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1. Introduction

Synchrotron light sources are particle accelerators specifically designed as radiation sources,
with equal consideration given to synchrotron radiation production as well as transport
and extraction. While they inherit part of their design from the preceding circular electron
accelerators used in high energy physics, their purpose is limited to the production of
electromagnetic radiation. The spectral range extends from the infrared range, i.e. mil-
limetre radiation over the visible and ultraviolet spectrum down to the nanometre range.
At the high frequency limit this enables applications such as X-ray spectroscopy, imaging,
scattering and lithography [1].

A subset of this radiation is emitted in the range of 0.3 to 3 THz, the far infrared range. It
provides sub-millimetre resolution in imaging applications like microscopy, topography and
tomography through a range of dry, dielectric and non-polar surface layers. On the other
hand, terahertz radiation is used to study the spectroscopically accessible properties of a
wide range of materials of condensed or gaseous phase. This motivates the effort to enhance
the power emitted in the form of far infrared radiation in synchrotron light sources.

The intensity of radiation emitted at a given frequency is closely related to the structure
of its source due to interference. The simplest charge density modulation necessarily
encountered in synchrotrons is the electron bunch. At and below bunch lengths, the phase
relations within the radiation fields are coherent. Constructive interference leads to an
increase in the energy density of the radiation field. With regard to far infrared radiation,
this condition is met for bunch lengths below 1 mm.

An important field of study in synchrotron light sources is therefore related to the dynamical
laws governing the formation of bunches and smaller charge density modulations. Here,
active external forces in combination with the electromagnetic self-interaction of the electron
bunch have to be taken into account [1, 2]. Charge density modulations due to intensity-
dependent beam instabilities are researched to generate intense synchrotron light in the far
infrared range [3, 4, 5].

To estimate the response of a nonintegrable dynamical system to the variation of a physical
parameters, it is often helpful to probe a simplified, numerical model [6]. This thesis aims
to extend the simulation tool Inovesa [7]. To understand the features seen in THz spectra,
the beam can be modelled as a line charge as outlined in chapter 2. The implementation
of the RF system noise is detailed in chapter 3. Conclusions are drawn in chapter 4. First,
the implementation is checked for self-consistency. Thereafter the influence of noise on a
typical use case is discussed.
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2. Fundamentals of Accelerator Physics

The observed emission of a synchrotron light source is closely related to the stored line charge
density. Beginning from the fundamental principles, this relation will be illustrated. Later
in this chapter, phenomena governing the dynamics of the electron bunch are explained in
terms of their interaction with the longitudinal phase space, i.e. the space of longitudinal
position and energy. This chapter is primarily based on [1].

2.1. Particle Dynamics

2.1.1. Guidance and Acceleration

Particles of electric charge +e in a motion guided by an electric field E and a magnetic
field B follow trajectories satisfying the Lorentz force law [1]

F = e(E + v × B) . (2.1)

With respect to the velocity vector v, this can be split into a parallel and deflecting
contribution

F = eE‖︸︷︷︸
=F‖

+ e(E⊥ + v × B)︸ ︷︷ ︸
=F⊥

. (2.2)

In the presence of a homogeneous magnetic deflecting field of magnitude B⊥ perpendicular
to the direction of propagation, the particle moves on a closed circle of radius ρ. Since
electric deflecting fields are impracticable for relativistic particle accelerators [1], cyclic
accelerator rings are based on this principle.

F⊥ = dp⊥
dt ⇔ evB⊥ = γm

v2

ρ
⇔ 1

ρ
= eB⊥
γmv

. (2.3)

Here, γ is the Lorentz factor introduced in the relativistic momentum p⊥. The synchrotron
is based on a magnetic field tuned to the particle momentum at a constant radius.

Particles of different momenta occupy orbits of slightly different circumference. Restoring
a particles transverse position towards an ideal trajectory is referred to as beam guidance.
In addition to the extensive magnetic dipole fields, quadrupole magnet fields are used to
confine the beam transversely.

The parallel electric field component, on the other hand, changes the kinetic energy EKin
proportional to the difference in γ

∆EKin =
∫

Fdr = e

∫
E‖dr = (γ1 − γ0)mc2 . (2.4)

3
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Figure 2.1.: Moving Cartesian coordinate system. Adapted from [1].

In a relativistic particle accelerator, where the particle is moving at a velocity asymptotically
close to the speed of light c, this mechanism is referred to as acceleration. It is convenient
to use the radial (x), axial (y) and longitudinal (z) directions along a reference orbit as a
base of a moving Cartesian coordinate system (Fig. 2.1). Parametrised by the distance s
along this orbit, the laboratory particle trajectory is

r(s) = r0(s) + δr(s) . (2.5)

The invariant position with respect to longitudinal beam dynamics, i.e. acceleration, defines
the centre of the longitudinal phase space z = 0. Energy dependent longitudinal beam
dynamics vanishes at the design energy E0. Only deviations E = E −E0 have a dynamical
response. Sometimes it is convenient to use functions of z and E to formulate longitudinal
dynamics, for example the phase φ with respect to the accelerating voltage modulation.

2.2. Synchrotron Radiation

Synchrotron radiation refers to radiation emitted by revolving electrons in storage due
to bending at a velocity close to the speed of light in a vacuum. In the laboratory frame
of reference related by Lorentz transformation, this radiation is highly collimated in the
tangential forward direction. The bulk of radiated power is found in the radiation lobe with
opening angle ≈ 1/γ relative to the direction of travel. Further frequency shifted due to
the relativistic Doppler effect, the radiation observed along a bending magnet has a broad
power spectrum p′(ω), depending only the on electron energy γ = E/m0c

2 and bending
radius. The photon energy band width and high energy contributions are therefore highly
sensitive to the electron energy. This can be seen from the Fourier theorem, which relates
pulse duration to the photon energy. In theory, the low end of the spectrum observed
at a fixed point along a cyclic orbit extends to wavelengths of the circumference of the
revolution. This has the practical consequence that the synchrotron spectrum is discrete
[8].

Considering a fragmented beam consisting of a large number ne of electrons in a bunch of
length σz,0, the spectrum can be divided into qualitatively different domains. Wave lengths
comparable to or smaller than the bunch dimensions are radiated in phase, with the entire
bunch acting electrically like a point charge. By definition, the power emitted at such a
frequency is proportional to n2

e. This amplification makes coherent synchrotron radiation
(CSR) an experimentally attractive spectral feature. In contrast, wave lengths smaller than
the bunch are emitted in a random combination of phases, with a power proportional to ne.

