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ABSTRACT: The forthcoming precision data on lepton flavour violating (LFV) decays re-
quire precise and efficient calculations in New Physics models. In this article lepton flavour
violating processes within the Minimal Supersymmetric Standard Model (MSSM) are cal-
culated using the method based on the Flavour Expansion Theorem, a recently developed
technique performing a purely algebraic mass-insertion expansion of the amplitudes. The
expansion in both flavour-violating and flavour-conserving off-diagonal terms of sfermion
and supersymmetric fermion mass matrices is considered. In this way the relevant pro-
cesses are expressed directly in terms of the parameters of the MSSM Lagrangian. We
also study the decoupling properties of the amplitudes. The results are compared to the
corresponding calculations in the mass eigenbasis (i.e. using the exact diagonalization of
the mass matrices). Using these methods, we consider the following processes: ¢ — (',
0— 30,0 — 200", h — el as well as u — e conversion in nuclei. In the numerical analysis
we update the bounds on the flavour changing parameters of the MSSM and examine the
sensitivity to the forthcoming experimental results. We find that flavour violating muon
decays provide the most stringent bounds on supersymmetric effects and will continue to
do so in the future. Radiative £ — ¢y decays and leptonic three-body decays £ — 3¢ show
an interesting complementarity in eliminating “blind spots” in the parameter space. In
our analysis we also include the effects of non-holomorphic A-terms which are important
for the study of LF'V Higgs decays.
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1 Introduction

So far, the LHC did not observe any particles beyond those of the Standard Model (SM).
Complementary to direct high energy searches at the LHC, there is a continuous effort in
indirect searches for new physics (NP). In this respect, a promising approach is the search
for processes which are absent — or extremely suppressed — in the SM such as lepton
flavour violation (LFV) which is forbidden in the SM in the limit of vanishing neutrino
masses. The experimental sensitivity for rare LFV processes such as £ — ¢y, u — e
conversion in nuclei and ¢ — ¢~ or £ — f'eTe” will improve significantly in the near
future, probing scales well beyond those accessible at foreseeable colliders. Furthermore,
the discovery of the 125 GeV Higgs boson h [1, 2] has triggered an enormous experimental
effort in measuring its properties, including studies of its LF'V decays. The most recent
experimental limits on the LF'V processes are given in table 2 in section 5.

Many studies of LEV processes within the MSSM (and possible extensions of it) exist
(see e.g. refs. [3-29] and ref. [30] for a recent review). In this article we revisit this subject
in the light of the new calculational methods which have been recently developed [31, 32].
These methods allow for a systematic expansion of the amplitudes of the LF'V processes in
terms of mass insertions (MI), i.e. in terms of off-diagonal elements of the mass matrices.
We show that a transparent qualitative behaviour of the amplitudes of the LFV processes
is obtained by expanding them not only in the flavour-violating off-diagonal terms in the
sfermion mass matrices but also in the flavour conserving but chirality violating entries
related to the tri-linear A-terms as well as in the off-diagonal terms of the gaugino and
higgsino mass matrices. This procedure is useful because in the MI approximation we work
directly with the parameters of the Lagrangian and can therefore easily put experimen-
tal bounds on them. We compare the results of the calculations performed in the mass
eigenbasis (i.e. using a numerical diagonalization of the slepton mass matrices) with those
obtained at leading non-vanishing order of the MI approximation, in different regions of
the supersymmetric parameter space and considering various decoupling limits. Of course,
the MI approximation [33, 34] has already been explored for many years as a very useful
tool in flavour physics. However, a detailed comparison between the full calculation and
the MI approximation is still lacking, partly because a fully systematic discussion of the
MI approximation [31] to any order and the technical tools facilitating it [32] have not been
available until recently.

Concerning the phenomenology, we summarise and update the bounds on the flavour
violating SUSY parameters, show their complementarity and examine the impact of the
anticipated increase in the experimental sensitivity. We investigate in detail the decay
h — pu7 showing the results in various decoupling limits and analyse the role of the so-
called non-holomorphic A-terms [35-42], which are usually neglected in literature. We also
avoid simplifying assumptions on the sparticle spectrum and assume neither degeneracies
nor hierarchies among the supersymmetric particles.

This article is structured as follows: in section 2 we establish our conventions and
present the results for the 2-point, 3-point, and 4-point functions related to flavour violat-
ing charged lepton interactions in the mass eigenbasis, i.e. expressed in terms of rotation



matrices and physical masses. Section 3 contains the formula for the decay rates of the
processes under investigation. In section 4 we discuss the MI expansion and summarise
important properties of the decoupling limits Mgygsy — oo and M4 — oo. In section 5 we
present the numerical bounds on LFV parameters obtained from current experimental mea-
surements and discuss the dependence of the results on the SUSY spectrum. We also discuss
the correlations between the radiative decays and the 3-body decays of charged lepton as
well as the non-decoupling effects in LF'V neutral Higgs decays. Finally we conclude in
section 6. All required Feynman rules used in our calculations are collected in appendix A.
The definitions of loop integrals can be found in appendix B. In appendix C we explain
the notation for the “divided differences” of the loop functions used in the expanded form
of the amplitudes. The expression for the 4-lepton box diagrams and for the MI-expanded
expression of the amplitudes are given in the appendices D and E, respectively.

2 Effective LFV interactions

In this section we collect the analytical formula in the mass eigenbasis for flavour violating
interactions generated at the one-loop level.! We use the notation and conventions for the
MSSM as given in refs. [43, 44].2

In our analysis, we include the so-called non-holomorphic trilinear soft SUSY break-
ing terms:

3 2
= 3 > (AVHFLIR + AP EZQIDT + ATV HIQIUT 4 He) . (21)
I,J=111=1

which couple up(down)-sfermions to the down(up)-type Higgs doublets. Here, as through-
out the rest of the paper, capital letters I, J = 1,2,3 denote flavour indices and the small
letters ¢ = 1,2 are SU(2), indices.

2.1 ~ — £ — ¢ interactions

We define the effective Lagrangian for flavour violating couplings of leptons to on-shell
photons as
Ly, =—e> (B0 o, P’ + F7*070,,Prt") F*™ (2.2)
IJ

The SM contribution to FWJ 'is suppressed by powers of m?2 /MI%/ and thus completely
negligible. In the mass eigenbasis the supersymmetric contributions to Fv‘] I come from the
diagrams displayed in figure 1. Let us decompose F’, in the following way

FI' = FJl —m Fllg —miFlip, (2.3)

Note that these expressions are not valid in the flavour conserving case where additional terms should
be included and renormalization is required.

2The conventions of [43, 44] are very similar to the later introduced and now widely accepted SLHA2 [45]
notation, up to the minor differences summarised in the appendix A.
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Figure 1. One-loop supersymmetric contributions to the LF violating effective lepton-photon
interaction (mirror-reflected self-energy diagram not shown).

with
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Here, V' abbreviates the tree-level lepton-slepton-neutrino and lepton-sneutrino-chargino
vertices, i.e. the subscripts of V' stand for the interacting particles and the chirality of the
lepton involved. The super-scripts refer to the lepton or slepton flavour as well as to the
chargino and neutralino involved. The specific form of the chargino and neutralino vertices
Vi(r) is defined in appendix A and the 3-point loop functions Cj; are given in appendix B.
F, A (FyrB) denotes the parts of the amplitude which is (not) proportional to the masses of
fermions exchanged in the loop. F)rp can be obtained from F,;p by exchanging L <+ R
on the r.h.s. of eq. (2.4).

Gauge invariance requires that LFV (axial) vectorial photon couplings vanish for on-
shell external particles. However, off-shell photon contributions are necessary to calculate
three body decays of charged leptons. The vectorial part of the amplitude for the v£¢'
vertex can be written as

iAiI e iquTJ,J(pJ) (Fﬁ;PL + Fij{zPR) vHur(pr), (2.5)
where ¢ = p; — py and I‘ﬁ is at the leading order in p? /MSQUSY momentum independent
and reads

32
JI JKnxy,TK
DL =" VIETVEEL Colme,, may)
K=1n=1
6 4
Jknx y71kn B
- Z Z VzEN,LVeiN,L Coz(m,,, mLk) : (2.6)
k=1n=1
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Figure 2. One-loop supersymmetric contributions to the LFV effective lepton-Z° interaction (the
mirror-reflected self-energy diagram not shown).

Fﬁ% can be obtained by replacing L <> R. Again, the loop functions Cyi, Cye are defined
in appendix B.

Finally, one should note that for heavy MSSM spectrum the 2-loop Barr-Zee dia-
grams [46] involving the non-decoupling LFV Higgs interactions (see section 5.4) are im-
portant and have to be included [47-52].

2.2 Z — ¢ — ¢ interactions

In order to calculate the three body decays of charged leptons as are considered in sec-
tion 3.3 it is sufficient to calculate the effective Z—/¢—¢' interactions in the limit of vanishing
external momenta. The Wilson coefficients of the effective Lagrangian for the Z coupling
to charged leptons are generated at one-loop level by the diagrams shown in figure 2 and
can be written as

Ly = (F1 'y, Pot’ + FJpt’~, Prt’) Z* | (2.7)
with
e(1 —2s2))
R - g - U220 ),
Swew
esSw
Féh = T+ S 5{l0) 25)

Here, I';7,(r) denote the contribution originating from the one-particle irreducible (1PI)
vertex diagram and Yy (g) is the left-(right-)handed part of the lepton self-energy de-
fined as

1 p?) = SUL0%) p Pr+ SVR0°) P Pr+ S00(0°) P+ S0k (%) PR. - (2.9)

Contrary to the left- and right-handed magnetic photon-lepton couplings, which change
chirality, the Z¢'¢7 coupling is chirality conserving. Therefore, the Wilson coefficients of
the left-handed and right-handed couplings are not related to each other but rather satisfy
Fé‘i( R) = ng"(‘ R)" In the mass eigenbasis the vectorial part of the lepton self-energy and



the 1PI triangle diagrams are given by (see appendix A for definitions of vertices V')

IKz JKz*
(47)°% Z VisoiLVize!r B1(p, Moy, me;)
=1 K=

4 6
I]z Jji*
+ Z Z vin,sVein, By ma) (2.10)
=1 j=1
3

2
2 IKZ JKJ*
(47)°T7;, = = Z Z we.LViser (VCCZLC (Mirge, My, mo;)
1,j=1 K=1

i
- 2VC]CZ RmCimC'CO(mDK y TGy, TMC; ))

2 3
IKi JK’L*
Z Z Vise L Visor Ca(Mig, My, me;)
1

45 c
wew =1 K=1
1 4
Iji ij*
T3 Z Z VeLNL ¢LN,L (VNNZLC?(mLJ"mN“me)
j=14k=1

ik
- 2VNNZ,RmNimeCO(ij y TN me))

6
1 Ij Jkix ik
9 Z Z VzL]zl\f LVZLJ\ZI L VgLZCQ(mLJ‘ s L, TN ) 5 (2.11)
Jk=1i=1

at vanishing external momenta with obvious replacements L <+ R for EV R F%%

2.3 LFV Higgs interactions

To compactify the notation, we denote the CP-even Higgs boson decays by H{ — 147,
where, following again the notation of [43, 44], H = H&,h = Hg. As usual, we denote
CP-odd neutral Higgs boson by Ajg.

In order to study h — £¢' decays precisely, we keep the terms depending on the external
Higgs mass. Therefore, we assume the following effective action governing the LFV Higgs-
lepton interaction:

Aot = U (kg) (FS (kg kr) P+ FE (kg k) Pr)C (k) He (kr — k)
+ 0 (k) (FiAf (kg k1) P+ Fy0* (kg k) Pr)e* (k) Ao (kr — k) - (2.12)
In addition, to calculate the u — e conversion rate one needs to include the effective Higgs-

quark couplings. For this purpose, one can set all external momenta to zero and consider
the effective Lagrangian

Lo = @ (Fy ™ Pr+ F % Pryu Hy' + &7 (Fi{ " Pr + Fyd ™ Pp)d'Hg' . (2.13)

However, in this article we consider only the lepton sector and therefore do not give the
explicit forms of Higgs quark couplings. The relevant 1-loop expressions in the same no-
tation as used in the current paper are given in ref. [53] and the formulae that take into
account also non-decoupling chirally enhanced corrections and 2-loop QCD corrections in
the general MSSM can be found in refs. [54-56].3

3Farlier accounts on chiral resummation can be found in refs. [57-65].
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Figure 3. Slepton-neutralino diagrams contributing to the H — ¢1¢7 and Ag — ¢1¢7 decays in
the MSSM (the mirror-reflected self-energy diagram is omitted).

At the 1-loop level there are eight diagrams contributing to the effective lepton Yukawa
couplings. The ones with slepton and neutralino exchange are displayed in figure 3, while
diagrams with the chargino exchange can be obtained by the obvious replacements N —
C,L — .

