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1 Introduction

The discovery of the Standard Model (SM)-like Higgs boson at the LHC five years ago got

rapidly transformed into an active experimental exploration of this new particle. Indeed, a

detailed knowledge of Higgs boson properties and its coupling to other particles is essential

for understanding its role in the electroweak symmetry breaking and for early clues about

physics beyond the Standard Model. Since in the SM the Higgs couplings to gauge bosons

and matter particles can be computed theoretically to a very high precision, the existence

of equally precise measurement program is crucial to search for differences between mea-

surements and predictions that may then be interpreted as signals of physics beyond the

Standard Model (BSM).

Unfortunately, most recent results from the Run II of the LHC show that the Higgs

boson fits very well the expected profile of the SM Higgs particle and no signs of New

Physics have been seen so far. These conclusions are so far limited by statistical and

systematic errors that, on average, are in the O(15–20) percent range but can be much

larger for certain couplings and cross sections. It is expected that during the Run II and

the high-luminosity phase of the LHC, the precision of Higgs couplings measurements will

significantly increase, reaching eventually a few percent accuracy.

This accuracy has to be matched on the theory side and we have seen quite very

impressive accomplishments in refining predictions for major Higgs production and decay

processes in recent years. For example, the inclusive Higgs boson production in gluon

fusion is now known to an impressive next-to-next-to-next-to-leading order (N3LO) QCD

in the infinite top quark mass limit [1] and the H+jets cross section has been computed

through next-to-next-to-leading order (NNLO) QCD in the same approximation [2–5].

The approximation of an infinitely heavy top quark is justified as long as typical values

of kinematic parameters relevant for particular cross sections are smaller than O(2mt).
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Although this criterion is satisfied for the majority of events selected for both inclusive

and H + j cross sections, there are good reasons to look at regions of phase-space where

this condition is explicitly violated. For example, with the dramatic increase of statistics

promised by the high-luminosity run at the LHC, we will have access to Higgs transverse

momentum distribution at high values of p⊥ ≥ mt. This is a very interesting regime

since, as a matter of principle, it allows us to disentangle two terms in the effective SM

Lagrangian — the point-like Higgs coupling to gluons and the modification of the Higgs-top

Yukawa coupling [6–10].1 Amazingly, first experimental attempts to explore Higgs boson

production at high-p⊥ have recently been undertaken [12].

To fully benefit from this opportunity, it is important to have as precise predictions

for Higgs p⊥-distribution at large transverse momenta as possible. Since for computations

at high p⊥ ≥ mt, the Higgs coupling to gluons cannot be treated as point-like, all exist-

ing higher-order computations, including most recent NNLO QCD predictions for H + j

production [2–5] are of little use. In fact, when mass effects are accounted for, the p⊥-

distribution appears to be known only at leading order which, in this case, is determined

by one-loop diagrams. Since NLO QCD corrections for processes with gluons in initial

state are known to be large [13–15], it is quite conceivable that large corrections to Higgs

transverse momentum distribution at high p⊥ are to be found as well. Computing two-

loop contributions to relevant amplitudes and setting up the stage for a full NLO QCD

computation of the Higgs boson transverse momentum distribution at high p⊥ is the main

goal of this paper.

We note that the relevant two-loop amplitudes for a NLO computation of Higgs plus

jet production mediated via a massive quark-loop were considered recently in refs. [16, 17].

However, in those papers the limit of a small quark mass mq � mH ∼ p⊥ was considered.

This limit is relevant for the bottom quark contribution to effective ggH interaction vertex

but it is not the right limit to describe high-p⊥ regime of the Higgs boson production.

To address the high-p⊥ case we impose the following hierarchy between kinematic

variables and particle masses m2
h � m2

t � s, t, u. This result is then applicable to the

case where the Higgs boson is produced via a top quark loop at high p⊥.2 To compute the

scattering amplitude in that limit, we will follow an approach developed in refs. [16, 17, 19]

and expand the relevant Feynman integrals in small parameters, namely in m2
h/m

2
t and

m2
t /s, using the differential equations that these Feynman integrals satisfy. We note that

the computation of relevant integrals for arbitrary Higgs and quark masses is still ongoing;

planar master integrals have recently been computed in [20].

The remainder of the paper is organized as follows. In section 2 we explain the no-

tation, introduce the relevant amplitudes, explain their decomposition into invariant form

factors and describe the renormalization. In section 3 we discuss how form factors are

computed. We explain how to calculate the master integrals with the differential equation

method in section 3.1. In section 3.2 we provide an example of how integration constants

for differential equations can be computed. The final results for helicity amplitudes are

1See [11] for further references.
2We consider all quarks beyond the top quark to be massless. The contribution of the bottom-quark

loop has been considered in [18] and was found to be negligible.
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presented in section 4. The amplitudes are originally computed in the kinematic region

where t > 0, s, u < 0; in section 4.1 we describe the analytic continuation to other relevant

scattering regions. We conclude in section 5. We include supplementary material with

this submission that contains analytic results for all relevant amplitudes in the different

kinematic regions.

2 The scattering amplitudes

Production of the Higgs boson in association with a jet at a hadron collider can occur in

several different ways; the relevant partonic processes can be found by crossing the Higgs

decay processes

H(p4)→ g(p1) + g(p2) + g(p3),

H(p4)→ q(p1) + q̄(p2) + g(p3), (2.1)

to the production kinematics. We consider all quarks in eq. (2.1) as massless. The Higgs

boson interaction with gluons and massless quarks is facilitated by loops of top quarks;

this is the only quark that we consider massive in this article. Some examples of Feynman

diagrams that contribute to (crossed versions of) processes shown in eq. (2.1) are presented

in figure 1. The goal of this paper is to compute two-loop contributions to scattering

amplitudes for processes in eq. (2.1) assuming that the Higgs boson mass and the top

quark mass are smaller than all other kinematic invariants.

We start by defining the Mandelstam variables

s = (p1 + p2)2 , t = (p1 + p3)2 , u = (p2 + p3)2 , s+ t+ u = m2
h. (2.2)

We trade four dimensionful Mandelstam variables for a dimensionful variable s and three

dimensionless variables

η = −
m2
h

4m2
t

, κ = −m
2
t

s
, z =

u

s
. (2.3)

In the large transverse momentum region and in the limit of a small Higgs mass the

following hierarchy of scales applies

m2
h,m

2
t � |s| ∼ |t| ∼ |u| → |η|, |κ| � 1, |z| ∼ 1. (2.4)

For the top quark and Higgs boson with masses mt ∼ 173 GeV and mh ∼ 125 GeV respec-

tively, |η| ∼ 0.13 and can be treated as a small parameter.