The total power spectrum is the sum of the incoherently amplified single particle contribution
p′ and the frequency dependent CSR contribution [1]
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Figure 2.2.: Solid: Exemplary theoretical synchrotron bending spectrum for a Gaussian
bunch (E = 1.3 GeV, σz,0/c = 10 ps) for a customary bending radius and bunch population.
The Gaussian CSR feature is clearly visible at low frequencies (f < c/σz,0) on top of
a incoherent SR power floor (detailed in [1]). Dashed: Spectrum of a larger bunch at
higher energy (E = 2.5 GeV, σz,0/c = 50 ps).

dP
dω = ne[1 + (ne − 1)F (ω)] dpdω . (2.6)

The longitudinal form factor F (ω) contains the frequency dependence of the coherent
spectrum. For a Gaussian bunch of length σz,0, high frequencies are damped exponentially,

F (ω) = exp
(
−
ω2σ2

z,0
c2

)
. (2.7)

The relation between the CSR power for a Gaussian bunch and the THz domain is illustrated
in figure 2.2. It suggests that a short enough bunch can be manufactured to significantly
improve the THz yield. A length of 1 ps corresponds to the wavelength of THz. This
motivates the investigation of the longitudinal dynamics of small and non-Gaussian bunches
in synchrotron light sources.

2.3. Zero Current Longitudinal Dynamics

In this section phenomena in the longitudinal phase space of a sparsely populated relativistic
electron bunch in storage are introduced. For completeness, some higher order and extremal
behaviour of a bunch due to interaction with external forces are discussed.

2.3.1. Momentum Compaction

Consider a charged particle revolving in a magnetic field. Neglecting electromagnetic
attenuation, the particle moves under the influence of the Lorentz force on a closed
trajectory of integrated length L. Other particles at a different momentum p+∆p revolving
in the same magnetic field may be ordered by their respective travel L+ ∆L. The ratio
between their relative path length difference and first order momentum deviation is defined
as the momentum compaction αc,

∆L
L

= αc
∆p
p

. (2.8)

This parameter depends on the design of the magnetic provisioning of the orbits ordered
by ∆L and is in the context of this thesis always positive. It is generally itself momentum
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dependent, so that αc = α0 + α1∆p/p + . . .. With αc, the time evolution of the time
advance τ in terms of the momentum compaction and energy difference E = E −E0 to the
design energy E0 is given by [9]

τ̇ = 1
β2

(
αc −

1
γ2

) E
E0

. (2.9)

The −1/γ2 term accounts for the influence of the velocity on the revolution period and
β = v/c. At highly relativistic velocities, orbital compaction depending on momentum is
predominantly responsible for the reordering of bunch electrons along the longitudinal axis.

The reduction of αc−γ−2 translates into a reduced exchange of particles between bunch head
and tail. Efforts can be made to reduce αc by exerting close control over the orbit lengths
up to the desired order in ∆p/p. This results in a reduced bunch length at a prevalent
energy spread. The operation with quasi-isochronous orbits resulting in τ̇ = 0 is difficult
because the influence of repeated acceleration accumulates on the energy distribution of
the accelerated particles, compromising its long term stability and increasing the influence
of achromatic elements used in beam guidance.

2.3.2. Acceleration

Acceleration is the exchange mechanism restoring the kinetic energy lost to synchrotron
radiation. Charged particles are accelerated in a electrostatic gradient or in a generic suitable
radio frequency (RF) electric mode parallel to the particles velocity. In circular accelerators,
particles are accelerated while they traverse a small number of straight accelerating sections
of total effective accelerating peak voltage V̂ . This implies the synchronicity condition
on accelerating voltage frequency and travel. To correlate the energy gain in subsequent
transits, the revolution time f0 of a bunch is related to the RF wave modulation by

fRF = hf0 . (2.10)

The harmonic Number h also limits the number of bunches in circulation at a given time.
To reinforce this important relation, the time advance τ associated with a given orbit is
translated into a phase difference φz relative to the alternating accelerating voltage. The
time evolution of this phase difference is given by

φ̇z = −2πhf0τ̇ = −2πhf0
β2

(
αc −

1
γ2

)
︸ ︷︷ ︸

=:η

E
E0

. (2.11)

With an accelerating RF modulation of a constant frequency, off-momentum particles move
on closed trajectories in phase space and perform a stable harmonic oscillation. However,
in relativistic electron synchrotrons the electromagnetic dissipation of particle energy is
non-negligible. Beam bending magnets and insertion devices are the primary causes for
single particle energy loss, other sources like induction heating of the vacuum chamber
contribute as well. The stable invariant position of the synchrotron oscillation therefore is
the synchronous phase φs at which a bunch is accelerated to the energy lost during the
turn, U0. It satisfies

eV (φs) = eV̂ sin (φs) = U0 . (2.12)

Any phase excursion φz added to the synchronous phase or energy surplus E is linked to a
instantaneous change in the relative energy difference E by
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Figure 2.3.: Principle of phase stability. (a) Particles with excess energy follow expanded
orbits (dashed) and appear slower. (b) Phase space of a one dimensional harmonic
oscillator illustrating the synchrotron motion of an electron. The scale is chosen to
assimilate the magnitude of drift (blue) and acceleration (red arrows). Adapted from [10].

π

V̂

φs

φz > 0

φ
φ

V (φ)

Figure 2.4.: Effective voltage accelerating an electron at (φ). Due to the sine modulation,
the time delay is roughly proportional to the acceleration voltage.

Ė(φz) ≈ eV̂ f0[sin (φs + φz)− sin (φs)]−
dU0
dE f0E . (2.13)

The first part is the RF contribution, the second part is a linear radiation damping term.
It causes an initial energy fluctuation E to vanish exponentially over time.

Equations (2.11) and (2.13) determine the time evolution of a coordinate in the two
dimensional longitudinal phase space, spanned by a E and φz. This motion is called
the synchrotron oscillation. Figure 2.3 illustrates this behaviour for single particles and
small oscillations. If the number of particles is sizeable enough to form a smooth charge
distribution, it rotates at the synchrotron frequency fs. To define fs, the slope of the
acceleration voltage is taken to be V ′(φs) at the bunch centre,

f2
s = − hf2

0 η

2πβ2E0
e
dV
dφ

∣∣∣∣
φ≈φs

. (2.14)

This approximation is qualified by the relatively small bunch size compared to the RF wave
as a consequence of radiation damping.

2.3.3. Stochastic Effects

Equation (2.13) introduces radiation damping as a contribution to the time evolution of
E . This is a time averaged account relevant for the description of the synchrotron motion.
To explain the natural bunch shape, the diffusing character of synchrotron radiation has
to be considered as well. Considering the particle nature of the emitted wave packet, the
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time evolution of the energy E is more appropriately described as a biased random process.
Radiative damping is generally focusing the bunch by imposing stationarity on the energy
excursion amplitude of individual electrons.

Other such processes randomly acting on individual particle with effects are also usually
considered in a accumulative manner. Collisions with the residual atmosphere expand the
phase space volume occupied by the bunch and cause energy loss. Touschek scattering
and intra bunch scattering are phenomena involving the introduction of momentum from
oscillations and transitions along orthogonal degrees of freedom into the longitudinal phase
space. Such effects may increase the longitudinal beam temperature or compromise the
long term beam stability if they exceed the relaxing influence of synchrotron radiation.

