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Part I

Introduction





Chapter 1

Introduction and Motivation

1.1 Motivation

SPATIAL data is everywhere (Parsons (2017)). In the modern world al-

most all data has a spatial and a temporal context. This ranges from

route-planning, to location based services, environmental processes and

almost any human interaction has a place and a time, to name just a few.

Smart phones, now an integral part of our lives, were introduced on the

premises of their location based services by Steve Jobs of Apple Inc.. The

possibilities of Google Glass was shown with its navigation option and spa-

tial context. To use these data sources, appropriate models are needed.

The fields of geo-statistic as well as spatial econometrics are today well-

established, see e.g. Anselin (2010), and provide new insights to our un-

derstanding of the world. But these methods and the underlying paradigm

is not yet fully established in the field of information systems (IS). This is

surprising as most of the recent trends in the field of IS are based on spatial

data:

(1) On of the biggest trends in the field is the rise of Big Data and its

implications. This is fueled particular by the birth of social media and so-

cial networks such as Facebook and Twitter. These produce an immense

amount of data. The high percentage of publications in journals such as

3



4 Introduction and Motivation

the DSS1 which are focused mainly on these social data show their import-

ance for IS. The context of this data is often dependent on the location;

most of the underlying services even demand the geo-location for their

use. Smart phones in particular are multi-purpose geo-referenced sensors.

Today, we measure the mobility behavior of people based on their smart

phones, we can measure the emotional well-being based on the position

and even use the sensors directly, e.g. the cameras or additional sensors

for noise. In the words of Blaschke et al. (2011) ”Location-based services

on mobile smart phones are penetrating our daily communication beha-

viour more and more”. Other data sets such as from car-sharing (Wagner

et al. (2016)) or taxi data 2 are used to optimize services and (urban) mobil-

ity, predict future demand, plan optimal locations and the optimal tours.

James Steiner, Vice President of Oracle, emphasized the importance of spa-

tial information quite strongly: ’Location information and geospatial data

are at the core of most Big Data use cases” (Steiner (2017)).

(2) Another important trend is the resurgence of Cyber Physical Systems

(Broy (2010)). Under this term the combination of digital processes and

data representation with real world processes is understood. Typical ap-

plications are sensor placement in production pipelines and tracking of

goods in a supply chain. Standard approaches are based on process min-

ing and know the placement of sensors in the process. But more recent de-

velopments, especially in the case of the tracking of goods, are using and

needing spatial information. For these new, enhanced applications the ex-

act location of a good or sensor is important for a complete understanding

of the processes and potential impact on the overall production and supply

chain process. An example for this is presented in the vision of Work and

Bayen (2008), where smart phones are proposed as multi-purpose monit-

oring tool for Cyber Physical Systems, as these provide visual as well as

auditory information coupled with the geo-position. Particular in the early

1https://www.journals.elsevier.com/decision-support-systems/
2http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

https://www.journals.elsevier.com/decision-support-systems/
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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stages of new production lines as well as for general purpose applications

the spatial component is essential.

(3) The most obvious trend for the use of spatial data is the Smart City.

While no clear definition of the term is agreed upon (Resch et al. (2012)),

we use the understanding provided by the BISE special issue regarding

smart cities3: ”Using information systems to improve all of the facets of

urban life is the core of the Smart City paradigm.” A smart city has many

components, goals and actors as well as underlying processes and a huge

variety of different data sources. And all of these different parts are highly

interconnected based on their temporal and spatial closeness. For example,

temperature influences human well-being directly through heat-stress and

indirectly through its influence on other environmental variables such as

air pollution. In addition this in turn influences the energy consumption of

a city through heating or cooling devices, dependent on the temperature.

Hay et al. (2011) developed a demonstrator to show the benefits of spatial

technologies for influencing the energy consumption. While in the past,

the examination of this highly complex construct city has had not enough

data for meaningful analysis, today the rise of volunteered geographic in-

formation (VGI), collective sensing apparatus, IoT devices and the ubiquity

of mobile devices will allow a more in-depth analysis and understand-

ing of these processes (Arribas-Bel (2014)). But these new data sources

also include new challenges, in particular the heterogeneous quality of the

available data, the different purpose for their original gathering and the re-

quisite to include the spatial and temporal dimensions. This leads to the

paradigm of Collective Sensing (Blaschke et al. (2011)). Furthermore, in the

context of a truly smart city, all the stakeholder in a city have to be in-

cluded. This leads to a stronger focus on the participation of individuals

and a focus on the individual level. Zeile (2017) showed a way to do so by

combining mobile emotion sensing with urban planning methods to detect

and use critical points in a city. Finally the paradigm of a smart city is even
3http://www.bise-journal.com/?p=1224

http://www.bise-journal.com/?p=1224
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now extended to the vision of a Live City, ”in which the city is regarded as

an actuated near real-time control system creating a feedback loop between

the citizens, environmental monitoring systems, the city management and

ubiquitous information services” (Resch et al. (2012)).

As these examples show, most real-world processes relevant to the field

of IS are dependent on spatial as well as spatio-temporal factors. These

factors include often spatial as well as temporal autocorrelations as well

as their interaction. While the temporal aspects are well established in the

field of IS, e.g. time series forecasting, the spatial aspects and the spatio-

temporal aspects are rarely discussed or included in models. In the few

instances, e.g. in logistics and decision support systems (DSS), often only

abstractions such as graphs are used. The arising problems in the spa-

tial sense are best described by LeSage (1999): ”Two problems arise when

sample data has a locational component: 1) spatial dependence between

the observations and 2) spatial heterogeneity in the relationships we are

modeling.” Apart from the possible miss-specification of models this also

reduces the effective sample size and therefore the validity of the results of

statistical tests such as hypothesis testing or structural models. Again, this

phenomenon of correlated data is well-known in the field of IS, but often

disregarded in the case of spatial data.

The goal of this thesis is to enhance the foundation of the field of IS by de-

veloping methods and approaches to tackle challenges of spatio(-temporal)

data for the field of information systems. These new methods extend the

tool box of researchers as well as practitioners to detect and predict spatio-

temporal developments and dependencies. The focus is to provide meth-

ods to automatically detect and evaluate points of interest given big data

sizes and providing the methods to explain and predict the occurrence of

the phenomena, even when there is little data available. This follows from

the general motivation in that almost all Big Data is Spatial Big Data. This

works further aims to also contribute to the final challenge stated in An-
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selin (2010): ”A final challenge parallels the previous one and pertains to

the computational techniques needed to handle the complex space-time in-

teractions in increasingly large data sets. New algorithms will need to be

developed and effective use made of the rapidly changing computing tech-

nology, such as distributed computing, cloud computing and the use of

handheld devices.” The methods and approaches presented in this thesis

are developed so that they can be easily performed in a distributed, paral-

lel computation and deal with the inherent uncertainty of the data sources.

By developing methods for both, detection as well as prediction, we follow

the idea presented in Appice and Malerba (2014): ”Nowadays ubiquitous

sensor stations are deployed worldwide, in order to measure several geo-

physical variables (e.g. temperature, humidity, light) for a growing number

of ecological and industrial processes. Although these variables are, in gen-

eral, measured over large zones and long (potentially unbounded) periods

of time, stations cannot cover any space location. On the other hand, due

to their huge volume, data produced cannot be entirely recorded for future

analysis. In this scenario, summarization, i.e. the computation of aggreg-

ates of data, can be used to reduce the amount of produced data stored on

the disk, while interpolation, i.e. the estimation of unknown data in each

location of interest, can be used to supplement station records.”

While the new approaches and methods proposed in this thesis can be

applied in a variety of scenarios and use cases, we focus in the evaluation

of our approaches on temperature data. We base this decision on several

facts: (1) Temperature is one of the main underlying environmental factors

(Oke et al. (2017)). Temperature impacts directly human health, well-being,

work performance, energy consumption and many more. A sound under-

standing of causal dependencies of temperature is mandatory for any in-

formation system regarding city planning and operation. The difference

of temperature within cities and its surrounding areas is called Urban Heat

Island (UHI) and its study the focus of a whole field of science. (2) Today,
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there exists an increasing importance to detect extreme local temperatures

in cites, see e.g. Hansen et al. (2010); Chase et al. (2006); Department of

Economic and Social Affairs, Population Division, United Nations (2014).

Therefore models and methods to reliably detect and mitigate the effect of

temperature extremes in a proactive fashion are needed. (3) Temperature

data, as all meteorological data, is inherently complex and good generaliz-

able models are needed. Achieving this feat for temperature indicates that

these models can be applied to other fields and applications. (4) Finally,

while there still is a sparseness of available meteorological data, temper-

ature data is one of the most active field of VGI (Meier et al. (2017)). But

while the amoung of open data is higher then in other domains, the quality

of its data is highly heterogeneous. Meier et al. (2017) found that over 60%

of VGI temperature measurements in the city of Berlin can not be used as

their quality varies strongly and is too low for meteorological models. A

selected overview of temperature, urban climate and its impact on cities

will be presented in chapter 2.

1.2 Research Questions

This thesis focuses on developing insights in the exploratory data analysis,

the examination of causal reasons and the use of these analyses to predict

spatio-temporal developments with the requirements of robustness, gen-

eralizability and applicability in big data use cases. For this purpose three

research question, derived and defined in this section, are addressed. The

first two research questions focus on exploratory data analysis and the ro-

bust detection of points of interest. The third research question focus on

the explanatory data analysis and prediction based on causal factors.

The first question tackles the problem how a stable hot spot analysis

can be modeled and created. Hot spot analysis deals with the detection

of points of interest with statistical tests and significance and is therefore
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the preferred method to detect points of interest automatically without hu-

man input. As this is paramount in a big data setting, the new methods

are developed for these statistical tests. The overall question is subdivided

into three important tasks. First, we have to understand which modeling

parameter and effects influence the stability of a hot spot analysis and in

what way this happens. The answer to this question allows an analyst to

modify the model deliberately and in accordance to his goal. The second

question is built upon the results of this examination. How can these res-

ults be used to modify existing hot spot analyses to be more stable? If the

different influences are known, we can decide how to change the paramet-

rization to create more stable results, which are ideally invariant over all

parametrizations. Finally, it is important to know what the optimal para-

metrization is. As it is most likely impossible to have a perfect, invariant

parametrization, it is of interest if there are certain parametrizations which

are more stable then others and why. The answer to this question could

lead to an easy rule of thumb for practitioners and minimize the effect of

suboptimal parametrizations. Therefore, the three research questions (RQ)

can be formulated concisely:

RQ 1 How to create a stable Hot Spot Analysis?

a) What effects and parameter influence the stability of hot

spot analysis?

b) How can existing methods be modified to be more stable?

c) What is the optimal parametrization for an hot spot ana-

lysis?

But to quantify the results of the previous research question, a metric is

needed to evaluate the stability of the results. In the literature, only visual

approaches are used to determine the stability of hot spot analyses. But

while the visual approach works for small data sets and a limited number

of different parametrizations, it requires a human to decide whether the

results are stable or not. For a typical big data task and many different
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possible parametrizations this is unsatisfactory. But, as there is no ground

truth, a metric or definition of the stability is difficult to determine. As

the hot spot analysis is an unsupervised approach, the problem is similar

to measuring the quality of a clustering. This leads to the second overall

research question:

RQ 2 How can the stability of found Hot Spots be measured?

However, the detection of points of interest is a exploratory analysis and

relies on sufficient data. It does not explain why the points are different. But

an understanding of the causal drivers of the differences between spatial

locations can help to influence or mitigate the effects of these differences.

The effects themselves can dependent on a manifold of developments and

differences, so it is important to first understand what causal drivers exists

and which are best used to explain those differences. Temperature is in this

case one, if not the, most relevant environmental variable to understand.

As stated before, temperature influences most other, environmental or not,

factors, particular in and outside of urbanizations. But there does not yet

exist a reliable prediction method for temperatures within a city. This is the

result of two main problems of this field. The inherent complexity of the

underlying meteorological, environmental and physical processes and the

sparseness of available meteorological data, e.g. lack of available long-term

weather station data. We therefore want to combine the causal drivers in

an intelligent way to create a temperature prediction model, which builds

upon existing measurement networks and complements these. But any

model has to be generalizable to a manifold of different areas, has to be ro-

bust and needs to provide a spatio-temporal high resolution to be of use for

further analyses. This leads to the formulation of the final overall research

question and the subdivided tasks:
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RQ 3 How can temperatures in an intra-urban setting be pre-

dicted?

a) What are causal drivers behind local temperature differ-

ences?

b) Given the inherent complexity of the underlying meteorolo-

gical, environmental and physical processes and the sparse-

ness of available meteorological data, how can those drivers

be modeled to produce an accurate and robust prediction?

Based on the derived research questions, this thesis makes contributions

to the literature on the robust detection of points of interest, the causal,

robust prediction of temperature in a high resolution and to the overall

toolbox of IS research.

1.3 Structure of the Thesis

To embed and introduce the new spatio(-temporal) methods and ap-

proaches, this thesis is structured into four parts. The first parts focuses on

the motivation and the overarching foundations. In the motivation chapter,

the need and context of the new spatial approaches for the field of IS are

discussed. Based on the this discussion, the prevalent topics are defined

with the formulation of the research questions, which guide this thesis. The

foundation chapter provides an understanding of the methodical and do-

main specific background for the methods. A selected overview of spatio(-

temporal) approaches and core concepts as well as an overview of the do-

main of urban climates and the importance of temperature is presented.

This domain knowledge is then used throughout the empirical data sets

and evaluation.

The second part addresses the challenge how to detect reliable points

of interests in space and time. Existing approaches are presented and dis-

cussed. Based on the discussion of the most prevalent approach, influences
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on the stability of the Getis-Ord (G∗) Statistic are analyzed and the statistic

is then modified to be more stable. To evaluate this stability, existing ap-

proaches for the measurement of stability from the field of geo-statistics

and computer science are compared and used as basis for the development

of the quantifiable stability metric for hot spot analysis. Finally, the results

are validated on an empirical temperature data set for the city of Karlsruhe,

both visually as well as based on the new metric. This allows a fast and re-

liable detection of intra-urban heat islands for the data set and of points of

interest in general.

While the second part is an exploratory approach, the third part deals

with the challenges on how to understand the causal reasons behind dif-

ferences in temperature between different nearby areas as well as how to

predict temperature values at unknown areas based on these causal reas-

ons. We propose an analytic model to explain and predict temperature

differences within urbanizations. This model, the Land use-based Temper-

ature Model (LTM), combines land use information, time series of weather

station-based temperature measures and the interactions of both types of

predictors to derive a causal prediction model. It solves the two main prob-

lems of temperature prediction, as it deals with the sparseness of the data

through its simplicity and inherent robustness. We evaluate this model on

empirical data of cities in the German federal state of Baden-Württemberg

and we can show an increase om the accuracy of mean air temperature pre-

dictions up to a MAE of 2°C compared to standard models solely based on

temperature and distance data.

The fourth and final part concludes this work and provides an outlook

for further extensions and future work.

A graphical overview of this thesis with its four parts is additionally

provided in Figure 1.1.

Extracts of this work have already been published, are under review or

are working papers. Part II is based on Bruns and Simko (2017) and con-
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tains insights, models, evaluations and textual paragraphs from that pub-

lication . Part III is based on Bruns and Setzer (2018) and contains insights,

models, evaluations and textual paragraphs from that publication. Part I

contains paragraphs from all publications. Those works are extended and

discussed in more detail.



14 Introduction and Motivation

Chapter 1
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Figure 1.1: The Thesis is structured into four parts. The first part motivates and in-
troduces the overarching topic of the thesis as well as the overarching foundations.
The second part addresses the problem how to reliably detect points of interests
unsupervised in spatial and spatio-temporal settings. The third part presents a
novel modeling approach to detect and use causal temperature differences in a
sparse data setting. In the last part the conclusion, future work as well as an out-
look for further extension is presented.



Chapter 2

Foundations

IN this chapter we present a selective overview of overarching concepts

and topics relevant to this thesis. As temperature, in particular in cities,

is used to empirically evaluate our models, we discuss the idea and back-

ground of the Urban Heat Island (UHI), urban climates and the impact of

temperature on human health. This provides the background for the use

cases and their importance. The other topic is geographical analysis. We

introduce briefly key concepts relevant to this work and provide references

for further reading.

2.1 Urban Heat Island and Urban Climates

The phenomenon of higher temperature levels in cities as well as its im-

pacts on urban planning und human health, coined Urban Heat Island

(UHI), is subject to research for many decades. The term was termed by

Oke (1982). One of the earliest known overviews of the scientific literature

for city climates is given by Kratzer (1937). At that time already, relations

between temperature, humidity, human heat fluxes and air pollution are

investigated.

Today, developments like the aging of society, the increasing urbaniza-

tion and the climate change is making the adaptation to heat stress danger

15
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more and more important. Due to the tendency that a rising number of

people is moving into the cities, the urban heat island effect (UHI) is gain-

ing more importance in the future.

Heat is an important factor to human health and comfort. High temper-

atures cannot only lead to a discomfort, it also has serious negative effects

on the health as well as the ability to work. An overview is presented in

Basu (2009), where numerous studies are compared and show that high

temperature is associated with an increase in mortality as well as morbid-

ity. The most well-known example of this association in recent history is the

2003 heat wave in Europe. Over 19,490 heat related deaths in France alone

were registered, an excess mortality of 60% for the whole country. In Paris

the excess mortality reached 142% (Robine et al. (2008)). These numbers

are based on the difference between the mortality level of 2003, the hottest

summer in Europe on record (Chase et al. (2006)), in comparison with the

mean of the previous five years. This effect is not equally distributed in the

population. Hübler et al. (2007) for example shows that particular groups

such as older people or people with health problems are especially vulner-

able to the heat. Davis et al. (2010) examine the effect of increased body

temperature on patients with multiple sclerosis. This increased temperat-

ure can lead to a worsening of their symptoms.

Our overview of the UHI and urban climates presented here focuses on

new and selected insights and works of the last 15 years, extending the

overview provided in Arnfield (2003). The focus of his work lies on the de-

velopment in the field of climatology between 1980 and 2003. In compar-

ison to 1982 the understanding of the UHI effect is increased, but, to quote

Arnfields conclusion, “simple methods are still required to estimate UHI

intensity within urban areas, as a function of time, weather conditions and

structural attributes, for practical applications such as road climatology,

phenology, energy conservation, and weather forecasting.” He continues

in that simulations are one option to deal with the underlying complexit-
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ies of city temperature modeling, but their prediction performance remains

low.

