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ABSTRACT 

The generation of multigroup cross-section libraries is a key point of multigroup transport 

calculations: a larger number of energy groups promotes the accuracy of the results, but hinders 

the time performance, which is a problem especially for 3D transient cases. Hence the need 

arises for multigroup deterministic transient calculations that, with a very limited amount of 

groups, can adequately represent the whole continuous energy space. 

A new neutron cross-section collapsing tool has been implemented into the mechanistic codes 

SIMMER-III and SIMMER-IV, which introduces a cross-section condensation of the input 

multigroup libraries, which can then be provided with a finer structure than the one actually 

used by the transport solver. In this way the results are more accurate, as the nuclear data 

provided as input are closer to the original ones, but the computational time does not increase 

dramatically, as the transport solver will operate on a more limited number of energy groups.  

A question, however, stays open: the determination of the energy discretization that best suits to 

the problem. This important issue, except for a few authors, has been considered mostly from 

the empirical point of view in the past, and required long tests to find out a reasonable energy 

structure, which is specific for the considered reactor and might be unsuitable for other systems. 

This thesis proposes an automatic procedure, based on genetic algorithm optimization, aiming 

to choose the most appropriate energy structure for the considered system to collapse a fine 

multigroup library into a few-groups one. Such an innovative tool, used together with the cross-

section condensation technique mentioned above, allows having specific libraries for each 

considered case, starting from a unique general library with fine energy discretization. The tests 

performed with different initial cross-section libraries and reactor systems show the strength of 

the technique in solving the energy meshing problem in many different conditions, returning 

structures which take into account the peculiar needs of each system. In addition, the analysis of 

the algorithm choices may reveal important information on neutron population physics, whose 

relevance during a manual cross-section library preparation can be easily underestimated. Tests 

show that the algorithm is able to find representative energy structures, providing accurate 

results on the multiplication factor, the reactivity feedback coefficients and the reaction rates. 

The results of each test are analysed, showing how different compositions, geometries and 

neutron spectra guide the algorithm choices and demonstrate the effectiveness of the method. 
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ZUSAMMENFASSUNG 

Die Bereitstellung von Multigruppen-Wirkungsquerschnitts-Bibliotheken ist ein wesentlicher 

Schritt in Multigruppen-Neutronentransportrechnungen: eine gro ßere Zahl von Energiegruppen 

verbessert die Genauigkeit der Ergebnisse, erho ht aber den Rechenaufwand deutlich. Dadurch 

wird die Durchfu hrung deterministischer transienter Berechnungen erschwert, was sich 

insbesondere bei einer 3D-Modellierung der Reaktorgeometrie nachteilig auswirkt. Daraus 

ergibt sich fu r derartige Rechnungen die Notwendigkeit, die kontinuierliche Energieskala mit 

mo glichst wenigen Energiegruppen zu repra sentieren. 

Ein neuartiges Verfahren zur geeigneten Kondensation von Multigruppen-

Wirkungsquerschnitten wurde in die mechanistischen Rechenprogramme SIMMER-III und 

SIMMER-IV implementiert, so dass in den auszufu hrenden Transportrechnungen eine geringere 

Auszahl von Gruppen benutzt werden kann, als die urspru nglichen Bibliotheken mit ihrer 

Feinstruktur der Energiegruppen enthalten. Damit sind genauere Ergebnisse zu erwarten, da die 

tatsa chlich verwendeten Wirkungsquerschnitte eher den urspru nglichen nuklearen Daten 

entsprechen. Dies muß im Gegenzug nicht durch eine drastische Erho hung der Rechenzeit 

erkauft werden, da der Lo ser der Transportgleichungen nur mit einer limitierten Anzahl von 

Energiegruppen belastet wird.  

Bei diesem Verfahren hat die geschickte Auswahl der Grobgruppen-Strukur entscheidenden 

Einfluß auf die Qualita t der Ergebnisse. In der Vergangenheit wurde die Auswahl in den meisten 

Fa llen auf Basis empirischer Erfahrungswerte getroffen. Dies erforderte in der Regel 

umfangreiche Tests fu r den jeweils betrachteten Reaktortyp, wobei die spezifische Lo sung nur 

eingeschra nkt auf andere Systeme u bertragen werden konnte. 

In der vorliegenden Arbeit wird ein allgemeines Verfahren beschrieben, das fu r den jeweils 

betrachteten Anwendungsfall die bestmo gliche Auswahl der Energiegruppen trifft, um spa ter 

vorhandene Feingruppen-Bibliotheken in eine geeignete Grobstruktur zu u berfu hren. Die 

Auswahl der Gruppen erfolgt automatisiert durch einen genetischen Optimierungs-Algorithmus. 

Mit diesem innovativen Verfahren lassen sich verfu gbare allgemeine Feingruppen-Bibliotheken 

zu anwendungsspezifischen Grobstruktur-Wirkungsquerschnitten kondensieren. Durchgefu hrte 

Tests fu r unterschiedliche Reaktortypen und mit verschiedenen Feingruppen-Bibliotheken 

erbrachten den Nachweis der zuverla ssigen Anwendbarkeit der entwickelten Methode, die 
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unter Beru cksichtigung der Eigenheiten der betrachteten Anwendungsfa lle geeignete 

Strukturen lieferte. Daru berhinaus gestattet das Verfahren zusa tzliche Einblicke in das 

neutronische Verhalten des Reaktors, die bei der u blichen manuellen Vorgehensweise leicht 

u bersehen werden ko nnen. Die Tests zeigen, dass der implementierte Algorithmus 

repra sentative Energiegruppen-Strukturen bereitstellt, die zuverla ssige Ergebnisse fu r Reaktor-

Kenngro ßen wie  Multiplikationsfaktor, Reaktivita ts-Ru ckwirkungs-Koeffizienten und 

Reaktionsraten liefern. Aus der Analyse der Testergebnisse geht hervor, wie unterschiedliche 

Reaktorparameter, wie Geometrie, Materialzusammensetzung und das daraus resultierende 

Neutronenspektrum, den Algorithmus bei der bestmo glichen Wahl der Energiestruktur steuern. 

Damit wird die Effektivita t der entwickelten Methode nachdru cklich demonstriert. 
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CHAPTER 1.      INTRODUCTION 

Accuracy and reliability of safety studies in the nuclear technology field is a growing need. The 

availability of codes coupling neutronics and thermal-hydraulics is very important: reactivity 

effects and feedback coefficients play a relevant role in neutron balance and so it is essential 

describing the correct relation between the different physics of the reactor. For some 

configurations, also, 2D representations could be insufficient and should be progressively 

substituted with 3D simulations. 

Neutronics solver methods in transient coupled codes are usually of the deterministic type. In 

fact, although the stochastic Monte Carlo methods are able to provide highly reliable results, 

they usually require very high computational power (and therefore long calculation time), 

making them an inefficient choice when the core status has to be recomputed frequently. Hence, 

they are considered the reference for validation of deterministic codes, which are the preferred 

choice for transient calculations. The latter, on the contrary, are able to return results much 

faster, but with lower accuracy. The calculation paradigm is different: rather than testing the 

system to find a neutron distribution satisfying the problem equations, a deterministic code 

calculates the solution of particular approximations of the neutron transport equation; each of 

these approximations is characterized by different methods for discretizing the space, time, 

angle and energy dimensions and/or by the truncation of the solution expansions into function 

sets. 

A very common approximation is the discretization of the energy space, assuming that all 

quantities (neutron flux, current, fission spectrum, cross-sections…) which are continuous in the 

energy space can be described by their average values on fixed energy domains, called energy 

groups: with this hypothesis, one obtains the multigroup neutron transport equation 

(Duderstadt and Hamilton, 1976; Stacey, 2001, pp. 106–112). This approximation is not 

required in stochastic codes, which can use directly the continuous nuclear data (with some 

limitations due to temperature dependence), or very fine-groups libraries. 

In deterministic codes, hence, nuclear data pre-processing becomes a critical point of the 

procedure: the number of groups used for the calculation is in direct relation with the accuracy 

of the cross-section (XS) description, and so of the results. Nevertheless, a larger number of 

energy groups correspond to bigger XS libraries, larger amount of computer memory and longer 
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computational time, which is a problem especially when the number of spatial meshes is very 

high, as in 3D cases. Hence the need arises for multigroup deterministic transient calculations 

that, with a very limited amount of groups, can adequately represent the whole continuous 

energy space. 

Good results can be obtained if the XS condensation is performed “on-the-run”, i.e. based on the 

real conditions of the system; this allows having more precise estimates of the neutron flux and 

current, and so of the reaction rates, which must be kept constant during the condensation 

process not to alter the results. With this in mind, I implemented a new XS collapsing tool into 

the transient analysis coupled code SIMMER (Bohl and Luck, 1990; Kondo et al., 2000; Tobita et 

al., 2002; Yamano et al., 2008; Yamano et al., 2003). This introduces a XS condensation of the 

input multigroup libraries, which can then be provided with a finer structure than the one 

actually used by the transport solver. In this way the precision can be increased, as the nuclear 

data provided as input are closer to the original ones (less deteriorated), but the computational 

time does not increase dramatically, as the transport solver will operate on a much more limited 

number of energy groups. In other words, part of the condensation procedure is moved inside 

SIMMER, where it can be performed in a more precise way, as the composition and the geometry 

of the system is known (Massone et al., 2014). 

A question, however, stays open: the determination of the energy discretization, or energy 

structure, that best suits to the problem. This represents a very difficult issue, but crucial: if the 

structure is inadequate in describing the fate of neutrons, i.e. their movement along the energy 

spectrum (scattering, fission, absorption), results can be significantly different from the real 

behavior. The corollary is that, as the neutronic behavior depends mainly on geometry and 

composition, the energy meshing is specific of the problem and, in general, it should not be used 

with systems for which it has not been conceived. Instead, a limited number of groups can be 

sufficient for a reliable reactor modeling, provided that the energy structure is adequately 

chosen. 

Unfortunately, such an important choice is often delegated to the user, who does not always 

have the specific competences in reactor physics and XS theory required to make a correct 

assessment. The procedure to generate a plausible energy structure (Bell and Glasstone, 1970, 

p. 181; Duderstadt and Hamilton, 1976, pp. 368–369; Knott and Yamamoto, 2010, pp. 943–944) 

is also somehow indefinite, leaving space for subjective decisions and common sense; one 

should then compensate the indetermination with additional tests and benchmarks, making the 

XS library generation a laborious process. One could also rely on expert judgement (Knott and 

Yamamoto, 2010, pp. 943–952) for a good structure, but this adds even more subjective 
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opinions to the choice. The difficulty of the work then encourages the use of few-groups XS 

libraries designed to be nonspecific to the systems, a practice that, on the contrary, should be 

avoided as it can easily lead to mistakes or unreliable results. 

The current work aims to address these problems, proposing a standard procedure for the 

energy structure determination accessible to all users; such an innovative tool, used together 

with the previously described XS collapsing tool, would allow having specific libraries for each 

considered case, starting from a unique general library with fine energy discretization (Massone 

et al., 2017a). Releasing the user from the responsibility of choosing the energy structure would 

also limit the need for discretionary decisions and reduce the chance of human errors affecting 

the calculations. 

Nevertheless, the nature of the problem, which is strongly non-linear, makes particularly 

difficult the definition of a deterministic algorithm. This issue suggests employing different 

optimization schemes, requiring few assumptions on the solution space, such as a metaheuristic 

(Bianchi et al., 2009; Voß, 2001). A metaheuristic is, according to Osman and Laporte (1996), “an 

iterative generation process which guides a subordinate heuristic by combining intelligently 

different concepts for exploring  and  exploiting  the  search space, learning strategies are used 

to structure information in order to find efficiently near-optimal solutions”. In this sense it 

perfectly reflects its name, which is composed by the Greek word εὑρίσκω (heurisko, to find) 

with the prefix μετά- (meta-, beyond, in an upper level) (Blum and Roli, 2003). 

Among the metaheuristics class, I selected a population-based, naturally-inspired, evolution-

driven procedure for the energy structure problem: the genetic algorithm (GA). In essence, this 

is a simulation of the evolution process guided by natural selection in a population composed by 

individuals, each one representative of a point in the solution space. Based on the natural 

selection theory, effective solutions are able to pass down their positive features which, 

recombined through simple genetic operators, lead, generation after generation, to better 

individuals, i.e. better energy meshing options. The formulation of this optimization technique, 

which is nowadays employed in many different fields, is mainly due to Holland (1975), but is 

based on the work on evolutionary systems due to many different authors in the previous two 

decades. 

Similar studies approaching the energy meshing problem with metaheuristic optimization have 

been carried on in the past by Mosca et al. (Mosca et al., 2011a; Mosca et al., 2011b; Mosca, 2009; 

Mosca and Mounier, 2008) and by Yi and Sjoden (Yi and Sjoden, 2013). All these works have in 

common the use of the Particle Swarm Optimization algorithms, while different ones are the test 

cases, ranging from infinite homogeneous medium problems to single pin models, in fast and 
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thermal systems. Nevertheless, in all these cases the focus has been set on the optimization of 

the library meshing for pins or sets of cells. On the contrary, the current work aims to find the 

energy structure associated to whole reactor systems: in other words, the objective is the best 

compromise on the needs of all cells composing the system at the same time. In fact, a reactor 

system is not a simple database of cells, but a set of elements (the cells indeed) correlated and 

interacting with each other based on their characteristics and their spatial position. The 

algorithm proposed in this dissertation does consider this point: the suggested energy meshing, 

hence, is optimal for the input system, but not for the single cells composing it. 

The tool delineated above, which looks for a suitable energy mesh for neutron transport 

problems using a GA optimization, is described in this work and developed for the transient 

coupled codes SIMMER-III (Kondo et al., 2000; Yamano et al., 2003) and SIMMER-IV (Yamano et 

al., 2008), reference tools for accidental transient analyses. The tests I performed with different 

initial XS libraries and reactor systems show the strength of the technique in solving the energy 

meshing problem in many different conditions, returning structures which take into account the 

peculiar needs of each system. In addition, the analysis of the GA choices may reveal important 

information on neutron population physics, whose relevance during a manual XS library 

preparation can be easily ignored and underestimated. 

The Chapter 2 provides a short summary to the most important concepts employed in this work, 

along with an introduction to the SIMMER code and the state of the art regarding the energy 

meshing problem. Chapter 3 introduces the new SIMMER tool for XS collapsing and describes 

the steps that led me to the development of the GA; the latter is then described in detail, along 

with its features and to the choices that resulted in the current code. The results of the 

verification tests on different reactors systems and configurations, demonstrating that the 

algorithm is actually able to solve the energy structure problem, are shown in Chapter 4. Chapter 

5 offers an application of the GA to the 3D transient simulation of the Phe nix reactor, hence 

illustrating how an actual case can be now tackled with a detailed XS library in reasonable 

computational time and with better results compared with naï ve energy structure choices. 

Finally Chapter 6 summarizes the conclusions and perspectives of the work. 
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CHAPTER 2.      STATE OF THE ART 

Most deterministic codes, including SIMMER, adopt the multigroup theory, which requires that 

the continuous energy space is divided into discrete intervals, denoted as groups, to be 

described. Equivalent multigroup cross-section libraries are defined to keep constant the 

neutron balance before and after the discretization. In order to adequately describe the reactor 

physics, and therefore obtain reliable results, an important step is the definition of the energy 

structure, i.e. the energy discretization. Despite the relevance, such choice, which must be 

tailored on the studied system, is still usually based on expert judgement and on criteria which 

are somehow arbitrary. 

This chapter describes the background of the work, introducing the reader into the cross-section 

and the transport multigroup theory. The energy structure problem, which this thesis focuses 

on, is then presented, along with the strategies commonly adopted in literature. Finally, the 

SIMMER code, which is widely used during the thesis work, is introduced. 

2.1 CROSS-SECTION TREATMENT 

The neutron XSs are among the most important basic input data required for any neutronics 

analysis: the data, which are the results of a delicate balance of theoretical modelling and 

experimental benchmark (Bell and Glasstone, 1970, pp. 199–200), contain the information 

regarding the way neutrons interact with matter. More precisely, the XSs define the probability 

that a given type of interaction (fission, absorption, scattering…) has of occurring once a collision 

between a neutron and a certain isotope has happened, depending on the neutron energy. XS 

data may also include additional information: angular dependencies, number and energy of 

neutrons produced by fission… 

The starting point is usually constituted by the continuous data for the isotopes composing the 

system. The accuracy of the data is different depending on the databases in use and on the 

considered isotope: more studies are usually devoted to substances which are more often 

encountered in applications (e.g. common structural, fuel or coolant materials), which therefore 

benefit of a better accuracy. Some of the most known general purpose nuclear data files are: 

ENDF/B, released by the U.S. Cross Section Evaluation Working Group (Chadwick et al., 2006); 

JEFF, developed by the Nuclear Energy Agency (Koning et al., 2006); JENDL, under responsibility 
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of the Japanese Atomic Energy Agency (Shibata et al., 2011). Once defined, the nuclear data are 

processed differently depending on the adopted solution method: stochastic or deterministic. 

Stochastic (or Monte Carlo) methods rather than solving the equation describing the neutron 

distribution, i.e. the neutron transport equation, simulate the random walk of a very large 

number of particles; the result is based on the statistics of the simulated walks. As one knows 

precisely position and energy (along with direction) at each moment of the particle random 

walk, one can access directly the XS tables and obtain the interaction probability with each 

isotope at the correct energy: whether an interaction is occurring (and which one) or not then 

depends just on random sampling. Hence the continuous XS data can be directly used with little 

pre-processing. 

On the contrary, with deterministic methods the particles parameters are not known exactly: the 

parameters (position, direction, energy and time) space is discretized and the neutron 

population is described in terms of number of neutrons with the same parameter configuration. 

From the XS point of view, this means that different XS values can be associated to a single 

(average) energy value. Hence, an averaging of the XS is also required, which constitute the basis 

of the so called “multigroup approximation”, explained in detail in the next section. 

The averaging procedure is not easy to be performed as it requires knowing in advance the 

neutron flux distribution (i.e. the problem solution). In particular, one has to take into account 

the effect each isotope has on the neutron flux distribution, and so on the equivalent XS of all 

other isotopes: when in a specific energy interval one particular isotope has a resonance peak, 

the neutron flux is depressed in correspondence to the peak, lowering the weight of all XSs in the 

vicinity, including its own ones. This procedure is called resonance self-shielding (Knott and 

Yamamoto, 2010, pp. 972–973; Waltar and Reynolds, 1981, pp. 142–154) and different methods 

are in use to introduce such correction: SIMMER, in particular employs the Bondarenko method 

(Bondarenko, 1964; Kidman et al., 1972); a more advanced alternative, used in the European 

Cell Code (ECCO) (Rimpault, 1995; Rimpault and Grimstone, 1987), is the subgroup method 

(Knott and Yamamoto, 2010, pp. 1035–1046). 

Further corrections to the averaging procedure are sometimes introduced to take into account 

the effects of heterogeneity. In fact, if the cell is not homogeneous, the flux experienced by each 

material could depend on the actual position of the component within the cell (as in Figure 2.1), 

and this should be considered when weighting the XS effects. Such effects are usually more 

relevant in thermal systems than in fast ones (Waltar and Reynolds, 1981, pp. 172–175). 
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Figure 2.1: Example of heterogeneity effect on a control rod. Due to the absorption in the 
surrounding pins (in blue), the flux and so the effect of the central pins (in green) is lower, though 

the composition is the same. 

2.2 MULTIGROUP TRANSPORT THEORY 

As already mentioned, deterministic neutron transport solvers are based on the multigroup 

theory. The energy space is hence discretized in several energy ranges, denoted as energy 

groups; in each of these domains one assumes that XSs Σ and neutron fluxes φ can be 

approximated with their average value. Conventionally, the groups are numbered from the 

highest to the lowest energy. 

The multigroup equation is derived from the neutron transport theory by defining the group 

neutron flux 𝜑(𝑔) as 

 𝜑(𝑔)(𝒓, �̂�, 𝑡) ≜ ∫ 𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔

𝐸𝑔−1

 (2.1) 

and the group scalar flux 𝛷(𝑔) as 

 𝛷(𝑔)(𝒓, 𝑡) ≜ ∫ ∮𝜑(𝒓, 𝐸, �̂�, 𝑡) d�̂� d𝐸
𝐸𝑔

𝐸𝑔−1

= ∫ 𝛷(𝒓, 𝐸, 𝑡) d𝐸 =
𝐸𝑔

𝐸𝑔−1

∮𝜑(𝑔)(𝒓, �̂�, 𝑡) d�̂�, (2.2) 

where 𝐸𝑔 and 𝐸𝑔−1 are the upper and lower energy boundaries of group g, respectively. 

The multigroup XSs 𝛴(𝑔) are defined starting from the transport equation, such that the reaction 

rates RR are preserved 
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 𝑅𝑅𝑥,𝜴
(𝑔)
(𝒓, �̂�, 𝑡) ≜ ∫ 𝛴𝑥(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸

𝐸𝑔

𝐸𝑔−1

= 𝛴𝑥
(𝑔)
(𝒓, �̂�, 𝑡)𝜑(𝑔)(𝒓, �̂�, 𝑡) (2.3) 

which, combined with eq. (2.2) gives 

 𝛴𝑥
(𝑔)
(𝒓, �̂�, 𝑡) =

∫ 𝛴𝑥(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

∫ 𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

. (2.4) 

Hence, from the transport equation (Duderstadt and Hamilton, 1976, p. 114) 

 

1

𝑣(𝐸)

𝜕𝜑(𝒓, 𝐸, �̂�, 𝑡)

𝜕𝑡
+ �̂� ∙ 𝛁𝜑(𝒓, 𝐸, �̂�, 𝑡) + 𝛴t(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) =

= ∮d�̂�′∫ 𝛴s(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)𝑓s(𝒓, 𝐸

′ → 𝐸, �̂�′ → �̂�)
+∞

0

d𝐸′ +

+
𝜒(𝒓, 𝐸)

4π
∮∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸

′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)d𝐸′
+∞

0

d�̂�′

+ 𝑆(𝒓, 𝐸, �̂�, 𝑡) 

(2.5) 

one derives with eq. (2.2) and (2.3) the multigroup transport equation by integrating over the 

energy space 

 

1

𝑣(𝑔)(𝒓, �̂�, 𝑡)

𝜕𝜑(𝑔)(𝒓, �̂�, 𝑡)

𝜕𝑡
+ �̂� ∙ 𝛁𝜑(𝑔)(𝒓, �̂�, 𝑡) + 𝛴t

(𝑔)
(𝒓, �̂�, 𝑡)𝜑(𝑔)(𝒓, �̂�, 𝑡) =

= ∮∑𝛴s
(𝑔′→𝑔)

(𝒓, �̂�′ → �̂�, 𝑡)𝜑(𝑔
′)(𝒓, �̂�′, 𝑡)

𝑔′

d�̂�′ +

+
𝜒(𝑔)(𝒓)

4π
∮∑𝜈𝛴

f

(𝑔′)
(𝒓, �̂�, 𝑡)𝜑(𝑔

′)(𝒓, �̂�′, 𝑡)

𝑔′

d�̂�′ + 𝑆(𝑔)(𝒓, �̂�, 𝑡) 

(2.6) 

Here the scattering cross-section 𝛴s
(𝑔′→𝑔)

 is averaged as 
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𝛴s
(𝑔′→𝑔)

(𝒓, �̂�′ → �̂�, 𝑡)

=
∫ 𝛴s(𝒓, 𝐸

′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡) ∫ 𝑓s(𝒓, 𝐸
′ → 𝐸, �̂�′ → �̂�) d𝐸

𝐸𝑔
𝐸𝑔−1

d𝐸′
𝐸
𝑔′

𝐸𝑔′−1

𝜑(𝑔
′)(𝒓, �̂�′, 𝑡)

; 
(2.7) 

the multigroup fission spectrum 𝜒(𝑔) and the source term 𝑆(𝑔) are the sum of the contribution of 

the whole group, as 

 𝜒(𝑔)(𝒓) = ∫ 𝜒(𝒓, 𝐸) d𝐸
𝐸𝑔

𝐸𝑔−1

 (2.8) 

 𝑆(𝑔)(𝒓, �̂�, 𝑡) = ∫ 𝑆(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔

𝐸𝑔−1

; (2.9) 

the multigroup fission cross-section 𝜈𝛴f
(𝑔)

 incorporates the contribution of the average number 

of neutrons produced per fission ν, as 

 𝜈𝛴f
(𝑔)
(𝒓, �̂�, 𝑡) =

∫ 𝜈(𝒓, 𝐸)𝛴f(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

𝜑(𝑔)(𝒓, �̂�, 𝑡)
; (2.10) 

the group neutron velocity 𝑣(𝑔) is averaged as 

 1

𝑣(𝑔)(𝒓, �̂�, 𝑡)
=
∫

1
𝑣(𝐸)

𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

𝜑(𝑔)(𝒓, �̂�, 𝑡)
. (2.11) 

As a consequence of the link between neutron energy and flight direction, the averaging 

procedure makes the multigroup XSs directional- and time-dependent. A simplification is often 

employed, dropping the multigroup XSs directional dependence (Knott and Yamamoto, 2010, 

pp. 970–971). This however implies that: 

 the energy spectrum of the neutron flux does not depend on the flux direction, i.e. the 

flux can be split in the direction contribution ζ and the scalar flux 

 𝜑(𝒓, 𝐸, �̂�, 𝑡) ≈ 𝜁(�̂�) ∙ 𝛷(𝒓, 𝐸, 𝑡); (2.12) 
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 the directional reaction rate 𝑅𝑅𝑥,𝜴
(𝑔)

 in each cell is not kept constant, but only the total one 

𝑅𝑅𝑥
(𝑔)

 is, i.e. 

