KIT | KIT-Bibliothek | Impressum | Datenschutz

Silicon-based 3D electrodes for high power lithium-ion battery

Zheng, Y.; Smyrek, Peter; Rakebrandt, J.-H.; Seifert, Hans Jürgen; Pfleging, Wilhelm ORCID iD icon; Kubel, C. ORCID iD icon 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The well-known drawbacks of silicon-based anode materials are the huge volume change resulting in film cracking, film delamination and pulverization of the active material. In order to reduce mechanical stress and to improve film adhesion, free-standing structures and modified current collector surfaces were generated by applying ultrafast laser processing. Freestanding structures were generated on pure silicon and silicon-doped graphite electrodes. Specific capacities were measured by galvanostatic cycling as function of C-rate. It could be shown that free-standing structures can compensate the volume changes which occur during electrochemical cycling. The capacity retention at high C-rates (> 0.5 C) was significantly improved. Moreover, laser-induced micro/nano-surface patterning was realized on copper current collectors, prior to deposition of pure silicon. Improvement of specific capacity could be achieved during electrochemical priming. The impact of 3D electrode architectures regarding cycle stability, capacity retention and cell lifetime will be discussed in detail.


Originalveröffentlichung
DOI: 10.1109/3M-NANO.2017.8286308
Dimensions
Zitationen: 4
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Angewandte Werkstoffphysik (IAM-AWP)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2018
Sprache Englisch
Identifikator ISBN: 978-1-5386-1081-7
KITopen-ID: 1000083619
HGF-Programm 37.01.01 (POF III, LK 01) Fundamentals and Materials
Erschienen in The 7th International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale : IEEE 3M-NANO 2017 : Shanghai, China, 7-11 August 2017 / 3M-NANO 2017
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 61-64
Schlagwörter Proposal-ID: 2017-018-019630 (KNMF-LMP, -TEM)
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page