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Zusammenfassung

Diese Arbeit beschäftigt sich mit methodischen Entwicklungen zur Untersuchung von Ladungs-
und Energietransportprozessen in molekularen Materialen. Damit ist gemeint, dass neue An-
sätzen zur Untersuchung solcher Prozesse eingeführt und getestet, nicht etwa spezielle Prozesse
im Detail ergründet, werden. Insbesondere liegt der Fokus auf Methoden zur Untersuchung or-
ganischer, halbleitender Materialien mit hohen Ladungsträgermobilitäten oder effizienter Ekzi-
tonendiffusion, wobei die vorgestellten Methoden weitaus breiter anwendbar sind.
Zunächst wenden wir eine ursprünglich für den Ladungstransport in DNA-Strängen entwick-
elte, und später von Heck et al. für organische Halbleiter adaptierte, Methode auf Anthrazenkristalle
an. Wir berechnen damit die korrekte Temperaturabhängigkeit der Lochmobilität. Diese ist eng
mit dem zugrundeliegenden Transportmechanismus verwoben und kann im Falle von bandar-
tigem Transport, wie in Anthrazen, nicht mit hoppingbasierten Methoden reproduziert werden.
Daraufhin führen wir eine Methode zur Berechnung von Ekzitonendiffusionskonstanten in
molekularen Materialien auf Basis der direkten Propagation der Ekzitonenwellenfunktion ein.
Um solche Rechnungen möglich zu machen, werden unter Ausnutzung der molekularen Struk-
tur Näherungen auf verschiedenen Ebenen eingeführt. Die neue Methode wird, um sie zu testen,
auf Ekzitonentransport in Anthrazen angewendet und wir diskutieren dabei auch technische De-
tails, die für die obig angesprochenen Ladungstransportstudien ebenfalls relevant sind.
Bei der Propagation der Ekzitonenwellenfunktion müssen viele elektronische Strukturrech-
nungen angeregter Zustände durchgeführt werden, so dass dazu eine sehr schnelle Meth-
ode notwendig ist. Wir verwenden die approximative TD-DFTB Methode, die auf DFT mit
einem GGA Funktional basiert. Es ist bekannt, dass GGA Funktionale für ausgedehnte π-
Elektronensysteme, wie sie in organischen Halbleitern ständig vorkommen, nicht zuverlässig
sind. Innerhalb von DFT lösen sogenannte long-range corrected (LC) Funktionale das Prob-
lem. Wir führen LC Funktionale in TD-DFTB ein, was Änderung am Formalismus erfordert.
Wir zeigen, dass damit typische Probleme mit π-Systemen und Ladungstransferanregungen
gelöst werden, bei tausendfach schnelleren Rechnungen als mit konventionellem TD-DFT.
Abschließend beschäftigen wir uns mir der DFTB Methode selbst. LC Funktionale haben einen
Parameter, der idealerweise systemspezifisch gewählt wird. Bei jeder Anpassung müssen für
DFTB neue Parameter berechnet werden. Ein Satz von atompaarweisen Funktionen, genannt
Repulsivpotentiale, erfordern dabei bisher viel Handarbeit. Wir versuchen diesen Vorgang zu
automatisieren, indem wir DFTB mit Methoden aus der künstlichen Intelligenz verbinden.
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Summary

This work is concerned with methodological developments for the study of charge and energy
transport processes in molecular materials. That means new approaches to investigate such
processes are introduced and tested, rather than specific processes studied in-depth. Special
focus is put on methods to study organic, semiconducting materials with high charge carrier
mobilities or efficient excitonic diffusion, although the presented methods have much broader
applicability.
First, we apply a method, originally developed for charge transport in DNA strands, and later
adapted by Heck et al. for organic semiconductors, to anthracene crystals. Hence, we calculate
the correct temperature dependence of the hole mobility. This is closely related to the under-
lying transport mechanism and in the case of anthracene cannot be reproduced with hopping
based methods.
Following up, we introduce a method for the calculation of exciton diffusion constants in molec-
ular materials, based on the direct propagation of the exciton wavefunction. To permit such cal-
culations, approximations on different levels are introduced, exploiting the molecular structure.
In order to test it, this new method is applied to exciton transport in anthracene, and going along
we discuss technical aspects, also relevant for the above mentioned charge transport studies.
Propagating the exciton wavefunction, many electronic structure calculations of excited states
have to be performed, thus requiring a fast method. We use the approximate TD-DFTB method,
based on DFT with a GGA functional. It is known that GGA functionals are not reliable for ex-
tended π-electron systems, as they occur ubiquitously in organic semiconductors. Within DFT,
so-called long-range corrected (LC) functionals solve the problem. We introduce LC func-
tionals in TD-DFTB, requiring changes to the formalism. We demonstrate that hence typical
problems with π-systems and charge transfer excitations are solved, with thousandfold faster
calculations compared to conventional TD-DFT.
Finally, we deal with the DFTB method itself. LC functionals have a parameter that is ideally
chosen system-specific. For every adaption new DFTB parameters must be calculated. There-
fore, a set of atom pairwise functions, called repulsive potentials, require much manual effort.
We try to automatize this process by combining DFTB with methods from artificial intelligence.
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and Tomáš Kubař who taught me the basics of our own code and usually knew something about
everything.

The last three years wouldn’t have been as much fun without the fine people of the TCB team
who are not only colleagues, but friends. Many thanks to all of you!
Especially, had it not been for Sabine Holthoff, I might well have turned crazy over bureaucracy
and gone broke over unreimbursed travel expenses.

Muchísimas gracias a mi futura esposa, Vega Pérez Wohlfeil, por tu apoyo continuo durante
mi doctorado y en mi vida en general. Significa mucho para mí.
I also have to thank her for a lot of proof reading and help with some figures.