The expressions for F} and F4 are obtained from 1PI triangle diagrams and the scalar
part of lepton self-energies (see eq. (2.9)) while the chirality conserving parts of the self-
energies are absorbed by a field rotation required to go to the physical basis with a diagonal
lepton mass matrix. Therefore,

FIK JIK ZE
(kj, k) =Ty " (kg kr) — oy Yinr(0),

7 sin
Py (kg kt) = D4 (kg kr) — S8 271 (0 (2.14)

U1
where the Zr denotes the CP-even Higgs mixing matrix (see appendix A) and the scalar
self-energy contributions are evaluated at zero momentum transfer and given by:

2 3
(47)*S2.(0) = Z me, Vil LVibé f Bo (0,mz,, me,)
i=1 L=1
4 6
I J *
+ sz Ni ZEJZVL ZL];/'R 0 (Oﬂij)mNi) (215)
=1 j=1

The neutralino-slepton contributions to the 1PI vertex diagrams can be written as (the
symbols in square brackets denote common arguments of the 3-point functions)*

PR k) == 5 32 VAV, Vi, Colksoks — ks, o, |

n=1lm=1

J Inl IK 1K
- Z Z VELTIL\Tfn}zVZLnN L VNN RC2+ VNN N, Co) kg ki =Ky my my,, ma,],

l,in=1m=1

4As we shall see later using MI expanded formulae (see appendix E.3), due to strong cancellations the
leading order terms in egs. (2.15), (2.16) are suppressed by the ratios of m./Mw or A;/Msusy. Additional
terms linear in m¢/Mw, not included in eq. (2.16), appear in 1PI vertex diagrams when external lepton
masses are not neglected. We calculated such terms and proved explicitly that after performing the MI
expansion they were suppressed by additional powers of v? /MS2USY and therefore, a posteriori, negligible.
Thus, we do not display such terms in eq. (2.16).
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Figure 4. Box diagrams with external charged leptons or quarks.

m PO ) =3 3 VARV, VA, Colkyobs kg, )

n=1l,m=1

Jnmsy,Inl 1 1
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(2.16)

while the chargino-sneutrino triangle diagram is obtained by replacing L — 7, N — C and
adjusting the summation limits appropriately in vertex factors V- (see appendix A).

2.4 Box contributions

4-fermion interactions are also generated by box diagrams. The corresponding conventions
for incoming and outgoing particles are shown in figure 4. We calculate all box diagrams
in the approximation of vanishing external momenta. The effective Lagrangian for the
4-lepton interactions involves the quadrilinear operators

O\‘V)?YL = (EJ “PXEI) X (ZKWPYEL)’
OLBE = (17 Px 0!y x (5 Pyih),

OFREL = (17 01y x (0% o, Px "), (2.17)
where X, Y stands for the chirality L or R.> The Wilson coefficients of these operators are
calculated from the box diagrams in figure 4 and are denoted by B;{,{gf* with N = V.S,
or B{&K L

The operator basis in eq. (2.17) is redundant. First, we note that

O = OFHY tor N = V.5,

OFEE = O"!. (2.18)

Second, there are Fierz relations among different operators:

JIKL _ nKIJL
OVXX - OVXXa

OVSE = ~205HF for X £,

5Note that the upper L index in box formfactors denotes the sfermion flavor while the lower L subscript
denotes its chirality, even if both symbols are identical. Also, recall that (£7c** Pre') x (€%, Pre™) = 0.



OJIKL OKIJLi 60KIJL

SXX >
O = —705;?% - fOK”L. (2.19)
Furthermore, we have
Oyy " = OV, Odfi" " = O,
Osir | = OSRES, O LT = OJILK. (2.20)

Egs. (2.18) to (2.20) must be taken into account when deriving the effective Lagrangian.

2.4.1 Leptonic operators with J # K and I # L

The case with both J # K and I # L covers the decays 77 — pFeT/*T with £ = e or
i, but does not appear in uT decays. We can therefore specify to I = 3 for the effective
Lagrangian. Furthermore, we can choose either (J, K) = (1,2) or (J, K) = (2,1) without
the need to sum over both cases: the Fierz identities in eq. (2.19) permit to bring all
operators into the form (€...7) x (f...¢) (corresponding to the case (J,K) = (1,2)) or
into an alternative form with e interchanged with p. Thus we have

LJ3KL } : } : B}(fg)?yL }([3)}((3%—!- 2 : BJ3KL J3KL +he.
L=1,2 N=V,S X=L,R
X,Y=L,R

with J # K and J, K, L < 2, (2.21)

as the four-lepton interaction in the Lagrangian. Note that the “+h.c.” piece of LieK
describes 71 decays.

The Wilson coefficients B;(,%?YL and B%‘}K L'in eq. (2.21) are simply identical to the
results of the sum of all contributing box diagrams to the decay amplitude. The latter is
given in eq. (3.7) with the coefficients of the spinor structure in the right column of table 1.
The relation to the analytic expressions in egs. (D.3) to (D.6) is

JIKL _ pJIKL JIKL JIKL JIKL _
Byxy = Binxy + Benxy + Bonxy + Bovxy: for N =V, S (2.22)
and an analogous expression for BJ LKL

2.4.2 Leptonic operators with J = K and I # L

The case J = K occurs for the decays ut — efeteT and 7+ — (/0T with £, = e, p.
Thanks to the Fierz identities in eq. (2.19) we may restrict the operator basis to

oWk OW=-208 Ok =-ol",
with X,Y = L,R and X # Y. (2.23)



The four-lepton piece of the effective Lagrangian for the decay ¢/F — ¢/F¢/F L+ reads:

JIJL _ AILILOJLIL ~JIILAJIIL
Ly, E E CyxyOyxy + E Csx'xOsxx| + hec.
=12 | X,Y=L,R X=L,R
with L, J < I. (2.24)

For the matching calculation it is useful to quote the tree-level matrix elements of the op-
erators:

U (s s ) Wy, s (o, s0) OV (1, 51)
= [a(ps, 8.7)vuPxu(pr, sp)[a(p, s5)7" Pxv(pr, sp)]
— [a(ply, sy)vuPxulpr, slla(ps, s7)7" Pxv(pr, sp)]
= 2[alps, ss)vuPxu(pr, sp)l[a(pl, s5)v" Pxv(pr, sp))

U= (py s~ (0 SOV (pLs 5.0) [OVRE ™ (pry s1))
= [a(p., s)vuPxu(pr, s)l[a(ply, s5)7" Pyv(pr, sp)]
— [a(ply, si)vuPxulpr, sp)l[a(p,, s7)v" Pro(pr, sp)]
= [a(ps, s.7)vuPxu(pr, sp)l[a(pl, s5)7" Pro(pr, sL)]
= 2[a(p, ss)Pxu(pr, s1)][u (pﬁ sy)Pyou(pr,sp)l,  for X #Y,

=g, s )Wy, ) (pr, s2) |0 (o1, 1))
= [a(p, s7)Pxu(pr, sp)][u(®’, s’7) Pxv(pL, sp)]
— [a(ply, s'7) Pxu(pr, si)l[a(p., s5)Pxv(pL, s.)]

= Slaps5) Pxulpr, slla(s), ) Pxv(pr, sp)]
- é [@(p.s, 55)0 Pxu(pr, sp)|[a(p, s)o" Pxv(pr, sp)] (2.25)

Here we have used the Fierz transform to group the spinors into the canonical order
[a(ps,...)...u(pr,..)][@®@},...)...v(pr,...)]. This allows us to use the same formula
for spin-summed squared matrix elements as in the case of J # K of section 2.4.1.

To quote the Wilson coefficients C’]{,I_;(]}L,, N =V, S in terms of the box diagrams B}{&%
in eq. (2.22) we must compare the results of the MSSM decay amplitude in eq. (3.6) with
the matrix elements in eq. (2.25) and read off coefficients of the various Dirac structures.
The result is

CILIL _ 1 pILIL

VXX — 5 VXX>
CPlE = B for X #Y,
CIE = 2 BIYE. (2.26)

The Fierz identities further imply the equalities

B3 = —2BRY for X £,
1
Byt = — BiXX - (2.27)



2.4.3 Leptonic operators with J = K and I = L

These operators do not appear in lepton decays, but trigger muonium-antimuonium tran-
sitions and describe muon or tau pair production in e”—e~ collisions at energies far below
Msgysy. Their Wilson coefficients are tiny in the MSSM.

2.4.4 Operators with two leptons and two quarks

The analogous Lagrangian for the 2-lepton-2-quark interactions reads

Lyt = >~ BISE O (2.28)
NXY
where
ORAE = (U Pxty) x (axvu.Praw),

OLXY = (trPxty) x (@Pyak),

Ot = (L10"y) x (qr o Pxar) - (2:29)
Again, we consider only purely leptonic contributions here in detail and do not give explicit
expressions for the 2-lepton-2-quark box diagrams. The relevant expressions in the mass
eigenbasis can be found using formulae of appendix D and inserting proper quark vertices
from refs. [43, 44] into these.

3 Observables

In this section we collect the formulae for the LE'V observables in terms of the effective
interactions defined in section 2. All the processes listed here will be included in the future
version of the SUSY_FLAVOR numerical library calculating an extensive set of flavour and
CP-violating observables both in the quark and leptonic sectors [66—68].

3.1 Radiative lepton decays: ¢/ — ¢/~

The branching ratios for the radiative lepton decays ¢/ — ¢/~ are given by

48722
Br(¢h — 7y) =

(IEJT? +|F 1) Br(eh — evv) . (3.1)

Here we used I'(¢ — evv) ~ GZm3/(19273) for the tree-level leptonic decay width and the
factors Br(u — evv) = 1, Br(t — evv) = 0.1785 + 0.0005 [69] are introduced to account
for the hadronic decay modes of the 7 lepton.

Even though in our numerical analyses we restrict ourselves to LFV processes, we
remind the reader that the expressions for the anomalous magnetic moments and electric
dipole moments of the charged leptons can be also calculated in term of the quantities
defined in eq. (2.4) and read:

Aar = —4m;Re [FI4 —my (FIl 5 + FILp)] (3.2)
df = —2eIm [} (3.3)

~10 -
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Figure 5. Diagrams contributing to ¢/ — ¢/¢%¢% decay. I): 1PI irreducible box diagrams; II):
penguin diagrams with V = Z,~, h, H or A. For K = J crossed diagrams must be also included.

3.2 h(H) — £'¢/ decays

The decay branching ratios for the CP-even and CP-odd Higgs bosons read:

_ Mk 2 2
Br(if ¢ = g (JE BT
_ m 2 2
Br(Ag — 1+07-) = ﬁ (|Fﬂ +|F{| ) (3.4)

with F}{ JK Ffl‘] defined in eq. (2.14). Note that summing over lepton charges in the final
state, £1t¢7~ and ¢/+¢'~ would produce an additional factor of 2.

3.3 ¢I — ¢JeKpL decays

The LFV decays of charged lepton into three lighter ones can be divided into 3 classes,
depending on the flavours in the final state:

+ + +

(A) £ — 0'0'0": three leptons of the same flavour, i.e. u= — efete™, 7 — efete™ and

7+ — pFptp~, with a pair of opposite charged leptons.

(B) ¢+ — ¢'£¢"+¢"=: three distinguishable leptons with ¢ carrying the same charge as ,

ie. 7t > etptp and 7 — prete .

(C) £+ — ¢FL"¢"=: three distinguishable leptons with ¢ carrying the opposite charge

as 0, i.e. 7T — eFputput and 7F — pFetet.

Class (C), representing a AL = 2 processes, is tiny within the MSSM: it could only be
generated at 1-loop level by box diagrams suppressed by double flavour changes, or at the
2-loop level by double penguin diagrams involving two LFV vertices. Therefore, we will
not consider these processes in our numerical analysis.

In order to calculate Br(¢! — ¢/¢K¢L) we decompose the corresponding amplitude
A as

A= Ao + AA/ . (3.5)

The relevant diagrams are displayed in figure 5. Ag contains contributions from 4-lepton
box diagrams and from penguin diagrams (including vector-like off-shell photon couplings,
see eq. (2.5)) which in the limit of vanishing external momenta can be represented as the
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4-fermion contact interactions. A, is the on-shell photon contribution originating from the
magnetic operator (see eq. (2.2)) which has to be treated separately with more care as the
photon propagator becomes singular in the limit of vanishing external momenta.

We further decompose Ag for the two cases (A) and (B) according to its Lorentz

structure:
AV =Y oSy lapn)ryP i(p/, )T P 3.6
0o = Q,xylU\PJy)lqQ xu(pr)|[u(p;)ToPyo(pL)], (3.6)
Q=V,S,T
AP = 3 oy lupn) Ty Pxu(pn)]fa(pr)CoPyo(pr)] (3.7)
Q=V,5,T
(4)

with X, Y = L, R. Note that the amplitude Ay in general contains a second term which is
obtained from the one given in eq. (3.6) by replacing (ps <> p’;). However, one can use Fierz
identities to reduce it to the structure given in eq. (3.6). The basis of Dirac quadrilinears
I'g is the same as the one used to decompose 4-lepton box diagrams in eq. (2.17):

FS =1 5 I‘V = 7“ ) FT = Ouv, (38)

and I"Q is obtained from I'g by lowering the Lorentz indices.
The amplitudes originating from on-shell photon exchange are given by

AN = m[a(m)wmc@& + CyrPr)(pr — ps)vulpr)][a(p])yuv(pL)]
— (ps < P)
AP = m[a(m)ww(%& + CyrPr)(pr — pr)vu(pn)][a(px)yuv(pr)]l-  (3.9)

The full form of the coefficients C](\?’B), C, is displayed in table 1, where we compact-

ified the expressions by using the following abbreviations for the Higgs penguin contribu-
6

tions: ,
ZEN isin 3
vt => RN, vil=—=F{". (3.10)
N=1 mH{)V M4,

Note that in eq. (3.7) and eq. (3.9) we do not explicitly display flavour indices, but they
are specified in table 1.