A Euclidean region where all Mandelstam variables s, t or u are negative does not exist

since |m2
h| = |s + t + u| � |s|, |t|, |u| in the kinematic region that is of interest to us. At

least one of the Mandelstam variables has to be positive and without loss of generality we

choose t to be positive and s, u negative. Furthermore we will compute our amplitudes

initially in the region where m2
h < 0 and m2

t > 0, in other words the parameters will satisfy

0 < η � 1 , 0 < κ� 1 , 0 < z , s < 0 . (2.5)
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Figure 1. The one-loop Feynman diagrams that contribute to the quark-loop induced processes

gg → Hg and qg → Hq.

If we analytically continue to the region where m2
h > 0, our results will represent the

physical scattering processes

g(−p1) + g(−p3)→ H(−p4) + g(p2)

q̄(−p1) + g(−p3)→ H(−p4) + q̄(p2) . (2.6)

All other production channels can be found from crossing and analytic continuation of the

computed amplitudes in the region specified in eq. (2.5), as we will describe in section 4.

Note that because the Euclidean region does not exist, all the amplitudes have explicit

imaginary parts.

We follow refs. [16, 17] and define the partonic amplitudes corresponding to the pro-

cesses shown in eq. (2.1) as

AH→ggg (pa11 , p
a2
2 , p

a3
3 ) = fa1a2a3 εµ1 ε

ν
2 ε

ρ
3A

g
µνρ(s, t, u,mt) , (2.7)

AH→qq̄g(pj1, p
k
2, p

a
3) = i T ajk ε

µ
3 (p3) ū(p1)Aqµ(s, t, u,mt) v(p2) . (2.8)

The color structure of the amplitudes is completely factorized and captured by the SU(3)

structure constants fa1a2a3 and the usual Gell-Mann matrices T ajk for the gluon and quark

channels respectively. The color indices are denoted by a1,2,3 and j, k for gluons and quarks,

respectively. The gluon polarization vectors are transversal εi · pi = 0, i = 1, 2, 3 and the

spinors satisfy the massless Dirac equations /p1
u(p1) = /p2

v(p2) = 0.

To understand the Lorentz structure of the amplitude, we write it as a sum of parity

conserving Lorentz tensors of relevant ranks. The amplitudes must furthermore satisfy the

Ward identity which implies that an on-shell amplitude must vanish after replacing any

of the gluon polarization vectors with their momenta. After imposing these constraints,

the H → ggg and H → qq̄g amplitudes can be written as a sum of four (two) tensors,

respectively. They read

Agµνρ(s, t, u,mt) = F g1 gµν p2ρ + F g2 gµρ p1ν + F g3 gνρ p3µ + F g4 p3µp1νp2ρ ,

Aqµ = F q1

(
/p3
p2µ − p2 · p3 γµ

)
+ F q2

(
/p3
p1µ − p1 · p3 γµ

)
.

(2.9)

The above decomposition corresponds to the cyclic gauge fixing condition for the gluon

polarization vectors

ε1 · p2 = ε2 · p3 = ε3 · p1 = 0. (2.10)

– 4 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
5

g

g

H

g

g

g

H

g

g

g

H

g

g

g

H

g

g

g

H

g

Figure 2. Examples of two-loop Feynman diagrams that contribute to the process gg → Hg.
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Figure 3. Examples of two-loop Feynman diagrams that contribute to the process qq̄ → Hg.

The form factors F q,gj are scalar functions of the Mandelstam variables and the quark mass.

In the following we will drop the upper index q and g for simplicity, unless they need to be

explicitly specified.

The unrenormalized form factors Fj can be expanded in the bare QCD coupling con-

stant α0 as

F un
j (s, t, u,mt) =

√
α3

0

π

[
F

(1),un
j +

(α0

2π

)
F

(2),un
j +O(α2

0)
]
. (2.11)

The LO contribution F
(1)
j with the full dependence on the quark mass was calculated in

refs. [21, 22]. In this paper, we will compute the two-loop contributions to form factors

F
(2)
j assuming that the Higgs boson transverse momentum is large and the Higgs boson

mass is parametrically smaller than the mass of the top quark. Some examples of two-loop

diagrams that contribute to Higgs boson production in association with a jet are shown in

figures 2 and 3.

The unrenormalized form factors that we compute have poles in ε = (4 − d)/2; these

poles are of ultraviolet (UV) and/or infrared (IR) origin. We perform the subtraction

of these poles in two steps. First we UV renormalize the above bare form factors F un
j

in eq. (2.11)

FUV
j (s, t, u,mt) =

√
α3
s

π S3
ε

[
F

(1),UV
j +

(αs
2π

)
F

(2),UV
j +O(α3

s)
]
. (2.12)

We express the bare strong coupling constant and the top quark mass parameter in F un
j

in terms of renormalized parameters and we include for each external gluon the wave-

function renormalization factor. The strong coupling constant gets renormalized in the

mixed scheme; this implies that contributions of Nf massless quarks are renormalized in
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the MS-scheme whereas top quark contributions are subtracted at zero momentum. The

top quark mass is renormalized in an on-shell scheme. The corresponding formulas read

α0 µ
2ε
0 Sε = αs µ

2ε
R

[
1− 1

ε
(β0 + δw)

(αs
2π

)
+O(α2

s)

]
, (2.13)

mt,0 = mt

[
1 +

(αs
2π

)
δm +O(α2

s)
]
. (2.14)

Here Sε = (4π)ε e−ε γE , γE = 0.5772 . . . , β0 = 11/6 CA−2/3TRNf , TR = 1/2 and CA = Nc

is the number of colors. The wave-function and mass renormalization constants are

δw = −2/3 TR(m2
t /µ

2
R)−ε, δm = CF

(
m2
t

µ2
R

)−ε(
− 3

2ε
− 2 +O(ε)

)
. (2.15)

Renormalization of the gluon wave-function is taken into account by multiplying the

form factors with √
ZA = 1 +

1

2

(αs
2π

) δw
ε

+O(α2
s),

for each of the external gluons.