 𝑅𝑅𝑥
(𝑔)(𝒓, 𝑡) = ∮∫ 𝛴𝑥(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸

𝐸𝑔

𝐸𝑔−1

d�̂� = 𝛴𝑥
(𝑔)(𝒓, 𝑡)𝛷(𝑔)(𝒓, 𝑡) (2.13) 

 𝑅𝑅𝑥,𝜴
(𝑔)
(𝒓, �̂�, 𝑡) = ∫ 𝛴𝑥(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸

𝐸𝑔

𝐸𝑔−1

≠ 𝛴𝑥
(𝑔)(𝒓, 𝑡)𝜑(𝑔)(𝒓, �̂�, 𝑡) (2.14) 

Alternative formulations, not requiring the approximation (2.12)-(2.14), are possible: e.g. the 

“consistent P approximation” (Appendix B) is a P approximation obtained without imposing 

such condition. It is also possible to accept the direction dependence of the XSs and use them as 

they are, as described in literature, e.g. by Won and Cho (2011), Douglass and Rahnema (2012) 

and Larsen et al. (2017). 

Based on eq. (2.13), the multigroup XSs are often defined as 

 𝛴t
(𝑔)(𝒓, 𝑡) =

∫ 𝛴t(𝒓, 𝐸)𝛷(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

𝛷(𝑔)(𝒓, 𝑡)
; (2.15) 

 𝜈𝛴f
(𝑔)(𝒓, 𝑡) =

∫ 𝜈(𝒓, 𝐸)𝛴f(𝒓, 𝐸)𝛷(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

𝛷(𝑔)(𝒓, 𝑡)
; (2.16) 

The hypothesis expressed in equation (2.12) should not be applied to the scattering (also 

denoted as transfer) XS, as the direction affects the scattering function (Bell and Glasstone, 1970, 

pp. 178–180). The more precise corrections required for this term are detailed later, in §2.2.1. 

Concerning the group neutron velocity v(g), rather than having a time-dependent value different 

for each position and direction, it is preferred to recalculate it based on the average energy of 

the group as 

 𝑣(𝑔) = √
2

𝑚n
∙
𝐸𝑔−1 + 𝐸𝑔

2
≈ 9.8 ∙ 103√𝐸𝑔−1 + 𝐸𝑔 m s

−1 eV−
1
2⁄           [𝐸] = eV, (2.17) 

where 𝑚n is the neutron mass. 

It is important noticing that when the nuclear data are condensed into the multigroup XSs, the 

neutron flux is introduced as weighting function: hence, they are no more a property of the 
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considered material, but become problem-dependent. In other words, the same material could 

have different multigroup XSs in different reactors (or even in the same reactor at different 

positions). This constitutes an issue when the same few-groups XS libraries are applied to very 

different systems. 

2.2.1 TRANSPORT CROSS-SECTION 

As written, the directional component of the scattering term cannot be completely neglected: if 

one models the scattering as a collision it is evident that the energy lost in the event depends on 

the deviation angle. This effect is usually taken into account with the transport XS, whose 

definition is based on the P1 approximation of the transport equation (Appendix A), which is 

composed by: the continuity equation 

 

1

𝑣(𝐸)

𝜕𝛷(𝒓, 𝐸, 𝑡)

𝜕𝑡
+ 𝛁 ∙ 𝑱(𝒓, 𝐸, 𝑡) + 𝛴t(𝒓, 𝐸)𝛷(𝒓, 𝐸, 𝑡) =

= ∫ 𝛴s(𝒓, 𝐸
′ → 𝐸)𝛷(𝒓, 𝐸′, 𝑡) d𝐸′ +

+∞

0

+ 𝜒(𝒓, 𝐸)∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)𝛷(𝒓, 𝐸, 𝑡)d𝐸′

+∞

0

+∮𝑆(𝒓, 𝐸, �̂�, 𝑡) d�̂� 

(2.18) 

and the current equation 

 

1

𝑣(𝐸)

𝜕𝑱(𝒓, 𝐸, 𝑡)

𝜕𝑡
+
1

3
𝛁𝛷(𝒓, 𝐸, 𝑡) + 𝛴t(𝒓, 𝐸)𝑱(𝒓, 𝐸, 𝑡) =

= ∫ 𝜇0̅̅ ̅(𝒓, 𝐸
′ → 𝐸)𝛴s(𝒓, 𝐸

′)𝑱(𝒓, 𝐸′, 𝑡) d𝐸′
+∞

0

+∮�̂� ∙ 𝑆(𝒓, 𝐸, �̂�, 𝑡) d�̂�, 
(2.19) 

linked together by the current 𝑱 and the integral flux 𝛷. 

Before proceeding with the multigroup theory, an additional approximation to the current 

equation is introduced (Bell and Glasstone, 1970, p. 180): after reformulating the dependency of 

the average scattering angle cosine 𝜇0̅̅ ̅ 

 𝜇0̅̅ ̅(𝒓, 𝐸
′ → 𝐸) = 𝜇0̅̅ ̅(𝒓, 𝐸

′, 𝐸 − 𝐸′), (2.20) 

one can make a Taylor expansion of the energy integral argument, retaining only the first term 

 𝜇0̅̅ ̅(𝒓, 𝐸
′, 𝐸 − 𝐸′)𝛴s(𝒓, 𝐸

′)𝑱(𝒓, 𝐸′, 𝑡) ≈ 𝜇0̅̅ ̅(𝒓, 𝐸, 𝐸 − 𝐸
′)𝛴s(𝒓, 𝐸)𝑱(𝒓, 𝐸, 𝑡). (2.21) 
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Hence, after applying eq. (2.21), following the same procedure used to derive eq. (2.6), one 

obtains from eq. (2.18) and (2.19) the multigroup P1 approximation of the transport equation: 

the continuity equation becomes 

 

1

𝑣(𝑔)
𝜕𝛷(𝑔)(𝒓, 𝑡)

𝜕𝑡
+ 𝛁 ∙ 𝑱(𝑔)(𝒓, 𝑡) + 𝛴t

(𝑔)(𝒓, 𝑡)𝛷(𝑔)(𝒓, 𝑡) =

=∑𝛴s
(𝑔′→𝑔)

(𝒓, 𝑡)𝛷(𝑔
′)(𝒓, 𝑡)

𝑔′

+ 𝜒(𝑔)(𝒓)∑𝜈𝛴
f

(𝑔′)
(𝒓, 𝑡)𝛷(𝑔

′)(𝒓, 𝑡)

𝑔′

+ 𝑆(𝑔)(𝒓, 𝑡) 
(2.22) 

and the current equation 

 
1

𝑣(𝑔)
𝜕𝑱(𝑔)(𝒓, 𝑡)

𝜕𝑡
+
1

3
𝛁𝛷(𝑔)(𝒓, 𝑡) + 𝛴tr

(𝑔)(𝒓, 𝑡)𝑱(𝑔)(𝒓, 𝑡) = 𝑆𝑃1
(𝑔)(𝒓, 𝑡), (2.23) 

where 

 𝑆𝑃1
(𝑔)(𝒓, 𝑡) ≜ ∮ �̂� ∙ 𝑆(𝑔)(𝒓, �̂�, 𝑡) d�̂� (2.24) 

 𝑱(𝑔)(𝒓, 𝑡) ≜ ∫ 𝑱(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔

𝐸𝑔−1

 (2.25) 

 𝛴tr(𝒓, 𝐸) ≜ 𝛴t(𝒓, 𝐸) − 𝛴s,P1(𝒓, 𝐸) = 𝛴t(𝒓, 𝐸) − 𝛴s(𝒓, 𝐸)∫ 𝜇0̅̅ ̅(𝒓, 𝐸, 𝐸 − 𝐸
′) d𝐸′

+∞

0

 (2.26) 

 𝜮tr
(𝑔)(𝒓, 𝑡) ≜

∫ 𝛴tr(𝒓, 𝐸)𝑱(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

𝑱(𝑔)(𝒓, 𝑡)
, (2.27) 

with 𝜮tr
(𝑔)

 being referred as transport cross-section. Though some studies (Larsen et al., 2017; 

Stacey, 2001, p. 392) have considered using a directional transport XS (or directional diffusion 

coefficient), this dependency, which appears only when the original XS is cast into multigroup 

theory, is often neglected. This implies that the current spectrum 𝛤 does not depend on the 

direction (which is retained in the component j), i.e.  

 𝑱(𝒓, 𝐸, 𝑡) ≈ 𝛤(𝒓, 𝐸, 𝑡) ∙ 𝒋(𝒓, 𝐸, 𝑡), (2.28) 

Hence, from eq. (2.25) and (2.27), 
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 𝛴tr
(𝑔)(𝒓, 𝑡) =

∫ 𝛴tr(𝒓, 𝐸)𝛤(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

𝛤(𝑔)(𝒓, 𝑡)
. (2.29) 

2.3 CROSS-SECTION CONDENSATION 

It is a usual procedure in the nuclear reactor analysis solving the multigroup equation, transport 

or diffusion, with fine XS libraries algorithm for simplified systems, like homogeneous cells, to 

obtain a first approximation of the flux distribution in the reactor, to be used for a more precise 

collapsing of the XSs (Duderstadt and Hamilton, 1976). In this way one can obtain equivalent 

few-groups libraries, that can be applied to the real model, obtaining very precise results in 

reasonable computational time (Duderstadt and Hamilton, 1976, pp. 368–369; Stacey, 2001, 

pp. 390–391; Waltar and Reynolds, 1981, p. 175). This scheme is often applied in ERANOS 

(Doriath et al., 1993; Rimpault et al., 2002), using ECCO (Rimpault, 1995) to condense the built-

in 1968 groups library into the few-groups library which is actually used by the transport solver. 

The collapsed flux (with energy group index G) can be related to the fine-group flux (with index 

g) by breaking the integral in eq. (2.2)  

 𝛷(𝐺)(𝒓, 𝑡) ≜ ∫ 𝛷(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝐺

𝐸𝐺−1

= ∑ ∫ 𝛷(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔

𝐸𝑔−1∀𝑔∈𝐺

= ∑ 𝛷(𝑔)(𝒓, 𝑡)

∀𝑔∈𝐺

. 
(2.30) 

In a similar way, one obtains the expressions for the collapsed XSs from eq. (2.13), demanding 

also in this case that the reaction rates stay unchanged 

 𝑅𝑅𝑥
(𝐺)(𝒓, 𝑡) = ∑ 𝑅𝑅𝑥

(𝑔)(𝒓, 𝑡)

∀𝑔∈𝐺

= ∑ 𝛴𝑥
(𝑔)(𝒓, 𝑡)𝛷(𝑔)(𝒓, 𝑡)

∀𝑔∈𝐺

= 𝛴𝑥
(𝐺)(𝒓, 𝑡)𝛷(𝐺)(𝒓, 𝑡) 

(2.31) 

hence 

 𝛴𝑥
(𝐺)(𝒓, 𝑡) =

∑ 𝛴𝑥
(𝑔)(𝒓, 𝑡)𝛷(𝑔)(𝒓, 𝑡)∀𝑔∈𝐺

∑ 𝛷(𝑔)(𝒓, 𝑡)∀𝑔∈𝐺

. (2.32) 

For the transfer XS, one has to take into account both origin and destination groups, but the 

principle is the same 
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 𝑅𝑅s
(𝐺′→𝐺)

(𝒓, 𝑡) = ∑ ∑ 𝑅𝑅s
(𝑔′→𝑔)

(𝒓, 𝑡)

∀𝑔∈𝐺∀𝑔′∈𝐺′

= 𝛴s
(𝐺′→𝐺)

(𝒓, 𝑡)𝛷(𝐺
′)(𝒓, 𝑡) 

(2.33) 

 𝛴s
(𝐺′→𝐺)

(𝒓, 𝑡) =
∑ 𝛷(𝑔

′)(𝒓, 𝑡) ∑ 𝛴s
(𝑔′→𝑔)

(𝒓, 𝑡)∀𝑔∈𝐺∀𝑔′∈𝐺′

∑ 𝛷(𝑔
′)(𝒓, 𝑡)∀𝑔′∈𝐺′

. (2.34) 

It is important noticing that, because of eq. (2.23) and the consequent (2.29), the reaction rate to 

be preserved in the case of the transport XS uses a neutron current weighting rather than a flux 

one 

 𝑅𝑅tr
(𝐺)(𝒓, 𝑡) = ∑ 𝑅𝑅tr

(𝑔)(𝒓, 𝑡)

∀𝑔∈𝐺

= ∑ 𝛴tr
(𝑔)(𝒓, 𝑡)𝛤(𝑔)(𝒓, 𝑡)

∀𝑔∈𝐺

= 𝛴tr
(𝐺)(𝒓, 𝑡)𝛤(𝐺)(𝒓, 𝑡) 

(2.35) 

with, similarly to eq. (2.30), 

 𝛤(𝐺)(𝒓, 𝑡) = ∑ 𝛤(𝑔)(𝒓, 𝑡)

∀𝑔∈𝐺

. 
(2.36) 

2.4 ENERGY STRUCTURE 

The previous two sections described the multigroup approximation of the transport theory, i.e. 

the possibility to discretize the continuous energy variable into a finite number of groups, and 

the XS collapsing procedure, which allows reducing the number of groups while keeping the 

reaction rates constant. Nevertheless, one has completely ignored a critical point: the position of 

the energy groups boundaries, i.e. the energy structure, is not known and must be provided as 

input parameter. 

This raises two important questions: whether results are affected by the chosen energy 

structure and, in case of affirmative answer, how can one choose it appropriately. The number of 

groups has a relevant effect on the precision of the results: the more the groups, the less 

discretized are the data; nevertheless, a larger number of groups means higher computational 

and memory resources requirements. However, the energy boundaries choice has also a great 

importance on the accuracy. In fact the energy meshing has to be adequate to correctly 

represent the neutrons histories: generation, slowing down, absorption, fission. 

Despite the paramount role of the energy structure, the methods to define it are still vague, 

mainly based on arbitrary choices. Knott and Yamamoto (2010, p. 943) suggest, as a first step, to 



 §2.4 − ENERGY STRUCTURE 15 

 

divide the energy space into 3 regions: a fast one, dedicated to the neutrons generated by fission, 

a resonance range, mainly devoted to absorption and slowing-down interactions, and a thermal 

region, where slow neutrons can induce more fissions. Such fixed separation of the group roles 

can hold for thermal systems, while is less defined for fast systems, where fissions occur on the 

whole energy spectrum. 

The regions should then be divided into groups, covering each one approximately the same 

lethargy interval, i.e. the same energy range in logarithmic terms. Different authors however 

point out that such method should be corrected to take into account “significant resonances 

from dominant nuclides” (Knott and Yamamoto, 2010, pp. 943–944) and “special circumstances” 

(Bell and Glasstone, 1970, p. 181); this means, for example, setting the energy boundaries where 

“the XSs undergo a marked change” (Bell and Glasstone, 1970, p. 181) or “such that different 

phenomena are isolated” (Duderstadt and Hamilton, 1976, pp. 368–369). At the same time, 

according to Duderstadt and Hamilton (1976, pp. 315–317), when setting the energy structure 

one cannot ignore the neutron flux distribution not only in energy, but also in space. 

The parameters that literature stresses as important are indeed the most relevant ones that 

should be considered in order to get an effective meshing. Still, the procedures leave many 

choices to the user’s discretion: the limits of the 3 regions; which resonance is “significant”; what 

nuclide is “dominant”; what constitutes a “marked change” in the XS; which XSs are the most 

important ones… 

Many multigroup energy structures, with various groups numbers and oriented to different 

applications, are available: the 69-groups WIMS library (Askew et al., 1966); the 172-groups 

XMAS (Santamarina et al., 2004); the 281-groups SHEM library (He bert and Santamarina, 2008; 

Hfaiedh and Santamarina, 2005); the 1968-groups ECCO library (Rimpault, 1995); other ultra-

fine (~10000 groups) or even hyper-fine (>100000 groups) libraries. 

When one has a group structure already available, one can use it as a starting point and refine it 

into a few-group one, comparing the results with available benchmark until an acceptable 

energy structure has been found (Kiefhaber, 2000; Kim et al., 2017). Such procedure however 

requires a large effort, people experienced in neutron physics and knowing in detail the specific 

reactor. In addition, given the number of parameters that one should consider to perform such 

work, there is no guarantee that the found structure is actually the best option available. 

Moreover, the fact that each system has different composition and geometry, and so XSs and flux, 

suggests that each reactor system should have a different energy discretization, taking into 

account the peculiarities of the considered reactor. At the same time, the use of an inadequate 
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structure to correctly represent the physics of a system risks to undermine the reliability of the 

results; the problem is also insidious, as it lies in the input data rather than in the calculation 

itself and can be easily overlooked. Use of “general purpose” few-groups libraries should hence 

be discouraged in favour of system-specific libraries. 

Some attempts have been undertaken in the past to devise automatic procedures for the 

determination of the energy structure to be used for specific problems. In particular, algorithms 

based on Particle Swarm Optimization have been proposed by Mosca et al. (2011a; 2011b; 2009; 

2008), by Yi and Sjoden (2013) and by Akbari et al. (2012). In all listed studies attention is 

focused on the library optimization for single pin geometries or pin cells databases; the cell 

meshing can be homogeneous or heterogeneous, for thermal or fast spectrum reactors. As a 

consequence, the obtained energy structures are particularly suitable for modelling the neutron 

behavior in fuel cells, but may be completely inadequate for non-fuel cells. In other words, the 

produced meshings perform very well with the cells used as basis for the calculation, but may 

not be adequate for complex systems as they are not built as a compromise among the different 

cells composing the system itself; also, if the cells are used independently from each other, the 

optimization algorithm cannot process the information about the neutron passage between the 

cells, i.e. the spectrum spatial dependency, which according to Duderstadt and Hamilton (1976, 

p. 317) represents a condition that should be taken into account during the multigroup library 

generation. 

The present work, hence focuses on the optimization of the energy structure, rather than on 

single cells, on the whole reactor systems: as a consequence the obtained energy meshings are 

the result of compromises on the needs of all cells at the same time, taking into account also 

their interactions and their spatial position. 

2.5 THE SIMMER CODE 

SIMMER is a multi-dimensional, multi-velocity-field, multiphase, multicomponent, Eulerian, 

fluid-dynamics code coupled with a space- and energy-dependent neutron kinetics module and a 

structure model (Bohl and Luck, 1990; Kondo et al., 2000; Tobita et al., 2002; Yamano et al., 

2008; Yamano et al., 2003). Its primary objective is the study of core disruptive accident 

scenarios in liquid metal cooled fast reactors, but its flexibility allows employing it also for 

applications outside of its focus, such as light water reactors, general multiphase problems, 

steam-explosion problems (Kondo et al., 2000). The code is under continuous development by 

the Japan Nuclear Cycle Development Institute in collaboration with KIT (Karlsruhe Institute of 

Technology), CEA (Commissariat a  l'e nergie atomique et aux e nergies alternatives), Institut de 
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radioprotection et de su rete  nucle aire and many other international research centers and 

Universities. 

The SIMMER modules periodically exchange information, including power, material 

temperature and distribution (Figure 2.2). The thermal-hydraulics section periodically transfers 

to the neutronic module the system geometry, composition and temperature, required for the 

computation of the macroscopic XSs of the system and to perform the transport calculation; 

thus, the flux distribution is returned to the thermal-hydraulics module for the determination of 

the thermal power. 

 

Figure 2.2: SIMMER scheme (after Maschek et al., 2008). 

The macroscopic cross-sections are calculated separately for each mesh cell of the system, with 

the hypothesis that each one can be represented as a homogeneous mixture of its composing 

isotopes. The macroscopic XSs are obtained starting from the input isotope-wise microscopic XS 

libraries after application of the resonance self-shielding procedure, performed with the 

Bondarenko method (Bondarenko, 1964); hence, the Bondarenko f-factors (self-shielding 

factors) must be included in the input XS libraries and the materials temperatures are required 

parameters transferred by the thermal-hydraulics section. 

The input microscopic cross-sections and f-factors libraries are created in advance using 

separate computer codes, such as C4P (Rineiski et al., 2011) or ECCO (Rimpault, 1995), which 

generate the multigroup libraries starting from the fine-groups data via cell calculations. The 

user has to choose at this point the energy structure of the XS libraries, which is included in the 
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libraries and cannot be changed anymore. SIMMER neutronic calculation then follows the energy 

discretization of the input libraries, with no possible intervention. The next chapter describes an 

extension, developed in the framework of this study, which instead allows further modifications 

to the XS energy structure from within SIMMER. 
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CHAPTER 3.      METHODOLOGY 

A tool for the condensation of the multigroup XS libraries is suggested and implemented into 

SIMMER. For the determination of the energy structure to be used, the attempt with greedy 

algorithms proves unsatisfactory. On the contrary, excellent results can be obtained using 

genetic algorithms, which are search algorithms inspired by natural selection and evolution. 

Such algorithm, called METIS, is developed and coupled with the XS collapsing tool and with 

SIMMER; attention is devoted also on the acceleration of the calculation. Different chromosome 

(the representation of the possible problem solutions) structures and fitness functions are 

proposed.  

This chapter explains the path that lead to the development of the genetic algorithm for the 

solution of the energy structure problem. Then, after introducing the genetic algorithm concept, 

the METIS code, its functioning and its features are detailed. 