Neglecting the lighter lepton masses whenever possible, the expression for the branch-
ing ratios can be written down as (for comparison see [23]):

_ NBr(t! — ewvv)

Br(¢f — ¢7eR 1) = 392 (4(ICviLl* + |Cvrr* + |CviLrl* + |CvrL]?)
fa
+|Csril® + [Csrrl* + |CsLrl* + |CsrLl?
+ 48 (’CTL‘z + ‘CTR‘Q) + XW) (3.11)

where N, = 1/2 if two of the final state leptons are identical (decays (A)), N, = 1 for
decays (B) and X, denotes the contribution to matrix element from the photon penguin A,

5Note that we define lepton Yukawa coupling appearing in table 1 to be negative, ¥;' = —\/iml]/vl.
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Decay (A) Decay (B)
Cvir | BYEY - L2 FY] + 202V BYK — A2 pl 4+ 2V
Cnn | BUH + 2250 Ffh + 22V ) BN + 2 rfh - VS
Cvir | BI¥d + Cj;x}% Fgb+ VI + Ly (VET — v BJIEK 4 (’:VSXZ% FJl+ eV
Cvms | BURY — saabp b+ VIl O VD B - S Fl v
Cous | BYY + 390 +V{") BYES YE v
Csrr | B + 3%, (V™™ +Vi™) By + Y (Vi + VA7)
Coun | ~2BYH - 25 PJf — 2V 4 VIV VI | BUES 4 YR - v
Con | 2B + 52 P~ 26V 3V~ VI | B v v - v
O | ~3BUY + PO+ VD B
Crn | ~4BU + 0+ V) Bl
Cyr —Qer‘H —QeFv‘H
Cyr *26F,{J* *26F,){J*

Table 1. Coefficients Cn, Cy of eq. (3.7) and eq. (3.9) for decay types (A) and (B). Boxy,Brx
denote the irreducible box diagram contributions (see eq. (2.21)), the terms with Fz stem from the
Z penguin Lagrangian (eq. (2.7)), V, is the sum of the vector-like photon contributions (eq. (2.5)),
Higgs contributions are defined in eq. (3.10) and the coefficients F., of the magnetic operator are
defined in eq. (2.2).

including also its interference with the Ag part of the amplitude (m denotes the mass of
the heaviest final state lepton)

16e 1 . 1
X = T IRG [(QCVLL +Cvir — §CSLR> CZr+ (2CvRrR + CvRL — ECSRL) ClL
¢
6462 m?, 11 5 )
+ mgl <log m2 4) (‘C’YL’ + ‘C’YR’ )
16e
X§B) = —m—IRe [((Cvir+Cvir) Cip+ (Cvrr + Cvre) C3L ]
¢
32¢2 m?, 9 )
T, log —5 =3 ) (ICL” +1Cyr[7) - (3.12)

3.4 p — e conversion in nuclei

The full 1-loop expressions for the y — e conversion in Nuclei depend on both the squark
and slepton SUSY breaking terms. Thus, in principle the resulting upper bounds on the
slepton mass insertions to some extent depend on the squark masses. Therefore, we do not
include y — e conversion in nuclei in our numerical analysis.” However, for completeness
we collect here the complete set of formulae required to calculate the rate of this process.

"Recent discussion of interplay between the bounds on MI’s in the slepton and squark sectors can be
found in ref. [70].
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1 — e conversion in nuclei is produced by the dipole, the vector, and the scalar
operators already at the tree level [71]. Following the discussion of ref. [72] we use the
effective Lagrangian

Luse= ) Coqp ' ON%y +C¥ 0¥ (3.13)
N,X)Y
where N =V, S and X,Y = L, R with the operators defined as

OU%y = (ev"Pxp) (GryuPyar)
oY%, = (ePxp) (GrPyvar)
0% = aym,Gr (ePxp) G2, G (3.14)

Using the notation introduced in previous sections, the corresponding Wilson coefficients
can be expressed as

Gty = it = oy g (1= 30 ) Pl = 3v
C¥itn = Citllxn + gty B — Vil
Cys = Cattixr + TJQZQSVECVV (1 - 38%4;) F2 + ;3‘@%
Ot = Clfllxn — oy o Soby Pl + 50Vl
CUith = Ol + — s FIN R

(m)

1
wrur 1200 12K ITK
Co'rx = Cuistx + Fy ™" Fha

(mg)*
1
drd 1211 21K+ Il K
Cs'rx = Caispx + b " Fha
(mi)
1
1211 2 K I TK
Cy'rx = Cutsrx + WFh “Fhu (3.15)
my

For this process, a Lagrangian involving only quark, lepton and photon fields is not
sufficient. Instead, an effective Lagrangian at the nucleon level containing proton and neu-
tron fields is required. It can be obtained in two steps. First, heavy quarks are integrated
out. This results in a redefinition of the Wilson coefficient of the gluonic operator [73]

. 1 C§' +C¥
ng ng — ng _ S LL S LR 316
L oL L 127 Z Grmyumg ( )

q:C7
with an analogous equation for C;{;. Second, the resulting Lagrangian is matched at the

scale of p, = 1GeV to an effective Lagrangian at the nucleon level. Following [74] the
transition rate FIJLV_)e =T(u~N — e~ N) can then be written as

5

m ~ ~ 2
e = =% |- CP B2 fmy + 4 (Grmum,CE Y + CO VP + (0 — )|
+ (L < R), (3.17)
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where p and n denote the proton and the neutron, respectively. The effective couplings in
eq. (3.17) can be expressed in terms of our Wilson coefficients as

cy = > (C¥r +C¥gp) f&’,ﬁ/na (3.18)
q=u,d,s
o _ 3 (C&L+C&R) @ | Age
= +C n 3.19
o g=ud,s mymqeGp Tspm + O Jaipy (3:.19)

with analogous relations for L <> R. The Wilson coefficients in egs. (3.18) and (3.19) are
to be evaluated at the scale p,.

The nucleon form factors for vector operators are fixed by vector-current conservation,
ie. f‘(;;) =2, f‘(,ug =1, f‘(/cg =1, f‘(,dg =2, f‘(f}z =0, f‘(,sz = 0. Hence, the sum in eq. (3.18)
is in fact only over ¢ = u, d. The calculation of the scalar form factors are more involving.
The values of the up- and down-quark scalar couplings fg;éi) (based on the two-flavour
chiral perturbation theory framework of [75]) can be found in refs. [76, 77], while the values
of the s-quark scalar couplings fé;)/n can be borrowed from a lattice calculation [78].% In
summary, one has

8 = (208 +1.5) x 1073, F = (18.9 +1.4) x 1073,

£ = (411 +2.8) x 1072, f§) = (451 £2.7) x 107,

£ = ) = (53 £27) x 1072, 3.20
Sp Sn

The form factor for the gluonic operator can be obtained from a sum rule. In our normal-
isation

fapm = —%T(l - > féi)/n> : (3.21)

q=u,d,s

The quantities Dy, S](\I,D/ n), and Vjs,p /™) in eq. (3.17) are related to the overlap integrals [81]
between the lepton wave functions and the nucleon densities. They depend on the nature
of the target N. Their numerical values can be found in ref. [71]:

Day=0.189, S% —o0.0614, V¥ =0.0074, 5" =0.0918, V" =0.146;

u u

Da =0.0362, SU =0.0155 V¥ =o00161, S7=o00167, V¥ =00173; (3.22)

for gold and aluminium, respectively.

Finally, the branching ratio is defined as the transition rate, (see eq. (3.17)), divided
by the capture rate, the latter given in ref. [82]:

TSPt — 8.7 x 10715 MeV, PRI = 4.6 1071% MeV . (3:23)

8For earlier determinations of the pion-nucleon sigma terms see [79, 80].
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4 Mass eigenstates vs. mass insertions calculations

For each process, we have given the exact one-loop expressions calculated in the mass
eigenbasis (ME). These formulae are compact and well suited for numerical computations,
however, do not allow for an easy understanding of the qualitative behaviour of the LFV
amplitudes for various choices of the MSSM parameters. Therefore, in this section we
expand the Wilson coefficients in terms of the “mass insertions”, defined as the off-diagonal
elements (both flavour violating and flavour conserving) of the mass matrices. Such an
expansion allows us to:

e Recover the direct analytical dependence of the results on the MSSM Lagrangian
parameters.

e Prove analytically the expected decoupling features of the amplitudes in the limit
of a heavy SUSY spectrum. In the case of Higgs boson decays, we also identify
explicitly the terms decoupling only with the heavy CP-odd Higgs mass M, (which
also determines the heavy CP even and the charged Higgs masses). The decoupling
properties also serve as an important cross-check of the correctness of our calculations.

e Test the dependence of the results on the pattern of the MSSM spectrum and the
size of the mass splitting between SUSY particles.

e Better understand the possible cancellations between various types of contributions
and correlations between different LFV processes.

The mass insertion expansion in flavour off-diagonal terms has been used for a long
time in numerous articles on the subject. However, often various simplifying assumptions
have been made, i.e. some terms have been neglected or a simplified pattern of the slepton
spectrum was considered. This is understandable as a consistent MI expansion of the
amplitudes for the LFV processes in the MSSM, mediated by the virtual chargino and
neutralino exchanges, is technically challenging. The standard approach used in literature
is to calculate diagrammatically the LF'V amplitudes with the “mass insertions” treated as
the new interaction vertices. We follow the common practice and normalise such slepton

mass insertions to dimensionless “A-parameters”:’
IJ IJ

AIJ _ (MIQ/L) AIJ (MI%R)

b > \IT(Af2 \JT fufe 2 \II(pNf2 VI

V(M2 (M) VBT (M)
AIJ , A/IJ

IJ IJ

Arr = l App = : (4.1)

(M2 (ME )Y (M2 (MZR)7 )"

where Mg Iz M}%R, Ay, Aj are the slepton soft mass matrices and trilinear terms.
As lepton flavour violation is already strongly constrained experimentally, it is sufficient
to expand the amplitudes up to the first order in flavour-violating A’s. For instance, the

9We assume that trilinear A;, A} terms scale linearly with the slepton mass scale.
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effective vertices listed in section 3 take the schematic form:

1
G TN TN
(47)
IJ AJI 1] ALJx '"TJ A'JT 'TJ A'TJ*
+ FarrArR + FRLRALR + FAirALR + FBLRALR ) : (4.2)
The MSSM contributions to Frpr, ..., Fg;p can be classified according to their decoupling

behaviour, distinguishing the following types (M denotes the average SUSY mass scale):

1. Effects related to the diagonal trilinear slepton soft terms or to the off-diagonal
elements of supersymmetric fermion mass matrices, decoupling as v?/M?2.

2. Effects related to the external momenta of the (on-shell) Higgs or Z" bosons, de-
coupling as M?/M? or M%/M? (we did not include the Mz dependence as it is not
necessary for the considered processes).

3. Non-decoupling effects related to the 2HDM structure of the MSSM. Such con-
tributions are constant in the limit of a heavy SUSY scale M but, in case of the
SM-like Higgs boson h, decouple with the CP-odd Higgs mass like v?/M3 (the ef-
fective couplings of heavier H, A bosons do not exhibit such a suppression). They
are proportional either to the lepton Yukawa couplings or to the non-holomorphic
Aj terms.

The structure of the box diagrams is more complicated as they carry 4 flavour indices.
Their MI expansion is given in appendix E.5. All box diagram contributions decouple at
least as v?/M?2.

Calculating consistently the quantities Frr, ..., F; p to the order v?/M? is not trivial
for chargino and neutralino contributions. If the MI expansion is used only for the sfermion
mass matrices but the calculations for the supersymmetric fermions are done in the mass
eigenbasis, the direct dependence on the Lagrangian parameters is hidden and the decou-
pling properties of the amplitude cannot be seen directly. However, one can also treat
the off-diagonal entries of the chargino and neutralino mass matrices as “mass insertions”.
With such an approach, the final result is expressed explicitly in terms of Lagrangian pa-
rameters, but the computations can get very complicated. At the order v?/M? one needs
to include diagrams with all combinations of two fermionic mass insertions (each provid-
ing one power of v/Mi, v/Msy or v/u) or flavour diagonal slepton terms originating from
trilinear A-terms (providing powers of vA;/M?, vA}/M?). Thus, to obtain an expansion
of the F’s in eq. (4.2), one needs to formally go to the 3rd order of MI expansion, adding
all diagrams with up to two flavour conserving and one flavour violating mass insertion.
Therefore, the number of diagrams grows quickly with the order of the expansion and such
a method is tedious and prone to calculational mistakes.

In our paper, we employ a recently developed technique using a purely algebraic MI ex-
pansion of the ME amplitudes listed in section 3, without the need for direct diagrammatic
MI calculations (“FET theorem”) [31], automatised in the specialised MassToMI Mathe-
matica package [32, 83]. The use of this package and full automation of the calculations
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allows us to perform the required 3rd order MI expansion for a completely general SUSY
mass spectrum, without making any simplifying assumptions. Such a result would be very
difficult to obtain diagrammatically, as in the intermediate steps of the calculations (before
accounting for the cancellations and simplifications between various contributions) the ex-
pressions may contain up to tens of thousand terms, even if the final results collected in
appendix E are again relatively compact. In detail:

e We perform the expansion always up to the lowest non-vanishing order in the slepton
LFV terms, taking into account the possible cancellations. Compared to previous
analyses, we consider the non-holomorphic trilinear soft terms as well.

e In the MI expanded expressions we include all terms decreasing with the SUSY mass
scale as v? /MSQUSY (or slower), where Mgygy denotes any of the relevant mass pa-
rameters in the MSSM Lagrangian (apart from the soft Higgs mass terms): diagonal
soft slepton masses, gaugino masses M7, My or the p parameter.

e We do not assume degeneracy or any specific hierarchy for the sleptons, sneutrinos
or supersymmetric fermion masses.

e In calculating the LFV Higgs decays we keep the leading terms in the external Higgs
boson mass (m3 /Mgy )-

The full set of the expanded expressions in the MI approximation for the photon, Z°
and CP-even Higgs leptonic penguins and for the 4-lepton box diagrams is collected in
appendix E.

