

to accommodate for different applications. By adopting

the proposed solution, the development time of a particular

experimental setup can be reduced significantly.

ARCHITECTURE

FPGA-based Data Acquisition Platform

Our core data acquisition platform is based on our cus-

tom “Hi-Flex” FPGA board, that uses a Xilinx Virtex 7

device and is connected to the host computer through a PCI-

Express (PCIe) 3.0 8-lane connection. The board has inte-

grated DDR3 memory of 4 GB and an internal maximum

throughput of 120 Gbit s−1. Two industry standard FMC

connectors (fully populated) are used to interface different

mezzanine boards, which host the frontend electronics of

different application-specific detectors such as 2D pixel de-

tectors [3] or 1D linear array detectors [4]. The FPGA has an

in-house developed Direct Memory Access (DMA) engine

for PCIe 2.0 / 3.0 compatible with Xilinx FPGA families 6

and 7 supporting DMA data transfers between main system

memory and GPU memory. The DMA engine is described

in more detail in [5].

Data Processing Framework

The basis for processing the input data in real-time is our

heterogeneous data processing framework, initially devel-

WEPG07 Proceedings of IBIC2016, Barcelona, Spain

ISBN 978-3-95450-177-9

626C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

BPMs and Beam Stability

oped for X-ray image processing tasks [6]. As shown in

Figure 1 the core concept is a graph defined by the user who

specifies the flow of data through a set of nodes that process

input data to produce some result. The tasks within these

nodes is scheduled by the run-time system and executed on

processing units such as CPU threads and GPU kernels. By

duplicating chains of tasks intelligently as denoted by the

dotted nodes, the system can make use of multiple levels

of parallelism including pipelining, multi-threading, fine-

grained data parallelism within a GPU as well use of multiple

GPUs per machine. To process data on the GPUs, specific

GPU kernel code is written and executed using the vendor-

independent OpenCL standard [7].

The framework has a variety of options to access it in order

to accommodate for different user requirements. The most

straightforward way consists of chaining and parameterizing

the plugins on the command line. For example, to read data

from the FPGA, compute a one-dimensional FFT on the

multi-dimensional data and write the result into an HDF5

file, the user merely has to run

ufo-launch

direct-gma width=256 height=4096 ! \

fft dimensions=1 ! \

write filename=output.hdf5:/dataset

on the command line. As one can see, the user can entirely

concentrate on devising the correct processing chain for his

end result and does not have to worry about execution on

the target platform. Besides using the framework in this

immediate mode, it can also be linked to from any C or C++

program as well as being called from most third-party script-

ing languages such as Python via a meta-bindings. Since

each task is a plugin following a simple interface, users can

extend the framework by implementing new functionality as

new plugins.

Low Latency Data Transfers

In order to obtain the maximum throughput of the FPGA’s

and GPU’s PCIe connection as well as to process data on the

GPUs in real-time, we have to avoid any intermediate data

copies between system and GPU memory. Using AMD’s

DirectGMA extension for OpenCL we can tightly integrate

DMA-based data transfers and transmit data directly into

the GPU without storing the acquired data temporarily in

system memory.

In order to initiate a data transfer on the FPGA, the physi-

cal bus addresses of the GPU memory regions to be written

have to be set in special FPGA registers. For CPU writes

these addresses are provided by our FPGA kernel driver.

With GPUs these memory addresses are retrieved by pass-

ing the allocated OpenCL buffer to the AMD-specific cl-

EnqueueMakeResidentAMD() call. Unlike general GPU

buffers, FPGA-accessible GPU buffers are limited in size,

for example on an AMD W9100 the maximum buffer size

is about 90 MB. Therefore, we use a double buffering ap-

proach that swaps multiple temporary buffers in order to

keep the DMA engine running. While filling one half of the

1.25 1.3 1.35 1.4 1.45 1.5 1.55
0

0.05

0.1

0.15

Latency (µs)

D
en

si
ty

Figure 2: Round-trip latency distribution of data going from

FPGA to GPU and back again.

restricted buffer, the content of the other half is transferred us-

ing clEnqueueCopyBuffer() to a non-DMA buffer which

has the size of the final buffer. When both DMA transfer

and internal copy finish, the roles of the buffers reverse, i.e.

the first buffer is copied and the second is filled. Once the

large buffer is filled completely, it is swapped for processing

by the GPU. Using this strategy, we can overlap both DMA

transfers as well as data processing. This mechanism is work-

ing because data is copied much faster within a GPU (about

320 GB/s on a W9100) than between FPGA and GPU (8 GB

theoretical throughput for PCIe 3.0 x8). Besides transfers

from FPGA to GPU, the GPU can also write back to FPGA

registers and memory regions that were made accessible

to compute kernels. This requires passing known physi-

cal FPGA bus addresses to the clEnqueueMakeResident-

AMD() call. This creates a virtual proxy buffer that can be

used by the GPU kernel to write seemingly into the FPGA

address space. This facility is necessary for trigger applica-

tions that have to avoid passing the trigger information first

to the CPU.