3.1 CROSS-SECTION COLLAPSING TOOL 

The equations (2.32) and (2.35) show that for the generation of equivalent condensed XSs one 

needs the fine groups neutron flux and current. In other words, one needs in advance the 

solution of the problem, i.e. the transport equation, to solve it. The circle can be broken by 

accepting approximate condensed XSs coming out from eq. (2.32) and (2.35), as a consequence 

of providing approximate flux and current information. Hence one solves an approximated 

(simpler) formulation of the transport equation with the fine energy structure and then uses the 

so obtained information to condense the XS libraries, which in turn are employed for the actual 

transport calculation. 

With this in mind, one assumes as weighting functions the neutron flux and current obtained by 

solving, at each time step and for each mesh cell, the steady state homogeneous medium P1 

approximation of the multigroup transport equation, which are obtained from eq. (2.22) and 

(2.23) after introducing the mentioned simplifications. The introduction of approximations (P1, 

homogeneity, steady state, infinite medium) in the procedure aims at minimizing the time 

required for the calculation of a good enough weighting flux for each cell, an operation which 

must be performed at each time step. The continuity equation for the stationary source-free 

eigenvalue problem, hence, becomes 
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 𝛁 ∙ 𝑱(𝑔)(𝒓) + 𝛴t
(𝑔)
𝛷(𝑔)(𝒓) =∑𝛴s

(𝑔′→𝑔)
𝛷(𝑔

′)(𝒓)

𝑔′

+
1

𝑘
𝜒(𝑔)∑𝜈𝛴

f

(𝑔′)
𝛷(𝑔

′)(𝒓)

𝑔′

 
(3.1) 

and the current equation 

 
1

3
𝛁𝛷(𝑔)(𝒓) + 𝛴tr

(𝑔)
𝑱(𝑔)(𝒓) = 0. (3.2) 

Through eq. (3.2) and introducing the buckling B2 and a diffusion coefficient D 

 𝛁 ∙ 𝑱(𝑔)(𝒓) = −
1

3𝛴tr
(𝑔)
𝛁2𝛷(𝑔)(𝒓) = −𝐷(𝑔)𝛁2𝛷(𝑔)(𝒓) = 𝐷(𝑔)𝐵2

(𝑔)
𝛷(𝑔)(𝒓) 

(3.3) 

and assuming the flux separability of space and energy components 𝜙 and 𝜓 

 𝛷(𝑔)(𝒓) ≈ 𝜓(𝑔) ∙ 𝜙(𝒓), (3.4) 

the eq. (3.1) can be rewritten as 

 
𝐵2

(𝑔)

3𝛴tr
(𝑔)
𝜓(𝑔) + 𝛴t

(𝑔)
𝜓(𝑔) −∑𝛴s

(𝑔′→𝑔)
𝜓(𝑔

′)

𝑔′

=
1

𝑘
𝜒(𝑔)∑𝜈𝛴

f

(𝑔′)
𝜓(𝑔

′)

𝑔′

. (3.5) 

By substituting eq. (3.4) into (3.2) one obtains the current separability and the relation between 

current and flux spectra, required to complete the transport XS condensation: 

 𝑱(𝑔)(𝒓) = −
1

3𝛴tr
(𝑔)
𝛁𝛷(𝑔)(𝒓) = −

𝜓(𝑔)

3𝛴tr
(𝑔)
⋅ 𝛁𝜙(𝒓). (3.6) 

The use as XS condensation weighting function is compatible with a convenient normalization, 

such that eq. (3.5) becomes 

 [
𝐵2

(𝑔)

3𝛴tr
(𝑔)
+ 𝛴t

(𝑔)
] �̃�(𝑔) −∑𝛴s

(𝑔′→𝑔)
�̃�(𝑔

′)

𝑔′

= 𝜒(𝑔), (3.7) 

more conveniently expressed in its matricial form: 
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𝐵2
(1)

3𝛴tr
(1)
+ 𝛴t

(1) ⋯ 0

⋮ ⋱ ⋮

0 ⋯
𝐵2

(𝑀𝐺)

3𝛴tr
(𝑀𝐺)
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(𝑀𝐺→1)

⋮ ⋱ ⋮

𝛴s
(1→𝑀𝐺)

⋯ 𝛴s
(𝑀𝐺→𝑀𝐺)

)

⏟                  
𝑺

|�̃�⟩ = |𝜒⟩. 
(3.8) 

With the hypothesis of null buckling, the system to be solved becomes 

 (𝑨 − 𝑺)|�̃�⟩ = |𝜒⟩. (3.9) 

The problem (3.8), and so also the (3.9), can be solved by Gaussian elimination for any buckling; 

in addition, for physical reasons the problem matrix is always column diagonally dominant, so 

pivoting is not required. 

Considering that the upscattering plays a role only for low-energy groups, the matrix is lower 

triangular for the most energetic groups and full only for the others (Figure 3.1). This 

observation yields an advantage in terms of computational effort: the triangular part of the 

matrix can be solved by direct substitution, leaving a much smaller full matrix to be processed 

with Gaussian elimination. 

 

Figure 3.1: Typical matrix shape (D: downscattering, M: main diagonal, U: upscattering). 

Yet, the method described above cannot be applied to non-multiplicative mesh cells, as in this 

case solving (3.9) would return an identically null spectrum. For such cells, the spectrum of a 

multiplicative cell, chosen as reference by the user, is used as weighting function. 

The above described method has been implemented as an extension for SIMMER (Massone et al., 

2014) and applied to different problems. One question however remains still open: the choice of 

the energy discretization for the condensation. As discussed in §2.4, this represents an 

important issue: finding the answer is complicated and incorrect choices can pose a serious 
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threat to the correctness of the results. From the attempts to address this point originated the 

work described in the next sections. 

3.2 THE GREEDY APPROACH 

As discussed in §2.4, the energy groups boundaries are usually chosen by observation of the 

energy spectrum, condensing adjacent groups with similar population magnitude and 

preserving at most spikes and holes in the neutron population. 

An elementary approach to the automated search of the energy structure consists in the creation 

of an algorithm which follows the same criterion: the adjacent groups with the smallest 

difference in spectrum are condensed together, until the number of groups defined by the user is 

achieved. This is the essence of a greedy algorithm, i.e. an algorithm that “always makes the 

choice that looks best at the moment” (Cormen, 2001, p. 370; Voß, 2001). 

This approach is well-known and employed in a number of fields for its implementation ease 

and because it ensures a solution with a limited number of steps (Cormen, 2001, p. 370). The 

drawback is that the solution found is the optimal one only for some classes of problems (better 

detailed later); most often the algorithm can find only a local optimum, while in special 

conditions the returned solution could even be the worst option (Bang-Jensen et al., 2004). 

An algorithm like this is tested (Massone et al., 2017a) with different collapsing choice criteria: 

 Least difference in neutron flux; 

 Least difference in reaction rate; 

 Least difference in neutron flux per lethargy unit. 

Yet, none of the option is able to tackle efficiently the problem, yielding energy structures which 

cannot replicate correctly the multiplication factor and that are hardly able to describe the 

neutron physics. 

Hence, the approach must be changed, focusing on the objective (in this case, the matching 

multiplication coefficient) rather than on the spectrum shape. The collapsing is performed 

progressively (Figure 3.2), one energy cut after the other, repeating the following steps until the 

desired number of groups is achieved: 

I. Calculate the k of all N−1 possible solutions resulting from collapsing two adjacent 

groups; 

II. Compare the results with the k of the uncollapsed solution, which is taken as objective, 

and pick the option with the lowest discrepancy; 
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III. Collapse the groups corresponding to the chosen solution and proceed with Step I, using 

the new N−1 library as starting point. 

 

Figure 3.2: Example of progressive greedy collapsing from 6 to 3 groups. 

Such an algorithm, however, has to perform many calculations with many energy groups (MG), 

which is computationally expensive and few tests with few groups (FG), which is cheaper: 

assuming a linear growth with the number of groups of the computational time required for a k 

calculation (one will see in §4.8 that this hypothesis is not too far from measured data), one 

would require a time 

 𝑡 ∝ 𝑀𝐺 + ∑ (𝑀𝐺 − 𝑖)2
𝑀𝐺−𝐹𝐺

𝑖=1

=
1

3
(𝑀𝐺3 − 𝐹𝐺3) −

1

2
(𝑀𝐺2 − 𝐹𝐺2) +

7

6
𝑀𝐺 −

1

6
𝐹𝐺. (3.10) 

Also, even if improved, it still follows the greedy paradigm, which has already proven 

unsuccessful with the energy structure question. Indeed, this problem hardly fits the conditions 

required for a greedy algorithm to converge to the optimal solution (Cormen, 2001, pp. 379–

384): optimal substructure and greedy-choice property. Optimal substructure means that a 

problem solution contains any subproblem solution; in the energy meshing search case, this 

would mean that the energy cuts of the optimal energy structure with N groups are a subset of 

the optimal energy cuts with M>N groups. A problem has greedy-choice property if the optimal 

solution can be reached by subsequent optimal choices; in this case, this property would imply 

that the best energy structure can be achieved by setting one energy cut after the other, choosing 

each time the most convenient option. None of the two prerequisites hold in the energy 

structure problem, as each cut strongly influences the other alternatives, making impossible 

proceeding step-by-step, especially if the past choices are never reconsidered, like with a greedy 

algorithm: the energy space has to be considered as a whole, judging each option only based on 

the final result. 
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Hence the decision of abandoning the greedy algorithm approach for an evolutionary algorithm 

that, at the expense of a larger number of tested energy structures (but with a small number of 

groups, which are computationally cheap), explores the solution space much more thoroughly 

and is able to converge to reasonable results regardless of the problem formulation. 

3.3 GENETIC ALGORITHMS 

Genetic Algorithms (GAs) are search algorithms belonging to the wider class of evolutionary 

algorithms (Ba ck and Schwefel, 1993), which are nature-inspired population-based 

metaheuristics following the principles of the evolution theory based on natural selection 

(Goldberg, 1989, pp. 1–23). 

The establishment of GAs dates from 1975, when John Holland publishes his book “Adaptation in 

natural and artificial systems” (Holland, 1975); the work however has its background in the 

studies on the simulation of natural genetic systems and evolutionary computation development 

(Siddique, pp. 137–178) occurred in previous decades, with the works of Turing (Turing, 1950), 

Fraser (Fraser and Burnell, 1970), Holland himself (Holland, 1962). Ever since GAs have been 

applied to a variety of different fields (Goldberg, 1989, pp. 125–142; Kramer, 2017, pp. 73–80), 

becoming one of the most popular optimization techniques. 

The typical genetic algorithm structure considers a starting set of candidate solutions, with 

randomly generated properties which, based on the effectiveness in solving the posed problem, 

are selected and evolved until an optimal solution (global or local) is found. The “goodness” of 

the candidate solution is assessed based exclusively on the results it can provide, through a 

function called fitness. As the best-performing individuals have a higher chance of being used as 

bases for the construction of a new solution set, the selection process is the driving force of an 

“evolution” procedure. This justifies the expectation that the overall performance increases with 

the new solution set, similarly to Darwinian evolution. 

As the parallel between artificial and natural genetic systems holds, the biology terminology is 

often used to denote objects and procedures in the evolutionary algorithms field (Figure 3.3): 

the candidate solutions are called individuals and sets of them are populations; each individual is 

characterized by a chromosome, which stores its properties, or genes, and by the fitness, which 

depends on the chromosome through the fitness function; the possible values each gene can 

assume are called alleles; the choice procedure is called selection and is used to identify the 

individuals to be used for the breeding of the next generation. As a consequence the chromosome 

constitutes the genotype of the individual, which is expressed into a phenotype, represented by 

the individual fitness. 
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Figure 3.3: Nomenclature for a genetic algorithm. 

In addition to the standard procedure, different advanced genetic operators (mutation, elitism, 

speciation, diploidy…) can be introduced with the objective of improving the solution space 

exploration capability of the GA, accelerating the convergence, preserving the genetic diversity… 

What makes different GAs from analytical methods is that one does not care on how the system 

works: the system is a black box and the only important thing is the response it gives to different 

inputs. The objective is not finding a general solution to the problem, e.g. by inverting the system 

functional, but matching the combination of the input parameters which maximize the output. 

Summarizing (Figure 3.4), the GA iterates on the following steps until the fitness converges to a 

predetermined value or it is stopped due to a different termination condition (elapsed 

calculation time, number of generation limit…): 

I. Evaluate the fitness of each individual in the population; 

II. Sort the individuals based on the fitness and select some of them based on such ranking; 

III. Crossbreed the selected individuals to create the next generation; 

IV. Introduce population corrections to alter convergence and diversity. 
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Figure 3.4: Typical GA flowchart (after Massone et al., 2017b). 
Repair block is specific for the current application (§3.4.1). 

3.4 THE ALGORITHM “METIS” 

A GA is proposed in substitution of the greedy algorithm for the energy structure search. This 

algorithm, described in the remainder of this chapter, is hereafter referred “Metaheuristic 

Energy TIers Search” (METIS). It has been implemented as an extension of SIMMER, together 

with the XS collapsing tool, and tested in this framework. 

3.4.1 CHROMOSOME REPRESENTATION 

One of the first issues one should address is the data structure definition, i.e. the way the 

information that characterizes each solution is stored and expressed. In order to do it, it is 

helpful identifying the constraints of the problem: 

I. The energy cuts of the few-groups libraries constitute a subset of those belonging to the 

many-groups ones, which also implies that the number of energy cut positions eligible 

for the former is limited. The reason of this constraint lies in the fact that the loss of 

information due to XS data averaging during the input libraries generation is irreversible 

without additional data and, hence, any attempt of splitting an existent group would be 

based on arbitrary hypotheses. 
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II. Only solutions having a specific number of groups (FG), chosen by the user from the 

beginning, are considered as possible energy structures. This constraint aims to protect 

the most interesting solutions, which are those able to adequately represent the energy 

space with a limited number of groups, from the individuals with a better discretization 

capability (i.e. more groups), which are favored in the competition and would eventually 

drive the former solution group to extinction. Even if this constraint could be relaxed, e.g. 

by balancing the advantage deriving from the additional groups through a penalty 

method (Goldberg, 1989, pp. 85–86; Smith and Coit, 1997), it leaves the ultimate choice 

on the number of groups that the final libraries will have, and so on the precision and the 

computational time connected to the use of those data set, to the user, which then can 

choose based on his needs. 

Based on the constraints, two options for the chromosome representation have been considered 

(Figure 3.5): 

 binary, having chromosomes composed of one gene per energy cut in the many-groups 

libraries and the Boolean values as alleles; 

 non-binary, having in the chromosomes one gene per each energy cut in the few-groups 

libraries, and alleles that indicate only the energy cuts from the many-groups libraries 

which are preserved. 

In mathematical terms, the binary chromosome C2 is an ordered tuple belonging to the collection 

F2 which includes all sequences of truth values (true ⊤ and false ⊥) with MG−1 elements and 

exactly FG−1 true values, i.e.  

 𝐶2 ∈ 𝐹2 ≜ ({⊤,⊥}, {(⊤, 𝐹𝐺 − 1), (⊥,𝑀𝐺 − 𝐹𝐺)})
𝑀𝐺−1. (3.11) 

Contrary to the tuple C2, the non-binary chromosome C is a set, meaning that all of its elements 

must be different, but their order is not relevant; C belongs to the class F, which groups all sets 

with cardinality FG−1 whose elements are natural numbers between 2 and MG (both included), 

in mathematical notation 

 𝐶 ∈ 𝐹 ≜ {𝑋:𝑋 ⊆ {𝑛 ∈ ℕ: 𝑛 ∈ [2,𝑀𝐺]} ∧ #𝑋 = 𝐹𝐺 − 1} (3.12) 

In both cases the length of the chromosome is equal to the number of groups (MG or FG) reduced 

by one because the upper and lower energy limits of the many-groups libraries are per se also 

the boundaries of the few-groups ones. 
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Figure 3.5: Possible chromosome representation for a 5-group solution. 
ML and FL denote the many-groups and the few-groups libraries, respectively. 

Both options are able to map all the possible solutions, which are 

 #𝐹 = #𝐹2 = (
𝑀𝐺 − 1

𝐹𝐺 − 1
) =

(𝑀𝐺 − 1)!

(𝐹𝐺 − 1)! (𝑀𝐺 − 𝐹𝐺)!
; (3.13) 

nevertheless the binary representation is more prone to violations of the constraint II (i.e. the 

number of cuts could not be constant) after chromosome crossing-over (§3.4.4) and mutations 

(§3.4.5), leading to a more frequent need of corrections, and so to a higher interference in the 

natural selection procedure. Hence, the non-binary representation has been chosen. 

However, as this representation does not completely exclude allele duplications after mutation 

or crossing-over, a repair mechanism, which removes such nonconformities with (3.12), has to 

be envisioned. Hence all chromosomes included in the next generation are inspected for 

duplicated alleles; the genes presenting such errors undergo a mutation and the check is 

repeated until the individual is clear.  

3.4.2 FITNESS FUNCTIONS 

If one wants to build a natural selection system where the reproductive success depends on the 

phenotype, one has to define what makes an individual successful. In other words, one needs a 

systematic way to rank the individuals based on their effectiveness as problem solution. 

Such a function is difficult to define: in principle a condensed library can be considered effective 

if, for the whole transient duration, it is able to produce as solution of the transport equation the 

same flux and reaction rate distribution as the original one. Nevertheless, one cannot run a 

whole transient for each candidate solution of each generation: the computational expense has 

to be considered in the fitness function establishment. 
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A first approximation for the fitness function can be the one used by Yi and Sjoden (Yi and 

Sjoden, 2013), based on the effective multiplication coefficient: 

 𝑓k
(𝐼)
≜ |𝑘(𝐼) − 𝑘obj| ⋅ 105 (3.14) 

where the kobj is obtained with an eigenvalue calculation using the uncollapsed many-groups 

libraries as input (Massone et al., 2017a). 

Nevertheless, the k does give a measurement on how well the neutron flux is represented with 

the new energy structure only indirectly; it is an integral parameter and it could conceal the 

presence of compensation effects (Massone et al., 2017c). Hence, one can try to define a different 

fitness function based on the flux spectrum match. 

The scalar flux for each fine group can be calculated in the same way of the, kobj by an eigenvalue 

calculation. Recalling eq. (2.30) 

 𝛷obj
(𝐺,𝐶)

= ∑ 𝛷obj
(𝑔)

∀𝑔∈𝐺

= ∑ 𝛷obj
(𝑔)

𝐶𝐺−1

𝑔=𝐶𝐺−1

, (3.15) 

the ideal energy structure for the individual I would yield 

 𝛷𝐼
(𝐺)
= 𝛷obj

(𝐺,𝐶)
     ∀𝐺 ∈ [1, 𝐹𝐺]. (3.16) 

A usual way to measure the difference between two vectors is the cosine of the angle within the 

two in the hyperspace with components �̂�(𝐺), as in Figure 3.6: 

 𝛯𝐼 ≜ cos 𝜉𝐼 = 𝜱𝐼 ⋅ 𝜱obj
(𝐶) =

1

‖𝜱𝐼‖ ⋅ ‖𝜱obj
(𝐶)
‖
∑ [𝛷𝐼

(𝐺) ⋅ 𝛷obj
(𝐺,𝐶)

]

𝑀𝐺

𝐺=1

. (3.17) 



30 CHAPTER 3 − METHODOLOGY   

 

 

Figure 3.6: Multigroup neutron flux phase space with 3 groups (after Massone et al., 2017c). 

As each mesh cell of the system has its own 𝛯𝐼 , the new flux-dependent fitness coefficient 𝑓𝚽
(𝐼) is 

based on the cosine average over all cells in the system: 

 𝑓𝚽
(𝐼)
≜
1

π
arccos(

1

𝑁cells
∑ 𝛯𝐼,𝑐

𝑁cells

𝑐=1

). (3.18) 

As 𝛯𝐼,𝑐  is always positive (because 𝜱 cannot have negative components with physical meaning), 

𝑓𝚽
(𝐼) can only assume values between 0 and 0.5. 

A fitness function 𝑓comb
(𝐼)  combining the two described above can also be defined (Massone et al., 

2017c). In order to weigh the two components, which have different metrics, a geometric mean 

rather than an arithmetic one should be used (Fleming and Wallace, 1986): 

 𝑓comb
(𝐼)

≜ √𝑓k
(𝐼)
⋅ 𝑓𝚽

(𝐼)
 (3.19) 

Other fitness functions are of course viable options, which could be tested in future studies, 

alone or combined: adjoint eigenvalue and flux, reaction rate discrepancies, α-eigenvalues… 
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3.4.3 SELECTION 

The selection is the procedure which picks some individuals from the population to build a 

mating pool, which is then used for establishing the next generation. The selection, in order to 

have a positive effect on the fitness, cannot be a simple random sampling, but has to take into 

account the phenotype of the individuals, preferring the fit over the unfit. 

However, the correct setting of the selection pressure is a very delicate point. The work of Miller 

and Goldberg (1996) points out the risks of an incorrect setting: “if the selection pressure is too 

low, the convergence rate will be slow, and the GA will unnecessarily take longer to find the 

optimal solution. If the selection pressure is too high, there is an increased chance of the GA 

prematurely converging to an incorrect (sub-optimal) solution. In addition to providing 

selection pressure, selection schemes should also preserve population diversity, as this helps 

avoiding premature convergence.” 

Hence, the key is the balance between selection pressure, which promotes the use of good 

individuals over the others, and genetic diversity, which is required to avoid the evolution 

stopping. 

Many different selection schemes exist (proportional, roulette, rank-based…), whose 

performance depends on the specific problem (Siddique, pp. 165–166), but in this case a 

tournament selection (Blickle and Thiele, 1996; Goldberg and Deb, 1991) of the stochastic type 

has been chosen, characterized by the easy maintainability (Miller and Goldberg, 1995). 

After the fitness calculation, each individual I of the population is randomly assigned to one of 

the NT “tournaments” (Figure 3.7), with the number of tournaments NT fixed by the user. 

Separately for each tournament the participant individuals are sorted based on their fitness 

function. Each individual obtains a number of copies in the mating pool  

 𝑁(𝐼) = 𝑝 ⋅ (1 − 𝑝)𝑅
(𝐼)−1 (3.20) 

based on the ranking 𝑅(𝐼) achieved in its own tournament and the probability parameter p. 
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Figure 3.7: Example of stochastic tournament selection and mating pool (MP). 

Other common selection schemes can be considered as special cases (based on the parameters 

NT and p) of the tournament: 

 Pure random sampling is obtained when p approaches 0 or NT tends to infinity; 

 Deterministic tournament selection, i.e. only the tournament winner enters the mating 

pool, corresponds to p=1; 

 Rank-based sampling is the special case corresponding to NT=1. 

The so produced mating pool constitutes the basis for the breeding procedure. It is worth 

clarifying that the mating pool concept has to be intended as an assignment of a breeding 

probability (ranging from 0 to 1) to each population individual, and there is hence no obstacle to 

fractional number of copies. 

3.4.4 BREEDING 

The breeding is the procedure leading to the definition of a new generation. This is composed by 

individuals either coming directly from the previous generation or descendants from them. 

The new generation G is composed by a number P(G) of individuals as 

 𝑃(𝐺) = 𝑃(𝐺−1) ⋅ 𝑟, (3.21) 

which depends on the proliferation rate r and on the population of the previous generation P(G−1). 

