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Application of Discrete Recursive Bayesian
Estimation on Intervals and the Unit Circle to

Filtering on SE(2)
Gerhard Kurz1, Florian Pfaff1, and Uwe D. Hanebeck1

Abstract—Many applications require state estimation where
possible values of the state are constrained to an interval
(say, the valve position in percent) or the unit circle (say, the
direction a robot is facing). We present two approaches that
rely on a discretization of the state space, which differ in their
interpretation of the discretized density. The first option is a
piecewise constant density and the second option is a Dirac-
mixture density. We show how circular filters can be derived and
discuss the advantages and disadvantages of both approaches. In
addition, we show how to extend the Dirac-based approach to
estimation on the special Euclidean group in 2D, the group of
rigid body motions in the plane, using Rao–Blackwellization. All
presented methods are thoroughly evaluated in simulations.

This paper is an extended version of [1].

I. INTRODUCTION

Many practical problems involve estimation of a state
contained in certain compact spaces, such as an interval I ⊂ R
or the unit circle. We parameterize the unit circle as an angle in
the interval [0, 2π) while keeping in mind that it has a different
topology.

There are many applications in which the state of a system
is restricted to an interval, for example, the estimation of joint
angles within predefined admissible limits [2], the location
of a robot constrained to a room, and a car’s speed that has
to be larger than zero and smaller than its maximum speed.
The problem of performing estimation on the unit circle is
crucial in signal processing [3], [4], wind energy research [5],
aerospace [6], and various other fields.

Bounded spaces can be discretized and nonlinear estimation
can be performed more easily. Even though discretization may
be an obvious approach, we have to make some important
decisions when deriving a filter based on discretizing a bounded
space.

Suppose we seek to discretize the state space using L
equidistant points. The key question consists in the semantics
of the discrete values. The first interpretation is based on a
piecewise constant distribution [7], which can be visualized
as a histogram. Here, the original space is partitioned into
L intervals of equal size. Within each interval, we assume
a uniform distribution. Thus, the probability density is a
continuous density defined on a continuous domain that is
parameterized with a finite set of values. As we will show,

1 The authors are with the Intelligent Sensor-Actuator-Systems Labo-
ratory (ISAS), Institute for Anthropomatics and Robotics, Karlsruhe Insti-
tute of Technology (KIT), Germany (e-mail: gerhard.kurz@kit.edu,
florian.pfaff@kit.edu, uwe.hanebeck@ieee.org.
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Fig. 1: A continuous wrapped normal mixture density together
with its discrete approximation with L = 15 steps.

we can reduce the continuous filtering problem to a discrete
problem by performing integration over each of the intervals.
Thus, we do not need to consider a continuous state space but
can limit ourselves to a finite number of possible states.

In contrast, the second approach uses a sample-based
representation. We consider a weighted mixture consisting
of L Dirac delta pulses on an equidistant grid. This can be
understood as concentrating all probability mass of each interval
from the first interpretation into a point mass [8], [9] in the
center of the interval. Hence, we have a discrete distribution
defined on a continuous domain. This bears some resemblance
to particle filters [10], except that the locations of the particles
are fixed. An identical amount of storage (L values) is required
in either interpretation, but the parameterized densities have
different properties and the computational complexity may
differ significantly. We illustrate both concepts in Fig. 1.

The concept of grid-based filtering dates back to the
Wonham filter [11] and has been used, e.g., in robotics [12].
It is sometimes also referred to as histogram filtering [13,
Sec. 4.1]. Furthermore, grid-based methods have been com-
monly applied to partially observable Markov decision pro-
cesses (POMDPs) [14].

There are also continuous approaches to recursive estima-
tion on intervals as well as the unit circle. Often, classical
approaches designed for real numbers, e.g., extensions of
the Kalman filter [15, Sec. 5], are employed even though
they ignore that the interval is actually bounded or that the
unit circle is periodic. Sometimes, these methods yield decent
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results nonetheless, but under certain circumstances, such as
large uncertainties, they tend to fail. These issues motivate
designing filters specifically for interval-valued problems, e.g.,
truncated Gaussian filters [15, Sec. 7.5.4], or on the unit circle,
e.g., using Matrix Lie groups [16] or wrapped normal or von
Mises distributions [3], [6]. The disadvantage of these filters
is that they assume a particular probability distribution. To
address this limitation, algorithms using a Fourier series as the
density representation have been proposed [17], [18]. They can
approximate almost any density, provided a sufficient number
of Fourier coefficients is used, but they are more suitable to
periodic scenarios. Also, it is nontrivial to ensure that the
density is positive everywhere. Moreover, many coefficients
are required to deal with high spatial frequencies and the
computational complexity typically grows faster than linearly
with respect to the number of coefficients.