We illustrate the accuracy of the derived MI formulae in figure 6. The plots show the
ratio of the MI expanded couplings over the ones obtained in the mass eigenbasis with
exact diagonalization. For this purpose, we start from the following setup where all mass
parameters are given in GeV:

tanf =5 mp; = 300 Ay = A, =0.1/mz mp,
=200 4100i mz, = 330 (43
My =150 ma, = 300 A = AL =01 /mz,mz, '
My = 300 Mz, = 350

Next, to see the decoupling effects we scale this spectrum uniformly up to slepton masses
of 2 TeV. For each of the six penguin Wilson coefficients describing the transition between
2nd and 3rd generation, FVQ%(R) (eq. (2.2)), F%SL(R) (eq. (2.7)) and F = F??, F2 = F3*2
(eq. (2.13)) we plot the quantity

Fyin

AF =
Py

1, (4.4)

as a function of the average slepton mass. The accuracy of left-handed (right-handed)
Wilson coefficients is illustrated with red(blue) lines. As can be seen from figure 6, the
accuracy of MI expanded amplitudes is very good even for light SUSY particles and for
Mgsyusy > 500 GeV always better than 95%.
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Figure 6. Accuracy of MI expansion for the penguin amplitudes. The curves show the ratio defined
in eq. (4.4). Red and blue lines: AF for left and right couplings assuming a spectrum of eq. (4.3) for
both the MI and ME expressions. Brown and green lines: AF (again for left and right couplings,
respectively) assuming spectrum (4.3) for ME expressions but an universal degenerate sfermion
mass in MI expressions. This assumption is inconsistent with non-zero off-diagonal elements of the
mass matrices, which imply non-degenerate mass eigenstates. The plots show that the associated
error can be numerically sizeable. The average SUSY mass scale M (assumed to be equal to
My = mj, =m,) is shown on the horizontal axis.

Many analyses published to date for simplicity did not include the complete set of
the contributions scaling like v/M order and/or assumed a partially or fully degenerate
SUSY spectrum. This procedure is inconsistent with non-zero off-diagonal elements of
mass matrices, because the latter enforce unequal eigenvalues of the corresponding mass
matrix. To illustrate the numerical effects arising from the incorrect neglection of SUSY
mass splitting we plot the ratio of our expressions in the MI approximation for penguin
Wilson coefficients calculated for degenerate slepton masses (equal to 300 GeV rescaled by
a common factor; other parameters as in eq. (4.3)) and the exact mass eigenbasis formulae
(calculated with non-degenerate sfermion spectrum of eq. (4.3)) in figure 6. The accuracy
of left-handed (right-handed) MI expanded Wilson coefficients with degenerate slepton
spectrum is shown in green(brown). In this case discrepancy is much larger, of the order
of 10%-40%, and does not disappear when increasing the total SUSY scale.

Some papers on the LFV in the MSSM, like e.g. refs. [7, 84], deal with general SUSY
spectra. In order to compare the accuracy of the MI approximation derived in our analysis
with previous works, we plotted in figure 7 the ratios of Br(t — pvy) and Br(h — Tu)
calculated using the exact (ME) and MI-expanded formulae scanning over randomly chosen
MSSM mass spectra. In particular, in figure 7 we assume tan 5 =5, a—f = —7/2—7/100,
myp, = 125 GeV, diagonal A terms which are proportional to the lepton Yukawa couplings
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Figure 7. Accuracy of MI expansion for the 7 — py and h — 7p decay rates. Points show the ratio
Br(t — uy)™!/Br(t — py)M¥ (lower and upper left panel) and Br(h — 7u)M!/Br(h — 7p)ME
(lower and upper right panel) as a function of LL and LR mass insertion for tan 8 = 5 and random
choice of other model parameters (see eq. (4.5)).

(AT = 4 A= =Y (M?,)11(M35)5)"*) and we vary the mass parameters randomly and
independently in the following ranges (all values are given in GeV and we set My = My /2):

My € (200, 500) oy Mo, mz, ,mp, , meg, mazy € (500,1000) . (4.5)

As can be seen from upper left panel of figure 7, even for A3%2 77 = 0.5 the accuracy of our
MI expansion is better than about 15%. This can be compared with the corresponding
right panel of figure 8 in ref. [7] - there the difference between MI and ME calculation for
the same value of A%% = 0.5 is 20%-70%, also the spread of points around the parabolic
shape arising from neglected (A%QL)2 terms is much larger, 50% against a maximum of 10%
in our approach. It is worth noting that the agreement in the lower left plot of figure 7
is almost perfect everywhere, which could be attributed to the fact that terms of higher
order in App are suppressed by additional v/M powers (when A terms are scaled linearly
with M, like we choose) and thus small even for large Ay g values.

Accuracy of our MI expansion for Br(h — 7p) shown in the right upper panel of figure 7
is worse, up to 20%, because we include only non-decoupling LL terms in our formulae,
which is not a fully satisfying approximation for a SUSY scale in the range of 500-1000 GeV.
Concerning the expansion in A%QR (where only decoupling terms contribute), we include
them consistently and the accuracy is much better. This can be compared with ref. [84],
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Experimental upper bound | CL | Future sensitivity | CL
T — ey 3.3 x 1078 [85] | 90% 1079 [86, 87] | 90%
T =y 4.4 x 1078 [85, 88] | 90% 107° [86] | 90%
o ey 5.7 x 10713 [89] | 90% 6 x 10714 [90] | 90%
Z — pe 7.5 x 1077 [91] | 95%
Z — pur 1.2 x 107° [92] | 95%
Z — e 9.8 x 107° [92] | 95%
p— e ete” 1.0 x 10712 [93] | 90% 10716 [94, 95] | 90%
T—eete” 2.7 x 1078 [96] | 90%
T u 2.1 x 1078[96] | 90%
e utu” 2.7 x 1078 [96] | 90%
T—etupT 1.7 x 1078 [96] | 90%
T puete” 1.8 x 1078 [96] | 90%
T — ute e 1.5 x 1078 [96] | 90%
h —er 6.1 x 1073 [97] | 90%
h — ur 2.5 x 1073 [97] | 90%
h — pe 3.6 x 1074 [98] | 90%
(=€) Ay 7.0 x 10713 [99] | 90%
(u— e)al 10716 [100] | 90%

Table 2. Upper bounds on LFV decays of charged leptons. h denotes the SM-like Higgs boson.

considering the same process. The agreement for A?}i = 0.5 in upper left panel of figure 6
(“general scenario”) in [84] is better than ours, as they consistently include all LL terms, not
just non-decoupling ones. However, for A3%, (lower left panel of figure 6 in [84]) numerical
accuracy of our formulae seems to be similar or even better. In general, no significant
deviations should be expected here, as for this process our approach and the analysis of
ref. [84] are equivalent up to the chosen calculational technique (FET vs. diagrammatic
MI calculation) and, eventually, the selection of the included or neglected contributions.

5 Phenomenological analysis

5.1 Generic bounds on LFV parameters

As outlined in the introduction, flavour violation in the charged lepton sector is strongly
constrained experimentally. In table 2 we collect the current and expected future experi-
mental bounds on the processes discussed so far.

Assuming the absence of fine-tuned cancellations between different flavour violating
parameters, the order of magnitude of the bounds on a given flavour violating entry A can
be obtained by assuming that it is the only source of flavour violation. At the lowest order
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Process (1,J) ALT AL, AL AL A A
tan 8 = 2
U= ey (2,1) | 84-107* | 50-1073 | 84-107% | 83-107% | 41-1076 | 4.1-1076
T =y (3,2) | 5.3-107¢ O(1) 9.1-1072 1 9.1-1072 | 45-1072 | 451072
T — ey (3,1) | 4.6-107" 0(1) 78-1072 | 7.8-1072 | 3.9-1072 | 3.8- 1072
tan 5 = 20
[ ey (2,1) | 1.0-107% | 45-107% | 7.5-107° | 7.4-107° | 3.7-1076 | 3.7.1076
T — wy (3,2) 165-1072|29-1071 | 82-107! | 8.2-107! | 4.0-1072 | 4.0- 1072
T — ey (3,1) | 5.7-1072 | 25-107' | 7.0-107' | 7.0-107! | 3.4-1072 | 3.4-1072

Table 3. Upper bounds on the LFV parameters A from radiative charged lepton decays for the
MSSM spectrum defined in eq. (5.3) and a SUSY scale of M = 400 GeV. All bounds scale (i.e.
weaken) like M?2.

in the MI expansion, any LFV observable X scales like A2:
X%f(mla"'7mn)|A|2’ (51)

where f is a known (non-negative) function of diagonal mass parameters - for any given
process it can be extracted from the expanded expressions listed in appendix E. Thus, the
experimental bound on A from a given measurement can be written as:

X exp X future X future
B T,y Ve = A0y (5:2)

where by X**P we denote one of the current experimental bounds listed in section 5.1 and
Xfuture

is the expected future sensitivity.
To estimate the order of magnitude of the bounds on all types of mass insertions, we
assume a common mass scale M for all flavour diagonal SUSY parameters:

méLI:méRI:MleQZM:MA:M,
Al = AT =v/] M. (5.3)

Currently, the strongest bounds on the dimensionless LEV parameters A defined in eq. (4.2)
originate from the radiative lepton decays ¢ — ¢’y. We list such bounds for the parameter
setup defined in eq. (5.3) and for the SUSY scale of M = 400 GeV in table 3.

The 3-body decays of charged lepton lead to bounds which are approximately one order
of magnitude weaker. In table 4 we display the relative strength of such bounds comparing
them to the ones obtained from the radiative lepton decays, i.e. the ratios of bounds
from radiative decays over the ones from 3-body decays. Such ratios remain constant
with increasing M up to the scale where the non-decoupling Higgs penguin contributions
start to contribute. However, such effects occur for M 2 30 TeV for 7+ — p*ptu™ and

7+ — etptuT decays and for even higher M for the decays with electron pair in the
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Process (1,J) | AL AL AL AL A A
tan 8 = 2

i — eee (2,1) | 1.7-10*t | 1.5-107 | 1.6-10" | 1.6- 107! | 1.6- 10" | 1.6- 107!
T — [ (3,2) | 1.5-10"1 | 1.2.107 | 1.4-10" | 1.4-107! | 1.4-10" | 1.4-10T!
T—pete” | (3,2) | 1.3-107 | 1.1-107t | 1.2-10 | 1.2-107 | 1.2- 107 | 1.2 10!
T — eee (3,1) | 8.6-10%° | 8.2.10™° | 8.5-10%° | 8.5.10™0 | 8.5-10%° | 8.5.1070
r—eutp= | (3,1) | 69-10° | 6.7-107° | 6.8-10"" | 6.8-10%° | 6.8-101° | 6.8 101
tan 8 = 20

U — eee (2,1) | 1.6-10** | 1.6-10T! | 1.6-10"' | 1.6- 10! | 1.6- 10" | 1.6-10T!
T — [Lbf (3,2) | 1.4-10" | 1.4-107 | 1.4-10" | 1.4-107! | 1.4-10" | 1.4-10T!
T —pete” | (3,2) | 1.3-107 | 1.2-107! | 1.2-10" | 1.2-107! | 1.2- 10" | 1.2 10T}
T — eee (3,1) | 8.5-10%° | 85-107° | 8.5-10%° | 8.5-1070 | 8.5-10%0 | 8.5.10%0
T—eutp= | (3,1) | 6.8-10" | 6.8-107° | 6.8-10"" | 6.8-10"° | 6.8-10"" | 6.8 101

Table 4. Ratios of upper bounds on the LFV parameters A from the searches for 3-body and
radiative decays of charged leptons. The MSSM spectrum is defined in eq. (5.3).

final state. For such a large M the branching ratios for all 3-body decays are, anyway,
below the current experimental sensitivities even for O(A) ~ 1.

We do not display the bounds from LFV violating Z° decays as they are much weaker
(3 to 8 orders of magnitude depending on which parameter A is chosen). This can be
attributed to the large Z boson width — for comparable I'(Z — ¢¢) and T'(¢ — ('v)
partial decay widths the difference in total widths leads to Br(¢ — ¢'y) > Br(Z — ).
Thus, bounds from Br(Z — ') are not competitive (nor they will be in the foreseeable
future) compared to those from other observables.

As can be seen in table 5, the bounds on A parameters from LFV flavour Higgs boson
decay searches are much weaker than those from the radiative charged lepton decays.
However, in the Higgs sector some effects proportional to lepton Yukawa couplings or to
the non-holomorphic terms are non-decoupling and are not weakened by increasing M like
other contributions, for fixed Higgs sector parameters. In table 5 we assume

™

a-f=-7-7, (5.4)

with v = 7/100. Using the tree-level relations of the MSSM Higgs sector in the limit of
tan 8 > 1 and small values of v one has

B sin2(a +83) | —sin4p
MA = MZ m ~ MZ 72,7 ) (5-5)

this corresponds to M4 ~ 350 GeV for tan § = 2 and M4 ~ 190 GeV for tan 5 = 20 (the
exact value including loop corrections may vary, depending on the squark parameters which
we do not specify here).

The bounds on Af—i, A{%"}%, A/LII{, A%g from the leptonic Higgs boson decay would de-
couple only if also M 4 is scaled up simultaneously with SUSY particle masses (thus assuring
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Process (I,J) ALY AL, AL% AL A AH
tan 8 = 2
h — pe (2,1) | 1.8-1077 | 1.7-10%6 | 2.6-10%7 | 2.6 -10*7 | 1.0-10*7 | 1.0- 1077
h — Tu (3,2) | 44-1072 | 3.8-10%2 | 6.3-107 | 6.3-1073 | 2.5.10%3 | 2.5-10*3
h — Te (3,1) | 8.0-10"3 | 7.5-10%2 | 1.1-10%* | 1.1-107* | 4.9-1073 | 4.9.10*3
tan 5 = 20
h — pe (2,1) | 3.9-107¢ | 8.3.10%6 | 5.1-10%7 | 5.1-10*7 | 1.2-10%6 | 1.2.10%6
h—Tu (3,2) | 951072 | 1.9-10"3 | 1.3-107* | 1.2-10"* | 2.9-10%2 | 2.9 1072
h — Te (3,1) | 1.7-107® | 3.,5-10"3 | 2.3-107* | 2.2-10"* | 5.3.10%2 | 5.4-1072

Table 5. Ratios of upper bounds on the LFV A parameters from leptonic Higgs boson decays and
from radiative decays of charged leptons. The MSSM spectrum is defined in eq. (5.3) (with the
exception of setting A’ = 0) and a SUSY scale of M = 400 GeV. The ratios for AlJ AL AILIRI7
A;%i decrease with M?2, assuming fixed masses and mixing angles in the Higgs sector.

that the Higgs decay rates do not violate the Appelquist-Carrazone theorem [101]). This
interesting feature is discussed in more details in section 5.4.