A fraction of slots (defined by the user) is reserved for elitist choice, i.e. for the best solutions of 

the old generation which pass directly into the new one. Elitism avoids the loss of the best 

candidates, always possible due to random sampling mechanisms, but it can accelerate the 

reduction of genetic diversity; however “on balance it appears to improve GA performance” 

(Davis, 1991, p. 34). 
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The remaining places in the new generation are filled by the offspring of the old generation, 

produced by crossing-over. From the mating pool, one selects with uniform random sampling 2 

chromosomes, which through one-point crossing-over (Goldberg, 1989, pp. 10–14) generate 2 

new children chromosomes; this procedure is repeated until the new generation is complete. 

In one-point crossing-over, the 2 parent chromosomes are split at a randomly chosen gene; the 

tails of the chromosomes are then switched, so creating 2 new solutions having the genes of the 

two parents. Duplicated alleles can be present in the offspring chromosomes, which have to be 

removed with the repair procedure.  

 

Figure 3.8: Example of crossing-over. 

3.4.5 MUTATION AND REPAIR 

As natural selection progresses, it is likely that the genetic diversity of the population reduces, 

with possible disappearance of alleles. As this hinders the discovery of new solutions, a 

mechanism that allows reintroduction of extinct alleles may help convergence. Through 

mutation, the genes of the new population’s chromosomes have a slight chance of having their 

alleles changed with any other possible allele. 

The essential function of the mutation is favouring the exploitation of the solution space 

(Siddique, pp. 161–162), i.e. investigating the solutions belonging to the neighbourhood of the 

chromosome undergoing mutation. The opposite movement on the solution space is the 

exploration, which aims to find new innovative solutions, radically different from the current 

options, and is mainly operated through crossing-over operations. 

 

Figure 3.9: Example of mutation. 

Mutation is also the mechanism used to solve allele duplication, originating from crossing-over 

or mutation itself. As such errors are incompatible with the chromosome description defined in 

§3.4.1, the last step in new generation breeding is a screening of all individuals; in case 
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duplications are observed, an additional mutation is triggered on one of the genes with 

duplicated allele. This operation, called chromosome repair, is repeated until all duplications 

have been removed. The new population is now final. 

 

Figure 3.10: Example of repair. 

Though mutation is a fundamental operator for solution improvement, the occurrence 

probability must not be too high; in fact, if the mutation process interferes too much, the natural 

selection could become a totally random walk. It is important that one takes into account this 

point when setting the mutation rate, also considering that repair operations can contribute to 

artificial increasing of the number of mutations. 

3.5 GENES SORTING 

In §3.4.1 the chromosome is defined in eq. (3.12) as a set of genes: this implies that two 

chromosomes bringing the same alleles in different genes describe the same physical solution, as 

it actually is. However, when one implements the chromosome into the computer code as arrays, 

the order of the genes can make a difference during the crossing-over procedure. This leads to 

the question on whether is better resorting the chromosomes based on the genes allele or 

limiting the interferences in the selection process. 

Different reasons support the unsorted chromosome option: 

a) Frequent chromosome resorting easily breaks established schemata; 

b) When chromosomes are sorted, the crossing-over always separates their two ends, 

leading to an unequal treatment between external and central groups; 

c) Corresponding genes in two sorted chromosome are likely to code for the same or a 

close allele, which limits alleles remixing; 

d) Similarly to c), the movement of an energy cut along the energy spectrum (e.g. from the 

thermal to the fast region) is hindered by sorted chromosomes. 

Tests have been run on two sodium-cooled fast reactors, ESNII+ ASTRID (described in §4.2.1) 

and ESFR (§4.2.2), about the ordering issue. The GA has been run twice with unsorted 

chromosomes and 3 times with sorted ones for each reactor system, and overall rankings of the 

solutions have been established. One observes (Figure 3.11) that, for both reactors, among the 
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best 30 solutions the number of solutions discovered by the unsorted chromosomes GA is much 

lower than the expectancy value. 

 

Figure 3.11: GA chromosome configuration of the 30 best solutions for ESNII+ ASTRID and ESFR 
cases (after Massone et al., 2017a). 

These results are in disagreement with the initial hypothesis that unsorted chromosomes work 

better; hence one should reflect on the logic initially assumed. 

Understanding the physics of the neutron movement over the energy space is the key to 

understanding the fallacies in the reasons listed: in particular, the central point is that the 

interconnection between groups is very strong if they are adjacent or close, while it is weak if 

they are apart on the energy space (neutrons exchange will be very rare in this case). On this 

basis, the reasons can be reexamined in favor of sorted chromosomes: 

a) Once the chromosome has been sorted, neighboring genes denote neighboring groups 

which are indeed preserved during crossing-over; it is very likely that during such 

operation, only one group is broken. Thus, the preserved schemata have a clear 

counterpart in the neutron system; 

b) Indeed the two ends of a chromosome are always separated, but this does not constitute 

a problem, as the connection between fast groups and low-energy ones is small; 

c) The correspondence of genes in different chromosomes is beneficial, as it helps reducing 

the need for resorting of the offspring chromosomes, meaning that less adjacent group 

couples are disrupted during a crossing-over. 
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d) This difficulty in moving energy cuts along the energy space represents the downside of 

c). However, even if crossing-overs can provoke only slow progressive shifts, one can 

rely on mutations for rapid movements. 

The conclusion is that, when sorted, the chromosomes have a closer counterpart to the physical 

problem and can better represent it. The drawback is that the shift of the energy cuts along the 

energy space is deterred and takes longer. In other words, “the convergence is less erratic, but 

the exploration of the solution space might benefit of an increased mutation rate” (Massone et 

al., 2017a). 

The outcome is suggested by Figure 3.12 and Figure 3.13, which show, respectively, the fitness 

convergence trend and the percentage of original chromosomes (i.e. not tested in previous 

generations), based on the sorting choice. One observes that, for all reactor systems, the sorted 

chromosomes cases outperform the unsorted ones both in convergence speed and in stability of 

the decreasing trend. On the other hand Figure 3.13 shows that calculations with sorted 

chromosomes are more likely to reconsider already explored individuals; this suggests a 

lowered exploration capability, which should instead be promoted, e.g. by increasing the 

mutation rate, in particular in later generations (Shi et al., 1999; Siddique, pp. 161–165). 

 

Figure 3.12: Average fitness convergence for ESNII+, ESFR and MSFR. 
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Figure 3.13: Share of original chromosomes in each generation for ESNII+, ESFR and MSFR. 

3.6 ACCELERATION 

One of the main goals of the XS collapsing procedure is the reduction of the calculation time 

without affecting the precision of the results (conversely, increasing the precision the 

computational effort being equal). The largest effort reduction is related to the transport solver 

which, dealing with a smaller number of groups, converges faster. Nevertheless, both the XS 

collapsing procedure and the genetic algorithm require additional steps, i.e. computational time. 

Hence, different techniques have been applied to limit the computational expense, and particular 

care has been given to the choice of the sorting and sampling algorithms. 

Also, parallelization implementation is straightforward, as the study of each individual is 

independent from the others and can, hence, be performed at the same time. 

3.6.1 FLUX EDUCATED GUESS 

The evaluation of the fitness function constitutes by far the largest time expense of the GA run, 

as common with optimization problems. Thus, as this operation has to be repeated for a large 

number of individuals, it is important to reduce the required computational time. 

One option is supporting the k calculation convergence by providing a better neutron flux initial 

guess than the default one. This can be calculated starting from the flux distribution assessed 
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with the many-groups libraries, which is a “by-product” of the objective k determination, using 

the flux collapsing formula (2.30). 

The so obtained condensed (based on the chromosome under exam) flux constitutes a well 

educated guess, which helps the transport solver to converge to the required eigenvalue within 

few (typically 3 or 4) outer iterations. 

The actual time reduction depends on the specific chromosome but it can be estimated that the 

computational effort is lowered by more than 30%; at the same time, the educated guess is 

obtained via simple sums, with negligible impact on the computational time. 

3.6.2 FITNESS STORAGE 

Being the genetic pool in this case finite, the probability that the same individual appears in 

more than one generation (or even more than once in the same generation) cannot be calculated 

by combination counting, as it would be largely underestimated; really, elitism option mandates 

that some individuals be repeated in the next generation. 

In order not to perform twice the fitness calculation of the same individual, one keeps evidence 

of all considered candidate solutions along with their performance. A binary tree of the kind 

“left-child right-sibling” (Cormen, 2001, pp. 214–217) can efficiently be used to fulfil this task; 

the array and linked list options had to be excluded because they require, respectively, a too 

large space to be allocated and a too long access time. 

With the storage option, before each fitness evaluation, one searches the tree for the considered 

chromosome: if it is present, the fitness of the individual has already been evaluated and the 

eigenvalue calculation can be avoided; otherwise, after the fitness is evaluated in the traditional 

way, a new branch is added to the tree with the new result for future reference.  
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Figure 3.14: Binary tree example for a case with FG=3. Green leaves denote available fitness values, 
red leaves incomplete branches (cases not yet found). 

The time reduction consequent to the avoided calculations is orders of magnitude larger that the 

effort required for allocating, updating and searching the storage. 

3.6.3 SAMPLING ALGORITHM 

For selection mechanisms, a random sampling method is required. The Alias Method (Walker, 

1977) is in general efficient and works well in this case, as a large number of sampling has to be 

done with the same probability distribution. This allows reusing the same probability tables, 

whose creation is the most time consuming operation of the method. 

The method is based on the construction of a probability table and an Alias table, which allow to 

model each random sampling with a fair-dice roll and a biased-coin flip; both operations are 

very easy from the computational point of view and do not require a search algorithm (which, on 

the contrary, can be computationally-expensive).  

 

Figure 3.15: Example of alias method. 
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The time required for the creation of probability tables of length n (it is possible to demonstrate 

that it is always possible to do it) is O(𝑛), while each sampling is completed in O(1) (Vose, 1991). 

The asymptotic notation is commonly used in computer science to compare the efficiency of 

alternative algorithms (Cormen, 2001, pp. 41–50). The O-notation is used to denote functions 

which are asymptotically bounded from above by another function. Considering the 

computational time a function f(n) of the variable n and g(n) another function of n,  

 𝑓(𝑛) ∈ O(𝑔(𝑛)) ⟺ ∃𝑐, 𝑛0 ∈ ℝ, 𝑐 > 0 ∶ ∀𝑛 > 𝑛0, 𝑓(𝑛) ≤ 𝑐𝑔(𝑛). (3.22) 

In other words, the computational time of an algorithm belonging to the set O(𝑛) grows at most 

linearly with n; with the set  O(1), the computational time is independent from n. 

The Θ-notation, similarly to O-notation, binds asymptotically the function; in this case, however, 

the function is bounded from both above and below, i.e.:  

 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) ⟺ ∃𝑐1, 𝑐2, 𝑛0 ∈ ℝ, 𝑐1, 𝑐2 > 0 ∶ ∀𝑛 > 𝑛0, 𝑐1𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2𝑔(𝑛). (3.23) 

From (3.22) and (3.23) immediately descends 

 Θ(𝑔(𝑛)) ⊆ O(𝑔(𝑛)), (3.24) 

i.e. the Θ-notation is stronger than the O-notation. 

3.6.4 SORTING ALGORITHM 

A sorting algorithm is required both for providing the individuals as input of the XS collapsing 

tool (which requires the energy structure to be provided in ascending order) and for ranking the 

individuals according to their fitness. 

The simplest algorithms, such as bubble (Knuth, 1997-2011, pp. 105–110, vol. 3) and insertion 

sort (Knuth, 1997-2011, pp. 80–84, vol. 3), are efficient with almost sorted arrays: their 

complexity is O(𝑛) only for the best case, while in both average and worst cases it is O(𝑛2). 

As the fitness ranking is rarely close to the best case, the merge sort (Knuth, 1997-2011, 

pp. 111–113, vol. 3; Sedgewick and Wayne, 2011, pp. 270–287) has been implemented. The 

chosen method belongs to the wider group of the Divide & Conquer algorithms and has a lower 

complexity, Θ(𝑛 log 𝑛) (Cormen, 2001, pp. 27–37), besides being easy to code. 
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The algorithm divides the array into couples and sorts them; then merges the couples two by 

two into sorted quadruples, taking advantage of the fact that the couples are already sorted. The 

procedure continues with n-tuples merged into 2n-tuples, until the whole array has been 

reconstructed. 

 

Figure 3.16: Merge sort procedure. 
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CHAPTER 4.      VERIFICATION AND RESULTS  

The METIS algorithm, proposed in the previous chapter, must be now tested to prove its 

correctness and effectiveness. Three test systems are considered: two sodium-cooled fast 

reactors and a molten salt reactor. The tests show that, generation after generation, the GA 

population usually converges to similar patterns, different for each reactor; these solutions 

prove able to replicate the multiplication factor, the void and Doppler feedback coefficients, and 

the reaction rates. Similar reactors have similar optimal energy structures. The study of the GA 

results suggests interesting considerations on the effects some features of the studied systems 

can have on the reactor physics. The combined use of the XS collapsing tool and METIS allows to 

reduce greatly the time required for the neutronic calculations, while ensuring that the chosen 

energy structure will not inadvertently affect the reliability of the results. 

This chapter is devoted to the tests performed to demonstrate the effectiveness of the METIS 

algorithm. The results obtained are compared and analysed based on the reactor features and on 

the neutron physics. A short introduction is given regarding the algorithm configuration and the 

considered tests systems. Finally the computational time gained using the XS collapsing tool and 

required by METIS is assessed. 

4.1 CONFIGURATION 

The objectives of the verification tests will be the calculation of an 11-group structure which can 

correctly reproduce the reference results (k, reactivity, feedback effects,…), defined as those 

produced by the same code when using the original uncollapsed libraries, chosen as the 72-

groups libraries used at KIT for SIMMER analyses (Rineiski et al., 2011). The choice of using 11 

groups for the few-groups libraries is related to the fact that the most used libraries at KIT for 

deterministic calculations using SIMMER have that number of groups (Kiefhaber, 2000); 

moreover, such a discretization is expected to yield a good representation of the energy 

spectrum combined with a relevant computational time reduction. Nevertheless, both METIS 

and the XS collapsing tools are developed such that the choice of the number of groups used in 

the final libraries is always left to the user, who can arbitrarily choose any number of groups 

between 1 and MG. 

The GA convergence objective have been explicitly set to a very challenging level in order to 

avoid premature interruption of the calculation after encountering a sub-optimal solution. The 
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latter, in fact, would be probably sufficient for most applications, but longer calculations are 

more useful in case the efficiency of the algorithm itself is studied. For the same reasons, the 

population size is much larger than usually required for common studies and the selection 

pressure is kept to a low level. Obviously, the computational effort associated to these choices 

strongly increases, raising the time required for convergence, typically a few hours for a sub-

optimal (but still acceptable) solution, by one order of magnitude. 

The adopted GA configuration is: 

 Population: 500 individuals, constant size; 

 Tournament selection: 100 tournaments, p=0.1; 

 Mutation: 5% randomly chosen chromosomes undergo mutation; 

 Elitism: 2% of the population; 

 Termination condition: 50 completed generations, or 20 consecutive ones without 

improvement of the best solution. 

As a consequence, the initial generation includes, in average,  

�̅�𝐴 =
𝑃 (0) ∙ (𝐹𝐺 − 1)

(𝑀𝐺 − 1)
=
500 ∙ 10

71
≅ 70.4 

copies of each allele A, a number which is large enough to limit the genetic drift (Mu hlenbein, 

1995, pp. 67–68), i.e. the tendency of the population to converge to a single individual, even 

without selection, as a consequence of the random sampling. 

The parameters other than population size and termination conditions determine how the 

selection and breeding operators will work, and indirectly the algorithm performance. One 

should set the parameter to reach an equilibrium point: fit solutions should be promoted, 

without falling into premature convergence; chromosomes should mutate, but the GA should not 

degenerate into random search… The parameters optimization is a non-linear and complicated 

problem itself, which would require a number of trials to find the optimal values and has not 

been deeply investigated. The results obtained (and shown in this chapter) suggest that the 

proposed configuration is able to achieve the equilibrium required for the GA functioning. 

Nevertheless, one cannot exclude that improvements in the performance could be obtained with 

other configurations. 

In addition, the stochastic effect on the results is limited by repeating the GA calculation for each 

case 5 times (2 for the cases with voided core). 
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4.1.1 ORIGINAL LIBRARY 

The many-groups libraries used for testing is a 72-groups XS data set developed by Rineiski et al. 

(2011) and used at KIT for SIMMER analyses. Table 4.1 summarizes the energy boundaries of 

the input libraries. 

Table 4.1: Energy groups boundaries of the used many-groups libraries (Rineiski et al., 2011). 

g 

Upper energy 
boundary 

(eV) 

g 

Upper energy 
boundary 

(eV) 

g 

Upper energy 
boundary 

(eV) 

g 

Upper energy 
boundary 

(eV) 

1 2.000E+07 19 3.020E+05 37 2.029E+04 55 1.434E+03 

2 6.703E+06 20 2.732E+05 38 1.662E+04 56 1.234E+03 

3 3.679E+06 21 2.472E+05 39 1.503E+04 57 1.010E+03 

4 3.012E+06 22 2.128E+05 40 1.273E+04 58 7.485E+02 

5 2.466E+06 23 1.832E+05 41 1.114E+04 59 5.545E+02 

6 2.019E+06 24 1.500E+05 42 9.119E+03 60 4.540E+02 

7 1.653E+06 25 1.228E+05 43 7.466E+03 61 3.043E+02 

8 1.353E+06 26 1.111E+05 44 6.320E+03 62 2.040E+02 

9 1.108E+06 27 9.482E+04 45 5.531E+03 63 1.367E+02 

10 9.072E+05 28 8.230E+04 46 5.005E+03 64 9.166E+01 

11 8.209E+05 29 6.738E+04 47 4.166E+03 65 4.552E+01 

12 7.065E+05 30 5.517E+04 48 3.527E+03 66 1.945E+01 

13 6.081E+05 31 4.748E+04 49 3.355E+03 67 9.906E+00 

14 5.502E+05 32 4.087E+04 50 2.747E+03 68 5.043E+00 

15 4.979E+05 33 3.698E+04 51 2.249E+03 69 2.130E+00 

16 4.505E+05 34 2.928E+04 52 2.035E+03 70 1.020E+00 

17 4.076E+05 35 2.739E+04 53 1.722E+03 71 4.850E−01 

18 3.508E+05 36 2.479E+04 54 1.507E+03 72 1.890E−01 

 

The 72-groups library has been built for fast reactor systems, but it will be applied also to the 

Molten Salt Reactor concept, which belongs to the fast reactor category but is deeply different in 

term of neutron spectrum. 

4.2 TEST SYSTEMS 

The effectiveness of this new approach in solving the problem is tested for different nuclear 

reactor systems. Most of the tests are performed on the Advanced Sodium Technological Reactor 
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for Industrial Demonstration (ASTRID), developed in the framework of the European 

Sustainable Nuclear Industrial Initiative (ESNII+) (Bortot et al., 2015; Varaine et al., 2012). In 

addition, 2 other systems have been included for comparison, choosing both a similar system, i.e. 

the European Sodium Fast Reactor (ESFR) (Andriolo, 2015; Fiorini and Vasile, 2011; Vasile et al., 

2011a), and a dissimilar one, the Molten Salt Fast Reactor (MSFR) (European Commission - 

CORDIS, 2017; EVOL project, 2011). 

The tests are performed on SIMMER-III, the 2D version of the code. The GA approach is anyhow 

independent from the number of dimensions, and so can be easily transposed to the 3D 

application, as shown later in Chapter 5.      

4.2.1 ESNII+ ASTRID 

The ESNII+ ASTRID (Bortot et al., 2015; Varaine et al., 2012) is a Sodium-cooled Fast Reactor 

(SFR) system, characterized by two fuel zones (an internal and an external one) with different 

MOX and UO2 content in the fuel, with a thermal power of 1.5 GW. Its design is based on the low-

void effect core CFV (Krepel et al., 2015; Sciora et al., 2011), proposed by CEA for a SFR with a 

negative void feedback coefficient. 

 

Figure 4.1: ESNII+ ASTRID core radial and axial layout (after Bortot et al., 2015). 

The test case is the End of Cycle configuration which is studied at KIT in the framework of the 

ESNII+ project. The core voided configuration, required for calculating the feedback coefficient 

(§4.5), corresponds to the reference case with the coolant removed from all fuel zones and from 

the fertile plate zone; the sodium is not removed from the inter-subassembly gaps. 
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4.2.2 ESFR 

When testing the system, it is interesting comparing the results of the main test case with a 

similar one, to observe how the system reacts to the small differences of the problem. Hence the 

choice of the second test case: the ESFR, in the configuration denoted as Working Horse (WH), 

studied at KIT in the framework of the EURATOM 7th Framework Programme within the CP-

ESFR project (2009-2012) (Buiron et al., 2013; Monti, 2015). 

As the ESNII+ ASTRID, the ESFR-WH is a SFR with two fuel zones with different enrichment of 

the MOX fuel (Andriolo, 2015). For the purpose of the study, it is important pointing out the 

main design differences, some of which might affect the optimal energy structure: 

 The thermal power is much larger, being 3.6 GW; 

 The inner and outer zones SAs share the same dimensions, the only difference being the 

fuel enrichment; 

 The MOX fraction of the ESFR-WH is lower than in the ESNII+ ASTRID, possibly leading 

to a softer neutron spectrum; 

 The active core is axially enclosed between two steel blankets, while the ESNII+ ASTRID 

has fertile blankets; 

 The sodium plenum above the active zone is 15 cm long, much shorter than in the ESNII+ 

ASTRID design; 

 The considered configuration is in Beginning of Life conditions. 

 

Figure 4.2: ESFR-WH core radial and axial layout (after Fiorini, 2009). 
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4.2.3 MSFR 

The third system chosen for the verification tests is the MSFR, in the version used for the EVOL 

project (EVOL project, 2011), in the framework of the European Union funding programme FP7. 

The EVOL project has run between 2011 and 2014 and has been followed by the current project 

“Safety Assessment of the Molten Salt Fast Reactor” (European Commission - CORDIS, 2017), in 

the Horizon 2020 framework (European Commission, 2017). 

The MSFR is a very peculiar concept, much different from both the ESNII+ ASTRID and the ESFR. 

The fuel is a eutectic system of LiF and actinide fluorides (AnF4) in liquid phase which heats up 

due to fission while passing through an empty cavity (the active core) and is cooled down in the 

Intermediate Heat Exchangers; the molten salt hence combines both fuel and coolant functions. 

The core scheme is shown in Figure 4.3. A SIMMER extension has been developed by Wang et al. 

(2013; 2006) to allow SIMMER dealing with the liquid circulating fuel concept. 

A distinctive feature of the MSFR is the thorium-based fuel cycle: the fissile fraction of the fuel 

salt is a mixture of actinides fluorides, mainly 232Th and 233U; an alternative composition, not 

considered in the present study, prescribes a mixture of transuranic isotopes as a substitute of 

the 233U. The system also includes radial fertile blankets to improve the breeding gain, whose 

composition is the same as the fuel one except for the fissile isotopes, which are all substituted 

with 232Th. An online reprocessing is envisioned to remove continuously the fission products 

and separate the bred 233U; on the contrary, minor actinides produced with fission are not 

extracted and incinerated.  

 

Figure 4.3: MSFR core scheme (after EVOL project, 2011). 
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The particular nature of the fuel leads to a strong interconnection between neutronics and fluid-

dynamics. The fuel temperature, regulated through the pump and the Intermediate Heat 

Exchanger, can then be used to govern the reactor without control rods need. 