Following the described procedure, we express the UV-renormalized form factors in

terms of bare ones. We find

(F i)
(1),UV
j = (F i)

(1),un
j ,

(F i)
(2),UV
j = S−1

ε (F i)
(2),un
j −

(
3β0

2 ε
+ δi,q

δw
ε

)
(F i)

(1),un
j + mt

d(F i)
(1),un
j

dmt
δm . (2.16)

where i = q, g denotes the H → ggg and H → qq̄g form factors respectively.

Unfortunately, even after the UV renormalization is performed, the form factors still

exhibit poles in ε. These are the infra-red and collinear poles that appear in the virtual

amplitude; they disappear once elastic and inelastic partonic processes are combined to

compute physical cross sections. Since the structure of IR-singularities is universal [23]

and since they, as we said, will eventually get cancelled against real emission corrections,

it is useful to separate them in the two-loop amplitude. We write

(F i)
(1),UV
j = (F i)

(1),fin
j , (F i)

(2),UV
j = Ii1(ε)(F i)

(1),UV
j + (F i)

(2),fin
j , (2.17)

where again i = q, g and Iq,g1 (ε) are the so-called Catani operators

Ig1 (ε) = − CAe
εγ

2Γ(1− ε)

(
1

ε2
+
β0

CA

1

ε

)((
− s

µ2
R

)−ε
+

(
− t

µ2
R

)−ε
+

(
− u

µ2
R

)−ε)
, (2.18)

Iq1(ε) = − eεγ

2Γ(1− ε)

(
CA

(
1

ε2
+

3

4 ε
+

β0

2CA ε

) ((
− t

µ2
R

)−ε
+

(
− u

µ2
R

)−ε)

− 1

CA

(
1

ε2
+

3

2 ε

) (
− s

µ2
R

)−ε)
. (2.19)

Our final results for the form factors, {F fin
j } are finite in the limit ε → 0. Note that in

order to perform the final IR subtraction we require the one-loop amplitudes to order ε2.
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Prop. Topology PL1 Topology PL2 Topology NPL

[1] k2 k2 −m2
t k2 −m2

t

[2] (k − p1)2 (k − p1)2 −m2
t (k + p1)2 −m2

t

[3] (k − p1 − p2)2 (k − p1 − p2)2 −m2
t (k − p2 − p3)2 −m2

t

[4] (k − p1 − p2 − p3)2 (k − p1 − p2 − p3)2 −m2
t l2 −m2

t

[5] l2 −m2
t l2 −m2

t (l + p1)2 −m2
t

[6] (l − p1)2 −m2
t (l − p1)2 −m2

t (l − p3)2 −m2
t

[7] (l − p1 − p2)2 −m2
t (l − p1 − p2)2 −m2

t (k − l)2

[8] (l − p1 − p2 − p3)2 −m2
t (l − p1 − p2 − p3)2 −m2

t (k − l − p2)2

[9] (k − l)2 −m2
t (k − l)2 (k − l − p2 − p3)2

Table 1. Feynman propagators of the three integral families, see eq. (3.2).

3 Computing the form factors

The bare form factors are expressed in terms of Feynman diagrams that we produce with

QGRAF [24] and independently with FeynArts [25]. We allow for massless external quarks

and both massive and massless internal quark loops. Some examples of Feynman diagrams

that one has to consider are shown in figures 2 and 3. We follow procedures outlined in

refs. [16, 17] to express the form factors in terms of scalar integrals by applying projection

operators as follows

F gi (s, t, u,mt) =
∑
pol

Pgiµνρ ε
µ,∗
1,λ1

εµ11,λ1
εν,∗2,λ2

εν12,λ2
ερ,∗3,λ3

ερ13,λ3
Agµ1ν1ρ1(s, t, u,mt) ,

F qi (s, t, u,mt) =
∑
pol

Pqiµ ε
µ∗
3,λ3

εν3,λ3 A
q
ν(s, t, u,mt) .

(3.1)

Explicit expressions for projection operators can be found in refs. [16, 17].

Both FORM [26] and FormCalc [27] have been independently used to implement the

algebraic manipulations related to the projection in d dimensions. The resulting form

factors are expressed as linear combinations of scalar integrals

Itop(a1, a2, . . . , a8, a9) =

∫
DdkDdl

[1]a1 [2]a2 [3]a3 [4]a4 [5]a5 [6]a6 [7]a7 [8]a8 [9]a9
, (3.2)

where the integration measure is chosen to be

Ddk = (−s)(4−d)/2 (4π)d/2

iΓ(1 + ε)

∫
ddk

(2π)d
. (3.3)

Scalar integrals that appear in the form factors belong to one of the three integral families

that we refer to as {PL1,PL2,NPL}. Sets of propagators that define each topology are

shown in table 1.

After an amplitude is projected on a form factor, all scalar integrals are reduced to

a set of master integrals (MI) using the integration by parts identities (IBP) [28, 29].

– 7 –
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The reduction has been previously performed in refs. [16, 17] using public versions of

FIRE5 [30, 31], Reduze2 [32–35] and an in-house routine written in FORM [26].3 The

MIs are computed by solving differential equations in kinematic variables; the differential

equations are solved perturbatively, expanding in the small parameters κ and η, as will be

explained in section 3.1.

We note that MIs contain logarithmic singularities ∝ log(m2
t ) ∼ log (κ) as κ → 0.

These are mass singularities that are expected to be present in the high-p⊥ kinematics. In

addition, there are Feynman integrals that develop logarithmic singularities ∝ log (η) ∼
log(m2

h) as η → 0; this happens whenever all the massless external partons couple directly

to massless internal propagators, such as for example is the case for the top center diagram

in figure 2. The resulting MI which appear after pinching this diagram also contains

logarithmic singularities ∝ log (η). For these MI it is possible to cut massless propagators

in their corresponding diagrams such that the squared momentum flowing into the cut

equals m2
h and therefore we expect a singular behavior as m2

h → 0. Note that the top

loop itself always gets screened by the top mass and therefore the log (η) singularities are

attributed to a specific scaling of the loop momenta running through massless propagators.

