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Abstract: The forthcoming precision data on lepton flavour violating (LFV) decays re-

quire precise and efficient calculations in New Physics models. In this article lepton flavour

violating processes within the Minimal Supersymmetric Standard Model (MSSM) are cal-

culated using the method based on the Flavour Expansion Theorem, a recently developed

technique performing a purely algebraic mass-insertion expansion of the amplitudes. The

expansion in both flavour-violating and flavour-conserving off-diagonal terms of sfermion

and supersymmetric fermion mass matrices is considered. In this way the relevant pro-

cesses are expressed directly in terms of the parameters of the MSSM Lagrangian. We

also study the decoupling properties of the amplitudes. The results are compared to the

corresponding calculations in the mass eigenbasis (i.e. using the exact diagonalization of

the mass matrices). Using these methods, we consider the following processes: ` → `′γ,

`→ 3`′, `→ 2`′`′′, h→ ``′ as well as µ→ e conversion in nuclei. In the numerical analysis

we update the bounds on the flavour changing parameters of the MSSM and examine the

sensitivity to the forthcoming experimental results. We find that flavour violating muon

decays provide the most stringent bounds on supersymmetric effects and will continue to

do so in the future. Radiative `→ `′γ decays and leptonic three-body decays `→ 3`′ show

an interesting complementarity in eliminating “blind spots” in the parameter space. In

our analysis we also include the effects of non-holomorphic A-terms which are important

for the study of LFV Higgs decays.
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1 Introduction

So far, the LHC did not observe any particles beyond those of the Standard Model (SM).

Complementary to direct high energy searches at the LHC, there is a continuous effort in

indirect searches for new physics (NP). In this respect, a promising approach is the search

for processes which are absent — or extremely suppressed — in the SM such as lepton

flavour violation (LFV) which is forbidden in the SM in the limit of vanishing neutrino

masses. The experimental sensitivity for rare LFV processes such as ` → `′γ, µ → e

conversion in nuclei and ` → `′µ+µ− or ` → `′e+e− will improve significantly in the near

future, probing scales well beyond those accessible at foreseeable colliders. Furthermore,

the discovery of the 125 GeV Higgs boson h [1, 2] has triggered an enormous experimental

effort in measuring its properties, including studies of its LFV decays. The most recent

experimental limits on the LFV processes are given in table 2 in section 5.

Many studies of LFV processes within the MSSM (and possible extensions of it) exist

(see e.g. refs. [3–29] and ref. [30] for a recent review). In this article we revisit this subject

in the light of the new calculational methods which have been recently developed [31, 32].

These methods allow for a systematic expansion of the amplitudes of the LFV processes in

terms of mass insertions (MI), i.e. in terms of off-diagonal elements of the mass matrices.

We show that a transparent qualitative behaviour of the amplitudes of the LFV processes

is obtained by expanding them not only in the flavour-violating off-diagonal terms in the

sfermion mass matrices but also in the flavour conserving but chirality violating entries

related to the tri-linear A-terms as well as in the off-diagonal terms of the gaugino and

higgsino mass matrices. This procedure is useful because in the MI approximation we work

directly with the parameters of the Lagrangian and can therefore easily put experimen-

tal bounds on them. We compare the results of the calculations performed in the mass

eigenbasis (i.e. using a numerical diagonalization of the slepton mass matrices) with those

obtained at leading non-vanishing order of the MI approximation, in different regions of

the supersymmetric parameter space and considering various decoupling limits. Of course,

the MI approximation [33, 34] has already been explored for many years as a very useful

tool in flavour physics. However, a detailed comparison between the full calculation and

the MI approximation is still lacking, partly because a fully systematic discussion of the

MI approximation [31] to any order and the technical tools facilitating it [32] have not been

available until recently.

Concerning the phenomenology, we summarise and update the bounds on the flavour

violating SUSY parameters, show their complementarity and examine the impact of the

anticipated increase in the experimental sensitivity. We investigate in detail the decay

h → µτ showing the results in various decoupling limits and analyse the role of the so-

called non-holomorphic A-terms [35–42], which are usually neglected in literature. We also

avoid simplifying assumptions on the sparticle spectrum and assume neither degeneracies

nor hierarchies among the supersymmetric particles.

This article is structured as follows: in section 2 we establish our conventions and

present the results for the 2-point, 3-point, and 4-point functions related to flavour violat-

ing charged lepton interactions in the mass eigenbasis, i.e. expressed in terms of rotation
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matrices and physical masses. Section 3 contains the formula for the decay rates of the

processes under investigation. In section 4 we discuss the MI expansion and summarise

important properties of the decoupling limits MSUSY →∞ and MA →∞. In section 5 we

present the numerical bounds on LFV parameters obtained from current experimental mea-

surements and discuss the dependence of the results on the SUSY spectrum. We also discuss

the correlations between the radiative decays and the 3-body decays of charged lepton as

well as the non-decoupling effects in LFV neutral Higgs decays. Finally we conclude in

section 6. All required Feynman rules used in our calculations are collected in appendix A.

The definitions of loop integrals can be found in appendix B. In appendix C we explain

the notation for the “divided differences” of the loop functions used in the expanded form

of the amplitudes. The expression for the 4-lepton box diagrams and for the MI-expanded

expression of the amplitudes are given in the appendices D and E, respectively.

2 Effective LFV interactions

In this section we collect the analytical formula in the mass eigenbasis for flavour violating

interactions generated at the one-loop level.1 We use the notation and conventions for the

MSSM as given in refs. [43, 44].2

In our analysis, we include the so-called non-holomorphic trilinear soft SUSY break-

ing terms:

Lnh =
3∑

I,J=1

2∑
i=1

(
A

′IJ
l H2?

i L
I
iR

J +A
′IJ
d H2?

i Q
I
iD

J +A
′IJ
u H1?

i Q
I
iU

J + H.c.
)
, (2.1)

which couple up(down)-sfermions to the down(up)-type Higgs doublets. Here, as through-

out the rest of the paper, capital letters I, J = 1, 2, 3 denote flavour indices and the small

letters i = 1, 2 are SU(2)L indices.

2.1 γ − `− `′ interactions

We define the effective Lagrangian for flavour violating couplings of leptons to on-shell

photons as

L`γ = −e
∑
I,J

(
F JIγ

¯̀JσµνPL`
I + F IJ∗γ

¯̀JσµνPR`
I
)
Fµν , (2.2)

The SM contribution to F JIγ is suppressed by powers of m2
ν/M

2
W and thus completely

negligible. In the mass eigenbasis the supersymmetric contributions to F JIγ come from the

diagrams displayed in figure 1. Let us decompose Fγ in the following way

F JIγ = F JIγA −mJF
JI
γLB −mIF

JI
γRB , (2.3)

1Note that these expressions are not valid in the flavour conserving case where additional terms should

be included and renormalization is required.
2The conventions of [43, 44] are very similar to the later introduced and now widely accepted SLHA2 [45]

notation, up to the minor differences summarised in the appendix A.
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lI lJ

γ

L̃kL̃k

Nn
lI lJ

γ

CnCn

ν̃K
lI

lJ
lJ

γ

L̃k(ν̃K)

Nn(Cn)

Figure 1. One-loop supersymmetric contributions to the LF violating effective lepton-photon

interaction (mirror-reflected self-energy diagram not shown).

with

(4π)2F JIγA =

3∑
K=1

2∑
n=1

V JKn∗
`ν̃C,R V

IKn
`ν̃C,L mCnC11(mCn ,mν̃K )

− 1

2

6∑
k=1

4∑
n=1

V Jkn∗
`L̃N,R

V Ikn
`L̃N,L

mNnC12(mL̃k
,mNn) ,

(4π)2F JIγLB = −
3∑

K=1

2∑
n=1

V JKn∗
`ν̃C,L V

IKn
`ν̃C,L C23(mCn ,mν̃K )

+
1

2

6∑
k=1

4∑
n=1

V Jkn∗
`L̃N,L

V Ikn
`L̃N,L

C23(mL̃k
,mNn) . (2.4)

Here, V abbreviates the tree-level lepton-slepton-neutrino and lepton-sneutrino-chargino

vertices, i.e. the subscripts of V stand for the interacting particles and the chirality of the

lepton involved. The super-scripts refer to the lepton or slepton flavour as well as to the

chargino and neutralino involved. The specific form of the chargino and neutralino vertices

VL(R) is defined in appendix A and the 3-point loop functions Cij are given in appendix B.

FγA (FγLB) denotes the parts of the amplitude which is (not) proportional to the masses of

fermions exchanged in the loop. FγRB can be obtained from FγLB by exchanging L ↔ R

on the r.h.s. of eq. (2.4).

Gauge invariance requires that LFV (axial) vectorial photon couplings vanish for on-

shell external particles. However, off-shell photon contributions are necessary to calculate

three body decays of charged leptons. The vectorial part of the amplitude for the γ``′

vertex can be written as

iAJI µγ = ieq2ūJ(pJ)
(
ΓJIγLPL + ΓJIγRPR

)
γµuI(pI) , (2.5)

where q = pI − pJ and ΓJIγL is at the leading order in p2/M2
SUSY momentum independent

and reads

ΓJIγL =
3∑

K=1

2∑
n=1

V JKn∗
`ν̃C,L V

IKn
`ν̃C,L C01(mCn ,mν̃K )

−
6∑

k=1

4∑
n=1

V Jkn∗
`L̃N,L

V Ikn
`L̃N,L

C02(mNn ,mL̃k
) . (2.6)

– 3 –



J
H
E
P
0
6
(
2
0
1
8
)
0
0
3

lI lJ

Z0

L̃k(ν̃K)L̃k(ν̃K)

Ni(Ci)
lI lJ

Z0

Ni(Ci)Ni(Ci)

L̃k(ν̃K)
lI

lJ
lJ

Z0

L̃k(ν̃K)

Ni(Ci)

Figure 2. One-loop supersymmetric contributions to the LFV effective lepton-Z0 interaction (the

mirror-reflected self-energy diagram not shown).

ΓJIγR can be obtained by replacing L ↔ R. Again, the loop functions C01, C02 are defined

in appendix B.

Finally, one should note that for heavy MSSM spectrum the 2-loop Barr-Zee dia-

grams [46] involving the non-decoupling LFV Higgs interactions (see section 5.4) are im-

portant and have to be included [47–52].

2.2 Z − `− `′ interactions

In order to calculate the three body decays of charged leptons as are considered in sec-

tion 3.3 it is sufficient to calculate the effective Z−`−`′ interactions in the limit of vanishing

external momenta. The Wilson coefficients of the effective Lagrangian for the Z coupling

to charged leptons are generated at one-loop level by the diagrams shown in figure 2 and

can be written as

LJI`Z =
(
F JIZL

¯̀JγµPL`
I + F JIZR

¯̀JγµPR`
I
)
Zµ , (2.7)

with

F JIZL = ΓJIZL −
e(1− 2s2

W )

2sW cW
ΣJI
V L(0) ,

F JIZR = ΓJIZR +
esW
cW

ΣJI
V R(0) . (2.8)

Here, ΓZL(R) denote the contribution originating from the one-particle irreducible (1PI)

vertex diagram and ΣV L(R) is the left-(right-)handed part of the lepton self-energy de-

fined as

ΣJI(p2) = ΣJI
V L(p2) /pPL + ΣJI

V R(p2) /pPR + ΣJI
mL(p2)PL + ΣJI

mR(p2)PR . (2.9)

Contrary to the left- and right-handed magnetic photon-lepton couplings, which change

chirality, the Z ¯̀I`J coupling is chirality conserving. Therefore, the Wilson coefficients of

the left-handed and right-handed couplings are not related to each other but rather satisfy

F IJZL(R) = F JI∗ZL(R). In the mass eigenbasis the vectorial part of the lepton self-energy and

– 4 –
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the 1PI triangle diagrams are given by (see appendix A for definitions of vertices V )

(4π)2ΣJI
V L(p2) =

2∑
i=1

3∑
K=1

V IKi
`ν̃C,LV

JKi ∗
`ν̃C,LB1(p,mν̃K ,mCi)

+
4∑
i=1

6∑
j=1

V Iji

`L̃N,L
V Jji ∗
`L̃N,L

B1(p,mLj ,mNi) , (2.10)

(4π)2ΓJIZL =
1

2

2∑
i,j=1

3∑
K=1

V IKi
`ν̃C,LV

JKj∗
`ν̃C,L

(
V ij
CCZ,LC2(mν̃K ,mCi ,mCj )

− 2V ij
CCZ,RmCimCjC0(mν̃K ,mCi ,mCj )

)
+

e

4sW cW

2∑
i=1

3∑
K=1

V IKi
`ν̃C,LV

JKi∗
`ν̃C,L C2(mν̃K ,mν̃K ,mCi)

+
1

2

6∑
j=1

4∑
i,k=1

V Iji

`L̃N,L
V Jjk ∗
`L̃N,L

(
V ik
NNZ,LC2(mLj ,mNi ,mNk)

− 2V ik
NNZ,RmNimNkC0(mLj ,mNi ,mNk)

)
− 1

2

6∑
j,k=1

4∑
i=1

V Iji

`L̃N,L
V Jki ∗
`L̃N,L

V jk
LLZC2(mLj ,mLk ,mNi) , (2.11)

at vanishing external momenta with obvious replacements L↔ R for ΣJI
V R, ΓJIZR.

2.3 LFV Higgs interactions

To compactify the notation, we denote the CP-even Higgs boson decays by HK
0 → ¯̀I`J ,

where, following again the notation of [43, 44], H ≡ H1
0 , h ≡ H2

0 . As usual, we denote

CP-odd neutral Higgs boson by A0.

In order to study h→ ``′ decays precisely, we keep the terms depending on the external

Higgs mass. Therefore, we assume the following effective action governing the LFV Higgs-

lepton interaction:

A`Heff = ¯̀J(kJ)(F JIKh` (kJ , kI)PL + F IJK∗h` (kJ , kI)PR)`I(kI)H
K
0 (kI − kJ)

+ ¯̀J(kJ)(F JIA` (kJ , kI)PL + F IJ∗A` (kJ , kI)PR)`I(kI)A0(kI − kJ) . (2.12)

In addition, to calculate the µ→ e conversion rate one needs to include the effective Higgs-

quark couplings. For this purpose, one can set all external momenta to zero and consider

the effective Lagrangian

LqHeff = ūJ(F JIKhu PL + F IJK∗hu PR)uIHK
0 + d̄J(F JIKhd PL + F IJK∗hd PR)dIHK

0 . (2.13)

However, in this article we consider only the lepton sector and therefore do not give the

explicit forms of Higgs quark couplings. The relevant 1-loop expressions in the same no-

tation as used in the current paper are given in ref. [53] and the formulae that take into

account also non-decoupling chirally enhanced corrections and 2-loop QCD corrections in

the general MSSM can be found in refs. [54–56].3

3Earlier accounts on chiral resummation can be found in refs. [57–65].
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lI
kI

lJ
kJ

HK
0 (A0)

q

L̃lL̃i

N j
lI lJ

HK
0 (A0)

N lN i

L̃j

lI lJ

HK
0 (A0)

N i

L̃j

Figure 3. Slepton-neutralino diagrams contributing to the HK
0 → `I ¯̀J and A0 → `I ¯̀J decays in

the MSSM (the mirror-reflected self-energy diagram is omitted).

At the 1-loop level there are eight diagrams contributing to the effective lepton Yukawa

couplings. The ones with slepton and neutralino exchange are displayed in figure 3, while

diagrams with the chargino exchange can be obtained by the obvious replacements N →
C,L→ ν̃.

The expressions for Fh and FA are obtained from 1PI triangle diagrams and the scalar

part of lepton self-energies (see eq. (2.9)) while the chirality conserving parts of the self-

energies are absorbed by a field rotation required to go to the physical basis with a diagonal

lepton mass matrix. Therefore,

F JIKh (kJ , kI) = ΓJIKh (kJ , kI)−
Z1K
R

v1
ΣJI
mL(0) ,

F JIA (kJ , kI) = ΓJIA (kJ , kI)−
i sinβ

v1
ΣJI
mL(0) , (2.14)

where the ZR denotes the CP-even Higgs mixing matrix (see appendix A) and the scalar

self-energy contributions are evaluated at zero momentum transfer and given by:

(4π)2ΣJI
mL(0) =

2∑
i=1

3∑
L=1

mCiV
ILi
`ν̃C,LV

JLi ∗
`ν̃C,R B0 (0,mν̃L ,mCi)

+

4∑
i=1

6∑
j=1

mNiV
Iji

`L̃N,L
V Jji ∗
`L̃N,R

B0 (0,mLj ,mNi) (2.15)

The neutralino-slepton contributions to the 1PI vertex diagrams can be written as (the

symbols in square brackets denote common arguments of the 3-point functions)4

(4π)2ΓJIKh (kJ ,kI) =−
4∑

n=1

6∑
l,m=1

V Jmn∗
`L̃N,L

V Iln
`L̃N,L

V Klm
HL̃L̃

mNnC0[kJ ,kI−kJ ,mNn ,mL̃m
,mL̃l

]

−
4∑

l,n=1

6∑
m=1

V Jnm∗
`L̃N,R

V Inl
`L̃N,L

(V lKm
NHN,RC2+V lKm

NHN,LmNlmNmC0)[kJ ,kI−kJ ,mL̃n
,mNm ,mNl ] ,

4As we shall see later using MI expanded formulae (see appendix E.3), due to strong cancellations the

leading order terms in eqs. (2.15), (2.16) are suppressed by the ratios of m`/MW or A′
l/MSUSY. Additional

terms linear in m`/MW , not included in eq. (2.16), appear in 1PI vertex diagrams when external lepton

masses are not neglected. We calculated such terms and proved explicitly that after performing the MI

expansion they were suppressed by additional powers of v2/M2
SUSY and therefore, a posteriori, negligible.