A strong focus in the last 15 years was to standardize the measurement

and modeling methods and improve the quality of the resulting insights.

A general overview of the approaches is presented in Mirzaei and

Haghighat (2010). They review the different approaches of UHI studies,

observational and simulation methods in particular. The observational ap-

proaches are divided into field measurement, thermal remote sensing and

small-scale modeling, the simulation approaches into energy balance mod-

els, computational fluid dynamics, meso- and micro-scale models and tur-

bulence treatments. They criticize the high computational cost of the state-

of-the-art models and propose the integration of models to “take advantage

of multi-scale models” (Mirzaei and Haghighat (2010)).

A harsh critique of the quality of existing studies and their methodo-

logy is presented in Stewart (2011). It combines a systematic review of 190

UHI studies between 1950 and 2007 of nocturnal air temperature with a

scientific critique of the methodology. The main focus lies in the measure-

ment methods and the description of the whole experimental settings of

the examined papers. According to his findings, the quality of the UHI lit-

erature as well as its implications are unreliable. Ten percent of the studies

are regarded as top-tier studies which have an high methodology stand-

ard. Those studies are then presented as examples for the highest qual-

ity and should be used as reference for other studies on UHI. In addition,

guidelines are presented for conducting measurement and reporting res-

ults.

In a similar vein were studies from Shao et al. (2011), Mohsin and Gough

(2012) and Siu and Hart (2013). They discussed the need to choose repres-

entative stations to measure UHI and the existing challenges in the field

to determine these representative studies. Their argument are similar to

older discussions about the problems behind choosing the correct locations
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to perform measurements can be found e.g. in Sundborg (1950). Shao et al.

(2011) discuss the new problems of the rapidly changing urban surfaces

and increasing size of urban areas. Formerly rural stations may become

urban stations and thereby underestimate the UHI intensity.

To solve these problems, Stewart and Oke (2012) propose the use of

local climate zones (LCZ) to standardize the methodology and termino-

logy. They present their concept of these LCZ and propose 17 different

LCZ, which are based on the underlying land usage. The land usage can

range from forests up to heavy industry areas. The LCZ are evaluated on

three different mid-latitude cities in 2014 (Stewart et al. (2014)). It is shown

that each LCZ has a different climate and delivers a better understanding

of the UHI effect based on the land cover usage. This results in a better

understanding and differentiation compared to the classical urban/rural

differentiation.

Apart from the problem of the quality of the measurement, another re-

cent topic is the use of the correct indicator or metric to determine whether

an area is a UHI or not. Schwarz et al. (2011) compare 11 different Surface

Urban Heat Island (SUHI) indicators on a data set of 263 European cities

with monthly mean temperatures. They show that the selection of indic-

ators is important for the detection of UHI due to possible instabilities of

each indicator. To follow this up, they compare in Schwarz et al. (2012) dif-

ferent measurement methods for the UHI effect and come to the conclusion

that the UHI effect is dependent on the exact placement of the rural as well

as urban station and it is therefore important to take the effect of the imme-

diate surrounding into consideration when comparing the UHI between

different cities. On the one hand, the authors state that the reduction of

an UHI to a single value for a whole city is questionable regarding its ex-

planatory power. On the other hand, they conclude that there is currently

no other way to quantify the temperature difference of the UHI between

different cities.
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To solve this problem, Martin et al. (2015) argue to drill down the res-

olution of the indicator and the subject of study. They define the surface

intra urban heat island (SIUHI), which measures the temperature differ-

ences within a city. This provide a more detailed overview. Accordingly,

the results can then be used to detect vulnerable areas in a city and trigger

alerts for a much finer spatial granularity. The study was done in the city

of Montreal by the use of Landsat satellites data between the years 1984

and 2011. The SIUHI is determined by defining thresholds with respect to

spatial reference and compare the absolute deviation from the mean tem-

perature given a survey area.

A new reference work regarding urban climates was published in 2017

with Oke et al. (2017). It provides an in-depth overview of the different

concepts, methods and impacts on the urban climates. These range from

air flow and heat fluxes to pollution, climate change and climate-sensitive

design of cities and buildings. We refer an interested reader to this work

for a deepening in the topic of UHI and urban climates.

2.2 Spatial Analysis

We want to focus on two core concepts - the idea of spatial association and

how to measure this spatial association. Other, more specific concepts are

discussed in their relevant chapter in thesis, but these two concepts are a

common foundation for this thesis.

Spatial Association: The core idea of spatial analysis is that near areas

influence each other. We use this term interchangable with the term spa-

tial depdence. This idea is, in its most popular form, formulated in Tobler

(1970) and is well known as Tobler’s First Law (of Geography). It states

that ”everything is related to everything else, but near things are more re-

lated than distant things”. This is later extend with Tobler’s second law,

which states that: ”The phenomenon external to an area of interest affects
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what goes on inside”. LeSage (1999) define this formally as: ”Spatial de-

pendence in a collection of sample data means that observations at location

i depend on other observations at locations j 6= i. Formally, we might state:

yi = f (yi), i = 1, . . . , n j 6= i (2.1)

”

Measuring Spatial Association: The understanding of the concept of

spatial association itself helps analysts to incorporate this in their work.

Otherwise, this may impact the validity of the results. However, to truly

incorporate this into models and their specification of the parameter, the

spatial association has to be known and measured. To cite Getis and Ord

(1992): ” To geographers, the best-known statistics are Moran’s I and, to a

lesser extent, Geary’s c (Cliff and Ord (1981)). To geologist and remote sens-

ing analysts, the semi-variance is most popular (Davis (1986)). To spatial

econometricians, estimating spatial autocorrelation coefficients of regres-

sion equations is the usual approach (Anselin (1988)).” In this work, we

use models, which are based on the Moran’s I or the semi-variance. The

idea behind Moran’s I (Moran (1950)) is to measure the correlation of each

value xi to all other values xj 6=i within a predefined distance d of i. The idea

for the semi-variance is the expression of the spatial association through

the covariance function and formulating this as a (semi-)variogram. This

is formally expressed in Cressie and Wikle (2015) for the stationary vari-

ogram: ” Let
{

Y(s) : s ∈ Ds ⊂ Rd
}

be a real-valued spatial process defined

on a domain Ds of the d-dimensional Euclidean space Rd, and suppose that

differences of variables displaces h-apart vary in a way that depends only

on h. Specifically, suppose that

var(Y(s + h)−Y(s)) = 2γY(h), f or all s, s + h ∈ Ds. (2.2)

The quantity 2γY(∗), which is a function only of the difference between
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the spatial locations s and (s+h), is called the stationary variogram. ”

Several additional concepts and methods of spatial analysis are not are

not discussed in this thesis. While they go beyond the scope of this work,

we want to give the interested reader several starting points for further

study.

The first such concept is the use of the (semi-)variogram to predict un-

known variables: Kriging (Krige (1951), Matheron (1963)). It was de-

veloped to predict ore deposits based on few samples, but is considered

today a standard method for prediction of a manifold a variables. Built

upon this is regression-kriging. Hengl et al. (2007) provide an overview

for this concept, both in theory and in practice. Gräler (2014) ”presents

a new approach that allows to build vine copulas that are aware of sep-

arating distances across space and time.” This provides an alternative to

Bayesian Hierarchical Models presented in Cressie and Wikle (2015). The

final concept for further reading presented here is the idea of spatial de-

cision support. This topic can be approaches from the geo-statistical per-

spective, e.g. Jankowski et al. (2014), or from an IS perspective, e.g. Ferretti

and Montibeller (2016).

Further general reading can be found in Cressie and Wikle (2015)m

which focuses more on the combined spatio-temporal statistics and was

awarded the DeGroot Prize 2013 as well as the PROSE Awards in 2011 in

the Mathematics category.
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Part II

Robust Detection of Points

of Interest





Chapter 3

Focal Getis-Ord Statistic

3.1 Introduction

THE identification of points of interest is one of the most fundamental

tasks in spatio (-temporal) analysis. It shows the spatial distribution

and significant deviations of the phenomena under investigation. This

allows for a simple, but in-depth overview and guides further analysis.

By knowing where regions with higher or lower values are, an analyst

can then further delve into the underlying structures or factors, which are

present or absent at those locations. An example for this can be found in

Wagner et al. (2016). In their work, the authors identify areas and zones,

where there is a high demand for cars in a free-floating car-sharing model.

They use self-defined thresholds, to determine whether an area has a crit-

ical mass of rentals to be considered a point of interest. This is then used

as input for further analysis to predict future demand in different areas.

A similar example application within the domain can be found in the GIS-

Cup 2016 of the ACM SigSpatial 1. Here, the New York City Yellow Cab taxi

trip record was used and the goal was to identify those locations, where the

most people exit from the Yellow Cab taxis, given a spatio-temporal spher-

oid. In this case no threshold was used but instead a test-statistic, the Getis-

1sigspatial2016.sigspatial.org/giscup2016/home
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Ord statistic (Ord and Getis (1995)). For urban city planers the detection of

areas with high temperatures, so called Intra Urban Heat Islands (IUHI),

is of particular interest. High temperatures impact energy consumption

(Hassid et al. (2000)) as well as human health (Ye et al. (2012)). The effect

that the temperatures between an urban area and its surroundings differ,

called the Urban Heat Island effect (Oke (1982)), has long been the subject

of research. Other examples include crime detection, disease prevention,

economic development to name but a few.

The methods to detect areas and points of interest are summarized under

the term Hot Spot Analysis. The most well-known method, the Getis-Ord

statistic, allows to detect areas where the values are significantly different

from the mean value of the study area. This enables the identification of

points of interest without the need to pre-process the data or pre-define

fixed thresholds.

Although most existing methods are independent of concrete values,

their results are highly dependent on the size of the study area and their

parametrization such as the weight matrix in the case of the Getis-Ord stat-

istic. This dependency can lead to unstable hot spots, where the identified

hot spots only appear in one specific combination of parameter. The gen-

eralization of insights gained from unstable hot spots is sub-optimal. A

researcher or analyst like a city planer who has to rely on those insights

will most likely prioritize the wrong area to invest his limited resources.

The goal of this chapter is to identify the factors which influences the

results of hot spot analyses and how they can be modified. In section 3.2

we present an overview of methods for hot spot analysis as well as exist-

ing approaches to mitigate or eliminate the instability problem. Following

this overview, in section 3.3 we will examine and deconstruct the Getis-Ord

statistic G∗, as this is the most often used statistic and the basis for most hot

spot analyses. Based on the results we propose in section 3.4 a modifica-

tion of the well known Getis-Ord statistic (G∗): the Focal Getis-Ord statistic
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(Focal G∗). Instead of the global mean and variance used by G∗, it only

uses the mean and variance of a predefined region around each point. This

region is a subset of the whole study area. By doing this, the instability

is contained within a smaller region and thereby an increase in stability as

well as more fine-grained analysis results are achieved.

3.2 Overview of Methods for Hot Spot Analysis

There are two fundamental approaches to detect points of interest: A semi-

supervised approach, where there is a pre-known or pre-defined threshold

value for the variable of interest and an unsupervised approach similar to

clustering, the Hot Spot Analysis, which is based on statistical significance

levels and tests.

Examples for the semi-supervised approach include the work of Wagner

et al. (2016), which was already discussed and the work of Martin et al.

(2015) in the field of urban heat islands and temperature. Martin et al.

(2015) introduce in their work the definition of intra urban heat islands

(IUHI). By defining thresholds with respect to spatial reference, these en-

able the detection of hot spots in a city, which they call surface intra-UHI.

This boils down to five steps, i.e. essentially a comparison of absolute devi-

ation from the mean temperature given a survey area. The results can then

be used to detect areas of interest in a city and potentially trigger alerts for a

much finer spatial granularity. This approach is limited to a simple count-

ing of measurements or values. Two other well known method, which

allow for more complex computations, are the kernel density estimation

(Pulugurtha et al. (2007)) and kriging (Oliver and Webster (1990)). Differ-

ent then the approach discussed before, they estimate the values for each

location based on the rest of the study area and a threshold value (Thakali

et al. (2015)). Therefore, results for different areas are not comparable, es-

pecially in the case of differing value distributions. Kriging was developed
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for the estimation of ore deposit (Krige (1951)), but today, applications for

geo-temporal forecasts with this approach can be found, e.g. for the city of

Zurich2.

In the rest of the work, the focus will be only on the unsupervised ap-

proach. This is derived from the overall goal of this thesis: To provide and

extend the existing foundations for spatio-temporal analysis in the field

of information science. Therefore for the explanatory analysis, an auto-

mated method is needed. It has to be independent from absolute values or

thresholds and to be applicable in any setting or area. If for example the

method of using pre-defined thresholds is used, it needs a-priori know-

ledge of the variable of interests and the study area. In addition, any

threshold is only applicable to the specific circumstances for which is was

determined. In the case of the car-sharing data of Wagner et al. (2016), the

used thresholds can only be used for Berlin and not for any smaller or big-

ger cities such as Freiburg or New York, as the overall number of people

and therefore demand is different. The unsupervised approach provides

this independence by being based on significance levels. In practice, the

goal is to focus on local hot spots and to measure the significance of those

local areas. Spatial associations have to be included, i.e. the (local) neigh-

borhood of each point has an influence and has to be included in its value.

The following subsections will present a short overview of the most com-

mon approaches for this task.

3.2.1 Hot Spot Analysis

One of the most fundamental approach is Moran´s I (Moran (1950)). It

provides a hypothesis test for the existence of spatial dependency. This

gives the information on global dependencies in a data set. Upon this hy-

pothesis test several geo-statistical tests are based. The most well known

2https://r-video-tutorial.blogspot.de/2015/08/spatio-temporal-kriging-in-r.

html

https://r-video-tutorial.blogspot.de/2015/08/spatio-temporal-kriging-in-r.html
https://r-video-tutorial.blogspot.de/2015/08/spatio-temporal-kriging-in-r.html
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are the Getis-Ord statistic (Ord and Getis (1995)) and LISA (Anselin (1995)).

In both cases the more general, the global statistic of Moran´s I is applied

in a local context. The goal is to detect not only global values, but instead

to focus on local hot spots and to measure the significance of those local

areas.

The idea behind the Getis-Ord statistic is to transform the existing values

to their spatial z-scores. As a z-score can be then transformed to a p-value,

we have the significance level for each location. This can then be used

to only select those locations which have a significant deviation from the

mean, e.g. a z-score of 1.96 for a p-value equivalent of 0.05.

The local Getis-Ord statistic (Ord and Getis (1995)) is defined as follow:

Def. 1 (Getis-Ord G∗i statistic). Assuming a study area with n measurements,

let X = [x1, . . . , xn] be all values measured in this area. Let wi,j be a spatial weight

between two points i and j for all i, j ∈ {1, . . . , n}. The Getis-Ord G∗i statistic is

given as:

G∗i =
∑n

j=1 wi,jxj − X̄ ∑n
j=1 wi,j

S

√
n ∑n

j=1 w2
i,j−(∑

n
j=1 wi,j)2

n−1

(3.1)

where:

• X̄ is the mean of all measurements,

• S is the standard deviation of all measurements.

As can easily be seen, this statistic creates a spatial z-score, which denotes

the significance of an area in relation to its surrounding areas. The standard

z-score is defined as the deviation from the mean, measured in z times the

standard deviation. This can be transformed directly to a p-value for the

statistical significance. By excluding all instances of the weight matrix W,

the original z-score is given. As this approach allows for significance tests

it is considered a test-statistic.

LISA is quite similar, as it is the local statistic for Moran’s I (Anselin

(1995)), but the z-score has a different meaning. Apart from G∗i , LISA does
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not distinguish between cold spots and hot spots as it assigns high z-score

to most similar areas.

These methods use weights between pairs of points, usually based on

their geographical distance. However, in most real world applications, the

points are aggregated into a raster representation and the weights are rep-

resented as a weight matrix. This allows for expressing the algorithms in

terms of map algebra operations, a term first coined by Tomlin (1990) and

computed in a distributed fashion (e.g. using GeoTrellis framework run-

ning on Apache Spark Eclipse Foundation et al. (2016)).

For further reading the work of Shekhar et al. (2011) is recommended.

They present an extended overview of methods to identify and visualize

spatial patterns and areas of interest.

3.2.2 Instability in Hot Spot Analysis

While the standard hot spot analysis approaches allow for a fast and auto-

mated exploratory analysis of spatial data sets, they are highly depend-

ent on their parametrizations and underlying data. This is quite similar to

the challenges in clustering, in particular for the well-known k-means, first

coined in MacQueen et al. (1967), or DBScan (Ester et al. (1996)) algorithm.

This leads to an instability of the analysis results, which are then difficult

to use with high certainty. Here, a selection of approaches and discussions

of the last 15 years are presented how to tackle this instability.

The most general approach is to pre-determine and calculate spatial de-

pendencies, based on the a-priori knowledge of the analyst, the empirical

data set or best-practices from previous, similar analyses. A good example

for this approach can be found in Suomi et al. (2012). In their work, the au-

thors examine the effects of scale on temperature and in particular urban

heat island modeling. The pre-determined range of spatial influences is

called buffer zones; these buffer zones indicate the range of impact in an

inner-city temperature measurement scenario. They found that for their
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empirical data set a buffer zone of 1000m provides the best results. This is

familiar to the well-known approach to solve the inherent problem of DB-

Scan, the determination of its distance: OPTICS (Ankerst et al. (1999)). The

disadvantage of this approach is that it has to be manually pre-determined,

which results in similar problems as the semi-supervised methods to detect

points of interest. It can not be done automatically without introducing an

element of uncertainty, which is opposed to our goal to create a more stable

approach.

An automated approach is presented with the A Multidirectional Optimal

Ecotope-Based Algorithm (AMOEBA) in Aldstadt and Getis (2006). The idea

behind this approach is to automatically create the optimal, scale-invariant

weight matrix and then use this weight matrix in conjunction with a clus-

tering approach to create a graphical overview map of areas of interest. The

term ecotope is used for this areas, which is the technical term from the field

of biology for the habitat of species. The result is a consistent identification

of spatial clusters on a map. In their work they use the G∗ statistic as the

underlying statistic. The clustering approach is quite similar to DBScan in

its approach of creating ecotopes.

