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Bewegungsbasierte Charakterisierung von Materialien fiir die sensorgestiitzte Sortierung

Abstract: Sensor-based sorting provides state-of-the-art
solutions for sorting cohesive, granular materials. Typi-
cally, involved sensors, illumination, implementation of
data analysis and other components are designed and cho-
sen according to the sorting task at hand. A common prop-
erty of conventional systems is the utilization of scanning
sensors. However, the usage of area-scan cameras has re-
cently been proposed. When observing objects at multiple
time points, the corresponding paths can be reconstructed
by using multiobject tracking. This in turn allows to accu-
rately estimate the point in time and position at which any
object will reach the separation stage of the optical sorter
and hence contributes to decreasing the error in physical
separation. In this paper, it is proposed to further exploit
motion information for The purpose of material character-
ization. By deriving suitable features from the motion in-
formation, we show that high classification performance
is obtained for an exemplary classification task. The ap-
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proach therefore contributes towards decreasing the de-
tection error of sorting systems.

Keywords: Optical inspection, sensor-based sorting, mul-
tiobject tracking, classification.

Zusammenfassung: Fiir die Sortierung von kohésiven, gra-
nularen Materialien entspricht die sensorgestiitzte Sortie-
rung dem Stand der Technik. Die Auswahl geeigneter Sys-
temkomponenten, wie etwa Sensorik, Beleuchtung, oder
die Realisierung der Datenauswertung, orientiert sich bei
der Entwicklung entsprechender Systeme an der konkre-
ten Sortieraufgabe, die es zu 16sen gilt. Eine Gemeinsam-
keit findet sich im Einsatz scannender Sensoren. Jiingst
wurde jedoch der Einsatz von Flachenkameras vorgeschla-
gen. Durch die Beobachtung von Objekten zu mehreren
Zeitpunkten besteht die Moglichkeit, deren Bewegungs-
pfade zu verfolgen. Dies erlaubt eine prézise Schatzung
der Position und des Zeitpunkts, zu welchem ein Objekt
die Trennstufe des Systems erreicht und hilft somit dabei,
den Fehler in der physikalischen Separation zu verringern.
In dieser Veroffentlichung wird vorgeschlagen, diese Be-
wegungsinformation ebenfalls zur Charakterisierung von
Materialien zu verwenden. Durch die Ableitung geeigne-
ter Merkmale zeigen wir exemplarisch fiir eine Klassifika-
tionsaufgabe, dass hierdurch gute Ergebnisse erzielt wer-
den konnen. Der vorgestellte Ansatz tragt damit zur Ver-
ringerung des Erkennungsfehlers in Sortiersystemen bei.

Schliisselwdrter: Sichtpriifung, sensorgestiitzte Sortie-
rung, Multiobjekt-Tracking, Klassifikation.

1 Introduction

Sensor-based sorting has found wide application in indus-
trial contexts, including food processing [1], waste man-
agement [2], as well as sorting of industrial materials like,
for instance, minerals and metals [3]. It offers solutions
for sorting cohesive, granular materials on a large scale.



A typical setup of such a sorting system consists of a con-
veyor belt, line-scan cameras operating in the visible spec-
trum, and compressed air nozzles. In the case of an accept
or reject task, low-quality or potentially dangerous entities
need to be removed from the feed. When an object falls
into the reject class of a binary sorting task, it has to be
removed from the feed, which is done by activating corre-
sponding compressed air nozzles. This leads to a deflec-
tion of the object and therefore realizes the physical sepa-
ration. However, heterogeneous material feeds, especially
ones containing granular components, are inherently dif-
ficult to sort into different classes.

Sensor-based sorting combines techniques from sev-
eral different disciplines, like mechanical process engi-
neering, machine learning, sensor technology, and com-
puter vision. In terms of machine learning, sensor-based
sorting can be formulated as a multinomial classification
task with the addition that each class also has to be phys-
ically separated from one another. In the case of con-
ventional systems, perfect flow control is desired, which
means that the material moves with a defined, constant
velocity, such that the exact time the object reaches the
array of air nozzles can be predicted reliably. For conven-
tional systems, this is crucial in order to minimize the er-
ror in physical separation, since after passing the line-scan
camera, no further information can be obtained in order
to localize the object at the point of separation. Consider,
for instance, a material feed consisting of valuable miner-
als and some other non-valuable bulk material. Falsely re-
jecting objects should then be minimized. Achieving per-
fect flow control is a hard task for certain materials. This
is primarily due to interactions and irregular movement of
objects on the conveyor belt. In the feeding phase, materi-
als are accelerated and they eventually reach the velocity
of the conveyor belt. However, depending on the geometry
and mass of the objects, motion characteristics could dif-
fer. In order to achieve better results, it has been proposed
to replace line-scan cameras by area-scan cameras [4].