Many practical applications necessitate simultaneous estima-
tion of an interval-valued or circular quantity and a real vector.
A very common case is estimation on SE(2), the group of rigid
body motions in 2D, for example for tracking the movement of
a robot or a vehicle in a plane. A rigid body motion consists
of a translation vector in R2 and a rotation angle in [0, 2π).
Some approaches to estimation on SE(2) have been presented
in [19], [20], and some authors have also considered the related
three-dimensional problem [21], [22]. However, these methods
are limited by assuming a particular distribution, e.g., variants
of the Bingham distribution. As a result, generalizing the grid-
based methods to SE(2) is a promising way to remove this
limitation.

The contributions of this paper are the following.
• We present two different approaches for discrete filtering

on intervals and the unit circle based on the different
interpretations as illustrated in Fig. 1.

• We compare these two approaches with respect to their
theoretical properties and their filtering performance in
simulations.

• We provide a novel extension of the Dirac-based method
to SE(2) using Rao–Blackwellization and evaluate it in
simulations.

Compared with [1], we have completely rewritten the paper
for greater clarity and extended the method to estimation on
SE(2).

We use the following notation.
δ(·) Dirac delta distribution
1M (·) indicator function of the set M

1M (x) = 1⇔ x ∈M,1M (x) = 0⇔ x /∈M
P (·) probability mass function (discrete)
f(·) probability density function (continuous)
Ak(i, j) element at column j and row i of matrix Ak

II. SYSTEM AND MEASUREMENT MODEL

In the following, the system state is assumed to be inside
a bounded interval contained in R. It is not necessary to
distinguish closed, open, or half-open intervals. In the case of
a state inside an interval, we assume the subset topology of R
and for a circular state, we assume the topology of the circle.
From now on, we will assume without loss of generality that

the domain is defined as [0, 2π). Also, we only distinguish
these two topologies when it makes a practical difference.

We consider a discrete-time system whose state at time step
k is xk ∈ [0, 2π). The system dynamics is

xk+1 = ak(xk, wk) , (1)

with noise wk ∈W in the noise space W and system function
ak : [0, 2π)×W → [0, 2π). In some cases, it is advantageous
to use the transition density f(xk+1|xk) rather than (1). If the
system noise is additive, we can easily derive the transition
density from (1) as discussed in [6]. Furthermore, we assume
a measurement model

zk = hk(xk, vk) , (2)

with a measurement zk ∈ Z in the measurement space
Z and noise vk ∈ V in the noise space V . For certain
approaches discussed in the following, we also need the
likelihood f(zk|xk). If the measurement noise is additive,
we can derive the likelihood from (2) as described, e.g., in [6].

To simplify some calculations, it can be beneficial to use
(weighted) samples as an approximation of the noise densities
fwk (wk) and fvk (vk). We can obtain these samples with stochas-
tic or deterministic sampling. When using stochastic sampling,
we draw the samples at random from the given distribution.
In deterministic sampling, we determine the sample locations
based on an optimality criterion. Deterministic sampling is
advantageous because usually significantly fewer samples are
necessary to achieve the same approximation quality [23,
Sec. 4.2]. Deterministic sampling of circular densities can
be performed using the methods in [6].

III. PIECEWISE CONSTANT METHOD

In the following, we present filtering algorithms based on
piecewise constant distributions. These filters are essentially
Wonham filters [11] in discrete time. All methods discussed
in this section are applicable to the topology of both the circle
and an interval.

Definition 1 (Piecewise Constant Distribution). The piecewise
constant (PWC) distribution on the interval [0, 2π) has the
probability density function

PWC(x;ω1, . . . , ωL) =
∑L
i=1 ωi1Ii(x) ,

where L is the number of discretization steps, and Ij =

[Imin
j , Imax

j ), j = 1, . . . , L are intervals and 2π
L

∑L
j=1 ωj = 1.

In the remainder of the paper, we assume equidistant borders

Imin
j =

2π(j − 1)

L
and Imax

j =
2πj

L
, j = 1, . . . , L .

It can easily be seen that I1, . . . , IL are a partition of [0, 2π).
For the remainder of the section, we assume that xk is PWC-
distributed, which we denote by xk ∼ PWC(x;ω1, . . . , ωn).
We can derive the probability associated with an interval Ii
according to

P (xk ∈ Ii) =
∫
Ii
PWC(x;ω1, . . . , ωL) dxk = 2π

L ωi (3)
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for i = 1, . . . , L. Hence, ωi is directly proportional to the
probability mass contained in the i-th interval. Observe that

P (xk ∈ (I1 ∪ · · · ∪ IL)) =

L∑
i=1

P (xk ∈ Ii) =

L∑
i=1

2π

L
ωi = 1

due to the normalization condition.