Since the Higgs boson always couple to top quarks, we expect that all the log(m2
h)

singularities are the artifacts of computational procedure and that they should cancel in the

final result for form factor. We have confirmed this expectation by an explicit computation.

Another interesting point is that three sectors of non-planar MI (one sector with six

propagators and two top sectors with seven propagators) have integrals whose expan-

sion around κ → 0 starts with non-integer powers of κ, i.e. I ∼ κ−1/2 ∼ m−1
t . This

non-analytic behavior indicates contributions to scalar integrals beyond the standard soft-

collinear paradigm. It is interesting to see, however, that none of these non-analytic terms

survives in final results for physical amplitudes.

To conclude, after the results for MIs are used to calculate the unrenormalized form

factors, the form factors are written as an expansion in κ and η

lim
mh
mt
→0,mt→0

(F i)
(1),un
j (κ, η, z) = κ

0∑
n=−2

εn
1∑

a=0

κa
2∑
b=0

f
(1l,n)
a,b,i,j(z) logb κ ,

lim
mh
mt
→0,mt→0

(F i)
(2),un
j (κ, η, z) = κ

0∑
n=−2

εn
1∑

a=0

κa
4∑
b=0

f
(2l,n)
a,b,i,j(z) logb κ.

(3.4)

The Yukawa coupling and the helicity flip in one of the quark lines contribute each a

factor of mt, which results in the overall factor of κ in the above result. In eq. (3.4) we

retain terms that are leading powers in the squared Higgs mass η and up to next-to-leading

power in the squared top quark mass. Since there are no logarithms in η in the final result,

we could have put η → 0 from the beginning. However, in our computation we did not do

this and kept m2
h ∼ η 6= 0 throughout the calculation,4 only cutting off the expansion of

form factors to leading power after inserting the MIs.

3We are indebted to L. Tancredi for his decisive contribution to the reduction to master integrals for

this problem.
4The planar master integrals corresponding to the case where m2

h = η = 0 have been computed in [36, 37].
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It was argued in e.g. ref. [38] for the quark channels that an expansion to leading power

in η gives a good approximation to the full amplitude with non-zero Higgs mass. We show

explicitly in ref. [39] that the Higgs transverse momentum distribution computed with the

expanded and the one computed with the exact un-expanded one-loop amplitudes differ

by at most 2% for p⊥ & 400 GeV. We conclude that eq. (3.4) is expected to provide a

reasonable description of the form factors with non-zero Higgs and top mass. We will next

describe how to compute the MIs using the method of differential equations.

3.1 Solving for the two-loop master integrals

The master integrals with seven propagators correspond to Feynman diagrams shown in

figures 2; all other MIs that contain six or even less propagators can be obtained from the

highest-level ones by pinching. We note that all the master integrals for H+jet production

were recently computed in an approximation m2
q=b � s ∼ t ∼ u ∼ m2

h, in refs. [16, 17]. In

this paper we are instead interested in computing master integrals for high energies and

transverse momenta m2
q=t � s, t, u in a situation when the quark mass is larger than the

Higgs mass, m2
h � m2

q=t.

To derive differential equations, we start by taking derivatives of the integrals with

respect to the kinematic invariants m2
t , s, t, u. The derivatives with respect to the Mandel-

stam variables can be expressed in terms of linear combinations of derivatives with respect

to the four-momenta of the external particles

s ∂s =
1

2
(p1 · ∂p1 + p2 · ∂p2 − p3 · ∂p3) ,

t ∂t =
1

2
(p1 · ∂p1 − p2 · ∂p2 + p3 · ∂p3) , (3.5)

u ∂u =
1

2
(−p1 · ∂p1 + p2 · ∂p2 + p3 · ∂p3) .

Here we use the notation pi ·∂pj = pµi ∂/∂p
µ
j . The derivatives with respect to dimensionless

variables defined in eq. (2.3) are related to above differential operators through the following

equations

∂η = 4sκ∂t, ∂κ = s
(

4η∂t − ∂m2
t

)
, ∂z = s (∂u − ∂t) . (3.6)

We apply the derivatives in eqs. (3.6), (3.5) to the set of master integrals and use integra-

tion-by-parts identities to reduce all the integrals back to master integrals. This procedure

leads to a linear system of coupled partial DE for all the MIs that we will denote in this

section by {Ii}. After expressing the MIs in terms of the chosen variables, the derivative

with respect to the Mandelstam variable s becomes trivial and provides the mass dimension

of the MIs. Therefore, it suffices to solve the MIs for the case s = 1 and re-introduce it

back at the end of the calculation.

The DEs take the following form

∂kIi(κ, η, z, ε) =
∑
j

Akij(κ, η, z, ε) Ij(κ, η, z, ε), k ∈ {κ, η, z}. (3.7)
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The matrices Aκ,η,z are sparse and can be put in a triangular form. We may then solve

the system starting from the simplest integrals, which then serve as inhomogeneous con-

tributions to the DEs of integrals with more propagators. The integrals which depend on

a single scale, e.g. the two-loop tadpole integrals, are computed independently and serve

as an input for the DEs.

The three matrices Ak are rational functions of η, κ, z and ε. The MIs have been chosen

such that the dependence on space-time dimensionality d does not mix with the kinematic

variables inside the denominators that appear in Ak. The matrices have singularities at

η = 0,−1/2,−1, in other words at m2
h = 0,m2

h = 2m2
t and m2

h = 4m2
t respectively. The

pole at m2
h = 2m2

t is expected to be spurious and can be avoided by taking canonical

combinations of the MI as in [20]. At the point η = m2
h = 0 there are singularities

at κ = 0,−1/4, (1 + z)/4,−z/4, which corresponds to poles at m2
t = 0 and s, t, u = 4m2

t

respectively. The latter three poles arise from the top threshold when the invariant mass of a

pair of final state particles in the processes in eq. (2.1) is equal to 2mt. These considerations

imply that the matrices can be conveniently expanded in m2
h/(4m

2
t ) = −η and 4m2

t /s =

−4κ and the DE then solved perturbatively in small η and κ. The order of expanding in η

and κ is irrelevant. Furthermore, since the DEs have singularities at both η = 0 and κ = 0,

the solutions are expected to contain terms beyond a usual analytic Taylor expansion in η

and κ. The structure of the differential equations implies the following ansatz

Ii(κ, η, z, ε) =
∑

j,k,l,m∈Z,n∈N
ci,j,k,l,m,n(z, ε) ηj−kεκl/2−mε logn(κ). (3.8)

A more detailed analysis of the differential equations shows that at two loops there are

at most two powers of κ−ε and log(κ) and at most one power of η−ε. The following simpler

ansatz therefore suffices

Ii(κ, η, z, ε) =
∑

j≥0,l≥−3

1∑
k=0

2∑
m=0

2∑
n=0

ci,j,k,l,m,n(z, ε) ηj−kεκl/2−mε logn(κ). (3.9)

The maximal value for the powers j, l of the variables η and κ, respectively, are chosen such

that we can expand the form factors to leading power in η and to next-to-leading power in

κ. We note that this requires computing some of the MI to higher suppressed powers in η

and κ.