This paper extends the work presented in [5]. We show
that tracking information can be utilized to increase char-
acterization performance. Velocity and acceleration of an
object are derived by applying multiobject tracking to a se-
ries of images. By using integral features like the veloc-
ity, certain objects can be distinguished from one another
without utilizing optical properties like the color. It is im-
portant to note that the proposed approach also allows ex-
tracting features as utilized in state-of-the-art optical sort-
ing systems. Our results suggest that classification perfor-
mance for certain products can be increased significantly
by exploiting the additionally available information about
objects.

2 Related work

There is a large variety of sensor-based sorting systems.
Design choices depend on the kind of material to be sorted.
Such choices include the selection of appropriate sen-
sors [6] and possibly illumination [7]. Modern systems use
line-scan cameras together with some sort of transport
mechanism, e.g. a conveyor belt. Automated sorters are
either used stand-alone, or they are embedded in a more
complex sorting process where material feeds go through
a pipeline of different sorting systems [2]. The separation
efficiency is affected by many factors, including material
size, sensitivity and accuracy of the sensors, and the clas-
sification performance. A high throughput is necessary to
make large-scale industrial sorting feasible. However, an
increase in throughput decreases the separation efficiency
and research has been carried out in order to predict per-
formance as a function of throughput [8, 9].

The image processing pipeline in optical sorting in-
cludes segmentation of the image data, detecting regions
containing objects, and classification of those [10]. For the
latter, color related properties are often used [11]. Recently,
it has been proposed to use area-scan cameras instead of
line-scan cameras [12]. Objects are observed at multiple
time points and trajectories can be derived [4]. Those tra-
jectories can be used in order to decrease the error in phys-
ical separation by extrapolating the point in time and the
position when an object reaches the separation stage [13].

3 Method

In order to obtain data that can be used for characteriza-
tion of objects based on their movement, it is required that
each individual object is observed by the camera multiple
times, which is not the case for conventional systems using
line-scan cameras. When using an area-scan camera with
a sufficiently high frame rate instead, observations for sev-
eral time points are available. However, each frame con-
tains multiple objects, possibly several thousand. There-
fore, the correspondences between objects in successive
frames need to be determined in order to reconstruct their
path. This can be achieved by applying multiobject track-
ing which is further discussed in Section 3.1. A description
of the system that was used to acquire data used for ex-
perimentation is provided in Section 3.2. Once all required
information is available, features can be derived based on
the resulting tracks, which is subject to discussion in Sec-
tion 3.3.



3.1 Multiobject tracking in sensor-based
sorting

The goal of multiobject tracking in this context is to com-
bine information about each individual object in succes-
sive frames into a track, see Figure 1. Typically, the image
data received from the sensor is pre-processed in the first
step during data analysis. Following that, regions actually
containing objects need to be identified. For these regions,
the position of objects, e.g. the centroid of the 2D projec-
tion, can be determined. For each obtained frame, these
measurements serve as the input for the multiobject track-
ing algorithm.

Utilizing the assignments between a measurement
and a track, a standard Kalman filter is used for the pur-
pose of state estimation. The 2D position as well as veloc-
ity for both direction components serve as state variables.
In order to associate the predictions for the existing tracks
to the measurements in each frame, an algorithm solving
the Linear Assignment Problem, which is formulated as
minimizing

s.t. ..N, 6))

is utilized. Here, N and M denote the sets of pre-
dictions and measurements, respectively. Furthermore,
x;; = 1 whenever prediction i is assigned to measure-
ment j and x; i=0 otherwise. The cost of assigning pre-
diction i to measurement j is given by a; ; and depends
on a distance function. Further information about the sys-
tem is also provided in [4, 12] and the challenge of tack-
ling real-time requirements for sensor-based sorting is dis-
cussed in [14]. As the result of the multiobject tracking, the
path of each individual object and the measurements with
the corresponding frame numbers integrated in the path
are known. However, it is important to note that those lists
may vary in length due to different numbers of observation
time points for the objects.