A true modification of the G∗ statistic is presented in a later work (Getis

and Aldstadt (2010)) of the same authors called the LSM (local statistics

model). They base their modification on the Kriging approach and its abil-

ity to model the spatial autocorrelation as a function dependent on the dis-

tance. The idea is to model the weight matrix W as a function of the spatial

autocorrelation, where each entry of the matrix is a value derived from the

empirical (semi-)variogram. This leads to continuous values up to the so

called critical distance, which is "defined as the distance beyond which no

discernible increase in clustering exist" (Getis and Aldstadt (2010)). They

compare their configuration to other, well-known spatial configuration ap-

proaches for the weight matrix W. These are taken from Griffith (1996) and

in the words of Getis and Aldstadt (2010): ”Research on W has been re-
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viewed by Griffith (1996, p. 80), who concludes that five rules of thumb aid

in the specification of weights matrices:

1. “It is better to posit some reasonable geographic weights matrix than

to assume independence.” This implies that one should search for or

theorize about an appropriate W and that better results are obtained

when distance is taken into account.

2. “It is best to use surface partitioning that falls somewhere between a

regular square and a regular hexagonal tessellation.” Griffith suggests

that for planar data, a specification between four and six neighbors is

better than something either above six or below four. Of course, the

configuration of the planar tessellations will play a role here (Boots

and Tiefelsdorf (2000)).

3. “A relatively large number of spatial units should be employed, n >

60.” Following from the law of large numbers, most spatial research,

especially due to unequal size spatial units, would require fairly large

samples.

4. “Low-order spatial models should be given preference over higher-

order ones.” Following from the scientific principle of parsimony, it is

always wise to choose less complicated models when the opportunity

presents itself.

5. “In general, it is better to apply a somewhat under-specified (fewer

neighbors) rather than an over-specified (extra neighbors) weights

matrix.” Florax and Rey (1995) found this result by identifying the

power of tests. Overspecification reduces power. They recognize that

“Uncertainty with respect to proper specification has long been re-

cognized as a fundamental problem in applied spatial econometric

modeling” (p. 132).

”
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Ord and Getis (2001) discuss the question in how to formulate the

G∗ statistic to focus more on local pattern, while still accounting for the

global autocorrelation. They propose the O statistic which uses the (semi-

)variogram to subdivide the data set into several ” ’relatively homogen-

eous’ subregions” (Ord and Getis (2001)). This allows the identification

of smaller, more local hot spots, which can be overshadowed in bigger

data sets. Finally, they restrict the general applicability in that the version

presented in their work requires spatial stationarity.

Westerholt et al. (2015) present a scale-sensitive version of the local G∗

statistic, which they call the GS statistic. The motivation for this modific-

ation is to account for the differences in the scale (the impact of the area

under investigation) of the data set, i.e. whether a data set includes only

the inner city or also its surrounding area. The problem lies in the de-

tection and use of the local context of the gathered data. A fixed weight

matrix W does not include the difference in context, e.g. in Twitter feeds.

Their approach is to redefine the neighborhood of a data point with upper

and lower distance thresholds, which are then used in pairwise compar-

isons. Only sufficiently connected data points within their thresholds are

considered to be viable as a hot spot and only those points are used for the

global mean and global deviation values. They evaluated their approach

on Twitter data of the city of San Francisco, USA and show that this leads

to reduction or even negation of cross-scale interference. The main restric-

tions of this approach lies in its increased computational costs as well as its

reliance on continuous distance functions.

For futher literature regarding the creation of optimal weight matrices

for spatial associations we refer to the work of Aldstadt and Getis (2006),

where they provide an exhaustive overview of the state of the art.

In this work, the Getis-Ord statistic is used as the basis for a more stable

hot spot analysis. The reasons for this is the simplicity of its formula and

the ease of interpretation of the resulting z-score, while retaining a high
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explanatory power. A similar reasoning can be found in the the aforemen-

tioned works and is one of the reasons why the G∗ statistic remains the

most popular method for hot spot analysis in research as well as practical

applications. For the analysis of the parameter influences the form presen-

ted in definition 1 is used, and in the later formulation both the mathemat-

ical as well as focal variant is used and described.

3.3 Analysis of Influences on Stability

Based on the existing work, the goal of this section is to answer RQ1a:

”What effects and parameter influence the stability of hot spot analysis?”

in an analytic way by dissecting the G∗ statistic into its single parts. Recall

definition 1:

Def. 2 (Getis-Ord G∗i statistic). Assuming a study area with n measurements,

let X = [x1, . . . , xn] be all values measured in this area. Let wi,j be a spatial weight

between two points i and j for all i, j ∈ {1, . . . , n}. The Getis-Ord G∗i statistic is

given as:

G∗i =
∑n

j=1 wi,jxj − X̄ ∑n
j=1 wi,j

S

√
n ∑n

j=1 w2
i,j−(∑

n
j=1 wi,j)2

n−1

(3.2)

where:

• X̄ is the mean of all measurements,

• S is the standard deviation of all measurements.

It can be easily seen that this equation can be divided into three different

parts and their separate influences:

1. The variable under observation X and its single elements xj.

2. The weight matrix W, i.e. the neighborhood, and its elements wi,j.
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3. The global mean X̄ and the global standard deviation S.

The term

√
n ∑n

j=1 w2
i,j−(∑

n
j=1 wi,j)2

n−1 is only dependent on the weight matrix W

and represents the standard deviation of the weight matrix. It it therefore

already included in the discussion of the weight matrix W.

The first parameter to discuss is X. As the variable under observation, it

is the key part of the method. If the spatial influences are negated, the for-

mula would reverse to the computation of a z-score and the parameter X

would be the only influence. It is only dependent on the values of the vari-

able under observation. Therefore there do exist three basic possibilities to

influence or modify this parameter: (1) The determination in how to meas-

ure the data used to compute the G∗ values in the real world, or (2) the data

pre-processing step, i.e. how to filter low quality measurements, or (3) the

decision whether and how to aggregate the measurements before analysis.

Each of these possibilities are decisions made before the analysis and are

often outside the control of the analyst or highly dependent on the context.

The second parameter to discuss is the weight matrix W. As the name

implies, it is the weight for each measurement xj and models the spatial as-

sociation. It determines how much each (spatially) neighboring measure-

ment influences the measurement at point i. It is dependent on the overall

spatial association of the variable and the context, under which the analysis

is performed. The greater the value of wi,j, the higher the influence is on

the measurement at j. The number of values 6= 0 of W is often called the

size of the weight matrix. In its most simply implementation, the values

are binary and a W of 3x3 means that only the values of direct neighbors

in a queen distance have an influence. Overall, W is highly dependent on

the context as well as the underlying data. Its determination is one of the

main tasks of the analyst before the analysis. Most of the existing work in

creating more stable or scale-invariant modifications of hot spot analysis

have therefore focused on this parameter.

The third parameters are the global mean as well as global standard de-
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viation. As with the standard z-score these parameter are the basis for the

normalization. The global mean provides the zero point of the given empir-

ical distribution. By being weighted with the sum of wi,j the spatial global

mean is computed, which represents the mean value given the spatial asso-

ciation. The global standard deviation, multiplied with the standard devi-

ation of the weight matrix, represents the spatial normalization factor. The

benefit of their use is that they still represent a z-score. As it is well-known,

the z-score can be easily transformed to a p-value. The typical p-value for

high significance of 0.05 is equivalent to an absolute z-score of 1.96, mean-

ing that the value of the variable at this point is 1.96 times the standard

deviation higher (or lower) than the mean value. As W as well as X are

already discussed, the only influence on these global values is the size of

the study area, which is also called the reference area.

3.4 Focal Getis-Ord

In this section an approach to answer the RQ 1.b: ”How can existing meth-

ods be modified to be more stable?” is proposed and discussed. The exist-

ing approaches for increasing the stability of hot spot analyses are based on

modifications of the weight matrix W. The reasoning is that this parameter

is influenced by the spatial association of the empirical data set and can

therefore be modeled as a dependent variable on the association. Here, we

propose a different approach: To modify the global parameter. The reas-

oning is similar to Westerholt et al. (2015): "One recurring problem with

spatial autocorrelation statistics is their sensitivity to spatial scale effects".

The problem with modifying W lies in the influence and meaning behind

this parameter. The specification of W can be modified by the analyst based

on the goal as well as the context of the analysis. Given the example of

an urban planner, who wants to determine the availability of shopping or

medical facilities. W in this case has to be chosen, at least partly, based on
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laws and regulations to determine if there is a shortage of these facilities

for the number of persons in their influence area. Particular for questions

in the field of information science, this context has to be included and can

often not be automated. The global parameter on the other hand are often

chosen without regard to their influence. Therefore their impact on the G∗

value is not determined by the intent of the study or regulation and there-

fore avoidable. In addition, even a small change in the size or exact location

of the study area changes these global values and therefore the normaliza-

tion results. This prevents the comparison of two different study areas with

the standard G∗ statistic, as their global values will likely differ.

The mitigate the influence of the study area and create a more stable hot

spot analysis we propose the Focal Getis-Ord statistic (Focal G∗). The idea

behind this modification of the existing G∗ statistic is the replacement of the

global parameter through focal (regional) parameter. These are used instead

of the global parameter to normalize the values and thereby creating a focal

z-score. The mathematical formulation is given in Def. 3:

Def. 3 (Focal Getis-Ord G∗i statistic). Assuming a study area with n meas-

urements, let X = [x1, . . . , xn] be all values measured in this area. Let wi,j be a

spatial weight between two points i and j for all i, j ∈ {1, . . . , n} and w′i,k be a

spatial weight between two points i and k for all k ∈ {1, . . . , mi}, where mi ≤ n.

The Focal Getis-Ord G∗i statistic is given as:

FocalG∗i =
∑n

j=1 wi,jxj − ( 1
mi

∑mi
k=1 w′i,kxj)∑n

j=1 wi,j√
∑

mi
k=1 xk
mi
− ¯Xmi

√
n ∑n

j=1 w2
i,j−(∑

n
j=1 wi,j)2

n−1

(3.3)

The focal values for each point and thereby the normalization are com-

puted for each point separately and are therefore independent of the size

of the study area. As can easily be seen, as the value for mi converges to n,

the results of the Focal G∗ will converge to the results of G∗. The Focal G∗

statistic still results in a z-score for the same reasons as shown in Ord and
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Figure 3.1: Overview of the different influence areas for hot spot analysis. The
local neighborhood describes the area of direct influence on each single point. The
local reference area is the user-defined comparison area for the Focal G∗ statistic
and redefines the used reference area to determine the focal mean and variance.
The standard reference area is used for the determination of the global mean and
variance in the standard G∗ statistic. It is given by the study area.

Getis (1995). But the z-value is only applicable in comparison to values of

the focal radius defined by mi.

A graphical overview of the different areas can be found in Figure 3.1.

A more efficent computation can be shown by applying the use of the hot

spot analysis to raster data. As stated before, most spatio (-temporal) data

sets are available as raster data, e.g. each pixel of a satellite measurement

represents a single entry in a raster file. This allows the use of the aforemen-

tioned focal operations and enables the reformulation and transformation

of the formula for the G∗ and Focal G∗ statistic into a computationally more

efficient form, as presented in Bruns and Simko (2017): " In the following
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text, we use the notation R
op
◦M to denote a focal operation op applied on

a raster R with a focal window determined by a matrix M. This is roughly

equivalent to a command focal(x=R, w=M, fun=op) from package raster in

the R programming language Hijmans (2016b).

Def. 4 (G∗ function on rasters). The function G∗ can be expressed as a raster

operation:

G∗(R, W, st) =
R
sum◦ W −M ∗∑w∈W w

S
√

N∗∑w∈W w2−(∑w∈W w)2

N−1

where:

• R is the input raster.

• W is a weight matrix of values between 0 and 1.

• st = (N, M, S) is a parametrization specific to a particular version of the G∗

function. (Def. 5 and 6).

Def. 5 (Standard G∗ parametrization). Computes the parametrization st as

global statistics for all pixels in the raster R:

• N represents the number of all pixels in R.

• M represents the global mean of R.

• S represents the global standard deviation of all pixels in R.

Def. 6 (Focal G∗ parametrization). Let F be a boolean matrix such that:

all(dim(F) ≥ dim(W)). This version uses focal operations to compute per-pixel

statistics given by the focal neighbourhood F as follows:

• N is a raster computed as a focal operation R
sum◦ F. Each pixel represents the

number of pixels from R convoluted with the matrix F.
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• M is a raster computed as a focal mean R
mean◦ F, thus each pixel represents a

mean value of its F-neighbourhood.

• S is a raster computed as a focal standard deviation R
sd◦ F, thus each pixel

represents a standard deviation of its F-neighbourhood. "

Def. 5 and Def. 6 show that for raster files the Focal G∗ formulation

represents a more general formulation.

3.5 Conclusion Chapter Focal G∗

In this chapter the research question 1.a and 1.b are discussed. Based on

the discussion in section 3.3 RQ 1.a is answered in that three parameter and

their effects can be found: (1) The variable under investigation and (2) the

spatial association and its context and (3) the study area. Each of these

parameter has different underlying effects. The first two are dependent

on the on the context of the analysis, regulations, available measurements,

quality of measurements and other factors which are often outside the in-

fluence of the researcher or have to be carefully chosen before the analysis

and therefore can be considered to be fix. The third parameter is import-

ant for the comparability of the results, but often chosen randomly or by

circumstances.

In section 3.4 RQ 1.b is (partly) answered by the development of a new,

more stable hot spot analysis based on the G∗ statistic: The Focal G∗ stat-

istic. It is based on the insights of the existing literature as well as the results

of RQ 1.a.

In addition to creating a more stable version of G∗ by eliminating the

influence of the overall study area, the Focal G∗ statistic has an additional

benefit: It provides a more detailed view of the results and the identifica-

tion of more localized hot spots. In the standard statistic, few high (or low)

value points or areas can have a high impact on the overall computation,
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similar to outliers, which may overshadow other areas of interest. By us-

ing the focal values and a suitable focal radius, more local hot spots can be

identified reliably and consistently. This in turn allows for the creation of

more consistent results, which allow for better decision processes and the

better allocation of scarce resources.
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Chapter 4

Stability of Hot Spot Analysis

IN the previous chapter a new approach to create stable hot spot analysis

was presented as well as other existing approaches to do so. However,

the evaluation in the existing work was only done on a visual basis and on

very specific data sets. A comparison between these different approaches

has up to now be done visually and on the same data set. For an automated

analysis and comparison this is insufficient and leads to RQ2: "How can the

stability of found Hot Spots be measured?".

To answer this question and solve the underlying problem, in this

chapter a metric to measure the stability of an hot spot analysis is pro-

posed called the Stability of Hot spot (SoH). This metric measures whether

a hot spot found for a given parametrization is carried over to the found

hot spots with a different parametrization. This enables the quantification

of the stability of any hot spot analysis and provides the foundation for

automated approaches.

4.1 Motivation

Consider the real-world example depicted in Fig. 4.1. The temperature map

of a morning thermal flight data set (a) has been processed using the G∗

statistic with an increasing size of a weight matrix (b, c and d).

43
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(a) Morning temperatures

0

5
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LST [°C]

(b) G∗, circular weights, r=2px

top 1% quantile hotspots (3.92)
bottom 1% quantile hotspots (−7.77)

(c) G∗, circular weights, r=4px

top 1% quantile hotspots (6.86)
bottom 1% quantile hotspots (−15.24)

(d) G∗, circular weights, r=6px

top 1% quantile hotspots (14.28)
bottom 1% quantile hotspots (−25.11)

Figure 4.1: Karlsruhe city center. Selected area of 2.4×1.4 km. Pixel size 5×5 m.

As can be seen, hot spots are oftentimes disappearing or appearing un-

related to previously found hot spots. While these computations indeed

show hot spots and the results are correct for their parametrization, they

lack stability.

For a data analyst, when exploring the data interactively by choosing

different filter sizes (in form of matrices), it is important that the hot spot

position and size changes in a predictable manner. This intuition is the

basis for the presented stability metric.

As stated before, the goal of hot spot analysis is the detection and identi-

fication of interesting areas. It achieves this goal by computing statistically

significant deviations from the mean value of a given study area. This al-

lows a decision maker to easily identify those areas of interest and allows
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further focus in subsequent data analysis or the decision process. In typical

applications, scarce resources are then often applied only in identified hot

spots or these are used as the basis for the allocation.

But, similar to a cluster analysis, there does exist a high dependency of

the identified hot spots on the detection method and in particular the para-

metrization of this method. The identified areas as well as their shape can

vary highly. This volatility can lead to a decrease in trust in the result and

in suboptimal allocations of scarce resources. Therefore it is necessary to

measure and evaluate the stability of a hot spot analysis as well as the dif-

ferent parametrizations.

4.2 Overview of Quality Metrics for

Unsupervised Learning

There does already exist work regarding the quality of unsupervised learn-

ing approach, in particular clustering. This problem of assessing the qual-

ity in unsupervised learning is well known, or in the words of Shamir

and Tishby (2008): ”A major problem [...] is assessing cluster validity.”

In the most popular case of the k-mean algorithm, the quality of the clus-

tering is mostly dependent on the value of the k and a miss-specification

can lead to highly irregular clusters. In a simple 2D clustering, they can

be easily recognized by visual analysis, but in higher dimensionality, this

is impossible. One method to measure the quality of such a clustering is

the compactness of the clusters, see e.g. Song (2010). This enables the

automated comparison between different clusters. Another possibility is

the Silhouette Coefficient by Rousseeuw and Kaufman (1990). This met-

ric measures the similarity of objects in a cluster in comparison to other

clusters. For density based clustering, e.g. for DBSCAN Ester et al. (1996),

OPTICS Ankerst et al. (1999) gives a simple method to tune the essential

parameter for this clustering. This is only a concise overview of the state of
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the art approaches to influence and measure the quality of different clus-

tering methods. But it shows that this problem is not easily solved and

dependent on the chosen algorithm.

Shamir and Tishby (2008) discuss the topic of cluster stability in the con-

text of sample size. They motivate their work by stating that according to

the literature stability metrics for clustering are lacking as a tool, as with

increasing sample size the quality and stability of a clustering converges.

But while the quality of clustering may converge, the rate at which this

happens deviates between different clustering algorithms. This is similar

to the model selection problem and its frameworks, e.g. the VC dimension

(Vapnik and Chervonenkis (2015) in a newer translation from the original

1968 publication). They proceed to create a Bayesian framework to demon-

strate their idea and state that stability measures for clustering are import-

ant in that they help in the decision of which algorithms to use. These

measures can be created independent from the sample size. Of further in-

terest for this thesis is the definition of stability, cited from Ben-David et al.

(2006):

Def. 7 (Stability of Clustering Algorithm). "Following [2], we define the sta-

bility of a clustering algorithm A on finite samples of size m as:

stab(A; D; m) = ES1,S2dD(A(S1), A(S2)), (4.1)

where S1 and S2 are samples of size m, drawn i.i.d from D, and dD is some ’dissim-

ilarity’ function between clusterings of X, to be specified later." For this definition

is A a clustering algorithm and D is the underlying distribution of the data.