A. Prediction Step

For the prediction step, we start by determining the system
matrix Ak(i, j) = P (xk+1 ∈ Ii|xk ∈ Ij). We can compute
these conditional probabilities as

P (xk+1 ∈ Ii|xk ∈ Ij)
=
∫
W

∫
Ij
fwk (wk)1Ii(ak(xk, wk)) dxk dwk .

In general, these integrals cannot be evaluated analytically.
By approximating wk using Lw samples with locations
θw1 , . . . , θ

w
Lw and weights ωw1 , . . . , ω

w
Lw , the integral can be

reformulated as follows

P (xk+1 ∈ Ii|xk ∈ Ij) ≈
∑Lw

l=1 ω
w
l

∫
Ij
1Ii(ak(xk, θ

w
l )) dxk .

In case the state transition density f(xk+1|xk) is available,
we can use the equation

P (xk+1 ∈ Ii|xk ∈ Ij) =
∫
Ii

∫
Ij
f(xk+1|xk) dxk dxk+1

instead. The resulting integral is still two-dimensional, but
numerical integration algorithms tend to perform much better
because the integrand does not contain the discontinuous
indicator function. Either way, the integral(s) can be evaluated
offline if neither the function ak(·, ·) nor the distribution of
the system noise fwk (wk) are time-variant. Finally, we obtain
the predicted PWC density using

P (xk+1 ∈ Ii) =
∑L
j=1 Ak(i, j)P (xk ∈ Ij) .

B. Measurement Update

For the measurement update, we can either discretize the
measurement space (just as the state space) or compute
the likelihood of a given measurement without performing
a discretization. Note that discretizing general unbounded
measurement spaces using a finite grid is not possible.

1) Discretized Measurement Space: In the following, we
assume that the measurement space Z has been subdivided into
intervals Î1, . . . , Îm. Note that the number of discretization
steps for the measurement space can be different from the
number used for the state space.

The measurement matrix Hk(i, j) = P (zk ∈ Îi|xk ∈ Ij)
can be computed according to

P (zk ∈ Îi|xk ∈ Ij)
=
∫
V

∫
Ij
fvk (vk)1Îi(hk(xk, vk)) dxk dvk .

These integrals can, in general, only be evaluated using
numerical methods. If we approximate the noise vk using Lv

samples with positions θv1 , . . . , θ
v
Lv and weights ωv1 , . . . , ω

v
Lv ,

the integral simplifies to

P (zk ∈ Îi|xk ∈ Ij) ≈
∑Lv

l=1 ω
v
l

∫
Ij
1Îi

(hk(xk, θ
v
l )) dxk .

If we know the likelihood f(zk|xk), we can alternatively
compute the entries of Hk according to

P (zk ∈ Îi|xk ∈ Ij) =
∫
Îi

∫
Ij
f(zk|xk) dxk dzk .

Just as before, this yields better results when using numerical
integration. If the measurement function hk(·, ·) as well as the
measurement noise fvk (vk) are time-invariant, we can compute
these integrals offline.

For a given measurement, we perform the measurement
update by determining the interval Îi containing zk and
choosing the corresponding row of Hk. Then, the update is
performed with the Bayes’ theorem according to

P (xk ∈ Ij |zk ∈ Îi) ∝ Hk(i, j) · P (xk ∈ Ij) .

To complete the measurement update step, we renormalize the
density so it integrates to one.

2) Continuous Measurement Space: Sometimes it may be
undesirable or impossible to discretize the measurement space.
Then, we can use Bayes’ theorem for a fixed zk to obtain

P (xk ∈ Ij |zk) =
∫
Ij
f(xk|zk) dxk

∝ 2π
L ωj

∫
Ij
f(zk|xk) dxk

by integrating over the continuous likelihood function. We need
to evaluate this integral online in each measurement update
step and for every interval Ij because the result depends on
the actual value of zk.

IV. DIRAC-BASED METHOD

Now, we consider the second discretization approach, which
is based on a Dirac mixture1.

Definition 2 (Dirac Mixture). A Dirac mixture on the interval
[0, 2π) with L components is defined as

D(x; θ1, . . . , θL, ω1, . . . , ωL) =
∑L
j=1 ωjδ(θj − x) ,

where 0 ≤ θ1 < · · · < θL < 2π with ω1, . . . , ωL ≥ 0 and∑L
j=1 ωj = 1.

The Dirac-based approach induces the probabilistic inter-
pretation P (xk = θj) = ωj , i.e., we only consider L discrete
points rather than L intervals as in (3).