These processes are jointly referred to as damping and diffusion. For the electrons in a
relativistic synchrotron, radiation damping is the predominant mechanism. This results in
the bunch relaxing towards a Gaussian distribution in longitudinal positions and energies.
The bunch length is defined as the root mean square displacement from the bunch centre
of the Gaussian profile, at zero current given by [1]

σz,0 = c|η|
2πfs

σE,0
E0

. (2.15)

Using the definition (2.14), the bunch length is proportional to V̂ −1/2 as well as α1/2
c . It

also depends on the RF slope, which is largest for small φs. To reduce the bunch length,
the accelerating wave is of a high frequency and amplitude. The tradeoff in beam stability
is discussed below. In a typical setup the RF wave length covers more than 20 bunch
lengths, so that equation (2.14) holds.

The zero current bunch length is only measured in the limit of a vanishing single bunch
current, when the self interaction of bunch electrons is not appreciably mediated by CSR
and can be neglected.

2.3.4. Separatrix

Figure 2.4 shows the acceleration cavity voltage profile over time. In this example, particles
are accelerated at the descending slope, where the potential restoring the electron phase is
locally parabolic. To generalise the discussion, the phase space motion for arbitrary initial
conditions is plotted in figure 2.5. The phase space depicted here is divided into an area of
cyclic motion including (φz = 0, E = 0) and separating motion. The extremal trajectory
associated with a bunch is called the separatrix. The shape and size of the separatrix
changes as a function of the synchronous phase, growing with the RF slope.

The synchrotron beam is therefore necessarily bunched. Up to h other bunches may follow
enclosed in consecutive separatrix intervals and contribute to the beam. To sustainably
store electrons, the volume enclosed by the separatrix is usually at least two orders of
magnitude larger than the bunch volume to conserve the bunch occupation under the
influence of damping and diffusion over several hours. Consequently, the dynamics of the
longitudinal phase space can be adequately treated as harmonic oscillator.

2.3.5. Vlasov-Fokker-Planck-Equation

Solving (2.11) for φ̈z and using (2.13) in the first order reveals the condition for φz at small
angles and energy deviations [1],

φ̈z + 2αφ̇z + f2
s φz = 0 . (2.16)
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Figure 2.5.: Phase portrait of the synchrotron motion at large phases, φs = 7π/8. The
bunch is confined to a small point at the center of the area enclosed by the separatrix
(solid). Based on [1].

This is the differential equation of a harmonic oscillator, where the radiation damping
parameter α is given by

α = −f0
1
2
dU0
dE

∣∣∣∣
E0

. (2.17)

For positive α this is a generic damped oscillator at small angles. Any set of initial
conditions for phase and momentum will relax asymptotically towards the trivial solution
φz = 0. Acknowledging the stochastic driving forces emerging in the microscopic picture as
a boundary condition, equation (2.16) can be extended with a stochastic term to describe
an ensemble of non-interacting electrons within a bunched beam. However, in systems with
typical electron counts exceeding n = 108 particles, numerical calculations based on (2.16)
with additional collective interactions are not feasible.

The large number of identical particles permits the treatment of the bunch as a continuous
distribution of electrons in a two-dimensional phase space. A self consistent description of
the longitudinal phase space density of an electron bunch is given in terms of solutions
ψ(q, p, t) satisfying the Vlasov-Fokker-Planck-equation,

∂ψ

∂t
+ ∂H

∂p

∂ψ

∂q
+ ∂H

∂q

∂ψ

∂p
= β

∂

∂p

(
pψ + ∂ψ

∂p

)
. (2.18)

Here, H is the Hamiltonian of the undamped harmonic oscillation along q = z/σz,0 with
conjugate momentum p = (E − E0)/σE,0. The right hand side is called the Fokker-Planck
contribution. Broadly speaking, the energy dependent part restores the mean energy and
the shape dependent part is responsible for clustering of the bunch. It accounts for the
stochastic process of incoherent radiation damping, parametrised with β.

Nontrivial closed phase space density solutions of the VFPE are available for small per-
turbations to H due to collective effects. If the perturbation is large, it can be evaluated
numerically to simulate the time dependent behaviour of intense beams.

2.4. Collective Longitudinal Dynamics

To discuss productive applications of beam instabilities in the production of radiation,
intensity dependent beam instabilities have to be taken into account [1]. The term intensity
can be properly defined using a versatile scaling function. In the context of this thesis,
transitions between intensity domains involve only the bunch charge. It is understood that
the transition occurs in a number of dimensions.
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At non-negligible intensities, the bunch electrons will be subjected to additional potentials
due to the interaction with its own coherent synchrotron radiation. The total Hamiltonian
function governing the dynamics of a particle located at a phase φz can be written as [7]

Htotal(φz) = H0(φz) +Hwake(φz, ρ̃(t)) . (2.19)

The intensity dependence is contained within the wake Hamilton function Hwake, which is
the potential energy of a bunch electron due to the bunch charge distribution mediated by
CSR.

This kind of self-interaction within the particle beam is quantified by a longitudinal
impedance Z‖. In this context, the impedance is due to boundary conditions on the
emission of radiation. In the free space approximation, the curved nature of the orbit
allows the oriented exchange of radiation within the bunch from tail to head along chords.

A more realistic picture of a synchrotron includes parts of the narrow, conducting vacuum
chamber surface acting as a high pass filter and delay. The shielding cut off frequency
associated with a simple impedance can be approximated analytically. There are broad
band impedances associated with all types of electromagnetic constriction of the aperture
within customary beam guides. For example, higher order excitations of the accelerating
cavity field by the passing bunch cannot be completely avoided. This enables CSR to
propagate across the bunch in both longitudinal directions. Such structures may also
sustain a resonant mode fairly long and serve to couple different bunches at long range.
The potential energy due to the exchange of CSR is characterised using the impedance [1]

Vwake(φs) = F
{
Z‖(ω)ρ̃(ω)

}
(φs) . (2.20)

F denotes the Fourier transform.

At moderate beam intensities, the potential in (2.19) causes a perturbative potential
well distortion and the bunch to lengthen. Conversely, measurable bunch lengthening
may be used to quantify the effective impedance of an inhomogeneous array of wave
guides. Depending on the nature of the impedance, this may lead to an asymmetry in the
longitudinal density. This is referred to as a Haïssinski-equilibrium, a non-Gaussian steady
state, closed solution of the nonlinear VFPE.

2.4.1. The Microbunching Instability

Collective interactions throughout the bunch at high intensities lead to this phenomenon,
the result of a positive feedback loop in the dynamics of a intense beam. The energy
modulation Hwake grows with the bunch charge. The discussion of longitudinal beam
dynamics so far shows that this leads to a modulation of the longitudinal bunch profile.
However, above the microbunching threshold intensity there is no steady state potential
well distortion. The small distortion to the bunch profile is then contributing moderate high
frequency spectral components. CSR at these frequencies is far less subject to shielding and
intensifies under the influence of its growing wake forces. The profile develops pronounced
sub-structures. Accordingly, the longitudinal form factor (2.7), exhibits significant side
lobes at the frequencies corresponding to these sub-structures. The nonlinear growth in
power radiated coherently by a subset of bunch electrons however results in a situation that
is adverse to the enabling initial condition of a local narrow CSR excitation. Measurable
bunch lengthening is a diagnostic signal to determine the bursting threshold. Without the
diffusing effect of microbunching, the bunch length is again dominated by damping and will
contract. This cycle, recurring at time scales of the damping time, is called a CSR burst.
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A distinctive special case of bursting is found in the transitional intensity regime above
the bursting threshold. In this current domain, the power emitted during the burst is
modulated with a highly regular cadence. This is due to the continuous appearance of
harmonically rotating structures in phase space.