A formalization of clustering quality and the conditions for the met-

rics are discussed and presented in the work of Ben-David and Ackerman

(2009). Their axioms are based on the work of Kleinberg (2003), but in-

stead of a general definition of clustering these axioms are adapted for

the definition of clustering quality measures. ”A clustering-quality meas-
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ure is a function that maps pairs of the form (dataset, clustering) to some

ordered set (say, the set of non-negative real numbers), so that these values

reflect how ‘good’ or ‘cogent’ that clustering is” (Ben-David and Acker-

man (2009)). Three main axioms are defined: Scale Invariance, Consist-

ency and Richness. They prove these axioms by present clustering meas-

ures which fulfills these axioms, which in Kleinberg (2003) no clustering

could achieve. A strong limitation in their work is that clustering cannot be

clearly defined, but, in their words, they use common and uncontroversial

clustering methods as examples, which are used as relaxed replacements

for lack of a formal definition of clustering. Several more clustering quality

measures are discussed and compared to show the benefit of their axioms.

Grubesic et al. (2014) present in their work an overall overview of spa-

tial clustering, its techniques as well as its particular challenges. The main

goal of their work is to provide the basis for informed decisions by com-

paring the different approaches and their trade-offs. The identification of

true spatial clusters has additional challenges compared to classical clus-

tering which arise from the spatial association. Existing non-spatial clus-

tering approaches have to modified; they describe the impact of particular

the distance function in cases of k-means clustering. Here, the squared

distance can lead to an overemphasize on outliers. This is similar to the

problem of correctly defining the weight matrix W in the previous chapter.

In their work, spatial clustering is divided into four broad classes: Non-

hierarchical, Scan, Spatial autocorrelation and Hybrid. In their evaluation

seven common clustering algorithms are compared. A synthetic data set

with pre-defined clusters is used to compare the accuracy of the differ-

ent methods. These are evaluated by common clustering metrics such as

the Rand Index, the F1-Score as well as the log-likelihood ration (Kulldorff

(1997)). No overall best score can be achieved, but several trade-offs could

be observed. Of interest to the authors is that there is a particular trade-off

between the log-likelihood ratio and the spatial accuracy of the clustering
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methods.

Lukasczyk et al. (2015) present an alternative approach. In their work,

the problem of stability can be circumvented by creating better visualiza-

tion techniques and approach to compare different parametrizations. They

use reeb graphs to select suitable parametrizations and visualizations of

hot spots. The focus lies in the temporal changes of hot spots and to show

how show how these change over time. This leads in their eyes to a better

understanding of the phenomenon under investigation, particular through

the inclusion of humans and their visual processing.

4.3 SoH Metric

As seen in the literature there does exist a manifold of metrics for the qual-

ity of clustering, but apart from visual possibilities, no such metric does

exist for the stability of hot spots. Therefore, we propose a simple metric

called the Stability of Hot Spot (SoH). It measures the deviation from a per-

fectly stable transformation between different parametrizations. The idea

is based on the definition 7 from the clustering domain: Stability is the dif-

ference between two clustering results. This achieved by comparing two

hot spot results, where one result is defined as parent and one is defined as

child, similar to a tree in the domain of computer science.

A hot spot found in comparably more coarse resolutions is defined

as parent (larger weight matrix) and in finer resolutions as child (smaller

weight matrix). To be stable, one assumes that every parent has at least one

child and that each child has one parent. For a perfectly stable interaction,

it can be easily seen that the connection between parent and child is a in-

jective function and between child and parent a surjective function. The

resulting metric consists of two cases and comparisons:

In its downward property (from parent to child, injective) it is defined
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as:

SoH↓ =
ParentsWithChildNodes

Parents
=
|Parents ∩ Children|

|Parents| (4.2)

And for its upward property (from child to parent, surjective):

SoH↑ =
ChildrenWithParent

Children
= 1− |Children− Parents|

|Children| (4.3)

where ParentsWithChildNodes is the number of parents that have at least

one child, Parents is the total number of parent, ChildrenWithParent is the

number of children and Children as the total number of children. The SoH

is defined for a range between 0 and 1, where 1 represents a perfectly stable

transformation while 0 would be a transformation with no stability at all.

This simple metric can be computed by a comparison of the differing

overlays and its advantages are the results of its simplicity as well as its

plausibility. The results can be easily used in an automated comparison of a

manifold of parametrizations and be computed in parallel. This solves the

time consuming comparison of stability by visual analysis through domain

experts.

4.4 Conclusion SoH

In this chapter, a first metric for the stability of hot spots is proposed, the

Stability of Hot Spot. The metric is derived and inspired by clustering qual-

ity measures. This allows for a fast and easy comparison between different

hot spot parametrizations in a single number between 0 and 1 and enables

a departure from the pure visual analysis of the stability. Based on this

number an analyst or algorithm can decide which parametrization to use

and researchers can compare the stability of their methods for unsuper-

vised hot spot analyses. The metric is simple by design. As of the time

of writing it is the first metric to measure the stability of hot spots. There-

fore the answer to RQ 2 is twofold: (1) In the literature visual comparison
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is used to evaluate the stability of hot spots. No metric or direct meas-

urement has been developed or used. The stability is, if measured at all,

measured afterwards during the spatial clustering with stability measures

for the clustering. (2) The proposed SoH metric enables a simple metric to

measure the stability of hot spots in a single value. This helps to produce

informed decisions.



Chapter 5

Empirical Evaluation for Robust

Detection of Points of Interest

AFTER defining a new approach for stable hot spot analysis and cre-

ating a metric to measure the stability, in this chapter those results

are used in an empirical evaluation to answer RQ 1.c: "What is the optimal

parametrization for an hot spot analysis?".

5.1 Empirical Data Set

As stated in chapter 1, temperature data is used in this thesis as empirical

data for all evaluations. Temperature itself is one of the most fundamental

environmental factor, underlying most processes in nature and particularly

in cities. The location of intra urban heat islands is essential for a manifold

of tasks a city planner has to do, especially in a so called Smart City. In this

chapter, the evaluation is build upon two snapshots of temperature data,

available in the raster file format.

The two data sets (morning and evening flights) depicted in Fig. 5.3 and

Fig. 5.4 were obtained from a thermal flight over the city of Karlsruhe on

26.09.2008 at 6:30–7:45 and 20:00–21:30. The flights were executed by the

51
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Nachbarschaftsverband Karlsruhe1. A single pixel in the raster represents

an area of approximately 5×5m. The whole data set of size 35×25 km was

cropped into the inner city area of 2.4×1.4 km. The temperature in this

data set ranges from -1.7°C to 18.3°C. Missing values in the data set are

interpolated using a focal median function with a square matrix of 11x11

pixels, mainly for speeding up further computations and to avoid special

handling of the missing values.

5.2 Parametrization

In this evaluation two different contributions have to be evaluated:

1. The stability metric SoH.

2. The stability enhancing modification of the Getis-Ord statistic, the Fo-

cal G∗ statistic.

The Focal G∗ has to be evaluated by the use of the SoH metric, as there

does not yet exist another stability metric for the evaluation of the stability

of hot spots as of writing this thesis. The evaluation of the SoH has to be

done therefore visually. This is achieved by combining the evaluation of the

stability of Focal G∗ and comparing these results with the visual differences

of the found hot spots of both the G∗ and Focal G∗ statistic. This approach

is inspired by the methodology of Visual Analytics (Keim et al. (2008)) in

that the human ability to quickly process graphical information is used to

confirm the algorithmic results.

To evaluate the stability of the proposed Focal G∗, it is compared to two

baselines:

• Standard G∗, which uses the same weight matrix W as the focal ver-

sion.

1http://www.nachbarschaftsverband-karlsruhe.de/

http://www.nachbarschaftsverband-karlsruhe.de/
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• Standard G∗, which uses square weight matrix with all cells set to 1.

These two weight matrices are chosen to compare both the difference in

shape as well as the impact of the focal region to the stability of hot spots.

The Focal G∗ parametrization uses a round shape for both the focal as well

as weight matrix as this guarantees a consistent maximal distance for each

raster file. In fig. 5.1 the spatial form of two example matrices is shown.

(a) Weight matrix W

11 x 11

Min value = 0.00
Max value = 1.00

(b) Focal matrix F
41 x 41

Min value = 1.00
Max value = 1.00

Figure 5.1: Example matrices W and F

The weight matrices W for this empirical evaluation are iterated from a

minimal value of 1 to the maximal size of 41. The stability of each iteration

is compared to the most similar matrix. Here, only the SoH↑ is used and

mathematically the following comparisons are performed:

SoH↑(G∗(R, Wi, st), G∗(R, Wi+2, st))

Only SoH↑ is used for ease of the visual analysis. The size of the focal

matrix is fixed to a square of 41×41.



54 Empirical Evaluation for Robust Detection of Points of Interest

5.3 Results and Discussion

Fig. 5.3 and Fig. 5.4 show standard and Focal G∗ computations for both

morning and evening data sets with weight matrix W of size 3, 5, 7, 9, 15

and 31. The evaluation results are plotted in Fig. 5.2, each point in the

graph represents the SoH↑ metric (Eq.4.3) between two G∗ generated using

weight matrices of size i and i + 2.

The results for the hot spot analysis are found in Fig. 5.3 and Fig. 5.4 for a

comparison of G∗ and the Focal G∗ statistic. It can easily be seen that both

versions produce similar results, but the focal versions produces a more

differentiated picture for larger weight matrices. Small differences on a

global scale are more pronounced on a regional scale and result in smaller

and finer areas for hot spots. This enables the detection of additional hot

spots and interesting areas which are most easily observable for the weight

matrix of size 7×7 in the evening (Fig. 5.4). This enables the detection of

significant deviations from the surrounding area. In contrast the standard

G∗ statistic only shows larger areas as important. Therefore, depending

on the need of a planner, the Focal G∗ statistic is more helpful to identify

individual areas of interest whereas the standard G∗ statistic gives a more

broad overview. For the identification of local phenomenon such as intra

urban heat islands this the identification of individual areas is quite im-

portant. As a city planer wishes to detect those critical areas, it is important

to detect not only general hot areas, but also those points where the most

extreme differences in a local context exist. Finding those areas can help

identify the underlying reasons or plan individual solutions. This can then

be used as the basis for further analysis and its parameter selection.

Based on these images one can also see that the hot spots found by the

Focal G∗ statistic seem to be more stable. A plot of the results can be found

in Fig. 5.2. Fig. 5.2 compares the SoH↑ between each increasing size of the

weight matrix W. At a first glance, one can see that the typical implement-

ation with a square weight matrix is the most unstable hot spot analysis,
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(b) Evening
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Figure 5.2: Evaluation results - Standard vs Focal G∗
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Standard G∗ Focal G∗

3
top 1% quantile hotspots (3.92)
bottom 1% quantile hotspots (−7.77)

top 1% quantile hotspots (3.6)
bottom 1% quantile hotspots (−6.41)

5
top 1% quantile hotspots (5.41)
bottom 1% quantile hotspots (−11.53)

top 1% quantile hotspots (5)
bottom 1% quantile hotspots (−9.06)

7
top 1% quantile hotspots (6.86)
bottom 1% quantile hotspots (−15.24)

top 1% quantile hotspots (6.24)
bottom 1% quantile hotspots (−11.61)

9
top 1% quantile hotspots (8.08)
bottom 1% quantile hotspots (−18.59)

top 1% quantile hotspots (7.22)
bottom 1% quantile hotspots (−13.77)

15
top 1% quantile hotspots (10.9)
bottom 1% quantile hotspots (−26.84)

top 1% quantile hotspots (9.56)
bottom 1% quantile hotspots (−18.59)

31
top 1% quantile hotspots (16.61)
bottom 1% quantile hotspots (−41.15)

top 1% quantile hotspots (15.97)
bottom 1% quantile hotspots (−24.17)

Figure 5.3: Standard and Focal G∗ with different weight matrices applied on morn-
ing data set.
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Standard G∗ Focal G∗

3
top 1% quantile hotspots (4.33)
bottom 1% quantile hotspots (−6.97)

top 1% quantile hotspots (3.99)
bottom 1% quantile hotspots (−6.4)

5
top 1% quantile hotspots (6.31)
bottom 1% quantile hotspots (−10.29)

top 1% quantile hotspots (5.74)
bottom 1% quantile hotspots (−9.24)

7
top 1% quantile hotspots (8.27)
bottom 1% quantile hotspots (−13.6)

top 1% quantile hotspots (7.34)
bottom 1% quantile hotspots (−11.69)

9
top 1% quantile hotspots (10.02)
bottom 1% quantile hotspots (−16.69)

top 1% quantile hotspots (8.68)
bottom 1% quantile hotspots (−13.71)

15
top 1% quantile hotspots (14.28)
bottom 1% quantile hotspots (−25.11)

top 1% quantile hotspots (11.84)
bottom 1% quantile hotspots (−18.49)

31

 −
39

.3
41

65
 

top 1% quantile hotspots (21.9)
bottom 1% quantile hotspots (−39.34)

top 1% quantile hotspots (17.35)
bottom 1% quantile hotspots (−26.12)

Figure 5.4: Standard and Focal G∗ with different weight matrices applied on even-
ing data set.
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regardless of time of day. This is to be expected as the binary weights in-

crease the dependence on the weight matrix. The use of decreasing weight

matrices leads to an increase in the stability performance. As the more

outlying data points get less weight, this reduces the dependence on the

weight matrix and leads therefore to more stable results. Our proposed

Focal G∗ statistic achieves the most stable results in almost all cases. Only

data points in a restricted region around the area of interest may influence

the significance result. Through this restriction high values at key points

gains more weight regardless of the weight matrix and are therefore more

independent of the weight matrix. This increases the stability. The decrease

in stability for the largest weight matrices is most likely a result of the para-

metrization of the focal matrix. With increasing size of the weight matrix

in relation to the focal matrix the value of each pixel is approaching to the

mean of the area of the weight matrix. As can be easily seen from Def. 4

then the value for every pixel would be zero.

In regard to the research question 1.c, the empirical results are mixed.

While the best values for the Focal G∗ are concentrated on the biggest

weight matrices, the results for the standard G∗ are in the range of 20-30

and less stable above that size. This is similar to Florax and Rey (1995) who

stated: "In general, it is better to apply a somewhat under-specified (fewer

neighbors) rather than an over-specified (extra neighbors) weights matrix.”

The results indicate that the inclusion of a wider range and therefore in-

creased weight matrix leads to more stable results for Focal G∗, especially

as the value of W and F converge. As only a fixed F is chosen, this has to

be examined in more detail and no conclusive answer can be given for this

question. The results below the value of 7× 7 represent almost no spatial

association for this data set and can not be considered as most stable. This

result is supported by the graphical results.
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5.4 Conclusions and Future Work

In this part of this thesis, RQ 1 and RQ 2 were discussed and evaluated.

First, the Getis-Ord statistic was analyzed to detect influences on the sta-

bility of hot spot analyses. Three main reasons are identified: The weight

matrix W, the aggregation level of the variable under investigation X and

the size of the study area. This lead to a modification of the existing G∗

statistic, the Focal G∗ statistic. It reduces the impact of the study area used

for comparison by replacing the global variables with focal variables and

achieves through this modification an increase in stability. This allows for a

more local analysis and a reduction of the impact of outliers. Additionally,

the analyst can define the focal matric F before the analysis to account for

spatial dependencies and context. The computation of this statistic can be

easily parallelized by its reformulation as a focal operation. The G∗ stat-

istic is used for its inherent simplicity as well as overwhelming use in the

literature. Therefore, the presented modification can be easily augmented

by using existing approaches for the weight matrix W such as Getis and

Aldstadt (2010) and Westerholt et al. (2015). These approaches come with

a higher computational cost and have therefore to be considered carefully.

The presented Focal G∗ has already an increased computational cost (see

e.g. Gassenschmidt (2017)) and the combination could become prohibitive

for standard setups and uses.

To show the improvement in the stability, a quality measure is needed. In

the existing literature only visual comparisons such as used in Lukasczyk

et al. (2015) existed as of the time of writing. To enable an automated meas-

urement a stability metric called the Stability of Hot spots (SoH) was created.

It is inspired by quality metrics from the field of clustering. The SoH com-

putes the ratio of dependence of hot spots for different parametrizations. It

enables to express the stability between each parametrization using single

value restricted between zero and one. Based on this number one can de-

cide which parametrization to use and researchers can compare the sta-
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bility of their methods for unsupervised hot spot analyses. In particular,

for temperature values one wishes to detect those areas which have high

differences regardless of the particular parametrization. If a hot spot only

appears for one parametrization, the information gained for general use is

quite small and can even lead to an inefficient allocation of resources.

In the empirical evaluation the benefit of the Focal G∗ statistic as well as

the SoH was shown. The Focal G∗ is more stable over the different para-

metrizations and the visual results provide a better local view of interesting

areas. The use of the SoH metric was shown for the SoH↑ and the visual

results confirm the results of the metric.

This research has several restrictions which have to be taken into ac-

count. First, only the SoH↑ metric was used. While it can be assumed,

based on the graphical analysis, that the SoH↓ stability should be similar,

there are no quantifiable results. The results themselves are tested on two

events in time for a fixed area of the city of Karlsruhe. It is not tested for

smaller or larger study areas, but it can be assumed that the stability of the

Focal G∗would stay the same whereas the stability of the G∗ statistic would

increase with a smaller study area and decrease with a larger study area.

This follows the reasoning that the impact of a singular point increases

with a decrease of the study area. The last restriction is the fixed size in this

work of the focal matrix for the Focal G∗ approach. Only one focal matrix

F was tested, but it is highly probable that the size of the focal matrix has

an impact on the stability as could be seen in Fig. 5.2. While an overall

trend can be seen in this work when the size of the weight matrix W and

the focal matrix F are almost identical, the exact ratio is beyond the scope of

this work. The optimal ratio as well as when the stability suffers from a too

similar size are interesting question for future work. Further research in

this direction was done in Gassenschmidt (2017), where he used the New

York Yellow Cap data set as empirical data and compared the stability with

the inclusion of the temporal dimension.



Part III

Causal Modeling of

Temperature Differences





Chapter 6

Land use-based Temperature

Model

THE previous section introduced a new metric as well as a new statistic

to reliably detect hot spots. But this can only be done when there is

enough fine-grained data. In addition, as discussed before, the exploratory

analysis leads a researcher to interesting points, but it does not provide a

direct explanation why this is interesting. To do so, further and different

modeling is needed, first a descriptive model and then a predictive model.