In this paper, we use Dirac mixtures for which the locations
of the Dirac components are fixed on an equidistant grid

θj = (j − 1/2)
2π

L
, j = 1, . . . , L . (4)

Unlike in sequential importance resampling (SIR) particle
filters [10], the particles have fixed locations and only their
weights are modified. The benefit of immutable sample
locations is that we can ensure that the state space is uniformly
covered by particles, and thus, inadequate state space coverage
cannot occur. Furthermore, the proposed approach is completely
deterministic. However, the drawback of an evenly-spaced grid
is that highly concentrated densities can only be represented
accurately if L is chosen very large because the grid does not
adaptively put more discretization points in areas with large
amounts of probability mass.

1In the context of periodic state spaces, Dirac mixtures are sometimes called
Wrapped Dirac Mixtures (see [6]).
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A. Prediction Step

To perform the prediction, we first propagate each sample
through the system function. The propagated density can be
obtained as

f(xk+1) =
∑L
i=1 ωi

∫
W
δ(xk+1 − ak(θi, wk))fw(wk) dwk ,

which is, in general, a continuous density. If we approximate
the noise wk by Lw samples as

∑Lw

j=1 ω
w
j δ(x−θwj ), the integral

can be simplified to

f(xk+1) ≈
∑L
i=1

∑Lw

j=1 ωiω
w
j δ(xk+1 − ak(θi, θ

w
j )) . (5)

Observe that the resulting Dirac delta components are not
necessarily located on the grid (4) anymore. Now, we discuss
how to find samples located on the grid (4) that approximate
f(xk+1) as given in (5). We only consider the case with
sampled noise in this paper.

1) Nearest Neighbor Method: The nearest neighbor ap-
proach initializes the weights of all samples with zero. Then,
we consider each component in f(xk+1) and determine the
grid point closest to φ := ak(θi, θ

w
j ), i.e.,

arg minl ∆(θl, φ) , (6)

where ∆(·, ·) is a topology-aware distance function. On an
interval, a typical distance function is ∆(a, b) = |a − b| and
in the circular case, we employ

∆(a, b) = min(|a− b|, 2π − |a− b|) ,

i.e., the geodesic distance. Either way, we can use modulo
arithmetic to solve (6) in constant time due to the equidistant
grid. Then, we increase the weight of the closest sample by
ωi · ωwj .

Implementing this approach is straightforward, but it suffers
from significant issues. Consider the example ak(xk, wk) =
xk + ε for any constant |ε| < π/L. Here, the estimate does not
change during the prediction step, because each sample gets
assigned the same weight as before. A more detailed analysis
of this behavior can be found in the supplementary material.

2) Proportional Method: In order to solve the aforemen-
tioned problem, we propose the proportional method. Instead
of just considering the nearest neighbor, we find the two closest
neighbors and split the probability mass between them while
taking the distance into account.

To achieve this, we need to consider multiple cases. If we
have θl < φ ≤ θl+1, we can distribute the weight in relation
to the distance. The weight of the component at location θl is
increased by

∆(θl+1,φ)
∆(θl,φ)+∆(θl+1,φ)ωiω

w
j

and the weight of the component at location θl+1 is increased
by

∆(θl,φ)
∆(θl,φ)+∆(θl+1,φ)ωiω

w
j .

The sum of both weights is ωi · ωwj , and hence, the total
probability mass does not change.

Depending on the topology, we have to deal with some
special cases at the borders. On an interval, we consider two
scenarios. If φ ≤ θ1, the component at θ1 receives the complete

weight ωi · ωwj . Correspondingly, if θL < φ, the component at
θL is assigned the entire weight ωi · ωwj .

On the unit circle, we have to deal with these cases
differently. For φ ≤ θ1 or θL < φ, the probability mass
is distributed between θ1 and θL using the topology-aware
distance. Hence, the component at θ1 is assigned the weight

∆(θL,φ)
∆(θ1,φ)+∆(θL,φ)ωiω

w
j

and the component at θL is assigned the weight
∆(θ1,φ)

∆(θ1,φ)+∆(θL,φ)ωiω
w
j .

Once again, the propagation of a single Dirac component is
possible in constant time in all cases.

B. Measurement Update

The measurement update is a fairly straightforward operation.
We simply apply Bayes’ theorem

f(xk|zk) ∝ f(zk|xk) · f(xk) =
∑L
j=1 ωjf(zk|θj)δ(θj −xk) ,

that is, each weight is multiplied with the likelihood. Afterward,
the weights are renormalized. Discretizing the measurement
space Z is not necessary here.