5.2 Dependence on the mass splitting

The formulae derived in the previous sections allow to analyse how the bounds on LFV
mass insertions depend on the splitting between different SUSY masses. However, any
process involving transition between the generations I and J depends in general, even at
lowest order in the flavour violating MI’s, on many mass parameters: p, gaugino masses
My, My, left and right diagonal slepton soft masses mg, ,, me, ;, Méy,, Mey,, and for the
Higgs decays also on M4 or on « angle. To simplify the discussion, we only take into
account the bounds from ¢ — ¢’ decays, which are currently most constraining.

In figure 8 we illustrate the dependence of the upper bounds on the A parameters
originating from p — ey on the mass splitting between left and right-handed sleptons for

tanfB =2, =My = My =M =800GeV
Mep, = My, =ML, Mer = Mpp = MR,

i !
A =Af =Y. /mrmpg, AZ“:AZ‘”:YN\/mLmR.

We have chosen here an average SUSY mass scale of M = 800 GeV, higher than M =
400 GeV used in tables 3-5, to avoid the experimental bounds on slepton masses even in
the case of a large splitting between the left and right-handed masses.

The features of plots in figure 8 can be understood using the expanded expressions
for effective photon couplings collected in appendix E.1. As an example, let us consider
the interesting cancellation between different contributions in the case of A}%QR (right upper
panel of figure 8). For our parameter setup, the coefficient X%,Z multiplying the RR
parameter (see eq. (E.4)) can be reduced to the form

’U1Y
X’?JLVQ = MQM <37L, [BR) ) (56)
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Figure 8. Upper bounds on the LFV parameters from p — ey for tan 8 = 2 and M = 800 GeV as
a function of the splitting between the masses of gaugino and sleptons of different chiralities. The
normalised slepton masses x1(ry = mz(r)/M are plotted on the axes.

where f(zr,zR) is a known, although complicated, dimensionless, rational and logarithmic
function of mass ratios whose analytical form can be obtained using eq. (E.4), the loop
integrals collected in appendix B and the definitions of divided differences from appendix C.
The properties of this function can be examined analytically and numerically. One finds

e For xp in the wide range 0.1 —4 the function f vanishes for z1, ~ 0.45 (the exact value
depends only weakly on xr). As a result, the bounds on A}%R disappear completely
for my, ~ 0.45M.
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e For large values of g 2 5 the position where the function f becomes zero shifts
towards bigger values of x. In addition, in this limit f is suppressed by an overall
factor 1/x g, thus the bounds on A}%R become weaker for a larger values of xg.

e For large values of z; the function f depends on zy only. Therefore, the contour
lines become horizontal.

e For small values of z, the function f behaves like 1/x7. Thus, the bounds on A}gR

become stronger.

A similar analysis can be done for the bounds on A1L2L However, the coefficient multiplying
AlLQL contains contributions from both chargino and neutralino loops and does not vanish
for any mass pattern. Therefore, there is no cancellation area in the upper left panel of
figure 8. In this case, the bound on A}? is strongest for mz ~ M and mgr < M. For the
case in which the left slepton masses are much lighter or much heavier than the masses of
the SUSY fermion, the bounds become weaker.

Bounds on LR parameters, both holomorphic and non-holomorphic, are typically 1-
2 orders of magnitude stronger than for LL. and RR ones. In this case, the coefficient
X 5’;,1 multiplying the LR terms has a much simpler functional form. Therefore, it never
vanishes and in addition is explicitly symmetric (as follows from the properties of divided
differences) under the exchange of slepton mass arguments, as visible in both lower panels
of figure 8. Furthermore, one can see that bounds on LR parameters are strongest for
mr,mr S M and become weaker when the slepton masses are much heavier than the
chargino and neutralino masses. More quantitatively, X ,%,1 is proportional to the divided
difference of the function Ci2, which for © = zj, = xp (corresponding to the diagonal of
lower plots in figure 8) has the simple asymptotic behaviour

—ﬁ <1

Cro({mr,mgr}, M) = { (5.7)

m z>1
From the form of eq. (5.7) it is immediately visible that the bounds become constant for
small z and fall like 1/22 for large z, as illustrated in the plots.

Using the formulae collected in appendix E, a similar discussion can be, if necessary,
performed to explain the features or cancellation areas of other plots presented in this
section. However, as the general analytical formulae in the MI approximation are rather
complicated, we illustrate here other scenarios with numerical plots only.

Figure 9 shows similar bounds assuming identical left-and right-handed slepton masses
which however differ among the generations, so that we choose

tanfg =2, pw=M; =M= M =800GeV,
Mey, = Mep = Me Mpy, = Mpp = Mp,
A= A =Yome, A =AM =Y, my,

and plot the results in terms of . = mg/M and x, = mz/M. Again, a cancellation only
exists for the bounds on A}%R, for an almost constant ratio mj ~ 2.5M. In this case, the
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Figure 9. Upper bounds on the flavour violating LL and RR parameters using the current experi-
mental limit on Br(u — ey) for tan f = 2 and M = 800 GeV as a function of splitting between the
masses of gaugino and sleptons of various flavours. The normalised selectron and smuon masses,
Te(n) = Me(i)/M are plotted on the axes.

bounds on A1L2L are strongest for small splitting between slepton and SUSY fermion masses,
while the bounds on A}%R are, apart from the cancellation region, stronger for mj; S M.
It is obvious from the form of X %1 in eq. (E.4) that the bounds on the LR parameters,
both holomorphic and non-holomorphic, have an identical behaviour as in the case of the
my, — mp splitting plotted in figure 8, with the replacements z, <+ x¢, TR <> 7.

Finally in figure 10 we assume an identical mass of m = 400 GeV for all sleptons but
vary My = My and p. The results are displayed as a function of zo = My/M, z, = p/M
(we do not plot small values of || < 100 GeV which are excluded by the direct searches
for charginos and neutralinos). The structure of cancellation areas is more complicated,
but again the “blind spots”, where the bounds on MI’s disappear, exist only for A}%R. As
expected from the form of X ;3’;,1 in eq. (E.4), the bounds on A}, A’'2 are at leading order
independent of the p parameter. They are also correlated with the bounds displayed in
lower plots of figure 8, as for a fixed slepton mass and varied My the coefficient X %{1 is
now proportional to

Clg({m, m},MQ) = (5.8)

so that again the bounds saturate for small x5 and fall like 1/z2 in the opposite limit.
Similar plots constraining 13 and 23 mass insertions have almost identical shape; the

bounds are just rescaled by constant factors. The bounds on A} and A, (A% and A%y)

are approximately 550 (650) times weaker than the bounds on A};QL and A}%R, respectively.
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Figure 10. Upper bounds on the LFV parameters using the current experimental limit on the
Br(pu — ev) for degenerate slepton masses M = 800 GeV as a function of mass splitting between

the gaugino and the p related parameters, x,, = /M, xo = My /M = My/M.

The bounds on Af}fl) and A/Ll;(m) (Ai?}fm and A/Lz;(?ﬂ)) are respectively 9000 (11000)

times weaker than the bounds on A?gl) and A’L%@l)_

5.3 Correlations between LFV processes

The correlations between various leptonic decays, in particular radiative and 3-body
charged lepton decays, are important for designing new experiments searching for the LFV
phenomena. In the photon penguin domination scenario the ratio of decay rates for both
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processes is given by the simple formula:

Br(¢ — 30')  aem m? o u
Br({ — (') ~ 3m ms  4)

(5.9)

In this case the decision which measurement is more promising depends purely on exper-
imental accuracy achievable for each of them. However, other types of contributions, like
Z-penguin and box diagrams, can modify the ratio (5.9). Such contributions may be par-
ticularly important for a “blind spot” scenario, like the weakened limit on Agp for some
ratios of slepton and gaugino masses.
In figure 11 we plot the quantity Ry defined as
Rep — o;)em (10 m? 11) Br(¢ — ('y)

m%, 4 Br(¢ — 3¢')’

(5.10)

as a function of the SUSY mass splittings, in the same scenarios as described in figure 8 and
figure 9. We assume non-vanishing A?L and A}QQR terms. For LR terms, both holomorphic
and non-holomorphic, a photon penguin dominated scenario is always realised and Ry is
very close to 1.

As one can see from figure 11, radiative and 3-body decays are almost always closely
correlated, with Ryp differing from 1 by a few % at most. Exceptions are only possible for
parameter combinations for which Br(¢ — ¢+) becomes small due to cancellations or some
other type of suppression, like in scenarios with large mass splitting (compare figures 8
and 9). Simultaneously, Br(¢ — 3¢') is given by the more complicated expression (3.11),
which in the limit of small photon penguin contribution becomes the sum of positive terms
and cannot vanish. Thus, although both decays are usually strongly correlated and only
relative experimental sensitivities decide which of them has better chances to discover
generic LFV effects mediated by the slepton sector, for some particular ranges of MSSM
parameter searches for 3-body charged lepton decays are a safer choice, allowing to avoid
blind spots appearing for such setups due to the suppression of £ — ¢/~ decay rates.

5.4 Non-decoupling effects in LFV Higgs decays

LFV Higgs decays in the SM are absent at the tree level and strongly suppressed also at
the loop level. Examining LFV Higgs boson decays within the MSSM is very interesting
because, contrary to other processes discussed in this paper, some contributions to the Higgs
decay amplitudes proportional to the lepton Yukawa couplings or to the non-holomorphic
trilinear slepton soft terms do not decouple in the limit of heavy SUSY masses and can be
potentially large.

As can be seen from tables 5, for an average SUSY mass scale of M = 400 GeV and
the parameter setup of eq. (5.3) the upper bounds on the flavour violating parameters from
Higgs decays are much weaker than from the other processes. However, the bounds from
Higgs decays on the Al A%% and on the non-holomorphic LR terms A/LII‘% do not scale
like 1/M?. Thus, comparing the limits on A/Ll% and Algf’z entries from h — ¢ and £ — ('
decays one can check that e.g. for tan § = 20 and

1.5
Mgusy 2 ———— TeV, (5.11)

| cos(a — B)]
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Figure 11. The ratio Ry as a function of the mass splitting between left and right slepton masses
(upper row) and between the selectron and smuon masses (lower row) for M = 800GeV as a
function of the normalised slepton masses zr,(g) = mrr)/M and xa) = me)/M.

the latter are becoming weaker. For A,Llf{ the same occurs at a much higher scale

220
Msygy > ———  TeV. (5.12)

| cos(a — )|

The bounds on Ai‘i, Aﬁ% are obtained assuming that the flavour diagonal A terms van-
ish, so that all non-decoupling LL. and RR contributions are proportional to the Yukawa
couplings (see eq. (E.23)). In this case the Higgs decays become most constraining for
slightly higher SUSY scales, again for tan § = 20 and « angle of eq. (5.4) bounds on Ai{;
and Afé{ from Higgs decays become stronger than the bounds from ¢ — ¢+ decays for
Msusy 2 2/+/| cos(a — B)| TeV for 7 transitions, Msusy 2 3/+/| cos(a — B)| TeV for Te
transitions and Msysy 2 200/+/] cos(a — B)| TeV for pe transitions.
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Figure 12. Dependence of function g(zr,zg) of eq. (5.15) on the splitting between the slepton
and bino masses.

The Higgs decays in supersymmetric extensions of the SM have already been studied
e.g. in [84, 102-109]. In this section we analyse within the general MSSM the decays of the
lighter CP-even Higgs boson h. The mass eigenstates formulae for the MSSM contributions
to the effective leptonic Yukawa couplings of h are given in egs. (2.14)—(2.16) while the
relevant MI expressions are collected in appendix E.3. The potentially largest contributions
to h — £¢' decays come from the effects non decoupling in the limit of large SUSY masses
and proportional to non-holomorphic trilinear terms (see eq. (E.22)). Assuming that flavour
violating A)’7 terms are the only source of LFV and using eqgs. (3.4), (E.22) and (A.8), one
can write

e*tMy,  cos?(a—
819275¢y, I, cos?f3

/8 ! !
Br (h—)ﬁlﬁj) ) 9(%e,,,%en,) ‘AU’ +9(xe, ,,%epn,) ‘A‘H’ ,
(5.13)

where «, 5 are the mixing angles in the Higgs sector (see appendix A), the dimensionless
mass ratios are

Mep ryr
Termr = M| ) (5.14)
and we defined
g(fI;,y):—va’y CO($7y7]-)' (515>

As can be seen from of figure 12, for reasonable mass splittings g(z,y) ~ O(1) and,
inserting the numerical values of known quantities, one has

2
177y o 104 Co87(@ — 1I(JT)
Br(h— 10 ~ 21074 =2 5 (A ‘ . (5.16)

Even if for large SUSY mass scale AILIé insertions are not constrained experimentally by
other LFV measurements, Br(h — ¢/¢7) cannot be arbitrarily large in the MSSM because
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A/Llé are constrained to O(1) by the vacuum stability conditions and the requirement of
the absence of charge and colour breaking (CCB) minima of the scalar potential (see e.g.
discussion in [110]).

The Higgs mixing angle « is subject to strong radiative corrections from the squark
sector and thus from the point of view of pure leptonic sector can be treated as a free
parameter. However, the allowed values of the Higgs mixing angles «, 3 are limited by

the existing experimental constraints (see e.g. figure 6 in appendix B of ref. [107]), thus
cos?(a—p)
cos2 3

maximal Br(h — ¢/¢7) which can be generated with the non-holomorphic trilinear terms

also the overall pre-factor in eq. (5.16) can be at most O(1). Summarising, the
is O(107%), not much below the current experimental sensitivities collected in table 2
(including decoupling contributions does not change this conclusion even for a light SUSY
spectrum [106, 107]). Further searches may therefore find the effects of non-holomorphic
trilinear terms or provide stricter bounds on them.