As we already alluded to in the paragraph above eq. (3.4), we need to include powers of

η−ε in the ansatz for exactly six MI, which all appear in the planar topology PL1. A detailed

study of these six MI shows that they indeed have terms that scale as η−ε when η → 0

but there are no 1/η singularities. For all other MI, the expansion in η → 0 correspond

to a simple Taylor expansion. We conclude that none of the MI have singularities in 1/η,

which fixes the lower bound of the index j in the sum of eq. (3.9) to zero. On the other

hand, the lower bound on the index l = −3 in the sum of eq. (3.9) follows directly from the

structure of the DE. Furthermore the DE allow half-integer powers of κ for exactly three

non-planar four-point sectors of MIs. Finally, all the terms that are non-analytic in η, i.e.

contain factors of η−ε, or contain half-integer powers of κ, cancel when final form factors
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are computed. However, we keep them in our ansatz and compute them when solving for

master integrals since their cancellation provides a good check of the correctness of the

calculation.

The coefficient functions ci,j,k,l,m,n depend on z and ε. We determine them by sub-

stituting the ansatz for integrals in eq. (3.9) into the differential equations and equating

terms with the same powers of η, κ and log(κ) on both sides of the relevant equations. This

procedure relates the ci,j,k,l,m,n coefficients to each other via a system of linear algebraic

equations. We note that the DEs allow powers of η−1 in our complete ansatz in eq. (3.8).

Therefore, requiring that solutions to DEs do not contain poles in η provides additional

relations between coefficient functions.

Some of the coefficient functions ci,j,k,l,m,n remain undetermined after solving the dif-

ferential equations in η and κ. However, we can solve the DEs in such a way that these

undetermined coefficient functions appear in the leading power expansion of η, i.e. in terms

that correspond to j = 0 in our ansatz eq. (3.9). The “massless” coefficients ci,0,0,0,0,0 cor-

respond to a completely massless “version” of the MIs which is obtained by setting m2
h

and m2
t to zero at the integrand level. These integrals are well-known and serve as an

input in our calculation. Indeed, all the needed planar massless master integrals have been

computed in refs. [40, 41].5 The non-planar massless master integrals have been taken from

refs. [43–45].

After fixing the massless coefficients to the known computed massless MI, we are left

with undetermined coefficients ci,0,k,l,m,n. To find them, we use the ansatz in eq. (3.9) in

the z differential equation and again equate terms with matching powers of η, κ and log(κ)

on both sides of the differential equation. The DEs in z are relatively simple and can

be solved order by order in an expansion in ε. Similar to the case of massless MIs, the

solutions are expressed in terms of Harmonic Polylogarithms (HPLs) which form a subset

of the Goncharov polylogarithms

G(l1, · · · , ln︸ ︷︷ ︸
weight n

; z) :=

∫ z

0
dz′

G(l2, · · · , ln; z′)

z′ − l1
,

G(; z) = 1, G(0, · · · , 0︸ ︷︷ ︸
n times

; z) =
1

n!
logn(z). (3.10)

The letters that we encounter in the z DEs are very simple; the alphabet reads

li ∈ {0, −1}. (3.11)

The first letter corresponds to branch points at s = 0 or u = 0 when η = m2
h = 0, the

second to t = 0. After solving the equations in z, we expand the solutions in ε keeping all

5Note that in the massless limit, the integral IPL2
1,1,1,−1,1,0,1,1,1 can be written as 1

ε
(IPL2

1,1,1,0,1,0,1,1,1 −
uIPL2

1,1,1,0,1,0,1,1,2) plus lower sub-topologies. The order ε pieces of the two planar master integrals are of

weight five, but in the difference only terms with weight four survive. These terms were computed in

ref. [42].
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the terms up to weight four6

ci,j,k,l,m,n(z, ε) =

r
(i,j,k,l,m,n)
0 +4∑
r=r

(i,j,k,l,m,n)
0

εr c
(r)
i,j,k,l,m,n(z). (3.12)

The powers of ε in the expansion are bounded below by r = −4. Typically, individual

coefficient functions have higher singularities in ε than the expanded solution. This feature

is understandable since massive internal particles screen infra-red and collinear singulari-

ties; for this reason, full results for master integrals should typically be less singular in the

ε→ 0 limit than their massless branches.

After solving the DEs in z we are left with unknown integration constants that need to

be determined. For the MIs in the planar topologies PL1 and PL2 we could fix many of the

constants by requiring that the unphysical singularities at z = −1 cancel. We are allowed

to do this since the corresponding planar diagrams do not have any cuts in the t-channel,

but only in s and u. After requiring that these unphysical branch points at t = 0 vanish,

all of the constants in topology PL2 become fixed. We are left with one constant in the

family PL1 and six in the family NPL that we need to determine in some other way. In

the next section we will explain how we computed these constants using the Mellin-Barnes

representation of the relevant integrals.

We note that in order to compute the amplitude to order O(ε0), we are required to

compute coefficient functions of some integrals to weight five and a few even to weight six.

By using the DEs in η and κ, we could find many connections between contributions of

weights five and six to the coefficient functions of the MIs. After substituting MIs into

the amplitude, most of the unknown weight five and all of the weight six contributions

cancel amongst each other. The few weight five pieces that are left, appear only in the

planar families PL1 and PL2 and for these we needed to integrate the DEs in z to weight

five. However the integration constants of these weight-five contributions cancel in the final

result for the amplitude and therefore they did not have to be computed.