V. COMPARISON

Table I and Table II provide an overview of the proposed pre-
diction and measurement update algorithms, respectively. We
consider several cases where we distinguish the interpretation
of the density (PWC or Dirac-based), the type of system model
as well as the noise distribution (time-variant or time-invariant),
whether the noise is continuous or sampled, and whether or not
the measurement space has been discretized. In most scenarios,
the PWC-based methods are computationally more expensive
than their Dirac-based counterparts. Usually, the most expensive
step is the numerical integration, i.e., approaches that do not
require numerical integration, at least not at runtime, are much
more efficient. In particular, numerical integration in 2D is
significantly more expensive than numerical integration in 1D.
It is also worth mentioning that the space requirements for
the PWC method are higher under some circumstances. If the
system matrix Ak ∈ RL×L is precomputed offline, O(L2)
space is required and if the measurement matrix Hk ∈ Rm×L
is precomputed, O(L · m) is needed. On the contrary, the
Dirac-based method only requires O(L) space.

As far as theoretical differences are concerned, we consider
the limiting behavior. Proofs of the following claims are given
as supplementary material. When L approaches infinity, the
PWC density converges pointwise to the actual density provided
f(·) is piecewise continuous. More formally, it holds for all
x ∈ [0, 2π) where f(·) is continuous

lim
L→∞

|f(x)− PWC(x;ω1, . . . , ωL)| = 0

with ωi =
∫
Ii
f(x) dx for i ∈ {1, . . . , L}. As the Dirac-based

approach does not provide a continuous probability density,
a similar statement is not possible. However, for Riemann
integrable f(·), it is possible to show that

lim
L→∞

∣∣∣∫ ba f(x) dx−
∫ b
a
D(x; θ1, . . . , θL, ω1, . . . , ωL) dx

∣∣∣
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Scenario Solution

time- sampled numerical online
density variant noise integration complexity

PWC - - 2D offline O(L2)
PWC

√
- 2D online O(L2 + L2 · C2)

PWC -
√

1D offline O(L2)
PWC

√ √
1D online O(L2 + L · C1)

Dirac -
√

- O(L · Lw)
Dirac

√ √
- O(L · Lw)

TABLE I: Prediction methods. The cost for one d-dimensional
numerical integration is given by Cd.

Scenario Solution

time- sampled meas. numerical online
density variant noise space integration complexity

PWC - - discr. 2D offline O(L)
PWC

√
- discr 2D online O(L+ L · C2)

PWC -
√

discr. 1D offline O(LLv)
PWC

√ √
discr. 1D online O(LLv + L · C1)

PWC - N/A cont. 1D online O(L+ L · C1)
PWC

√
N/A cont. 1D online O(L+ L · C1)

Dirac
√

/- N/A cont. - O(L)

TABLE II: Measurement update methods. The cost for one
d-dimensional numerical integration is given by Cd.

is equal to zero for any fixed a, b ∈ [0, 2π) with a < b, where
ωi = f(θi)∑L

k=1 f(θk)
and θi is given by (4) for all i ∈ {1, . . . , L}.

The intuition behind this statement is that the probability mass
contained in the interval [a, b] approaches the true probability
mass in that interval for an increasing number of discretization
points.

VI. EVALUATION

For evaluation purposes, we consider a nonlinear circular
scenario. Note that we use slightly different parameters
compared with [1]. As the system and the measurement model,
we use the function

hc(x) = π ·
(

1 + sin
(
|x−π|c
πc−1 · sign(x−π)

2

))
(7)

for x ∈ [0, 2π) and c ∈ R+, which was also considered in [24].
The function (7) is a continuous bijection on [0, 2π), whose
nonlinearity can be controlled using the parameter c (see Fig. 2).

A. Prediction Step

To evaluate the prediction step, we assume that xk follows
a wrapped normal [25, Sec. 2.2.6] distribution

WN (x;µ, σ) = 1√
2πσ

∑
k∈Z exp

(
− (x−µ+2kπ)2

2σ2

)
with parameters µ = 2 and σ = 1. We denote this density by
WN (2, 1). The system dynamics is

xk+1 = hc(xk) + wk mod 2π ,

where the system noise is wk ∼ WN (0, 0.5). We perform one
prediction step using each method and compare the result with
the ground truth using two distance measures.

0 2
0

2

Fig. 2: Our evaluation makes use of the nonlinear function
hc(·) whose behavior can be modified by varying c.

The first error measure consists in the difference with respect
to the first trigonometric moment. For a random variable
x, the first trigonometric moment is given by the complex
number E

(
eix
)
∈ C and describes the location as well as the

dispersion of the distribution [26, Sec. 2.4]. Consequently, the
error measure is defined as∣∣∣∫ 2π

0
f true(x)eix dx−

∫ 2π

0
f result(x)eix dx

∣∣∣ ,
where i ∈ C is the imaginary unit and the norm | · | is defined
as |a + bi| =

√
a2 + b2. Numerical integration [27] of the

exact Bayesian filtering equations was used to compute the
true trigonometric moment.