Similar analysis could be done for non-decoupling contributions proportional to Ai‘i
and A{%‘% parameters. However, in this case non-decoupling terms are proportional also
either to the diagonal A] soft terms or to lepton Yukawa couplings, so the formulae become
complicated and a more involved numerical analysis is required. Terms proportional to
Ai‘i and Aé‘% multiplied by diagonal A] terms can generate similar LFV Higgs decay
rates as the flavour off-diagonal non-holomorphic Aj-terms. However, assuming that all
non-holomorphic terms vanish, and including only the Yukawa suppressed contributions
one has a much stricter bound Br(h — ¢/¢7) < 1074(Y;!)? in the MSSM.

For a complete phenomenological analysis of LF'V Higgs decays in the MSSM one would
need to go beyond the one-loop analysis of this article. First, one would need to perform
the matching of the MSSM on the 2HDM with generic Yukawa couplings including the
resummation of the higher order chirally enhanced effects (see for example [54-56]). Then,
one has to calculate the loop effects for flavour observables within this generic 2HDM [111].

6 Conclusions

New precision data in the lepton flavour sector are expected to come in the foreseeable fu-
ture. The search for beyond the SM effects will require precision and efficient calculations
in various BSM models. In this article lepton flavour violating processes within MSSM have
been calculated using the Flavour Expansion Theorem, a recently developed new technique
of a purely algebraic mass-insertion expansion of the amplitudes [31]. Both flavour-violating
off-diagonal terms and flavour-conserving mass-insertions are considered. The expansion
in the flavour conserving off-diagonal mass terms leads to a transparent qualitative under-
standing of the coefficients in front of the flavour violating mass insertions (see eq. (4.2)) in
various decoupling limits. Most flavour violating one-loop amplitudes decouple as v*/M?
where M is one of the soft SUSY breaking mass parameters. The exception are the Higgs
flavour violating decays where the amplitudes decouple as v? /Mi We find that our full MI
approximation, both in flavour violating and flavour conserving off-diagonal mass terms is
an excellent approximation to the calculations in the mass eigenstates basis for a very broad
pattern of supersymmetric spectra, in particular for highly non-degenerate spectra. This is
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useful because in the MI approximation we work directly with the Lagrangian parameters
and can constrain them with experimental limits.

On the physics side, the considered processes are: £ — 0'y, £ — 30, £ — 200" h — o'
as well as p — e conversion in nuclei. The bounds on the flavour changing parameters of
the MSSM have been updated and their sensitivity to the forthcoming experimental re-
sults in different channels has been discussed. We have emphasised that, given the foreseen
experimental progress, precision measurements of different processes have very different po-
tential for the discovery of supersymmetric effects. The radiative and leptonic muon decays
are likely to remain the most important source of information on supersymmetric LFV.
The leptonic decays play a complementary role to the radiative ones in eliminating some
“blind spots” of weakly constrained by the latter LFV mass insertions. This is illustrated
in sections 5.2 and 5.3. Our complete analytical MI expansion facilitates the investigation
of the LFV processes when the SUSY spectra are non-degenerate and finding such “blind
spots” with suppressed branching ratios and regions of correlations between various pro-
cesses. This is illustrated in sections 5.2 and 5.3. The LFV Higgs decays are discussed in
some detail. For the supersymmetric spectrum of order of 1 TeV, the current experimental
limits on the LF'V Higgs decays give several orders of magnitude weaker bounds on lepton
violating MI than the radiative lepton decays. However, for the superpartner masses of
several TeV Higgs decays provide stronger bounds than the latter because the bounds from
Higgs decays do not scale with superpartner masses. We have also analysed the role of the
so-called non-holomorphic A-terms in the flavour-violating Higgs boson decays, which can
give branching ratios not much below the present experimental sensitivity.
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A MSSM Lagrangian and vertices

Throughout this article we use the notation of refs. [43, 44] which is very similar to SLHA2
conventions [45], up to minor differences listed in table 6.

For completeness, we collect here the definitions of the mass and mixing matrices for
the supersymmetric particles and the relevant MSSM Feynman rules. The slepton and
sneutrino mass and mixing matrices are defined as:

2
A <M§L + MZC208251> Z, = diag (m2, ...m2,) (A1)
M2 M3 ,
Zz ( ZL)%L ( QL)LR Z1, = diag (m%1 m%6) , (A.2)
(M3),p (ME)
LR RR
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SLHA2 [45] refs. [43, 44]

Ty, Tp, Tk —AT 4 AT AT
mé, m% mQQ, m%

g, g, mp | (mp)", (mp)"s (mg)"
M3, M3 (ME)T, (MD)T

Table 6. Comparison of SLHA?2 [45] and refs. [43, 44] conventions.

M2 cos 23 . v2Y?
(M), = (M) + == -2l + =05, (A3)
MZ2cos2B , . v3Y?
(M1) g = Mar — —2——sivl + 55, (A4)
1 /
2 _ *
(M) = 5 (20" = 4) +wir) (A.5)
where, as usual, we use tan 8 = v9/v; and MEL, MI%R, Ay, A;, Y; = —/2my /vy are 3 x 3
matrices in flavour space.
The neutralino and chargino mass and mixing matrices can be written down as:
Moo g g
0 M- evq _ev
Z5| en oen BBV | Zy =diag (myg. . omyg) (A.6)
T 2ew 2sw 0 —H
e “2sp M0
M2 evy .
(Z—)T ( evy V2ow > Z+ = diag (mxnmm) : (A'7)
V2sw H

We also use the following abbreviation for the matrix Zr parametrizing the mixing in the

ZR _ (cosa —sma) . (AS)

CP-even Higgs sector:

sina  cosa
Below we list the vertices used in calculations of the LF'V processes expressed in terms

of the mixing matrices defined above.

1) Lepton-slepton-neutralino and lepton-sneutrino-chargino vertices (for an incoming
charged lepton of flavour I):

Ve = e 2@ sw + Ziew) + V12 2

Vi o= TR AL v

Vi = S g

Viseln = =Y/ 227 7K. (A.9)
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2) Z-chargino and Z-neutralino vertices:

Vien = T2 : (Z}ri*Z}rj + 6% (cly 8‘2”)> ’
SWCW
VCi'jCZR ~ 9 : (ZEZP* + 69 (cly — 5%4/)) ’
’ swew
3 y o e
Vilngr = —Vinsr= 723w0w (2823 - 23237 . (A.10)

3) CP-even-Higgs-slepton and CP-even-Higgs-sneutrino vertices:

3

vEil _ Z e? (1 ZHE — 0y 235) 5¢1+1—43124/Zc¢*zoz

HLL = 22 V14 R U2 28‘24/ L 4L
Cc=1

— (VO 2 2 (265 260+ 7\ 7 (O3
_Zyr
V2

3

1 C C D+3)i C Ci D+3)l
V2 Z (Z}%K(Al Dx gz PO 4 APD 78 7P
C,D=1

— 72K( A;CD* Z¢! Z£D+3)i* i A;CD 7§ Z£D+3)l)) 7

(YO 26 Z(c+3)z YOzl Z£C+3)i*)>

2
e
Vil = —m(vlz}{( — 02 ZF)oLr - (A.11)

4) CP-odd-Higgs-slepton and CP-odd-Higgs-sneutrino vertices:

. 3
le[{L = ZCO\/iﬁ Z ((AZCD* tanﬁ + AECD* _ }/[CH(SCD)Zng£D+3)“
C,D=1

— (ASD tan g + AECD _ YlC’M*5CD)Zg’z‘*Z](:D+3)J') ’
VLI — . (A.12)
5) CP-even-Higgs-neutralino and CP-even-Higgs-chargino vertices:
V&II(}NL = VJiTII(-I]tfR m ((Z Z Z%KZ?\%)(Z}VZ'SW - ZZQ\;CW)
V(273 72K 7y (2, — ZNCW)> ,

VzKl VzKl *

cHC,L = YCHC,R = \[SW (Z Kz¥zi + 7% Z“ZQZ> (A.13)

6) CP-odd-Higgs-neutralino and CP-odd-Higgs-chargino vertices:
2

1 * _'L.e 37 A4 . .
VNI}XNL = VJ%NR m ((U2Z]\; - UlzNJ)(ZJI\;SW - ZJ2\;CW)
w€
+ (0 ZF — 0 28N ZN sw — ij\?cw)) ,
. 92
Vil = Vil = O (4,22 ZY 4y 227, A.14
CAC,L CAC,R — 2\/5512/VMW( 2 + 1 +) ( )
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7) Z-slepton vertex:
Vidg =5 (2872} — 253,67) . (A.15)
2SWCW

B Loop integrals

We define the following loop integrals for 2-point and 3-point functions with non-vanishing

external momenta p and g:

4 d*k 1
WBO(pﬂnl,mz) = / (2m)4 (k2 — m%)((kz )2 - m%) )

é d*k k
WpuBl (p7 miy, m2) = / (27T)4 (k‘2 — m%)((kﬂ_ p)2 — m%) y (Bl)
{ d4k; (k;2)n

)

——5Con(p, q,m1, M2, m3 —/

(amp Ol )= | G (Gt R (kT o+ g =)
7

@y (uC11(p, g, m1,m2,m3) + q,Cr2(p, g, m1, M2, Mm3))

(4w

B d*k ku
a / (2m)* (k2 = m3)((k +p)? —m3)((k +p +q)* —m3)
In our expanded results we need only the integrals above, their derivatives and higher
point 1-loop integrals calculated at vanishing external momenta. Let us define

i d*k (k%)™
L (my,...,m;) = . : (B.2)
™ 2 T 4 4

In common notation Lg" = Cop, Li” = Do, L%n = FEy, etc.

For ¢ > 3 one has:
2

. m=
0 ¢ mj2 log m—%
Li(ml,...,mi):— i N
=1 2 md)
k=1,k#j
4 2
v m’ log —%
J
L (my,...,m;) = i U (B.3)
=2 1 (mf—mp)
k=1,k#j

(with the exception of L3 = Cy having also an infinite part, which however is always
cancelled out in flavour violating processes and is thus not given here explicitly).
To simplify our formulae, we use the relation
2L?(m1,m2, ceo,my) = L?H(ml, mi, ma,...,m;) + L?H(ml,mg, ma, ..., M;)
+ o LR (ma, . mysr, M, ) (B.4)
which can be obtained by differentiating with respect to A the integral form of the homo-

geneity property
Lg()\ml, ey )\ml) == )\4_2iL?(m1, ceey mz) y (B5)
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and using the relation (k =1,...,1%)

miL?H(ml, ey MUy My e, T = L?H(ml, ey MUy My e M)
—LQ(ml,...,mk,...,mi). (Bﬁ)

In addition, we define the following integrals:

9Co(p, g, m1, ma, m3)
2
dq p=q=0

2(m —m3)(mi — m3)(m3 — m3)? '

C(/)(mla ma, m3) =

m{log % mi(m3 — 2miIm3 + mim2) log Z—%
T wdRm —md? | 2(md—mdP(md—m3)P
Ci1(ma, mg) = _4(”;3%__325)2 2<m%ﬂ1§m%)3 log ;Z% 7 (B.8)
Cotmmn) =gk~ L e ()
Catmm) = B ¢ e (10
Co1(m1,mg) = il ;ﬁifnrg%_mi;:slﬁm% m%ﬁ((;j;l_% ;%Q)T%) g :g , (B.11)
Cutmyom) = B2 o T 12

C Divided differences

The expansion of the amplitudes given in the mass eigenbasis in terms of mass insertions
can be naturally expressed [31] by the so-called divided differences of the loop functions.
In case of a function of a single argument, f(z), divided differences are defined recur-

sively as:
@) = fla),
M(a,y) = ~ (:2 = 5[0}(3/) :
1 _
(g 2) = f”(w?y;_ﬁ”(x&)’

(C.1)

As can be easily checked, a divided difference of order n is symmetric under permutation
of any subset of its arguments. It also has a smooth limit for degenerate arguments:

f[k](x(]w"?xk) = L0

' —m ST C.2
- s Imy, e, TE) .
{z0,...stm }={&,....£} m) agm ({S +1 k;) ( )
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To compactify the formulae for functions of many arguments, we use the notation

¥z, . aw) = f(xo, - k), (C.3)

where the order of the divided difference is defined by the number of arguments inside
curly brackets. Then, for example a divided difference of the 1st order in the 1st argument
and of the 3rd order in the 2nd argument for the function of 3 variables, g(x,y, z), can be
written down as:

g({z1, w2}, {y1, Y2, 93,94}, 2) . (C4)

For the loop functions defined in appendix B one should note that their natural arguments
are squares of masses. However, we use m;’s instead of m?’s to compactify the notation.
Thus, for loop functions we write divided differences as

L(imy,...,mi,...,mp) — L(my,...,m.,...,m
L(my,....,{m;,mi},...,my) = (m1 ! n2) §2 ! ! n), (C.5)
m? —m,

with squared masses in the denominator.

The FET expansion works for any transition amplitude, also in the case of non-
vanishing external momenta or for multi-loop calculations. However, it is particularly
effective for 1-loop functions with vanishing external momenta, due to the fact that the
notion of the divided differences is naturally encoded in the structure of such functions: a
divided difference of a n-point scalar 1-loop function is a (n+ 1)-point function (see eq. 3.13
in ref. [31] for generalisation to the case of non-vanishing external momenta). Thus, for
example one has

Bo(m1,{ma,m3}) = Bo({m1,ma},m3) = Co(m1,ma, m3)

Bg(ml, {m27m37m4}) = CO(m17m27 {m3am4}) = Do(ml,m27m3’m4) (CG)

We use such relations extensively to find cancellations between various terms and to identify
the lowest non-vanishing order of mass insertion expansion for a given process.