The expansions of the MIs in κ and ε have been, whenever possible, numerically com-

pared with FIESTA [46] at the point m2
h = η = 0 and an agreement was found within

the integration errors of FIESTA. We include with this paper supplementary material that

contains our solutions for all MIs in the form of the ansatz in eq. (3.9), expanded in η and

κ to orders that are sufficient to compute the amplitude to leading and next-to-leading

power in η and κ, respectively.

3.2 Integration constants and numerical checks using Mellin-Barnes

As we already mentioned several times, by solving differential equations we determine

master integrals up to integration constants that have to be determined in a different way.

Many integration constants can be fixed by requiring that integrals have regular limits

at certain singular points of the differential equations, for example at η → 0. However,

6Some coefficients are pure rational functions in z after expanding in ε. In these cases we expand to

exactly four orders higher in ε, starting from the highest pole in ε of that coefficient.
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p1

p2
−p123

p3

Figure 4. The two-loop scalar Feynman corresponding to INPL(0, 1, 1, 1, 2, 0, 1, 1, 0).

there are seven integration constants that are left undetermined by these considerations

and we have to compute them explicitly. To accomplish that, we use the Mellin-Barnes

representation to calculate the relevant master integrals at certain kinematic points and

then match the results to solutions of differential equations.

The Mellin-Barnes representation has been used before to compute the massless coef-

ficient functions of some planar [47] and non-planar master integrals [43]. Since we relate

the coefficient functions corresponding to higher powers in expansion in η to coefficient

functions at leading power in the η expansion, all undetermined integration constants ap-

pear in the coefficient functions that can be computed by setting η to zero. In other words

we have to keep the non-vanishing top quark mass7 but we may set m2
h = 0 in our Mellin-

Barnes computation from the very beginning. The Mellin-Barnes representation is ideal

for organizing the computation as an expansion in a small parameter and isolating differ-

ent κ-branches since different powers of κ appear naturally after residues are computed in

Mellin-Barnes integrals.

We will consider the integral INPL(0, 1, 1, 1, 2, 0, 1, 1, 0), shown in figure 4. It reads

INPL
011120110 =

∫
DdkDdl

((k + p1)2 −m2
t )((k − p23)2 −m2

t )(l
2 −m2

t )((l + p1)2 −m2
t )

2

× 1

((k − l)2)1−δ((k − l − p2)2)1+δ
. (3.13)

Note that we introduced additional parameters δ to define INPL
011120110; we will explain below

why this is required.

We are interested in computing an integration constant of the coefficient function that

corresponds to a factor κ−1−2ε. We choose the kinematic point s = u = −1, t = 2,m2
h = 0.

The integral is well defined and regulated by dimensional regularization. However, the

region integrals that represent the term ∝ κ−1−2ε are not regulated by the dimensional

parameter ε. This can be already seen from the solution of the DE that predicts terms

∝ κ−1−2ε log1,2(κ). Such non-analytic behavior is typically cured by an introduction of

analytic regulators in the context of asymptotic expansion of Feynman integrals [48, 49].

The parameter δ introduced in eq. (3.13) is the analytic regulator that makes expansion of

all branches the integral INPL
011120110 well-defined.

7As we mentioned, the massless coefficients are already computed and therefore the unknown integration

constants always multiply κl−mε with either l or m non-zero in the ansatz.
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To proceed further, we introduce Feynman parameters and integrate over two loop

momenta. The integral can be expressed as powers of the Symanzik U and F polynomials

−
∫ ∞

0

(
6∏
i=1

dxi

)
δ(1−

∑
I xi)Γ(2ε+3)x4x

−δ
5 xδ6

Γ(1−δ)Γ(δ+1)Γ(ε+1)2

[
(x3+x4)(x5+x6)+x1(x3+x4+x5+x6)

+x2(x3+x4+x5+x6)

]3ε+1 [
x2x3x5+x1x3x6−2x2x4x6+κ(x1+x2+x3+x4)

×((x3+x4)(x5+x6)+x1(x3+x4+x5+x6)+x2(x3+x4+x5+x6))−i0

]−2ε−3

.

The sum inside the delta function can be chosen to be any combination of the Feynman

parameters [50, 51]. We have chosen the delta function as δ(1− x1 − x2). The integration

over the Feynman parameters are nontrivial but may be performed by using the method of

Mellin-Barnes. Namely, we may split up terms inside the brackets by introducing Mellin-

Barnes integration parameters

1

(x+ y)λ
=

1

2πi

+i∞∫
−i∞

dz
yz

xz+λ
Γ(−z)Γ(λ+ z)

Γ(λ)
. (3.14)

The contour runs parallel to the imaginary axis in the complex z-plane and is chosen

such that the singularities of Γ(−z) and Γ(λ + z) are to the right (left), respectively of

the integration contour. After we integrate over Feynman parameters, we are left with the

following Mellin-Barnes integral to perform

INPL
011120110 = −

+i∞∫
−i∞

(
4∏
i=1

dzi

)
(−2−i0)−2ε−z1−z2−z3−3κz1Γ(−z1)Γ(−z2)Γ(z2+1)Γ(−z3)

× Γ(−z4)Γ(−ε−z1−1)Γ(z4−ε)Γ(z3−δ+1)Γ(−2ε−z1−z2−2)Γ(z2+z3+z4+1)

Γ(1−δ)Γ(δ+1)Γ(ε+1)2Γ(−2ε−2z1−1)Γ(−3ε−z1−1)Γ(−2ε−z1−1)

×Γ(2ε+z1+z2+z3+3)Γ(−2ε−z1−z3+δ−2)Γ(−ε−z1−z2−z3−z4−1).