As a second error measure, we consider the Kullback–Leibler
divergence (KLD) [28, Sec. 1.3]

KLD(f true||f result) =
∫ 2π

0
f true(x) · log

(
f true(x)
f result(x)

)
dx

between the exact predicted density f true and the density
predicted by the filter f result. In this case, the ground truth
is computed using the Fourier square root filter [29] with a
very large number of L = 301 coefficients. As the KLD is
only defined for continuous densities, the result obtained from
the Dirac-based approach is reinterpreted as a PWC density
to allow computation of the KLD. We do not consider the
KLD for the particle filter because it is nontrivial to obtain a
continuous density based on the estimate given as particles.

Our evaluation compares the wrapped normal filter [6,
Sec. VI], the Dirac-based filter (see Sec. IV), the piecewise
constant filter (see Sec. III), and an SIR particle filter (as
discussed in [6, Sec. II-B-2]). The PWC filter requires the
system matrix A, which we computed with one-dimensional
numerical integration using sampled noise. The noise was
approximated using five weighted samples obtained using
[6, Algorithm 2]. For the Dirac-based filter, the proportional
method was chosen.

Fig. 3 and Fig. 4 show the results of our evaluation. It
is obvious that the Dirac-based filter with L = 60 has the
best performance for most values of c according to both error
measures. For small values of c, the PWC filter with L = 60
performs slightly better when considering the trigonometric
moment. However, it is inferior otherwise even though it is
much more expensive in terms of computation. The Dirac-
based filter with L = 15 cannot match the filters with L = 60,
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Fig. 3: Norm of the error in the first trigonometric moment
after a single prediction step.
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Fig. 4: Kullback–Leibler divergence from the ground truth to
the density after a single prediction step.

but still yields decent results. The WN filter does not perform
very well as it only uses L = 5 samples (see [6]). Furthermore,
the results of the circular particle filters are quite unsatisfactory.
Even for L = 1000 particles, the performance is significantly
worse than that of the PWC filter and the Dirac-based approach
with L = 15 and L = 60. For L = 1 000 000, the error in
the first trigonometric moment is similar to the PWC and
Dirac-based approaches. This example shows the benefits of
grid-based approaches with particles at fixed locations.

B. Measurement Update

In the evaluation of the measurement update, we assume the
prior density WN (2, 1) and we use the measurement model

zk = hc(xk) + vk mod 2π ,

with the measurement noise vk ∼ WN (0, 0.5). We consider
the same filters and error measures as before and perform
a single measurement update with the measurement zk = 4.
Then, we compute the first trigonometric moment of the
posterior distribution and compare it with the true trigonometric
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Fig. 5: Norm of the error in the first trigonometric moment
after a single measurement update step.
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Fig. 6: Kullback–Leibler divergence from the ground truth to
the density after a single measurement update step.

moment. For the KLD-based evaluation, we use Bayes’ theorem
to obtain the true posterior

f(xk|zk) = f(zk|xk)f(xk)∫ 2π
0

f(zk|xk)f(xk) dxk
.

The numerator is calculated directly and the denominator is
computed using numerical integration [27].

To keep the comparison as fair as possible, we avoid intro-
ducing an additional discretization error by using a continuous
measurement space for the PWC filter (see Sec. III-B2), even
though we have to perform numerical integration online.

We depict the results of the evaluation in Fig. 5 and Fig. 6.
Obviously, the Dirac-based filter with L = 60 yields the lowest
error in most cases and even significantly outperforms the
PWC filter with regards to the first trigonometric moment
while having a lower computational cost. No other approach
can match this accuracy except for small c. Once again, the
particle filter is a lot worse than the Dirac-based approach,
even with a much larger number of samples, especially for
large values of the nonlinearity parameter c. In the KLD-
based evaluation, the PWC approach performs best, but the
Dirac-based method is almost identical for large values of the
nonlinearity parameter c.
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VII. RAO–BLACKWELLIZED SE2 FILTER

The Dirac-based filter presented before can be used to derive
a filter on SE(2), the group of rigid body motions in R2. A rigid
body motion can be parameterized by a translation xl ∈ R2

and a rotation xc ∈ [0, 2π). Their joint density is given by

f(xl, xc) = f(xl|xc)f(xc)

according to the definition of conditional probability densities.
The key idea consists in factoring the joint density in this
way, and thus, separating the translation (for a fixed rotation)
from the rotation. This technique is referred to as Rao–
Blackwellization and has also been successfully applied in
various other applications such as simultaneous localization
and mapping (SLAM) [30]. Most existing approaches based on
Rao–Blackwellization rely on a particle filter for the discrete
part of the state space [31], but we use the Dirac-based filter
from Sec. IV instead, somewhat similar to [32], [33].