Abschließend möchte ich meiner Mutter Kornelia Kranz für ihre endlose Unterschtützung zeit
meines Lebens danken, ohne die ich nicht wäre, wo ich bin.

vii





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Molecular simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 The electronic structure problem . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 The density functional tight-binding method . . . . . . . . . . . . . . . 18
2.1.4 Force-fields and molecular mechanics . . . . . . . . . . . . . . . . . . 26

2.2 Fundamentals of charge and energy transport . . . . . . . . . . . . . . . . . . 30
2.2.1 The Holstein model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 The hopping regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 The band regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Simulation of charge transport in bulk organic materials . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Simulation of hole transport in anthracene . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Simulation setup and computational details . . . . . . . . . . . . . . . 46
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Simulation of singlet exciton diffusion in bulk organic materials . . . . . 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 QM/MM Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Excited states: Frenkel-Hamiltonian . . . . . . . . . . . . . . . . . . . 55
4.2.3 DFTB & TD-DFTB Method . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.4 Real-time Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 System Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Single-molecular Excitation . . . . . . . . . . . . . . . . . . . . . . . 65

ix



Contents

4.3.3 Coupling Elements J . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.4 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.5 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Time-dependent extension of the long-range corrected DFTB method . . 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Small molecule test set . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2 Charge-transfer excitations . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.3 Excitations in polyacenes . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.4 Computational efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Generalized DFTB repulsive potentials from unsupervised machine learn-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 DFTB Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.1 DFTB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2 Repulsive Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.1 Generalized repulsive potentials . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 Bond descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.3 Bond clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.4 Potential fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.2 Clustering and fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Extensive LC-TD-DFTB benchmark data . . . . . . . . . . . . . . . . . . . . 123

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

x



1 Introduction

Charge and energy transport phenomena in molecular materials are of great practical relevance,
as electronic components made of amorphous or crystalline organic materials have continuously
gained popularity over the last decades. Many are produced at the large industrial scale, and
hold great promise in terms of material properties and processability [1–3] over their inorganic
counterparts, but performance for many applications still lacks behind. Organic semiconduct-
ing materials are commonly used in organic field effect transistors (OFETs) [4, 5], organic light
emitting diodes (OLEDs) [6, 7], and organic photovoltaic devices (OPVs) [8, 9].

OPVs in particular provide a very good example for how charge and energy transport properties
are relevant for device performance. In an organic solar cell, light is converted into electronic
energy. Energy conversion happens in four steps: At first, incoming photons are absorbed in
the bulk of the material; then the absorbed energy migrates to an interface in the form of an
exciton, a bound electron-hole pair. Charges are separated at the interface in the third step, and
eventually the separated electrons and holes migrate to the electrodes. With what ease excitons
and charges can move around in the material thus crucially affects the efficiency of the device,
since the longer it takes excitons and charges to reach interfaces and electrodes, the higher
are the rates of premature deexcitation or charge recombination. In the light of its industrial
significance, it is not surprising that charge and energy transport has been extensively studied
experimentally and theoretically; theory is useful both in order to further understanding of the
underlying mechanics of transport, allowing for educated molecular design, and as a predictive
tool to sample the vast space of potential materials.

However, charge and energy transport can be very complicated phenomena. Charge transport,
for instance, is well understood in the limiting regimes of very high charge carrier mobility, as
found in inorganic semiconductors, and comparatively low carrier mobility, as in amorphous
organic semiconductors. This last regime is known as the hopping regime, as charges are local-
ized on individual molecules and move by way of thermally activated, random hops. In the case
of high charge carrier mobility, transport is mostly determined by the electronic band struc-
ture and random charge-phonon scattering; hence, this limit is known as the band or band-like
regime. The intermediate regime, though, is far less well understood. The building blocks of
molecular materials are held together by dispersion interactions that are much weaker than the
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1 Introduction

forces between atoms in inorganic semiconductors or metals. This leads to large thermal fluc-
tuations of the electronic couplings between molecules, and it appears that in the intermediate
transport regime found in molecular crystals these fluctuations crucially affect transport [10],
leading to an intricate interplay of electronic and nuclear degrees of freedom. In fact, for a long
time thermal fluctuations of excitonic couplings have been ignored altogether [11, 12]. Because
of this inherent complexity, there is much demand for novel methods in the field of charge and
energy transport.

In the present work we contribute new tools for the study of transport processes in molecular
materials. Some of the described methods are meant to be applied directly to study transport,
while others are relevant in the context of those methods. Where transport itself is concerned,
we test methods on organic semiconducting materials, like organic crystals. But the real scope
of applicability is wider. A molecular material in our wider sense could be anything assem-
bled from fragments of atoms, where interactions within the fragments are much stronger than
among them – for example, a protein with individual amino acids as fragments. The existence
of many potential applications is indeed a desirable feature, as we seek to make methodological
contributions in this work, not study specific materials in-depth.

In the following, we will briefly introduce the contents of this work and explain how differ-
ent parts are related and build upon each other.

We begin with an overview of the relevant theoretical background in chapter 2, where we
also discuss the basics of charge and energy transport. Particularly, we will introduce in more
detail the aforementioned limiting regimes of high and low mobility, and review the methods
that are used to deal with them. This provides context for the next chapters.

In chapter 3 we apply a method that was originally developed to describe charge transport
in DNA [13], and adapted for organic semiconductors by Heck et al. [14], to hole transport
in an anthracene single crystal. Specifically, we will calculate the temperature dependence of
the charge carrier mobility µ , as it is closely related to the underlying transport mechanism.
Hole transport in anthracene is known to be band-like [15] despite fluctuation-induced charge
localization [14]; thus, this is an example where no limiting case is valid. To account for the
interplay of electronic and nuclear degrees of freedom, we will simulate the nonadiabatic dy-
namics of charge carriers and nuclei.

Chapter 4 extends this idea to exciton transport. A new method for the simulation of exci-
ton transport in molecular materials, based on the propagation of the excitonic wavefunction in
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time, is proposed and tested. In this context, several technical aspects are discussed, particularly
the choice of the mixed quantum-classical, nonadiabatic dynamics scheme. Said discussion also
bears relevance for the method from chapter 3.

Eventually, chapters 5 and 6 are concerned with the development of more general methods. It is
well known that local and gradient-corrected DFT functionals perform poorly for spatially ex-
tended π-electron systems, which occur ubiquitously in organic semiconducting materials. The
methods of chapters 3 and 4 rely on the density functional tight-bind method (DFTB), which in
turn is an approximation to DFT with the underlying gradient-corrected PBE [16] functional.
DFTB inherits the shortcomings of PBE, as becomes clear in chapter 4. Within DFT those
problems can be solve by the introduction of long-range corrected functionals, which separate
long and short ranged interactions and include long-range Hartree-Fock exchange. Long-range
corrected functionals have only recently become available in DFTB [17], because they require
alterations to the DFTB formalism. In chapter 4 we extend this new formalism to the time-
dependent DFTB (TD-DFTB) formalism, leading to the long-range corrected TD-DFTB (LC-
TD-DFTB) method for excited state calculations, and provide a computational implementation
in the DFTB+ [18] program. Then we benchmark the qualitative and quantitative performance
of this method, and we demonstrate by example that, indeed as in full DFT, the description
of excitations involving extended π-electron systems is greatly improved. Furthermore, we
show that charge transfer excitations, for which local DFT functionals fail completely, are well
accounted for by LC-TD-DFTB. In conclusion, we provide a new method capable of dealing
with excitations involving extended π-systems and charge transfer excitations at a thousandfold
reduced computational cost compared to full DFT.