(3.15)

The Mellin-Barnes integrations can be performed with the help of packages collectively

known as MBTools [52]. For example, the contours of the z1...4 integrals can be systemat-

ically deformed [53] in a way that allows one to take the limit δ → 0. Indeed, because δ is

an analytic regulator, we need to take δ → 0 at fixed ε and then deform the contour further

to extract poles in ε and, eventually, arrive at the ε expansion. We note that, as follows

from eq. (3.15), poles in z1 correspond to different powers of κ; for our purposes we require

the pole at z1 = −1−2ε. After extracting the κ−1−2ε branch and expanding the result in ε,

we use the Barnes lemma to perform the Mellin-Barnes integrations. In most cases, these

integrations are straightforward. However, we also obtain a contribution which requires to
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deal with the integrand that contain polygamma functions. A typical integral reads

I =

∫ 0−+i∞

0−−i∞
dz4 Γ(2− z4)Γ(z4 − 1)Γ(−z4)Γ(z4)

[
2(ψ(0)(2− z4))2 + (ψ(0)(z4))2

+2ψ(1)(2− z4) + ψ(1)(z4)
]
. (3.16)

The integration over z4 is performed using the method of residues. The integration contour

runs along the imaginary axis with Re(z4) small and negative. We may close the integration

contour to the left as the integrand will vanish fast enough along the half circle in the left

complex plane with infinite radius. By Cauchy’s theorem we pick up the ladder of residues

in z4 in the left complex plane, Re(z4) < 0. Application of this procedure leads to the

following representation

I = −1

3

∞∑
n=1

1

n4(n+1)2

((
π2n2+6

)
(n+1)2+3n

(
2
(

3n2−3
(
n2+n

)2
ψ(1)(n+1)−1

)
ψ(0)(n+1)

+3n(n+1)2ψ(0)(n+1)2−n(n+1)((n−3)ψ(1)(n+1)+2n(n+1)ψ(2)(n+1))
))

.

These sums can be performed with e.g. the XSummer [54].

The final result for the O(κ−1−2ε) branch of the INPL
011120110 at the kinematic point

s = u = −1, t = 2,m2
h = 0 reads

INPL
011120110 ∼ κ−1−2ε

{
log2(κ)

4ε
+ log(κ)

(
1

ε2
− 3εζ(3)

2
+

log(2)− iπ
2ε

− π2

12

)

+
1

ε3
+

log(2)− iπ
ε2

+
−1

6π(π − 6i) + log2(2)
4 +

(
−1− iπ

2

)
log(2)

ε

+
1

12

(
iπ3 − 18ζ(3)

)
− π2 log(2)

12
+ ε

(
3iπζ(3)

2
− 3

2
ζ(3) log(2)− 7π4

240

)}
.

(3.17)

We then match the solution of the differential equation to this result and determine the

integration constant.

In addition to determination of constants, we also used the Mellin-Barnes representa-

tion for numerical checks of our solutions for master integrals. Namely for non-planar MIs

that, in the κ → 0 limit develop power-like singularities with half-integer exponents, we

were unable to use FIESTA for numerical checks. For such integrals we compared indi-

vidual coefficient functions in κ with the Mellin-Barnes representation and found perfect

agreement for all of them. In particular, the massless contributions as well as other coeffi-

cient functions that are completely fixed by the DE, all agree with the Mellin-Barnes result.

Note that this is a nontrivial check on both the solution for the differential equation and

the Mellin-Barnes representation that we used to extract integration constants for certain

branches. One example of the coefficient functions that are completely fixed by the DEs

are those corresponding to the κ−1−2ε log(κ) and κ−1−2ε log2(κ) terms that appear in our

solution of the above integral INPL
011120110, which we have checked to agree exactly with the

corresponding logarithms in κ in eq. (3.17) for the chosen kinematic point.

– 15 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
5

4 Helicity amplitudes

Once the master integrals are computed, we use them to derive the form factors and

calculate the analytic expressions for helicity amplitudes. We define positive and negative

helicity spinors for massless external quarks and gluons in the standard way (see e.g. [55])

εµi,+(pi) =
〈q|γµ|i]√

2〈q i〉
, εµi,−(pi) = − [q|γµ|i〉√

2[q i]
, (4.1)

u+(p) = v−(p) = |p〉 , u−(p) = v+(p) = |p] ,

ū+(p) = v̄−(p) = [p| , ū−(p) = v̄+(p) = 〈p| . (4.2)

Here q is an arbitrary light-like reference vector. For our computation, the reference vectors

are fixed by gauge conditions outlined in eq. (2.10).

The helicity amplitudes are defined as

Agλ1λ2λ3(s, t, u,mt) = εµ1,λ1(p1)εν2,λ2(p2)ερ3,λ3(p3)Agµνρ(s, t, u,mt), (4.3)

Aqλ1λ2λ3(s, t, u,mt) = εµ3,λ3(p3)ūλ1(p1)Aqµ(s, t, u,mt) vλ2(p2) . (4.4)

Eight helicity configurations are needed to describe the H → ggg amplitude. However,

only two of them are independent since the other six may be related to them by the use

of charge and parity conjugation. For the H → qq̄g amplitude there are four possible

helicity configurations in total, since QCD interactions cannot change the helicity of the

massless quarks and therefore the helicity of the outgoing quark must be opposite to that

of the outgoing anti-quark in eq. (4.4). We have chosen to treat the following amplitudes

as independent

Ag+++(s, t, u,mt) =
s√

2〈12〉〈23〉〈31〉
Ωg

+++(s, t, u,mt) , (4.5)

Ag+−+(s, t, u,mt) =
[13]3√

2 [12] [32] s
Ωg

+−+(s, t, u,mt) , (4.6)

Aq−++(s, t, u,mt) =
1√
2

[23]2

[12] s
Ωq
−++(s, t, u,mt). (4.7)

The amplitudes are dimensionless and the helicity coefficients Ωi(s, t, u,mt) have a

mass dimension one. We may obtain the other helicity assignments for the amplitude by

complex conjugation and by permuting the external legs as follows

Ag++−(p1, p2, p3) = Ag+−+(p1, p3, p2) , (4.8)

Ag+−−(p1, p2, p3) =
[
Ag+−+(p2, p1, p3)

]∗
, (4.9)

Aq+−+(p1, p2, p3) = Aq−++(p2, p1, p3) , (4.10)

Aiλ1λ2λ3(p1, p2, p3) =
[
Ai(−λ1)(−λ2)(−λ3)(p1, p2, p3)

]∗
. (4.11)

The complex conjugation should only be applied to spinor-helicity structures and not to

the helicity coefficients Ωi(s, t, u,mt). The helicity coefficients can be expressed in terms
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of the form factors introduced in eq. (2.9) as follows

Ωg
+++ = u

(
F g1 +

t

u
F g2 +

t

s
F g3 +

t

2
F g4

)
, Ωg

+−+ =
−s2

t

(
F g2 +

u

2
F g4

)
, Ωq

−++ = s2 F q1 .