In the following, we assume f(xl|xc) to be a Gaussian
density2 for fixed xc and f(xc) to be a Dirac mixture density.
As a result, we can parameterize the joint density as a set
of L tuples (θi, ωi, µ

i,Ci) for i ∈ {1, . . . , L}, where θi and
ωi correspond to the location and weight of the i-th Dirac
component and µ

i
,Ci are the mean and the covariance of the

corresponding Gaussian.

A. Prediction Step

In the translatory part, we assume a linear system model3

given xck. The model is given by[
xlk+1

xck+1

]
=

[
A(xck)xlk + B(xck)uk + wlk

ak(xck, uk, w
c
k)

]
, (8)

where A(xck) ∈ R2×2 is a matrix depending on xck, wlk is zero-
mean Gaussian noise with covariance Cw

k , and wc ∈W is noise
affecting the circular part given as a set of weighted samples.
The matrix B(xc) ∈ R2×r is the input matrix depending on xc

and uk ∈ Rr is the deterministic control input. For the sake of
simplicity, we assume here that ak(·, ·, ·) : [0, 2π)×Rr×W →
[0, 2π) does not depend on xlk.

Pseudo code for the prediction step is given in Algorithm 1.
Essentially, we perform a Kalman filter prediction step for the
Gaussian distribution associated with each particle according
to

µi
k+1

= A(θik)µi
k

+ B(θik)uk

Ci
k+1 = A(θik)Ci

kA(θik)T + Cw
k .

Then, the circular part is predicted according to (5) using
the noise samples

∑Lw

j=1 ω
j,w
k δ(x − θj,wk ). Because of the

advantages discussed in Sec. IV-A, we use the proportional
assignment method.

Assigning weight from one Dirac component to another
is, however, nontrivial in this case because we also have to

2In principle, this method can be generalized to allow other parametric
distributions such as Gaussian mixtures, but we limit ourselves to Gaussians
in this paper.

3If the system model is nonlinear, we can employ an EKF, UKF [34], or
similar Gaussian-assumed filters instead of the Kalman filter.

Algorithm 1: SE(2) Prediction

Input: (θik, ω
i
k, µ

i
k
,Ci

k) for 1 ≤ i ≤ L, control input uk
Output: (θik+1, ω

i
k+1, µ

i
k+1

,Ci
k+1) for 1 ≤ i ≤ L

for i← 1 to L do
/* Initialize new particles */

ωik+1 = 0;
θik+1 = θik;
/* Kalman filter prediction */

µi
k+1

= A(θik)µi
k

+ B(θik)uk ;
Ci
k+1 = A(θik)Ci

kA(θik)T + Cw
k ;

end
W← 0L×L ;
for i← 1 to L do

for j ← 1 to Lw do
/* Discrete prediction */

φ← ak(θik, uk, θ
j,w
k ) ;

l1 ← arg minl1 ∆(φ, θl2k+1) ;
l2 ← arg minl2,l2 6=l1 ∆(φ, θl1k+1) ;

w1 ←
∆(θ

l2
k+1,φ)

∆(θ
l1
k+1,φ)+∆(θ

l2
k+1,φ)

ωikω
j,w
k ;

w2 ←
∆(θ

l1
k+1,φ)

∆(θ
l1
k+1,φ)+∆(θ

l2
k+1,φ)

ωikω
j,w
k ;

ωl1k+1 ← ωl1k+1 + w1;
ωl2k+1 ← ωl2k+1 + w2;
W(i, l1)←W(i, l1) + w1;
W(i, l2)←W(i, l2) + w2;

end
end
for i← 1 to L do

/* Reduce Gaussian mixtures */

µi
k+1
← E

(∑L
j=1

W(j,i)∑L
r=1 W(r,i)

N (µj
k+1

,Cj
k+1)

)
;

Ci
k+1←Cov

(∑L
j=1

W(j,i)∑L
r=1 W(r,i)

N (µj
k+1

,Cj
k+1)

)
;

end

consider the associated Gaussian density4. For this reason,
we introduce the matrix W whose entries W(i, j) quantify
how much of the Gaussian component associated with θik
has been assigned to θjk+1. As a result, the continuous
density associated with a particle θik+1 is now the Gaussian
mixture

∑L
j=1

W(j,i)∑L
r=1 W(r,i)

N (µj
k+1

,Cj
k+1). In order to avoid

an increasing complexity of the density in each time step, we
reapproximate each Gaussian mixture with a single Gaussian
by computing the mixture’s mean and covariance.