The insights gained from the explanatory analysis of this work as well as

the existing urban climate literature is therefore used as a basis to answer

the RQ 3: How can temperatures in an intra-urban setting be predicted? To an-

swer this question, first the RQ 3a is discussed: What are causal drivers behind

local temperature differences? to identify the causal influences on temperat-

ure within cities and this is then used in RQ 3b: Given the inherent complexity

of the underlying meteorological, environmental and physical processes and the

sparseness of available meteorological data, how can those drivers be modeled to

produce an accurate and robust prediction? to utilize those insights to produce

a robust and fine-grained temperature prediction.

63
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6.1 Introduction

In this part a causal model is proposed to explain and predict intra-urban

temperature differences and their developments over time. While it is reg-

ularly observed that large temperature differences exist not only between

cities and rural areas surrounding them but also between nearby locations

within urbanizations, historically research almost exclusively focused on

the first phenomenon, referred to as urban heat islands (UHI). This term

also describes the research regarding the underlying reasons as well as the

implications of increased temperature within cities. But the second phe-

nomenon, small geographic regions within a city with extreme temperat-

ures peaks, received scant attention in the literature so far. While differ-

ent underlying causal reasons for temperature development, such as wind

direction and speed, different land use, green areas or the reflectence of

light are generally known, no model exists that makes use of these data

sources and their interaction to predict intra urban temperature differences

and their developments, e.g. between close-by neighborhoods. In partic-

ular, no models are available to determine or anticipate intra urban heat

islands (IUHI).

We argue that such models are necessary for the understanding and

modeling of urban temperatures and are key to smart city planning and

operation as well as urban information systems. Temperature and specific-

ally heat-stress heavily impacts human health, well-being and work per-

formance as well as other city variables such as pollution and energy con-

sumption. Examples for the use of temperature can already be found in the

literature. For instance, one can exploit temperature measurements to min-

imize the impact of heat stress on humans regarding their daily routines

and walking paths (Rußig and Bruns (2017)). A graphical example from

the paper can be found in Fig. 6.1. In case of load planing for electric grids,

the impact of air conditioning load on a grid can be forecasted depend-

ing on the temperature distribution in a fine grained manner (Hassid et al.
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Figure 6.1: Example for heat stress based routing in comparison to shortest route.
The benefit is visible even for small trips.

(2000)). Other applications include the use of groundwater for heat saving

and to optimize the energy consumption (Benz et al. (2015)). In addition,

a better understanding of causal reasons for temperature differences in a

city can help shaping decision for city planers regarding city development

plans. This part aims to create the foundation for such information systems

and decision problems by supplying an accurate temperature data basis.

As of today, temperature models are either too coarse-grained – model-

ling differences between larger regions such as between urban and rural

areas – or very detailed – modelling single buildings. This can be seen in

particular for meteorological models or those related to UHI (Oke (1982)).

Models proposed from high spatial resolution are typically based on snap-

shots, e.g. based on one-time thermal flights (see, for instance, the works

described in Schwarz et al. (2012) or Cai et al. (2017)). There are four
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primary reasons for the lack of models between high temporal or high spa-

tial resolution:

(1) The required data to learn such models was not available in the past.

While there have been advancements in temperature measurements, from

cars, e.g. Kratzer (1937), to thermal flights and satellites (see Schwarz et al.

(2012) or Bhattacharjee et al. (2016)), those measurements are fine grained

on a spatial or temporal level, e.g. monthly snapshots for the temperat-

ure of the overall city areas or hourly measurements at few spatial points.

Today, the available data to train and predict temperature on a fine scale is

still relatively sparse.

(2) The computational effort to derive respective models is high. Given

spatial and temporal references and a combination of many causal predict-

ors dependent of their position in space and time, learning models that

make use of such data is computationally expensive. Existing approaches

therefore either aggregate high-resolution data to more coarse data, as for

meteorological models, or reduce data by focusing on small areas such as

single buildings. Meteorological models in particular are based on thermal

conditions of higher air layers. The generalizability of such models is not

yet given.

(3) The area of interest, the city itself, adds additional, unique challenges

as a city is a diverse environment. Parks can be next to an industrial zone

and building materials can vary broadly between cities, questioning the

value of closeness of data measurement and target location for the predic-

tion. The number of different combinations leads to the well known curse

of dimensionality and is worsened by the sparseness of the data.

(4) Finally, the quality and technique of the measurements can vary.

There does exist a great heterogeneity of measurement techniques, ranging

from thermal flights, satellites as well ground-based weather stations, to

name but a few. These techniques measure different temperatures, such as

the land surface or air temperature and are often calibrated for different
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environments. Additionally, the quality of each sensor can vary greatly. In

the case of a satellite a single cloud leads to a non-usable measurement.

Thanks to recent advances in data availability within cities, together with

more efficient algorithms and Geographic Information systems (GIS), more

detailed urban temperature modeling is increasingly possible. In particu-

lar, historical time-series of hourly temperature measurements within cities

are now openly available. Advances in computational capacity and model-

ing techniques, such as partial pooling, enable the maximization of existing

information and robust modeling of their inaction so that the unique chal-

lenges inherent in fine grained, urban temperature explanation and predic-

tion can be better tackled now and increasingly in the future. The vision is

a better understanding of the processes how temperature is influenced in a

city at any given point and time, improved prediction of temperatures and

detailed simulations of temperature effects new constructions will have.

In this chapter, the Land use-based Temperature Model (LTM) is developed

to provide a novel explanatory data combination model. LTM is not only

based on Tobler’s first law1 by using local temperatures but also on land

use information known to impact temperature. In the evaluation it can be

shown that modeling the interaction of these land use-based causal factors

with temporal temperature features is essential for accurate air temperat-

ure prediction with sparse data. LTM is then used as a predictor basis for

more advanced modeling approaches and techniques.

LTM combines land use information, time series of weather station-

based temperature measures and the interactions of both types of predict-

ors to derive a causal prediction model. More precisely, LTM models tem-

perature differences to the closest reference measurement point to predict

the temperature at any nearby location depending on their land use types.

To maximize the inherent information and deal with the sparseness of the

data, simple Bayesian Hierarchical Models (BHM) are used as an example

1"everything is related to everything else, but near things are more related than distant
things"



68 Land use-based Temperature Model

for a more complex modeling approach. They are chosen for their ability

of partial pooling of information. This provides the benefit of being able

to determine the locations and land-usage types with high predictive un-

certainty and to use this to determine where additional sensor should be

located within the city to gain maximal additional information. In the em-

pirical evaluation of this section, LTM is applied to estimate temperature

within several cities for the state of Baden-Württemberg in Germany. Res-

ults show that LTM increases accuracy of temperature predictions up to

60 % compared to standard models solely based on temperature and dis-

tance data and reveals comprehensible relationships between land use and

temperature that can be operationalized by smart city planning.

6.2 Related Work on Urban Temperature

Prediction

The phenomenon of higher temperature levels in cities as well as their im-

pacts on urban planning und human health, coined Urban Heat Island

(UHI), is subject to research since decades. Here, we present a focused

overview of the research, with focus on insights and methodology, of the

last 30 years of temperature prediction and the UHI research, which can be

used as basis for the LTM. This extends the foundation chapter.

A recent overview is provided in Arnfield (2003). The focus here lies

on the development in the field of climatology between 1980 and 2003. In

comparison to 1982 the understanding of the UHI effect is increased, but, to

quote Arnfields conclusion, “simple methods are still required to estimate

UHI intensity within urban areas, as a function of time, weather condi-

tions and structural attributes, for practical applications such as road cli-

matology, phenology, energy conservation, and weather forecasting.” He

continues in that simulations are one option to deal with the underlying

complexities of city temperature modeling, but their prediction perform-



Land use-based Temperature Model 69

ance remains low.

Schwarz et al. (2012) compare different measurement methods for the

UHI effect and come to the conclusion that the UHI effect is dependent on

the exact placement of the rural as well as urban station and it is therefore

important to take the effect of the immediate surrounding into considera-

tion when comparing the UHI between different cities. On the one hand,

the authors state that the reduction of an UHI to a single value for a whole

city is questionable regarding its explanatory power. On the other hand,

they conclude that there is currently no other way to quantify the temper-

ature difference of the UHI between different cities.

Difficulties when comparing UHI values amongst cities are also con-

sidered in Stewart and Oke (2012). As the measurement of weather stations

are influenced by their surrounding areas, a way to classify the surround-

ing area to properly describe the UHI effect is needed. The authors propose

the use of local climate zones (LCZ) to classify those areas by a standard-

ized methodology and terminology. In total, 17 different LCZ are defined

in their work based on the land use. The land usage can range from forests

up to heavy industry areas. These are evaluated on three different mid-

latitude cities in 2014 (Stewart et al. (2014)). It is shown that each LCZ has

a different climate and delivers a better understanding of the UHI effect

based on their underlying land use. This results in a better understanding

and differentiation compared to the classical coarse-grained urban/rural

differentiation. But the effects of those LCZ are only compared for their

yearly mean temperatures, without regard to potential interactions of sea-

sons or day cycles.

In a similar vein is the use of so called ”green lungs” for cities. It is

well-known that large areas with vegetation reduce the yearly mean tem-

perature and are an often sought out solution for city planners. Those areas

supply an effective recreational area, but only affect their immediate sur-

roundings (Gill et al. (2007)). Chen et al. (2014) found out that this temper-
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ature reduction effect can vary between different months and is dependent

on the size and shape of the green area. They showed this for the city of

Bejing, China with five Landsat ETM+ images, where they measured the

daily mean temperature at five different days in five different months.

Cai et al. (2017) uses the concept of the LCZ to measure their influence

on local climate and how they represent the urban area. They use satel-

lite measurements to measure the land surface temperature in the Yangtze

River Delta region with ten Landsat images for a time period of 2 years.

The authors showed that the LCZ concept applies to both air as well as

land surface temperature. For the future they propose to examine seasonal

differences, presuming this might lead to a better understanding as their

results indicate interactions between LCZ and the season. However, insuf-

ficient data was available for further analysis.

Bhattacharjee et al. (2016) propose a semantic kriging approach, where a

high-resolution satellite snapshot is used to quantify the effect of the dif-

ference between different locations as well as the interaction of the land

uses between those points. The different land use classes are learned in a

semantic hierarchical network.

Hengl et al. (2012) also uses a kriging approach to predict temperatures.

They include a temporal component to predict the daily mean temperature

in Croatia for area of 1km2 with an accuracy of 2.4°Kelvin (K) by combining

Modis satellite images with 57,282 ground measures of daily temperatures

in 2008.

In summary, several approaches exist to explain and predict temperature

differences and local peaks. Those models explain the effect of isolated

parameter in temperature (difference) prediction. The models are built on

data sets either from a coarse-grained temporal perspective, e.g. only using

few satellite snapshots or daily aggregate temperatures, or from few point

measurements in the case of air temperature.

The approach in this thesis combines the fine grained land use informa-
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tion with hourly measurements at diverse locations to predict the air tem-

perature within a city for any point in space and time. Motivated by the

prior work it makes use of the additional data sources and combines land

use and multivariate temperature data by considering their interaction in-

stead of simple additive combinations. To our knowledge, this has not

been done before and promises more fine grained and differentiated spatio-

temporal modeling.

6.3 Intra-Urban Temperature Modeling

In this section we will discuss several key insights from the existing UHI

literature regarding the temperature in cities. The goal is to use data which

is easily available at any location in order to make LTM broadly applicable,

namely the general temperature, the time and location of the measurement,

and the land use of locations. This provides the generalizability of this ap-

proach for any area. Consequently, the focus is on insights that can be used

for model development and testing based on these types of data, exclud-

ing insights for instance related to wind speed and direction at a target

location, which is typically not easily available in most real world settings.

The key foundation is based on the insights presented in Arnfield (2003)

regarding the heat in cities in comparison to the surrounding area. These

insights are the result of an extensive literature review and summarize the

findings in the field of UHI. According to his paper, there are eight key

insights, of which only insights five, six, seven and eight will be considered

in this work as the aim is to consider only data that is broadly available.

1. UHI intensity decreases with increasing wind speed.

2. UHI intensity decreases with increasing cloud cover.

3. UHI intensity is greatest during anticyclonic conditions.
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4. UHI intensity is best developed in the summer or warm half of the

year.

5. UHI intensity tends to increase with increasing city size and/or pop-

ulation.

6. UHI intensity is greatest at night.

7. UHI may disappear by day or the city may be cooler than the rural

area.

8. Rates of heating and cooling are greater in the countryside than the

city.

Those insights are used to derive modified as well as new hypotheses,

which will then be used to motivate and build the basic LTM model. This

model in turn will be used to pre-select the parameter used in the Bayesian

LTM.

The other insight, upon which the hypotheses are derived, is from Stew-

art and Oke (2012) and Stewart et al. (2014): The local climate zone (LCZ).

In their work they define those LCZ based on the combination of the un-

derlying land use and show that LCZ has an high impact on the air temper-

ature. This can be seen as an extension of insight eight and is most likely

the underlying reason for insight five, as population density is correlated

with particular LCZs. LCZ represent a manifold of different causal reasons

for the temperature difference in one standardized classification. This is

similar to the work of Kalnay and Cai (2003), which also discussed the im-

pact of land use on the climate, in particular the difference in temperature

over yearly means in comparison to changing land uses.
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6.3.1 Causal Predictors for Urban Temperature

Hypothesis 1

The land use is the primary driving factor for the temperature difference between

nearby locations. This is based on Stewart and Oke (2012) and insight five

from Arnfield (2003). We use the land use to substitute the different LCZ.

Land use classification is most often used by government agencies and are

openly available. These are regularly updated by those agencies and do

not change as often as other measurements for the LCZ. In today’s city

planning green areas, so called ”green lungs” are one of the most well-

known LCZ. They summarize and pre-classify, similar to LCZ, a manifold

of different underlying causal influences on the temperature differences.

Hypothesis 2

Temperature follows a typical movement pattern over the day. The hypothesis

is based on insight four and five derived from Arnfield (2003). However,

a clear definition of day and night is difficult to determine. Depending on

the time of year as well as geographical location, simple definitions, such

as the setting of the sun, can vary. Instead of a day – night difference we

model the temperature development over the day. This effect can easily be

observed outside. The temperature has its lowest point in the early hours

of a day and increases up to a high in the later half of the day and then

decreases again to the minimum.

Hypothesis 3

Temperature follows a typical movement pattern over the different months. The

third hypothesis is in regard to the monthly temperatures. This is based on

insight four from Arnfield (2003). In the literature, a connection between

temperature differences and seasons has been discovered. In this part we

further drill-down to the level of months. Similar to the daily pattern, this
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circumvents the problems of an exact starting point for seasons. It also

allows to model the development of the temperature in more fine detail.

Hypothesis 4

Given the land use and the month, there does exist a unique temperature pattern

over the day. This hypothesis is based on the first three hypotheses. The

interaction of the effects of hypothesis one to three will result in a much

higher increase in the explanatory power than their additive combination.

This hypothesis can be subdivided into two steps. (1) Hypothesis one

and two are combined. It can therefore be stated that given the land use,

we can observe a different temperature cycle over the day. The impact of

land use on temperature can be explained by the ability to create and save

thermal energy. For example, a street can not produce heat, but does reflect

it quite strongly. In contrast, an area of water saves more energy and reg-

ulates or stabilizes temperature. Given the time of day, the accumulative

effect of the sun increases the temperature of a street highly, but over night

it decreases rapidly. The water area has the opposite effect and decreases

the temperature while there is daylight and increases the temperature dur-

ing night hours. This effect can not be seen in isolation, only with the inter-

action. By isolating the effects, the warming effects of the water area over

night would be overshadowed. (2) By building upon this logic, we add the

interaction with the monthly temperatures. Using the example of the water

area, one can observe a cooling effect at any hour given the day for a month

such as July and a warming effect at any hour for a month such as January

relative to the overall temperature. Considering each data set in isolation,

or by simple linear modeling, these relationships are not detectable.

To our knowledge there is not yet a model using the combination of those

effects, nor is there a model for their interactions to derive a causal pre-

diction of temperature difference. In the existing literature, the different

influences were examined in isolation. The previously existing data and
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methodology did not allow for an in-depth examination of the parameters

on such a fine spatio-temporal scale in combination with the land use. A

good example for this is Chen et al. (2014). They could observe an inter-

action effect of vegetation and month, but they only used the daily mean

temperature based on four snapshots at differing months for a broad spa-

tial area.

We use these hypotheses to derive the Land use-based Temperature Model

(LTM) model, which incorporates each of these interactions to repres-

ent most of their inherent variance. This is then used to parameterize a

Bayesian Hierarchical Model (BHM) with those interactions to include ad-

ditional information and reflect locally differing uncertainties in the tem-

perature estimates by partial pooling of the information.

6.3.2 Land use-based Temperature Model

The systematic, causal differences derived from hypothesis 4 are used to

predict the temperature at other stations given the differing land uses and

points in time. This approach is called the Land use-based Temperature Model

(LTM).

In its basic form, the LTM is an explanatory model. The idea behind this

model is to extract the temperature difference at a location from the mean

temperature given the interaction of land use and temporal dependencies.

To do so, LTM computes the mean difference of temperature given hour

of day, month and land use for all stations. This difference is then added

to the measured temperature of a reference temperature (e.g., global mean

temperature or nearby reference station) to predict the temperature at any

point given the aforementioned parameters; the mean for each category.

Figure 6.2 visualizes the idea and computation using the example of av-

erage daily temperature movement of two stations for the July of 2013. In

this example one can learn that the temperature difference for instance at

hour 16 between land use Forest and land use Industry is 4.9°Celsius. When
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Figure 6.2: Difference of the temperature over the hourly mean temperatures for
July 2013 for land use Forest (red, dotted) and land- use Industry (black). The tem-
perature is in degree Kelvin.

predicting a new station with the land use Industry having a nearby station

with land use Forest one can add this value to the temperature value of the

reference station given it is July and the hour is 16. By assuming a temper-

ature of 20°Celsius at the Forest station, one would predict a temperature

of 24.9°Celsius at the Industry station. In doing this for a whole year and

for any land use pair, the basic LTM enables a simple and fast extraction of

the temperature difference of any point. By applying this extracted values

on new stations, a fast prediction is possible. This allows for a fine grained

prediction, especially for urban areas.