Thus, we do not display such terms in eq. (2.16).

– 6 –
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lI lJ

lK(qK)

lL(qL)

Figure 4. Box diagrams with external charged leptons or quarks.

(4π)2ΓJIA (kJ ,kI) =−
4∑

n=1

6∑
l,m=1

V Jmn∗
`L̃N,L

V Iln
`L̃N,L

V 1lm
AL̃L̃

mNnC0[kJ ,kI−kJ ,mNn ,mL̃m
,mL̃l

]

−
4∑

l,n=1

6∑
m=1

V Jnm∗
`L̃N,R

V Inl
`L̃N,L

(V l1m
NAN,RC2+V l1m

NAN,LmNlmNmC0)[kJ ,kI−kJ ,mL̃n
,mNm ,mNl ] ,

(2.16)

while the chargino-sneutrino triangle diagram is obtained by replacing L̃→ ν̃, N → C and

adjusting the summation limits appropriately in vertex factors V ...
... (see appendix A).

2.4 Box contributions

4-fermion interactions are also generated by box diagrams. The corresponding conventions

for incoming and outgoing particles are shown in figure 4. We calculate all box diagrams

in the approximation of vanishing external momenta. The effective Lagrangian for the

4-lepton interactions involves the quadrilinear operators

OJIKLV XY = (¯̀JγµPX`
I)× (¯̀KγµPY `

L) ,

OJIKLSXY = (¯̀JPX`
I)× (¯̀KPY `

L) ,

OJIKLTX = (¯̀Jσµν`I)× (¯̀KσµνPX`
L) , (2.17)

where X,Y stands for the chirality L or R.5 The Wilson coefficients of these operators are

calculated from the box diagrams in figure 4 and are denoted by BJIKL
NXY with N = V ,S,

or BJIKL
TX .

The operator basis in eq. (2.17) is redundant. First, we note that

OJIKLNXY = OKLJINY X for N = V, S,

OJIKLTX = OKLJITX . (2.18)

Second, there are Fierz relations among different operators:

OJIKLV XX = OKIJLV XX ,

OJIKLV XY = − 2OKIJLSXY for X 6= Y,

5Note that the upper L index in box formfactors denotes the sfermion flavor while the lower L subscript

denotes its chirality, even if both symbols are identical. Also, recall that (¯̀JσµνPL`
I)× (¯̀KσµνPR`

L) = 0.

– 7 –
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OJIKLTX =
1

2
OKIJLTX − 6OKIJLSXX ,

OJIKLSXX = −1

2
OKIJLSXX −

1

8
OKIJLTX . (2.19)

Furthermore, we have

OJIKL †V XY = OIJLKV XY , OJIKL †SLL = OIJLKSRR ,

OJIKL †SLR = OIJLKSRL , OJIKL †TL = OJILKTR . (2.20)

Eqs. (2.18) to (2.20) must be taken into account when deriving the effective Lagrangian.

2.4.1 Leptonic operators with J 6= K and I 6= L

The case with both J 6= K and I 6= L covers the decays τ∓ → µ∓e∓`± with ` = e or

µ, but does not appear in µ∓ decays. We can therefore specify to I = 3 for the effective

Lagrangian. Furthermore, we can choose either (J,K) = (1, 2) or (J,K) = (2, 1) without

the need to sum over both cases: the Fierz identities in eq. (2.19) permit to bring all

operators into the form (e . . . τ) × (µ . . . `) (corresponding to the case (J,K) = (1, 2)) or

into an alternative form with e interchanged with µ. Thus we have

LJ3KL
4` =

∑
L=1,2

 ∑
N=V,S

X,Y=L,R

BJ3KL
NXY O

J3KL
NXY +

∑
X=L,R

BJ3KL
TX OJ3KL

TX

+ h.c.

with J 6= K and J,K,L ≤ 2, (2.21)

as the four-lepton interaction in the Lagrangian. Note that the “+h.c.” piece of LJK4`

describes τ+ decays.

The Wilson coefficients BJ3KL
NXY and BJ3KL

TX in eq. (2.21) are simply identical to the

results of the sum of all contributing box diagrams to the decay amplitude. The latter is

given in eq. (3.7) with the coefficients of the spinor structure in the right column of table 1.

The relation to the analytic expressions in eqs. (D.3) to (D.6) is

BJIKL
NXY = BJIKL

ANXY +BJIKL
BNXY +BJIKL

C NXY +BJIKL
DNXY , for N = V, S (2.22)

and an analogous expression for BJIKL
TX .

2.4.2 Leptonic operators with J = K and I 6= L

The case J = K occurs for the decays µ± → e±e±e∓ and τ± → `±`±`∓′ with `, `′ = e, µ.

Thanks to the Fierz identities in eq. (2.19) we may restrict the operator basis to

OJIJLV XX , OJIJLV XY = −2OJIJLSXY , OJIJLSXX = − 1

12
OJIJLTX ,

with X,Y = L,R and X 6= Y. (2.23)
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The four-lepton piece of the effective Lagrangian for the decay `I∓ → `J∓`J∓`L± reads:

LJIJL4` =
∑
L=1,2

 ∑
X,Y=L,R

C̃JIJLV XY O
JIJL
V XY +

∑
X=L,R

C̃JIJLSXXO
JIJL
SXX

 + h.c.

with L, J < I. (2.24)

For the matching calculation it is useful to quote the tree-level matrix elements of the op-

erators:

〈lJ−(pJ , sJ)lJ−(p′J , s
′
J)lL+(pL, sJ)|OJIJLV XX |lI−(pI , sI)〉

= [ū(pJ , sJ)γµPXu(pI , sI)][ū(p′J , s
′
J)γµPXv(pL, sL)]

− [ū(p′J , s
′
J)γµPXu(pI , sI)][ū(pJ , sJ)γµPXv(pL, sL)]

= 2 [ū(pJ , sJ)γµPXu(pI , sI)][ū(p′J , s
′
J)γµPXv(pL, sL)]

〈lJ−(pJ , sJ)lJ−(p′J , s
′
J)lL+(pL, sJ)|OJIJLV XY |lI−(pI , sI)〉

= [ū(pJ , sJ)γµPXu(pI , sI)][ū(p′J , s
′
J)γµPY v(pL, sL)]

− [ū(p′J , s
′
J)γµPXu(pI , sI)][ū(pJ , sJ)γµPY v(pL, sL)]

= [ū(pJ , sJ)γµPXu(pI , sI)][ū(p′J , s
′
J)γµPY v(pL, sL)]

− 2 [ū(pJ , sJ)PXu(pI , sI)][ū(p′J , s
′
J)PY v(pL, sL)], for X 6= Y,

〈lJ−(pJ , sJ)lJ−(p′J , s
′
J)lL+(pL, sJ)|OJIJLSXX |lI−(pI , sI)〉

= [ū(pJ , sJ)PXu(pI , sI)][ū(p′J , s
′
J)PXv(pL, sL)]

− [ū(p′J , s
′
J)PXu(pI , sI)][ū(pJ , sJ)PXv(pL, sL)]

=
1

2
[ū(pJ , sJ)PXu(pI , sI)][ū(p′J , s

′
J)PXv(pL, sL)]

− 1

8
[ū(pJ , sJ)σµνPXu(pI , sI)][ū(p′J , s

′
J)σµνPXv(pL, sL)] (2.25)

Here we have used the Fierz transform to group the spinors into the canonical order

[ū(pJ , . . .) . . . u(pI , . . .)][ū(p′J , . . .) . . . v(pL, . . .)]. This allows us to use the same formula

for spin-summed squared matrix elements as in the case of J 6= K of section 2.4.1.

To quote the Wilson coefficients C̃JIJLNXY , N = V, S in terms of the box diagrams BJIJL
NXY

in eq. (2.22) we must compare the results of the MSSM decay amplitude in eq. (3.6) with

the matrix elements in eq. (2.25) and read off coefficients of the various Dirac structures.

The result is

C̃JIJLV XX =
1

2
BJIJL
V XX ,

C̃JIJLV XY = BJIJL
V XY for X 6= Y,

C̃JIJLSXX = 2BJIJL
SXX . (2.26)

The Fierz identities further imply the equalities

BJIJL
SXY = −2BJIJL

V XY for X 6= Y,

BJIJL
TX = −1

4
BJIJL
SXX . (2.27)
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2.4.3 Leptonic operators with J = K and I = L

These operators do not appear in lepton decays, but trigger muonium-antimuonium tran-

sitions and describe muon or tau pair production in e−–e− collisions at energies far below

MSUSY. Their Wilson coefficients are tiny in the MSSM.

2.4.4 Operators with two leptons and two quarks

The analogous Lagrangian for the 2-lepton-2-quark interactions reads

LIJKL2`2q =
∑
N,X,Y

BIJKL
qNXYO

JIKL
qNXY (2.28)

where

OIJKLq V XY = (¯̀
Iγ
µPX`J)× (q̄KγµPY qL) ,

OIJKLq SXY = (¯̀
IPX`J)× (q̄LPY qK) ,

OIJKLq TX = (¯̀
Iσ

µν`J)× (q̄KσµνPXqL) . (2.29)

Again, we consider only purely leptonic contributions here in detail and do not give explicit

expressions for the 2-lepton-2-quark box diagrams. The relevant expressions in the mass

eigenbasis can be found using formulae of appendix D and inserting proper quark vertices

from refs. [43, 44] into these.

3 Observables

In this section we collect the formulae for the LFV observables in terms of the effective

interactions defined in section 2. All the processes listed here will be included in the future

version of the SUSY FLAVOR numerical library calculating an extensive set of flavour and

CP-violating observables both in the quark and leptonic sectors [66–68].

3.1 Radiative lepton decays: `I → `Jγ

The branching ratios for the radiative lepton decays `I → `Jγ are given by

Br(`I → `Jγ) =
48π2e2

m2
IG

2
F

(
|F JIγ |2 + |F IJγ |2

)
Br(`I → eνν) . (3.1)

Here we used Γ(`I → eνν) ≈ G2
Fm

5
I/(192π3) for the tree-level leptonic decay width and the

factors Br(µ → eνν) ≈ 1, Br(τ → eνν) = 0.1785 ± 0.0005 [69] are introduced to account

for the hadronic decay modes of the τ lepton.

Even though in our numerical analyses we restrict ourselves to LFV processes, we

remind the reader that the expressions for the anomalous magnetic moments and electric

dipole moments of the charged leptons can be also calculated in term of the quantities

defined in eq. (2.4) and read:

∆aI = −4mI Re
[
F IIγA −mI

(
F IIγLB + F IIγRB

)]
, (3.2)

dIl = −2e ImF IIγA (3.3)
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I)

ℓI
pI

ℓJpJ

ℓ̄L
pL

ℓK
pK

II)

ℓI

ℓJ

V

ℓ̄K

ℓK

Figure 5. Diagrams contributing to `I → `J`K ¯̀L decay. I): 1PI irreducible box diagrams; II):

penguin diagrams with V = Z, γ, h,H or A. For K = J crossed diagrams must be also included.

3.2 h(H)→ ¯̀I`J decays

The decay branching ratios for the CP-even and CP-odd Higgs bosons read:

Br(HK
0 → `I+`J−) =

mHK
0

16πΓHK
0

(∣∣F IJKh

∣∣2 +
∣∣F JIKh

∣∣2)
Br(A0 → `I+`J−) =

mA

16πΓA

(∣∣F IJA ∣∣2 +
∣∣F JIA ∣∣2) (3.4)

with F IJKh , F IJA defined in eq. (2.14). Note that summing over lepton charges in the final

state, `I+`J− and `J+`I−, would produce an additional factor of 2.

3.3 `I → `J`K ¯̀L decays

The LFV decays of charged lepton into three lighter ones can be divided into 3 classes,

depending on the flavours in the final state:

(A) ` → `′`′`′: three leptons of the same flavour, i.e. µ± → e±e+e−, τ± → e±e+e− and

τ± → µ±µ+µ−, with a pair of opposite charged leptons.

(B) `± → `′±`′′+`′′−: three distinguishable leptons with `′ carrying the same charge as `,

i.e. τ± → e±µ+µ− and τ± → µ±e+e−.

(C) `± → `′∓`′′+`′′−: three distinguishable leptons with `′ carrying the opposite charge

as `, i.e. τ± → e∓µ±µ± and τ± → µ∓e±e±.

Class (C), representing a ∆L = 2 processes, is tiny within the MSSM: it could only be

generated at 1-loop level by box diagrams suppressed by double flavour changes, or at the

2-loop level by double penguin diagrams involving two LFV vertices. Therefore, we will

not consider these processes in our numerical analysis.

In order to calculate Br(`I → `J`K ¯̀L) we decompose the corresponding amplitude

A as

A = A0 +Aγ . (3.5)

The relevant diagrams are displayed in figure 5. A0 contains contributions from 4-lepton

box diagrams and from penguin diagrams (including vector-like off-shell photon couplings,

see eq. (2.5)) which in the limit of vanishing external momenta can be represented as the
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4-fermion contact interactions. Aγ is the on-shell photon contribution originating from the

magnetic operator (see eq. (2.2)) which has to be treated separately with more care as the

photon propagator becomes singular in the limit of vanishing external momenta.

We further decompose A0 for the two cases (A) and (B) according to its Lorentz

structure:

A
(A)
0 =

∑
Q=V,S,T

C
(A)
Q,XY [ū(pJ)Γ′QPXu(pI)][ū(p′J)ΓQPY v(pL)] , (3.6)

A
(B)
0 =

∑
Q=V,S,T

C
(B)
Q,XY [ū(pJ)Γ′QPXu(pI)][ū(pK)ΓQPY v(pL)] , (3.7)

with X,Y = L,R. Note that the amplitude A
(A)
0 in general contains a second term which is

obtained from the one given in eq. (3.6) by replacing (pJ ↔ p′J). However, one can use Fierz

identities to reduce it to the structure given in eq. (3.6). The basis of Dirac quadrilinears

ΓQ is the same as the one used to decompose 4-lepton box diagrams in eq. (2.17):

ΓS = 1 , ΓV = γµ , ΓT = σµν , (3.8)

and Γ′Q is obtained from ΓQ by lowering the Lorentz indices.

The amplitudes originating from on-shell photon exchange are given by

A(A)
γ =

e

(pI − pJ)2
[ū(pJ)iσµν(CγLPL + CγRPR)(pI − pJ)νu(pI)][ū(p′J)γµv(pL)]

− (pJ ↔ p′J)

A(B)
γ =

e

(pI − pJ)2
[ū(pJ)iσµν(CγLPL + CγRPR)(pI − pJ)νu(pI)][ū(pK)γµv(pL)]. (3.9)

The full form of the coefficients C
(A,B)
N , Cγ is displayed in table 1, where we compact-

ified the expressions by using the following abbreviations for the Higgs penguin contribu-

tions:6

V JI
H =

2∑
N=1

Z1N
R

m2
HN

0

F JINh , V JI
A =

i sinβ

m2
A0

F JIA . (3.10)

Note that in eq. (3.7) and eq. (3.9) we do not explicitly display flavour indices, but they

are specified in table 1.

Neglecting the lighter lepton masses whenever possible, the expression for the branch-

ing ratios can be written down as (for comparison see [23]):

Br(`I → `J`K ¯̀L) =
NcBr(`I → eνν)

32G2
F

(
4
(
|CV LL|2 + |CV RR|2 + |CV LR|2 + |CV RL|2

)
+ |CSLL|2 + |CSRR|2 + |CSLR|2 + |CSRL|2

+ 48
(
|CTL|2 + |CTR|2

)
+Xγ

)
(3.11)

where Nc = 1/2 if two of the final state leptons are identical (decays (A)), Nc = 1 for

decays (B) and Xγ denotes the contribution to matrix element from the photon penguin Aγ ,

6Note that we define lepton Yukawa coupling appearing in table 1 to be negative, Y Il = −
√

2mI
l /v1.