B. Update Step

For the measurement equation, we assume a linear measure-
ment model5 for given xck

zk = H(xck)xlk + vk , (9)

4Note that this step is not required in Rao–Blackwellized particle filters
because they never assign probability mass from one particle to another.

5If the measurement model is nonlinear, we can employ an EKF, UKF [34],
or similar Gaussian-assumed filters instead of the Kalman filter. Note that we
require the likelihood function as well, which can easily be derived in the
case of additive noise.
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where vk is additive zero-mean Gaussian noise with covariance
Cv
k. To perform the update, we apply the Kalman filter to update

the Gaussian part for each particle

Ki
k = Ci

kH(θik)T (H(θik)Ci
kH(θik)T + Cv

k)−1 ,

µi
k
← µi

k
+ Ki

k

(
zk −H(θik)µi

k

)
,

Ci
k ← (I−KkH(θik))Ci

k .

Afterward, we re-weight the Dirac delta components corre-
sponding to the circular part using the likelihood

f(zk|θik) = N (zk;H(θik)µi
k
,Cv

k)

as discussed in Sec. IV-B.

C. Evaluation

We evaluate the Rao–Blackwellized discrete filter on SE(2)
in the following scenario. A vehicle moves in the plane and
obtains position-only measurements, e.g., via GPS. We assume
a two-wheel vehicle with bicycle dynamics [35, Sec. 3.1.5].

The system model has two inputs, the velocity of the vehicle
vH,k and the steering angle αk, i.e.,

uk = [vH,k, αk]T .

The dynamics are given by (8), where

A(θi) = I ,

B(θi) =

[
T cos(θi) 0
T sin(θi) 0

]
,

ak(xck, uk, w
c
k) = xck + T · vH,k/λ · tanαk + wck mod 2π .

Here, the constants T and λ describe the duration of a time step
and the length of the vehicle, respectively. In our evaluation,
we use the values λ = 1 m, T = 1 s.

Furthermore, the measurement model is given by (9), where
H(θi) = I is the identity matrix, i.e., the position is measured
directly, but the orientation is not contained in the measurement.
The parameters were chosen as follows. For the system noise,
we have Cw

k = 0.01 · I2×2m2, wck ∼ WN (0, 0.1) and for the
measurement noise, we have Cv

k = 10 · I2×2m2. The input is
uk = [1 m s−1, 0.1 rad]T at all 30 time steps.

We compare our approach with the SIR particle filter [10].
Our approach uses L = 20 discrete points and the particle filter
uses 200 particles, which results in a comparable computational
effort. We evaluated the accuracy in terms of both position and
orientation. For the position, we consider the mean Euclidean
error, and for the orientation, we consider the mean angular
error as given by ∆(·). Both filters are initialized with a
circular uniform distribution for xc and a very high uncertainty
xl ∼ N (0, 100 · I2×2).

The results from 100 Monte Carlo runs are depicted in Fig. 7.
New instances of the system noise and the measurement noise
are sampled in each run. We observe that the proposed approach
significantly outperforms the particle filter even though it uses
fewer discrete points. The figure also depicts the expected
error according to the square root of the trace of the covariance
matrix and the expected angular error. It can be seen that
the proposed filter is conservative, whereas the particle filter

proposed SIRPF

Average time for prediction step 3.7ms 5.6ms
Average time for update step 1.8ms 0.4ms

Total 5.5ms 6.0ms

TABLE III: Runtime for the proposed filter and the particle
filter.

sometimes tends to underestimate its uncertainty. The runtime
on a laptop with an Intel Core i7-2640M and 8 GB of RAM
using MATLAB 2017a is shown in Table III. It can be seen
that both approaches require a very similar amount of time.

VIII. CONCLUSION

Two approaches for estimation on intervals and on the unit
circle have been proposed, namely the piecewise constant and
the Dirac-based method. Our evaluation suggests that the Dirac-
based approach usually yields better results and is also faster
to compute. Furthermore, we have shown how to extend the
Dirac-based approach to estimation of rigid body motions in
SE(2) using Rao–Blackwellization.

Future work may consider a generalization of the proposed
estimation algorithms to higher-dimensional manifolds such
as the torus or the sphere. Due to the exponential growth of
the number of points in an evenly spaced grid, we expect
these approaches to be limited to a fairly small number
of dimensions unless an adaptive non-uniform discretization
scheme is employed.

MATLAB implementations of the proposed filters are freely
available to other researchers as part of libDirectional [36],
a library for directional estimation. This library also contains
implementations of all reference methods used in the evaluation
section.
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