At very high intensities, sub-structures appear without the same regularity. Due to the
complex time structure of the bursting onset, this is referred to as sawtooth bursting.

2.5. Synchrotron Oscillation Driven by RF Noise

Particle acceleration as introduced above generally involves small perturbations. The
physical infrastructure used to generate, amplify and transport the RF wave will produce
a waveform that is stable only up to the effective peak amplitude and frequency. High
frequency voltage modulations originate from thermal fluctuations. Mechanical vibrations
contribute lower frequency modulations and noise [11].

Here, the instabilities are assumed to introduce white Gaussian noise w of a given amplitude
σ. One assumption is that the noise is zero mean, 〈w(t)〉 = 0. The autocorrelation, defined
as the correlation of w with itself at different times, is required to vanish. With the Dirac-δ
function it is written as:

R(τ) = 〈w(t)w(t+ τ)〉 = σ2δ(τ) . (2.21)

To implement a white noise process in a numerical simulation, its variance σ2 has to be
interpreted with respect to a frequency, for example the revolution frequency f0 [12]. This
will be discussed in chapter 3.

Here, the influence of Gaussian noise in each variable with an amplitude parameter is
discussed analogous to [13].

2.5.1. Amplitude Noise

The mean peak voltage V̂ is subject to random fluctuation of amplitude σV̂ , defined for
a given time or number of cycles. It manifests as an adjustment δV (t) to the oscillation
amplitude. The mean acceleration voltage throughout the bunch is affected with

σV =
∣∣∣∣∂V
∂V̂

∣∣∣∣σV̂ = |sin (φs)|σV̂ . (2.22)

This situation is shown in figure 2.6. The fluctuation of the RF slope is reflected in the
synchrotron frequency (2.14):

σV ′ =
∣∣∣∣∣ ∂∂V̂

(
dV
dφ

∣∣∣∣
φs

)∣∣∣∣∣σV̂ = |cos (φs)|σV̂ . (2.23)

At very small synchronous angles the instability of the RF amplitude is visible only as a
contribution to the instantaneous synchrotron frequency.

2.5.2. Phase Noise

The acceleration due to Phase noise can be derived similar to the case of amplitude noise.
Again, σφs is understood to be the amplitude of the shift in synchronous phase δφs(t) for a
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π

〈V̂ 〉

〈V̂ 〉+ δV (t)

φs
φ

V (φ)

Figure 2.6.: RF modulation mean (solid) and with amplitude variation (dashed). For
φs → π, the instability becomes purely multiplicative.

π

V̂

〈φs〉
φ

V (φ)

Figure 2.7.: RF modulation, mean (solid) and phase shifted (dashed). φs is effectively
shifted to φs < 〈φs〉. For 〈φs〉 → π, the instability becomes purely additive.

given number of RF cycles. The same treatment applies for zeroth and first order of the
RF wave (Fig. 2.7).

σV =
∣∣∣∣ ∂V∂φs

∣∣∣∣σφs =
∣∣∣V̂ cos (φs)

∣∣∣σφs . (2.24a)

σV ′ =
∣∣∣∣∣ ∂∂φs

(
dV
dφ

∣∣∣∣
φs

)∣∣∣∣∣σφs =
∣∣∣V̂ sin (φs)

∣∣∣σφs . (2.24b)

2.5.3. Multiplicative RF Noise
The amplitude of the perturbations (2.23) and (2.24b) are summed up to the instability in
fs. It is therefore referred to as multiplicative noise, changing the dynamics in the first
order without affecting the mean energy of the bunch. Assuming small, uncorrelated errors,

σfs
fs

= 1
fs

∣∣∣∣ ∂fs∂V ′

∣∣∣∣σV ′ = 1
2
σV ′

|V ′|
= 1

2

√
|cos (φs)|2σ2

V̂
+
∣∣∣V̂ sin (φs)

∣∣∣2σ2
φs∣∣∣V̂ cos (φs)

∣∣∣ (2.25)

At φ′s = π − φs � π
2 , the leading order contribution is

σfs
fs

∣∣∣∣
φ′
s�π

2

≈ 1
2
σV̂
V̂

. (2.26)

At small synchrotron angles, multiplicative noise is approximated by its amplitude instability
contribution.
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2.5.4. Additive RF Noise

Using the acceleration contribution of equation (2.13), the noise contribution to acceleration
at φz = 0 is given by the sum of (2.22) and (2.24a):

σĖ = eσV = e

√
|sin (φs)|2σ2

V̂
+
∣∣∣V̂ cos (φs)

∣∣∣2σ2
φs . (2.27)

In leading order of φ′s at synchrotron angles φ′s � π
2 this is

σĖ
∣∣
φ′
s�π

2
≈ eV̂ σφs . (2.28)

Additive RF noise is dominated by its phase instability contribution.





3. Implementation of the RF Instability

3.1. Introduction to Inovesa

The Inovesa Numerical Optimized Vlasov-Equation Solver (Inovesa) has been published by
Schönfeld et al. in March 2017 [7]. The source code of the development version is available
at GitHub1 with an open-source license. Among its distinguishing features is a graphical
user interface and support for heterogeneous processing using OpenCL.

At the core of Inovesa is a simulation of the longitudinal phase space based on the numerical
integration of the Vlasov equation (2.18). The simulation of the CSR wake field provides
the functionality necessary to simulate features of the CSR signature of the microbunching
instability beyond what is possible in terms of closed solutions. Inovesa’s predictive
capabilities have been assessed phenomenologically at the synchrotron Karlsruhe Research
Accelerator. The anticipated degree of microbunching, i.e. cluster formation in phase space
has been reproduced. The minimal intensity threshold at which microbunching occurs
agrees well with measurement and theory. However, the accuracy is inherently limited by
the deliberate generality of the model even before considering numerical effects.

These idealisation compromises include the perfect homogeneity of the beam container
consisting of two perfectly conducting plates of infinite extent. With the electron bunch
revolving on circles in the midplane, the impedance is exhaustively parametrised by the
orbit radius and separation of the plates G. The description in terms of the electric field
has been derived by Murphy et al [14]. Effects of the CSR beam line, i.e. the transport
system connecting a detector with the beam guide tangentially from the source point, on
the radiation are beyond the scope of the simulation. The RF system is linearised, i.e. the
associated potential well is parabolic. For a straightforward account of the RF noise, the
mathematical model is extended to set the idealised synchrotron phase to φs = 2π.