(4.12)

We expand the helicity coefficients in the strong coupling constant and extract an

overall coefficient m2
t /v in order to have dimensionless one- and two-loop helicity coefficients

Ωi =
m2
t

v

√
α3
s

π

[
Ωi,(1l) +

αs
2π

Ωi,(2l) +O(α2
s)
]
. (4.13)

Once the form factors have been renormalized and IR-subtracted, the resulting helicity

coefficients will also be finite as seen from eq. (4.12). We are interested in a kinematic

region where all Mandelstam variables are much larger than the top mass mt. Therefore

we prefer to define the amplitude in terms of a strong coupling constant that runs with

Nf + 1 active flavors. The relation between the coupling constants defined in the two

schemes reads

α
(Nf )
s (µR) = α

(Nf+1)
s (µR)

[
1− α

(Nf+1)
s

6π
log

(
µ2
R

m2
t

)
+O(α2

s)

]
. (4.14)

This change in the strong coupling constant leaves the one-loop coefficients unchanged,

but the two-loop finite remainder of the helicity amplitude changes as follows according to

eq. (4.14)

Ω
(1l),fin

= Ω(1l),fin , Ω
(2l),fin

= Ω(2l),fin − 1

2
log

(
µ2
R

m2
t

)
Ω

(1l),fin
. (4.15)

The helicity coefficients Ω correspond to using a strong coupling constant α
(Nf+1)
s (µ2

R) that

evolves with Nf + 1 active flavors.

Unfortunately, analytic results for helicity amplitudes are too long to be presented

here. Instead, we provide supplementary material that contains finite remainders of the

relevant helicity amplitudes Ω defined in Catani’s subtraction scheme eq. (2.17) with the

submission of this paper. The coupling constant is renormalized at a renormalization scale

set equal to the invariant mass of the initial partons, with Nf + 1 active flavors.

4.1 Analytic continuation

Our goal is to compute the two-loop amplitudes that are needed to describe production

of the Higgs boson with high transverse momentum at the LHC. The relevant production

channels are gg → Hg, qq̄ → Hg, qg → Hq and q̄g → Hq̄. Amplitudes for these processes

are obtained from amplitudes for H → ggg and H → qq̄g processes that we have computed

and crossing some final state particles to initial states. Our H → ggg and H → qq̄g

amplitudes have been computed in the region t > 0, s, u < 0, while the physical scattering

processes are defined in the kinematic regions where the invariant mass of the two initial

partons is positive instead. For this reason we are interested in computing the amplitudes

in the regions s > 0, t, u < 0 and u > 0, s, t < 0 as well, which we will refer to as (2a)+ and
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(4a)+ respectively. The amplitude in these regions can be found by analytically continuing

our result from the region t > 0, s, u < 0 which we refer to as (3a)+. The three scattering

regions are defined in terms of the Mandelstam invariants as

(2a)+ : s > 0 , t, u < 0 , (4.16)

(3a)+ : t > 0 , s, u < 0 , (4.17)

(4a)+ : u > 0 , s, t < 0 . (4.18)

The above regions correspond to the following physical production channels

region(2a)+ : g(−p1) + g(−p2)→ H(−p4) + g(p3), q(−p2) + q̄(−p1)→ H(−p4) + g(p3),

region(3a)+ : g(−p1) + g(−p3)→ H(−p4) + g(p2), q̄(−p1) + g(−p3)→ H(−p4) + q̄(p2),

region(4a)+ : g(−p2) + g(−p3)→ H(−p4) + g(p1), q(−p2) + g(−p3)→ H(−p4) + q(p1).

In the three regions the positive Mandelstam variable receives an infinitesimal positive

imaginary part

(2a)+ : s→ s+ i 0 , (4.19)

(3a)+ : t→ t+ i 0 , (4.20)

(4a)+ : u→ u+ i 0 . (4.21)

The method to perform the analytic continuation from the region (3a)+, where our

computation has been performed, to the other two regions was explained in ref. [44] and we

refer to this paper for details. The spinor products are left unchanged during the analytic

continuation but Harmonic Polylogarithms may receive imaginary parts when continued

to regions (2a)+ and (4a)+. We introduce the variable uj for the three scattering regions

(2a)+ : u2a = −u
s

= −z , (4.22)

(3a)+ : u3a = −s
t

=
1

1 + z
, (4.23)

(4a)+ : u4a = − s
u

= −1

z
. (4.24)

Our helicity amplitudes are expressed in terms of the new variables 0 ≤ uj ≤ 1 in the three

corresponding regions. In this way the imaginary part of the amplitudes is explicit and

all the HPL that appear in the results are real-valued with the alphabet {0, 1} in each of

the scattering regions. The Harmonic Polylogarithms can be numerical evaluated with the

Mathematica package HPL [56] or the Fortran code CHAPLIN [57]. The helicity ampli-

tudes Ωq
+++,Ω

g
+−+Ωq

−++ in all three scattering regions are provided in the supplementary

material together with the submission of this paper.

5 Conclusions

We computed the two-loop helicity amplitudes that are needed to describe production of

the Higgs boson with large transverse momentum at the LHC. The Higgs boson interaction
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with gluons and massless quarks is mediated by loops of massive top quarks. However, the

top quark mass is considered to be small compared to Higgs bosons transverse momen-

tum. Clearly, in this kinematic regime the Higgs boson mass is also small compared to its

transverse momentum and we effectively neglect it in our computation.

Although the dependence of the scattering amplitudes on the Higgs boson mass is

simple and can be obtained by a simple Taylor expansion, the expansion of the amplitudes

in the top quark mass contains non-analytic terms O(ln(m2
t /p

2
⊥)) and is, therefore, non-

trivial. We construct the expansion of the amplitudes using differential equations for master

integrals that allow us to obtain both analytic and non-analytic terms in an expansion in

a controlled way. Our final results for the amplitudes are expanded to leading power in

the Higgs boson mass which, essentially, corresponds to setting the Higgs boson mass to

zero, and to next-to-leading power in the top quark mass squared. We expect that the

two-loop amplitudes computed in this paper will allow for a robust estimate of the number

of Higgs bosons that are expected to be produced at the LHC with very large transverse

momentum, and the comparison of this prediction with the experimental result [12].
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