With temperature Tl,t as dependent variable, denoting the temperature

T at a position or location l at time t, the covariates hourt, montht, land usel,

and with TR
t as the temperature at a reference station at time t we can for-
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mulate a basic model, derived from a linear model, as shown in (6.1).

Tl,t = (α|hourt, montht, land usel) + TR
t + ε (6.1)

The idea is that by knowing the land use at the station Tl,t and the time of

the measurement a typical dependent bias α can be computed. This is the

deviation from the reference station TR
t , e.g. an official, standardized meas-

urement from a nearby weather station or a regional mean temperature,

for this land use at this time. This allows for a fast and simple prediction at

any spatial point by then adding this α to the reference station.

For each interaction, an α is estimated. For each unique land use, given

only the months of the year and the hour of the day, 288 combinations are

available for one year. Unfortunately, multiplying 288 by the number of

unique land use classes, a triple or quadruple digit number of parameters

needs to be estimated, which would result in unreliable model outcome

and high levels of overfitting.

The LTM therefore computes only the mean for each parameter com-

bination. This allows for greatly reducing the computational effort and

the model’s variance of outcome depending on randomness in the training

data used to fit the model. As a result, each parameter is learned independ-

ently by at least 28 training samples, given the minimal number of days in

a month.

The main benefit of this approach is its simplicity and therefore easy

generalizability. It only needs a reference station and the dependent para-

meter. This allows for an in-depth explanatory analysis, as it retains most

of the variance and the important interaction. As will be seen later in the

evaluation sections, it can even be used for predicting temperatures out-of-

sample, given that the overall climatic conditions do not change. In accord-

ance to the well-known bias–variance trade-off, this allows it to represent

a high degree of variance for the proposed interactions: The interaction of

the unique parameter combination.
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Although possible, the basic LTM model introduced is of explanatory

nature and not particularly well-suited for out-of sample predictions. That

is because there is no regulation applied to prevent overfitting and it is not

robust to changes in the climatic conditions.

For the purpose of prediction, the LTM is implemented as a Bayesian

Hierarchical Model (BHM). This model learns the underlying causal reas-

ons and is capable to handle the varying quality as well as the uncertainty

in the data and strongly reduces the impact of outliers in the training data

and maximizes therefore the available information in the sparse data. This

uses the same reasoning as in the basic LTM but extend it with the increased

modelling capabiltites of BHM. this extension is called the Bayesian LTM,

which presents two distinct advantages for the given problem setting (see

e.g. Gelman et al. (2014), Cressie and Wikle (2015)):

1. Each data point as well as parameter is modeled as a distribution. This

allows to include the uncertainty at each data processing step.

2. It allows for partial pooling. This allows to model the interactions

found in the causal land usage relationships in an efficient way while

avoiding overfitting.

Additionally, strong priors (Gelman et al. (2014)) can be used, e.g. based

on physical models, to increase the robustness of the Bayesian LTM.

Overall, while the Bayesian LTM allows for capturing the LTM idea of

modeling the fixed interactions – the differing intercepts – it also learns es-

timates for their slopes. To learn the model, it is assumed that there does

exist a global value for the temperature where the local differences are only

dependent on the underlying causal reasons. But such a global value is not

known in the real world. A reference value derived from other measure-

ments has to be used, adding uncertainty as well as additional dependen-

cies to be considered. This uncertainty can impact the temperature in such

a way that apart from the absolute difference between different land uses
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there also can exist a difference in the slope of the temperature. By being

able to model both the intercept as well as the slope by a multi-level ap-

proach, the uncertainty induced by the use of real world reference temper-

atures can be reduced. In this work, only a general, multipurpose model is

used, with only weak priors and robust, non-specialized distributions for

each parameter. While this approach does not fully utilize the power and

possibilities of BHM, it is more robust and emphasizes more strongly the

benefit of the LTM.

To summarize, the LTM enables an analyst to model the effects of the

interactions of the land use with temporal parameter on the local temper-

ature within an area, in particular an urban area. The basic LTM provides

a strong explanatory model which extracts the impact in an efficient way

and provides an easy comparison of those impacts. While it has not the

properties required for a predictive model, it is extended with a BHM to

the Bayesian LTM, which increases robustness and reduces its ability to

blindly reproduce the complete variance inherent in the data.
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Chapter 7

Empirical Validation and

Evaluation of LTM

IN this chapter, the insights found in the literature will be examined in

the light of empirical data and compared to the formulated hypotheses,

namely Given the land use and the month, there does exist a unique diurnal

temperature pattern and Using the interaction of different parameters increases

the predictability of temperature at a fine grained geographic scale. First, the

data used for this empirical case study is described and a well-established

benchmark prediction model is presented. Second, the different model

parametrizations together with the quality metrics are described. Third,

the in-sample and out-of-sample predictive results on empirical data of the

two models introduced, LTM and Bayesian LTM, are presented and dis-

cussed.

7.1 Empirical Data and Benchmark Model

For the empirical case study of this part of this thesis, three different data

sets are used:

1. Air temperature from the German meteorological service (DWD)1.
1https://www.dwd.de/
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2. Air temperature from the LUBW State Institute for Environ-

ment, Measurements and Nature Conservation Baden-Württemberg

(LUBW)2.

3. Land use data from the ATKIS data set3 of the State Agency for Spatial

Information and Rural Development Baden-Württemberg.

The study area consist of all measurements in the federal state of Baden-

Württemberg, Germany in the years of 2013 and 2015. We chose those two

time periods as they have the most complete time series for the air tem-

perature. The air temperature of the DWD stations consists of 25 ground

based weather stations, which measure temperature every hour. The tem-

perature ranges from −16.5°C to 38.1°C for 2013 with a mean temperature

of 9.83°C and for 2015 from −11.7°C to 39.4°C with a mean of 10.43°C. The

temperature is measured at 2 m height above ground. The time series rep-

resent standardized measurements at open places without any interference

of their surrounding area. One can therefore ignore the underlying land

use class. These measurement present data of the highest quality, which

are used in meteorological forecasts.

The air temperature of the LUBW stations consists of 24 station with

complete measurements for overall nine different land use classes and one

incomplete measurement for an additional land use class (train tracks) for

2013, which measure the air temperature at every hour at 2 m height. For

2015, only 17 stations have complete measurements. Those include 8 differ-

ent land use classes and are a subset of the 2013 LUBW stations. The tem-

perature ranges from−16.0°C to 38.05°C for 2013 with a mean temperature

of 9.93°C and for 2015 from −12.6°C to 39.1°C with a mean of 11.28°C. The

stations of the LUBW are used primarily to measure environmental factors

at diverse locations. They are therefore used to represent the intra-urban

temperatures and provide the generalizability of our results. In contrast to

2https://www.lubw.baden-wuerttemberg.de/
3www.geoportal-bw.de

https://www.lubw.baden-wuerttemberg.de/
www.geoportal-bw.de
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the DWD stations, they can be used to model the impact of the land use on

the temperature.

The temperature between the DWD and LUBW stations is similar, but

has differences which are most likely a result of the underlying land use.

The overall temperature between 2013 and 2015 is similar as well, with

a small temperature increase in 2015. Each station has 8760 temperature

measurements over a year. Therefore, for 2013 there are over 200,000 meas-

urements available and for 2015 we have over 140,000 measurements.

The land use is extracted from the ATKIS data set. It has a spatial resol-

ution of 1 m2 and is updated in regular intervals every few years. The data

set is the official classification of the land use from the federal government.

These represent 25 different land uses. Here, the official classification of

land use is used instead of the LCZ concept from Stewart et al. (2014) as

this classification is already in use by government agencies and therefore

easily available. They are comprised of similar classes as the LCZ in the

original work and eliminate the need to classify the area and thereby in-

duce additional uncertainty. The land use classes given in this empirical

data set are show in Table 7.1

As a benchmark the temperature of the nearest station is used. This

benchmark is often used in geographical analysis and is based on Tobler’s

first law (Tobler (1970)). Advanced geo-temporal prediction methods are

based upon this idea. It is similar to the well-known random walk without

drift from time series analysis. By using the nearest station, most of the re-

gional climates and regional effects are excluded. This enables a simple, but

unbiased prediction of the surrounding area of a station. This benchmark

is also the result of the meteorological forecasts of temperatures. Weather

forecasts are done for and based upon those stations and then extended to

the surrounding area as the true value. By using this benchmark one can

also compare the additional benefit our prediction generates by focusing

on fine grained areas in contrast to state-of-the-art, coarse-grained predic-
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Land Use Number Class Name

1 Industry
2 Sport and Leisure Activity
3 Areas of Special Functional Character
4 Residential Building Area
5 Shipping Lanes
6 Groove
7 Agriculture
8 Combined Use Area
9 Rail road

10 Forest

Table 7.1: Overview of used Land Use classes. Class definitions from
http://www.ioer-monitor.de/en/home/

tions. This benchmark also includes by design the interaction of the daily

temperature cycle and the months of the year.

The mean distance to the nearest LUBW station for another LUBW sta-

tions is 26 kilometers, the distance ranges from 7.6 kilometers to 58 kilo-

meters. The mean distance between a LUBW station and the nearest DWD

station is 12.6 kilometers and the distance ranges from 0.48 kilometers to

25 kilometers. Given this empirical data set, the reference stations are geo-

graphically near and should represent the regional climate quite well. The

overall size of the federal state is 35, 751km2, which, in accordance to Hengl

et al. (2012), allows us to assume an overall global temperature. In the fol-

lowing section, the data of 2013 is used as training data and the results are

evaluated on the data of 2015.
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7.2 Empirical Validation of Hypothesis

7.2.1 Insights from Literature

The selected insights from the existing literature are modified to the follow-

ing hypotheses in the last chapter:

1. The land use is the main driving factors for the temperature difference

between different but close-by locations.

2. Temperature follows a typical movement pattern over the day.

3. Temperature follows a typical movement pattern over the different

months.

While those hypotheses are sound in theory, one has to explore how they

are represented in our empirical data set. Therefore we show their impact

on the training data, and validate the hypotheses according to results of the

descriptive analysis. The results are first validated using a visual analysis

and then the results are compared using statistical methods.

The overall graphical validation can be seen in Figure 7.1. The mean

temperature is compared for each of those parameter and it is shown how

the different hypotheses differ in relation to the global mean temperature.

One can see and impact of the land use in Figure 7.1(a). Nine different

land use classes can be compared (land use class nine has insufficient data

points for the whole year). Interestingly, between land use class one to four

we see only small differences in temperature even though those are the

most developed and urban areas. An increase in temperature can be seen

for the land use classes five, seven and eight, which are more open areas

and a small temperature decrease for land use class six, the grooves. Land

use class ten, forest, shows the most pronounced difference from the global

mean temperature, underpinning a strong relation of the land use and the

local temperature in our data set. This provides first evidence of for the
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(a) Impact land use (b) Impact month of year

(c) Impact our of day (d) Mean growth rates over day

Figure 7.1: Figure (a) - (c) show the absolute temperature deviation from the global
mean for each parameter. Figure (d) shows the daily temperature growth rates
between the hours, with the red line indicating no temperature growth.
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hypothesis by a first visual inspection. In green areas we see a decrease of

temperature over the whole year, in urban areas almost no effect and for

open areas an temperature increase.

The existence of a typical movement pattern over the day can be seen in

Figure 7.1(c). One can clearly see a systematic pattern of temperature over

the day with the highest temperature at about 16:00 and the lowest temper-

ature at about 06:00. The temperature seems to move between −3°K and

+3°K over the day cycle. This validates this hypothesis on the empirical

data. For the daily cycle we are also interested how strong the difference

between the different hours is. The growth rates are plotted between the

different hours in Figure 7.1(d). Here one can see that there is a clear dif-

ference between each hour, but also that a division into growth segments

could be feasible. Starting at 12:00, the temperature growth rate is reduced

to every hour till 20:00 at which it is growing again. By using a more time-

series focused approach, e.g. an ARIMA model, this could allow an altern-

ative parametrization.

The final hypothesis from the literature is the impact of the month of

year. The results can be seen in Figure 7.1(b). Here one sees a strong over-

all temperature difference for each month, with a maximal span of 20° K for

the most extreme months, February and July. This also strongly supports

the hypothesis on the used empirical data. Interestingly, this graphical

result indicates also that a categorization into seasons only is too coarse-

grained and monthly values are more appropriate as of the somewhat con-

tinuous developments over the months of a year.

These results are also reflected using a dummy regression for each hy-

pothesis, where each parameter is a factor. The results for the land use

hypothesis are shown in Table 7.2. One can see a high significance of each

parameter and a clear direction of the influence for each land use type. For

the day cycle, the results can be seen in Table 7.4. Again, One sees a very

high significance for every parameter, but a quite low explanatory value
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with an R2 of 0.055. For the monthly cycle the results can be seen in Table

7.3. All parameter are highly significant and like the visual analysis quite

pronounced. The explanatory value is relatively high with an R2 of 0.687.

Dependent variable:
Temperature Difference

Industry −0.102∗∗∗

Sport and Leisure Activity 0.131∗∗∗

Areas of Special Functional Character 0.184∗∗∗

Residential Building Area 0.154∗∗∗

Shipping Lanes 1.284∗∗∗

Groove −0.475∗∗∗

Agriculture 0.753∗∗∗

Combined Use Area 0.404∗∗∗

Rail road −0.709∗∗∗

Forest −2.716∗∗∗

R2 0.007

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.2: Summary of the impact each land use class has as a predictor on the tem-
perature and the significance levels based on a dummy linear regression. While
the explained variance is low, the impact each predictor has is quite strong.

This leads to the first part of the answer of RQ 3a: Hour of day, Month of

Year and the land use can be considered as causal drivers for temperature

differences. One can argue that the land use itself is not the cause, but

instead only an umbrella classification of several causal factors. While this

is certainly true, exactly this nature as an umbrella classification provides

several benefits for its use in the real world. It includes many factors such

as the Normalized Difference Vegetation Index (NDVI), the albedo, human

use and many more. As this data is often not available, the use of the land

use allows to include their impact indirectly, even if specific data is not

available. In addition, its use allows for a more robust prediction, as the

number of parameter for a model is reduced.



Empirical Validation and Evaluation of LTM 89

Dependent variable:
Temperature Difference

MONTH 1 −8.33∗∗∗

MONTH 2 −10.12∗∗∗

MONTH 3 −7.15∗∗∗

MONTH 4 −0.19∗∗∗

MONTH 5 1.93∗∗∗

MONTH 6 7.17∗∗∗

MONTH 7 11.32∗∗∗

MONTH 8 8.91∗∗∗

MONTH 9 4.92∗∗∗

MONTH 10 1.68∗∗∗

MONTH 11 −4.90∗∗∗

MONTH 12 −6.52∗∗∗

R2 0.687

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.3: Summary of the impact each month has as a predictor on the temperat-
ure and the significance levels based on a dummy linear regression. One sees an
overall strong difference for each month an high explanation of the variance.

Dependent variable: Dependent variable:
Temperature Difference Temperature Difference

HOUR 1 −1.46∗∗∗ HOUR 13 1.96∗∗∗

HOUR 2 −1.77∗∗ HOUR 14 2.51∗∗∗

HOUR 3 −2.05∗∗∗ HOUR 15 2.85∗∗∗

HOUR 4 −2.29∗∗∗ HOUR 16 3.04∗∗∗

HOUR 5 −2.50∗∗∗ HOUR 17 2.93∗∗∗

HOUR 6 −2.66∗∗∗ HOUR 18 2.54∗∗∗

HOUR 7 −2.53∗∗∗ HOUR 19 1.98∗∗∗

HOUR 8 −2.07∗∗∗ HOUR 20 1.28∗∗∗

HOUR 9 −1.36 HOUR 21 0.50∗∗∗

HOUR 10 −0.53∗∗∗ HOUR 22 −0.18∗∗∗

HOUR 11 0.41∗∗∗ HOUR 23 −0.70∗∗∗

HOUR 12 1.27∗∗∗ HOUR 24 −1.11∗∗∗

R2 0.055

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.4: Summary of the impact each hour of the day has as a predictor on the
temperature and the significance levels based on a dummy linear regression. One
sees a low significance level for HOUR 9 as the temperature difference is quite
similar to HOUR 1.
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7.2.2 Interaction of Parameter

To examine the final hypothesis, Given the land use and the month, there does

exist a unique temperature pattern over the day and that the interaction result in

increased explanatory power than their simple additive combination, the number

of interactions has to be taken into account. The number of interactions

is the number of interactive time intervals, here 288, times the number of

land use class, which for our empirical data is nine. We therefore have over

2000 distinct interactions to compare. Given possible similarities between

land uses and potential similarities between day cycles, the risk for multi-

collinearity is high. A comparison with regression models is therefore not

feasible. For reasons of brevity, for a graphical analysis we compare only

three different land use classes, industry, forests and residential building area.

We chose those three, as they represent the most typical built up areas and

the strongest green area. The results for the different daily cycles given the

month is shown in Figure 7.2.

The comparison of three land uses allows for not only inspecting the dif-

ference in temperature movement based on the interaction, but also the

influence of the distinct causal reasons. The systematic differences over

the months can be clearly seen. But, of more interest, is the influence on

the daily cycle pattern and the differing systematic difference for the land

uses. We can see very similar movements between the more built up areas

in comparison to the forest. But even there, a clear temperature difference

can be seen in most of the early hours. This is most pronounced in month

twelve, December. The residential building area is overall warmer and has

a less pronounced temperature curve. We assume that this is the result of

a slightly stronger regulating impact of this land use in comparison to in-

dustry. Factors such as gardens, less isolated buildings and human heat

sources such as heating over the night could lead to the smoothing of the

curve. Less surprising is the strong difference between those two land uses

and forest. This difference is strong in any month, as the expectation of the
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Figure 7.2: Here we see the Temperature difference from the global mean temper-
ature over the daily cycle for each month and three different land uses. In black
are the differences for Industry, in red (dotted line) the differences for forests and in
blue (small dotted line) the differences for residential building area. The x-lab shows
the hour of day.
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UHI effect suggests. But we can see several interesting deviations in month

seven, July, and month twelve, December. In July the early temperatures of

forest is higher than the temperature of the built up areas. The UHI effect

would suggest that the temperature should be lower overall for the forest.

In December the reverse effect can be seen and is even stronger. The tem-

perature in forest is higher for almost the whole day. In addition it stays

relatively constant and has almost no discernible movement over the day.

The overall mean temperature for this month is also higher for forest. We

believe that this is the result of an inherent regulating process in areas with

more and denser vegetation.