The mathematical model of the physical system is then discretised, i.e. broken down
into finite elements, here uniform steps of time and Cartesian space. Continuous physical
quantities are windowed and sampled. In this step, computer simulations inevitably
introduce errors due to precision limits inherited from the native capabilities of the
underlying hardware. All artificial parameters arising from discretisation have to be
chosen within their stability and convergence boundaries. With some limitations, these
errors are mitigated by the choice of an advantageous formulation of the mathematical
model. Within the VFP equation (2.18), special consideration has to be given to the Vlasov
contribution. The Inovesa discretisation model is an extension of Warnock and Ellison
[6], making use of repeated operator splitting. First, the harmonic oscillation is included
as a rigid rotation in phase space of fixed step size. Secondly, the influence of the time
dependent wake force on the bunch energy is considered. The residual numerical effect
on the total bunch charge can be mitigated by periodic renormalisation. These numerical
influences have to be accounted for when interpreting Inovesa results.

1https://github.com/Inovesa/Inovesa
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The two dimensional phase space density as a function of the normalised coordinates is
given by

ψ(q, p, t), q = z

σz,0
, p = E

σE,0
. (3.1)

A coordinate transformation conveniently maps an interval [qmin, qmax] on a positive grid
coordinate x

x(q) = (q − qmin) xmax
qmax − qmin

= q − qmin
∆q . (3.2)

The analogous transformation is applied on p to get y = (p− pmin)/∆p. The positive
integers xmax, ymax define the grid extension used to uniformly sample and store the phase
space density during each iteration step.

Another parameter appearing in the derivation of the discrete model is the simulation
time step δt. This is set to a small fraction 1/N of the phenomenologically relevant time
constant Ts = 1/fs in the mathematical model. The time step is given by

δt = 1
Nfs

. (3.3)

Consequently, the time step rotates the phase space by an angle θ

θ = ωsδt = 2π
N

. (3.4)

The mathematical rotation step in Inovesa is split to separate the dynamical effects of
momentum compaction and the RF cavity. As a numerical approximation to a infinitesimal
rotation, this is not immediately related to the alternating nature of the longitudinal
dynamics as they have been introduced above. The mathematical model assumes cylindrical
symmetry of the synchrotron model and therefore a simultaneous action of acceleration and
drift. However, this is a numerically advantageous practice since the canonical coordinates
in the Hamiltonian are Cartesian.

3.1.1. Evaluation and Interpretation of Inovesa Results

Inovesa saves uniformly spaced samples of diagnostic information into a HDF5 file, a tree
of homogeneous arrays. In addition, ancillary data containing the parametrisation and
metadata is available. Sampled quantities include the instantaneous CSR intensity as well
as the bunch profile and position.

3.1.1.1. CSR Power

As a system response of diagnostic relevance, Inovesa continuously records the CSR power
loss. Incoherent radiation and resistive wall effects are not considered. The emission is
calculated using the dissipative part of the Inovesa Impedance [7]

P (t) ∝
∫ ∞

0
Re
[
Z‖(ω)

]
· |ρ̃(ω, t)|2dω . (3.5)
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3.1.1.2. Bursting Spectrogram

The bursting spectrogram serves as a visualisation of slow CSR frequency content, referred
to as modulations. These indicate indirectly the threshold behaviour of intensity dependent
beam instabilities. A bursting spectrum is obtained by discrete Fourier analysis of the
simulated total CSR power emission under a adiabatic variation of an intensity parameter.
Transient phenomena following a correction have to be cut. In a subsequent synthesis,
spectra obtained at different parameter values build up the bursting spectrogram. A
customary choice of parameter is the number of electrons in a bunch, proportional to the
bunch current at a given revolution frequency.

For a Inovesa CSR intensity cj(t), t = 0, 1, .., N − 1 recorded at the j-th decrement of a
bunch current j = 0, ..,K − 1, the spectral intensity c̃j(f) is given by the discrete Fourier
transform

c̃j(f) = j2
∣∣∣∣∣
N−1∑
t=0

e−2πi ft
N cj(t)

∣∣∣∣∣, f = 0, ..., N − 1 . (3.6)

The bursting spectrogram is the matrix consisting of rows of c̃j :

(s) =


c̃0(1) c̃0(2) . . . c̃0(N/2)
c̃1(1) . . . ...
...

c̃K−1(1) . . . c̃K−1(N/2)

 . (3.7)

This is illustrated in Fig. 3.1 for measurement [15] and simulation. The presentation is
improved by applying colours on a logarithmic scale.

Between the high and low intensity areas filling the top and the bottom is the regular
bursting regime, signified by the presence of pronounced structure. An important detail
characteristic for this interval the is the finger, a bursting modulation attributable to a
particularly regular occurrence of microstructures in phase space discussed above. The
tilted shape reveals that the repetition rate of these structures is a function of the bunch
current. At the low current limit, close to 0.2 mA, reducing the current causes a sudden
drop in emitted CSR power as the bunch converges to the Haïssinski-equilibrium. Increasing
the current causes the bunch to continuously assume the bursting pattern with a sawtooth
envelope. The character of the bursting envelope is crudely captured in the low frequency
content near 0 Hz. The DC contribution is clipped in the interest of the presentation.

3.2. Discrete model of RF Noise

Until now, the boundary condition on the RF instability was discussed in terms of the
respective noise Amplitudes σV̂ and σφs. In experimental applications of RF acceleration,
these parameters may be attributes of individual accelerating sections. In Inovesa, acceler-
ating sections are conceptualised as the driving force behind the continuous synchrotron
rotation. The actual number of synchrotron rotation steps per revolution period is derived
from artificial parameters and lacks a physical interpretation. Since the discretisation should
be transparent, the response of the simulation can only depend on physical constants.

With regard to a numerical integration of the VFPE using finite time steps, it is necessary to
physically interpret the Gaussian white noise term w(t) and the property (2.21). Allowing
for the above motivated degree of autocorrelation, the effective fluctuation wn for the n-th
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Figure 3.1.: Measured bursting spectrogram (a) and a reproduction in Inovesa (b).
The experimental data is based on the THz power emitted by the Karlsruhe Research
Accelerator at fs ≈ 8.9 kHz (found similiarly in [7]). Inovesa predicts the bursting
threshold in the form of a regular modulation with a ≈ 4 fs cadence. Slightly above the
threshold, the progressive onset of a sawtooth modulation is responsible for a diffusion of
the modulation across a widening frequency band. The 2fs modulation in the Haïssinski-
domain visible in the simulated spectrogram is a numerical artefact, since the phase space
density below the threshold is constant in the absence of physical noise.

revolution is defined as a noise of finite amplitude. The wn follow a Gaussian distribution
of amplitude σ

wn ∼ N (0, σ) . (3.8)

The equivalent noise function for a different time interval δt is w′. As a consequence of the
propagation of uncertainty, the w′ also follow a Gaussian distribution,

w′ ∼ N
(

0, σ′ =
√
δt

T0
σ

)
. (3.9)

It is useful to define the fractional revolution number f as

f = δt

T0
. (3.10)

This allows the transformation of general instability amplitudes into effective amplitudes
per simulation step δt. A stochastic contribution to the acceleration δE translates into a
instability in discrete simulation time as

σ′δE =
√
f σδE . (3.11)

The bandwidth of band limited white noise is is the inverse sampling interval δt−1 = fsN
[12], whereas the frequency response of the synchrotron oscillation vanishes rapidly for
f > fs [13].