3.2 Experimental setup and data acquisition
In order to acquire data that can be used for motion-based

classification an experimental setup was implemented. As
a sensor-based sorting system, a miniature version of an
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Figure 1: lllustration of consecutive frames and the track of each
contained object. Transport direction is top to bottom.



optical belt sorter, as also simulated in [15], was used.
While the system is smaller in size compared with indus-
trial settings, it consists of a comparable hardware setup.
For instance, objects are fed into the system using a vibrat-
ing feeder. From there, they pass down a slide onto a con-
veyor belt. Setting up the system according to the conven-
tional design, the material is observed right after falling
off the belt by a line-scan camera and potentially deflected
by one or several compressed air nozzles. However, in the
course of this work, image data was acquired while the ma-
terial was transported on the belt using an area-scan cam-
era of the type Bonito CL-400 running at approximately
192 Hz.

The conveyor belt has a total length of 60 cm and is
schematically illustrated in Figure 2. For all conducted ex-
periments, it was configured to run at 1.1 ms™". The char-
acteristic of the motion of objects is strongly influenced
by the length of the belt. Generally, the longer an object
is transported on the belt, the more equal becomes its ve-
locity to the one of the belt. The degree to which objects
adopt to the transport velocity of the conveyor belt is also
denoted as flow control. In order to observe the material
at different degrees of adaption, different belt lengths are
considered. This is realized by mounting the camera at dif-
ferent positions along the belt at a fixed distance, see Fig-
ure 2. The area denoted as feeding is located right after ob-
jects enter the belt and covers the first ~ 11 cm. The area
ranging from ~ 23 cm to ~ 34 cm is referred to as center.
Lastly, the area edge covers the last ~ 8 cm of the belt be-
fore the material falls off.

The chosen classification task aims at discriminat-
ing 4 sphere-like products as illustrated in Figure 3 for
which similar, yet unequal motion characteristics are
expected. The objects of all classes, i.e. wooden hemi-
spheres, wooden spheres, wax beads, and cotton balls,
have a diameter of 10 mm and differ in terms of surface
friction and weight.

3.3 Motion-based features

The image data acquired according to the description pro-
vided in Section 3.2 is processed offline in several steps.
First, an average background image is calculated for the
purpose of segmentation. By subtracting the average back-
ground from each other frame and applying blurring, re-
gions containing objects are identified and the midpoints
of the 2D projection are calculated. Therefor, for each data-
set, a list of measurements described by the frame number
as well as the x and y position (see Figure 2) is generated.
This information serves as the input for the multiobject
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Figure 2: Schematic illustration of the conveyor belt as viewed from
above and the considered areas for image acquisition.
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Figure 3: Products used for experiments.
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Figure 4: Tracks aligned at the same origin for data-sets recorded for
the area center. Transport direction is top to bottom.

tracking system as discussed in Section 3.1. This process-
ing step allows us to assign each new measurement to
a track.

The origin of each track depends on the distribution
of objects from feeding and may be assumed to be ran-
dom. Translating all tracks to the same origin corresponds
to normalizing the data. Expressive features like veloc-
ity or acceleration are translation invariant. By aligning
all tracks, it is possible to gain more insight into the mo-
tion characteristics and especially it is easier to see the
spatial distribution differences of the tracks. The result is
exemplary visualized for the different products for area
center in Figure 4. As can be seen, independent of the
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Figure5: Visualisation of the first and second component resulting
from PCA for the different observation areas.

product, mainly motion in transport direction exists. How-
ever, products differ in terms of motion perpendicular to
transport direction. For instance, for hemispheres, much
more motion perpendicular to transport direction com-
pared with spheres can be observed, while for cotton balls
and wax beads the paths appear rather similar.

In order to prepare the data for the classification task,
features need to be extracted. Motivated by the observa-
tions stated above, integral features, i.e. features based
on information from multiple time points, based on ve-
locity and acceleration, were chosen. Features represent-
ing the actual path of the objects, such as coefficients of

a fitted polynomial, were not respected. We further catego-
rize features to be either global or local, whereas a global
feature refers to information obtained for the entire
observation sequence of an object and local features are
based on 2 successive measurements for velocity related
features and 3 for acceleration related features. The final
feature vector is of dimensionality 14 and contains the
number of measurements obtained, the global velocity of
the object, the local minimal, average, and maximum ve-
locity individually for the x and y component as well as
the local minimal, average, and maximum acceleration in-
dividually for the x and y component.

In order to validate the typically error-prone process
of manual feature selection, Principal Component Analy-
sis (PCA) is performed on the data. The resulting first and
second components for the different observation areas are
illustrated in Figure 5. As can be seen, for the position feed-
ing, clusters can be observed although a strong overlap
between the different classes exist. However, for the posi-
tions center and edge, the overlap and also the number of
outliers decreases and clusters form even more compact.