When we compare Figure 7.2 to Figure 7.1, we see the impact of our in-

clusion if the interactions. The yearly mean temperature for each land use

remains the same, but there are clear daily and monthly pattern observable,

which could not be discerned before. The overall averages, which are be

observed for the isolated parameters, can still be seen in the overall com-

parison, but we can better observe their deviation. While only the compar-

ison of three land uses has been shown, other land use pairs show similar

relationships and we argue that our hypotheses are strongly supported by

our empirical data, namely that the interaction of the causal reasons is be-

neficial when the aim is to describe or predict temperature. This is further

cemented by the improved R2 of 0.7683 of the regression results.

This allows a full answer to RQ 3a given our empirical data set: The over-

all causal drivers behind local temperature are in their interaction: Hour of

day, Month of Year and land use. While in isolation these factors can explain

the temperature difference inherent in a data set, only their interaction can

sufficiently explain the difference between different local measurements.
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7.3 Evaluation Design

By using the insights from RQ 3b, the RQ 3c can be answered in the rest of

this chapter. The LTM approach is used as a basis for the model building

to produce accurate and robust predictions. To evaluate the performance

of the our proposed approaches, for the basic LTM model and the Bayesian

LTM, we use the mean absolute error (MAE) in Kelvin to measure the ac-

curacy of the predictions as well as the percentage difference in accuracy

between the benchmark and the different parametrizations. In the UHI as

well as temperature prediction literature the MAE is a standard metric; al-

ternatives include the R2, e.g. in Suomi and Käyhkö (2011). As we want to

provide the foundation for information systems, a low MAE is of greater

importance as compared to the explained variance and is therefore used.

Our treatment structure is shown in Table 7.5:

Model Interaction

Nearest Station No learning
Basic LTM Systematic Differences from mean temperature
Bayesian LTM 1 Interaction for intercepts and the slope
Bayesian LTM 2 Interaction for intercepts and global slope

Table 7.5: This table shows the different model treatments applied on the data sets.
Nearest station uses only Tobler’s first law, Basic LTM applies the temperature
differences of the LTM model. The Bayesian LTM 1 and 2 use the predictors of the
Basic LTM as the basis for the BHM.

We use two different reference temperatures for our models. First, the

data of the nearest DWD stations are used to predict the temperature at

the each LUBW station. This is done as the DWD stations represent the

standardized measurements, which should not be influenced by their land

use. Thereby the local climate is taken into account and only the impact
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of the differences in land use and the interaction with the time paramet-

ers are compared. This represents the standard real-world situation, where

there does exist an official weather station or official weather forecast in a

geographically close location. Its generalizability follows as this setup is

valid for most developed countries. Second, a global temperature from the

LUBW stations can be derived for the whole area of Baden-Württemberg.

This temperature allows to analyze not only the difference to a nearby sta-

tion, but to compute the impact the land use and its interactions have on

difference from the overall regional climate. This would allow to use broad

spatial predictions and measurements and reduce their spatial resolution.

Here, we use the combined differences for different land uses as motivated

in Section 6.3.2. We use the global mean temperature of the LUBW stations

to predict the temperature at each LUBW station. This represents the case

when there are no official, high-quality measurement networks, but a ref-

erence temperature can be derived from other sources such as low quality

measurements, satellite images or other aggregates.

7.4 Empirical Results

The results for the presented models in-sample for the year of 2013 can be

found in Table 7.6.

We see that both proposed models, regardless of their parametrization,

show a great improvement over the established benchmark. The basic LTM

model performs better in both instances, but the margin of improvement is

reduced for the DWD reference temperature. For the Bayesian LTM model

we can see that the use of the interaction term for the slope as well as the

intercepts leads to slightly better results. We also see better results if the

DWD stations are used as reference station for the benchmark. This is a

likely results of the lower average distance to those stations. Alternatively,

the standardized placement of the DWD stations leads to a better general-
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Model LUBW DWD

Nearest Station 1.741 1.188
Basic LTM 1.083 (37.8 %) 0.915 (23.1 %)
Bayesian LTM 1 1.295 (25.6 %) 0.969 (18.4 %)
Bayesian LTM 2 1.324 (23.9 %) 1.010 (15.0 %)

Table 7.6: This table shows the MAE Results in-sample and in brackets the percent-
age improvement to the baseline of Nearest Station. The percentage improvement
is strongest for the LUBW data set, the MAE results are better for the DWD data
set.

ization power of their measurements and therefore to better results. This

could also explain the reduced improvement rate in-sample. The in-sample

results represent the power of the models to capture the variance inherent

in the data without regard to their generalization power.

Out-of-sample prediction results with the models on the data data of the

year 2015 are shown in Table 7.7.

Model LUBW DWD

Nearest Station 3.404 2.498
Basic LTM 1.916 (43.7 %) 2.445 (2.1 %)
Bayesian LTM 1 1.362 (60.0 %) 2.339 (6.4 %)
Bayesian LTM 2 1.392 (59.0 %) 2.317 (7.3 %)

Table 7.7: This table shows the MAE Results out-of-sample and in brackets the per-
centage improvement to the baseline of Nearest Station. Out-of-sample, the DWD
results are worse then the in-sample results. For the LUBW data set, the percent-
age improvement is stronger then in the in-sample data set. Overall, the Bayesian
LTM models produce the most accurate predictions.

For the out-of-sample forecast we can see a change in the prediction ac-

curacy for the models. The use of the DWD stations as reference temper-

ature produces less accurate forecasts than using LUBW reference stations.
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Given the benchmark, we see a decrease of 95.5 % for the LUBW reference

stations and of 110.3 % for the DWD reference stations for the MAE. If we

compare this with the general information for our data sets from Section

7.1, the high increase of the MAE for the benchmark model is unexpec-

ted. The overall difference in temperature between 2013 and 2015 is almost

identically for both the LUBW as well as the DWD data set.

Overall, the proposed models including the land use data outperform

the benchmark model. For the basic LTM we see a sharp decrease in abso-

lute improvement over the benchmark for both the LUBW as well as DWD

reference stations. This indicates that the high improvement of the basic

LTM model in the training data is achieved by a decrease in the ability to

generalize. The strong increase in the error for the benchmark given DWD

reference stations supports this. It is our belief that this is the result of a

stronger variability in the local temperatures between 2013 and 2015. As

the standardized measurements of the DWD stations do not reflect this im-

pact, the MAE is increasing. This change in variability cannot be reflected

by the basic LTM model and therefore the improvement and quality of the

prediction is reduced.

In general, the Bayesian LTM models outperform the benchmark for both

reference stations and the basic LTM model. We can see this in Table 7.8,

where we compare the difference in a paired t-test for both reference tem-

peratures as well as in-sample and out-of-sample. The Bayesian LTM 2

model, where the interaction of the causal reasons is only modeled with

fixed intercepts, is slightly better than the Bayesian LTM 1 model, where

both the intercepts as well as the slope is modeled to include the interac-

tion, in contrast to the in-sample results. For the LUBW reference tem-

perature, both Bayesian LTM models perform significantly better than the

benchmark as well as the basic LTM model. Noteworthy, the relative im-

provement is also higher than in-sample. For the LUBW reference temper-

ature the Bayesian LTM 1 model performs slightly better than the Bayesian
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LTM 2 model. These results show that the improved ability of the Bayesian

LTM to generalize in comparison to the basic LTM models, while still rep-

resenting more of the variance than the benchmark model. In case of the

DWD stations, a more robust, bias-focused approach performs better as

the changing variability between both years is more pronounced at those

stations in relation to the predicted stations.

Interestingly, out-of-sample the models of the LUBW reference temper-

ature outperform the DWD reference temperature in contrast to the in-

sample results. The Bayes LTM models remain constant in their MAE. This

further supports our assumption of a strong variability in the temperatures

between 2013 and 2015.

Comparison Test Results

LUBW In Sample Paired t-test: t = 100.83, p = < 2.2e-16∗∗∗, df = 197530
LUBW Out of Sample Paired t-test: t = 251.93, p = < 2.2e-16∗∗∗, df = 147020
DWD In Sample Paired t-test: t = 117.42, p = < 2.2e-16∗∗∗, df = 205650
DWD Out of Sample Paired t-test: t = 62.947, p = < 2.2e-16∗∗∗, df = 147670

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.8: Here we show the results of the paired t-test for the Bayesian LTM 1
model and the benchmark model. The results confirm the clear improvement of
the Bayesian LTM model over the benchmark even for the small percentage im-
provement out of sample for the DWD comparison.

These results allow us to answer RQ 3b: Using the interaction of differ-

ent causal drivers, we can reduce the complexity of a prediction model to

a manageable level and produce accurate and robust predictions. This is

done by using the LTM as a basis for more complex statistical models. The

results shown in this evaluation show that this increase is especially strong

if using an overall regional climate, especially out of sample.
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7.5 Error Analysis

As the previous section showed, the different models differ highly in re-

gard to their in- and out-of-sample error as well as the used reference tem-

peratures. The unequal distribution of the change in prediction accuracy

indicates the existence of a systematic cause. We are therefore interested

how exactly the error is distributed in regard to underlying causal factors,

in particular the land use and the reference station. For diagnostic pur-

poses, we conduct a regression analysis for each model type and reference

temperature with the land use as dummy variable. The mean error (ME)

is used instead of the MAE, as the direction of the error offers additional

insights. The results are shown in Table 7.9 .

Basic LTM Bayesian LTM Sample

DWD LUBW DWD LUBW Size

Land use 1 0.304∗∗∗ −0.660∗∗∗ 0.218∗∗∗ −0.187∗∗∗ 35057
(Industry) (0.014) (0.031) (0.014) (0.009)
Land use 2 −0.056∗∗∗ −0.234∗∗∗ −0.064∗∗∗ 0.241 ∗∗∗ 35057
(Sport/Leisure) (0.020) (0.031) (0.019) (0.013)
Land use 3 −0.077∗∗∗ −1.039∗∗∗ 0.104 ∗∗∗ −0.409 ∗∗∗ 17537
(Special) (0.025) (0.032) (0.023) (0.016)
Land use 4 −0.725∗∗∗ −0.683∗∗∗ −0.635∗∗∗ 0.047 ∗∗∗ 17537
(Residential) (0.025) (0.032) (0.023) (0.016)
Land use 5 −3.693∗∗∗ −1.088∗∗∗ −3.459∗∗∗ −0.124 ∗∗∗ 8777
(Shipping Lanes) (0.032) (0.033) (0.030) (0.021)
Land use 7 −3.415∗∗∗ −2.806∗∗∗ −3.240∗∗∗ −0.108 ∗∗∗ 8777
(Agriculture) (0.033) (0.033) (0.031) (0.022)
Land use 8 −2.45∗∗∗ −1.563∗∗∗ −2.668∗∗∗ −0.505∗∗∗ 8777
(Combined Use) (0.032) (0.033) (0.030) (0.021)
Land use 10 −2.441∗∗∗ 3.817∗∗∗ −2.403∗∗∗ −0.480 ∗∗∗ 8777
(Forest) (0.032) (0.030) (0.030 (0.021))

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.9: Mean error of the predictions for each reference temperature, model and
land use, the significance level and the standard error. Only the Bayesian LTM 1
model is used as the prediction accuracy is similar.

Given the results, we detect three interesting aspects: First, as expected,

overall ME is low for the Bayesian LTM model with the LUBW reference
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temperature but the lack of impact of land use on ME is surprising. For the

other models, we see a strong influence of the land use. We argue that the

reason for this lies in the LUBW reference temperature and how the model

learns the values for the different parameter. As hourly mean temperatures

for the study area are used to learn the influence of the combinations, the

impact of changes at individual stations is reduced. The abstraction level

allows the model to learn the overall underlying temperature difference for

any land use instead of the relation between the nearest station and the land

use. The results for the basic LTM and the Bayesian LTM for the DWD refer-

ence temperature seem to be negatively impacted by their method to learn

the underlying relation and therefore their parameters. These models learn

from the temperature value difference between the temperature measure-

ments of two stations. As all stations have, in contrast to the global LUBW

temperature, a land use, even the standardized DWD measurements, their

additional interaction may influence the accuracy of the prediction.

Second is the mentioned impact of the land use class on the error. We

see for the other three models that the highest errors are for the land use

classes 5, 7, 8 and 10. These represent Shipping Lanes, Agriculture, Combined

Use Area and Forest. They represent mostly vegetation areas associated with

lower temperatures, which are regulated by their underlying land use. We

argue that the reasons for this increase in the error is a change in the overall

climatic conditions between 2013 and 2015. This could lead to cumulative

effects for the different land use classes or intensifying effects through sur-

rounding neighborhood. For example, an Agriculture area could dry out

over a long heat period, leading to a reduction or reversion of the cooling

effect. Another example would be the increase of the temperature in a city

park by its surrounding built-up areas.

The third interesting aspect lies in the direction of the error between the

Bayesian LTM and basic LTM models. We see for almost all models a neg-

ative ME. This means that our models systematically predicts the temperat-
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ure too low for 2015. As the basic LTM is a explanatory model, it focuses on

representing the given variance. This allows us to specify the change in the

climatic conditions between 2013 and 2015. It underestimates the temper-

ature and therefore an overall increase in the temperature can be derived.

This supports our assumption from the second aspect, in that the overall

cooling effect of those land use classes is diminished in 2015 in relation to

2013. We see the same results for the Bayesian LTM with a DWD reference

temperature. This result is most likely derived from reasons presented in

the first two aspects: The dependence of the prediction upon the climate

development of the target as well as reference station.

7.6 Discussion and Conclusion

Motivated by the increasing availability of time-series data for the urban

environment and the need for fine grained temperature predictions, we

proposed the combination of land use information and time series of

weather based temperature measurement to address this need. We argued

both from a theoretical point of view as well as with our empirical data

that it is essential to model the interaction of the land use with temporal

aspects.

We proposed the Land use-based Temperature Model (LTM), an explan-

atory model, which extracts the interactions as dependent temperature dif-

ferences. The results of this explanatory model are used in the parametriz-

ation of a Bayesian Hierarchical Model (BHM) that we refer to as Bayesian

LTM. Applying the models to empirical data showed a clear improvement

of the predictive results for the air temperature even with the sparseness

of the available data. Our results indicate that indeed the interaction of the

land use information with time-dependent factors is essential to model fine

grained temperature predictions. It was also shown that this interaction is

dependent on additional climatic conditions. By examining the results and
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error distribution for the basic LTM in 2015 it gets clear that a change in the

relationship between different measurement stations and their respective

land uses occurred.

The benefit for explanatory data analysis is in the detection of where

the error increases. As the overall prediction accuracy in-sample is high,

one can focus on those land uses as well as points in time where the error

increases systematically. This helps in understanding and detecting addi-

tional underlying reasons for the development of temperature predictions.

As the negative impact of heat on human health and energy consumption

is the strongest at high temperatures and so called "greening" is one of the

most proposed method to reduce this impact, the implications of our study

questions the effectiveness of that approach. As described in Section 6.3,

such land use reduces the yearly mean temperature. But we also saw in

our empirical results that this effect is dependent on the interaction of sev-

eral parameters and can be reduced by changing climatic conditions. Es-

pecially when the temperature is at its highest, the impact of those green

areas is the lowest. Additional effects have to be considered in urban plan-

ning to mitigate the risks inherent in e.g. heat stress and the volatile energy

consumption.

Our prediction is based on the explanatory results of the LTM and then

used in a BHM. The results for the BHM are more stable and show in par-

ticular the impact of the reference temperature on the prediction quality.

But, most importantly, it is generalizable to almost any region. Also, it al-

lows us to incorporate additional data sources in the future to improve our

understanding and the prediction quality of intra-urban air temperature.

The insights gained from our predictions are already used in the future

placement of additional weather stations for the city of Karlsruhe in Baden-

Württemberg, Germany. In cooperation with the environmental monit-

oring agency and based on the uncertainty results a new, high quality

weather station was already placed inside the city. Additionally weather
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stations of the type sensebox4 are placed according to these results to com-

plement the LUBW measurements. Temperature based routing approaches

are used to mitigate heat stress in every day situations for vulnerable and

elderly people. Apart from few practical applications, today there are not

many information systems that utilize fine-grained temperature distribu-

tions as these were not easily available. This thesis provides the founda-

tions for such systems. These can range from the placement of temperature

influenced shopping locations, such as ice vendors, to the management of

regional health plans.

Overall, this allows us to answer the overall RQ 3 of this thesis: Temper-

atures in an intra-urban setting can be predicted, with regard to generaliz-

ability, robustness and accuracy, by using the interaction of causal drivers

to produce fine-grained interpolations. This allows the use of other, more

complex models such as from the field of meteorology as a basis for the here

presented approach. Using these existing models and their mostly spatially

coarse-grained predictions, we can then interpolate their results to produce

our fine-grained maps. This has been achieved by the introduction of the

LTM. It also allows an explanation of the local differences in an easy and

understandable way. It therefore can be combined with with the contribu-

tions of the previous part, the stable detection of points of interest. It was

stated in that part that an hot spot analysis only provides points of interest,

not explanations. The LTM allows this explanation and therefore not only

provides sufficient data points for an hot spot analysis, but also can also use

the results of that exploratory analysis for its own parametrization. This al-

lows for a reinforcement cycle of different analysis approaches, into which

also optimization as well as visual analytic approaches can be integrated.

This overall combination was presented as the overall goal for any Big Data

GIS in Wiener et al. (2016) and this thesis provides a substantial addition to

this vision.

The primary limitation of this part lies in the sparse empirical data
4https://sensebox.de/

https://sensebox.de/
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sources. While there will be new measurements in the future, up to now

there exists only few weather stations with a fine temporal scale and long

historical time-series. We used the two years with the most available meas-

urements and to include as many land use classes as possible. But even

so, only nine land use classes could be compared for 2013 and only eight

for 2015. We also saw the impact of the yearly climate on the interaction

results, which could only be compared between two years. More measure-

ment stations and an increase of the study area could lead to additional

insights, but the comparability between different measurements methods

and classifications has to be considered. This could lead to the possibil-

ity of modeling different lead and lag effects for the interactions and the

improvement of the prediction in irregular events such as heat waves. In

the future, we will extend this research from considering only directly sur-

rounding neighborhood for the land use class to an increased neighbor-

hood and their land use classes. The problem herein lies in the complexity

of the increased combinatoric which leads to the curse of dimensionality.

A different approach to increase the number of observation could also

lie in the inclusion of more measurements with highly heterogeneous qual-

ity: Volunteered Geographic Information. While work such as in Meier

et al. (2017) propose a rigorous filtering approach, a more big data focus ap-

proach is presented in Bruns et al. (2018). There, an evolutionary algorithm

is combined with a kriging algorithm to first learn the quality of measure-

ments and then interpolate their measurements. Such an approach could

be combined with the LTM to provide a more in-depth explanation of the

causes, an improved prediction and also to reduce the risk of overfitting

even further.