3.3. Implementation of the Inovesa Iteration Step

The phase space ψt(x, y) is efficiently iterated repeating a number of interleaved atomic
Steps. In Inovesa, each logical unit queued in the total time step provides a common
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Figure 3.2.: Inheritance diagram showing possible constituents of the iteration step. A
default work flow uses a WakeMap, the DriftMap and RFKickMap and the FokkerPlanckMap
objects.

interface SourceMap. Derived from the VFPE, this includes the Fokker-Planck contribution
and the three remaining terms accounting for drift, RF kick and kick associated with the
CSR wake field. In the Cartesian simulation space, they share an underlying description in
the KickMap. In physical analogy to the nonlinear term applied in WakeKickMap, RFKickMap
shifts the bunch along the energy coordinate as a function of the longitudinal position.
This relation is illustrated in Fig. 3.2. A total simulation step may be serialised to read

. . .→ WakeMap→ DriftMap→ RFKickMap→ FokkerPlanckMap→ . . . (3.12)

Each atomic simulation step is executed once per grid node. The density of the grid
nodes has to be chosen under consideration of the execution time. Experience shows
that twenty or more grid nodes per bunch length are sufficient to accurately reproduce
microbunching in most cases. Usually the output phase space density at a node is an
algorithm dependent on the phase space density between nodes. In this case, the phase
space density is reconstructed by polynomial interpolation.

The RFKickMap translates the phase space distribution along the energy axis analogous to
the rotation by θ,

∆y(x) = (x− x0) tan θ . (3.13)

Here, x0 is defined as the regular invariant position of the phase space at the bunch centre
of mass. By construction, the virtual RF kick is a finite approximation of the infinitesimal
equation (2.13),

δE = f0δteV̂ φ . (3.14)

3.4. Implementation of the RF noise

The dynamical influence of RF noise has been discussed in section 2.5. In the following,
the results (2.26) and (2.28) are applied to the Inovesa iteration step (3.13) using the
interpretation (3.11). The multiplicative noise associated with the peak voltage instability
shifts the rotation angle increment

σθ =
√
f

∣∣∣∣ ∂θ∂fs
∣∣∣∣σfs =

√
fωsδt

1
2
σV̂
V̂

=
√
fθ

1
2
σV̂
V̂

. (3.15)
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The amplitude is transformed using the discretisation provision (3.11). With the definition
of the y-axis analogous to (3.2), the amplitude of the instability in the displacement ∆y(x)
is given by

σ∆y×(x) =
∣∣∣∣∂∆y
∂θ

∣∣∣∣σθ =
∣∣∣∣(x− x0) tan θ

(
θ

cos θ sin θ

)∣∣∣∣√f
1
2
σV̂
V̂

. (3.16a)

σ∆y×(x)
∣∣∣
θ�π

2
≈ |(x− x0) tan θ|

√
f
1
2
σV̂
V̂

(3.16b)

= |∆y(x)|
√
f
1
2
σV̂
V̂

. (3.16c)

Using (2.28), (3.11) and (3.2), the additive y displacement due to a phase instability is,
using analogous small angle approximations, given by

σ∆y+ =
√
f

eV̂

σE,0∆pσφs . (3.17)

The class DynamicRFKickMap has been created to multiply and add random samples from
a Gaussian distribution of standard deviations σ∆y× and σ∆y+ to the constant rotation
half-step. Two random variates are generated using standard library functions and applied
with each evaluation of the apply() member. Analogous to (3.13), the implemented
stochastic rotation step is

∆y′(x) = ∆y(x)[1 + δmul] + δadd . (3.18)

The random variates δmul and δadd are samples generated by sampling Gaussian distributions
of different standard deviations,

δmul ∼ N
(

0,
√
f
1
2
σV̂
V̂

)
, (3.19a)

δadd ∼ N
(

0,
√
f

eV̂

σE,0∆pσφs
)
. (3.19b)

The relevant source code is made available in the official Inovesa repository above.

3.5. Usage

The noise is parametrised by specifying command line arguments. Input noise amplitudes
are defined as described above and in relation to their physical response described below.
By design, the physical response is that to an equivalent instability in a single cavity
accelerator.

Physical Parameter Option Default Unit
σφs --RFPhaseSpread 0 1 ◦

σV̂/V̂ --RFAmplitudeSpread 0 1

Inovesa also implements RotationMap, an optional fast unification of DriftMap and
RFKickMap. DynamicRFKickMap is only available using the composite rotation algorithm
referred to as Manhattan rotation in Inovesa.



4. Evaluation and Results

This chapter summarises the physical results of the RF instability in Inovesa. The resilience
of the implementation with respect to changes in some artificial parameters is tested in
Appendix B.

4.1. Synchrotron Oscillation in Inovesa

Driven by RF phase noise, the bunch centre is generally found to oscillate in phase space.
The longitudinal reversal point amplitudes φ̂ are as the response to a stochastic process
themselves distributed like random variates. This is physically analogous to the interaction
of single electrons with elementary radiation packets. Again, radiation damping prevents
the bunch from reaching arbitrarily large phase excursions. An illustrative example of
superposed longitudinal motion is given in Fig. 4.1. In addition to the harmonic movement,
the bunch exhibits stochastic changes in oscillation amplitude with a broad modulation
spectrum.

Although the origin and nature of the perturbation in synchrotron light sources are more
involved, the resulting oscillation of the bunch position can be quantified by measurement.
A customary method is based on the interaction of the bunch’s electric field with a crystal,
the variable optical properties of which are synchronously sampled using a laser pulse [16].
This reveals the longitudinal charge distribution and its longitudinal displacement at sub-ps
resolution for every turn. Data as represented in Fig. 4.2 allows the reconstruction of the
bunch position delay attributable to the coherent synchrotron oscillation.
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z
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Figure 4.1.: Bunch Position over time in an example Inovesa simulation. The oscillation
at the resonant frequency fs is randomly modulated in amplitude.
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Figure 4.2.:
Top and Middle: The longitudinal charge distribution in an Inovesa simulation without
and with a coherent synchrotron oscillation due to RF noise.
Bottom: Measurement of the longitudinal charge distribution in consecutive turns. Bright
colours indicate a higher electron density at a given longitudinal position (vertical axis),
recorded in uniform intervals over multiple revolutions (horizontal axis) at a sampling
frequency of 2.7 MHz. Due to the high spatial and temporal stability of the detector, the
coherent synchrotron oscillation is visualised as a oscillation of period Ts ≈ 400T0. The
vertical axis depicts the actual displacement as it relates to the bunch length [17].
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4.1.1. Mean Square Response of the Bunch Position

A closed form for the mean square response
〈
φ2〉 of the phase excursion amplitude is given

in [13] in terms of the spectral density near the resonance. In this case, the constant
spectral density is (App. A)

S ≈
σ2
φs

2πf0
. (4.1)

The mean square response is

〈
φ2
〉

= π2 f
2
s σ

2
φsτd

f0
. (4.2)

Due to the internal representation of the longitudinal phase space, the dependence on f2
s is

not expected to be exact. Likewise, the simulation fidelity depends on the ratio of τ and
the simulation time step δt. To evaluate the mean square response (4.2) in the simulation,
the function parameters have been varied individually around a set of centre values given
by

f0 = 9 MHz, fs = 45 kHz, σφs = 2 mrad, τd = 1 ms . (4.3)

Results are plotted in Fig. 4.3, the monomial fit functions with a constant term have
been selected according to (4.2). The simulation is run for a time of 100Ts at the default
values, detailed in Appendix C.1. Statistical errors are eliminated using a constant seed
strategy for the RF noise, and nonlinearities in the VFPE have been neglected. Under these
conditions, equation (4.2) predicts the leading order behaviour accurately. The reliability
in a simulation with respect to a unique set of artificial and physical parameters has to be
assessed individually.