4.3 SODIUM-COOLED REACTORS 

The first tests of METIS are performed on the ESNII+ ASTRID core, using the k-based fitness 

function fk. The best 30 solutions found in the 5 tests (2 with unsorted chromosomes and 3 with 

sorted ones) are depicted in Figure 4.4 and Figure 4.5, showing how groups are subdivided. 

 

Figure 4.4: Best found energy structures for the ESNII+ ASTRID core associated with calculation 
run (“S” denotes sorted chromosomes, “U” unsorted ones) and fitness (k-based). 

Dotted lines indicate the energy groups boundaries of the initial libraries; 
new energy groups are denoted with the same colors. 
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Figure 4.5: Frequency of the energy cuts in the 30 best found meshings for the ESNII+ ASTRID core. 

The results show that the algorithm does find solution with a good fitness and that these all 

share similar patterns: a fast region until ~30 keV with a large number of groups; a zone 

between ~30 keV and 500 eV modelled with a single group, obtained condensing 25-30 groups; 

a low energy region with 3-4 groups, with cuts which are placed very frequently at ~550 eV, 

~90 eV and ~20 eV. It is interesting comparing such pattern with the XSs profiles and with the 

neutron spectrum distribution to understand whether the reasons underlying the choices of 

METIS match with the criteria suggested in literature discussed in §2.4. 

As expected, most of the groups are allocated for the energy regions where the neutron flux is 

high, i.e. in the fast region; this is reasonable as it suggests that solutions which “invest” groups 

(which are a limited resource for the GA) to describe energy regions with high neutron 

population (Figure 4.7) are rewarded in terms of fitness function. The starting point of the 

central region described by a single group corresponds with the first 238U resonances and the 

group encloses also the whole large sodium absorption peak at 2.85 keV and the resonances of 

240Pu (Figure 4.6). The reason of the condensation lies in the fact that the region is largely 

homogeneous from the XS point of view, characterized by a high absorption, with a low neutron 

flux; a slight inhomogeneity can be constituted by the fissile isotope 239Pu, whose resonances 

start from 2.5 keV, but its fission XS is, in the considered energy range, one order of magnitude 

lower than the absorption one. 
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Figure 4.6: Total XSs of some relevant isotopes for the ESNII+ ASTRID core based on the JEFF 3.1 
data library (Koning et al., 2006), from JANIS (Soppera et al., 2014). 

 

Figure 4.7: Normalized multigroup neutron flux in the ESNII+ ASTRID core calculated with the 
many-groups libraries. 

The presence of a rather detailed energy discretization in the low energy region is more 

surprising for a fast reactor; however the hypothesis that it is an effect of the genetic drift is not 

supported by the results as such discretization arises with the same pattern in all performed 

runs, as shown in Figure 4.5. This suggests that a certain care should be devoted to the 
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description of the phenomena occurring in the low energy space, which indeed contains the 

resonances and the high fission XS tail, even with a low neutron population. 

The comparison of the XSs corresponding to two of the best structures proposed by the 

algorithm with those associated with a poor solution, shown in Figures 4.8 and 4.9, also suggest 

that an appropriate meshing of the low energy region is a relevant point to take into account. 

 

Figure 4.8: Multigroup fission XS (including the yield ν) in a representative fuel cell of ESNII+ 
ASTRID with both the original libraries and the condensed ones with different energy structures. 
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Figure 4.9: Multigroup absorption XS in a representative fuel cell of ESNII+ ASTRID with both the 
original libraries and the condensed ones with different energy structures. 

4.3.1 ESFR 

In the framework of the verification process, an effective test is constituted by the comparison of 

the results with a similar system, like the ESFR; similar results in the two cases would indicate 

consistency in the choices of the GA. 

The neutron spectrum of the ESFR (Figure 4.10) is slightly softer than the ESNII+ ASTRID one; 

the composition (described in §4.2.2) justifies the difference, due to the lower enrichment of the 

ESFR fuel and the substitution of the fertile blankets with steel reflectors, much more effective in 

slowing down the neutrons. 
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Figure 4.10: Normalized multigroup neutron spectrum in the ESNII+ ASTRID and ESFR cores 
calculated with the many-groups libraries in representative fuel cells. 

 

Figure 4.11: Best found energy structures for the ESFR core associated with calculation run 
(“S” denotes sorted chromosomes, “U” unsorted ones) and fitness (k-based). 

Dotted lines indicate the energy boundaries of the initial libraries; 
new energy groups are denoted with the same colors. 
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Figure 4.12: Average coarse group corresponding to each fine group for ESNII and ESFR cores 
(based on the 30 energy structures with the best fitness found). 

As expected, ESNII+ (Figure 4.4) and ESFR (Figure 4.11) best energy structures display similar 

patterns, with a dense energy discretization in the fast region, a central large homogeneous 

group and a certain attention to the low energy region. From Figure 4.12, showing the coarse 

group corresponding in average to each fine group, one can draw similar conclusions, as the 

trends are very close. In addition, one observes that the GA allocates for the ESNII+ core a larger 

number of groups in the fast region, between the original groups 9 to 30, than for ESFR; for the 

latter, the spared groups are used for a better description of the low energy zone. This 

demonstrates the sensitivity of the system to the spectrum variation, with a softer core needing 

better discretization in the low energy region and vice versa. 

4.4 THE MSFR CASE 

After considering two SFRs, one would like to test the tool on a different system. The METIS 

algorithm is hence applied to the EVOL MSFR. 
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Figure 4.13: Best found energy structures for the MSFR core associated with calculation run 
(“S” denotes sorted chromosomes, “U” unsorted ones) and fitness (k-based). 

Dotted lines indicate the energy boundaries of the initial libraries; 
new energy groups are denoted with the same colors. 

 

Figure 4.14: Average coarse group corresponding to each fine group for ESNII+ and MSFR cores 
(based on the 30 energy structures with the best fitness found). 
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The clear pattern visible in Figure 4.4 (ESNII+) and Figure 4.11 (ESFR) cannot be identified in 

this case (Figure 4.13 and Figure 4.14): all cuts seem to have the same relevance and the 

discretization effect on the k correctness appears to be small. Further support to the hypothesis 

that the influence of energy structures on the MSFR is limited is provided by the Figure 3.12 and 

Table 4.2. 

Table 4.2: Average number of fine groups in each coarse group with standard deviation 
(on the 30 energy structures with the best fitness found) (Massone et al., 2017a). 

 ESNII+ ASTRID ESFR MSFR 

1 7.0 ± 2.2 6.4 ± 2.7 6.3 ± 5.0 

2 3.9 ± 2.8 5.1 ± 3.0 5.8 ± 3.8 

3 5.3 ± 2.5 6.3 ± 3.6 7.7 ± 5.9 

4 3.9 ± 2.6 4.4 ± 2.5 6.5 ± 4.6 

5 4.1 ± 2.3 4.9 ± 3.8 7.4 ± 4.7 

6 6.8 ± 7.8 10.3 ± 11.1 5.5 ± 5.6 

7 14.5 ± 12.8 14.0 ± 9.5 7.3 ± 3.7 

8 14.2 ± 12.4 7.8 ± 7.8 6.3 ± 3.9 

9 4.1 ± 4.1 2.6 ± 1.0 7.0 ± 5.5 

10 5.1 ± 2.1 3.3 ± 1.4 6.2 ± 4.3 

11 3.1 ± 2.8 6.7 ± 1.5 6.0 ± 4.1 

 

The former shows that the average fitness of the initial population, i.e. a group of randomly 

initialized solutions, is already very low (in the order of 50) with respect to the SFR cases; in 

addition it improves slowly as the generations go on. On the other hand the low average fitness 

cannot be due to homogenization of the population, as it occurs from the beginning, so even a 

refinement of the input parameters or an adaptive scheme could not help. 

Finally, Table 4.2 shows that all coarse groups in the MSFR case have a similar width with large 

standard deviation1; on the contrary, the SFRs display groups with different widths, justified by 

the problem physics, and small standard deviations, meaning that the group pattern of all best 

                                                             

 

1 In this thesis standard deviation must be always considered as the corrected sample standard deviation: 

𝜎 = √
1

𝑁 − 1
∑(𝑥𝑖 − �̅�)

2

𝑁

𝑖=1
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solutions is very similar. Only for groups 6 to 8 the variance is large, but this is due to the fact 

that the large central group (see §4.3) does not always correspond to the same group. 

4.4.1 THE MODIFIED ASTRID 

Once ascertained the peculiar behaviour of the MSFR, which does not respond to energy 

structure variations, one should try to understand what feature is the cause. To do so, one 

performs tests on the ESNII+ core, on which the genetic algorithm has already been proven 

working, modifying it with the introduction of the biggest peculiarities of the MSFR: 

homogeneity and absence of control material. This results in 4 cases: 

 The reference case, described in §4.3; 

 A homogeneous case, composed by a homogeneous mixture of all materials in the core of 

the reference core; 

 An “uncontrolled” core, heterogeneous as the reference but with all control material 

(boron carbide) removed; 

 A homogeneous “uncontrolled” case, combining the previous two. 

With the obvious exception of the reference, not all cases can achieve criticality, making the 

following tests pure speculation, however useful to understand some aspects of the GA 

convergence. 

Analysing the neutron spectra of the modified ASTRID cores, shown in Figure 4.15, one can 

understand the effects of the changes, and better interpret the results in Figure 4.16. 
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Figure 4.15: Neutron spectra of the modified ASTRID cores (after Massone et al., 2017a). 

 

Figure 4.16: Average coarse group corresponding to each fine group for the modified ESNII+ cases 
(based on the 30 energy structures with the best fitness found). 

The behavior of the GA in the homogeneous case could be easily predicted: the control material 

is mainly 10B which is extremely effective with low energy neutrons but fairly transparent to fast 
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ones (Figure 4.6). As a consequence most of the neutrons whose energy falls below the 10B 

effectiveness limit are quickly removed and the low energy tail of the neutron spectrum, which 

justified the use of some groups to detail that space, does not exist in this case. This explains why 

all best energy structures found focus on the first 40 groups, condensing all groups below 10 keV 

together: there is no gain in spending resources, i.e. groups, to describe energy regions which 

are almost empty. 

The “uncontrolled” heterogeneous case is the one which better follows the reference one, 

showing similar behaviors and energy cuts in both fast and low-energy regions. On the contrary, 

the main differences appear in the intermediate zone, between 400 keV and 500 eV: with respect 

to the reference case, more groups have to be allocated to the low energy zone, which in this 

case has many neutrons (Figure 4.15) and so must be adequately described; as the number of 

groups to be set is fixed, less groups are used for the faster region. The reference case displayed 

a large plateau in Figure 4.16, indicating a strong tendency to condense all groups between 35 

and 57 in a single one (as explained in §4.3); such an effect is less evident in the “uncontrolled” 

case, yet one can notice that the slope of the curve in Figure 4.16 is lower between groups 29 

and 50, matching the energy region where both the neutron spectrum is depressed in both fuel 

and non-fuel cells. 

The case combining the two modifications is the one which best matches with the MSFR trend, 

though the neutron spectrum is not very different from the reference configuration. The results 

follow very well the trend of the “uncontrolled” heterogeneous configuration in the region 

before the 24th group, where the neutron spectra are very similar; afterwards, the combined 

case can afford spending more groups than the heterogeneous one, which has to use them for 

the low-energy tail. 

A very interesting effect can be observed in the trend of the average fitness along the 

generations, in Figure 4.17. One notices that the low initial fitness, already observed for the 

MSFR in Figure 3.12, is a feature common to all homogeneous systems. The absence of the 

control material has also an effect, as it raises the initial fitness, but it is minor with respect to 

homogeneity. 

One can see that the initial fitness is a measure of the problem difficulty: if most of the initial 

randomly generated solutions have small fitness values, i.e. are good solutions of the problem, 

one can suppose that it is very likely to find acceptable energy structures in the solution space, 

or conversely that many of the possible meshings are acceptable as solutions. On the contrary, if 

the initial average fitness is large and acceptable solutions can be found only after many steps, 

one can presume that good options are rare in the energy structure space. 
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Figure 4.17: Average fitness convergence for MSFR and ESNII+ different configurations. 
Only sorted chromosomes are used. Dotted lines denote heterogeneous cores. 

Clearly, satisfying the constraints of a heterogeneous system is much more demanding than for a 

homogeneous one; in fact, in the latter the phenomena occurring are the same everywhere, so 

one has to face optimization of the structure for a single cell. On the contrary, when the system is 

heterogeneous, the GA has to balance the issues of many different cells, each with its own XSs 

and neutron spectrum; doing this is much more challenging and even the optimal solution could 

be just a compromise among the cells needs. 

The effect of the control material is similar: when the boron is removed, the span of the neutron 

spectrum is extended, as the absorption of the low energy neutrons is much reduced. This means 

that the GA has to fulfil additional requirements to obtain an acceptable energy meshing, i.e. the 

problem is more difficult. This explains the fact that “uncontrolled” configurations, both 

homogeneous and heterogeneous, have higher initial fitness values than their counterparts with 

boron. 

The consequence of the good solution rarity is that the GA converges to one of them, when it 

finds it, without being “distracted” by other equally performing solutions (as they do not exist or 

are not found); hence resulting structures show clearly recognizable patterns. On the contrary, 

when finding good solutions is easy, i.e. the constraints are very relaxed, the GA retains different 

valid options, often very different from each other, without converging to any of them. This 

explains the absence of patterns when observing the best solutions. 
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4.5 FEEDBACK COEFFICIENTS 

When dealing with safety analyses of nuclear reactors, the feedback coefficients are of 

paramount importance and it is essential for the correct representation of the transient that the 

few-groups libraries can correctly predict their values. 

The void feedback coefficient Fv measures the reactivity variation in the event of core voiding, 

i.e. when the sodium coolant is removed, and can be expressed in pcm as 

 𝐹v ≜ (𝜌void − 𝜌ref) ⋅ 10
5 =

𝑘void − 𝑘ref
𝑘void ⋅ 𝑘ref

⋅ 105. (4.1) 

where kvoid is the multiplication coefficient of the system with the coolant removed. This value, 

usually expressed in pcm, is usually negative in thermal reactors and positive in SFRs. 

Similarly, the Doppler (or fuel temperature) feedback coefficient KD (Waltar and Reynolds, 1981, 

pp. 196–203) describes the reactivity change in pcm relative to fuel temperature variation due 

to Doppler effect:  

 𝐾D =
𝑘T+1000 K − 𝑘ref

ln
𝑇T+1000 K
𝑇ref

⋅ 105. 
(4.2) 

where the “T+1000 K” configuration is obtained from the reference system increasing the fuel 

temperature by 1000 K. 

One could, in principle, modify the GA fitness function to find the energy structure with the best 

feedback coefficient match, but this would require two solutions of the eigenvalue problem for 

each tested individual and feedback coefficient, one for the reference condition and one for each 

modified configuration, with a consequent increase of the computational time. In addition, deep 

modifications to the SIMMER code would be required to allow support of more than one 

geometry at the same time. It is however interesting studying the reliability of the feedback 

coefficients calculated with the current fitness fk. 

The test system is the ESNII+ ASTRID core, already described in §4.2.1; the voided configuration 

is obtained by removing the cooling sodium from all fuel zones, excluding the lower fertile zone. 

Only the coolant inside the SA wrapper is removed, while the inter-SA sodium remains in place. 

As reference results are considered those calculated using the uncollapsed many-groups 

libraries, and they are compared in Table 4.3 with those obtained using the best energy 

structures found. Two structures are taken into account: they are optimized by METIS, one on 
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the reference system, the other on the voided geometry. In Table 4.4, instead, the best found 

meshings are those found with each of the 3 test system described before. 

Table 4.3: ESNII+ feedback coefficients (Massone et al., 2017b). 

 
Uncollapsed 

libraries 

Best found 
energy structure 

(Reference config.) 

Best found 
energy structure 
(Voided config.) 

k k Δ (pcm) k Δ (pcm) 

Reference 0.99919 0.99920 +1 0.99932 +13 

Void 1.00995 1.00980 −15 1.00996 +1 

T+1000 K 0.99633 0.99651 +18 0.99669 +36 

Fv (pcm) +1066 +1051 −−− +1054 −−− 

KD (pcm) −560 −527 −−− −515 −−− 

Table 4.4: ESNII+ feedback coefficients with other reactors best structures (Massone et al., 2017a). 

 
Uncollapsed 

libraries 

Best found 
energy structure 

(ESNII+) 

Best found 
energy structure 

(ESFR) 

Best found 
energy structure 

(MSFR) 

k k Δ (pcm) k Δ (pcm) k Δ (pcm) 

Reference 0.99919 0.99920 +1 0.99880 −39 0.99462 −460 

Void 1.00995 1.00980 −15 1.00950 −44 1.00509 −479 

T+1000 K 0.99633 0.99651 +18 0.99599 −34 0.99180 −458 

Fv (pcm) +1066 +1051 −−− +1061 −−− +1047 −−− 

KD (pcm) −560 −527 −−− −550 −−− −552 −−− 

 

Results in Table 4.3 show that, even if the fitness function is based on the multiplication 

coefficient, the feedback coefficients are fully in agreement with the reference values. This 

suggests that the transient calculation, even in accidental conditions, is expected to return 

reliable results. A caveat however comes from Table 4.4: the optimal energy structure does 

depend on the core geometry and composition, and its applicability deteriorates as one moves 

further from the original core configuration; that is why the best meshing for the ESFR, which is 

similar to ESNII+, performs well, while the MSFR structure is totally inadequate. 

The reactor transient can be considered, in practice, as a sequence of similar reactors: the use of 

a single energy discretization is hence justified. Nevertheless, as the transient progresses 

(maybe with core disruption, if one is studying an accidental behaviour) the core conditions drift 

apart from the initial ones, based on which the energy structure has been determined; if the 
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distance becomes too large the calculated energy meshing could be no more adequate, and a 

new execution of the GA should be considered. 

4.6 REACTION RATES 

A possible way to verify the applicability of the energy structure is the comparison of the 

reaction rates obtained with the XS collapsing and the reference ones, calculated with the 

uncollapsed many-groups libraries. 

As described in §2.3, the condensed XSs are calculated with the objective of keeping the reaction 

rates constant before and after the collapsing procedure. Yet, the perfect match cannot be 

assured: in fact one should know the correct transport equation solution in advance to obtain 

the correct XSs. As this is not an option, one had to introduce different approximations (detailed 

in §2.2) in the collapsing procedure, the most relevant being the fact that the weighting 

spectrum is not the correct flux but its approximation, solution of eq. (3.9). 

Table 4.5 shows the comparison of the reaction rates in the ESNII+ core obtained with 3 

different energy structures calculated by METIS, two based on the correct system and one on the 

MSFR, with the theoretically expected results 

 𝑅𝑅𝑥,th
(𝐺)

= ∑ 𝑅𝑅𝑥
(𝑔)

∀𝑔∈𝐺

 
(4.3) 

where 𝑅𝑅𝑥
(𝑔)

 are those calculated with the uncollapsed many-groups libraries. 
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Table 4.5: ESNII+ fission and absorption reaction rates in a fuel cell with different energy 
structures (Massone et al., 2017a). 

ESNII+ energy structure (1) ESNII+ energy structure (2) MSFR energy structure 

Δk = +1 pcm Δk = +1 pcm Δk = −460 pcm 

Upper 
energy 

(eV) 

RRx,th 

(m-3 s-1) 

RRx,11g 

(m-3 s-1) 

Upper 
energy 

(eV) 

RRx,th 

(m-3 s-1) 

RRx,11g 

(m-3 s-1) 

Upper 
energy 

(eV) 

RRx,th 

(m-3 s-1) 

RRx,11g 

(m-3 s-1) 

Fission 

2.00E+07 4.17E+18 4.18E+18 2.00E+07 6.17E+18 6.18E+18 2.00E+07 6.17E+18 6.19E+18 

2.02E+06 1.06E+18 1.07E+18 1.35E+06 2.43E+18 2.42E+18 1.35E+06 3.68E+18 3.63E+18 

1.65E+06 2.31E+18 2.34E+18 7.07E+05 2.85E+18 2.89E+18 5.50E+05 6.25E+18 6.17E+18 

9.07E+05 3.92E+18 3.93E+18 3.51E+05 2.64E+18 2.60E+18 1.11E+05 9.40E+17 9.64E+17 

3.51E+05 2.64E+18 2.61E+18 1.83E+05 2.54E+18 2.54E+18 8.23E+04 2.84E+18 2.88E+18 

1.83E+05 2.54E+18 2.55E+18 9.48E+04 4.11E+17 4.20E+17 2.93E+04 3.50E+18 3.60E+18 

9.48E+04 2.17E+18 2.19E+18 8.23E+04 2.18E+18 2.19E+18 3.35E+03 3.03E+17 3.05E+17 

4.75E+04 6.47E+18 6.47E+18 4.09E+04 6.62E+18 6.49E+18 2.03E+03 4.81E+17 4.89E+17 

5.55E+02 8.34E+17 8.53E+17 2.04E+02 1.82E+17 2.17E+17 1.43E+03 2.53E+17 2.52E+17 

1.95E+01 1.49E+16 3.41E+16 9.17E+01 7.29E+16 1.18E+17 1.23E+03 6.21E+17 6.33E+17 

1.89E-01 6.38E+10 3.49E+10 1.95E+01 1.49E+16 2.95E+16 7.49E+02 1.07E+18 1.10E+18 

Overall 2.61E+19 2.62E+19 Overall 2.61E+19 2.61E+19 Overall 2.61E+19 2.62E+19 

Absorption 

2.00E+07 1.54E+18 1.55E+18 2.00E+07 2.30E+18 2.31E+18 2.00E+07 2.30E+18 2.31E+18 

2.02E+06 3.96E+17 3.99E+17 1.35E+06 1.08E+18 1.07E+18 1.35E+06 1.71E+18 1.69E+18 

1.65E+06 9.41E+17 9.53E+17 7.07E+05 1.49E+18 1.51E+18 5.50E+05 3.71E+18 3.67E+18 

9.07E+05 1.99E+18 2.00E+18 3.51E+05 1.54E+18 1.52E+18 1.11E+05 6.89E+17 7.07E+17 

3.51E+05 1.54E+18 1.53E+18 1.83E+05 1.70E+18 1.70E+18 8.23E+04 2.61E+18 2.65E+18 

1.83E+05 1.70E+18 1.71E+18 9.48E+04 3.06E+17 3.12E+17 2.93E+04 4.51E+18 4.64E+18 

9.48E+04 1.79E+18 1.81E+18 8.23E+04 1.90E+18 1.90E+18 3.35E+03 4.57E+17 4.60E+17 

4.75E+04 8.20E+18 8.19E+18 4.09E+04 8.40E+18 8.27E+18 2.03E+03 6.56E+17 6.67E+17 

5.55E+02 8.65E+17 8.83E+17 2.04E+02 1.85E+17 2.17E+17 1.43E+03 2.76E+17 2.75E+17 

1.95E+01 1.24E+16 2.22E+16 9.17E+01 6.85E+16 1.00E+17 1.23E+03 8.49E+17 8.72E+17 

1.89E−01 3.76E+10 2.06E+10 1.95E+01 1.24E+16 1.92E+16 7.49E+02 1.21E+18 1.28E+18 

Overall 1.90E+19 1.90E+19 Overall 1.90E+19 1.89E+19 Overall 1.90E+19 1.92E+19 
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The results show that the XS collapsing tool does calculate the adequate collapsed XSs. In fact the 

reaction rates relative error in each group is generally small, with the exception of the lower 

energy groups, where the neutron flux, and so the reaction rates, is small in absolute value. 