– 12 –



J
H
E
P
0
6
(
2
0
1
8
)
0
0
3

Decay (A) Decay (B)

CV LL BJIJJ
V LL −

e(1−2s2W )

sW cWM2
Z
F JIZL + 2e2V JI

γL BJIKK
V LL − e(1−2s2W )

2sW cWM2
Z
F JIZL + e2V JI

γL

CV RR BJIJJ
V RR + 2esW

cWM2
Z
F JIZR + 2e2V JI

γR BJIKK
V RR + esW

cWM2
Z
F JIZR + e2V JI

γR

CV LR BJIJJ
V LR + esW

cWM2
Z
F JIZL + e2V JI

γL + 1
2Y

J
l (V IJ∗

H − V IJ∗
A ) BJIKK

V LR + esW
cWM2

Z
F JIZL + e2V JI

γL

CV RL BJIJJ
V RL −

e(1−2s2W )

2sW cWM2
Z
F JIZR + e2V JI

γR + 1
2Y

J
l (V JI

H − V JI
A ) BJIKK

V RL − e(1−2s2W )

2sW cWM2
Z
F JIZR + e2V JI

γR

CSLL BJIJJ
SLL + 3

2Y
J
l (V JI

H + V JI
A ) BJIKK

SLL + Y K
l (V JI

H + V JI
A )

CSRR BJIJJ
SRR + 3

2Y
J
l (V IJ∗

H + V IJ∗
A ) BJIKK

V RR + Y K
l (V IJ∗

H + V IJ∗
A )

CSLR −2BJIJJ
V LR −

2esW
cWM2

Z
F JIZL − 2e2V JI

γL + Y J
l (V JI

H − V JI
A ) BJIKK

SLR + Y K
l (V JI

H − V JI
A )

CSRL −2BJIJJ
SRL +

e(1−2s2W )

sW cWM2
Z
F JIZR − 2e2V JI

γR + Y J
l (V IJ∗

H − V IJ∗
A ) BJIKK

SRL + Y K
l (V IJ∗

H − V IJ∗
A )

CTL −1
4B

JIJJ
SLL + 1

8Y
J
l (V JI

H + V JI
A ) BJIKK

TL

CTR −1
4B

JIJJ
SRR + 1

8Y
J
l (V IJ∗

H + V IJ∗
A ) BJIKK

TR

CγL −2eF JIγ −2eF JIγ

CγR −2eF IJ∗γ −2eF IJ∗γ

Table 1. Coefficients CN , Cγ of eq. (3.7) and eq. (3.9) for decay types (A) and (B). BQXY ,BTX
denote the irreducible box diagram contributions (see eq. (2.21)), the terms with FZ stem from the

Z penguin Lagrangian (eq. (2.7)), Vγ is the sum of the vector-like photon contributions (eq. (2.5)),

Higgs contributions are defined in eq. (3.10) and the coefficients Fγ of the magnetic operator are

defined in eq. (2.2).

including also its interference with the A0 part of the amplitude (m denotes the mass of

the heaviest final state lepton)

X(A)
γ = − 16e

m`I
Re

[
(2CV LL + CV LR −

1

2
CSLR) C?γR + (2CV RR + CV RL −

1

2
CSRL) C?γL

]
+

64e2

m2
`I

(
log

m2
`I

m2
− 11

4

)
(|CγL|2 + |CγR|2)

X(B)
γ = − 16e

m`I
Re
[
(CV LL + CV LR)C?γR + (CV RR + CV RL)C?γL

]
+

32e2

m2
`I

(
log

m2
`I

m2
− 3

)
(|CγL|2 + |CγR|2) . (3.12)

3.4 µ→ e conversion in nuclei

The full 1-loop expressions for the µ→ e conversion in Nuclei depend on both the squark

and slepton SUSY breaking terms. Thus, in principle the resulting upper bounds on the

slepton mass insertions to some extent depend on the squark masses. Therefore, we do not

include µ → e conversion in nuclei in our numerical analysis.7 However, for completeness

we collect here the complete set of formulae required to calculate the rate of this process.

7Recent discussion of interplay between the bounds on MI’s in the slepton and squark sectors can be

found in ref. [70].
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µ → e conversion in nuclei is produced by the dipole, the vector, and the scalar

operators already at the tree level [71]. Following the discussion of ref. [72] we use the

effective Lagrangian

Lµ→e =
∑
N,X,Y

CN XY
qIqI

OqIqIN XY + CggX O
gg
X (3.13)

where N = V, S and X,Y = L,R with the operators defined as

OqIqIV XY = (ēγµPXµ) (q̄IγµPY qI)

OqIqIS XY = (ēPXµ) (q̄IPY qI)

OggX = αsmµGF (ēPXµ)GaµνG
µν
a (3.14)

Using the notation introduced in previous sections, the corresponding Wilson coefficients

can be expressed as

CdIdIV XL = C12II
d`V XL −

1

m2
Z

e

2sW cW

(
1− 2

3
s2
W

)
F 12
ZX −

1

3
e2V JI

γX

CdIdIV XR = C12II
d`V XR +

1

m2
Z

e

3sW cW
s2
WF

12
ZX −

1

3
e2V JI

γX

CuIuIV XL = C12II
u`V XL +

1

m2
Z

e

2sW cW

(
1− 4

3
s2
W

)
F 12
ZX +

2

3
e2V JI

γX

CuIuIV XR = C12II
u`V XR −

1

m2
Z

e

sW cW

2

3
s2
WF

12
ZX +

2

3
e2V JI

γX

CdIdIS LX = C12II
d`SLX +

1(
mK

0

)2F 12K
h F IIKhd

CuIuIS LX = C12II
u`SLX +

1(
mK

0

)2F 12K
h F IIKhu

CdIdIS RX = C12II
d`SRX +

1(
mK

0

)2F 21K∗
h F IIKhd

CuIuIS RX = C12II
u`SRX +

1(
mK

0

)2F 21K∗
h F IIKhu (3.15)

For this process, a Lagrangian involving only quark, lepton and photon fields is not

sufficient. Instead, an effective Lagrangian at the nucleon level containing proton and neu-

tron fields is required. It can be obtained in two steps. First, heavy quarks are integrated

out. This results in a redefinition of the Wilson coefficient of the gluonic operator [73]

CggL → C̃ggL = CggL −
1

12π

∑
q=c,b

CqqS LL + CqqS LR
GF mµmq

(3.16)

with an analogous equation for CRgg. Second, the resulting Lagrangian is matched at the

scale of µn = 1 GeV to an effective Lagrangian at the nucleon level. Following [74] the

transition rate ΓNµ→e = Γ(µ−N → e−N) can then be written as

ΓNµ→e =
m5
µ

4

∣∣∣−eCDL F 12
γ /mµ + 4

(
GFmµmpC̃

(p)
SLS

(p)
N + C̃

(p)
V R V

(p)
N + (p→ n)

)∣∣∣2
+ (L↔ R), (3.17)
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where p and n denote the proton and the neutron, respectively. The effective couplings in

eq. (3.17) can be expressed in terms of our Wilson coefficients as

C̃
(p/n)
V R =

∑
q=u,d,s

(
CqqV RL + CqqV RR

)
f

(q)
V p/n , (3.18)

C̃
(p/n)
SL =

∑
q=u,d,s

(
CqqS LL + CqqS LR

)
mµmqGF

f
(q)
Sp/n + C̃ggL fGp/n (3.19)

with analogous relations for L ↔ R. The Wilson coefficients in eqs. (3.18) and (3.19) are

to be evaluated at the scale µn.

The nucleon form factors for vector operators are fixed by vector-current conservation,

i.e. f
(u)
V p = 2, f

(u)
V n = 1, f

(d)
V p = 1, f

(d)
V n = 2, f

(s)
V p = 0, f

(s)
V n = 0. Hence, the sum in eq. (3.18)

is in fact only over q = u, d. The calculation of the scalar form factors are more involving.

The values of the up- and down-quark scalar couplings f
(u/d)
Sp/n (based on the two-flavour

chiral perturbation theory framework of [75]) can be found in refs. [76, 77], while the values

of the s-quark scalar couplings f
(s)
Sp/n can be borrowed from a lattice calculation [78].8 In

summary, one has

f
(u)
Sp = (20.8± 1.5)× 10−3, f

(u)
Sn = (18.9± 1.4)× 10−3,

f
(d)
Sp = (41.1± 2.8)× 10−3, f

(d)
Sn = (45.1± 2.7)× 10−3,

f
(s)
Sp = f

(s)
Sn = (53± 27)× 10−3. (3.20)

The form factor for the gluonic operator can be obtained from a sum rule. In our normal-

isation

fGp/n = −8π

9

(
1−

∑
q=u,d,s

f
(q)
Sp/n

)
. (3.21)

The quantities DN , S
(p/n)
N , and V

(p/n)
N in eq. (3.17) are related to the overlap integrals [81]

between the lepton wave functions and the nucleon densities. They depend on the nature

of the target N . Their numerical values can be found in ref. [71]:

DAu = 0.189, S
(p)
Au = 0.0614, V

(p)
Au = 0.0974, S

(n)
Au = 0.0918, V

(n)
Au = 0.146;

DAl = 0.0362, S
(p)
Al = 0.0155, V

(p)
Al = 0.0161, S

(n)
Al = 0.0167, V

(n)
Al = 0.0173; (3.22)

for gold and aluminium, respectively.

Finally, the branching ratio is defined as the transition rate, (see eq. (3.17)), divided

by the capture rate, the latter given in ref. [82]:

Γcapt
Au = 8.7× 10−15 MeV, Γcapt

Al = 4.6× 10−16 MeV . (3.23)

8For earlier determinations of the pion-nucleon sigma terms see [79, 80].

– 15 –



J
H
E
P
0
6
(
2
0
1
8
)
0
0
3

4 Mass eigenstates vs. mass insertions calculations

For each process, we have given the exact one-loop expressions calculated in the mass

eigenbasis (ME). These formulae are compact and well suited for numerical computations,

however, do not allow for an easy understanding of the qualitative behaviour of the LFV

amplitudes for various choices of the MSSM parameters. Therefore, in this section we

expand the Wilson coefficients in terms of the “mass insertions”, defined as the off-diagonal

elements (both flavour violating and flavour conserving) of the mass matrices. Such an

expansion allows us to:

• Recover the direct analytical dependence of the results on the MSSM Lagrangian

parameters.

• Prove analytically the expected decoupling features of the amplitudes in the limit

of a heavy SUSY spectrum. In the case of Higgs boson decays, we also identify

explicitly the terms decoupling only with the heavy CP-odd Higgs mass MA (which

also determines the heavy CP even and the charged Higgs masses). The decoupling

properties also serve as an important cross-check of the correctness of our calculations.

• Test the dependence of the results on the pattern of the MSSM spectrum and the

size of the mass splitting between SUSY particles.

• Better understand the possible cancellations between various types of contributions

and correlations between different LFV processes.

The mass insertion expansion in flavour off-diagonal terms has been used for a long

time in numerous articles on the subject. However, often various simplifying assumptions

have been made, i.e. some terms have been neglected or a simplified pattern of the slepton

spectrum was considered. This is understandable as a consistent MI expansion of the

amplitudes for the LFV processes in the MSSM, mediated by the virtual chargino and

neutralino exchanges, is technically challenging. The standard approach used in literature

is to calculate diagrammatically the LFV amplitudes with the “mass insertions” treated as

the new interaction vertices. We follow the common practice and normalise such slepton

mass insertions to dimensionless “∆-parameters”:9

∆IJ
LL =

(M2
LL)IJ√

(M2
LL)II(M2

LL)JJ
, ∆IJ

RR =
(M2

RR)IJ√
(M2

RR)II(M2
RR)JJ

,

∆IJ
LR =

AIJl(
(M2

LL)II(M2
RR)JJ

)1/4 , ∆
′IJ
LR =

A
′IJ
l(

(M2
LL)II(M2

RR)JJ
)1/4 , (4.1)

where M2
LL,M

2
RR, Al, A

′
l are the slepton soft mass matrices and trilinear terms.

As lepton flavour violation is already strongly constrained experimentally, it is sufficient

to expand the amplitudes up to the first order in flavour-violating ∆’s. For instance, the

9We assume that trilinear Al, A
′
l terms scale linearly with the slepton mass scale.
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effective vertices listed in section 3 take the schematic form:

F IJ =
1

(4π)2

(
F IJLL∆IJ

LL + F IJRR∆JI
RR

+ F IJALR∆JI
LR + F IJBLR∆IJ∗

LR + F
′IJ
ALR∆

′JI
LR + F

′IJ
BLR∆

′IJ∗
LR

)
. (4.2)

The MSSM contributions to FLL, . . . , F
′
BLR can be classified according to their decoupling

behaviour, distinguishing the following types (M denotes the average SUSY mass scale):

1. Effects related to the diagonal trilinear slepton soft terms or to the off-diagonal

elements of supersymmetric fermion mass matrices, decoupling as v2/M2.

2. Effects related to the external momenta of the (on-shell) Higgs or Z0 bosons, de-

coupling as M2
h/M

2 or M2
Z/M

2 (we did not include the MZ dependence as it is not

necessary for the considered processes).

3. Non-decoupling effects related to the 2HDM structure of the MSSM. Such con-

tributions are constant in the limit of a heavy SUSY scale M but, in case of the

SM-like Higgs boson h, decouple with the CP-odd Higgs mass like v2/M2
A (the ef-

fective couplings of heavier H,A bosons do not exhibit such a suppression). They

are proportional either to the lepton Yukawa couplings or to the non-holomorphic

A′l terms.

The structure of the box diagrams is more complicated as they carry 4 flavour indices.

Their MI expansion is given in appendix E.5. All box diagram contributions decouple at

least as v2/M2.

Calculating consistently the quantities FLL, . . . , F
′
BLR to the order v2/M2 is not trivial

for chargino and neutralino contributions. If the MI expansion is used only for the sfermion

mass matrices but the calculations for the supersymmetric fermions are done in the mass

eigenbasis, the direct dependence on the Lagrangian parameters is hidden and the decou-

pling properties of the amplitude cannot be seen directly. However, one can also treat

the off-diagonal entries of the chargino and neutralino mass matrices as “mass insertions”.

With such an approach, the final result is expressed explicitly in terms of Lagrangian pa-

rameters, but the computations can get very complicated. At the order v2/M2 one needs

to include diagrams with all combinations of two fermionic mass insertions (each provid-

ing one power of v/M1, v/M2 or v/µ) or flavour diagonal slepton terms originating from

trilinear A-terms (providing powers of vAl/M
2, vA′l/M

2). Thus, to obtain an expansion

of the F ’s in eq. (4.2), one needs to formally go to the 3rd order of MI expansion, adding

all diagrams with up to two flavour conserving and one flavour violating mass insertion.

Therefore, the number of diagrams grows quickly with the order of the expansion and such

a method is tedious and prone to calculational mistakes.

In our paper, we employ a recently developed technique using a purely algebraic MI ex-

pansion of the ME amplitudes listed in section 3, without the need for direct diagrammatic

MI calculations (“FET theorem”) [31], automatised in the specialised MassToMI Mathe-

matica package [32, 83]. The use of this package and full automation of the calculations
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allows us to perform the required 3rd order MI expansion for a completely general SUSY

mass spectrum, without making any simplifying assumptions. Such a result would be very

difficult to obtain diagrammatically, as in the intermediate steps of the calculations (before

accounting for the cancellations and simplifications between various contributions) the ex-

pressions may contain up to tens of thousand terms, even if the final results collected in

appendix E are again relatively compact. In detail:

• We perform the expansion always up to the lowest non-vanishing order in the slepton

LFV terms, taking into account the possible cancellations. Compared to previous

analyses, we consider the non-holomorphic trilinear soft terms as well.

• In the MI expanded expressions we include all terms decreasing with the SUSY mass

scale as v2/M2
SUSY (or slower), where MSUSY denotes any of the relevant mass pa-

rameters in the MSSM Lagrangian (apart from the soft Higgs mass terms): diagonal

soft slepton masses, gaugino masses M1,M2 or the µ parameter.

• We do not assume degeneracy or any specific hierarchy for the sleptons, sneutrinos

or supersymmetric fermion masses.

• In calculating the LFV Higgs decays we keep the leading terms in the external Higgs

boson mass (m2
h/M

2
SUSY).

The full set of the expanded expressions in the MI approximation for the photon, Z0

and CP-even Higgs leptonic penguins and for the 4-lepton box diagrams is collected in

appendix E.