D Box diagrams in the mass eigenstates basis

There are four types of box diagrams with four external leptons involving slepton (sneutri-
nos) and neutralinos (charginos) in the loop, displayed in figure 13. Both chargino-sneutrino
and neutralino-slepton pairs contribute to diagrams A) and B), while only neutralinos (Ma-
jorana fermions) can be exchanged in the “crossed” diagrams C) and D).

Using whenever necessary Fierz identities, the amplitudes describing each of the dia-
grams N = A, B,C, D can be brought into the form

iAEE =i Y B S%y[u(ps)ToPxu(pn)][i(px)ToPyo(pr)] (D.1)
Q=V.8,T

with I'y = «#, I's = 1 and I'r = 04,. Note that for I'r only the case X = Y is non
vanishing. Assuming that the generic couplings for an incoming lepton ¢! - an incoming
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lK

C)
Figure 13. MSSM box diagrams with 4 external charged leptons.

scalar particle S and an outgoing fermion f; takes the form
iVt =i (AlkiP+ Bl Pr) | (D.2)

the contribution from diagram A) in figure 13) to the Wilson coefficients Bgxy can be
written down as:

L Tki qJiis g Kkjx 4L
(4m)* B = ZAZ{S?AL{SZJ‘ Aysi " Aysy D2

1 ) .
2nJIKL Ik Jlix pKkjx Ll
(4m)"Ba'virr = | BisyBisy Byg{" Bysy Dz,
1o . 4
92 HJIKL ki g Jlix pEkj* LI
(4m)°Ba'vig = ZAZSZfAESZf Bys{ By} D2,
1 o
2 HJIKL Thi oJlis 4 Kkjx 4L
By viL = ist;BIiSlf Ays? Aysy Da,

2 JIKL _ Alki pJlix pKkjs 4Llj
Bi'set = AusyBisy Busy Agsympmy; Do,

= =
a2

2 RJIKL _ plki g Jlix gKkj* pLlj
By'srr = BisgAist Avsi Begympmyg; Do,

(4m)

JIKL ki pJlis g Kkjx pLlj
(4m)*BA'$'R = ALy BT Aysy " Bygymymy, Do ,
(4m)

i i Kkj* 4Llj
Am)? B = ng}AZ{éZJfBESfJ AZijmfimijO’
(4m)*BATL =0,
(4m)*Bi'Tw =0, (D.3)

where Dg, Do above are the abbreviations for 4-point loop functions with respective mass
arguments, Do = Do(my,, my;, ms,, ms,), Do = Da(my,, mys,,ms,,mg,) (see appendix B).
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Using the same notation, the contributions from diagram B), C), D) are:

1 .. . . .
JIKL ki A Jkje 4 Klix 4Ll
(4m)* B = ZAZS?AZS} Ay Aysy D2

1 o o o
2 pJIKL i ki o Klix oL
(4m)°Bg viEr = EBZS}BZSJz Bsf BysyD2,

(4m)? Bt = —%A%?AZ?}*BZI%?*B%?WW& Dy,
() BISh, = 3 BIK BLT Al AHmymy, Do,
(4m)’BEE = —%A%?Bé]ﬁ*Bg?*Aelei«mﬁmfj Dy,
() Bk = — BIS AL AIy B g, Do
(4m)* BY Kl = 5 ALK} BIST AL B Dy,

(4m)? BYISh, = — 3 Bk ALY BI ALY, D,

(42 BE = —S Al B BIS Alm g, Do,
() Bk = — < BI ALY AIy B my, Do

1 ) , ) )
9 HJIKL Tki Ll qJljx g Kkjx
(4m)°Bovin = 514@5?14@53“4@5? Agg mypmy Do,
1 ,
2nJIKL Ik Ll Jljx n Kkj*
(4m)°B&'vRR = §BES}B€SZJ‘B€S]f Byg7 mygmy; Do,
2 KL ki gLli pJlje 4Kk
(4m)° B vig = ZBZS}AZSZJ‘BKSJ;AZSJ‘]*DZ ;

2nRJIKL Ik Ll Jlj*x pKkj*

1 e o : )
JIKL Iki gLli pJljx pKkj
(4m)*BE'§7, = _QAZS?AZSZ”BKS])” Bygf mygmy, Do,
1 v o . .
2 pJIKL Tki pLli g Jljx 4 Kkjx
(4m)°BZ spr = ) ZS}BESZJ‘AZS]f AKSfJ mygmg; Do,

(a2 B = 3 BI8G A ALY B D2,
(1) Bty = S AV BB AR Da.
() BYE = AL AR B BI mgmy, Do
() Bk = S BIE By A5 AL mymy, Do,
(1) Bk, = A AR ALY A mgmy, Do,
(4m)*BY ki = 5 BIE BB B mams, Do,

. , A
2 B JIKL Tki ALl pJkjx yKljx
(4m)°Bpvig = _ZBZS}AZSlfBZSJ% Ayst Dz,
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1 ) ) ) .
JIKL Iki pLli AJk Kl
(4W)2BD VRL — *ZAESECBKS?AM}*B(S;*D?’

(4 BYISh, = — 5 ALK AR BIS B mymg, Dy
(4 BY Sk = — B B ALY A mgmg, Do
(42 B bt = — 5 BT A A% B Da.
(a2 B8 =~ AL BB AL Da.

1 .. . . .
JIKL ki gLli pJkix pKljx
(4m)* B = gAés}AzSZfstff*st} mgmyg Do,
1 . . . .
JIKI, Iki pLli 4 Jkj* 4Kl

To obtain the actual MSSM contributions to the 4-lepton operators, one should add
terms from egs. (D.3), (D.4) with replacements f — C,S — 0, Aysy — Vipc,n, Besy —
Viscor and f — N, S — L, Agsy — VeiN,Lv Bysy — VzLMR (summing over repeated indices
of loop particles) and terms from eqgs. (D.5), (D.6), substituting there only f — N,S —
L, Ausy = Vipn,o Besy = Viiw r-

The contributions to 2-quark 2-lepton operators can be obtained from diagrams A)
and C) by replacing ¢x and ¢;, with gx and qr, as defined in eq. (2.28). Therefore, the
expressions for B, gxy can be obtained replacing vertices of leptons (X and ¢* by the
relevant quark-squark vertices. Such vertices are not listed in appendix A but can be
found in refs. [43, 44]. The explicit form of ¢¢dd box amplitudes can be also found in
appendix A.3 of ref. [112].

E Effective lepton couplings in the leading MI order

We list below the MI expanded expressions for the leptonic penguin and box diagram ampli-
tudes. For penguins we follow the decomposition of eq. (4.2), with Fxy denoting functions
of flavour diagonal SUSY parameters multiplying the respective slepton mass insertions:

1
(4m)?

1J 1J 1J 1J JI
Fy' = (FX r ALL T FX rr ARR
1J JI 1J 1Jx 1] JI 1] 1%
+ Fx arr ATr + Fx rr AR + Fxarr Ak + Fx'Brr ALR ) - (E1)

To compactify the notation, we also introduce the abbreviation

- II JJ

W = (030" (043,) (5.2
where X,Y = L or R.
E.1 Lepton-photon vertex

E.1.1 Tensor (magnetic) couplings

After performing MI expansion, one can see that terms coming from F, 4 in eq. (2.4) are
always suppressed by the powers of lepton Yukawa couplings or lepton masses, and may
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add to or cancel terms generated from F,7p, Fygp. Thus, in the expressions below we give
the sum of both types of contributions.

The chargino contributions contain only terms proportional to LL slepton mass inser-
tions (see appendix C for the notation of divided differences and curly brackets around the
function arguments)

(Fy )t = SOYE T (1M sy o
Y LL)C - 2\/582 LL 11(‘ 2’7{myl7mllj})
w

+ Cu(lp|, {ms,,ms, }) — Cos(|Ma|, {my,, ms, })
(Il + 1M + 207 M3 tan 8) Cus ({lpal, [Ma [}, {may s, 1)) (B:3)

The non-vanishing neutralino contributions are:

2

JI e -

(F’y LL)N = 202 Mii <Mf012({méLI’méLJ7méRJ}7 |M1D (MI%R)JJ
w

2
- 5o (B Cualtme e ) i) = Costhme ey, . 1)
- 012({m€L17méLJ}7 |M|) - 023({m€LI7méLJ} |M1D

(|M2|2 + :“*M2 tanﬁ) 012({meLI’m€LJ} {W‘ |M2|})
W

(ML + M tan B) Cas(mey may, 3. (. |M1|}>>) (£.4)

2
JI e =
(F’Y RR)N = 92 Ml{ﬁ]% (Mfcw ({méLl7méRI’méRJ}7 | Mi]) (M%R)H
1%

v
- 715YLI (012 ({méRI7méRJ}? ’M’) - 2023({méRI7méRJ}7 ‘M1|)

+ (‘Mlyz + M*Mf tan/@) 012({méRI7méRJ}7 {Nv ‘M1|})))

2
Jr U1 JI €71 -
) = _072 ( 4 ALR) = Mi‘{% Mfcw({méu?mé&]}v ‘M1|)

N 2\@0124/

(Fy aLr

E.1.2 Vector couplings

Loop functions Cp; and Cpe appearing in eq. (2.6) scale with the inverse of the squared
SUSY scale M?. Thus, only LL and RR terms contribute to the MI expanded expressions
at the v2/M? order, as LR mass insertions always come with additional v/M powers. The

non-vanishing chargino and neutralino contributions are:

2
e _
(V'yL LL)éI - STM[I,i 001(|M2‘7 {m1717mDJ}) (E5)
2
Vo o)y = ~ 52 ——5 M7 (cfy Coa(|Mal, {me,,, me,, }) + sty Coa(IMil, {me,,, me, , })
w W
g 2%

(V3R RR)y Er Coz(| M1, {mep;, mep, }) (E.6)

W

— 492 —



E.2 Lepton-Z° vertex

The leading v?/M&;qy terms in the effective Z¢¢7 vertex defined in eq. (2.7), expanded to
the 1st order in LF'V mass insertions, depend on divided differences of scalar Cy and C 3-
point functions. They can be expressed as higher point 1-loop functions (see appendices B
and C). We give here the expressions using explicitly scalar 4-, 5- and 6-point functions D,
FE and F.

The only non-negligible chargino contribution to Z¢¢' vertex read:

(Fzr 1)l = ———M}E] (Ug Do (| Mz, |p], mgr,mz0)

45W
+ (Ul - UZ)E2(|M2|> |M2‘7 ‘M‘amfﬂv mﬂJ)

1 :
g b+ o P Ea Ml L e i o ms) ) (B0

Neutralino contributions have a more complicated form. They can be written down as:

332
(Fzr 1n)d = 16 ——— M{7 (Xghpa + Xghis + XENLs)
SWCW
3\[
(Fzr 1L = 3 11 (XGNpa + Xohgs + XZNRs) (E.8)
SWCW
3\/>
(Fzr rR)Y = 16 —— MR (Xfhpo + XIhvis + XZNL3)
SWCW
3\f
(Fzr RR)N = P th (XINRr2 + X7 Rs + XZNR3) (E.9)
SWcW
* U *
(Fzr aLr)A = (FzL Lr)N* = _FQ(F/ZL ALR)N = —i(FZL BLR)N
3
[Aa]
= 165305, ML X9
wCw
* U1 (%1}
(Fzr ALr)¥ = (Fzr BLR)N* = —FQ(FQR ALR)N = —FQ(FZR BLR)N
3
e’y -
- ML XL E.10
pp—— LR XZNR1 (E.10)

where we defined

XZNLl \/5(312/VE2(’M1 s mep ;s Mep, Meg,, Meg, )
+ Ey Ea(|Ma|,mey mey s g, meg, ) (ME )Y s
+ Y, (201(M{ sty Do(| M, il me, e, ) — ciyMs Do(|Mal, |ul, me,,, méy, )
— sy (0L M + vap) (Ba(|My |, |ul, me, e, me, )
+ Eo(| M, |pl, [pls mey,, meg, )
+ Ay (v M3+ vap) (Ba(| M|, |ul, me, ,, me g, me, )
+ Ea(|Mal, [pl, [uls me, s meg,))) (E.11)
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JI _
XZNL2 -

JI _
XZNL3 -

JI _
XZNL4 -

JI _
XZNL5 -

JI _
XZNRl -

ﬁ(MzR)bJ(MIZ/R)U(S%/V(FQ(‘Ml|7 Mmer;,Mery, méRJ7méRJ7méRI)
+ F2(|M1‘améu’méu’ MeR s méRHméRl))
+ c%ﬂ/(FZ(’Mﬂ? méLJ7 méL[7méR(]7méR(]7méR1)

+F2(|M2‘7méLJ7méLI’méRJ’méRI7méR1))) (E.12)

V" (M7 )5y (201(M5 sty Eo(IM, ||, mey ,, me,, még,)

— ¢y M3 Eo(|Mal, |ul, mey e, meg,)) (E.13)
— sy (01 M7+ vap) (Fo(| M, il mey Mgy Mg Mg, )

+ Eu([ Myl |l mey, ;s Mgy s Megy, Meg, ) + Fo(|Mal, [pl, [ul, mey,,, mep,, meg, )
+ Sy (V1 M3+ vap) (Fa(|Mal, |ul, mey e, Mg, e, )

+ Fo(|Moal, |u],mep ;s mag, Mg, meg,) + Fa(|Moal, |p], [l me, ,, meg,, meg, )
(v — v3)
V2t

+ 253y ¢y Re (MyM3) Eo(|M, [ M|, ||, me, ,me, )

— sy (Bo(|Mu, [ M, il mey s me,,) + Ea(IMl, |pl, ], mey, me, ;)
— ciy (Ba(|Mal, [Mal, |ul, me, ,,me,,) + Ba(|Mal, |ul, |l me,,, me,,)
+ 28y ciy Ba(|My|, | Ma), |ul, me, ,,me,,)