However, one notices that the relative error in each group does not represent a good measure of 

the energy structure adequacy: in fact, the best case under this point of view is the MSFR one, 

which however underestimates the multiplication coefficient by 460 pcm. This is due to the fact 

that the chosen meshing induces an overestimation of the total absorptions by 1.2%, which is 

not compensated by the fissions, which are just 0.3% more than expected; for comparison, the 

other two cases have, respectively, +0.3% (absorptions) with +0.4% (fissions) and -0.2%/-0.1%. 

The balance between the reaction rates does not appear to be the only important issue. As one 

can see in Figure 4.18, the absolute value of the reaction rates discrepancy is particularly small 

for the ESNII+ cases, while it is very high with the MSFR structure, especially for the higher 

energy groups, which affect more the neutron balance in a fast reactor. 

 

Figure 4.18: Reaction rate discrepancy per group with different energy structures and cumulated 
discrepancy in fission/absorption difference. 

4.7 FITNESS FUNCTIONS 

Up to this point, only one of the 3 fitness functions introduced in §3.4.2 has been tested. In order 

to check the applicability of the other 2 proposed fitness functions, METIS has been run 5 times 

on the ESNII+ ASTRID core with each function; all other options are the same for all cases. The 
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best energy structures are compared in terms of multiplication and feedback coefficients match; 

results are shown in Table 4.6 for each calculation and in average in Figure 4.19. 

Table 4.6: ESNII+ feedback coefficients with different fitness functions (Massone et al., 2017c). 

Case 
Value Δ 

k Fv (pcm) KD (pcm) k (pcm) Fv (pcm) KD (pcm) 

Reference 0.99919 +1066 -560 −−− −−− −−− 

𝒇𝐤 

Test 1 0.99919 +1055 −523 0 −11 +37 

Test 2 0.99918 +1039 −534 −1 −27 +25 

Test 3 0.99918 +1039 −534 −1 −27 +25 

Test 4 0.99919 +1057 −546 0 −9 +14 

Test 5 0.99918 +1053 −534 −1 −14 +25 

𝒇𝐜𝐨𝐦𝐛 

Test 6 0.99919 +1054 −552 0 -13 +8 

Test 7 0.99920 +1072 −548 +1 +6 +12 

Test 8 0.99920 +1072 −548 +1 +6 +12 

Test 9 0.99919 +1053 −525 0 −14 +35 

Test 10 0.99919 +1054 −525 0 −13 +35 

𝒇𝚽 

Test 11 0.99697 +1013 −468 −223 −53 +92 

Test 12 0.99403 +1102 −507 −520 +36 +53 

Test 13 0.99798 +1047 −550 −121 −19 +10 

Test 14 0.99919 +1149 −534 0 +82 +25 

Test 15 0.99734 +1014 −460 −186 −52 +100 
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Figure 4.19: Average discrepancy on multiplication and feedback coefficients in ESNII+ core with 
different fitness functions (after Massone et al., 2017c). 

Table 4.6 demonstrates that the combined fitness function predicts the values in the same range 

of the k-based one, all within acceptability limit: hence, the combined fitness function is safe to 

use, i.e. it is not expected to return structures unable to reproduce the correct coefficients, and 

so the correct transient. Moreover, Figure 4.19 shows that the k-based fitness function performs 

slightly better, in average, when it is combined with the flux-criterion. 

The latter, on the contrary, is completely unreliable when it is applied alone: out of the 5 tests 

shown in Table 4.6 the multiplication coefficient could be correctly estimated only once, though 

with an overestimated void feedback coefficient. The most concerning issue, however, is the 

unreliability rather than the ineffectiveness: the correctness degree of the energy structure 

appears to be extremely volatile, with the discrepancy peaking to 500 pcm for the multiplication 

factor and 100 pcm for the Doppler constant, without any difference in the input parameters. 

Use of such fitness function, hence should be strongly discouraged. 

4.8 COMPUTATIONAL TIME 

Computational time consumption is an important issue for the purpose of this study: if XS 

collapsing has to support very long transient calculations, the additional time required for the 

energy structure determination had better to be much lower than the one spared. 
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4.8.1 CROSS-SECTION COLLAPSING 

As first step one wants to evaluate the time reduction due to the XS collapsing. The test case is 

selected as a 10 s transient simulation with the ESNII+ core, which is calculated with different 

number of groups in the few-groups libraries; the many-groups ones are still the 72-groups 

libraries detailed in §4.1.1. In order to reduce time measurement uncertainty and possible 

special effects of the energy structure, the test is repeated 3 times for each number of groups, 

each one with a different energy meshing. 

All time measurement are performed by means of the Intel® VTune™ Amplifier 2015 profiler on 

a node with exclusive access of the InstitutsCluster II (Steinbuch Centre for Computing, 2017b), 

equipped with processors Intel® Xeon® 5 (2.6 GHz), in serial mode. 

The average CPU time consumption, split based on the program section, is shown in Figure 4.21. 

 

Figure 4.20: Computational time spent in each section of the program during a 10 s transient with 
different number of groups in the few-groups libraries. 

For the uncollapsed XS case, the time spent in the neutronics solver constitutes the 93% of the 

total computational time, which is about 80 ks. The XS collapsing intervenes on this program 

section, making the transport solver operate on a problem with smaller dimension; on the 

contrary, it has no effect on the XS processing (whose time requirements stay constant), which is 

performed on the whole many-groups libraries, before the collapsing takes place. Thermal-

hydraulics section is also completely unaffected. The condensation procedure, of course, 
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requires resources too, but their amount is in all considered cases between 30 and 40 s, less than 

0.5‰ of the time in the uncollapsed case. 

It is anyhow worth pointing out that between a simulation performed with fine library 

condensed to a given number of groups and another one with an input library with that number 

of groups, the former is expected to provide better results. In fact, it profits from the fact that the 

weighting spectrum used for the condensation is more precise, as it is estimated “at the 

moment”. The cost for the additional precision is represented by the additional time for the 

condensation procedure and the larger memory required for storing the information. 

 

Figure 4.21: Detail of the CPU time components depending on FG. 

A closer study of the CPU time components, shown in Figure 4.21, makes clear that the time 

reduction is mainly due to the transport solver, with a correlation which is almost linear. 

Actually a small quadratic term appears in both neutronics and XS processing section: the 

reason lies probably in the additional effort required to deal with the scattering matrix, whose 

dimension is FG2. With the exception of this contribution, the XS processing time is constant with 

the number of groups, like the thermal-hydraulics part, which is completely independent from 

that parameter. 

With concern to the 11-groups case, which is used after for comparison with the time required 

to run METIS, one can reduce the CPU time with XS collapsing by about 64 ks, corresponding to 

80% of the 72-groups case. 
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4.8.2 ENERGY STRUCTURE DETERMINATION 

Assessment of the time required by METIS to return a reliable result is not an easy task: the GA 

is a stochastic process, so like the convergence that cannot be assured, the computational time 

required cannot be fixed, but just estimated on average; in addition, the test of each individual 

takes a different time depending on the ease of the transport problem convergence associated 

with the specific energy structure. 

Hence, the first step is assessing the time required by each section of METIS, taking into account 

the number of individuals considered. The GA is run 4 times with the same configuration: 6 

generations, each considering a 50-individuals population, with the 72-groups initial libraries 

and 11-groups final ones. Nevertheless, one has to consider that, even if the total number of 

considered individuals is 300 for each test, the actual number of fitness function evaluations is 

lower, as some of them could have been examined previously and so retrieved from the storage 

tree (§3.6.2); hence, with the hypothesis that the tree search time is negligible with respect to 

the time required for the solution of the eigenvalue problem preparation and solution, the 

fitness function evaluation time has to be divided by the number of unique individuals. The 

hypothesis is justified by the fact that the time required for the whole GA, excluding the one 

spent in the transport solver, is too low to be measured in all test cases. It is worth pointing out 

that if one would average the fitness function evaluation time on the total number of individuals, 

the result would still be valid, but it could be comparable only when the new individuals share is 

comparable: i.e. its comparability would be restricted to the cases with the same mutation and 

elitism rates, same generations number, same population size. 

Table 4.7 shows the CPU time measurements for each test and the average values, divided into 

the different sections: 

1. SIMMER time: Start-up, input files reading and SIMMER initialisation; 

2. Evaluation of the objective k using the uncollapsed many-groups libraries; 

3. Fitness function evaluations of all population individuals; 

4. Calculation of k and k† (adjoint problem eigenvalue) with the best found energy structure 

(so using 11 groups); 

5. SIMMER time: Execution termination, output file writing. 

While the time spent by section 2 depends on the number of groups in the input libraries, points 

3 and 4 depend only on the considered energy structure and its number of groups. It is expected 

that the time employed for point 4 is higher than the double of section 3, as for the final k and k† 

calculation the flux acceleration (§3.6.1) is not used. 
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Table 4.7: METIS computational time in s (Massone et al., 2017c). 

 Test 1 Test 2 Test 3 Test 4 Average 

Unique individuals 262 249 250 259 255±6.5 

Computational time (s) 

Objective k 58.0 57.8 58.0 56.4 57.5 ± 0.8 

Fitness function 
evaluations 

1899.2 1868.4 1837.3 1880.0 
7.3 ± 0.1 

(per unique individual) 

Final k and k† 24.6 19.1 21.7 14.2 19.9 ± 4.4 

SIMMER time 0.7 0.6 0.6 0.6 0.6 ± 0.03 

 

With the data above one can predict the GA duration, once the number of individuals needed for 

convergence is known. This parameter, however, is also very variable and could be estimated 

with precision only by studying the implications of the different convergence parameters: 

population size and growth, selection pressure, mutation and elitism rate… 

An approximate estimation is hereafter presented, based on the only population size parameter. 

Three tests of the GA are performed with the same settings, with the exception of the population 

size (the tournament size is adjusted too to keep the selection pressure constant), which is 50, 

100 or 150 individuals; the objective is measuring the number of unique individuals calculated 

before convergence during the search of an energy structure for a 72→11 XS collapsing. 

Convergence is the attaining of a fitness below 1, corresponding to a discrepancy of the k in the 

order of 1 pcm, which is considered an acceptable precision for most transient calculations. Each 

test is repeated twice to reduce the stochastic effect.  

Table 4.8: Number of individuals before METIS convergence (Massone et al., 2017c). 

Population size 50 100 150 

Growth rate 1.0 

Mutation rate 5% 

Elitism rate 2% 

Number of tournaments 10 20 30 

Tournament parameter p 0.1 

Generations before convergence 16 40 39 35 20 18 

Examined individuals 800 2000 3900 3500 3000 2700 

Unique individuals 650 1553 3106 2985 2715 2434 
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Figure 4.22: Average fitness convergence with different population sizes. 

Table 4.8 shows that the tests using a 50-individuals population converge faster than the other 

cases; however, the trend of the average fitness in Figure 4.22 appears very steep and in some 

points erratic, suggesting a premature convergence of the GA. This means that the convergence 

is much influenced by luck and that the population tends to homogenize very quickly; this 

behavior represents a problem for the GA, as the capability to find new solutions is based on the 

variety of the population. The other cases, with populations composed by 100 or 150 

individuals, take longer to converge, but the fitness trend looks more “healthy”. The number of 

tests, however, is probably insufficient to derive valid conclusions about the best population size 

to be used. 

The fact itself that the average fitness decreases (i.e. it get better) is a bad signal in case lower 

fitness is required, as the search capability of the GA could be compromised with a homogeneous 

population. Adaptive GAs (Mc Ginley et al., 2008; Shi et al., 1999) usually intervene on this point, 

tuning the GA parameters aiming to avoid premature convergence and to keep high the 

exploration capability of the population. At the same time, however, this should not interfere 

with the evolution of the population, avoiding the risk of random search. 

By averaging the results in Table 4.8 one can estimate the average number of unique individuals 

to be examined before convergence as 2241±956. Due to the low number of tests, the variance is 



74 CHAPTER 4 − VERIFICATION AND RESULTS   

 

very high; however, considering that optimization is still possible, the mean value increased by 

2σ can be considered a still conservative estimate of the number of individuals required. 

Combining conclusions of §4.8.1, i.e. that XS collapsing to 11 groups allows a CPU time reduction 

of 64 ks over a 10 s transient, with the results in Table 4.7, one estimates that the spared time is 

sufficient to evaluate more than 8500 unique solutions. Such number is more than double than 

4153, the conservative amount of unique individuals required for convergence assessed above. 

Hence, XS collapsing is computationally convenient even when associated to METIS. The spared 

time clearly depends on the length of the transients, which is usually much longer than 10 s, 

making the XS condensation + energy structure search operation even more convenient. 

Moreover, one should consider that the GA could be run only once for each reactor system, 

provided that the initial conditions do not change too much. 
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CHAPTER 5.      THE PHÉNIX 3D TRANSIENT CASE 

As discussed in the introduction, the need for a reliable multigroup transport calculation with 

few groups is particularly important for three-dimensional transient calculation. The METIS 

procedure, presented in the previous chapters, effectively addresses the problem of finding the 

energy structure that reproduces with fidelity the results obtained with the original data. 

This chapter shows the application of the METIS approach to an actual 3D transient case 

referring to the Phe nix reactor. After the case description, a suitable energy structure is assessed 

using the described GA; this is then used to calculate the transient reactivity trend. 

5.1 CASE DESCRIPTION 

In the introduction of this thesis, it has been suggested that condensed libraries can be very 

helpful for multigroup transient calculations for 3D cases. In this situation, in fact, one is forced 

to use a limited amount of energy groups in order to obtain results within acceptable 

computational time. The XS collapsing tool and the METIS, whose reliability has been proven in 

the previous chapter, are then applied to a 3D case to show the full potential of the tools. 

The chosen case is the reference state of the Control Rod (CR) withdrawal experiments on the 

Phe nix reactor (International Atomic Energy Agency, 2014; Vasile et al., 2011b), based on the 

KIT model developed by Kriventsev et al. (2014) for the studies with SIMMER-IV (Yamano et al., 

2008). Phe nix was a prototype SFR, built in France and shut down in 2009. The CR withdrawal 

tests have been performed among the End of Life Experiments, with a power of reference 

configuration of 335.4 MWth. 
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Figure 5.1: Phénix core layout (after International Atomic Energy Agency, 2014). 

The model taken into consideration is an adaptation of the HEX-Z meshing into an XYZ structure 

(since the current version of SIMMER-IV is not capable of treating HEX-Z geometry), with 

composition described by the linear combination of two isotopic vectors (as usual in SIMMER) to 

match the composition in the different fuel zones (Kriventsev et al., 2014). The reference 

composition is characterized by having the six CRs (shown in Figure 5.1) inserted at the same 

position in the core. In order to obtain reliable estimates of the CRs worth, an effective 10B 

concentration has been used in the CRs rather than the real one (Gabrielli et al., 2014), so taking 

into account the CR heterogeneity effect introduced in §2.1. 

The transient calculation follows the evolution from the initial conditions to the steady state of 

the model for the first 30 s. 

5.1.1 GENETIC ALGORITHM CONFIGURATION 

The input libraries are the 72-group ones described in §4.1.1 and used for the code verification. 

In this case, however, in order to limit the computational time required for the transient, the 

final libraries will have only 8 groups. 

Similarly, as the current calculation is just an application of the approach presented before, the 

input parameters of METIS can be relaxed: the aim, in fact, is not to carry out the results analysis 

anymore, which requires repeated calculations and high precision, but to obtain a reasonably 

good energy structure for a normal application. The adopted GA configuration is: 
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 Fitness function: fcomb; 

 Population: 50 individuals, constant size; 

 Tournament selection: 10 tournaments, p=0.1; 

 Mutation: 5% randomly chosen chromosomes undergo mutation; 

 Elitism: 2% of the population; 

 Termination condition (generations): 30 completed generations, or 15 consecutive ones 

without improvement of the best solution; achievement of a fitness lower than 0.01. 

Considering the fitness function expression, a convergence limit of 0.1 should yield an energy 

structure with a Δk lower than 1 pcm and an average flux discrepancy angle 𝜉̅ lower than π/100; 

in order to avoid unwanted balancing effects (very large Δk compensated by very small ξ, and 

vice versa), the limit has been further reduced by a factor of 10. 

The observations made in §4.1 about the parameters configuration optimization are entirely 

valid also in this case. As a consequence, the selection and breeding parameters used for the 

verification, which proved to work well, have been entirely replicated in this case; it is worth 

observing that the tournament selection pressure does not depend on the number of 

tournaments, rather on the ratio between it and the population size. 

5.2 ADOPTED ENERGY STRUCTURE 

With the configuration specified above, METIS is run. The calculation terminates after the 

maximum number of generations is explored, without achieving the desired precision. During 

the 30 completed generations, 1285 unique configurations are explored, a number 

corresponding, based on (3.13), to 0.006% of all possible solutions, but sufficient to obtain a 

useful energy structure. 

In fact, despite the required precision set for termination could not be obtained, the best 

solution found, which has a fitness of 0.058, matches the initial expectations, yielding: 

 Δk ≅ 0.39 pcm; 

 𝜉̅ ≅ π/115. 

Figure 5.2 and Figure 5.3 show the best solutions found during the METIS operation, of which 

the one with the best fitness is used to run the transient calculation with 8 groups. The 

boundaries of such energy meshing are given in Table 5.1 
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Table 5.1: METIS-generated energy structure for the Phénix transient calculation. 

Group from input libraries 1 6 8 9 

Upper energy boundary 

(eV) 
2.000E+07 2.019E+06 1.353E+06 1.108E+06 

Group from input libraries 19 25 64 67 

Upper energy boundary 

(eV) 
3.020E+05 1.228E+05 9.166E+01 9.906E+00 

 

 

Figure 5.2: Best found energy structures for the Phénix core with the associated fk and fΦ, sorted 
based on fcomb. Dotted lines indicate the energy boundaries of the initial libraries; 

new energy groups are denoted with the same colors. 
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Figure 5.3: Best-70 found energy structures for the Phénix core coloured based on the ranking. 
The black dot denotes the chosen meshing. 

It is interesting observing that the structures shown in Figure 5.2 resemble very much those of 

the ESNII+ ASTRID and ESFR cases, having a detailed discretization in the fast region, a large 

condensed group for most of the resonance zone, and some groups devoted to the low-energy 

region. This behaviour is somehow expected, as the Phe nix is a SFR, as the two other ones; 

however, one can notice that, even if the number of groups is reduced from 11 to 8, the need for 

detail in the low-energy region is still important. 

The convergence history (Figure 5.4) shows a very fast evolution in the first generations, leading 

to a stagnation in the solution improvement in the later phases, probably due to the limited 

variability in the genetic pool. The fact that 17% of the 1550 explored individuals is constituted 

by repeated chromosomes, considering that the elitism rate is set at 2%, is another signal that 

exploration/exploitation mechanisms can be improved. 

Adaptive schemes, e.g. the one proposed by Mc Ginley et al. (2008), or speciation and niching 

mechanisms (Goldberg, 1989, pp. 185–197) could prove very useful in this case, helping 

avoiding the homogenization of the genetic pool and supporting the exploitation of the 

neighborhood of the best found solution, which in this case has been found during the 16th 

generation, but destroyed immediately after due to fortuitous mutations. 
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Figure 5.4: Evolution history in METIS for the Phénix case. 

5.2.1 COMPARISON WITH A UNIFORM ENERGY STRUCTURE 

As an additional test, the transient calculation has been repeated with an energy structure not 

calculated by METIS. The chosen benchmark is a 8-groups energy structure built such that the 

lethargy intervals covered by the groups are as uniform as possible. 

Table 5.2 lists the boundaries of this energy meshing. 

Table 5.2: Uniform energy structure for the Phénix transient calculation. 

Group from input libraries 1 8 27 43 

Upper energy boundary 

(eV) 
2.000E+07 1.353E+06 9.482E+04 7.466E+03 

Group from input libraries 59 65 69 72 

Upper energy boundary 

(eV) 
5.545E+02 4.552E+01 2.130E+00 1.890E−01 

 

5.3 TRANSIENT 

The transient calculation is then run with the XS collapsing tool, based on the energy structures 

described in the previous section. The calculations are performed on the ForHLR I 
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computational system (Steinbuch Centre for Computing, 2017a), using 32 parallel processors, 16 

devoted to the neutronic solver and 16 to the SIMMER code. 

The employed SIMMER code includes an extension, developed at KIT in the past by Marchetti et 

al. (2014), which substitutes the DANTSYS (Alcouffe et al., 1995) 3D neutronic solver with 

PARTISN (Alcouffe and Baker, 2009), which can benefit of the modern parallelization 

capabilities. Such modification has been already tested (Vezzoni et al., 2016b; Vezzoni et al., 

2016a), and it is currently used at KIT for different cases. 

The activation of the XS condensation is immediately clear from the time required for the 

multiplication factor assessment (Table 5.3): while the reference calculation, performed with the 

many-groups libraries, needs more than 70 s to solve both the direct and the adjoint problems, 

when 8-groups XS libraries are used 9 s are enough. Such result is in line with the linear trends 

observed in §4.8.1. 

Table 5.3: Multiplication factors for the Phénix case. 

 Eigenvalue CPU time (s) 

k k† k k† 

Reference (72 groups) 0.99501 0.99498 33.2 39.5 

METIS (8 groups) 0.99504 0.99488 3.1 5.8 

Uniform (8 groups) 0.99020 0.99017 3.3 5.1 

 

Table 5.3 clearly shows that the uniform energy meshing does not predict the correct 

multiplication factor, underestimating it by 483 pcm. On the contrary, the energy structure 

proposed by METIS yields a value of k which is just 3 pcm off the reference value, a discrepancy 

acceptable for most applications. The discrepancy obtained is higher than the 0.39 pcm obtained 

during the METIS operation (§5.2), but it is compatible with convergence precision set for the 

eigenvalue calculations. 

The difference between the calculated k and k†, which should be equal based on the transport 

theory, is normal and can be explained with the convergence criteria. It is interesting observing 

that the solution of the adjoint problem is, in all cases, more computationally expensive than the 

direct one: this is a known behaviour, probably related with the different groups coupling of the 

adjoint problem (Dulla, 2017).  

Figure 5.5 shows a comparison among the reactivity trends in the SIMMER simulations with the 

two different energy structures and the reference calculation. The latter one is extremely 
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expensive from the computational point of view making feasible only the simulation of the first 5 

seconds of the transient. Both simulations with condensed XS libraries match very well with the 

reference calculation, with differences lower than 3 pcm for the METIS case and 2 pcm for the 

uniform one. 

 

Figure 5.5: Reactivity trend along the Phénix case with different XS libraries. 

As the computational effort is already very intense, the use of a profiling tool for the 

measurement of the time allocation has been avoided. However, an approximate estimate of the 

employed resources is provided by the computational system ForHLR I, which informs the user 

of the wall time employed for the program executions. Considering that the processors used for 

the calculations are not shared with other processes, the wall time should be very close to the 

actual computation time; nevertheless, one cannot exclude overhead due to, for example, 

read/write operations. 

Table 5.4: Computational time required for the Phénix cases. 