We illustrate the accuracy of the derived MI formulae in figure 6. The plots show the

ratio of the MI expanded couplings over the ones obtained in the mass eigenbasis with

exact diagonalization. For this purpose, we start from the following setup where all mass

parameters are given in GeV:

tanβ = 5 mµ̃L = 300 Aµµ = A′µµ = 0.1
√
mµ̃Lmµ̃R

µ = 200 + 100i mτ̃L = 330

M1 = 150 mµ̃R = 300 Aττ = A′ττ = 0.1
√
mτ̃Lmτ̃R

M2 = 300 mτ̃R = 350

(4.3)

Next, to see the decoupling effects we scale this spectrum uniformly up to slepton masses

of 2 TeV. For each of the six penguin Wilson coefficients describing the transition between

2nd and 3rd generation, F 23
γL(R) (eq. (2.2)), F 23

ZL(R) (eq. (2.7)) and F 23
hL ≡ F 232

h , F 23
hR ≡ F 322

h

(eq. (2.13)) we plot the quantity

∆F =

∣∣∣∣ FMI

FME

∣∣∣∣− 1 , (4.4)

as a function of the average slepton mass. The accuracy of left-handed (right-handed)

Wilson coefficients is illustrated with red(blue) lines. As can be seen from figure 6, the

accuracy of MI expanded amplitudes is very good even for light SUSY particles and for

MSUSY > 500 GeV always better than 95%.
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Figure 6. Accuracy of MI expansion for the penguin amplitudes. The curves show the ratio defined

in eq. (4.4). Red and blue lines: ∆F for left and right couplings assuming a spectrum of eq. (4.3) for

both the MI and ME expressions. Brown and green lines: ∆F (again for left and right couplings,

respectively) assuming spectrum (4.3) for ME expressions but an universal degenerate sfermion

mass in MI expressions. This assumption is inconsistent with non-zero off-diagonal elements of the

mass matrices, which imply non-degenerate mass eigenstates. The plots show that the associated

error can be numerically sizeable. The average SUSY mass scale M (assumed to be equal to

M2 = mµ̃L
= mµ̃R

) is shown on the horizontal axis.

Many analyses published to date for simplicity did not include the complete set of

the contributions scaling like v/M order and/or assumed a partially or fully degenerate

SUSY spectrum. This procedure is inconsistent with non-zero off-diagonal elements of

mass matrices, because the latter enforce unequal eigenvalues of the corresponding mass

matrix. To illustrate the numerical effects arising from the incorrect neglection of SUSY

mass splitting we plot the ratio of our expressions in the MI approximation for penguin

Wilson coefficients calculated for degenerate slepton masses (equal to 300 GeV rescaled by

a common factor; other parameters as in eq. (4.3)) and the exact mass eigenbasis formulae

(calculated with non-degenerate sfermion spectrum of eq. (4.3)) in figure 6. The accuracy

of left-handed (right-handed) MI expanded Wilson coefficients with degenerate slepton

spectrum is shown in green(brown). In this case discrepancy is much larger, of the order

of 10%-40%, and does not disappear when increasing the total SUSY scale.

Some papers on the LFV in the MSSM, like e.g. refs. [7, 84], deal with general SUSY

spectra. In order to compare the accuracy of the MI approximation derived in our analysis

with previous works, we plotted in figure 7 the ratios of Br(τ → µγ) and Br(h → τµ)

calculated using the exact (ME) and MI-expanded formulae scanning over randomly chosen

MSSM mass spectra. In particular, in figure 7 we assume tan β = 5, α−β = −π/2−π/100,

mh = 125 GeV, diagonal A terms which are proportional to the lepton Yukawa couplings
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Figure 7. Accuracy of MI expansion for the τ → µγ and h→ τµ decay rates. Points show the ratio

Br(τ → µγ)MI/Br(τ → µγ)ME (lower and upper left panel) and Br(h → τµ)MI/Br(h → τµ)ME

(lower and upper right panel) as a function of LL and LR mass insertion for tan β = 5 and random

choice of other model parameters (see eq. (4.5)).

(AIIl = A
′II
l = Y I

l ((M2
LL)II(M

2
RR)JJ)1/4) and we vary the mass parameters randomly and

independently in the following ranges (all values are given in GeV and we set M1 = M2/2):

MA ∈ (200, 500) µ,M2,mτ̃L ,mµ̃L ,mτ̃R ,mτ̃R ∈ (500, 1000) . (4.5)

As can be seen from upper left panel of figure 7, even for ∆32
LL = 0.5 the accuracy of our

MI expansion is better than about 15%. This can be compared with the corresponding

right panel of figure 8 in ref. [7] - there the difference between MI and ME calculation for

the same value of ∆32
LL = 0.5 is 20%-70%, also the spread of points around the parabolic

shape arising from neglected (∆32
LL)2 terms is much larger, 50% against a maximum of 10%

in our approach. It is worth noting that the agreement in the lower left plot of figure 7

is almost perfect everywhere, which could be attributed to the fact that terms of higher

order in ∆LR are suppressed by additional v/M powers (when A terms are scaled linearly

with M , like we choose) and thus small even for large ∆LR values.

Accuracy of our MI expansion for Br(h→ τµ) shown in the right upper panel of figure 7

is worse, up to 20%, because we include only non-decoupling LL terms in our formulae,

which is not a fully satisfying approximation for a SUSY scale in the range of 500-1000 GeV.

Concerning the expansion in ∆32
LR (where only decoupling terms contribute), we include

them consistently and the accuracy is much better. This can be compared with ref. [84],
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Experimental upper bound CL Future sensitivity CL

τ → eγ 3.3× 10−8 [85] 90% 10−9 [86, 87] 90%

τ → µγ 4.4× 10−8 [85, 88] 90% 10−9 [86] 90%

µ→ eγ 5.7× 10−13 [89] 90% 6× 10−14 [90] 90%

Z → µe 7.5× 10−7 [91] 95%

Z → µτ 1.2× 10−5 [92] 95%

Z → τe 9.8× 10−6 [92] 95%

µ→ e−e+e− 1.0× 10−12 [93] 90% 10−16 [94, 95] 90%

τ → e−e+e− 2.7× 10−8 [96] 90%

τ → µ−µ+µ− 2.1× 10−8[96] 90%

τ → e−µ+µ− 2.7× 10−8 [96] 90%

τ → e+µ−µ− 1.7× 10−8 [96] 90%

τ → µ−e+e− 1.8× 10−8 [96] 90%

τ → µ+e−e− 1.5× 10−8 [96] 90%

h→ eτ 6.1× 10−3 [97] 90%

h→ µτ 2.5× 10−3 [97] 90%

h→ µe 3.6× 10−4 [98] 90%

(µ→ e)Au 7.0× 10−13 [99] 90%

(µ→ e)Al 10−16 [100] 90%

Table 2. Upper bounds on LFV decays of charged leptons. h denotes the SM-like Higgs boson.

considering the same process. The agreement for ∆32
LL = 0.5 in upper left panel of figure 6

(“general scenario”) in [84] is better than ours, as they consistently include all LL terms, not

just non-decoupling ones. However, for ∆32
LR (lower left panel of figure 6 in [84]) numerical

accuracy of our formulae seems to be similar or even better. In general, no significant

deviations should be expected here, as for this process our approach and the analysis of

ref. [84] are equivalent up to the chosen calculational technique (FET vs. diagrammatic

MI calculation) and, eventually, the selection of the included or neglected contributions.

5 Phenomenological analysis

5.1 Generic bounds on LFV parameters

As outlined in the introduction, flavour violation in the charged lepton sector is strongly

constrained experimentally. In table 2 we collect the current and expected future experi-

mental bounds on the processes discussed so far.

Assuming the absence of fine-tuned cancellations between different flavour violating

parameters, the order of magnitude of the bounds on a given flavour violating entry ∆ can

be obtained by assuming that it is the only source of flavour violation. At the lowest order
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Process (I, J) ∆IJ
LL ∆IJ

RR ∆IJ
LR ∆IJ

RL ∆
′IJ
LR ∆

′IJ
RL

tanβ = 2

µ→ eγ (2, 1) 8.4 · 10−4 5.0 · 10−3 8.4 · 10−6 8.3 · 10−6 4.1 · 10−6 4.1 · 10−6

τ → µγ (3, 2) 5.3 · 10−1 O(1) 9.1 · 10−2 9.1 · 10−2 4.5 · 10−2 4.5 · 10−2

τ → eγ (3, 1) 4.6 · 10−1 O(1) 7.8 · 10−2 7.8 · 10−2 3.9 · 10−2 3.8 · 10−2

tanβ = 20

µ→ eγ (2, 1) 1.0 · 10−4 4.5 · 10−4 7.5 · 10−5 7.4 · 10−5 3.7 · 10−6 3.7 · 10−6

τ → µγ (3, 2) 6.5 · 10−2 2.9 · 10−1 8.2 · 10−1 8.2 · 10−1 4.0 · 10−2 4.0 · 10−2

τ → eγ (3, 1) 5.7 · 10−2 2.5 · 10−1 7.0 · 10−1 7.0 · 10−1 3.4 · 10−2 3.4 · 10−2

Table 3. Upper bounds on the LFV parameters ∆ from radiative charged lepton decays for the

MSSM spectrum defined in eq. (5.3) and a SUSY scale of M = 400 GeV. All bounds scale (i.e.

weaken) like M2.

in the MI expansion, any LFV observable X scales like ∆2:

X ≈ f(m1, . . . ,mn)|∆|2 , (5.1)

where f is a known (non-negative) function of diagonal mass parameters - for any given

process it can be extracted from the expanded expressions listed in appendix E. Thus, the

experimental bound on ∆ from a given measurement can be written as:

|∆| ≤

√
Xexp

f(m1, . . . ,mn)

√
X future

Xexp
≡ ∆(m1, . . . ,mn)

√
X future

Xexp
(5.2)

where by Xexp we denote one of the current experimental bounds listed in section 5.1 and

X future is the expected future sensitivity.

To estimate the order of magnitude of the bounds on all types of mass insertions, we

assume a common mass scale M for all flavour diagonal SUSY parameters:

mẽLI = mẽRI = M1 = M2 = µ = MA = M ,

AII` = A
′II
` = Y I

` M . (5.3)

Currently, the strongest bounds on the dimensionless LFV parameters ∆ defined in eq. (4.2)

originate from the radiative lepton decays `→ `′γ. We list such bounds for the parameter

setup defined in eq. (5.3) and for the SUSY scale of M = 400 GeV in table 3.

The 3-body decays of charged lepton lead to bounds which are approximately one order

of magnitude weaker. In table 4 we display the relative strength of such bounds comparing

them to the ones obtained from the radiative lepton decays, i.e. the ratios of bounds

from radiative decays over the ones from 3-body decays. Such ratios remain constant

with increasing M up to the scale where the non-decoupling Higgs penguin contributions

start to contribute. However, such effects occur for M >∼ 30 TeV for τ± → µ±µ±µ∓ and

τ± → e±µ±µ∓ decays and for even higher M for the decays with electron pair in the
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Process (I, J) ∆IJ
LL ∆IJ

RR ∆IJ
LR ∆IJ

RL ∆
′IJ
LR ∆

′IJ
RL

tanβ = 2

µ→ eee (2, 1) 1.7 · 10+1 1.5 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1

τ → µµµ (3, 2) 1.5 · 10+1 1.2 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1

τ → µe+e− (3, 2) 1.3 · 10+1 1.1 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1

τ → eee (3, 1) 8.6 · 10+0 8.2 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0

τ → eµ+µ− (3, 1) 6.9 · 10+0 6.7 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0

tanβ = 20

µ→ eee (2, 1) 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1 1.6 · 10+1

τ → µµµ (3, 2) 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1 1.4 · 10+1

τ → µe+e− (3, 2) 1.3 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1 1.2 · 10+1

τ → eee (3, 1) 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0 8.5 · 10+0

τ → eµ+µ− (3, 1) 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0 6.8 · 10+0

Table 4. Ratios of upper bounds on the LFV parameters ∆ from the searches for 3-body and

radiative decays of charged leptons. The MSSM spectrum is defined in eq. (5.3).

final state. For such a large M the branching ratios for all 3-body decays are, anyway,

below the current experimental sensitivities even for O(∆IJ) ∼ 1.

We do not display the bounds from LFV violating Z0 decays as they are much weaker

(3 to 8 orders of magnitude depending on which parameter ∆ is chosen). This can be

attributed to the large Z boson width — for comparable Γ(Z → ``′) and Γ(` → `′γ)

partial decay widths the difference in total widths leads to Br(` → `′γ) � Br(Z → ``′).

Thus, bounds from Br(Z → ``′) are not competitive (nor they will be in the foreseeable

future) compared to those from other observables.

As can be seen in table 5, the bounds on ∆ parameters from LFV flavour Higgs boson

decay searches are much weaker than those from the radiative charged lepton decays.

However, in the Higgs sector some effects proportional to lepton Yukawa couplings or to

the non-holomorphic terms are non-decoupling and are not weakened by increasing M like

other contributions, for fixed Higgs sector parameters. In table 5 we assume

α− β = −π
2
− γ , (5.4)

with γ = π/100. Using the tree-level relations of the MSSM Higgs sector in the limit of

tanβ > 1 and small values of γ one has

MA = MZ

√
sin 2(α+ β)

sin 2(α− β)
≈MZ

√
− sin 4β

2γ
, (5.5)

this corresponds to MA ∼ 350 GeV for tan β = 2 and MA ∼ 190 GeV for tan β = 20 (the

exact value including loop corrections may vary, depending on the squark parameters which

we do not specify here).

The bounds on ∆IJ
LL,∆

IJ
RR,∆

′IJ
LR,∆

′IJ
RL from the leptonic Higgs boson decay would de-

couple only if also MA is scaled up simultaneously with SUSY particle masses (thus assuring
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Process (I, J) ∆IJ
LL ∆IJ

RR ∆IJ
LR ∆IJ

RL ∆
′IJ
LR ∆

′IJ
RL

tanβ = 2

h→ µe (2, 1) 1.8 · 10+7 1.7 · 10+6 2.6 · 10+7 2.6 · 10+7 1.0 · 10+7 1.0 · 10+7

h→ τµ (3, 2) 4.4 · 10+3 3.8 · 10+2 6.3 · 10+3 6.3 · 10+3 2.5 · 10+3 2.5 · 10+3

h→ τe (3, 1) 8.0 · 10+3 7.5 · 10+2 1.1 · 10+4 1.1 · 10+4 4.9 · 10+3 4.9 · 10+3

tanβ = 20

h→ µe (2, 1) 3.9 · 10+6 8.3 · 10+6 5.1 · 10+7 5.1 · 10+7 1.2 · 10+6 1.2 · 10+6

h→ τµ (3, 2) 9.5 · 10+2 1.9 · 10+3 1.3 · 10+4 1.2 · 10+4 2.9 · 10+2 2.9 · 10+2

h→ τe (3, 1) 1.7 · 10+3 3.5 · 10+3 2.3 · 10+4 2.2 · 10+4 5.3 · 10+2 5.4 · 10+2

Table 5. Ratios of upper bounds on the LFV ∆ parameters from leptonic Higgs boson decays and

from radiative decays of charged leptons. The MSSM spectrum is defined in eq. (5.3) (with the

exception of setting A′IIl = 0) and a SUSY scale of M = 400 GeV. The ratios for ∆IJ
LL, ∆IJ

RR, ∆
′IJ
LR ,

∆
′IJ
RL decrease with M2, assuming fixed masses and mixing angles in the Higgs sector.

that the Higgs decay rates do not violate the Appelquist-Carrazone theorem [101]). This

interesting feature is discussed in more details in section 5.4.

5.2 Dependence on the mass splitting

The formulae derived in the previous sections allow to analyse how the bounds on LFV

mass insertions depend on the splitting between different SUSY masses. However, any

process involving transition between the generations I and J depends in general, even at

lowest order in the flavour violating MI’s, on many mass parameters: µ, gaugino masses

M1,M2, left and right diagonal slepton soft masses mẽLI ,mẽLJ ,mẽRI ,mẽRJ , and for the

Higgs decays also on MA or on α angle. To simplify the discussion, we only take into

account the bounds from `→ `′γ decays, which are currently most constraining.

In figure 8 we illustrate the dependence of the upper bounds on the ∆ parameters

originating from µ→ eγ on the mass splitting between left and right-handed sleptons for

tanβ = 2 , µ = M1 = M2 ≡M = 800 GeV

mẽL = mµ̃L = mL , mẽR = mµ̃R = mR ,

Aee` = A
′ee
` = Ye

√
mLmR , Aµµ` = A

′µµ
` = Yµ

√
mLmR .

We have chosen here an average SUSY mass scale of M = 800 GeV, higher than M =

400 GeV used in tables 3–5, to avoid the experimental bounds on slepton masses even in

the case of a large splitting between the left and right-handed masses.

The features of plots in figure 8 can be understood using the expanded expressions

for effective photon couplings collected in appendix E.1. As an example, let us consider

the interesting cancellation between different contributions in the case of ∆12
RR (right upper

panel of figure 8). For our parameter setup, the coefficient Xeµ
γN2 multiplying the RR

parameter (see eq. (E.4)) can be reduced to the form

Xeµ
γN2 =

v1Yµ
M2

f(xL, xR) , (5.6)
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Figure 8. Upper bounds on the LFV parameters from µ→ eγ for tanβ = 2 and M = 800 GeV as

a function of the splitting between the masses of gaugino and sleptons of different chiralities. The

normalised slepton masses xL(R) = mL(R)/M are plotted on the axes.

where f(xL, xR) is a known, although complicated, dimensionless, rational and logarithmic

function of mass ratios whose analytical form can be obtained using eq. (E.4), the loop

integrals collected in appendix B and the definitions of divided differences from appendix C.