1
+ sty (lu® = (M) B (| M|, [My, |pl, |l me,, ,me, )

(S%/VDO(’Mﬂ? |/L|a mep ;, méLI) + C?/VDO(|M2‘7 |:U’|7m€LJ7méL1)

2
i (|l = [Mo|*)Fo(|Ma|, [ Mzl |, |ul, mey,, me, ;)
2wﬂ 2 2 21y 2105 [H]s [Hs erJs ELI
+ S%/Vc%/V(’:U”Z — Re (MlMQ*))FQ(’Mﬂ? ’M2‘7 |:u'|7 |I’L|?méL.I7méLI)) (E‘14)

Vi (M R) 71 (2vi(siy My Eo(IMal, |ul, mey, ;. mey, meg, )
— Gy M3 Eo(|Ma), |ul, me, ,, mey;, meg, )

— sty (v M + vap) (Fa(|Mal, |pl, mey ey, Mg, Mg, )
+ Fa(|Maf, |pl, [pls me,,mey s meg,))

+ Ay (1 M3+ vap) (Fa(|Mal, |ul, mey e, Mgy Mg, )
+ Fo(|Mol, |u], [l mey, me, s Meg, )

+ \[2(512/VF2(‘M1|7m5LJ7méu’méuvmémv Mép)

2
+ CIZ/VF2(|M2‘vméLJ7méL1’ Mepr, Megys méRI)) }(MgR)IA (E'15)

Vi (201 My Do(|My |, |l e, mey, )

— (v M{ + vop) (Eo(|Mal, [pl, me, ,, mey,, mag,)

+ Ex([Mal, |l |l me,,, meg,)))

— 2V2 Ey(|Mi],mey, mey s meg s e, ) (M7 g)ir (E.16)
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2(,,2 2
JI V22 (v} — v3)
XZNRQZ 621 : (!M1|2E0(|M1|,!H!»\M\amém,mém)
w

+ EZ(‘Mll’ ’M1|7 |/‘L|7méRJ7méR1)

1
- 5(’M1‘2 - |M|2)(F2(‘M1|7 ’N’a ’N’vmémeémeém)
+ F2(|M1‘7 |:u’|7 |:u‘|’méRJ7méR[7méR])
+ 2E5(|Mal, [pl, |pl, |6l meg, , meg, ) (E.17)
Xé{VRS = YZI(MgR)U (2U1MTE0(|M1’7 ‘/1"7méLI7méRJ7méR1)
- (lel* + UQ:U)(FQ(‘Mlyv ’M’vméu’ méLI7méRJ?méRl)

+ F2(|M1‘v |:U*|7 |lu’|’méLI7méRJ7méRI)))

2
- 2\/§F2(|M1‘7méuv Mepr, Megy Mepr> méRI) ‘(MLQ,R)U‘ (E'18)
X%f\/}M =-2V2 (FQ(’M1|’méLJ’méLJ’méLI7méRJ7méRI)
+ F2(|M1‘7méwvméu’ Mepr, Mepys mém))(M%R)JJ<MIQ,R)i;I (E.19)
Xé{VRS = _YiI(MgR)JJ (2N02E0(|M1‘7 ‘:U*‘améLJ?méLI’méRJ)
— (v MY + vop) (Fo(| M|, | Mal, |pl, Mep g, m5L17méRJ)
+ F2(|M1‘7‘lu"7méLJ7méLI’méRJ’méRJ))) (E.20)

E.3 CP-even Higgs-lepton vertex

The dominant MI terms in the effective CP-even Higgs - lepton couplings (see eq. (2.13))
can be split into four classes,

1
(4r)?

defined as (below we give the sum of neutralino and chargino contributions, the latter
appearing only as single term depending on sneutrino masses in eq. (E.23) and follow
notation of eq. (4.2)):

R = (B + PP+ R + RS (B2

hm

10

1. Contributions proportional to non-holomorphic Aj trilinear terms,'” non-decoupling for

Msysy > v:

2 2K 1K
IJK e ('UlZ - UQZ ) —
(Fina aLr)™" = L B2 M, M Co(|My],me,,,mey,) (E.22)
ﬂcwvl
2 2K 1K
e“(n 25t — vyl _ /
(thd LL)IJK = ( \;%02 1 B )Mii MI(DO(’MI‘ améanémeéRJ)ALJJ
w
2 2K 1K
e“(nZ5t — vl —_ /
(thd RR)IJK = ( \%Cz y . )MII%{? Mf D0(|M1’ ,méLlaméRIaméRJ)ALI]
w1

0For comparison with commonly used notation of the Higgs mixing angles, note that
sin(a — B)/cosf for K =1

72K o 71K = :
(1 Zg v2ZR" )/ cos(a — B)/cos B for K =2
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2. Contributions suppressed by the lepton Yukawa couplings, also non-decoupling for
Msusy > v:

(Fny rp)"7% = —

62

2\/51)1012/‘/8124/
+ 2D0(|M1| 7méLI7méLJ7méRJ)) - CIQ/VMS/L*(DOOMQ‘ ) |/’L| yMeELr, méLJ)
+ 2D0(’M2| ) ‘:u‘ 7ml717m17J))) Ml{i Yl:]

(UIZIQ%K - U2Z11%K) (SIZ/VMTU*(DO(‘MH ) ‘:U" ’méLI7méLJ)

1JK __

€ * K
(th RR) B _m (vlzlz%K - UQZ}%K) Ml:u (DO(’MI‘ amémeéRI?méRJ)
w

- D0(|Ml| ) |M| 7méRI7méRJ)) MII{]]% YL] (E'23)

3. Contributions decoupling as v? /MSQUSY' We neglect here terms proportional to Apy,
ARpg, A ; as they are dominated by non-decoupling contributions listed in points 1) and 2).
Only the terms proportional to Aﬂ% and A#L* are generated starting at order v? /M82USY-
To simplify the expressions, below we also neglect terms additionally suppressed by lep-
ton Yukawa couplings (this approximation becomes inaccurate for large p and tan 8 > 30,
when the diagonal LR elements of the slepton mass matrix proportional to ©Y; become im-
portant).

(thec ALR)IJK = <4U1\/§;L/V512/V ((le}%K - UQZIQ%K)MT(QS%VDOﬂMl’vméLJ? Meégy> méRJ)
— (287 — 1)Do(| M|, me,,, mey,mey,))
+ 201 ZE + 02 ZE) (ciy (M + M3) Ey(|My], |Mal, |pl, me,,, mey,,)
— 283y My Ey(|My|, |My], |pl, me,,, mey,))
+2(02 Z5* + v ZFF) (M p* (el M3 Eo(|Ma, | M|, |ul, me, ,, me, )
— siy My Eo(|My ], |Myl, |pl, me,,, meg,))

+/’1‘(C%VE2(‘M1’7‘M2’7’M’?méL]7méRJ) (E24)
—siy B2 (|Mul, | M, |ul, me, , meg,))))

2,2

e vy

2
Z}EKMI* (‘AlH’ EO(|M1|7méLI7méLI7 Méry> méRI)

V2cg,
2 —
+ }AZU| EO(’M1‘7méLJ7méLI7méRJ7méRJ)) ) \V Ml{é

2,2

ev —
(thec BLR)IJK = - \/EC; Z}%KMTEO(‘MIL meyp ;,Meépr mémeéRI)AZUAi]J \/ MI{II%
w

4. Contributions decoupling as M }%( H) /MSQUsy. Here, we do not show numerically small

terms suppressed by lepton Yukawa couplings or flavour-diagonal A terms:

1JK 62M121K 1K Y
(Fhm ALR) = T;ZR Mikc(/)(’M1|7méRJ7méLI) Mé]]% (E'25)
Gy
where by C{j we denote the derivative of Cj over the external Higgs mass, C} = gﬁ%
h

(see eq. (B.7)).
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E.4 CP-odd Higgs-lepton vertex

For the processes considered in this article, the contribution from the LFV CP-odd Higgs-
lepton vertex can become important only in the case of the three body charged lepton
decays and only in the limit of Mgysy > v, when photon, Z° and box contributions
decouple. Thus, we give here only the dominant non-decoupling terms for this vertex.

1
(42

Fj' = (Fana + FAy + Fip) - (E.26)

As for CP-odd Higgs vertices, we give the sum of the neutralino and chargino contributions,
the latter appearing only as single term depending on sneutrino masses in eq. (E.28):

1. Contributions proportional to non-holomorphic Aj terms:

2

(s aun)®? = =2\ VLR MG Col00] e
(Pt 10)" = =5 M MO s 0, )7
(it )" = = ek M3 DO e e A (B27)
2. Contributions suppressed by lepton Yukawa couplings:
(Fay o) = Qﬁc%;z;/ o5 B (S%VMTM*(DOUMH ul s me,,me; ;)

+ 2D0(|M1‘ 7m€L17m€LJ7m€RJ)) - C%VMSN*(DOUM?’ ’ |,u| 7m5L17m€LJ)
+ 2D0(|M2‘ ) ’:u’ >m1717ml71))) Mlli YI{

- 2
1J 1€
(Fay rr)" = ﬂC%}V COS,@MTM*(DOGMH ’méLI7méRI’méRJ)
_DO(|M1’7|M|7méRI7méRJ)) M}Iﬁ]’% YLI (E'28)

3. Contributions proportional to M3 /M&;qy (see eq. (B.7) for the definition of C)). As
in eq. (E.25) we do not show numerically small terms suppressed by lepton Yukawa cou-
plings or flavour-diagonal A terms:

ie? M? sin -
(Pam ang) 7" = =AM CH M g me M1, (829
w

E.5 4-lepton box diagrams

All genuine box diagram contributions listed in eqs. (D.3)—(D.6) have negative mass dimen-
sion and without any cancellations explicitly decouple like v? /MS2USY. Thus, it is sufficient
to expand them only in the lowest order in chargino and neutralino mass insertions. Also
the LR slepton mass insertions are always associated with additional factors of v/Mgygy.
Thus in the leading v?/ MSQUSY order only LL and RR slepton mass insertion can contribute
to formulae for box diagrams.
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Expressions listed below are valid only for AL = 1 processes, i.e. excluding combina-
tions of indices I = J,K = L or I = K, J = L - for these one would also take into account
flavour conserving diagrams. As mentioned in section 3.3, we do not consider MI expanded
expressions for exotic AL = 2 processes.

The chargino diagrams contribute significantly only to the By, all other contribu-
tions are at least double Yukawa suppressed and very small. The By term is:

4
e _ _
(4m)*Byire = o (Ba(IMal, [Mal,may, mi,,me) (6% F ALy My + 0" AL  MiE)
w

+ E2(|M2’7 ‘M2|7 mpy, ml?KvaL) (5IKAi%MLIIL/ + 5IJA£(I%MII/(LL)) (E‘SO)

Contributions arising from neutralino box diagrams, both normal and crossed added to-
gether, are listed below in egs. (E.31)-(E.36). We do not give here formulae for the
neutralino contributions to Bgsyr, Bsrr, Brr and Brgr, as they are also double Yukawa
suppressed and small.

4
(4n? BUSK = 1o ((KPATLNILY + 5 AN )

e
S
X (3¢ Bo(|Ma|, | Ma|, mé, ,, me, ,,me,,)
+33%VE2(|M1|, | M|, me,,,me, ,,me,, )
— 263y Do(| Mo, mey; mey ey, ) — 285 Dol(| M, mey,,me, 5, me, )
+48%/VC%/V Re (M1 M3)Eo(| M, | Ma|, me,,, me, ,,me,,)
+ 283y ey Ba(|My|, | M|, me ey, mey, )
+ (0TFALLMLE + 6" ALE ML) (Bciy Ba(|Mol, | M|, me,  mey i me, )
+ 35y Ea (M|, | My |, me, My oy Me, ;)
— 2C%D0(\M2], Méy > Mép s Méy, ) — 28%D0(|M1\,mgu, Mép s ey )
+ 4stycly Re (M M3)Eo(| My, |Ma|,me, ,, me, o, Me, . )

+ 2312/VCI2/VE2(’M1‘7 ‘M2‘7méLI7méLK7méLL))) (E'?’l)
4
e _ _
(4P B =~ (6 ATy + K AR (D00 s gy )
w

- 3E2(‘M1’7 ’M1|7méRI7méRJ7méRL))
+ (6JLA52[1(%M]I%IZ$ + '5IJA%Z§M{2<}%) (2D0(|M1‘vmém’ MéRrk> méRL)

- 3E2(‘M1’7‘M1|?m€RI7méRK7méRL))) (E32)
4
[ —
(4W)2B\$ILII(%§V = T4k (5KLAiILM£i(2DO(‘M1|’ Meyr, Méy s Megy,)
w

- 3E2(‘M1’7 ’M1|7 Mepr, méLJ7méRL))
+ 51JA%%II§MII%(I%(2DO(’M1|> méanéRK)méRL)

— 3Eo(| M, [M1], me, ;, Mgy, meg, ) (E.33)
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(47)*Birik =

4
e _
_H(‘SKLA{%%MI{?{%(zDO(’Mlh méRI7méRJ7méLL)
w
— 3B (| M|, | M|, meg, s mep,, me,, )
=+ 51]A51€M£(LL(2D0(’M1|7 Mepry Meépk méLL)

_3E0(|M1|7 ’M1|7méRI?méLK’méLL)) (E'34)

4
e _
(4ﬂ)2BgiIIgJI\} = F(éJLAfl{MilL((QDO(‘Ml |7 Mepr, Mergs méRL)

w
- 3E2(|M1|7 ’M1|7 méL1>méLK>méRL))

+ 6IKA%%]{ZMII€I€(2DO(|M1 lymeL,, MeéRys méRL)
_3E2(‘M1’7 ’M1|7méLI’méRJ’méRL))) (E'35)

et

(477)2ng{%[1§][<[ = T (6JLA5%I12MII%I]§(2DO(|M1 ‘ yMeprs Mepgs méLL)

4
Cw
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