Based on the positioning of our data sources, the impact of the distance

could not be incorporated into the our reasoning. Modelling extensions

and approaches such as the semantic krigingBhattacharjee et al. (2016) or a

regression-kriging approach could only be learned on the impact of several
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kilometer, while for the urban prediction the spatial accuracy has to be re-

duced to several meters. While we included the distance in several models,

the results out-of-sample were of very low quality - This was most likely

the result of overfitting. With additional stations on a small geographical

area with distances between those stations in meters instead of kilometers

such methods could be applied.



Part IV

Finale





Chapter 8

Conclusions and Outlook

TODAY, spatio-temporal data is the basis for almost any IS big data real-

world process. However, the inherent challenges and properties of

these data sources are often neglected. Whereas temporal dependencies

and their auto-correlations are often accounted for, the spatial aspects as

well the interaction of these dependencies are not. This neglect can lead to

unreliable or even false insights. Therefore, a stronger emphasis on meth-

ods and approaches for spatio-temporal analyses is needed.

In this work, new, robust methods for spatio-temporal data analysis were

developed, discussed and evaluated. First, an exploratory approach on the

basis of hot spot analysis was presented. It modified the well-known Getis-

Ord statistic to be more robust by considering the impact of the study area

on the stability of the resulting analysis. To enable an easy, quantifiable

comparison between different hot spot detection algorithms a metric for

the stability was introduced, the SoH. To provide more in-depth insights,

an explanatory data analysis as well as prediction approach based on this

analysis was presented, the LTM. It uses the openly and freely available

data to explain and predict the temperature differences at different loca-

tions while being robust, computationally efficient as well as generalizable

to most areas in middle Europe.

The development of these methods and approaches provide further

107
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methodical foundations for future information systems. Spatial processes

are key requirements for future development and the usage of these sys-

tems to further the in-depth understanding and analysis of real world pro-

cesses.

8.1 Contribution

This work aimed to develop new robust methods and models for the un-

derstanding of spatio-temporal phenomena. This was achieved for explor-

atory data analysis with the robust detection of points of interest and for ex-

planatory data analysis and prediction it was achieved with the new LTM.

Existing approaches and insights were explored, discussed and built upon

to develop robust models to detect and predict spatio-temporal dependen-

cies and hot spots.

This section summarizes the results for the research questions formu-

lated in chapter 1.2 and, based on these, outlines the contribution as well

as limitations of each result for research and practice. In addition, the over-

all contribution of the combination of these questions will be discussed.

How to create a stable Hot Spot Analysis: To provide reliable inform-

ation and overview of existing spatio-temporal patterns, exploratory ana-

lysis is the first step in most analyses. The detection of points of interest

helps to focus the analysis and to provide a quick and easy to understand

visualization for a practitioner as well as researcher of any spatial as well

as spatio-temporal phenomenon. But to be used on big data sets, the meth-

ods for the analysis has to be done independently of the chosen area and

reliable regardless of the initial parametrization – it has to be stable. In this

work we used the Getis-Ord statistic as a basis for our stability enhancing

modification, as this is the most well-known hot spot analysis to detect

points of interest and it achieves this by transforming a given data set to

the equivalent z-score of each area.
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(a) What effects and parameter influence the stability of hot spot analysis: To

produce a reliable method for hot spot analysis, the different influences on

the stability have to be analyzed and fully understood. On the basis of the

G∗ statistic, three parameter and their influences on the stability are identi-

fied: (1) The variable under observation X and its single elements xj, (2) the

weight matrix W, i.e. the neighborhood, and its elements wi,j and (3) the

global mean X̄ and the global standard deviation S. Each of these para-

meter influences the resulting z-score and therefore the stability differently.

The influence of the variable under observation is (mostly) independent of

spatial effects; the influence in its most simple form can be observed in the

formula as the standard z-score which is well-known. The weight matrix

represents the spatial (local) influences on each variable under observation

and are dependent on the underlying data and its spatio-temporal autocor-

relation. The global variables function as the standardization to transform

the original variables to their z-scores.

(b) How can existing methods be modified to be more stable: Building upon

existing approaches for hot spot analysis provides many advantages. We

can use existing insights as well as proven properties. In particular the G∗

statistic is well grounded in the theory of field of statistics. In doing so, we

found that while the problem of the stability is often discussed and there

do exist a a substantial amount of scientific work to solve this problem, the

approach is almost exclusively to modify the weight matrix by automat-

ing its computation. And while this incorporates the spatial dependency, it

does not allow an easy comparison between different reference areas. Built

upon the insights of the previous question, our goal was to modify the G∗

statistic to be more independent of the reference area. Therefore we intro-

duced an additional comparison area, the focal area, which substitutes the

global mean and standard deviation. This allows the values to be more

stable to a change in the reference area. This approach, to focus solely on

the reference area, is unique to our knowledge. The results are quite prom-



110 Conclusions and Outlook

ising in regard to the improved stability and, in addition, this approach

allows a more differentiated analysis of points of interest as the impact of

outliers are much reduced and more local hot spots can be detected.

(c) What is the optimal parametrization for an hot spot analysis: For prac-

tical use, the results of a hot spot analysis have to be stable as unstable

results lead to a miss-allocation of resources. And while the new Focal G∗
statistic provides more stable results, there exists a manifold of potential

parametrizations. Regarding the influences of the parameter, the choice is

often dependent on the goals of the study itself as well as a-priori domain

specific knowledge and the availability of the data. But there do exist de-

grees of freedom for a researcher as well as a practitioner. As the number

of potential parametrizations increase, the potential for a suboptimal para-

metrization increases as well and therefore a ”rule of thumb” is needed for

most practical purposes. In our empirical evaluation it is strongly indic-

ated that a broader weight matrix improves the stability overall. A circular

weight matrix is also more stable then a square weight matrix. But, as the

empirical evaluation was limited to two data sets and a step-wise compar-

ison of the results, the overall answer remains inconclusive.

Overall, the existing hot spot analyses can be made more stable by mitig-

ating the effect of changing reference areas. We showed a simple, but effect-

ive implementation of this approach with the new Focal G∗ statistic. Our

implementation is written in way to allow for parallel computation of the

results and easy modification with other stability enhancing approaches

and modifications. This provides methods to allow researchers of all fields

to detect points of interest in an automated and robust way. Furthermore,

this enables the detection of more local hot spots and therefore a more fine-

grained overview of areas of interests. The approach presented here is de-

signed for the use in big data use cases and was implemented using the

Apache Spark and GeoTrellis framework.

How can the stability of found Hot Spots be measured: Existing meth-
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ods to measure the stability of hot spots rely on visual analysis and thereby

on the intuition of the human analyst. This assumes a relatively low num-

ber of comparisons to be sufficient. In turn, only few parametrizations are

evaluated and therefore have to based on a-priori knowledge of the analyst.

If such knowledge is not available, best practices from different analyses

are often used. However, this evaluation approach is expensive, reliant on

pre-existing knowledge and work and by its nature subjective. A compar-

ison between different analyses or even algorithms is difficult with such a

method. In today’s world of big data and the potentially huge number of

different parametrizations and results, the resulting difficulties and chal-

lenges are increased. To solve this problem, we proposed a definition of

the stability, derived from the field of clustering, and proposed a metric,

the SoH, to automatically quantify the stability of a hot spot analysis result

in comparison to different parametrizations or approaches. The proposed

metric measures the difference in found hot spots between different para-

metrizations. This allows for an comparison of the stability by machines.

An analyst does not have to manually compare the different results. For the

purpose of productive use of information systems, a user can be provided

with a reduced selection of the most stable parametrizations. These can

then be manually compared in case of an experienced user or directly ap-

plied in case of an inexperienced user. By pre-determining the most robust

results, the risk and therefore costs of unstable parametrizations and sub-

optimal results is minimized.

How can temperatures in an intra-urban setting be predicted: But to

mitigate and act upon found points of interest, an understanding of why

the these points differ is needed. Often there does not exist sufficient data

points to do an exploratory analysis. Therefore, explanatory methods and

predictions are needed to provide this data and insight for use in advanced

information systems. We used temperature prediction as our use case for

this, as temperature has a profound impact on most spatio-temporal pro-
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cesses and applications.

(a) What are causal drivers behind local temperature differences: To build ro-

bust statistical models, a thorough understanding of the subject matter is

needed. We used the urban heat island literature as our basis, as this field

examined different drivers for local temperature differences over many

decades. Additionally, we restricted and pre-selected potential drivers in

regard to their generalizability as well as available data sources. This was

done to ensure that the resulting new insights and predictions can be ap-

plied to all real world scenarios. We identified three main drivers: The

land use, the month and the hour of the day. We showed the explanatory

power of each driver with statistical as well as visual tests. Furthermore,

we derived and empirically evaluated our hypothesis that the interaction

of these parameter would produce a better explanation while still retaining

the robustness and generalizability.

(b) Given the inherent complexity of the underlying meteorological, environ-

mental and physical processes and the sparseness of available meteorological data,

how can those drivers be modeled to produce an accurate and robust prediction:

Based on the results of the previous question, we argued both from a the-

oretical point of view as well as with our empirical data that it is essential

to model the interaction of land use with temporal aspects. This focus on

the interaction allowed us to build the Land use-based Temperature Model

(LTM). The LTM in its basic form can be used to explain the local tem-

perature differences and improves in-sample predictions by a substantial

amount compared to the baseline model. By using the parameter and their

interaction in more advanced models, in our case Bayesian Hierarchical

Modeling to incorporate semi-pooling, we achieved an even stronger im-

provement out of sample. Our empirical results indicate that indeed the

interaction of the land use information with time-dependent factors is es-

sential to model fine grained temperature predictions. The LTM provides

simple, stable and general prediction with good results. This allows the
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prediction of fine-grained temperature over a broad area and may lead to

highly accurate temperature maps which can then be used in advanced IS

applications such as heat based routing algorithms or smart city planning.

Interestingly, our empirical results also suggests that ”greening” has to be

regarded more carefully. We found a high deviation in the moderating ef-

fect of green areas between the years 2013 and 2015 in our data set. Whereas

the existing literature often argues that greening of urban places is always

beneficial (e.g. Gill et al. (2007)), our results indicate that this moderating

effect weakens in case of long heat periods.

As of the nature of the research questions, they were divided into two

parts during this thesis: The explanatory and the explanatory approach.

The contribution of each of these parts was discussed separately, but these

parts are deeply interconnected (see e.g. Appice and Malerba (2014)). To

truly understand a process, the data has to be explored, its structures ana-

lyses and explained, unknown areas or combinations predicted and then

the so generated new data set explored in more detail. This process leads

to a more thorough understanding and self-reinforcing learning mechan-

ism. The exploration phase can also be used to reduce the amount of data

to focus on the most interesting or relevant data points or areas, which then

guides the in-depth explanatory analysis and in turn the prediction. This

can then again be generalized. The research questions and the contribution

of this thesis are built upon this idea. The robust identification of points

of interests allows for a fast identification of relevant study areas. The fo-

cal G∗ statistic provides the means to produce this overview; the definition

of the focal radius allows the researcher to pre-determine the resolution

level and comparison area to provide the needed level of detail. The SoH

metric guarantees the robustness of the result and minimizes the risk of

using unstable hot spots and parametrizations. The results of such an ex-

ploratory analysis can then be used with high confidence for the more in-

depth exploratory analysis and prediction. We provided such an analysis
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our causal modeling of temperature differences and the resulting LTM. It

provides an understanding of the local temperature differences and can be

used in advanced prediction models. We showed this with a Bayesian LTM

and proved the benefit in our empirical evaluation. These predictions can

then be used to generate a temperature map for a greater area, upon which

a new hot spot analysis can be performed to use limited resources more

efficiently.

A vision for this interconnected approach can be found in Wiener et al.

(2016). The contributions of this work can be used in the model as well

as visualization part of this BigGIS approach. They are embedded in this

pipeline of continuous refinement and provide users and researchers with

the tools and options to generate meaningful and robust insights even in

high uncertainty environments.

Apart from their contribution to the scientific field, in particular smart

city research, the methods and insights of this thesis are used in the devel-

opment of commercial products as part of the BigGIS project1.

Overall, this thesis contributes to the field of IS with the creation of ro-

bust and efficient models and algorithm for exploratory and explanatory

data analysis in the field of spatial and spatio-temporal data. The meth-

ods provide an increased data foundation for new, innovative application.

They also provide a high degree of generalization and can be applied to

many different domains and use cases in the field of IS and other fields

of research. In the domain of temperature this thesis provides additional

contributions. First, it enhances the understanding of UHI by providing a

reliable detection method with the Focal G∗ statistic as well as an under-

standing of why the temperature differences exist with the LTM. Second, it

emphasizes the importance of modeling the interaction of different causal

and temporal drivers of temperature for more robust and accurate temper-

ature prediction in case of limited data availability, both in scope as well

as in diversity. Finally, this provides new insight regard the greening of
1biggis-project.eu

biggis-project.eu
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areas. Whereas before, the focus was often on low resolution aggregates,

both in time and space, a more fine-grained examination leads to a more

differentiated view of the impact of green areas on temperature.

8.2 Future Work and Restrictions

We have shown the importance of developing new models and methods

to deal with the challenges of spatial and spatio-temporal in this thesis.

The following proposed directions are built upon the insights of this work

and show extension as well as alternative approaches to deal with these

challenges and further extend the toolbox of IS research. We present three

different areas for future work:

(1) Exploratory data analysis: In this work, the stability of a hot spot ana-

lysis was improved by modifying the computation of the reference value

for the global mean and standard deviation. While the benefits of this ap-

proach were shown and discussed, the modification of the weight matrix is

also feasible, as the existing literature shows. A combination of the focal G∗

statistic with a modification of the weight matrix could lead to more robust

results. It would be quite interesting to combine this e.g. with the work

of Westerholt et al. (2015) to combine the strength of these different ap-

proaches. However, both approaches increase the computational cost. The

challenge of this direction lies in the trade-off between the increased ro-

bustness and the increased cost. While the formulation of Focal G∗ allows

for these modifications in its computationally efficient form, other modific-

ations have to be re-written to allow their efficient use.

Another extension of the Focal G∗ statistic would be the use of differ-

ent spatial data, such as social media data, ”data in motion” (e.g. data

from moving vehicles) or continuous measurements. In this thesis, the

conception as well as empirical evaluation was performed on data in the

raster format with discrete values. However, by changing the nature of the
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variable under observation, additional challenges have to be addressed.

Whereas here the weight matrix has several fixed values, now a function

dependent on the temporal or spatial distance has to be considered. This

incurs additional computational costs and increases the complexity of the

method. The inherent problem is increased with moving measurement

devices. In this case a trade-off between aggregates and the detail level

of the found points of interest has to be explored.

The existing SoH metric allows a quantifiable, robust and understand-

able way to measure the stability of hot spots. But there do exist several

limitations at the current state. As of the nature of hot spots, the SoH is

only applicable in a singular direction. A comparison between the SoH ↑
and SoH ↓ is not possible. It is not yet bijective. Another limitation is that

it only measures the distance between two different parametrizations. A

comparison of the stability between all possible parametrizations incurs a

high computational costs. Therefore, modifications and extensions to this

metric which reduce these problems could increase the value of this met-

ric even further. In his master thesis, Gassenschmidt (2017) shows several

potential extensions for the SoH metric, inspired by the error metrics of

classification algorithms. These provide a good starting point for more the-

ory based research for the extension of the SoH.

(2) Prediction methods: The presented approach of the LTM and the

Bayesian LTM show the benefit of the interaction modeling. It provides a

robust and generalizable prediction approach. However, in the presented

evaluation, the uncertainty of the predictions has not been utilized. In-

stead, only the mean prediction values are used. The use of uncertainty

intervals as well as the overall information of the distributions can provide

additional information for the analyst as well as for models which use the

prediction results. An example for this idea was presented in Bruns et al.

(2017), where uncertainty intervals of the prediction are visualized. This is

highly dependent on the study as well as the use case. The challenge lies in
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the efficient utilization of such intervals and in particular in the visualiza-

tion for a user, e.g. embedded in an information system. The field of Visual

Analytics would be particularly well-suited for this challenge.

Another approach of interest would be the use of additional data such as

VGI measurements. However these are often of varying quality and only

insufficient information about their placement and sensors is available.

New methods to account for this heterogeneous information is needed

to fully utilize the potential wealth of information. In particular an auto-

mated pre-processing is essential, as these data sets are big data sets also in

volume and veracity. A potential solution to this problem is presented in

Bruns et al. (2018), where spatial statistical models in the form of a modi-

fied kriging are combined with a simple genetic learning algorithm to learn

the quality of each sensor.

Finally, an extension of the LTM could be found with the use of

regression-kriging. In the available empirical data set, the data was in-

sufficient to built such a model. The LTM represents the regression part

of this modeling approach and the incorporation of additional information

in form of the distance could improve the results. However, as of writing

this thesis, the necessary data set was not openly available to the author to

implement and evaluate such a combined model.

(3) Application to new data sets: A major limitation in this work was the

available data sources for the empirical evaluation. Therefore, additional

and new data sets as well as use cases could provide additional insights as

well as new extensions to the toolbox of researchers and practitioners. For

example, Bernsdorf and Bruns (2016) discuss the potential use of satellite

based measurements for the urban environment, e.g. for temperature pre-

diction. While their use for prediction models and exploratory analyses is

well-discussed in the field of environmental sciences, they are rarely used

in IS research. Other interesting data sets include pollution, car sharing or

socio-economic interaction in urbanizations.
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In summary, various directions and areas for future research for the use

of spatial and spatio-temporal data sets in the field of IS exist, in particular

for exploratory and explanatory data analysis and prediction methods. The

development of new methods and their inclusion in the IS toolbox prom-

ises to provide new insights and improve our understanding of complex,

real-world processes. This thesis provided a valuable extension to the tool-

box of researchers and practitioners for robust spatial data analysis, which

should help in the task of understanding these processes.



Part V

Appendix
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Software Used

To promote credit for software that powers science, here is a list of soft-

ware packages employed in our data analysis: Hlavac (2015), Bivand et al.

(2013), McElreath (2016), Stan Development Team (2016), R Core Team

(2016), Hijmans (2016b), Xie (2014), Zeileis and Grothendieck (2005), Hij-

mans (2016a), Gräler et al. (2016), Bivand et al. (2016), Wickham (2007).
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