The final chapter, chapter 6, deals as well with aspects of the DFTB method, and is in part mo-
tivated by the new LC-DFTB method introduced in the previous chapter. As will be explained,
the range-separation parameter ω that arises in LC-DFTB is in principle system dependent,
but every change of ω requires a new parametrization of DFTB. While for most parameters
reparametrization is straightforward, one set of terms (the so-called repulsive potentials) re-
quire much manual effort, rendering complete reparametrization difficult. Some progress has
been made at automatizing the process [19–21], but a definitive solution is still missing. We
propose an innovative approach combining DFTB with methods from unsupervised machine
learning. Thus, we also attempt to move DFTB into the age of data-driven molecular model-
ing by enabling parametrization from uncurated and much larger data sets than so far can be
meaningfully utilized.
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2 Background

This chapter reviews some of the concepts and methodologies relevant in the context of charge
and energy transport in molecular materials. We start out from the basic electronic structure
problem, proceed with a discussion of different methods relevant for the understanding of the
work presented in this book, and close with an overview of some of the models commonly used
to describe transport processes in molecular materials, to put into context the results presented
in the later chapters. Presentations are kept brief and expository; we try to touch upon most
relevant topics, but not in detail. Extensive reviews of all topics can be found in many text
books and the original literature.

2.1 Molecular simulation

2.1.1 The electronic structure problem

The fundamental object at the heart of quantum chemistry and condensed-matter physics is the
molecular Hamiltonian that describes the interaction of electrons and atomic nuclei. In atomic
units, where Planck’s constant h̄, and the electron charge e and mass m are set to unity, it reads:

H = ∑
i

p2
i

2
+∑

k

P2
k

2Mk
+

1
2 ∑

i6= j

1
|ri− r j|

+
1
2 ∑

k 6=l

ZkZl

|Rk−Rl|
−∑

i,k

Zk

|ri−Rk|
. (2.1)

The ri and pi are the electronic positions and momenta, Rk and Pk those of the nuclei, and
Mk, Zk are the nuclear masses and charges. The fundamental commutator relations hold:

[riα ,r jβ ] = [piα , p jβ ] = 0, [riα , p jβ ] = iδi jδαβ (2.2)

for electrons, and likewise for nuclei. α,β label Cartesian coordinates, and δi j refers to the
Kronecker delta. In the position representation, that is, using a basis of position eigenstates, the
momentum operator takes the form p =−i∇r. From the molecular Hamiltonian one commonly
splits of the electronic Hamiltonian Helec describing an electron cloud in an external electrostatic
potential created by nuclei at fixed positions:

Helec = ∑
i

p2
i

2
+

1
2 ∑

i6= j

1
|ri− r j|

+
1
2 ∑

k 6=l

ZkZl

|Rk−Rl|
−∑

i,k

Zk

|ri−Rk|
. (2.3)
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2 Background

The eigenvalue spectrum of Helec then yields the electronic energy levels Ei, i = 0,1,2, ...:

Helec|ψi〉= Ei|ψi〉, (2.4)

with the electronic states |ψi〉. This eigenvalue problem is the time-independent electronic
Schrödinger equation. The Ei as a function of the nuclear coordinates Ei(R1,R2, ...) are
called potential energy surfaces, as they act as an effective potential for the nuclei. Solids
and molecules are stationary points on the lowest energy, or ground-state, surfaces. That is at
molecular equilibrium geometries ∇RE0(R1, ...) = 0 holds.
The complete wavefunction |Ψ〉 of electrons and nuclei can be expanded using the electronic
eigenstates:

|Ψ〉= ∑
i
|χi〉|ψi〉, (2.5)

with nuclear wavefunctions |χi〉. Applying the Hamiltonian to this form of the wavefunction
and projecting out the electronic part results in

H|χi〉=

(
∑
k

P2
k

2Mk
+Ei(R1, ...)+

[
∑
j,k

1
Mk

(
2〈ψi|Pk|ψ j〉Pk + 〈ψi|P2

k |ψ j〉
)])
|χi〉 (2.6)

for the Hamiltonian applied to the nuclear wavefunction. If the terms in square brackets, the so-
called non-adiabatic couplings, are disregarded, the potential energy surfaces Ei act indeed as
independent potentials for the nuclei. Such an assumption is known as the Born-Oppenheimer
approximation and is valid whenever the energy levels are well separated, as is commonly
the case near equilibrium molecular geometries. It breaks down when energy levels cross.
The resulting non-adiabatic effects are of crucial importance especially for charge and energy
transport processes because they allow transitions between different electronic states.
The time evolution of a quantum mechanical system obeys the time-dependent Schrödinger
equation:

i∂i|Ψ(t)〉= H|Ψ(t)〉. (2.7)

Much of this thesis is concerned with approximate solutions of eq. 2.7.

2.1.2 Density functional theory

The Hohenberg-Kohn theorems

While the molecular Hamiltonian looks alluringly simple at first glance, it is impossible to
diagonalize it exactly for all but the smallest systems, because the dimension of the Hilbert
space grows exponentially with the number of particles. Therefore, approximations are required
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2.1 Molecular simulation

in practical application. One successful line of such approximations relies on an alternative
formulation of the ground-state electronic structure problem in terms of the electron density

ρ(r) = N ∑
σ1,...,σ2

∫
d3r2...d3rN 〈ψ|r,σ1,r2,σ2, ...,rN ,σN〉〈r,σ1,r2,σ2, ...,rN ,σN |ψ〉 (2.8)

rather than the full wavefunction |ψ〉, where N is the number of electrons and σ labels spin
degrees of freedom. The two Hohenberg-Kohn theorems [22] establish a connection between
ρ(r) and the electronic molecular ground state. They state respectively:

1. There is a one-to-one correspondence, to within a constant shift, between the electronic

ground state density ρ0(r) and the external potential Vext(r) acting on the electrons and

leading to the density ρ0(r). In the case of molecules and solids Vext is the electrostatic
potential of the nuclei. Since Vext fixes the entire Hamiltonian of the system, which in turn
determines all properties, in principle the system is fully described by ρ0(r). In particular,
there is a functional E[ρ] that maps a density ρ to the energy E[ρ] = 〈ψ[ρ]|H|ψ[ρ]〉,
where |ψ[ρ]〉 is the wavefunction that gives rise to density ρ .

2. The ground state density minimizes E[ρ], that is E[ρ0]≤ E[ρ] for all densities ρ . This is
the DFT equivalent to the Ritz variational principle, according to which the ground state
wavefunction minimizes the energy expectation value.