A single long simulation over t = 10000Ts with the same parameters has been run and
partitioned to estimate the spread to be expected in a typical run. Depending on the
partitioning of the long record into short intervals, neighbouring residuals in a linear
regression of

〈
φ2〉 over time may be correlated. A generic test for autocorrelation [18]

indicates a vanishing first order autocorrelation for partitions spanning times longer than
t = 50Ts ≈ τd. At times t� τd it is safe to assume that the initial condition is no longer
sampled.

4.1.2. Example

The standard deviation of
〈
φ2〉 was found to be large in the simulation of the bursting

behaviour below, where the calculated mean square response
〈
φ2〉 = 1.97 · 10−5 rad2 for

n = 151 simulation runs over t ≈ 1.7 τd each was found to be

〈
φ2
〉

sim
= (2.02± 1.39) · 10−5 rad2 . (4.4)

In conclusion, equation (4.2) is suited to estimate the order of magnitude of the oscillatory
response. This result also serves as a indication of the self-consistency of the implementation.
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Figure 4.3.: Mean square response of the synchrotron oscillation phase
〈
φ2〉 of the

bunch centre of mass as a function of a parameter variation in Inovesa. The fit function
largely exhibit the expected dependencies in the domain up to twice the default value.
The constant order behaviour is evaluated separately. (d) is evaluated in more detail in
Fig. 4.4.
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Figure 4.4.: Example of the convergence of
〈
φ2〉 over the duration of a simulation. For

short simulation times the relation is nonlinear since the initial oscillation amplitude is
not sufficiently damped. At tsim = 5 ms the relation approaches linearity, at tsim = 50 ms
the simulation response is close to (4.2).
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Figure 4.5.: Cyclic bunch lengthening due to coherent synchrotron oscillation in a
Inovesa simulation (described in C.1). (a) Density histogram of the bunch lengths and
bunch positions. (b) Bunch lengths for bunches categorised as central and extremal.
Both plots demonstrate the correlation between bunch length and |zcom|, which leads to a
CSR modulation. Here, σz,0 ≈ 6.8 ps and the relative bunch lengthening is of magnitude
order 10−7.

4.1.3. Multiplicative Noise

For completeness, the theoretical value of the mean square response in the presence of a
multiplicative instability is given by [19]:

〈
φ2
〉′

=
〈
φ2
〉 1

1− π2 fs2τd
f0

σ2
V̂

V̂ 2

 . (4.5)

Although multiplicative noise by construction cannot excite an oscillation, it has an influence
on the magnitude of coherent synchrotron oscillations. In the discrete model of the RF
noise, it likewise does not appear due to the approximation (3.16b). Therefore equation
(4.5) should only be applied in leading order of σV̂ .

In general, additive noise is the predominant mechanism governing the amplitude of the
coherent synchrotron oscillation.

4.2. Effect on CSR

4.2.1. Phase Noise

To study the influence of phase noise in isolation, a RF instability of 2 mrad (≈ 0.1 ◦) has
been added to the simulation. This keeps the root mean square (RMS) bunch position well
below the bunch length. In normalised units,

σq =
√
〈q2〉 =

√
〈φ2〉

2πhf0σz,0
≈ 0.3 . (4.6)

At this value there is adequate space for the bunch position to oscillate without a high
probability for a significant density contribution outside the simulation domain of q = [−6, 6].
The RMS response in the oscillation phase was found to be

√
〈φ2〉 ≈ 4.3 mrad.

Due to the energy excursion of the bunch centre the Fokker-Planck contribution is generally
non-zero independent of the bunch shape. This effect is illustrated in Fig. 4.5. The
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Figure 4.6.: Simulated bursting spectrogram of CSR sampled at fsample = 40 fs. Param-
eters are listed in Appendix C.2. The weakly visible vertical spectral line at multiples of
2 fs is an artefact of charge renormalisation occurring at this frequency. Images created
in Mathematica [18].

secondary CSR-yield associated with damping of a coherent oscillation is therefore largest
near the antipodal longitudinal turning points, where the bunch is least spread out, and is
modulated with 2fs. Although the CSR power modulation is small, it is highly regular
and results in a bright spectral line in the bursting spectrogram.

The effect on the bursting spectrogram can be appreciated by comparing the response
spectrogram 4.7 to the reference spectrogram 4.6 generated without noise.

Here, this line is emerging below the sawtooth threshold and dominating the former
Haïssinski domain behaviour below. This domain is also uniformly amplified, resulting in a
decreased dynamic range of the bursting spectrogram. Another spectral line is also present
at 1fs, although less visibly. Given the flat spectral properties of the noise, a weak 1fs
modulation is expected, as is the periodic weak harmonic duplication.

There is experimental evidence for a CSR modulation at 2fs related to coherent synchrotron
oscillations of short bunches [5].

4.2.2. Amplitude Noise

The effect of an isolated amplitude instability of σV̂ /V̂ = 1% has been simulated, its
bursting spectrogram is 4.8.

Even in the absence of intensity dependent effects, the consequence of a multiplicative
instability is that the bunch shape is no longer subjected to a proper rotation. With that,
the approximate rotational symmetry of the phase space distribution is lost. Analogue
to the secondary effect of phase noise, the anisotropic phase space distribution causes a
2fs modulation of the CSR signal. Low frequency modulations of the bunch shape on
the time scale of a synchrotron period cause a regular modulation of the bunch shape.
This irregularity is observed as an increase in the line width of the 2fs modulation. In
this simulation, the modulation of the CSR power is visible below the sawtooth bursting
threshold, where a broad 2fs modulation is observed.
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Figure 4.7.: Bursting spectrogram with a simulated phase noise σφs = 2 mrad. The 2fs
modulation due to a coherent synchrotron oscillation is clearly visible. The influence of
noise on the bursting threshold is not resolved.

High frequency noise contributions cause a fast oscillation of the bunch length. Above the
bursting threshold current, this effect is masked by the natural oscillations of the bunch
length. Below the threshold such broad band CSR modulations are visible as horizontal
lines varying in intensity.