 Execution time 
(wall time) 

Simulated time 
Speed 

(per simulated second) 

Reference (72 groups) 5 d 12 h 18 min 7.1 s 18 h 38 min 

METIS (8 groups) 3 d 20 h 57 min 30.0 s 3 h 6 min 

Uniform (8 groups) 5 d 1 h 37 min 30.0 s 4 h 3 min 
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Despite the measurement uncertainty, the time consumption results in Table 5.4, show that the 

XS condensation is very effective in computational time reduction: in fact it can be reduced by a 

factor between 4.5 and 6. It is important observing that this factor takes into account the time 

spent in the thermal-hydraulics computation, which is not affected by the XS condensation; 

hence, the time reduction obtained in the neutronic solver only is larger. 

Considering that many transients require more than 3 minutes of simulated time, the 

computational time with the reference libraries would require months. Instead, the results 

shown above show that, using the tools introduced in this thesis, such calculations can be 

completed within few weeks. This can provide a strong contribution to the progressive 

replacement of 2D calculations with 3D ones. 

5.4 REACTION RATES 

The results shown in the previous section prove the advantages of including the XS condensation 

in the transient calculations, but, with the exception of the multiplication factor, do not offer any 

basis for supporting the adoption of one energy structure over the other. 

Also comparing the neutron flux spectrum obtained with the 72-groups libraries and the ones 

calculated with the condensation tool (Figure 5.6), one sees that the uniform meshing can 

replicate the profile quite accurately, although the energy structure suggested by METIS offers a 

better representation of the fast region, more important for this reactor type. 

However, the comparison of the reaction rates estimated in the three cases (reference, uniform 

meshing and METIS energy structure) shows the validity and the strength of the method 

proposed for the generation of the cross-sections. 
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Figure 5.6: Normalized neutron flux for the Phénix case with different energy structures. 

 

Figure 5.7: Discrepancy of the net neutron generation in each group with respect to the reference 
case for the Phénix core with different energy structures. The values are normalized over the 

integral fission reaction rate. 
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Figure 5.7 shows the discrepancy with respect to the reference of the net neutron generation per 

group; it is given by the difference between fission and absorption reaction rates (as the 

multigroup fission XS includes the average neutrons per fission in it). It can be observed that the 

uniform energy discretization presents higher discrepancies than the meshing suggested by 

METIS; the error in group 2 is more than 0.8% of the average number of neutrons generated in 

the core. The cumulated curve (also in Figure 5.7) shows that these errors do not compensate 

among the groups, but add up to an absorption rate in excess by 1.4% of the fission generation. 

Such unbalance can easily justify the 483 pcm discrepancy in the multiplication factor. 

On the contrary, the energy structure originated by the GA produces discrepancies which are 

always lower than 0.4% and result in an overall absorption excess of only 0.3%. 
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CHAPTER 6.      CONCLUSIONS AND PERSPECTIVES 

A critical issue when dealing with reactor physics calculations based on multigroup transport 

theory is the determination of the correct discretization of the energy space. The discretization 

procedures described in literature are vague and leave many issues open to arbitrary or 

intuitive decisions; moreover, many studies and comparison with benchmarks are required to 

obtain a good energy structure, making this step particularly complex and expensive. This 

encourages the use of “general-purpose” cross-section libraries, even if the discretization is per 

se system-specific; such behaviour can reduce the results accuracy or even undermine the 

reliability of the results. 

At the same time, available computational power is, at present, still insufficient for transient 

Monte Carlo calculations, especially for 3D cases, making multigroup approximation the main 

route to deal with the energy dependency of the neutron flux. 

In this work, I presented a new procedure based on evolutionary computation which is able to 

determine automatically the optimal energy structure for the studied core. The algorithm, called 

METIS, has then been coupled with the accidental transient analysis code SIMMER. 

A first approach has been attempted with greedy algorithms, but the problem does not have the 

properties required for such an algorithm to converge to the optimal solution and might even 

return the worst possible option. I have then studied the opportunity of using metaheuristics, 

which do not ensure convergence to the global optimal solution but can easily provide 

reasonably good options. In particular, I have chosen the genetic algorithm paradigm. 

The devised algorithm starts with the generation of a group of random chromosomes, the initial 

population; each chromosome codes for a specific possible solution of the problem. Each 

member of the population is graded based on its suitability in solving the problem with a fitness 

function. Once the whole population has been evaluated, a new population is generated from the 

components of the old ones: the chromosomes swap parts of their information with each other 

and undergo mutations, so exploring other possible solutions. The key to the evolution however 

is the fitness, as better graded options have higher chances of being used to breed the next 

generation, passing over their good features, while bad options are likely to be lost, together 
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with their genetic pool. Generation after generation, the population fitness improves and the 

solution space is explored, until the termination criteria are met. 

The fitness function plays a central role in this procedure, as it constitutes the basis for 

comparison of the different options. It is specific of the problem to be solved and usually many 

options are available; however, one should take into account that it must be evaluated many 

times during the algorithm run, and CPU time consumption should be considered. Three 

different options have been included in this work: the discrepancy between the multiplication 

factors of the considered solution and the reference case; the difference in the flux distribution 

among the groups; a combination of the two previous options. The tests I performed on the 2D 

model of the ESNII+ ASTRID show that, while the groups distribution function cannot 

discriminate between solutions but tend to return degenerate cases, the other two options are 

very effective. The combined fitness function, in particular can provide even better results than 

the one based on the multiplication factor only. 

The effectiveness of the GA approach has been verified with a 72-groups library on three 

different test systems: the ESNII+ ASTRID, the ESFR and the MSFR. The tests show that the best 

solutions found can actually reproduce the multiplication factor, the reaction rates, the void 

feedback coefficients and the Doppler coefficients of the cases with the uncollapsed XS libraries. 

I applied the algorithm also to a 3D transient analysis of the Phe nix reactor yielding, also in this 

case, clear advantages in terms of results quality and a reduction of the computational time 

higher than 75%. 

Despite tests have been performed only on fast reactor systems, the approach is general and can 

be applied unchanged to any other core. Actually, the use of the algorithm on light water reactor 

systems is considered an interesting activity for future studies. 

The observation of the patterns characterizing the best solutions at 11 groups offers interesting 

hints for the study of the important neutron phenomena in the reactors. In both SFR cases the 

best energy structures have a high concentration of groups in the fast region, a single group 

covering most of the resonance region between 30 keV and 500 eV and a few groups allocated in 

the lower energy region below 500 eV. These features can be explained looking at the neutron 

flux spectrum and to the relevant cross-sections; some of them, like the need to carefully 

discretize the low energy range, can be unexpected and prove even more how an automatic 

system can help preventing that important effects are overlooked. 

The cases of the MSFR and of three modified versions of the ESNII+ show the effects of the core 

heterogeneity: as the neutron spectrum is different depending on the cell type, the resulting 
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energy structure must be a compromise taking into account the needs of all cells, with an 

appropriate weighting depending on importance and flux of the cell itself. Such parameters are 

automatically taken into account by METIS, as they are implicitly included in the fitness function, 

and the additional complications make the fitness difference between adequate and inadequate 

energy structures larger. In homogenous systems, on the contrary, the constraints are too soft, 

and the number of solutions acceptable for the system becomes very large. 

I have performed other tests to observe the applicability of the energy structures to systems 

which are not the ones used for their generation. As expected, the discretization is proper of the 

system and, when used for other ones, could end up in large discrepancies in the results. 

However, the differences can be small if the two systems are similar, as for ESNII+ ASTRID and 

ESFR, which are both SFRs. This means that during a transient one can keep using the energy 

structure calculated at the beginning, provided that the conditions do not change too much. An 

interesting topic for future research is considered the effect of the energy structure on the 

reliability of the transients and the possible advantages of updating it periodically. In fact, 

attention should be paid when changing the energy structure during a calculation, as the 

uncertainties introduced when redistributing the neutrons among the energy groups at the 

moment of the structure change could be more relevant than the benefits of a correct structure. 

Different actions have been taken to optimize the algorithm, with particular attention to the 

fitness function evaluation, which takes most of the algorithm computational time: a dynamic 

storage system avoids that the fitness of already examined individuals is calculated twice; the 

fitness calculation, which includes the solution of the eigenvalue problem, is also accelerated 

using the objective neutron flux, known in advance, as an educated guess. Thank to these 

measures the cross-section collapsing is a convenient operation even including the optimization 

of the energy structure, as the time required for the latter can be largely covered by the former 

operation in normal transient cases. 

Even better results could be obtained by introducing adaptive parameter control into the genetic 

algorithm: this would mean having crossing-over and mutation probability adjusted at each 

generation to maintain a high genetic variability and so better explore the search space, 

resulting in better solutions and lower computational time. Such an improvement could prove 

particularly useful in the previously presented case of a changing energy structure: in fact, that 

would require interrupting the transient and running the genetic algorithm to update the 

discretization. And clearly, when the algorithm has to be run more than once for each 

calculation, the computational time becomes a much more relevant issue. Hence, this activity is 

considered particularly important for the future. 
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The algorithm addresses a need that in the past, except for a few authors, has been considered 

mostly from the empirical point of view, and I consider of interest further upgrading it in future 

works. In addition to the already cited adaptivity and variable energy structures, further studies 

should consider different fitness functions, e.g. based on reaction rates, and more advanced 

genetic operators (like niching and speciation), to improve the search efficiency. In addition, it 

would be interesting studying the structure of the optimal discretization of other different 

systems, including thermal spectrum ones. 

The topic of the energy structure optimization could also profit from the advances in the field of 

machine learning. An artificial neural network could be designed to take as input the 

composition and the geometry of a system and return its specific energy structure without 

testing thousands of cases. In fact, once trained with many different cases, the neural network 

would learn to associate to each input parameter mix the corresponding needed discretization, 

not only for the cases that it has already encountered, but also, by similarity, for completely new 

cases. In this work, the genetic algorithm could be used for the training of the network. 



 

91 

APPENDIX A DERIVATION OF THE TRANSPORT 

EQUATION P1 APPROXIMATION 

The basis of this thesis work on XS condensation lies in the P1 approximation of the multigroup 

transport theory. Although these topics are present in literature (Coppa et al., 2010) and are 

often explained in reactor physics textbooks (Bell and Glasstone, 1970; Cacuci, 2010; Duderstadt 

and Hamilton, 1976; Stacey, 2001; Weinberg and Wigner, 1958), a clear and organic derivation 

of the approximation, considering from the beginning all neutron flux parameters (space, 

energy, direction and time), could not be found. Such complete formulation highlights the 

interconnection arising between the parameters during the XS collapsing (as in the case of 

directional cross-sections). 

Starting from the neutron transport equation, the spherical harmonics formulation of the 

equation is derived in this appendix. The P1 approximation is then obtained, as a special case of 

the general formulation. 

A.1 SPHERICAL HARMONICS FORMULATION 

By the spherical harmonics method the transport equation is expanded into functions, so 

obtaining a system of an infinite number of equations. The expansion can be then truncated. 

The starting point is the energy-dependent neutron transport equation: 

 

1

𝑣(𝐸)

𝜕𝜑(𝒓, 𝐸, �̂�, 𝑡)

𝜕𝑡
+ �̂� ∙ 𝛁𝜑(𝒓, 𝐸, �̂�, 𝑡) + 𝛴t(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) =

= ∮∫ 𝛴s(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)𝑓s(𝒓, 𝐸

′ → 𝐸, �̂�′ ∙ �̂�) d𝐸′
+∞

0

d�̂�′ +

+
𝜒(𝒓, 𝐸)

4π
∮∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸

′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡) d𝐸′
+∞

0

d�̂�′ +

+ 𝑆(𝒓, 𝐸, �̂�, 𝑡) 

(A.1) 

One can notice that the XSs do not depend on direction: this constitutes the isotropic medium 

hypothesis. In other words, the atomic nuclei can be modelled as mono-dimensional spheres, 
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making all collision directions equal in the coordinate system of the nucleus. On the contrary, the 

scattering angle 

 𝜇0 = �̂�
′ ∙ 𝜴,̂  (A.2) 

i.e the angle between the trajectories of the incoming and outgoing neutron, is important for the 

scattering term, which hence depends on it. In fact, in a three-dimensional collision model with 

spheres, the scattering angle characterizes the distance between the colliding particle trajectory 

and the target centre, and so the momentum and energy transferred in the collision. 

The Legendre polynomials P𝑛 represent an orthogonal and complete set of functions on the 

interval [−1,+1], i.e.  

 ∫ P𝑛(𝑥)P𝑚(𝑥)
1

−1

d𝑥 =
2δ𝑛𝑚
2𝑛 + 1

, (A.3) 

making them very suitable for expanding continuous functions on the said interval. 

The scattering term 𝑓s can be expressed as 

 𝑓s(𝒓, 𝐸
′ → 𝐸, 𝜇0) =

1

2π
∑

2𝑛 + 1

2
𝑓𝑛(𝒓, 𝐸

′ → 𝐸)P𝑛(𝜇0)

∞

𝑛=0

; (A.4) 

integration of (A.4) multiplied on both sides by P𝑚(𝜇0), using the orthogonality property (A.3), 

yields the formula to calculate the moments 𝑓𝑛 of 𝑓s 

 𝑓𝑛(𝒓, 𝐸
′ → 𝐸) = 2π∫ 𝑓s(𝒓, 𝐸

′ → 𝐸, 𝜇0) ∙ P𝑛(𝜇0) d𝜇0

1

−1

. (A.5) 

It is important specifying that, as in a scattering interaction all incoming neutrons are also 

outgoing neutrons, 𝑓s must respect 

 

∮𝑓s(𝒓, 𝐸
′ → 𝐸, 𝜇0) d�̂� = ∮𝑓s(𝒓, 𝐸

′ → 𝐸, 𝜇0)P0(𝜇0) d�̂� =

= ∫ 𝑓s(𝒓, 𝐸
′ → 𝐸, 𝜇0) ∙ P0(𝜇0) d𝜇0

1

−1

∫ 𝑑𝜂
2π

0

= 𝑓0(𝒓, 𝐸
′ → 𝐸)

≡ 𝑓s(𝒓, 𝐸
′ → 𝐸), 

(A.6) 
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with 

 ∫ 𝑓0(𝒓, 𝐸
′ → 𝐸) d𝐸

+∞

0

= 1; (A.7) 

(A.6) implies that  

 𝑓s̅(𝒓, 𝐸
′ → 𝐸, 𝜇0) =

∮𝑓s(𝒓, 𝐸
′ → 𝐸, 𝜇0) d�̂�

∮  d�̂�
=
1

2π
𝑓s(𝒓, 𝐸

′ → 𝐸), (A.8) 

hence the 2π term in (A.4). 

It is possible to separate the 2 variables �̂� and �̂�′ in the Legendre polynomial by using the 

associated Legendre functions P𝑛
𝛽

 

 P𝑛(𝜇0) = P𝑛(�̂�
′ ∙ �̂�) = ∑

(𝑛 − 𝛽)!

(𝑛 + 𝛽)!
P𝑛
𝛽(𝜇)P𝑛

𝛽(𝜇′)e𝑖𝛽(𝜂−𝜂
′)

𝑛

𝛽=−𝑛

, (A.9) 

where one considers the angle �̂� expressed in spherical components 𝜗 and 𝜂 

 �̂� ≜ sin 𝜗 cos𝜂 𝐮𝐱 + sin𝜗 sin𝜂 𝐮𝐲 + cos𝜗 𝐮𝐳 (A.10) 

and 

 𝜇 ≜ cos 𝜗. (A.11) 

With (A.9) and by introducing the spherical harmonics  

 Y𝑛
𝛽
(�̂�) = √

(2𝑛 + 1)(𝑛 − 𝛽)!

4π(𝑛 + 𝛽)!
P𝑛
𝛽(𝜇)e𝑖𝛽𝜂 (A.12) 

the scattering term can be reformulated into 
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𝑓s(𝒓, 𝐸
′ → 𝐸, 𝜇0) = ∑

2𝑛 + 1

4π
𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∑
(𝑛 − 𝛽)!

(𝑛 + 𝛽)!
P𝑛
𝛽(𝜇)P𝑛

𝛽(𝜇′)e𝑖𝛽(𝜂−𝜂
′) =

𝑛

𝛽=−𝑛

∞

𝑛=0

= ∑𝑓𝑛(𝒓, 𝐸
′ → 𝐸) ∑ Y𝑛

𝛽
(�̂�) ∙ Y𝑛

𝛽̅̅̅̅
(�̂�′)

𝑛

𝛽=−𝑛

∞

𝑛=0

, 

(A.13) 

being 

 Y𝑛
𝛽̅̅̅̅
(�̂�) = √

(2𝑛 + 1)(𝑛 − 𝛽)!

4π(𝑛 + 𝛽)!
P𝑛
𝛽(𝜇)e−𝑖𝛽𝜂 (A.14) 

i.e. the complex conjugate of the spherical harmonic Y𝑛
𝛽
. 

The spherical harmonics are orthonormal, i.e.  

 ∮Y𝑛
𝛽
(�̂�)Y𝑚

𝛼̅̅ ̅̅ (�̂�) d�̂� = δ𝑛𝑚δ𝛼𝛽 . (A.15) 

With (A.13), the scattering term of (A.1) becomes 

 

∮∫ 𝛴s(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)𝑓s(𝒓, 𝐸

′ → 𝐸, �̂�′ ∙ �̂�) d𝐸′
+∞

0

d�̂�′ =

= ∮∫ 𝛴s(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)∑ 𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∑ Y𝑛
𝛽
(�̂�) ∙ Y𝑛

𝛽̅̅̅̅
(�̂�′)

𝑛

𝛽=−𝑛

∞

𝑛=0

 d𝐸′
+∞

0

d�̂�′. 
(A.16) 

Moving out of the integral the variables not depending on �̂�′, with the assumption that the series 

converge, one obtains the final expression for the scattering term 

 

∮∫ 𝛴s(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)𝑓s(𝒓, 𝐸

′ → 𝐸, �̂�′ ∙ �̂�) d𝐸′
+∞

0

d�̂�′ =

= ∫ 𝛴s(𝒓, 𝐸
′)∑ 𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∑ Y𝑛
𝛽
(�̂�)∮𝜑(𝒓, 𝐸′, �̂�′, 𝑡) ∙ Y𝑛

𝛽̅̅̅̅
(�̂�′) d�̂�′

𝑛

𝛽=−𝑛

∞

𝑛=0

d𝐸′ =
+∞

0

= ∫ 𝛴s(𝒓, 𝐸
′)∑ 𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∑ Y𝑛
𝛽
(�̂�)𝜑𝑛

𝛽(𝒓, 𝐸′, 𝑡)

𝑛

𝛽=−𝑛

∞

𝑛=0

d𝐸′
+∞

0

, 

(A.17) 
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with 𝜑𝑛
𝛽
 being the moments of the angular distributions 

 𝜑𝑛
𝛽(𝒓, 𝐸, 𝑡) = ∮𝜑(𝒓, 𝐸, �̂�, 𝑡) ∙ Y𝑛

𝛽̅̅̅̅
(�̂�) d�̂�. (A.18) 

The neutron flux (and similarly the source term) can be expanded into a series of spherical 

harmonics 

 𝜑(𝒓, 𝐸, �̂�, 𝑡) = ∑ ∑ 𝜑𝑛
𝛽(𝒓, 𝐸, 𝑡) ∙ Y𝑛

𝛽
(�̂�)

𝑛

𝛽=−𝑛

∞

𝑛=0

; (A.19) 

as the spherical harmonics are orthonormal, based on (A.15), 

 

∮𝜑(𝒓, 𝐸, �̂�, 𝑡)Y𝑚
𝛼̅̅ ̅̅ (�̂�) d�̂� = ∑ ∑ 𝜑𝑛

𝛽(𝒓, 𝐸, 𝑡)∮Y𝑛
𝛽
(�̂�)Y𝑚

𝛼̅̅ ̅̅ (�̂�) d�̂�

𝑛

𝛽=−𝑛

=

∞

𝑛=0

= ∑ ∑ 𝜑𝑛
𝛽(𝒓, 𝐸, 𝑡)δ𝑛𝑚δ𝛼𝛽

𝑛

𝛽=−𝑛

∞

𝑛=0

= 𝜑𝑚
𝛼 (𝒓, 𝐸, 𝑡). 

(A.20) 

The same procedure used for the scattering term can be employed with the fission term, here 

considering the scattering function constant (as the fission is usually assumed to be isotropic),  

 

∮∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡) d𝐸′

+∞

0

d�̂�′ =

= ∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)∑ ℎ𝑛 ∑ Y𝑛

𝛽
(�̂�)𝜑𝑛

𝛽(𝒓, 𝐸′, 𝑡)

𝑛

𝛽=−𝑛

∞

𝑛=0

d𝐸′
+∞

0

 
(A.21) 

with the moments of the fission emission function 

 ℎ𝑛 = 2π∫ 1 ∙ P𝑛(𝜇0) d𝜇0

1

−1

; (A.22) 

however, as 

 ∫ P𝑛(𝑥) d𝑥
1

−1

= 2δ𝑛,0, (A.23) 
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then (A.21) reduces to 

 

∮∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡) d𝐸′

+∞

0

d�̂�′ =

= 4π∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)Y0

0(�̂�)𝜑0
0(𝒓, 𝐸′, 𝑡) d𝐸′

+∞

0

. 
(A.24) 

Finally, the transport equation (A.1) can be written as 

 

1

𝑣(𝐸)

𝜕

𝜕𝑡
[∑ ∑ 𝜑𝑛

𝛽(𝒓, 𝐸, 𝑡) ∙ Y𝑛
𝛽
(�̂�)

𝑛

𝛽=−𝑛

∞

𝑛=0

] + �̂� ∙ 𝛁 [∑ ∑ 𝜑𝑛
𝛽(𝒓, 𝐸, 𝑡) ∙ Y𝑛

𝛽
(�̂�)

𝑛

𝛽=−𝑛

∞

𝑛=0

]+

+ 𝛴t(𝒓, 𝐸)∑ ∑ 𝜑𝑛
𝛽(𝒓, 𝐸, 𝑡) ∙ Y𝑛

𝛽
(�̂�)

𝑛

𝛽=−𝑛

∞

𝑛=0

=

= ∫ 𝛴s(𝒓, 𝐸
′)∑ 𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∑ Y𝑛
𝛽
(�̂�)𝜑𝑛

𝛽(𝒓, 𝐸′, 𝑡)

𝑛

𝛽=−𝑛

∞

𝑛=0

d𝐸′ +
+∞

0

+
𝜒(𝒓, 𝐸)

4π
∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸

′)Y0
0(�̂�)𝜑0

0(𝒓, 𝐸′, 𝑡) d𝐸′ +
+∞

0

+∑ ∑ 𝑆𝑛
𝛽(𝒓, 𝐸, 𝑡) ∙ Y𝑛

𝛽
(�̂�)

𝑛

𝛽=−𝑛

∞

𝑛=0

. 

(A.25) 

By multiplying each term by Y𝑚
𝛼̅̅ ̅̅ (�̂�) and integrating over �̂�, using the orthogonality property as 

formulated in (A.20), the transport equation (A.25) is expressed in the form of a system of 

equations  

 

1

𝑣(𝐸)

𝜕𝜑𝑚
𝛼 (𝒓, 𝐸, 𝑡)

𝜕𝑡
+ ∮∑ ∑ �̂� ∙ 𝛁𝜑𝑛

𝛽(𝒓, 𝐸, 𝑡) ∙ Y𝑛
𝛽
(�̂�)Y𝑚

𝛼̅̅ ̅̅ (�̂�)

𝑛

𝛽=−𝑛

∞

𝑛=0

 d�̂� +

+ 𝛴t(𝒓, 𝐸)𝜑𝑚
𝛼 (𝒓, 𝐸, 𝑡) =

= ∫ 𝛴s(𝒓, 𝐸
′)𝑓𝑚(𝒓, 𝐸

′ → 𝐸)𝜑𝑚
𝛼 (𝒓, 𝐸′, 𝑡) d𝐸′ +

+∞

0

+ δ𝑚,0δ𝛼,0𝜒(𝒓, 𝐸)∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)𝛷(𝒓, 𝐸′, 𝑡) d𝐸′

+∞

0

+ 𝑆𝑚
𝛼 (𝒓, 𝐸, 𝑡). 