The properties of this function can be examined analytically and numerically. One finds

• For xR in the wide range 0.1−4 the function f vanishes for xL ∼ 0.45 (the exact value

depends only weakly on xR). As a result, the bounds on ∆12
RR disappear completely

for mL ∼ 0.45M .
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• For large values of xR >∼ 5 the position where the function f becomes zero shifts

towards bigger values of xL. In addition, in this limit f is suppressed by an overall

factor 1/xR, thus the bounds on ∆12
RR become weaker for a larger values of xR.

• For large values of xL the function f depends on xR only. Therefore, the contour

lines become horizontal.

• For small values of xL the function f behaves like 1/xL. Thus, the bounds on ∆12
RR

become stronger.

A similar analysis can be done for the bounds on ∆12
LL. However, the coefficient multiplying

∆12
LL contains contributions from both chargino and neutralino loops and does not vanish

for any mass pattern. Therefore, there is no cancellation area in the upper left panel of

figure 8. In this case, the bound on ∆12
LL is strongest for mL ∼ M and mR

<∼M . For the

case in which the left slepton masses are much lighter or much heavier than the masses of

the SUSY fermion, the bounds become weaker.

Bounds on LR parameters, both holomorphic and non-holomorphic, are typically 1-

2 orders of magnitude stronger than for LL and RR ones. In this case, the coefficient

Xeµ
γN1 multiplying the LR terms has a much simpler functional form. Therefore, it never

vanishes and in addition is explicitly symmetric (as follows from the properties of divided

differences) under the exchange of slepton mass arguments, as visible in both lower panels

of figure 8. Furthermore, one can see that bounds on LR parameters are strongest for

mL,mR
<∼M and become weaker when the slepton masses are much heavier than the

chargino and neutralino masses. More quantitatively, Xeµ
γN1 is proportional to the divided

difference of the function C12, which for x ≡ xL = xR (corresponding to the diagonal of

lower plots in figure 8) has the simple asymptotic behaviour

C12({mL,mR},M) =

{
− 5

2M2 x� 1

1
2M2x2

x� 1
. (5.7)

From the form of eq. (5.7) it is immediately visible that the bounds become constant for

small x and fall like 1/x2 for large x, as illustrated in the plots.

Using the formulae collected in appendix E, a similar discussion can be, if necessary,

performed to explain the features or cancellation areas of other plots presented in this

section. However, as the general analytical formulae in the MI approximation are rather

complicated, we illustrate here other scenarios with numerical plots only.

Figure 9 shows similar bounds assuming identical left-and right-handed slepton masses

which however differ among the generations, so that we choose

tanβ = 2 , µ = M1 = M2 ≡M = 800 GeV ,

mẽL = mẽR = mẽ mµ̃L = mµ̃R = mµ̃ ,

Aee` = A
′ee
` = Ye mẽ , Aµµ` = A

′µµ
` = Yµ mµ̃ ,

and plot the results in terms of xe = mẽ/M and xµ = mµ̃/M . Again, a cancellation only

exists for the bounds on ∆12
RR, for an almost constant ratio mµ̃ ∼ 2.5M . In this case, the
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Figure 9. Upper bounds on the flavour violating LL and RR parameters using the current experi-

mental limit on Br(µ→ eγ) for tan β = 2 and M = 800 GeV as a function of splitting between the

masses of gaugino and sleptons of various flavours. The normalised selectron and smuon masses,

xe(µ) = mẽ(µ̃)/M are plotted on the axes.

bounds on ∆12
LL are strongest for small splitting between slepton and SUSY fermion masses,

while the bounds on ∆12
RR are, apart from the cancellation region, stronger for mµ̃

<∼M .

It is obvious from the form of Xeµ
γN1 in eq. (E.4) that the bounds on the LR parameters,

both holomorphic and non-holomorphic, have an identical behaviour as in the case of the

mL −mR splitting plotted in figure 8, with the replacements xL ↔ xe, xR ↔ xµ.

Finally in figure 10 we assume an identical mass of m = 400 GeV for all sleptons but

vary M1 = M2 and µ. The results are displayed as a function of x2 = M2/M , xµ = µ/M

(we do not plot small values of |µ| < 100 GeV which are excluded by the direct searches

for charginos and neutralinos). The structure of cancellation areas is more complicated,

but again the “blind spots”, where the bounds on MI’s disappear, exist only for ∆12
RR. As

expected from the form of Xeµ
γN1 in eq. (E.4), the bounds on ∆12

LR, ∆
′12
LR are at leading order

independent of the µ parameter. They are also correlated with the bounds displayed in

lower plots of figure 8, as for a fixed slepton mass and varied M2 the coefficient Xeµ
γN1 is

now proportional to

C12({m,m},M2) =


1

2m2 x� 1

− 5
2m2x22

x� 1
(5.8)

so that again the bounds saturate for small x2 and fall like 1/x2
2 in the opposite limit.

Similar plots constraining 13 and 23 mass insertions have almost identical shape; the

bounds are just rescaled by constant factors. The bounds on ∆13
LL and ∆13

RR (∆23
LL and ∆23

RR)

are approximately 550 (650) times weaker than the bounds on ∆12
LL and ∆12

RR, respectively.
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Figure 10. Upper bounds on the LFV parameters using the current experimental limit on the

Br(µ → eγ) for degenerate slepton masses M = 800 GeV as a function of mass splitting between

the gaugino and the µ related parameters, xµ = µ/M , x2 = M1/M = M2/M .

The bounds on ∆
13(31)
LR and ∆

′13(31)
LR (∆

23(32)
LR and ∆

′23(32)
LR ) are respectively 9000 (11000)

times weaker than the bounds on ∆
12(21)
LR and ∆

′12(21)
LR .

5.3 Correlations between LFV processes

The correlations between various leptonic decays, in particular radiative and 3-body

charged lepton decays, are important for designing new experiments searching for the LFV

phenomena. In the photon penguin domination scenario the ratio of decay rates for both
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processes is given by the simple formula:

Br(`→ 3`′)

Br(`→ `′γ)
≈ αem

3π

(
log

m2
`

m2
`′
− 11

4

)
. (5.9)

In this case the decision which measurement is more promising depends purely on exper-

imental accuracy achievable for each of them. However, other types of contributions, like

Z-penguin and box diagrams, can modify the ratio (5.9). Such contributions may be par-

ticularly important for a “blind spot” scenario, like the weakened limit on ∆RR for some

ratios of slepton and gaugino masses.

In figure 11 we plot the quantity R``′ defined as

R``′ =
αem
3π

(
log

m2
`

m2
`′
− 11

4

)
Br(`→ `′γ)

Br(`→ 3`′)
, (5.10)

as a function of the SUSY mass splittings, in the same scenarios as described in figure 8 and

figure 9. We assume non-vanishing ∆12
LL and ∆12

RR terms. For LR terms, both holomorphic

and non-holomorphic, a photon penguin dominated scenario is always realised and R``′ is

very close to 1.

As one can see from figure 11, radiative and 3-body decays are almost always closely

correlated, with R``′ differing from 1 by a few % at most. Exceptions are only possible for

parameter combinations for which Br(`→ `′γ) becomes small due to cancellations or some

other type of suppression, like in scenarios with large mass splitting (compare figures 8

and 9). Simultaneously, Br(` → 3`′) is given by the more complicated expression (3.11),

which in the limit of small photon penguin contribution becomes the sum of positive terms

and cannot vanish. Thus, although both decays are usually strongly correlated and only

relative experimental sensitivities decide which of them has better chances to discover

generic LFV effects mediated by the slepton sector, for some particular ranges of MSSM

parameter searches for 3-body charged lepton decays are a safer choice, allowing to avoid

blind spots appearing for such setups due to the suppression of `→ `′γ decay rates.

5.4 Non-decoupling effects in LFV Higgs decays

LFV Higgs decays in the SM are absent at the tree level and strongly suppressed also at

the loop level. Examining LFV Higgs boson decays within the MSSM is very interesting

because, contrary to other processes discussed in this paper, some contributions to the Higgs

decay amplitudes proportional to the lepton Yukawa couplings or to the non-holomorphic

trilinear slepton soft terms do not decouple in the limit of heavy SUSY masses and can be

potentially large.

As can be seen from tables 5, for an average SUSY mass scale of M = 400 GeV and

the parameter setup of eq. (5.3) the upper bounds on the flavour violating parameters from

Higgs decays are much weaker than from the other processes. However, the bounds from

Higgs decays on the ∆IJ
LL, ∆IJ

RR and on the non-holomorphic LR terms ∆
′IJ
LR do not scale

like 1/M2. Thus, comparing the limits on ∆
′13
LR and ∆

′23
LR entries from h→ ``′ and `→ `′γ

decays one can check that e.g. for tan β = 20 and

MSUSY
>∼

1.5√
| cos(α− β)|

TeV , (5.11)

– 29 –



J
H
E
P
0
6
(
2
0
1
8
)
0
0
3

∆12
LL ∆12

RR

1.03 1.03

1.05 1.05

1.1

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

log10.xL

lo
g
1
0
x
R

0.3

0.7

0.9

1.12

1.2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

log10.xL

lo
g
1
0
x
R

1.031.04

1.05

1.06

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

log10 xe

lo
g
1
0
x
μ

1.21.2

0.5
0.5

0.8

0.8

0.9

0.915

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

log10 xe

lo
g
1
0
x
μ

Figure 11. The ratio R``′ as a function of the mass splitting between left and right slepton masses

(upper row) and between the selectron and smuon masses (lower row) for M = 800 GeV as a

function of the normalised slepton masses xL(R) = mL(R)/M and xẽ(µ̃) = mẽ(µ̃)/M .

the latter are becoming weaker. For ∆
′12
LR the same occurs at a much higher scale

MSUSY
>∼

220√
| cos(α− β)|

TeV . (5.12)

The bounds on ∆IJ
LL, ∆IJ

RR are obtained assuming that the flavour diagonal A′l terms van-

ish, so that all non-decoupling LL and RR contributions are proportional to the Yukawa

couplings (see eq. (E.23)). In this case the Higgs decays become most constraining for

slightly higher SUSY scales, again for tan β = 20 and α angle of eq. (5.4) bounds on ∆IJ
LL

and ∆IJ
RR from Higgs decays become stronger than the bounds from ` → `′γ decays for

MSUSY
>∼ 2/

√
| cos(α− β)|TeV for τµ transitions, MSUSY

>∼ 3/
√
| cos(α− β)|TeV for τe

transitions and MSUSY
>∼ 200/

√
| cos(α− β)|TeV for µe transitions.
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Figure 12. Dependence of function g(xL, xR) of eq. (5.15) on the splitting between the slepton

and bino masses.

The Higgs decays in supersymmetric extensions of the SM have already been studied

e.g. in [84, 102–109]. In this section we analyse within the general MSSM the decays of the

lighter CP-even Higgs boson h. The mass eigenstates formulae for the MSSM contributions

to the effective leptonic Yukawa couplings of h are given in eqs. (2.14)–(2.16) while the

relevant MI expressions are collected in appendix E.3. The potentially largest contributions

to h→ ``′ decays come from the effects non decoupling in the limit of large SUSY masses

and proportional to non-holomorphic trilinear terms (see eq. (E.22)). Assuming that flavour

violating A
′IJ
l terms are the only source of LFV and using eqs. (3.4), (E.22) and (A.8), one

can write

Br(h→ `I ¯̀J)≈ e4Mh

8192π5c4
WΓh

cos2(α−β)

cos2β

(
g(xẽLI ,xẽRJ )2

∣∣∣∆′IJ
LR

∣∣∣2+g(xẽLJ ,xẽRI )
2
∣∣∣∆′JI

LR

∣∣∣2) ,
(5.13)

where α, β are the mixing angles in the Higgs sector (see appendix A), the dimensionless

mass ratios are

xẽL(R)I
=
mẽL(R)I

|M1|
, (5.14)

and we defined

g(x, y) = −√xy C0(x, y, 1) . (5.15)

As can be seen from of figure 12, for reasonable mass splittings g(x, y) ∼ O(1) and,

inserting the numerical values of known quantities, one has

Br(h→ `I ¯̀J) ∼ 2 · 10−4 cos2(α− β)

cos2 β

∣∣∣∆′IJ(JI)
LR

∣∣∣2 . (5.16)

Even if for large SUSY mass scale ∆
′IJ
LR insertions are not constrained experimentally by

other LFV measurements, Br(h→ `I ¯̀J) cannot be arbitrarily large in the MSSM because
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∆
′IJ
LR are constrained to O(1) by the vacuum stability conditions and the requirement of

the absence of charge and colour breaking (CCB) minima of the scalar potential (see e.g.

discussion in [110]).

The Higgs mixing angle α is subject to strong radiative corrections from the squark

sector and thus from the point of view of pure leptonic sector can be treated as a free

parameter. However, the allowed values of the Higgs mixing angles α, β are limited by

the existing experimental constraints (see e.g. figure 6 in appendix B of ref. [107]), thus

also the overall pre-factor cos2(α−β)
cos2 β

in eq. (5.16) can be at most O(1). Summarising, the

maximal Br(h → `I ¯̀J) which can be generated with the non-holomorphic trilinear terms

is O(10−4), not much below the current experimental sensitivities collected in table 2

(including decoupling contributions does not change this conclusion even for a light SUSY

spectrum [106, 107]). Further searches may therefore find the effects of non-holomorphic

trilinear terms or provide stricter bounds on them.

Similar analysis could be done for non-decoupling contributions proportional to ∆IJ
LL

and ∆IJ
RR parameters. However, in this case non-decoupling terms are proportional also

either to the diagonal A′l soft terms or to lepton Yukawa couplings, so the formulae become

complicated and a more involved numerical analysis is required. Terms proportional to

∆IJ
LL and ∆IJ

RR multiplied by diagonal A′l terms can generate similar LFV Higgs decay

rates as the flavour off-diagonal non-holomorphic A′l-terms. However, assuming that all

non-holomorphic terms vanish, and including only the Yukawa suppressed contributions

one has a much stricter bound Br(h→ `I ¯̀J) <∼ 10−4(Y I
l )2 in the MSSM.

For a complete phenomenological analysis of LFV Higgs decays in the MSSM one would

need to go beyond the one-loop analysis of this article. First, one would need to perform

the matching of the MSSM on the 2HDM with generic Yukawa couplings including the

resummation of the higher order chirally enhanced effects (see for example [54–56]). Then,

one has to calculate the loop effects for flavour observables within this generic 2HDM [111].

6 Conclusions

New precision data in the lepton flavour sector are expected to come in the foreseeable fu-

ture. The search for beyond the SM effects will require precision and efficient calculations

in various BSM models. In this article lepton flavour violating processes within MSSM have

been calculated using the Flavour Expansion Theorem, a recently developed new technique

of a purely algebraic mass-insertion expansion of the amplitudes [31]. Both flavour-violating

off-diagonal terms and flavour-conserving mass-insertions are considered. The expansion

in the flavour conserving off-diagonal mass terms leads to a transparent qualitative under-

standing of the coefficients in front of the flavour violating mass insertions (see eq. (4.2)) in

various decoupling limits. Most flavour violating one-loop amplitudes decouple as v2/M2

where M is one of the soft SUSY breaking mass parameters. The exception are the Higgs

flavour violating decays where the amplitudes decouple as v2/M2
A. We find that our full MI

approximation, both in flavour violating and flavour conserving off-diagonal mass terms is

an excellent approximation to the calculations in the mass eigenstates basis for a very broad

pattern of supersymmetric spectra, in particular for highly non-degenerate spectra. This is
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useful because in the MI approximation we work directly with the Lagrangian parameters

and can constrain them with experimental limits.

On the physics side, the considered processes are: `→ `′γ, `→ 3`′, `→ 2`′`′′, h→ ``′

as well as µ → e conversion in nuclei. The bounds on the flavour changing parameters of

the MSSM have been updated and their sensitivity to the forthcoming experimental re-

sults in different channels has been discussed. We have emphasised that, given the foreseen

experimental progress, precision measurements of different processes have very different po-

tential for the discovery of supersymmetric effects. The radiative and leptonic muon decays

are likely to remain the most important source of information on supersymmetric LFV.

The leptonic decays play a complementary role to the radiative ones in eliminating some

“blind spots” of weakly constrained by the latter LFV mass insertions. This is illustrated

in sections 5.2 and 5.3. Our complete analytical MI expansion facilitates the investigation

of the LFV processes when the SUSY spectra are non-degenerate and finding such “blind

spots” with suppressed branching ratios and regions of correlations between various pro-

cesses. This is illustrated in sections 5.2 and 5.3. The LFV Higgs decays are discussed in

some detail. For the supersymmetric spectrum of order of 1 TeV, the current experimental

limits on the LFV Higgs decays give several orders of magnitude weaker bounds on lepton

violating MI than the radiative lepton decays. However, for the superpartner masses of

several TeV Higgs decays provide stronger bounds than the latter because the bounds from

Higgs decays do not scale with superpartner masses. We have also analysed the role of the

so-called non-holomorphic A-terms in the flavour-violating Higgs boson decays, which can

give branching ratios not much below the present experimental sensitivity.
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A MSSM Lagrangian and vertices

Throughout this article we use the notation of refs. [43, 44] which is very similar to SLHA2

conventions [45], up to minor differences listed in table 6.