RESULTS AND USE CASES

In this section we will investigate the behaviour of our pro-

posed system both on a lower level comparing data through-

put and latency as well as on a higher level measuring data

processing times.

Performance

Figure 2 shows the latency distribution measured for data

transfered from FPGA to GPU and back to the FPGA again.

An FPGA-side timer is started as soon as a write happens.

Meanwhile, a GPU kernel is launched that polls for that

data to arrive. Once the kernel thread registers a change, it

triggers a response causing write back to the FPGA. As we

can see, the mean latency of data transfers of about 1.31 µs

with a jitter of 0.06 µs suggests applicability of our system

for most monitoring and feedback applications.

In Figure 3, the system throughput is plotted for a increas-

ingly larger datasets. Each transfer is measured with three

different data block sizes that were transmitted at once. The

throughput includes the data transfer as well as all as any

overheads induced by startups and the run-time system. With

this in mind, we can see a throughput that is near full utiliza-

Proceedings of IBIC2016, Barcelona, Spain WEPG07

BPMs and Beam Stability

ISBN 978-3-95450-177-9

627 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

102 103

2000

4000

6000

Data size (MB)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

8 MB 16 MB 32 MB

Figure 3: System throughput from FPGA to GPU for differ-

ent data block sizes and including all overheads.

tion of the PCIe bus for larger data sizes and is sufficient for

even the highest demanding photon science experiments.

KALYPSO Data Analysis

As a typical application example for a beam diagnostic

solution, we have chosen KALYPSO, a linear array detec-

tor developed to allow real-time monitoring of longitudinal

bunch profiles measured with Electro Optical Spectral De-

coding setups. The detector setup and characteristics is

described in detail in [8]. The main idea of this detector

setup consists of the reconstruction of the bunch profile from

the measured spectrum of a laser pulse. In order to measure

the bunch profile, three different measurements have to be

acquired: the background signal, the unmodulated signal

with the laser pulse used as a reference and the modulated

signal where the laser pulse contains the information of the

bunch profile. The discretized spectrum of the laser pulse is

acquired and digitized on a dedicated card that is connected

to the “Hi-Flex” FPGA board.

The most fundamental work required for subsequent data

analysis is the interpretation of the raw ADC channel data

transferred from the FPGA board and correction for back-

ground noise. The first step consists of averaging the stream

of background and unmodulated data sets db and du over

time, i.e. d̂ {b,u }[i] =
1
n

∑
d {b,u }[i][j] for the i-th channel of

the j-th out of n pre-recorded datasets. This data is used to

remove static background and dark noise from the currently

recorded datasets dm , i.e.

d̂m[i][j] =
dm[i][j] − d̂b[i mod 256]

d̂u[i mod 256]
.

Each time raw data is accessed, the transmitted value has

to be masked with 0x3fff in order to retrieve the 14 bit

ADC values from a 16 bit data packet. Because of data

dependencies, we map one GPU thread to one ADC channel

to parallelize the averaging which results in 256 threads

running in parallel. The data correction itself is free of

any data dependencies, thus one GPU thread computes the

corrected value for one input.

Figure 4 shows the execution time for averaging and cor-

rection. Averaging is constant, with a mean execution time

of 5.975 µs, because the same background and unmodulated

0 2000 4000 6000 8000
0

20

40

60

80

Number of datasets

T
im

e
(µ

s)

Correction

Averaging

Figure 4: Kernel execution times for processing averaging

and background correction on an AMD S1970.

0 2000 4000 6000 8000
0

2000

4000

6000

8000

Number of datasets
T

im
e

(µ
s)

Argmax

Lowpass

Figure 5: Kernel execution times for specific analysis.

data is used for each run, the time for correction scales lin-

early and is approximately t(n) = (0.00777n + 5.105) µs.

To smoothen the high variance of the input data a low

pass filter based on moving averages has been implemented.

Similar to the regular averaging filter, the kernel for moving

averages maps one GPU thread to one particular ADC chan-

nel, computing the moving averages with a default order of

3 for all datasets. In certain applications such as measure-

ment of the arrival time, it is necessary to find out which

of the channels a has the largest value at the moment, i.e.

one wants to determine ai = argmax jd[i][j]. This is a sim-

ple search across all datasets which also requires mapping

of one GPU thread to one channel. Figure 5 compares the

execution time for these two kernels: unlike the previous

pre-processing tasks these steps take several milliseconds to

compute thus are only useful in a monitoring environment.