4 Evaluation

The success of the method is demonstrated by training
a random forest classifier consisting of 10 estimators on
the data. Matthews correlation coefficient (MCC) [16] is
used as a measure of quality. In order to estimate an up-
per bound of performance, the entire data was used both
for training and testing. The results are provided in Fig-
ure 6 (a). As can be seen, for each observation areas and
all classes, excellent values ranging between 0.98 and 1.0
are obtained. Therefore, it is concluded that the data in-
deed is suitable for discrimination of the different classes.
An example of the resulting classification performance
when splitting the data into a training and testing subset
is shown in Figure 6 (b). In this scenario, 25 of the data
was used for training. The random splitting was performed
multiple times and the provided results are representative.
From Figure 6 (b) it can be seen that, in general, wooden
spheres and hemispheres can be detected most accurately
for all observation areas. It can also be concluded that clas-
sification performance increases with the length of the belt
used for transportation, i.e. from position feeding over cen-
ter to edge. A possible explanation for this can be that the
degree of adaption to transportation velocity reveals most
insightful motion properties. If this was indeed the case, it
would be clear that performance would drop dramatically
once the belt length is sufficiently long such that all ob-
jects have perfectly adapted to transportation velocity and



0.8

0 I Hemispheres

.0
S I Spheres
= o I Wax beads

. I Cotton balls

0.2

0.0

feeding center edge
Position
(a) Same training and test data

1.0

0.8

06 I Hemispheres
S ' I Spheres
= i Il Wax beads

' I Cotton balls

0.2

0.0

feeding

center edge
Position

(b) Random data split for training and testing (test size = 1/3)

Figure 6: Random forest classifier performance.

hence would not differ with respect to their motion behav-
ior. Also, it might be the case that at position feeding, the
motion of objects is rather random. However, this is to be
confirmed by further experimentation.

From the confusion matrices provided in Figure 7, er-
rors made during classification can be identified. It can
be observed that certain errors seem to disappear with
increased belt length, such as spheres falsely identified
as cotton balls and hemispheres identified as wax beads.
However, certain types of errors also increase from center
to edge, such as cotton balls falsely held for hemispheres.

More insights regarding the importance of features as
described in Section 3.3 are provided in Figure 8. Here, the
Gini importance [17] is used to rank the features accord-
ing to their importance to the classification task. As can
be seen, for all observation areas, velocity related features
are of highest importance. It also is noteworthy that with
respect to velocity, mainly Uy, which denotes velocity in
transport direction, is of importance, whereas with respect
to acceleration the axis aligned perpendicular to transport
direction is of highest importance. Also, it can clearly be
seen that the dominance of single features seems to in-
crease over the time spent on the conveyor, i.e. from po-
sition feeding over center to edge.
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Figure 8: Illustration of the Gini importance for the different
positions. The error bars indicate the inter-trees variability.

From the presented results, it can be concluded that
motion-based features are expressive characteristics that
allow or increase performance for discrimination of prod-
ucts. While the classification task presented in this pa-
per was solely based on motion-based features, it is as-
sumed that a combination with features traditionally used
in sensor-based sorting, such as color-based and geomet-
ric, can lead to high classification performance and hence
minimize the error in characterization of materials.

5 Conclusion

In this paper, it was shown how multiobject tracking in
sensor-based sorting can not only decrease the error in
physical separation but also in material characterization.
This was demonstrated by utilizing motion-based fea-
tures for discriminating certain products. An experimental
setup was presented that allows acquiring required image
data and a set of features describing the motion of an ob-
ject was derived. Furthermore, results were presented for
three different virtual belt lengths by mounting the camera
at three different positions and hence different degrees of
flow control. While promising results were obtained for all
configurations, results indicate that the difference in adap-
tion to the transport velocity reveals the most insightful
properties.

In the future, we intend to pursue purely data-driven
approaches, which avoid the error-prone step of manual
feature selection. However, corresponding methods typi-
cally require a huge amount of training data to be avail-
able. For this purpose, the experimental setup needs to
be extended in a way that allows collecting the required
amount of data in a feasible manner. Moreover, the be-
haviour of colliding objects might reveal interesting fea-
tures useful for characterization. Also of particular interest
are scenarios that require both optical and motion-based
information in order to discriminate materials. Further-
more, for application in an industrial setting, challenges
such as respecting real-time requirements need to be taken
into consideration. Lastly, considerations regarding sys-
tem design need to be made. For instance, instead of aim-
ing at perfect flow control, it might be beneficial to use se-
tups which support revelation of object characteristics by
not suppressing their motion characteristics. Yet, this re-
quires precise predictions for physical separation.
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