4.2.3. Generic Noise

Another simulation with σφs = 2 mrad, σV̂ /V̂ = 1% has been evaluated (Fig. 4.9). The
difference to the spectrogram 4.8 is negligible, since the effect of phase instability in the
simulated quantity is perfectly masked by the amplitude instability. However, a reduction in
the dynamic range of the power spectral intensity coefficients is observed. The introduction
of physical noise therefore reduces the disparity between simulated and observed noise floor.

There is a small, consistent effect on the bursting threshold. Slightly above the regular
bursting threshold at Ibunch = 835 µA, the introduction of noise was found to inhibit
microbunching. Evidence is given in Fig. 4.10. This may indicate that the effective
intensity of a bunch undergoing length oscillations is reduced compared to a bunch with a
reduced bunch length variance.
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Figure 4.8.: Bursting spectrogram with a simulated amplitude noise σV̂ /V̂ = 0.01.
The effect of a stochastic frequency in the rotation half-step is a periodic modulation of
the bunch length with 2fs. Compared to the modulations due to coherent synchrotron
oscillations caused by phase noise, the modulation is broader. Fourier analysis shows that
the total modulation in the regular bursting regime has a spectral component near 6fs.
This is observed in the spectrogram.
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Figure 4.9.: Bursting spectrogram with a simulated phase noise σφs = 2 mrad and
amplitude noise σV̂ /V̂ = 0.01. In these quantities, the effect of amplitude noise masks
the effect of phase noise almost perfectly.
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Figure 4.10.: Both the CSR power standard deviation (a) and the slope of the bunch
length (b) signal the microbunching instability. Physical RF noise shifts the threshold
in Inovesa (dashed). The CSR power modulation is included for a narrow band around
f = 4 fs to reduce the influence of modulations unrelated to the microbunching instability.
Simulation parameters are listed in C.3.





5. Summary and Outlook

This thesis presents numerical studies of a physical RF noise in the longitudinal dynamics
of a relativistic electron beam. Provided that the phase noise is sufficiently small, Inovesa
results are self-consistent and qualitatively in agreement with experimental data. In
conclusion, the implemented procedure allows the user to reliably reproduce coherent
synchrotron oscillations in Inovesa.

The reproduction of the response to inevitable physical noise in a electron accelerator
broadens the applicability of Inovesa results. As a side effect, physical noise masks numerical
noise by raising the noise floor. This is especially relevant if simulation results are analysed
next to measured data. The threshold for the microbunching instability is not found to
change by an appreciable amount and coherent synchrotron oscillation does not account
for the difference observed between simulation and measurement.

An instability in the momentum compaction can be applied analogous to RF noise to
simulate the non-reproducible behaviour of bending and focusing magnets across turns.
This leads to a potentially large multiplicative instability in the drift that may.

There are noise shapes beyond the studied Gaussian noise to investigate. For example,
fs-coloured additive noise leads to a response in 〈φ〉, whereas the effect of multiplicative
noise accumulates on the bunch shape in phase space. This may provoke a CSR response
on a larger scale.
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Appendix

A. Spectral Density of Discrete Gaussian White Noise

The energy instability amplitude σδE is equal to the scaled energy instability σ′δE (3.11),

σδE = 1√
f0δt

σ′δE . (A.1)

With (3.14) for δE ′,

eV̂ σφs = 1√
f0δt

(
f0δt eV̂ σ

′
φs

)
. (A.2)

The single cavity phase instability amplitude σφs translates into the scaled instability
amplitude σ′φs as

R(0) = σ′2φs =
σ2
φs

f0δt
. (A.3)

The autocorrelation is given by the triangle function [12],

R(τ) =
σ2
φs

f0δt
max

{
0, 1− |τ |

δt

}
. (A.4)

The Wiener-Khinchin theorem relates autocorrelation and spectral density by Fourier
transform [13]. The spectral density of the noise function using the above autocorrelation
is given by

S(ω) = 1
2π

∫ ∞
−∞

R(τ)e−iωtdτ (A.5)

=
σ2
φs

2πf0δt

∫ δt

−δt

(
1− |τ |

δt

)
e−iωτdτ (A.6)

=
σ2
φs

2πf0

2(1− cosωδt)
ω2δt2

. (A.7)

At the resonance ω = ωs, the spectral density can be approximated by a constant corre-
sponding to the equivalent white noise spectral density,

S(ω)|ωδt�π
2
≈ lim

ω→0
S(ω) =

σ2
φs

2πf0
. (A.8)
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B. Influence of the Rotation Angle and Grid Size

The choice of a time granularity inevitably distorts the result of the simulation outside
of a stable interval. Here, the resiliency of the simulation with respect to the temporal
density of simulation frames is evaluated. Therefore, the mean square response

〈
φ2〉 has

been evaluated similar to C.1 at 341 exponentially spaced values between 403 and 2208
for the number of steps per synchrotron period N . Random numbers used as noise are
uncorrelated across runs. By weighted linear regression, the fitted mean square response is
given by

〈
φ2
〉

(N) = 6.70 · 10−6 + 1.34 · 10−10 ·N . (B.1)

This result is in agreement with the assumption of a response independent of N , and a large
correlation in these variables is unlikely. On the other hand, there is empirical evidence for
a functional relation between the Inovesa grid size and oscillatory response (Fig. B.1 (b)).
The relative error is well below 1% across a wide range of grid sizes for the default Inovesa
interpolation scheme.
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Figure B.1.: (a) Mean square response for simulations using different N . Displayed
are the linear fit function (solid) and (4.2) (dashed). (b) The mean square response has
a resonant functional dependence on the grid size, here displayed as a relative change
compared to the result obtained at the default grid size of 256.
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C. Simulation parameter table

C.1. Investigation of 〈φ2〉

version v0.14.RC10
I (mA) 3

Initial distribution Zero centered Gaussian
Artificial Parameters
fsample 10 fs

frenormalisation 10 fs
t 100Ts and 10000Ts

Physical Parameters
τd 1 ms
f0 9 MHz
fs 45 kHz
Z‖ 0
h 50

C.2. Current Scan Spectrogram

Purpose Reference Phase Noise Amplitude Noise Generic Noise
Fig. 4.6 4.7 4.8 4.9

Version v0.14.RC1 v0.14.RC10 v0.14.0 v1.0
I (mA) {2, 1.99, . . . , 0.5}

Initial distribution Zero centered Gaussian/adiabatic with ttransition = 1000Ts
Artificial Parameters

fsample 40 fs
frenormalisation 2 fs 10 fs

t 250Ts
Physical Parameters

τd 5 ms
f0 9 MHz
fs 30 kHz
G 3.2 cm
h 50

σφs 0 2 mrad 0 2 mrad
σV̂ /V̂ 0 0 0.01 0.01
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C.3. Threshold Region

Reference Generic Noise
version v0.14.RC1 v0.14.RC10
I (mA) {0.840, 0.839, .., 0.830}

Initial distribution Zero centered Gaussian/adiabatic with ttransition = 1000Ts
Artificial Parameters

fsample 40 fs
frenormalisation 10 fs

t 250Ts
Physical Parameters

τd 5 ms
f0 9 MHz
fs 30 kHz
G 3.2 cm
h 50

σφs 0 5 mrad
σV̂ /V̂ 0 0.01
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