Hohenberg-Kohn theory guarantees the existence of E[ρ] only for densities that come from
a ground state for some external potential Vext. The functional’s scope has been extended in
the work of Lieb [23] to more general, reasonable densities, so that it becomes differentiable.
Hence, the second theorem leads to the condition

δE[ρ0]

δρ
= 0, (2.9)

which provides an equation for the ground state density and, hence, an alternative to the time-
independent Schrödinger equation. So far, Hohenberg-Kohn theory is exact. However, no ex-
plicit form of E[ρ] is known, and any such would likely exhibit the same exponential complexity
as the exact wavefunction, so nothing would be gained. DFT has been successful because ap-
proximation of E[ρ] have led to very efficient and reasonable accurate methods for calculations
of molecules and solids.

The Kohn-Sham approach

We split up the functional E[ρ] as

E[ρ] = T [ρ]+Exc[ρ]+EH[ρ]+
∫

d3r ρ(r)Vext(r), (2.10)
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2 Background

where EH =
∫

d3rd3r′ ρ(r)ρ(r′)
|r−r′| is the classical Coulomb interaction of the electron density with

itself, the final integral is the interaction of the density with the nuclear electrostatic potential,
and the functionals T [ρ] and Exc entail all the complicated non-classical physics. T [ρ] yields
the electronic kinetic energy, and Exc[ρ] accounts for exchange and correlation. Now, Kohn
and Sham’s approach offers a simple expression for T [ρ]. A system of N interacting electrons
is mapped to a system of N non-interacting electrons, with orthogonal single electron orbitals
|φi〉, i = 1, ...,N. The many-body wavefunction |ψ〉 for the non-interacting system is a single
Slater determinant formed by the orbitals, and the kinetic energy is given by the expression for
non-interacting electrons:

T [φ1, ...] = ∑
i

1
2
〈φi|p2

i |φi〉. (2.11)

In order to maintain the connection to the real, interacting system the density of both systems is
set to be the same:

ρ(r) = ∑
i
|〈φi|r〉|2. (2.12)

Thus, the whole unknown physics is bundled in the exchange-correlation term Exc[ρ] that needs
to account for the difference between the non-interacting and true kinetic energy, as well. Within
this formalism, the variational principle eq. 2.9 leads to the set of single electron eigenvalue
equations (

p2

2
+Vext(r)+

δExc[ρ]

δρ(r)

)
|φi〉= εi|φi〉, (2.13)

known as Kohn-Sham equation. From the equation, the orbitals can be found, and hence the
energy through reinsertion into the functional. The orbital eigenvalues εi enter as Lagrangian
multipliers for the orthonormality condition, and εN can be identified with the ionization po-
tential by Janak’s theorem [24]. Even though the orbitals |φi〉 possess no a priori physical
meaning, the frontier orbitals are often identified with real single electron wavefunctions, and
this has been justified empirically [25].

Density functional approximation

The first attempts at a practical approximation of the exchange-correlation functional predate
the rigorous foundations of DFT by Hohenberg and Kohn. Thomas and Fermi already put
forward a model already in 1927 [26, 27] expressing the kinetic energy of an electron gas in
terms of its density. However, their model predicts no stable molecules and is thus unfit for
predictive quantum chemical applications. Successive developments have gradually improved
the quantitative performance of DFT methods, while remaining computationally efficient, lead-
ing to their wide spread adoption, especially also among experimentalists. Two DFT papers are
now among the ten most cited scientific works [28]. In the following, we introduce briefly a
hierarchy of different functional approximations. Special attention will be payed to long-range
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2.1 Molecular simulation

corrected functionals that provide the foundation for some of the work in this book and tend to
be among the most accurate for many materials occurring in the context of molecular charge
and energy transport.

Local density approximation
The local density approximation (LDA) goes back to the work of Kohn and Sham [29], and
remains popular for solid-state systems, but is usually too inaccurate for molecules. The
exchange-correlation energy is expressed as a density weighted integral over an energy den-
sity εxc(ρ):

Exc[ρ] =
∫

d3r ρ(r)εxc(ρ(r)). (2.14)

εxc is modeled by the expression for the homogeneous electron gas. Then, εxc = εx + εc, with
the exchange contribution

εx(ρ) =−
3
4

(
3
π

) 1
3

ρ(r)
1
3 (2.15)

as derived by Dirac [30]. The correlation contribution εc cannot be derived in closed form, but
highly accurate quantum Monte Carlo results are available [31], to which analytic expressions
can be fit [32–34]. LDA can be generalized to spin polarized systems, then known as local spin
density approximation (LSDA), using the spin scaling relation:

Ex[ρ↑,ρ↓] =
1
2
(
Ex[2ρ↑]+Ex[2ρ↓]

)
, (2.16)

which is a property of the exact functional. Here, ρ↑,↓ are densities for the two different spin
polarizations alone, and Ex[ρ] is the exchange functional for an unpolarized system that has
been approximated by the Dirac form. The correlation contribution has to be interpolated from
the know unpolarized ρ↑ =

ρ

2 = ρ↓ and fully polarized ρ = ρ↑ cases.

Generalized gradient approximation
LDA can only be truly useful for solids, rather than molecules, because its direct adoption
from the uniform electron gas requires slowly varying densities. For this reason, corrections
have been developed that take into account density fluctuations through inclusion of the density
gradient ∇ρ(r):

Exc[ρ] =
∫

d3r ρ(r)εxc(ρ(r),∇ρ(r)). (2.17)

Such functionals are known as generalized gradient approximations (GGA). There is no unique
way to approximate εxc in this way, but many different approaches exist. One popular GGA
functional is the Perdew-Burke-Ernzerhof (PBE) functional [16]. It is derived by requiring that
certain conditions known to hold for the exact functionals be reproduced by the approximative
form. Therefore, it is free of fitted parameters and tends to be accurate for a broad range of
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2 Background

Figure 2.1: The self-interaction error of DFT functional approximations without Hartree-Fock
exchange becomes apparent when the number of electrons deviates from the inte-
gers. Such scenarious can be defined in terms of density matrices with densities
integrating to arbritary real numbers, and the exact functional predicts that the
energy E(N) follows a straight line between integer points [35]. However, due
to self-interaction, the approximate functionals predict a smooth, convex form.
Hartree-Fock theory is wrong in the opposite direction and predicts a concave de-
pendence on the electron number.

systems, while many GGA functionals employ fits to reference data, limiting their applicability.
PBE is usually chosen as the underlying functional of the DFTB formalism, to be introduced in
a later section, and thus of particular relevance for the work in this thesis. However, introducing
the technical details would exceed the scope of a short introduction, and details can be found in
the literature.