(A.26) 
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A.2 P1 APPROXIMATION 

Let the truncation of (A.19) to 𝑛 = 1 be 

 𝜑(𝒓, 𝐸, �̂�, 𝑡) ≅ ∑ ∑ 𝜑𝑛
𝛽(𝒓, 𝐸, 𝑡) ∙ Y𝑛

𝛽
(�̂�)

𝑛

𝛽=−𝑛

1

𝑛=0

=
1

4π
[𝛷(𝒓, 𝐸, 𝑡) + 3�̂� ∙ 𝑱(𝒓, 𝐸, 𝑡)], (A.27) 

being 𝑱 the neutron current, defined as 

 𝑱(𝒓, 𝐸, 𝑡) = ∮ �̂� ∙ 𝜑(𝒓, 𝐸, �̂�, 𝑡) d�̂�. (A.28) 

The equations (A.27) and (A.28) are valid as by integrating the former on the angle 

 ∮𝜑(𝒓, 𝐸, �̂�, 𝑡) d�̂� = ∮
1

4π
[𝛷(𝒓, 𝐸, 𝑡) + 3�̂� ∙ 𝑱(𝒓, 𝐸, 𝑡)] d�̂�. (A.29) 

hence 

 𝛷(𝒓, 𝐸, 𝑡) =
1

4π
𝛷(𝒓, 𝐸, 𝑡)∮d�̂�

⏟  
4π

+ 3𝑱(𝒓, 𝐸, 𝑡)∮ �̂� d�̂�
⏟    

0

= 𝛷(𝒓, 𝐸, 𝑡) 
(A.30) 

which is an identity, and by multiplying (A.27) by �̂� and integrating 

 ∮�̂� ∙ 𝜑(𝒓, 𝐸, �̂�, 𝑡) d�̂� = ∮
1

4π
�̂� ∙ [𝛷(𝒓, 𝐸, 𝑡) + 3�̂� ∙ 𝑱(𝒓, 𝐸, 𝑡)] d�̂�. (A.31) 

hence, using (A.28), 

 
𝑱(𝒓, 𝐸, 𝑡) =

1

4π
𝛷(𝒓, 𝐸, 𝑡)∮ �̂� d�̂�

⏟    
0

+ 3𝑱(𝒓, 𝐸, 𝑡)∮ �̂� ∙ �̂� d�̂�
⏟      

4π
3

= 𝑱(𝒓, 𝐸, 𝑡) 
(A.32) 

one obtains another identity. 

Substituting into (A.4) the reformulation of (A.9)  
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 P𝑛(�̂�
′ ∙ �̂�) = P𝑛(𝜇)P𝑛(𝜇

′) + 2∑
(𝑛 − 𝛽)!

(𝑛 + 𝛽)!
P𝑛
𝛽(𝜇)P𝑛

𝛽(𝜇′) cos[𝛽(𝜂 − 𝜂′)]

𝑛

𝛽=1

 (A.33) 

known as addition theorem of the spherical harmonics (Arfken, 1985, pp. 693–695), where �̂� is 

expressed as in (A.10) and (A.11). One can express the transport equation scattering term from 

(A.1), as 

 

∮∫ 𝛴s(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)𝑓s(𝒓, 𝐸

′ → 𝐸, �̂�′ ∙ �̂�) d𝐸′
+∞

0

d�̂�′ =

= ∫ 𝛴s(𝒓, 𝐸
′)∑

2𝑛 + 1

4π
𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∙

∞

𝑛=0

+∞

0

∙ ∮{P𝑛(𝜇)P𝑛(𝜇
′) + 2∑

(𝑛 − 𝛽)!

(𝑛 + 𝛽)!
P𝑛
𝛽(𝜇)P𝑛

𝛽(𝜇′) cos[𝛽(𝜂 − 𝜂′)]

𝑛

𝛽=1

}𝜑(𝒓, 𝐸′, �̂�′, 𝑡) d�̂�′ d𝐸′. 

(A.34) 

By substituting (A.27) into (A.34) one obtains 

 

∮∫ 𝛴s(𝒓, 𝐸
′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)𝑓s(𝒓, 𝐸

′ → 𝐸, �̂�′ ∙ �̂�) d𝐸′
+∞

0

d�̂�′ =

= ∫ [
1

4π
𝛴s(𝒓, 𝐸

′)𝑓0(𝒓, 𝐸
′ → 𝐸)𝛷(𝒓, 𝐸′, 𝑡) +

3

4π
𝑓1(𝒓, 𝐸

′ → 𝐸)�̂� ∙ 𝑱(𝒓, 𝐸′, 𝑡)] d𝐸′
+∞

0

. 
(A.35) 

In fact, all terms of the integral on �̂�′ reduce to one of the following kind 

 ∮P𝑛(𝜇) d�̂� = ∮P0(𝜇)P𝑛(𝜇) d�̂�
′ =

2δ𝑛,0
2𝑛 + 1

, (A.36) 

 

∮�̂�P𝑛(𝜇) d�̂� = ∫ √1 − 𝜇2P𝑛(𝜇) d𝜇
1

−1

∫ (cos𝜂 �̂�x + sin𝜂 �̂�y) d𝜂
2𝜋

0⏟                  
0

+

+ �̂�z∫ 𝜇P𝑛(𝜇) d𝜇
1

−1

∫ d𝜂
2𝜋

0

=
4π

3
δ𝑛,1�̂�z, 

(A.37) 

 ∮P𝑛
𝛽(𝜇′) cos[𝛽(𝜂 − 𝜂′)] d�̂�′ = 0, ∀𝛽 ≠ 0, (A.38) 
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 ∮�̂�′P𝑛
𝛽(𝜇′) cos[𝛽(𝜂 − 𝜂′)] d�̂�′ =

4π

3
√1 − 𝜇2(cos 𝜂 �̂�x + sin𝜂 �̂�y)δ𝑛,1, (A.39) 

which have been calculated according to (A.3). 

Hence, for 𝑛 = 0 the integral on �̂�′ becomes 

 

∮

{
 
 

 
 

P0(𝜇)P0(𝜇
′)⏟      

1

+ 2∑
(𝑛 − 𝛽)!

(𝑛 + 𝛽)!
P0
𝛽(𝜇)P0

𝛽(𝜇′) cos[𝛽(𝜂 − 𝜂′)]

0

𝛽=1⏟                          
0 }

 
 

 
 

𝜑(𝒓, 𝐸′, �̂�′, 𝑡) d�̂�′ =

= ∮
1

4π
[𝛷(𝒓, 𝐸, 𝑡) + 3�̂� ∙ 𝑱(𝒓, 𝐸, 𝑡)] d�̂�′ =

=
1

4π
𝛷(𝒓, 𝐸, 𝑡)∮d�̂�′

⏟  
4π

+
3

4π
𝑱(𝒓, 𝐸, 𝑡)∮ �̂� d�̂�′

⏟    
0

= 𝛷(𝒓, 𝐸, 𝑡), 

(A.40) 

and for 𝑛 = 1 the integral on �̂�′ becomes 

 

∮{P1(𝜇)P1(𝜇
′) + 2∑

(𝑛 − 𝛽)!

(𝑛 + 𝛽)!
P1
𝛽(𝜇)P1

𝛽(𝜇′) cos[𝛽(𝜂 − 𝜂′)]

𝑛

𝛽=1

}𝜑(𝒓, 𝐸′, �̂�′, 𝑡) d�̂�′ =

= 𝜇
𝛷(𝒓, 𝐸, 𝑡)

4π
∮𝜇′ d�̂�′
⏟    

0

+ 𝜇
3𝑱(𝒓, 𝐸, 𝑡)

4π
∮𝜇′�̂�′ d�̂�′ +

+√1 − 𝜇2
𝛷(𝒓, 𝐸, 𝑡)

4π
∮√1 − 𝜇′2 cos(𝜂 − 𝜂′) d�̂�′
⏟                  

0

+

+
3𝑱(𝒓, 𝐸, 𝑡)

4π
√1 − 𝜇2∮√1− 𝜇′2 cos(𝜂 − 𝜂′) �̂�′ d�̂�′ =

=
3𝑱(𝒓, 𝐸, 𝑡)

4π
[𝜇∮𝜇′�̂�′ d�̂�′ +√1 − 𝜇2∮√1 − 𝜇′2 cos(𝜂 − 𝜂′) �̂�′ d�̂�′] =

=
3𝑱(𝒓, 𝐸, 𝑡)

4π
(
4π

3
𝜇�̂�z +

4π

3
√1 − 𝜇2 cos 𝜂 �̂�x +

4π

3
√1 − 𝜇2 sin 𝜂 �̂�y) = �̂� ∙ 𝑱, 

(A.41) 

By substituting (A.27) and (A.35) into the transport equation (A.1) one gets 
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1

𝑣(𝐸)

𝜕

𝜕𝑡
[𝛷(𝒓, 𝐸, 𝑡) + 3�̂� ∙ 𝑱(𝒓, 𝐸, 𝑡)] + �̂� ∙ 𝛁[𝛷(𝒓, 𝐸, 𝑡) + 3�̂� ∙ 𝑱(𝒓, 𝐸, 𝑡)]+

+ 𝛴t(𝒓, 𝐸)[𝛷(𝒓, 𝐸, 𝑡) + 3�̂� ∙ 𝑱(𝒓, 𝐸, 𝑡)] =

= ∫ [𝛴s(𝒓, 𝐸
′)𝑓0(𝒓, 𝐸

′ → 𝐸)𝛷(𝒓, 𝐸′, 𝑡)+
+∞

0

+ 3𝛴s(𝒓, 𝐸
′)𝑓1(𝒓, 𝐸

′ → 𝐸)�̂� ∙ 𝑱(𝒓, 𝐸′, 𝑡)] d𝐸′ +

+ 𝜒(𝒓, 𝐸)∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)𝛷(𝒓, 𝐸′, 𝑡)d𝐸′

+∞

0

+ 4π ∙ 𝑆(𝒓, 𝐸, �̂�, 𝑡). 

(A.42) 

The first moment of the scattering functions can be calculated based on (A.5) 

 𝑓1(𝒓, 𝐸
′ → 𝐸) = 2π∫ 𝑓s(𝒓, 𝐸

′ → 𝐸, �̂�′ ∙ �̂�) ∙ (�̂�′ ∙ �̂�) d(�̂�′ ∙ �̂�)
1

−1

= 𝜇0̅̅ ̅(𝒓, 𝐸
′ → 𝐸), (A.43) 

while the 0-th moment can be included into the scattering term, obtaining a scattering matrix: 

 𝛴s(𝒓, 𝐸
′)𝑓0(𝒓, 𝐸

′ → 𝐸) = 𝛴s(𝒓, 𝐸
′)𝑓s(𝒓, 𝐸

′ → 𝐸) ≜ 𝛴s(𝒓, 𝐸
′ → 𝐸). (A.44) 

After substitution of (A.43) and (A.44), the P1 approximation of the transport equation is 

described by the equation (continuity equation) obtained by integrating (A.42) over �̂� 

 

1

𝑣(𝐸)

𝜕𝛷(𝒓, 𝐸, 𝑡)

𝜕𝑡
+ 𝛁 ∙ 𝑱(𝒓, 𝐸, 𝑡) + 𝛴t(𝒓, 𝐸)𝛷(𝒓, 𝐸, 𝑡) =

= ∫ 𝛴s(𝒓, 𝐸
′ → 𝐸)𝛷(𝒓, 𝐸′, 𝑡) d𝐸′ +

+∞

0

+ 𝜒(𝒓, 𝐸)∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)𝛷(𝒓, 𝐸′, 𝑡)d𝐸′

+∞

0

+∮𝑆(𝒓, 𝐸, �̂�, 𝑡) d�̂� 

(A.45) 

and by the equation (current equation) obtained by multiplication by �̂� of (A.42) followed by 

integration over the same variable 
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1

𝑣(𝐸)

𝜕𝑱(𝒓, 𝐸, 𝑡)

𝜕𝑡
+
1

3
𝛁𝛷(𝒓, 𝐸, 𝑡) + 𝛴t(𝒓, 𝐸)𝑱(𝒓, 𝐸, 𝑡) =

= ∫ 𝜇0̅̅ ̅(𝒓, 𝐸
′ → 𝐸)𝛴s(𝒓, 𝐸

′)𝑱(𝒓, 𝐸′, 𝑡) d𝐸′ +
+∞

0

+∮�̂� ∙ 𝑆(𝒓, 𝐸, �̂�, 𝑡) d�̂�. 

(A.46) 

The source term of the current equation vanishes if the source is isotropic. 
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APPENDIX B CONSISTENT P APPROXIMATION 

Based on a rigorous formulation of the multigroup XSs, these are direction-dependent 

quantities. Such dependence does not originates from the nuclear data, but is a consequence of 

the averaging with the directional neutron flux. An usual formulation of the multigroup theory 

drops such XS directionality with the introduction of an assumption: direction and energy 

components of the neutron flux are separable. A multigroup P formulation (Appendix A) 

featuring such assumption is called “inconsistent P approximation”, opposed to the “consistent P 

approximation” (Bell and Glasstone, 1970, pp. 239–242) which does not require it and described 

in this appendix. 

As a first step, one writes the neutron transport equation (2.5) with the scattering term 

expanded into spherical harmonics, as in (A.17): 

 

1

𝑣(𝐸)

𝜕𝜑(𝒓, 𝐸, �̂�, 𝑡)

𝜕𝑡
+ �̂� ∙ 𝛁𝜑(𝒓, 𝐸, �̂�, 𝑡) + 𝛴t(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) =

= ∫ 𝛴s(𝒓, 𝐸
′)∑𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∑ Y𝑛
𝛽
(�̂�)𝜑𝑛

𝛽(𝒓, 𝐸′, 𝑡)

𝑛

𝛽=−𝑛

∞

𝑛=0

d𝐸′ +
+∞

0

+
𝜒(𝒓, 𝐸)

4π
∮∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸

′)𝜑(𝒓, 𝐸′, �̂�′, 𝑡)d𝐸′
+∞

0

d�̂�′

+ 𝑆(𝒓, 𝐸, �̂�, 𝑡). 

(B.1) 

The multigroup version of (B.1) is obtained by integrating over each group 

 

       ∫
1

𝑣(𝐸)

𝜕𝜑(𝒓, 𝐸, �̂�, 𝑡)

𝜕𝑡
 d𝐸

𝐸𝑔

𝐸𝑔−1

+ �̂� ∙ 𝛁𝜑(𝑔)(𝒓, �̂�, 𝑡) + ∫ 𝛴t(𝒓, 𝐸)𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔

𝐸𝑔−1

=

= ∫ ∫ 𝛴s(𝒓, 𝐸
′)∑ 𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∑ Y𝑛
𝛽
(�̂�)𝜑𝑛

𝛽(𝒓, 𝐸′, 𝑡)

𝑛

𝛽=−𝑛

∞

𝑛=0

d𝐸′ d𝐸 +
+∞

0

𝐸𝑔

𝐸𝑔−1

+
𝜒(𝑔)(𝒓)

4π
∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸

′)𝛷(𝒓, 𝐸′, 𝑡) d𝐸′
+∞

0

+ 𝑆(𝑔)(𝒓, �̂�, 𝑡) 

(B.2) 
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with 

 𝜑(𝑔)(𝒓, �̂�, 𝑡) ≜ ∫ 𝜑(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔

𝐸𝑔−1

, (B.3) 

 𝑆(𝑔)(𝒓, �̂�, 𝑡) ≜ ∫ 𝑆(𝒓, 𝐸, �̂�, 𝑡) d𝐸
𝐸𝑔

𝐸𝑔−1

. (B.4) 

One can observe that direction dependence in XSs appears only for the total and the scattering 

ones; in fact, as the fission XS is associated to the scalar neutron flux, whose directionality has 

already been removed, it is sufficient defining 

 𝜈𝛴f
(𝑔)(𝒓, 𝑡) ≜

∫ 𝜈(𝒓, 𝐸′)𝛴f(𝒓, 𝐸
′)𝛷(𝒓, 𝐸′, 𝑡) d𝐸′

𝐸𝑔
𝐸𝑔−1

∫ 𝛷(𝒓, 𝐸′, 𝑡) d𝐸′
𝐸𝑔
𝐸𝑔−1

. (B.5) 

in order not to have the direction dependence in the multigroup fission XS. 

In addition, direction dependence appears for the neutron velocity, but also in this consistent 

formulation is better applying (2.17) rather than having a time-dependent neutron velocity. 

By expanding with (A.19) the neutron flux of the collision term, (B.2) hence becomes 

 

1

𝑣(𝑔)
𝜕𝜑(𝑔)(𝒓, �̂�, 𝑡)

𝜕𝑡
  + �̂� ∙ 𝛁𝜑(𝑔)(𝒓, �̂�, 𝑡) + ∫ 𝛴t(𝒓, 𝐸)∑ ∑ 𝜑𝑛

𝛽(𝒓, 𝐸, 𝑡)Y𝑛
𝛽
(�̂�)

𝑛

𝛽=−𝑛

∞

𝑛=0

d𝐸
𝐸𝑔

𝐸𝑔−1

=

= ∫ ∫ 𝛴s(𝒓, 𝐸
′)∑ 𝑓𝑛(𝒓, 𝐸

′ → 𝐸) ∑ Y𝑛
𝛽
(�̂�)𝜑𝑛

𝛽(𝒓, 𝐸′, 𝑡)

𝑛

𝛽=−𝑛

∞

𝑛=0

d𝐸′ d𝐸 +
+∞

0

𝐸𝑔

𝐸𝑔−1

+
𝜒(𝑔)(𝒓)

4π
∑𝜈𝛴f

(𝑔)(𝒓, 𝑡)𝛷(𝑔)(𝒓, 𝑡)

𝑔′

+ 𝑆(𝑔)(𝒓, �̂�, 𝑡). 

(B.6) 

With the definitions 
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 𝜑𝑛
𝛽,(𝑔)(𝒓, 𝑡) ≜ ∫ 𝜑𝑛

𝛽(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔

𝐸𝑔−1

, (B.7) 

 𝛴t,𝑛
𝛽,(𝑔)(𝒓, 𝑡) ≜

∫ 𝛴t(𝒓, 𝐸)𝜑𝑛
𝛽(𝒓, 𝐸, 𝑡) d𝐸

𝐸𝑔
𝐸𝑔−1

𝜑𝑛
𝛽,(𝑔)(𝒓, 𝑡)

, (B.8) 

 𝛴s,𝑛
𝛽,(𝑔′→𝑔)

(𝒓, 𝑡) ≜
∫ 𝛴s(𝒓, 𝐸

′)𝜑𝑛
𝛽(𝒓, 𝐸′, 𝑡) ∫ 𝑓𝑛(𝒓, 𝐸

′ → 𝐸) d𝐸
𝐸𝑔
𝐸𝑔−1

 d𝐸′
𝐸
𝑔′

𝐸𝑔′−1

𝜑𝑛
𝛽,(𝑔′)(𝒓, 𝑡)

, (B.9) 

which keep the directionality of the XSs, as there is now a different multigroup XS for each 

spherical harmonic, and moving the absorption term from the left to the right hand side, (B.6) 

can be rewritten as 

 

1

𝑣(𝑔)
𝜕𝜑(𝑔)(𝒓, �̂�, 𝑡)

𝜕𝑡
  + �̂� ∙ 𝛁𝜑(𝑔)(𝒓, �̂�, 𝑡) =

= ∑ ∑ Y𝑛
𝛽
(�̂�)∑[𝛴s,𝑛

𝛽,(𝑔′→𝑔)
(𝒓, 𝑡) − 𝛴t,𝑛

𝛽,(𝑔)(𝒓, 𝐸)] 𝜑𝑛
𝛽,(𝑔)(𝒓, 𝑡)

𝑔′

𝑛

𝛽=−𝑛

+

∞

𝑛=0

+
𝜒(𝑔)(𝒓)

4π
∑𝜈𝛴f

(𝑔)(𝒓, 𝑡)𝛷(𝑔)(𝒓, 𝑡)

𝑔′

+ 𝑆(𝑔)(𝒓, �̂�, 𝑡). 

(B.10) 

The final expression for the multigroup transport equation is obtained by adding and 

subtracting the same term on both sides 

 

1

𝑣(𝑔)
𝜕𝜑(𝑔)(𝒓, �̂�, 𝑡)

𝜕𝑡
  + �̂� ∙ 𝛁𝜑(𝑔)(𝒓, �̂�, 𝑡) + 𝛴t

(𝑔)(𝒓, 𝐸)𝜑(𝑔)(𝒓, �̂�, 𝑡) =

= ∑ ∑ Y𝑛
𝛽
(�̂�)∑{𝛴s,𝑛

𝛽,(𝑔′→𝑔)
(𝒓, 𝑡) + [𝛴t(𝒓, 𝐸) − 𝛴t,𝑛

𝛽,(𝑔)(𝒓, 𝐸)]}𝜑𝑛
𝛽,(𝑔)(𝒓, 𝑡)

𝑔′

𝑛

𝛽=−𝑛

+

∞

𝑛=0

+
𝜒(𝑔)(𝒓)

4π
∑𝜈𝛴f

(𝑔)(𝒓, 𝑡)𝛷(𝑔)(𝒓, 𝑡)

𝑔′

+ 𝑆(𝑔)(𝒓, �̂�, 𝑡). 

(B.11) 

The form of the equation (B.11) is the same of the inconsistent P approximation of the 

multigroup transport equation, but the value of the scattering XS is different. With the flux 

moments calculated with (A.18) one easily calculates the multigroup flux moments appearing in 

(B.11). The latter can then be used to determine the multigroup XSs for each n and β. 
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It is interesting observing that, up to this point, the equation is correct (except for the neutron 

velocity approximation introduced), i.e. it is equivalent to the neutron transport equation. 

Nevertheless, 𝛴t
(𝑔)

 has not been defined yet. 

The consistent P approximation assumes, for all n and β 

 𝛴t
(𝑔)
= 𝛴t,0

0,(𝑔)
=
∫ 𝛴t(𝒓, 𝐸)𝜑0

0(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

𝜑0
0,(𝑔)(𝒓, 𝑡)

; (B.12) 

however, according to (A.18), it is  

 𝜑0
0(𝒓, 𝐸, 𝑡) = ∮𝜑(𝒓, 𝐸, �̂�, 𝑡) ∙ Y0

0̅̅ ̅(�̂�) d�̂� = √
1

4π
∮𝜑(𝒓, 𝐸, �̂�, 𝑡) d�̂� = √

1

4π
𝛷(𝒓, 𝐸, 𝑡), (B.13) 

which leads to 

 𝛴t
(𝑔)
=
∫ 𝛴t(𝒓, 𝐸)𝛷(𝒓, 𝐸, 𝑡) d𝐸
𝐸𝑔
𝐸𝑔−1

𝛷(𝑔)(𝒓, 𝑡)
. (B.14) 

It is possible setting 𝛴t
(𝑔)

 to other values, obtaining different approximations, as the “extended 

transport approximation” (Bell and Glasstone, 1970, pp. 241–242). 
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