For completeness, we collect here the definitions of the mass and mixing matrices for

the supersymmetric particles and the relevant MSSM Feynman rules. The slepton and

sneutrino mass and mixing matrices are defined as:

Z†ν

(
M2
LL +

M2
Z cos 2β

2
1̂

)
Zν = diag

(
m2
ν1 . . .m

2
ν3

)
, (A.1)

Z†L

( (
M2

L

)
LL

(
M2

L

)
LR(

M2
L

)†
LR

(
M2

L

)
RR

)
ZL = diag

(
m2
L1
. . .m2

L6

)
, (A.2)
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SLHA2 [45] refs. [43, 44]

T̂U , T̂D, T̂E −ATu , +ATd , +ATl

m̂2
Q̃

, m̂2
L̃

m2
Q, m2

L

m̂2
ũ, m̂2

d̃
, m̂2

l̃
(m2

U )T , (m2
D)T , (m2

E)T

M2
ũ, M2

d̃
(M2

U )T , (M2
D)T

Table 6. Comparison of SLHA2 [45] and refs. [43, 44] conventions.

(
M2

L

)
LL

= (M2
LL)T +

M2
Z cos 2β

2
(1− 2c2

W )1̂ +
v2

1Y
2
l

2
, (A.3)(

M2
L

)
RR

= M2
RR −

M2
Z cos 2β

2
s2
W 1̂ +

v2
1Y

2
l

2
, (A.4)(

M2
L

)
LR

=
1√
2

(
v2(Ylµ

? −A′
l) + v1Al

)
, (A.5)

where, as usual, we use tan β = v2/v1 and M2
LL, M2

RR, Al, A
′
l, Yl = −

√
2ml/v1 are 3 × 3

matrices in flavour space.

The neutralino and chargino mass and mixing matrices can be written down as:

ZTN


M1 0 − ev1

2cW
ev2
2cW

0 M2
ev1
2sW

− ev2
2sW

− ev1
2cW

ev1
2sW

0 −µ
ev2
2cW

− ev2
2sW

−µ 0

ZN = diag
(
mχ0

1
. . .mχ0

4

)
, (A.6)

(Z−)T

(
M2

ev2√
2sW

ev1√
2sW

µ

)
Z+ = diag (mχ1 ,mχ2) . (A.7)

We also use the following abbreviation for the matrix ZR parametrizing the mixing in the

CP-even Higgs sector:

ZR =

(
cosα −sinα

sinα cosα

)
. (A.8)

Below we list the vertices used in calculations of the LFV processes expressed in terms

of the mixing matrices defined above.

1) Lepton-slepton-neutralino and lepton-sneutrino-chargino vertices (for an incoming

charged lepton of flavour I):

V Iij

`L̃N,L
=

e√
2sW cW

ZIiL (Z1j
N sW + Z2j

N cW ) + Y I
l Z

(I+3)i
L Z3j

N ,

V Iij

`L̃N,R
=
−e
√

2

cW
Z

(I+3)i
L Z1j?

N + Y I
l Z

Ii
L Z

3j?
N ,

V IKj
`ν̃C,L = − e

sW
Z1j

+ , ZIK?ν

V IKj
`ν̃C,R = −Y I

l Z
2j?
− ZIK?ν . (A.9)
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2) Z-chargino and Z-neutralino vertices:

V ij
CCZ,L = − e

2sW cW

(
Z1i∗

+ Z1j
+ + δij(c2

W − s2
W )
)
,

V ij
CCZ,R = − e

2sW cW

(
Z1i
−Z

1j∗
− + δij(c2

W − s2
W )
)
,

V ij
NNZ,L = −V ji

NNZ,R =
e

2sW cW

(
Z4i∗
N Z4j

N − Z
3i∗
N Z3j

N

)
. (A.10)

3) CP-even-Higgs-slepton and CP-even-Higgs-sneutrino vertices:

V Kil
HLL =

3∑
C=1

(
e2

2c2
W

(
v1Z

1K
R − v2Z

2K
R

)(
δil +

1− 4s2
W

2s2
W

ZCi?L ZClL

)
− (Y C

l )2v1Z
1K
R (ZCi?L ZClL + Z

(C+3)i?
L Z

(C+3)l
L )

−
Z2K
R√
2

(Y C∗
l µ∗ZCi?L Z

(C+3)l
L + Y C

l µZ
Cl
L Z

(C+3)i?
L )

)
− 1√

2

3∑
C,D=1

(
Z1K
R (ACD?l ZClL Z

(D+3)i?
L +ACDl ZCi?L Z

(D+3)l
L )

− Z2K
R (A

′CD?
l ZClL Z

(D+3)i?
L +A

′CD
l ZCi?L Z

(D+3)l
L )

)
,

V KLI
Hν̃ν̃ = − e2

4s2
W c

2
W

(v1Z
1K
R − v2Z

2K
R )δLI . (A.11)

4) CP-odd-Higgs-slepton and CP-odd-Higgs-sneutrino vertices:

V 1il
ALL =

i cosβ√
2

3∑
C,D=1

(
(ACD∗l tanβ +A

′CD∗
l − Y C

l µδ
CD)ZCjL Z

(D+3)i?
L

− (ACDl tanβ +A
′CD
l − Y C

l µ
∗δCD)ZCi?L Z

(D+3)j
L

)
,

V 1LI
Aν̃ν̃ = 0 . (A.12)

5) CP-even-Higgs-neutralino and CP-even-Higgs-chargino vertices:

V iKl
NHN,L = V iKl ∗

NHN,R =
e

2sW cW

(
(Z1K

R Z3l
N − Z2K

R Z4l
N )(Z1i

N sW − Z2i
N cW )

+ (Z1K
R Z3i

N − Z2K
R Z4i

N )(Z1l
NsW − Z2l

N cW )
)
,

V iKl
CHC,L = V iKl ∗

CHC,R = − e√
2sW

(
Z1K
R Z2i

−Z
1l
+ + Z2K

R Z1i
−Z

2l
+

)
. (A.13)

6) CP-odd-Higgs-neutralino and CP-odd-Higgs-chargino vertices:

V i1l
NAN,L = V i1l ∗

NAN,R =
−ie2

4s2
W c

2
WMZ

(
(v2Z

3j
N − v1Z

4j
N )(Z1i

N sW − Z2i
N cW )

+ (v2Z
3i
N − v1Z

4i
N )(Z1j

N sW − Z
2j
N cW )

)
,

V i1l
CAC,L = V i1l ∗

CAC,R =
ie2

2
√

2s2
WMW

(v2Z
2i
−Z

1j
+ + v1Z

1i
−Z

2j
+ ) . (A.14)
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7) Z-slepton vertex:

V ij
LLZ =

e

2sW cW

(
Zki∗L ZkjL − 2s2

W δ
ij
)
. (A.15)

B Loop integrals

We define the following loop integrals for 2-point and 3-point functions with non-vanishing

external momenta p and q:

i

(4π)2
B0(p,m1,m2) =

∫
d4k

(2π)4

1

(k2 −m2
1)((k − p)2 −m2

2)
,

i

(4π)2
pµB1(p,m1,m2) =

∫
d4k

(2π)4

kµ
(k2 −m2

1)((k − p)2 −m2
2)
, (B.1)

i

(4π)2
C2n(p, q,m1,m2,m3) =

∫
d4k

(2π)4

(k2)n

(k2 −m2
1)((k + p)2 −m2

2)((k + p+ q)2 −m2
3)
,

i

(4π)2
(pµC11(p, q,m1,m2,m3) + qµC12(p, q,m1,m2,m3))

=

∫
d4k

(2π)4

kµ
(k2 −m2

1)((k + p)2 −m2
2)((k + p+ q)2 −m2

3)
.

In our expanded results we need only the integrals above, their derivatives and higher

point 1-loop integrals calculated at vanishing external momenta. Let us define

i

(4π)2
L2n
i (m1, . . . ,mi) =

∫
d4k

(2π)4

(k2)n

i∏
j=1

(k2 −m2
j )

. (B.2)

In common notation L2n
3 = C2n, L

2n
4 = D2n, L

2n
5 = E2n etc.

For i ≥ 3 one has:

L0
i (m1, . . . ,mi) = −

i∑
j=2

m2
j log

m2
j

m2
1

i∏
k=1,k 6=j

(m2
j −m2

k)

,

L2
i (m1, . . . ,mi) =

i∑
j=2

m4
j log

m2
j

m2
1

i∏
k=1,k 6=j

(m2
j −m2

k)

, (B.3)

(with the exception of L2
3 ≡ C2 having also an infinite part, which however is always

cancelled out in flavour violating processes and is thus not given here explicitly).

To simplify our formulae, we use the relation

2L0
i (m1,m2, . . . ,mi) = L2

i+1(m1,m1,m2, . . . ,mi) + L2
i+1(m1,m2,m2, . . . ,mi)

+ . . .+ L2
i+1(m1, . . . ,mi−1,mi,mi) , (B.4)

which can be obtained by differentiating with respect to λ the integral form of the homo-

geneity property

L0
i (λm1, . . . , λmi) = λ4−2iL0

i (m1, . . . ,mi) , (B.5)
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and using the relation (k = 1, . . . , i)

m2
kL

0
i+1(m1, . . . ,mk,mk, . . . ,mi) = L2

i+1(m1, . . . ,mk,mk, . . . ,mi)

− L0
i (m1, . . . ,mk, . . . ,mi) . (B.6)

In addition, we define the following integrals:

C ′0(m1,m2,m3) =
∂C0(p, q,m1,m2,m3)

∂q2

∣∣∣∣
p=q=0

=
2m2

2m
2
3 −m2

1(m2
2 +m2

3)

2(m2
1 −m2

2)(m2
1 −m2

3)(m2
2 −m2

3)2
(B.7)

+
m4

1 log
m2

1

m2
2

2(m2
1 −m2

2)2(m2
1 −m2

3)2
+
m2

3(m4
3 − 2m2

1m
2
2 +m2

2m
2
3) log

m2
3

m2
2

2(m2
1 −m2

3)2(m2
2 −m2

3)3
,

C11(m1,m2) = − m2
1 − 3m2

2

4(m2
1 −m2

2)2
+

m4
2

2(m2
1 −m2

2)3
log

m2
2

m2
1

, (B.8)

C12(m1,m2) = − m2
1 +m2

2

2(m2
1 −m2

2)2
− m2

1m
2
2

(m2
1 −m2

2)3
log

m2
2

m2
1

, (B.9)

C23(m1,m2) = −m
4
1 − 5m2

1m
2
2 − 2m4

2

12(m2
1 −m2

2)3
+

m2
1m

4
2

2(m2
1 −m2

2)4
log

m2
2

m2
1

, (B.10)

C01(m1,m2) =
7m4

1 − 29m2
1m

2
2 + 16m4

2

36(m2
1 −m2

2)3
+
m4

2(−3m2
1 + 2m2

2)

6(m2
1 −m2

2)4
log

m2
2

m2
1

, (B.11)

C02(m1,m2) =
11m4

1 − 7m2
1m

2
2 + 2m4

2

36(m2
1 −m2

2)3
+

m6
1

6(m2
1 −m2

2)4
log

m2
2

m2
1

. (B.12)

C Divided differences

The expansion of the amplitudes given in the mass eigenbasis in terms of mass insertions

can be naturally expressed [31] by the so-called divided differences of the loop functions.

In case of a function of a single argument, f(x), divided differences are defined recur-

sively as:

f [0](x) = f(x) ,

f [1](x, y) =
f [0](x)− f [0](y)

x− y
,

f [2](x, y, z) =
f [1](x, y)− f [1](x, z)

y − z
,

. . . . (C.1)

As can be easily checked, a divided difference of order n is symmetric under permutation

of any subset of its arguments. It also has a smooth limit for degenerate arguments:

lim
{x0,...,xm}→{ξ,...,ξ}

f [k](x0, . . . , xk) =
1

m!

∂m

∂ξm
f [k−m](ξ, xm+1 . . . , xk) . (C.2)
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To compactify the formulae for functions of many arguments, we use the notation

f [k](x0, . . . , xk) ≡ f({x0, . . . , xk}) , (C.3)

where the order of the divided difference is defined by the number of arguments inside

curly brackets. Then, for example a divided difference of the 1st order in the 1st argument

and of the 3rd order in the 2nd argument for the function of 3 variables, g(x, y, z), can be

written down as:

g({x1, x2}, {y1, y2, y3, y4}, z) . (C.4)

For the loop functions defined in appendix B one should note that their natural arguments

are squares of masses. However, we use mi’s instead of m2
i ’s to compactify the notation.

Thus, for loop functions we write divided differences as

L(m1, . . . , {mi,m
′
i}, . . . ,mn) =

L(m1, . . . ,mi, . . . ,mn)− L(m1, . . . ,m
′
i, . . . ,mn)

m2
i −m

′2
i

, (C.5)

with squared masses in the denominator.

The FET expansion works for any transition amplitude, also in the case of non-

vanishing external momenta or for multi-loop calculations. However, it is particularly

effective for 1-loop functions with vanishing external momenta, due to the fact that the

notion of the divided differences is naturally encoded in the structure of such functions: a

divided difference of a n-point scalar 1-loop function is a (n+1)-point function (see eq. 3.13

in ref. [31] for generalisation to the case of non-vanishing external momenta). Thus, for

example one has

B0(m1, {m2,m3}) = B0({m1,m2},m3) = C0(m1,m2,m3)

B0(m1, {m2,m3,m4}) = C0(m1,m2, {m3,m4}) = D0(m1,m2,m3,m4) (C.6)

. . .

We use such relations extensively to find cancellations between various terms and to identify

the lowest non-vanishing order of mass insertion expansion for a given process.

D Box diagrams in the mass eigenstates basis

There are four types of box diagrams with four external leptons involving slepton (sneutri-

nos) and neutralinos (charginos) in the loop, displayed in figure 13. Both chargino-sneutrino

and neutralino-slepton pairs contribute to diagrams A) and B), while only neutralinos (Ma-

jorana fermions) can be exchanged in the “crossed” diagrams C) and D).