Hybrid functionals
Both LDA and GGA functionals suffer from the self-interaction error. They fail to fully remove
the interaction of electrons with themselves, or others with the same spin according to the ex-
clusion principle, from the energy contribution. Consequences of this are, for instance, severely
underestimated band or HOMO-LUMO gaps, and artificial electron delocalization. LDA and
GGA functionals are local in the sense that the energy is the integral over functions of the
density at certain points, independent of all other spatial locations. Some minor non-locality
is introduced in GGA through the gradient information, but this first order expansion cannot
account for interactions over larger distances. The exchange-term in Hartree-Fock theory (HF)
on the other hand cancels the self-interaction exactly, but since it is calculated as an integral
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2.1 Molecular simulation

over two spatial coordinates, it is non-local. Hybrid functionals take the approach to mix HF
exchange EHF

x with GGA exchange-correlation functionals. The energy then reads:

EHyb
xc [φ1, ...] = αEHF

x [φ1, ...]+ (1−α)Ex[ρ]+Ec[ρ]. (2.18)

The amount of HF exchange can be controlled through the parameter α , and different func-
tionals use different values. Performance can also be improved by fine-tuning α for the system
under investigation. For example, the PBE0 [36, 37] hybrid functional includes a fraction of
α = 0.25 HF exchange. The extremely popular B3LYP [38–40] functionals included α = 0.2
of HF exchange, but as two additional mixing parameters.
The HF exchange term

EHF
x [φ1, ...] =−

1
2 ∑

i, j

∫
d3rd3r′

φ∗i (r)φ∗j (r)φi(r′)φ j(r′)
|r− r′|

(2.19)

depends explicitly on the individual Kohn-Sham orbitals φi, not merely on the density ρ . Con-
sequently, the entire functional becomes orbital dependent. Because the evaluation of the HF
exchange integral scales quartic with system size, DFT with hybrid functionals scales one order
worse than with LDA or GGA functionals. Although in practice distance cut-offs for integrals
often allow cubic scaling, hybrid functionals remain somewhat more computationally expen-
sive.

Long-range corrected functionals
Above introduced self-interaction error is particularly severe for interactions over long distances
on the scale of molecules. Indeed, with LDA or GGA functionals exchange contributions to the
Kohn-Sham potential fall off very quickly:

Vx(r,r′) =
δEx[ρ(r)]

δρ(r′)
∼ e−C|r−r′| (2.20)

for |r−r′| → ∞, with some real constant C > 0. However, one can exactly derive the scaling of
the true exchange-correlation potential [41]:

Vx(r,r′)∼−
1

|r− r′|
(2.21)

for |r− r′| → ∞, which is falling off much slower than exponentially. In addition to a rigorous
proof, there is a simple intuitive interpretation of this behavior. Imagine evaluating the Kohn-
Sham potential at a point far removed from the bulk of the charge density constrained around
the molecule. Since the potential is an effective single particle potential, that corresponds to a
situation where one particle, namely the one on which the potential acts upon, is removed from
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the molecule. Hence, there should be a single positive net charge left. At long distances, the
interaction of the positive charge and the removed electron is then dominated by the monopole
term, leading to specified form. While LDA and GGA exchange functionals fail to reproduce
the correct scaling, the HF exchange term, on the other hand, gives rise to precisely the desired
1/r behavior, so that the HF exchange description is asymptotically exact. While hybrid func-
tionals at least contain such a term, it is scaled down, and therefore too small. The incorrect
long-range behavior can lead to serious errors and the complete breakdown of DFT. Perhaps
most notoriously, DFT with GGA functionals in its time-dependent extension completely fails
to describe charge transfer excitations. It also poorly describes spatially extended states, for
example in conjugated π-systems. Both problems are very relevant for charge and energy trans-
port applications and, therefore, for the work in this thesis. Both problems can be solved with
long-range corrected functionals, whose inclusion in the approximate TD-DFTB method is in-
troduced in a later chapter of this thesis. Long-range corrected functionals exploit the correct
asymptotical scaling of HF exchange by partitioning the Coulomb interaction into a long and a
short range part:

1
r
=

short range︷︸︸︷
f (r)

r
+

long range︷ ︸︸ ︷
1− f (r)

r
. (2.22)

The smooth function f (r) switches between long and short range, i.e. f (0) = 1, f ′(r)< 0, and
f (r)→ 0 for r→ ∞. The error function erf(r) = 2√

π

∫ r
0 e−x2

dx is most commonly employed
f (r) = 1− erf(r), but other choices are possible as well. For the long-range corrected func-
tionals in DFTB that will be introduced later on the exponential function is chosen for practical
reasons f (r)= e−r. Now, short and long range energy contribution are approximated separately:

Ex[φ1, ...] = Esr
x [ρ]+E lr,HF

x [φ1, ...], (2.23)

where GGA, or alternatively hybrid, functionals are used for the short range part, and full HF
exchange for the long range part:

E lr,HF
x [φ1, ...],=−

1
2 ∑

i, j

∫
d3rd3r′

φ∗i (r)φ∗j (r)(1− f (|r− r′|))φi(r′)φ j(r′)
|r− r′|

. (2.24)

Besides the correct description of charge transfer excitations and spatially extended states, long-
range correction also improves the prediction of other properties, such as response properties
[42–44], like the electronic polarizability, and photoemission spectra [45]. Another very useful
improvement for charge and energy transport is the improved description of bond length alter-
nations in conjugated polymers [46]. This is relevant, because the alternation strongly affects
molecular relaxation energies, which in turn sensitively influence transport.
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2.1 Molecular simulation

Time-dependent DFT

Although the Hohenberg-Kohn formalism does in principle establish a connection between the
ground state density and the Hamiltonian, and thus with both excited states and any time evolu-
tion of the system, the variational principle only yields an equation for the ground state. Runge
and Gross have laid the solid foundations for a full time-dependent extension of DFT (TD-DFT).
Like the Hohenberg-Kohn theorems, there are two Runge-Gross theorems:

• There is a one-to-one correspondence, to within a constant shift, between the time-

dependent electron density ρ(r, t) and the external time-dependent potential Vext(r, t)
leading to the time-evolution of ρ(r, t). Through the external potential ρ determines the
entire time-dependent Hamiltonian H(t) and, by extension, the time-dependent wave-
function |ψ(t)〉= |ψ[ρ](t)〉.