Besides these fundamental tasks, we can also make use

of the existing transpose filter to re-interpret the dataset

columns as rows and do subsequent computations in time

domain. Moreover, we can use the existing fft and a newly

written powerspectrum filter to compute the frequency com-

ponents of the signal. Whereas the power spectrum com-

putation can be parallelized in the same way as the back-

ground correction kernel with similar performance character-

istic, the FFT is a more complex filter requiring appropriate

padding and more time.

CONCLUSION

In this paper, we introduced a comprehensive data acqui-

sition and processing system with low latencies and high

throughput properties as its main characteristics. The core

WEPG07 Proceedings of IBIC2016, Barcelona, Spain

ISBN 978-3-95450-177-9

628C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

BPMs and Beam Stability

components of the system are tight coupling between data

acquisition and processing that is driven by the acquiring

FPGA rather than the host CPU. Unlike conventional data

paths, writing from FPGA to the GPU directly allows lower

latencies and higher total throughput and enables real-time

monitoring, control and feedback systems. To realize real-

time monitoring we also off-load critical pre-processing to

the GPU with average execution times in the µs range.

The entire setup was used to measure and analyse data

with the KALYPSO detector setup and has proven to be a

viable alternative to conventional off-line data analysis given

insight into the data while acquiring it. In the future, we

will investigate how the analysis can be visualized in a user-

friendly way and how the result can be incorporated in the

entire feedback loop.

ACKNOWLEDGEMENT

This work was partially funded by the German Federal

Ministry of Education and Research (BMBF) as UFO-2

under the grant 05K10VKE. The authors would also like to

thank Patrik Schönfeldt and Miriam Brosi for the data and

helpful discussions.

REFERENCES

[1] B. Green, S. Kovalev, J. Hauser, M. Kuntzsch, H. Schneider,

S. Winnerl, W. Seidel, S. Zvyagin, U. Lehnert, M. Helm et al.,

“Telbe-the super-radiant thz facility at elbe,” Verhandlungen

der Deutschen Physikalischen Gesellschaft, 2013.

[2] M. Altarelli, R. Brinkmann, M. Chergui, W. Decking, B. Dob-

son, S. Düsterer, G. Grübel, W. Graeff, H. Graafsma, J. Hajdu

et al., “The european x-ray free-electron laser,” Technical De-

sign Report, DESY, vol. 97, pp. 1–26, 2006.

[3] M. Caselle, S. Chilingaryan, A. Herth, A. Kopmann, U. Ste-

vanovic, M. Vogelgesang, M. Balzer, and M. Weber, “Ultrafast

streaming camera platform for scientific applications,” IEEE

Transactions on Nuclear Science, vol. 60, no. 5, pp. 3669–3677,

10 2013.

[4] L. Rota, M. Vogelgesang, L. A. Perez, M. Caselle, S. Chilin-

garyan, T. Dritschler, N. Zilio, A. Kopmann, M. Balzer, and

M. Weber, “A high-throughput readout architecture based on

pci-express gen3 and directgma technology,” Journal of In-

strumentation, vol. 11, no. 02, 2016.

[5] L. Rota, M. Caselle, S. Chilingaryan, A. Kopmann, and M. We-

ber, “A high-throughput pcie dma architecture for gigabyte data

transmission,” IEEE Transactions on Nuclear Science, vol. 62,

no. 3, pp. 972–976, 6 2015.

[6] M. Vogelgesang, S. Chilingaryan, T. dos Santos Rolo, and

A. Kopmann, “Ufo: A scalable gpu-based image processing

framework for on-line monitoring,” in High Performance Com-

puting and Communication 2012 IEEE 9th Int. Conf. on Em-

bedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th

Int. Conf. on, 6 2012, pp. 824–829.

[7] A. Munshi, B. Gaster, T. Mattson, J. Fung, and D. Ginsburg,

OpenCL programming guide. Addison-Wesley Professional,

2011.

[8] L. Rota, M. Caselle, N. Hiller, A. Müller, and M. Weber, “An

ultrafast linear array detector for single-shot electro-optical

bunch profile measurements,” in Proceedings of the 3rd Int.

Beam Instrumentation Conf., 9 2014.

Proceedings of IBIC2016, Barcelona, Spain WEPG07

BPMs and Beam Stability

ISBN 978-3-95450-177-9

629 C
op

yr
ig

ht
©

20
16

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