Using whenever necessary Fierz identities, the amplitudes describing each of the dia-

grams N = A,B,C,D can be brought into the form

iAJIKLN = i
∑

Q=V,S,T

BJIKL
N QXY [ū(pJ)ΓQPXu(pI)][ū(pK)ΓQPY v(pL)] (D.1)

with ΓV = γµ, ΓS = 1 and ΓT = σµν . Note that for ΓT only the case X = Y is non

vanishing. Assuming that the generic couplings for an incoming lepton `I - an incoming
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lI lJ

lK
lL

Sk Sl

fi

fj

A)

lI lJ

lK
lL

fi fj

Sk

Sl

B)

lI lJ

lK
lL

Sk Sl

fi fj

C)

lI lJ

lK
lL

fi fj

Sk

Sl

D)

Figure 13. MSSM box diagrams with 4 external charged leptons.

scalar particle Sk and an outgoing fermion fi takes the form

iV Iki
`Sf = i

(
AIki`SfPL +BIki

`SfPR

)
, (D.2)

the contribution from diagram A) in figure 13) to the Wilson coefficients BQXY can be

written down as:

(4π)2BJIKL
A V LL =

1

4
AIki`SfA

Jli∗
`Sf A

Kkj∗
`Sf ALlj`SfD2 ,

(4π)2BJIKL
A V RR =

1

4
BIki
`SfB

Jli∗
`Sf B

Kkj∗
`Sf BLlj

`SfD2 ,

(4π)2BJIKL
A V LR =

1

4
AIki`SfA

Jli∗
`Sf B

Kkj∗
`Sf BLlj

`SfD2 ,

(4π)2BJIKL
A V RL =

1

4
BIki
`SfB

Jli∗
`Sf A

Kkj∗
`Sf ALlj`SfD2 ,

(4π)2BJIKL
A SLL = AIki`SfB

Jli∗
`Sf B

Kkj∗
`Sf ALlj`SfmfimfjD0 ,

(4π)2BJIKL
A SRR = BIki

`SfA
Jli∗
`Sf A

Kkj∗
`Sf BLlj

`SfmfimfjD0 ,

(4π)2BJIKL
A SLR = AIki`SfB

Jli∗
`Sf A

Kkj∗
`Sf BLlj

`SfmfimfjD0 ,

(4π)2BJIKL
A SRL = BIki

`SfA
Jli∗
`Sf B

Kkj∗
`Sf ALlj`SfmfimfjD0 ,

(4π)2BJIKL
A TL = 0 ,

(4π)2BJIKL
A TR = 0 , (D.3)

where D0, D2 above are the abbreviations for 4-point loop functions with respective mass

arguments, D0 = D0(mfi ,mfj ,mSk ,mSl), D2 = D2(mfi ,mfj ,mSk ,mSl) (see appendix B).
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Using the same notation, the contributions from diagram B), C), D) are:

(4π)2BJIKL
B V LL =

1

4
AIki`SfA

Jkj∗
`Sf A

Kli∗
`Sf A

Llj
`SfD2 ,

(4π)2BJIKL
B V RR =

1

4
BIki
`SfB

Jkj∗
`Sf B

Kli∗
`Sf B

Llj
`SfD2 ,

(4π)2BJIKL
B V LR = −1

2
AIki`SfA

Jkj∗
`Sf B

Kli∗
`Sf B

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B V RL = −1

2
BIki
`SfB

Jkj∗
`Sf A

Kli∗
`Sf A

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B SLL = −1

2
AIki`SfB

Jkj∗
`Sf B

Kli∗
`Sf A

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B SRR = −1

2
BIki
`SfA

Jkj∗
`Sf A

Kli∗
`Sf B

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B SLR = −1

2
AIki`SfB

Jkj∗
`Sf A

Kli∗
`Sf B

Llj
`SfD2 ,

(4π)2BJIKL
B SRL = −1

2
BIki
`SfA

Jkj∗
`Sf B

Kli∗
`Sf A

Llj
`SfD2 ,

(4π)2BJIKL
B TL = −1

8
AIki`SfB

Jkj∗
`Sf B

Kli∗
`Sf A

Llj
`SfmfimfjD0 ,

(4π)2BJIKL
B TR = −1

8
BIki
`SfA

Jkj∗
`Sf A

Kli∗
`Sf B

Llj
`SfmfimfjD0 , (D.4)

(4π)2BJIKL
C V LL =

1

2
AIki`SfA

Lli
`SfA

Jlj∗
`Sf A

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C V RR =

1

2
BIki
`SfB

Lli
`SfB

Jlj∗
`Sf B

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C V LR =

1

4
BIki
`SfA

Lli
`SfB

Jlj∗
`Sf A

Kkj∗
`Sf D2 ,

(4π)2BJIKL
C V RL =

1

4
AIki`SfB

Lli
`SfA

Jlj∗
`Sf B

Kkj∗
`Sf D2 ,

(4π)2BJIKL
C SLL = −1

2
AIki`SfA

Lli
`SfB

Jlj∗
`Sf B

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C SRR = −1

2
BIki
`SfB

Lli
`SfA

Jlj∗
`Sf A

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C SLR =

1

2
BIki
`SfA

Lli
`SfA

Jlj∗
`Sf B

Kkj∗
`Sf D2 ,

(4π)2BJIKL
C SRL =

1

2
AIki`SfB

Lli
`SfB

Jlj∗
`Sf A

Kkj∗
`Sf D2 ,

(4π)2BJIKL
C TL =

1

8
AIki`SfA

Lli
`SfB

Jlj∗
`Sf B

Kkj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
C TR =

1

8
BIki
`SfB

Lli
`SfA

Jlj∗
`Sf A

Kkj∗
`Sf mfimfjD0 , (D.5)

(4π)2BJIKL
D V LL =

1

2
AIki`SfA

Lli
`SfA

Jkj∗
`Sf A

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D V RR =

1

2
BIki
`SfB

Lli
`SfB

Jkj∗
`Sf B

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D V LR = −1

4
BIki
`SfA

Lli
`SfB

Jkj∗
`Sf A

Klj∗
`Sf D2 ,

– 40 –



J
H
E
P
0
6
(
2
0
1
8
)
0
0
3

(4π)2BJIKL
D V RL = −1

4
AIki`SfB

Lli
`SfA

Jkj∗
`Sf B

Klj∗
`Sf D2 ,

(4π)2BJIKL
D SLL = −1

2
AIki`SfA

Lli
`SfB

Jkj∗
`Sf B

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D SRR = −1

2
BIki
`SfB

Lli
`SfA

Jkj∗
`Sf A

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D SLR = −1

2
BIki
`SfA

Lli
`SfA

Jkj∗
`Sf B

Klj∗
`Sf D2 ,

(4π)2BJIKL
D SRL = −1

2
AIki`SfB

Lli
`SfB

Jkj∗
`Sf A

Klj∗
`Sf D2 ,

(4π)2BJIKL
D TL =

1

8
AIki`SfA

Lli
`SfB

Jkj∗
`Sf B

Klj∗
`Sf mfimfjD0 ,

(4π)2BJIKL
D TR =

1

8
BIki
`SfB

Lli
`SfA

Jkj∗
`Sf A

Klj∗
`Sf mfimfjD0 . (D.6)

To obtain the actual MSSM contributions to the 4-lepton operators, one should add

terms from eqs. (D.3), (D.4) with replacements f → C, S → ν̃, A`Sf → V`ν̃C,L, B`Sf →
V`ν̃C,R and f → N,S → L̃, A`Sf → V`L̃N,L, B`Sf → V`L̃N,R (summing over repeated indices

of loop particles) and terms from eqs. (D.5), (D.6), substituting there only f → N,S →
L̃, A`Sf → V`L̃N,L, B`Sf → V`L̃N,R.

The contributions to 2-quark 2-lepton operators can be obtained from diagrams A)

and C) by replacing `K and `L with qK and qL as defined in eq. (2.28). Therefore, the

expressions for Bq QXY can be obtained replacing vertices of leptons `K and `L by the

relevant quark-squark vertices. Such vertices are not listed in appendix A but can be

found in refs. [43, 44]. The explicit form of ``dd box amplitudes can be also found in

appendix A.3 of ref. [112].

E Effective lepton couplings in the leading MI order

We list below the MI expanded expressions for the leptonic penguin and box diagram ampli-

tudes. For penguins we follow the decomposition of eq. (4.2), with FXY denoting functions

of flavour diagonal SUSY parameters multiplying the respective slepton mass insertions:

F IJX =
1

(4π)2

(
F IJX LL ∆IJ

LL + F IJX RR ∆JI
RR

+ F IJX ALR ∆JI
LR + F IJX BLR ∆IJ∗

LR + F
′IJ
X ALR ∆

′JI
LR + F

′IJ
X BLR ∆

′IJ∗
LR

)
. (E.1)

To compactify the notation, we also introduce the abbreviation

M̄ IJ
XY =

√(
M2
XX

)II (
M2
Y Y

)JJ
(E.2)

where X,Y = L or R.

E.1 Lepton-photon vertex

E.1.1 Tensor (magnetic) couplings

After performing MI expansion, one can see that terms coming from FγA in eq. (2.4) are

always suppressed by the powers of lepton Yukawa couplings or lepton masses, and may
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add to or cancel terms generated from FγLB, FγRB. Thus, in the expressions below we give

the sum of both types of contributions.

The chargino contributions contain only terms proportional to LL slepton mass inser-

tions (see appendix C for the notation of divided differences and curly brackets around the

function arguments)

(Fγ LL)JIC =
e2v1Y

J
L

2
√

2s2
W

M̄ IJ
LL

(
C11(|M2| , {mν̃I ,mν̃J})

+ C11(|µ| , {mν̃I ,mν̃J})− C23(|M2| , {mν̃I ,mν̃J})

+
(
|µ|2 + |M2|2 + 2µ∗M∗2 tanβ

)
C11({|µ| , |M2|}, {mν̃I ,mν̃J})

)
(E.3)

The non-vanishing neutralino contributions are:

(Fγ LL)JIN =
e2

2c2
W

M̄ IJ
LL

(
M?

1C12({mẽLI ,mẽLJ ,mẽRJ}, |M1|)
(
M2
LR

)
JJ

− v1

2
√

2
Y J
L

(
c2
W

s2
W

(C12({mẽLI ,mẽLJ}, |µ|)− C23({mẽLI ,mẽLJ}, |M2|))

− C12({mẽLI ,mẽLJ}, |µ|)− C23({mẽLI ,mẽLJ}, |M1|)

+
(
|M2|2 + µ?M?

2 tanβ
) c2

W

s2
W

C12({mẽLI ,mẽLJ}, {|µ|, |M2|})

−
(
|M1|2 + µ?M?

1 tanβ
)
C12({mẽLJ ,mẽLI}, {|µ|, |M1|})

))
(E.4)

(Fγ RR)JIN =
e2

2c2
W

M̄ IJ
RR

(
M?

1C12 ({mẽLI ,mẽRI ,mẽRJ}, |M1|)
(
M2
LR

)
II

− v1√
2
Y I
L (C12 ({mẽRI ,mẽRJ}, |µ|)− 2C23({mẽRI ,mẽRJ}, |M1|)

+
(
|M1|2 + µ?M?

1 tanβ
)
C12({mẽRI ,mẽRJ}, {µ, |M1|})

))
(Fγ ALR)JIN = −v1

v2

(
F ′γ ALR

)JI
N

=
e2v1

2
√

2c2
W

√
M̄ IJ
LR M

?
1C12({mẽLI ,mẽRJ}, |M1|)

E.1.2 Vector couplings

Loop functions C01 and C02 appearing in eq. (2.6) scale with the inverse of the squared

SUSY scale M2. Thus, only LL and RR terms contribute to the MI expanded expressions

at the v2/M2 order, as LR mass insertions always come with additional v/M powers. The

non-vanishing chargino and neutralino contributions are:

(VγL LL)JIC =
e2

s2
W

M̄ IJ
LL C01(|M2|, {mν̃I ,mν̃J}) (E.5)

(VγL LL)JIN = − e2

2s2
W c

2
W

M̄ IJ
LL (c2

WC02(|M2|, {mẽLI ,mẽLJ}) + s2
WC02(|M1|, {mẽLI ,mẽLJ})

(VγR RR)JIN = −2e2

c2
W

M̄ IJ
RR C02(|M1|, {mẽRI ,mẽRJ}) (E.6)
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E.2 Lepton-Z0 vertex

The leading v2/M2
SUSY terms in the effective Z ¯̀I`J vertex defined in eq. (2.7), expanded to

the 1st order in LFV mass insertions, depend on divided differences of scalar C0 and C2 3-

point functions. They can be expressed as higher point 1-loop functions (see appendices B

and C). We give here the expressions using explicitly scalar 4-, 5- and 6-point functions D,

E and F .

The only non-negligible chargino contribution to Z``′ vertex read:

(FZL LL)JIC = − e5

4s5
W cW

M̄ IJ
LL

(
v2

2 D0(|M2|, |µ|,mν̃I ,mν̃J )

+ (v2
1 − v2

2)E2(|M2|, |M2|, |µ|,mν̃I ,mν̃J )

+
1

2
|v2M2 + v1µ

∗|2 F2(|M2|, |M2|, |µ|, |µ|,mν̃I ,mν̃J )

)
(E.7)

Neutralino contributions have a more complicated form. They can be written down as:

(FZL LL)JIN =
e3
√

2

16s3
W c

3
W

M̄ IJ
LL (XJI

ZNL4 +XJI
ZNL5 +XIJ∗

ZNL5)

(FZR LL)JIN =
e3
√

2

8sW c3
W

M̄ IJ
LL (XIJ

ZNR4 +XJI
ZNR5 +XIJ∗

ZNR5) (E.8)

(FZL RR)JIN =
e3
√

2

16s3
W c

3
W

M̄ IJ
RR (XJI

ZNL2 +XJI
ZNL3 +XIJ∗

ZNL3)

(FZR RR)JIN =
e3
√

2

8sW c3
W

M̄ IJ
RR (XJI

ZNR2 +XJI
ZNR3 +XIJ∗

ZNR3) (E.9)

(FZL ALR)JIN = (FZL BLR)IJ∗N = −v1

v2
(F ′ZL ALR)JIN = −v1

v2
(FZL BLR)IJ∗N

=
e3v1

16s3
W c

3
W

√
M̄ IJ
LR X

JI
ZNL1

(FZR ALR)JIN = (FZR BLR)IJ∗N = −v1

v2
(F ′ZR ALR)JIN = −v1

v2
(FZR BLR)IJ∗N

=
e3v1

4sW c3
W

√
M̄ IJ
LR X

JI
ZNR1 (E.10)

where we defined

XJI
ZNL1 =

√
2(s2

WE2(|M1|,mẽLJ ,mẽLI ,mẽRJ ,mẽRJ )

+ c2
WE2(|M2|,mẽLJ ,mẽLI ,mẽRJ ,mẽRJ ))(M2

LR)∗JJ

+ Y J
l

(
2v1(M∗1 s

2
WD0(|M1|, |µ|,mẽLI ,mẽRJ )− c2

WM
∗
2D0(|M2|, |µ|,mẽLI ,mẽRJ ))

− s2
W (v1M

∗
1 + v2µ)(E2(|M1|, |µ|,mẽLI ,mẽRJ ,mẽRJ )

+ E2(|M1|, |µ|, |µ|,mẽLI ,mẽRJ ))

+ c2
W (v1M

∗
2 + v2µ)(E2(|M2|, |µ|,mẽLI ,mẽRJ ,mẽRJ )

+ E2(|M2|, |µ|, |µ|,mẽLI ,mẽRJ ))) (E.11)
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XJI
ZNL2 =

√
2(M2

LR)∗JJ(M2
LR)II(s

2
W (F2(|M1|,mẽLJ ,mẽLI ,mẽRJ ,mẽRJ ,mẽRI )

+ F2(|M1|,mẽLJ ,mẽLI ,mẽRJ ,mẽRI ,mẽRI ))

+ c2
W (F2(|M2|,mẽLJ ,mẽLI ,mẽRJ ,mẽRJ ,mẽRI )

+ F2(|M2|,mẽLJ ,mẽLI ,mẽRJ ,mẽRI ,mẽRI ))) (E.12)

XJI
ZNL3 = Y I∗

l (M2
LR)∗JJ

(
2v1(M∗1 s

2
WE0(|M1|, |µ|,mẽLJ ,mẽRJ ,mẽRI )

− c2
WM

∗
2E0(|M2|, |µ|,mẽLJ ,mẽRJ ,mẽRI )) (E.13)

− s2
W (v1M

∗
1 + v2µ)(F2(|M1|, |µ|,mẽLJ ,mẽRJ ,mẽRJ ,mẽRI )

+ F2(|M1|, |µ|,mẽLJ ,mẽRJ ,mẽRI ,mẽRI ) + F2(|M1|, |µ|, |µ|,mẽLJ ,mẽRJ ,mẽRI ))

+ c2
W (v1M

∗
2 + v2µ)(F2(|M2|, |µ|,mẽLJ ,mẽRJ ,mẽRJ ,mẽRI )

+ F2(|M2|, |µ|,mẽLJ ,mẽRJ ,mẽRI ,mẽRI ) + F2(|M2|, |µ|, |µ|,mẽLJ ,mẽRJ ,mẽRI )))

XJI
ZNL4 =

e2(v2
1 − v2

2)√
2s2
W c

2
W

(
s4
WD0(|M1|, |µ|,mẽLJ ,mẽLI ) + c4

WD0(|M2|, |µ|,mẽLJ ,mẽLI )

+ 2s2
W c

2
W Re (M1M

∗
2 )E0(|M1|, |M2|, |µ|,mẽLJ ,mẽLI )

− s4
W (E2(|M1|, |M1|, |µ|,mẽLJ ,mẽLI ) + E2(|M1|, |µ|, |µ|,mẽLJ ,mẽLI ))

− c4
W (E2(|M2|, |M2|, |µ|,mẽLJ ,mẽLI ) + E2(|M2|, |µ|, |µ|,mẽLJ ,mẽLI ))

+ 2s2
W c

2
WE2(|M1|, |M2|, |µ|,mẽLJ ,mẽLI )

+
1

2
s4
W (|µ|2 − |M1|2)F2(|M1|, |M1|, |µ|, |µ|,mẽLJ ,mẽLI )

+
1

2
c4
W (|µ|2 − |M2|2)F2(|M2|, |M2|, |µ|, |µ|,mẽLJ ,mẽLI )

+ s2
W c

2
W (|µ|2 − Re (M1M

∗
2 ))F2(|M1|, |M2|, |µ|, |µ|,mẽLJ ,mẽLI )

)
(E.14)

XJI
ZNL5 = Y I∗

l (M2
LR)∗II

(
2v1(s2

WM
∗
1E0(|M1|, |µ|,mẽLJ ,mẽLI ,mẽRI )

− c2
WM

∗
2E0(|M2|, |µ|,mẽLJ ,mẽLI ,mẽRI ))

− s2
W (v1M

∗
1 + v2µ)(F2(|M1|, |µ|,mẽLJ ,mẽLI ,mẽRI ,mẽRI )

+ F2(|M1|, |µ|, |µ|,mẽLJ ,mẽLI ,mẽRI ))

+ c2
W (v1M

∗
2 + v2µ)(F2(|M2|, |µ|,mẽLJ ,mẽLI ,mẽRI ,mẽRI )