• The action

A[ρ] =
∫ t1

t0
dt 〈ψ[ρ](t)|i∂t−H(t)|ψ[ρ](t)〉 (2.25)

is stationary at the true density ρ(r, t). This second theorem yields an equation of motion
through the variational Euler equation

δA[ρ]
δρ

= 0. (2.26)

Introducing time-dependent Kohn-Sham orbitals |φi(t)〉 with ρ(r, t) = ∑i〈ψi(t)|r〉 and carrying
out the variation in eq. 2.26, one finds the the time-dependent Kohn-Sham equations:

i∂t |φi(t)〉=
(

p2

2
+Vext(r, t)+

∫
d3r′

ρ(r′, t)
|r− r′|

+Vxc(r, t)
)
|φi(t)〉. (2.27)

Again as in the ground state formalism, after introducing Kohn-Sham orbitals effective sin-
gle particle equations result, connected by the density. The exchange-correlation potential
Vxc =

δAxc
δρ

results from the exchange-correlation action Axc, which is the difference between
the full action and the known kinetic and Coulomb terms. Commonly, the so called adiabatic
approximation is employed, greatly simplifying the problem:

Axc[ρ] =
∫ t1

t0
dt Exc[ρ(t)], (2.28)

where Exc is the time-independent Kohn-Sham exchange-correlation functional. Then,

Vxc(r, t) =
δExc[ρ(t)]

δρ(r, t)
=Vxc[ρ(t)](r), (2.29)
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with the time-independent Kohn-Sham potential Vxc[ρ]. That is, within the adiabatic approx-
imation the time-dependent density is simply inserted into the time-independent exchange-
correlation functional. In doing so, memory effects are ignored. The approximation works
well in many cases, although many failures are known too (see e.g. Refs. [47, 48]). Extensions
beyond the adiabatic approximation exist and are the topic of ongoing development [49].
Time-dependent DFT is an effective method for the simulation of time-dependent quantum
mechanical processes in molecules and solids. For example, it provides a theoretical foundation
for the charge transfer simulations introduced in the next chapter of this thesis. However, it
finds its most widespread use indirectly in the calculation of excited state properties that will be
discussed in the next section.

Linear-response TD-DFT

The time evolution of an electronic system contains information about its energy spectrum.
Applying a broad-band laser pulse to a system, the density response will show peaks at certain
frequencies ω that are related to electronic excitations of energy h̄ω . This is the fundamental
principle of spectroscopy, where the response peaks appear as absorption or emission peaks.
The same principle can be exploited to calculate excitations within the framework of TD-DFT:
apply an external pulse Vext(r, t)= δ (t), which has the maximal band-width, propagate the time-
dependent Kohn-Sham equations to determine the time-dependent density ρ(r, t), and finally
calculate the frequency spectrum of the density autocorrelation function

∫
d3r ρ(r, t)ρ(r,0).

Then, the peaks in the correlation function reflect the energy spectrum.
An alternative approach to extract excited state information from the time evolution equations
that is based on the same principle, but bypasses propagation in time, has been developed by
Casida [50]. Casida’s method is in fact so popular that it has become mostly synonymous
with the term TD-DFT. Usually, TD-DFT is meant to refer to excited state calculations within
Casida’s framework, rather than real time propagation. The same language is also used in
this thesis. In Casida’s scheme, rather than to calculate a full solution to the time-dependent
Kohn-Sham equations, only the linear response to an external perturbation δVext(t) ∼ eiωt is
calculated. The response function χ(ω) exhibits singularities at the excitation frequencies.
Solving for those singularities yields the desired excitation energies. In fact, many other excited
state properties can be extracted from first order perturbation calculations as well [51]. Given
that an entire chapter of this thesis is concerned with an extension of linear response TD-DFTB,
in the following we will derive the central equations for excitation from closed shell ground
states, following Casida [50].
Let δVext(r, t) be a small external potential, added on top of the nuclear electrostatic potential.
The perturbing potential will cause perturbations δρσ in the spin resolved density, and δHσ

in the Kohn-Sham Hamiltonian, with the spin index σ . The spin index has been added to the
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2.1 Molecular simulation

Hamiltonian because the perturbation is spin dependent. The perturbation in the Hamiltonian
consists of the external potential δVext, and a response δVhxc in the Coulomb and exchange-
correlation part due to the density response δρ:

δHσ = δVext +δV σ
hxc. (2.30)

Within linear response, δρ is assumed to be proportional to δVext:

δρσ (r, t) = ∑
τ

∫
d3r′

∫
dt ′ χστ(r, t;r′, t ′)δVext(r′, t ′), (2.31)

with the linear response function χσ ,τ(r, t;r′, t ′). The potential response is in turn brought about
by the density response and to linear order we have:

δV σ
hxc(r, t) = ∑

τ

∫
d3r′

∫
dt ′ f στ

hxc(r, t;r′, t ′)δρτ(r′, t ′). (2.32)

The response function f στ
hxc(r, t;r′, t ′) must by definition coincide with the first variation of the

Kohn-Sham potential, which is the second variation of the energy functional:

f στ
hxc(r

′, t ′;r, t) =
δ

(∫
d3r′′ ρ↑(r′′,t ′)+ρ↓(r′′,t ′)

|r′−r′′| +V σ
xc[ρ↑(r′, t ′),ρ↓(r′, t ′)]

)
δρτ(r, t)

= δ (t− t ′)
(

1
|r− r′|

+
δV σ

xc[ρ↑(r′, t),ρ↓(r′, t)]
δρτ(r, t)

)
.

(2.33)

Finally, we introduce the response function χστ
KS(r, t;r′, t ′) with respect to changes in the Kohn-

Sham Hamiltonian, which we call the Kohn-Sham susceptibility:

δρσ (r, t) = ∑
τ

∫
d3r′

∫
dt ′ χστ

KS(r, t;r′, t ′)δHτ(r′, t ′). (2.34)

Now, substituting eq. 2.30 into eq. 2.34 and equating eqs. 2.32 and 2.34 relates the different
response functions:

χ
στ(r, t) =χ

στ
KS(r, t;r′, t ′)

+ ∑
σ ′′,τ ′′

∫
d3r′′d3r′′′

∫
dt ′′dt ′′′ χσσ ′′

KS (r, t;r′′, t ′′) f σ ′′τ ′′
hxc (r′′, t ′′;r′′′, t ′′′)χτ ′′τ(r′′, t ′′;r′, t ′).

