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Abstract: A simple elastic rotor model is coupled with a new physical and mathematadehof foil air bearings. The novelty
is the nonlinear stiffness effects of the compliant bearing structure-eeitied vibrations are investigated.
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1 Introduction

Air bearings offer a high potential for improving high speetiating machinery. The major advantage is the
low friction loss, due to the low viscosity of the lubricagifiuid. However, these bearings require either an external
pressure supply or high rotating speeds to build up a loagtiogrfluid film. Furthermore, aerodynamic bearings,
which refer to the latter mentioned kind, are prone to infitas, |Gross et &l (1980). A compliant bearing struc-
ture is supposed to suppress these vibrations, or at leaghiné the amplitudes, Howard et al. (2001). Within
this contribution the effects of the bearing compliancgleeting friction and damping, on the onset and resulting
rotor vibration are investigated.

A vast variety of foil air bearing models exist. In most catesbearing models are investigated for a fixed rotor
state. Surveys on the dynamics of the rotor, coupled to aiilbg models are rather rare. Complex FE-models used
to be expensive in terms of computational costs. Conselyyérgse models are not appropriate for rotordynamic
investigations. Bonello and Phan use a classical lineatield/inklerfoundation model for the compliant bearing
structure to investigate the dynamics of a rigid rotor, Blonend Pham|(2014). Bhore and Darpe use the same
structure model, but a linear elastic Lavalrolor, Bhore Badoe (2013). Here, a new nonlinear physical and
mathematical model for the bearing structure is used angdledwvith a Lavalrotor.

2 Modé Description

Rotor Modéd An elastic Lavalrotor of masa/ with external damping,. is considered. In addition, the mass
of the shaft is modelled by discrete particles of mgstcated at each bearing, see Fidure 1 (a). The shaft has a
stiffnessk and the configuration is symmetric so that the equations diomare given by

(Miw + deiw + k(zw — xp)] ex + [Mijw + deyjw + k(yw —yp)le, = Mge, 1)
(mip +2F, — k(zw — xp) ez + mip + 2F, — k(yw —ypr)ley, = mge,. (2

e, e, are the base vectorsp, yp the Cartesian coordinates of the journal cetterithin the bearingzw, yw
the coordinates of the rotor’s centéf andF; = F;(zp,yp,Zp,yp,w), i = x,y the bearing forces resulting from
the fluid pressurey being the speed of rotation.

Bearing Model Based on the conventional assumptions of lubricating flind theory, the unsteady Reynolds
equation for ideal gases is chosen to model the fluid behanigarticular the fluid pressupe The structure of
the foil is modeled such that the displacement does not dkperthe axial coordinate:¢) and the displacement
is not coupled in circumferential directiom £). This yields the following equation
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foil, hg is the nominal clearance, is the ambient pressurg= [ 2, p dzy, is the axial - integrated pressutejs
2
the bearing length ani the nominal bearing radius. andb are parameters of the nonlinear foundation model.
Nondimensional Reduced Bearing-, Rotor - and Coupled Overall Model At first, to reduce the number
of model parameters, the overall model is transformed imtedimensional form, where a sté)* denotes the



nondimensional variable. Furthermore, with the objectif& computational efficient bearing model a single
term axial shape functiop! = pg(z}t)ﬁ;(n ) + 1 is proposed. Based on the theory of weighted residuals, in
particular applying Kantorovich’s method, the dependemitghe axial coordinate; is eliminated by evaluating

f_i D{p;} Ps(z})dz} = 0, with the nonlinear differential operat@ defined in[(8). The boundary condition is

chosen ag*(¢ = —7) = p*(¢ = 7) = 0. Furthermore, substituting finite differences (FD) for teenaining
spatial derivatives w.r.tp in the fluid pressure and rearranging gives a nonlinear sysfecoupled ODEsB;' =
f(P;_1,P},P;11), = 1...n, forn collocation points.

Introducing a state space vectocontaing both, the rotor states and the centerline press@ach collocation
point p;, enables an overall formulation of the coupled fluid-beguriator problem as an autonomous nonlinear
system of first order ODEs.
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3 Results

To analyze the system’s dynamical behavior a bifurcaticalyasis is conducted. The angular velocity is
used as a bifurcation parameter. Stationary solutignsf (4) are determined by solving a system of algebraic
nonlinear equationsX (xy) = 0. Their stability is determined by the eigenvalues of theoBam. Periodic
solutions are investigated within MatCont.

Rigid Rotor For a rigid rotor § — oo), without external dampingi{ = 0) the stationary solutions for low
rotor speeds are stable. With increasing rotor speed ahibices; ., can be identified, at which two conjugate
complex eigenvalues with vanishing real part, an AndroHop{- Bn‘urcatlon occurs. Fow™ > wy, , the sta-
tionary solutions are unstable. Moreoveruét= w; . ; an unstable limit cycle is born. Following ‘the unstable
branch a fold bifurcation is detected. Unstable I|m|t cgctvitch to stable limit cycles. Following the stable
branch again, a transition to unstable limit cycles can ts=nled. On the stable limit cycles the rotor whirls with
approximately the half angular velocity, periéd~ f}—’l.

Lavalrotor When considering the elasticity (< oo) for a rotor of the same mass, the journal loci coincide
with the journal loci of the rigid rotor. But the stabilityrasshold of the Lavalrotav? ;,, does not coincide with the
stability threshold of the rigid rotav; . ;. Both rotor stiffnesg and mass distributiofm, M, m + M = const.)
influence the critical rotor speed , and the amplitudes of the whirl motion for > w7, ,. Figurell (b) shows
exemplarily a trajectory for a constant angular velocityrtRer results will be shown within the presentation.
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Figure 1: Model of the symmetric Lavalrotor (a), example trajectofybandW for w* > wy ;,,; (b)
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