+ F2(|M2|, |µ|, |µ|,mẽLJ ,mẽLI ,mẽRI )))

+
√

2 (s2
WF2(|M1|,mẽLJ ,mẽLI ,mẽLI ,mẽRI ,mẽRI )

+ c2
WF2(|M2|,mẽLJ ,mẽLI ,mẽLI ,mẽRI ,mẽRI ))

∣∣(M2
LR)II

∣∣2 (E.15)

XJI
ZNR1 = Y I

l (2v1M
∗
1D0(|M1|, |µ|,mẽLI ,mẽRJ )

− (v1M
∗
1 + v2µ)(E2(|M1|, |µ|,mẽLI ,mẽLI ,mẽRJ )

+ E2(|M1|, |µ|, |µ|,mẽLI ,mẽRJ )))

− 2
√

2E2(|M1|,mẽLI ,mẽLI ,mẽRJ ,mẽRI )(M
2
LR)∗II (E.16)
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XJI
ZNR2 =

√
2e2(v2

1 − v2
2)

c2
W

(
|M1|2E0(|M1|, |µ|, |µ|,mẽRJ ,mẽRI )

+ E2(|M1|, |M1|, |µ|,mẽRJ ,mẽRI )

− 1

2
(|M1|2 − |µ|2)(F2(|M1|, |µ|, |µ|,mẽRJ ,mẽRJ ,mẽRI )

+ F2(|M1|, |µ|, |µ|,mẽRJ ,mẽRI ,mẽRI )

+ 2F2(|M1|, |µ|, |µ|, |µ|,mẽRJ ,mẽRI ))) (E.17)

XJI
ZNR3 = Y I

l (M2
LR)II (2v1M

∗
1E0(|M1|, |µ|,mẽLI ,mẽRJ ,mẽRI )

− (v1M
∗
1 + v2µ)(F2(|M1|, |µ|,mẽLI ,mẽLI ,mẽRJ ,mẽRI )

+ F2(|M1|, |µ|, |µ|,mẽLI ,mẽRJ ,mẽRI )))

− 2
√

2F2(|M1|,mẽLI ,mẽLI ,mẽRJ ,mẽRI ,mẽRI )
∣∣(M2

LR)II
∣∣2 (E.18)

XJI
ZNR4 = −2

√
2 (F2(|M1|,mẽLJ ,mẽLJ ,mẽLI ,mẽRJ ,mẽRI )

+ F2(|M1|,mẽLJ ,mẽLI ,mẽLI ,mẽRJ ,mẽRI ))(M
2
LR)JJ(M2

LR)∗II (E.19)

XJI
ZNR5 = −Y I

l (M2
LR)JJ (2µv2E0(|M1|, |µ|,mẽLJ ,mẽLI ,mẽRJ )

− (v1M
∗
1 + v2µ)(F2(|M1|, |M1|, |µ|,mẽLJ ,mẽLI ,mẽRJ )

+ F2(|M1|, |µ|,mẽLJ ,mẽLI ,mẽRJ ,mẽRJ ))) (E.20)

E.3 CP-even Higgs-lepton vertex

The dominant MI terms in the effective CP-even Higgs - lepton couplings (see eq. (2.13))

can be split into four classes,

F IJKh =
1

(4π)2

(
F IJKhnd + F IJKhY + F IJKhdec + F IJKhm

)
, (E.21)

defined as (below we give the sum of neutralino and chargino contributions, the latter

appearing only as single term depending on sneutrino masses in eq. (E.23) and follow

notation of eq. (4.2)):

1. Contributions proportional to non-holomorphic A′l trilinear terms,10 non-decoupling for

MSUSY � v:

(F ′hnd ALR)IJK =
e2(v1Z

2K
R − v2Z

1K
R )√

2c2
W v1

√
M̄ IJ
LR M

?
1 C0(|M1| ,mẽLI ,mẽRJ ) (E.22)

(Fhnd LL)IJK =
e2(v1Z

2K
R − v2Z

1K
R )√

2c2
W v1

M̄ IJ
LL M

?
1D0(|M1| ,mẽLI ,mẽLJ ,mẽRJ )A

′JJ
L

(Fhnd RR)IJK =
e2(v1Z

2K
R − v2Z

1K
R )√

2c2
W v1

M̄ IJ
RR M

?
1 D0(|M1| ,mẽLI ,mẽRI ,mẽRJ )A

′II
L

10For comparison with commonly used notation of the Higgs mixing angles, note that

(v1Z
2K
R − v2Z1K

R )/v1 =

{
sin(α− β)/ cosβ for K = 1

cos(α− β)/ cosβ for K = 2
.
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2. Contributions suppressed by the lepton Yukawa couplings, also non-decoupling for

MSUSY � v:

(FhY LL)IJK = − e2

2
√

2v1c2
W s

2
W

(
v1Z

2K
R − v2Z

1K
R

) (
s2
WM

?
1µ

?(D0(|M1| , |µ| ,mẽLI ,mẽLJ )

+ 2D0(|M1| ,mẽLI ,mẽLJ ,mẽRJ ))− c2
WM

?
2µ

?(D0(|M2| , |µ| ,mẽLI ,mẽLJ )

+ 2D0(|M2| , |µ| ,mν̃I ,mν̃J ))) M̄ IJ
LL Y

J
L

(FhY RR)IJK = − e2

√
2v1c2

W

(
v1Z

2K
R − v2Z

1K
R

)
M?

1µ
?(D0(|M1| ,mẽLI ,mẽRI ,mẽRJ )

−D0(|M1| , |µ| ,mẽRI ,mẽRJ )) M̄ IJ
RR Y

I
L (E.23)

3. Contributions decoupling as v2/M2
SUSY. We neglect here terms proportional to ∆LL,

∆RR, ∆′LR as they are dominated by non-decoupling contributions listed in points 1) and 2).

Only the terms proportional to ∆IJ
LR and ∆JI∗

RL are generated starting at order v2/M2
SUSY.

To simplify the expressions, below we also neglect terms additionally suppressed by lep-

ton Yukawa couplings (this approximation becomes inaccurate for large µ and tanβ ≥ 30,

when the diagonal LR elements of the slepton mass matrix proportional to µYl become im-

portant).

(Fhdec ALR)IJK =

(
e4

4v1

√
2c4
W s

2
W

(
(v1Z

1K
R − v2Z

2K
R )M∗1 (2s2

WD0(|M1|,mẽLI ,mẽRJ ,mẽRJ )

− (2s2
W − 1)D0(|M1|,mẽLI ,mẽLI ,mẽRJ ))

+ 2(v1Z
1K
R + v2Z

2K
R )(c2

W (M∗1 +M∗2 )E2(|M1|, |M2|, |µ|,mẽLI ,mẽRJ )

− 2s2
WM

∗
1E2(|M1|, |M1|, |µ|,mẽLI ,mẽRJ ))

+ 2(v2Z
1K
R + v1Z

2K
R )

(
M∗1µ

∗(c2
WM

∗
2E0(|M1|, |M2|, |µ|,mẽLI ,mẽRJ )

− s2
WM

∗
1E0(|M1|, |M1|, |µ|,mẽLI ,mẽRJ ))

+ µ(c2
WE2(|M1|, |M2|, |µ|,mẽLI ,mẽRJ ) (E.24)

−s2
WE2(|M1|, |M1|, |µ|,mẽLI ,mẽRJ )))

)
− e2v2

1√
2c2
W

Z1K
R M∗1

(∣∣AIIl ∣∣2E0(|M1|,mẽLI ,mẽLI ,mẽRJ ,mẽRI )

+
∣∣AJJl ∣∣2E0(|M1|,mẽLJ ,mẽLI ,mẽRJ ,mẽRJ )

))√
M̄ IJ
LR

(Fhdec BLR)IJK = − e2v2
1√

2c2
W

Z1K
R M∗1E0(|M1|,mẽLJ ,mẽLI ,mẽRJ ,mẽRI )A

II
l A

JJ
l

√
M̄JI
LR

4. Contributions decoupling as M2
h(H)/M

2
SUSY. Here, we do not show numerically small

terms suppressed by lepton Yukawa couplings or flavour-diagonal A terms:

(Fhm ALR)IJK =
e2M2

HK
0√

2c2
W

Z1K
R M∗1C

′
0(|M1|,mẽRJ ,mẽLI )

√
M̄ IJ
LR (E.25)

where by C ′0 we denote the derivative of C0 over the external Higgs mass, C ′0 = ∂C0

∂M2
h

(see eq. (B.7)).
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E.4 CP-odd Higgs-lepton vertex

For the processes considered in this article, the contribution from the LFV CP-odd Higgs-

lepton vertex can become important only in the case of the three body charged lepton

decays and only in the limit of MSUSY � v, when photon, Z0 and box contributions

decouple. Thus, we give here only the dominant non-decoupling terms for this vertex.

F IJA =
1

(4π)2

(
F IJAnd + F IJAY + F IJAm

)
. (E.26)

As for CP-odd Higgs vertices, we give the sum of the neutralino and chargino contributions,

the latter appearing only as single term depending on sneutrino masses in eq. (E.28):

1. Contributions proportional to non-holomorphic A′l terms:

(F ′And ALR)IJ = − ie2

√
2c2
W cosβ

√
M̄ IJ
LR M

?
1 C0(|M1| ,mẽLI ,mẽRJ )

(FAnd LL)IJ = − ie2

√
2c2
W cosβ

M̄ IJ
LL M

?
1D0(|M1| ,mẽLI ,mẽLJ ,mẽRJ )A

′JJ
L

(FAnd RR)IJ = − ie2

√
2c2
W cosβ

M̄ IJ
RR M

?
1 D0(|M1| ,mẽLI ,mẽRI ,mẽRJ )A

′II
L (E.27)

2. Contributions suppressed by lepton Yukawa couplings:

(FAY LL)IJ =
ie2

2
√

2c2
W s

2
W cosβ

(
s2
WM

?
1µ

?(D0(|M1| , |µ| ,mẽLI ,mẽLJ )

+ 2D0(|M1| ,mẽLI ,mẽLJ ,mẽRJ ))− c2
WM

?
2µ

?(D0(|M2| , |µ| ,mẽLI ,mẽLJ )

+ 2D0(|M2| , |µ| ,mν̃I ,mν̃J ))) M̄ IJ
LL Y

J
L

(FAY RR)IJ =
ie2

√
2c2
W cosβ

M?
1µ

?(D0(|M1| ,mẽLI ,mẽRI ,mẽRJ )

−D0(|M1| , |µ| ,mẽRI ,mẽRJ )) M̄ IJ
RR Y

I
L (E.28)

3. Contributions proportional to M2
A/M

2
SUSY (see eq. (B.7) for the definition of C ′0). As

in eq. (E.25) we do not show numerically small terms suppressed by lepton Yukawa cou-

plings or flavour-diagonal A terms:

(FAm ALR)IJK = −
ie2M2

A sinβ√
2c2
W

M∗1C
′
0(|M1|,mẽRJ ,mẽLI )

√
M̄ IJ
LR (E.29)

E.5 4-lepton box diagrams

All genuine box diagram contributions listed in eqs. (D.3)–(D.6) have negative mass dimen-

sion and without any cancellations explicitly decouple like v2/M2
SUSY. Thus, it is sufficient

to expand them only in the lowest order in chargino and neutralino mass insertions. Also

the LR slepton mass insertions are always associated with additional factors of v/MSUSY.

Thus in the leading v2/M2
SUSY order only LL and RR slepton mass insertion can contribute

to formulae for box diagrams.
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Expressions listed below are valid only for ∆L = 1 processes, i.e. excluding combina-

tions of indices I = J,K = L or I = K,J = L - for these one would also take into account

flavour conserving diagrams. As mentioned in section 3.3, we do not consider MI expanded

expressions for exotic ∆L = 2 processes.

The chargino diagrams contribute significantly only to the BV LL, all other contribu-

tions are at least double Yukawa suppressed and very small. The BV LL term is:

(4π)2BJIKL
V LLC =

e4

4s4
W

(
E2(|M2|, |M2|,mν̃I ,mν̃J ,mν̃K )

(
δKL∆JI

LLM̄
IJ
LL + δJL∆KI

LLM̄
IK
LL

)
+ E2(|M2|, |M2|,mν̃J ,mν̃K ,mν̃L)

(
δIK∆JL

LLM̄
JL
LL + δIJ∆KL

LL M̄
KL
LL

))
(E.30)

Contributions arising from neutralino box diagrams, both normal and crossed added to-

gether, are listed below in eqs. (E.31)–(E.36). We do not give here formulae for the

neutralino contributions to BSLL, BSRR, BTL and BTR, as they are also double Yukawa

suppressed and small.

(4π)2BJIKL
V LLN =

e4

16s4
W c

4
W

((
δKL∆JI

LLM̄
IJ
LL + δIK∆JL

LLM̄
JL
LL

)
× (3c4

WE2(|M2|, |M2|,mẽLI ,mẽLJ ,mẽLL)

+ 3s4
WE2(|M1|, |M1|,mẽLI ,mẽLJ ,mẽLL)

− 2c4
WD0(|M2|,mẽLI ,mẽLJ ,mẽLL)− 2s4

WD0(|M1|,mẽLI ,mẽLJ ,mẽLL)

+ 4s2
W c

2
W Re (M1M

∗
2 )E0(|M1|, |M2|,mẽLI ,mẽLJ ,mẽLL)

+ 2s2
W c

2
WE2(|M1|, |M2|,mẽLI ,mẽLJ ,mẽLL))

+
(
δJL∆KI

LLM̄
IK
LL + δIJ∆KL

LL M̄
KL
LL

)
(3c4

WE2(|M2|, |M2|,mẽLI ,mẽLK ,mẽLL)

+ 3s4
WE2(|M1|, |M1|,mẽLI ,mẽLK ,mẽLL)

− 2c4
WD0(|M2|,mẽLI ,mẽLK ,mẽLL)− 2s4

WD0(|M1|,mẽLI ,mẽLK ,mẽLL)

+ 4s2
W c

2
W Re (M1M

∗
2 )E0(|M1|, |M2|,mẽLI ,mẽLK ,mẽLL)

+ 2s2
W c

2
WE2(|M1|, |M2|,mẽLI ,mẽLK ,mẽLL))

)
(E.31)

(4π)2BJIKL
V RRN = − e4

c4
W

((
δKL∆IJ

RRM̄
IJ
RR + δIK∆LJ

RRM̄
JL
RR

)
(2D0(|M1|,mẽRI ,mẽRJ ,mẽRL)

− 3E2(|M1|, |M1|,mẽRI ,mẽRJ ,mẽRL))

+
(
δJL∆IK

RRM̄
IK
RR + .δIJ∆LK

RRM̄
KL
RR

)
(2D0(|M1|,mẽRI ,mẽRK ,mẽRL)

− 3E2(|M1|, |M1|,mẽRI ,mẽRK ,mẽRL))) (E.32)

(4π)2BJIKL
V LRN = − e4

4c4
W

(δKL∆JI
LLM̄

IJ
LL(2D0(|M1|,mẽLI ,mẽLJ ,mẽRL)

− 3E2(|M1|, |M1|,mẽLI ,mẽLJ ,mẽRL))

+ δIJ∆LK
RRM̄

KL
RR (2D0(|M1|,mẽLI ,mẽRK ,mẽRL)

− 3E0(|M1|, |M1|,mẽLI ,mẽRK ,mẽRL)) (E.33)
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(4π)2BJIKL
V RLN = − e4

4c4
W

(δKL∆IJ
RRM̄

IJ
RR(2D0(|M1|,mẽRI ,mẽRJ ,mẽLL)

− 3E2(|M1|, |M1|,mẽRI ,mẽRJ ,mẽLL))

+ δIJ∆KL
LL M̄

KL
LL (2D0(|M1|,mẽRI ,mẽLK ,mẽLL)

− 3E0(|M1|, |M1|,mẽRI ,mẽLK ,mẽLL)) (E.34)

(4π)2BJIKL
SLRN =

e4

2c4
W

(δJL∆KI
LLM̄

IK
LL (2D0(|M1|,mẽLI ,mẽLK ,mẽRL)

− 3E2(|M1|, |M1|,mẽLI ,mẽLK ,mẽRL))

+ δIK∆LJ
RRM̄

LJ
RR(2D0(|M1|,mẽLI ,mẽRJ ,mẽRL)

− 3E2(|M1|, |M1|,mẽLI ,mẽRJ ,mẽRL))) (E.35)

(4π)2BJIKL
SRLN =

e4

2c4
W

(δJL∆IK
RRM̄

IK
RR(2D0(|M1|,mẽRI ,mẽRK ,mẽLL)

− 3E2(|M1|, |M1|,mẽRI ,mẽRK ,mẽLL))

+ δIK∆JL
LLM̄

LJ
LL (2D0(|M1|,mẽRI ,mẽLJ ,mẽLL)

− 3E2(|M1|, |M1|,mẽRI ,mẽLJ ,mẽLL))) (E.36)
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