(2.35)

This equation states that the linear response of the system is given by the density fluctuation
directly due to the external perturbation, the first term on the right hand side, and a response to
the change in potential caused by said change in density, the second term on the right. χKS can
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therefore be interpreted as the response of a non-interacting system because without interactions
the second term vanishes. It can be readily computed by time-dependent perturbation theory,
so that the central problem of TD-DFT becomes to solve eq. 2.35 for the poles of χ . The
calculation can be greatly simplified by a change of representation. First, we choose to work
with the expansion coefficients Pσ

st of the one-particle density matrix Γ in the basis of Kohn-
Sham orbitals. In the ground state Γ = ∑i,σ |ψσ

i 〉〈ψσ
i |, where the sum runs over occupied

orbitals, but for the time-dependent case more generally Γ = ∑s,t,σ Pσ
st |ψσ

s 〉〈ψσ
t |, where s, t

run over all Kohn-Sham orbitals. Then, δρσ (r, t) = ∑s,t δPσ
st (t)ψs(r)ψt(r) and δHσ (r, t) =

∑s,t Pσ
st (t)〈ψσ

s |δH|ψσ
t 〉ψs(r)ψt(r) = ∑s,t Pσ

st (t)δHσ
st ψs(r)ψt(r). Second, we move to frequency

space, rather than working in time, by Fourier transformation. Thus, integrals over the time
domain are turned into sums. Eq. 2.34 becomes

δPσ
st (ω) = ∑

u,v,τ
χ

KS
stσ ,uvτδHuvσ (ω), (2.36)

with frequency ω . χKS(ω) can be calculated from first order perturbation theory as [50]

χ
KS
stσ ,uvτ = δusδvtδτσ

fsσ − ftσ
ωst−ω

, (2.37)

where fsσ is the ground state occupation of Kohn-Sham orbital s with spin σ and ωst = εsσ −
εtσ , with the Kohn-Sham orbital eigenvalues εsσ . For a closed shell system f can be either
1 (occupied) or 0 (unoccupied). Therefore, χKS differs from zero only for transitions from
occupied to unoccupied orbitals. Let i, j, ... label occupied orbitals and a,b, ... unoccupied, or
virtual, orbitals. With this notation, only density matrix coefficients δPia and δPai do not vanish.
One customarily writes

δPσ
ia(ω) = Xσ

ia(ω)

δPσ
ai(ω) = Y σ

ia (ω),
(2.38)

and δρ must take the form

δρσ (r,ω) = ∑
i,a

(Xσ
ia(ω)ψi(r)ψa(r)+Y σ

ia (ω)ψa(r)ψi(r)) . (2.39)

Likewise, the potential response δVhxc takes the form

δV hxc
iaσ (ω) = ∑

u,v,τ
Kiaσ ,uvτδPτ

uv(ω)

= ∑
j,b,τ

(
Kiaσ , jbτXτ

jb(ω)+Kiaσ ,b jτY τ
jb(ω)

)
,

(2.40)
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with the response kernel K that is the matrix representation of fhxc:

Kiaσ , jbτ =
∫

d3rd3r′ψiσ (r)ψaσ (r) f στ
hxc(r,r

′)ψ jτ(r′)ψbτ(r′)

=
∂Hσ

ia
∂Pτ

jb
,

(2.41)

with the Kohn-Sham Hamiltonian Hσ
ia . Notice how K is symmetric under exchange of indices

j,b: Kiaσ , jbτ =Kiaσ ,b jτ . This is because K contains only density functional terms and will allow
simplifications of the final equations, resulting in the so-called Casida equation. For hybrid or
long-range corrected functionals an extra exchange term would be present that violates the
symmetry, requiring a different working equation, an issue to be addressed in the chapter on
long-range corrected DFTB. Finally, using eqs. 2.30, 2.40, and 2.36 we find:

 A B

B A

−ω

 1 0

0 −1



 X

Y

= δVext(ω), (2.42)

where much simplifying notation was introduced. X = (Xσ
ia)i,a,σ and Y = (Y σ

ia )i,a,σ are serial-
ized versions of the response density matrix coefficients, and the matrices A, B are given by

Aiaσ , jbτ = δi jδabδστ +Kiaσ , jbτ , (2.43)

and
Biaσ , jbτ = Kiaσ , jbτ . (2.44)

The response must be infinite when the frequency hits excitation energies Ω. Therefore, the
matrix factor on the right has to vanish and we arrive at the eigenvalue problem A B

B A


 XI

YI

= ΩI

 1 0

0 −1


 XI

YI

 . (2.45)

The molecular excitation energies are give by the solutions ωI of this equation, which there-
fore constitutes the fundamental problem of linear response TD-DFT. Because it shares the
mathematical form of the equations of time-dependent Hartree-Fock theory, it is also known
as the Random-Phase-Approximation, or RPA, equation. The dimensionality can be halved by
deriving the following expression from eq. 2.45:

(A−B)(A+B)(XI +YI) = ω
2(XI +YI), (2.46)
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which is another eigenvalue problem in a lower dimensional space. Recall that for LDA and
GGA functionals Kiaσ , jbτ = Kiaσ ,b jτ . Hence, A−B is diagonal and positive definite, allowing
for yet another transformation of the RPA equations:

(A−B)
1
2 (A+B)(A−B)

1
2 FI = ω

2Fi, (2.47)

and
FI = (A−B)−

1
2 (XI +YI). (2.48)

Because A−B is diagonal, evaluation of the matrix square root is trivial. Eq. 2.47 is an
Hermitian eigenvalue problem and the equation of choice when there are no exchange terms. It
is known as the Casida equation.

2.1.3 The density functional tight-binding method

Albeit DFT is already computationally very efficient compared to most wavefunction based
electronic structure methods, there remain many problems that require quantum treatment, but
at much lower computational cost. For instance, such problems include simulations of large
nanostructures that can contain many thousands of atoms. Given the large and growing im-
portance of nanotechnology, this is of considerable practical relevance, say in the development
process of new integrated circuits or molecular motors. Another field in need of fast computa-
tion are all sorts of dynamical simulations, stretching from single molecular electronic dynamics
for spectroscopy to the simulation of chemical reactions at the active sites of proteins in aqueous
solution. There, the relevant time scales can be on the order of nanoseconds, requiring millions
of quantum calculations, well beyond the scope of DFT. For such purposes, semi-empirical and
approximate methods exist that are far less computationally expensive at the cost of some accu-
racy. Many of those methods rely strongly on fitting of parameters to reference data, severely
limiting their transferability. The density functional tight-binding method (DFTB), on the other
hand, is derived and largely parametrized from DFT, lending it a certain robustness. It tends
to perform particularly well for organic molecules, as the underlying assumptions are usually
satisfied, providing a kind of rigorous foundation that many empirical methods lack. As such
molecules are the target systems for the studies presented in this work, we opted for DFTB as
the underlying method for further development. DFTB does, however, inherit the shortcomings
of the applied density functional approximations. This will be addressed in a later chapter. In
this section, we derive and explain the basics of DFTB, discuss its time-dependent extension
TD-DFTB, and introduce a recent extension to include long-range corrected functionals.
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2.1 Molecular simulation

Derivation

DFTB [52, 53] can be derived from DFT through a series expansion of the DFT energy func-
tional E[ρ] at a reference density ρ0. Here we expand up to quadratic order, leading to the
so-called SCC-DFTB, or DFTB2, method [53] that is the version most commonly used. Early
versions only contained first order terms (DFTB1 [52]), and extensions with third order terms
(DFTB3 [54]) exist as well. Starting from the energy expression

E[ρ] = ∑
i

fi〈φi|
p2

2
+
∫

d3r′
ρ(r′)
|r− r′|

+Vext(r)|φi〉+Exc[ρ]+Enuc, (2.49)

which is a different way to write eq. 2.10, with Kohn-Sham orbitals |φi〉, orbital occupations fi,
and the internuclear repulsion Enuc = ∑A,B

ZAZB
|RA−RB| , we expand

E[ρ] =∑
i

fi〈φi|
1
2

p2 +
∫

d3r′
ρ0(r′)
|r− r′|

+
δExc[ρ0]

δρ(r)
+Vext(r)|φi〉

+
1
2

∫
d3rd3r′

(
1

|r− r′|
+

δ 2Exc[ρ0]

δρ(r)δρ(r′)

)
δρ(r)δρ(r′)

+Exc[ρ0]+Enuc−
1
2

∫
d3rd3r′

ρ0(r)ρ0(r′)
|r− r′|

−
∫

d3r
δExc[ρ0]

δρ(r)
ρ0(r)

+O(δρ
3),

(2.50)

with density fluctuations δρ and the reference density ρ0 such that ρ = ρ0 + δρ . Now, we
group together different terms that will then be further approximated. The first order terms are:

E(1) = ∑
i

fi〈φi|
1
2

p2 +
∫

d3r′
ρ0(r′)
|r− r′|

+
δExc[ρ0]

δρ(r)
+Vext(r)|φi〉

= ∑
i

fi〈φi|H(0)[ρ0]|φi〉,
(2.51)

with the zeroth order Hamiltonian H(0) that depends only on the reference density. The second
order terms are given by the Coulomb integral:

E(2) =
1
2

∫
d3rd3r′

(
1

|r− r′|
+

δ 2Exc[ρ0]

δρ(r)δρ(r′)

)
δρ(r)δρ(r′). (2.52)

Finally, there are zeroth order terms that depend only on the reference density ρ0 and the nuclear
positions:

E(3) = Exc[ρ0]+Enuc−
1
2

∫
d3rd3r′

ρ0(r)ρ0(r′)
|r− r′|

−
∫

d3r
δExc[ρ0]

δρ(r)
ρ0(r). (2.53)
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All three energy contributions will now be further approximated, after an atom centered basis
representation has been introduced:

|φi〉= ∑
A,µ∈A

cµi|χµ〉, (2.54)

where the upper case Latin index A runs over atoms, Greek index µ over basis functions, and
µ ∈ A indicates that orbital µ is centered on atom A: 〈r|χµ〉 = χ(r−RA) for some orbital
function χ . The detailed construction of the basis will be discussed later on. Likewise, the
reference density ρ0 is constructed as a sum of atomic densities ρA, also centered on the atoms:

ρ0(r) = ∑
A

ρA(r). (2.55)

It is the fundamental assumption underpinning DFTB that the molecular density ρ is already
well described by such a sum of atomic densities, with only modest charge transfer δρ . Hence
comes the term tight-binding. Within the basis, E(1) can be expanded out as:

E(1) = ∑
i

∑
A,B

∑
µ∈A,ν∈B

ficµicν i〈χmu|H(0)[ρ0]|χν〉= ∑
i

∑
A,B

∑
µ∈A,ν∈B

ficµicν iH(0)[ρ0]µν . (2.56)

In principle, H(0)[ρ0]µν depends on the positions of all nuclei. However, the integral is domi-
nated by the density contributions coming from the two atoms on which χµ and χν are centered.
Hence, we can approximate:

H(0)[ρ0]µν ≈ H(0)[ρA +ρB]µν = H(0)
µν for µ ∈ A and ν ∈ B, (2.57)

where H(0)
µν depends only on the relative positions of atoms A and B, allowing for precalculation.

Thus, because H(0)
µν is stored, no integral needs to be evaluated at run-time. As shall be discussed

later on, due to symmetry only one rather than three coordinates have to be sampled, reducing
memory requirements to a minimum. For µ = ν the Hamiltonian element coincides with an
orbital eigenvalue of an isolated atom H(0)

µµ = εµ . In order to approximate the second order
terms E(2), we shall partition the space into disjoint regions VA of space closest to atom A, such
that R3 =

⋃
AVA, and write the density fluctuations δρ(r) as a sum of atomic density fluctuations

δρ(r) = ∑A δρA(r), where δρA is non-vanishing only on VA. Next, we define atomic charge
fluctuations as ∆qA =

∫
VA

d3rδρ(r) =
∫

d3r δρA(r), and express charge fluctuations as

δρA(r) = ∆qAgA(r), (2.58)
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where gA(r) is a shape function that must integrate to one. We assume a Gaussian shape for gA:

gA(r) =
1

(2πσ2
A)

3
2

exp
(
− r2

2σ2
A

)
. (2.59)

In doing so, we impose spherical symmetry on the charge fluctuations, effectively leading to a
monopole approximation. Indeed, multipole expansion results in the same form. The width σA

of the charge distribution is then the only free parameter at second order. The energy expression
reads:

E(2) =
1
2 ∑

A,B
∆qA∆qB

∫
d3rd3r′

(
1

|r− r′|
+

δ 2Exc[ρ0]

δρ(r)δρ(r′)

)
gA(r)gB(r′). (2.60)

Discarding the exchange correlation term, only the Coulomb integral has to be evaluated, which
is possible in closed form [53]:

∫
d3rd3r′

gA(r)gB(r)
|r− r′|

=
erf(CAB|RA−RB|)
|RA−RB|

= γAB(|RA−RB|), (2.61)

with

CAB =

√
1
2

1
σ2

A +σ2
B

(2.62)

fixed by the charge distribution widths. To fix the width parameters, we consider the expansion
of the energy of a free atom A in an excess charge ∆qA:

E(∆qA) = E(0)+
dE
dq

∆qA +
1
2

d2E
dq2 ∆q2

A +O(∆q3
A) (2.63)

In DFT the second order term is given by the so-called Hubbard parameter U and related to the
ionization potential IE and electron affinity EA as

d2E
dq2 =U = IE−EA. (2.64)

The Hubbard parameters can be easily determined from DFT calculations on free atoms. Then,
demanding that for free atoms E(2) coincide with 1

2U∆q2 establishes a connection between the
Hubbard parameter UA of an atom and the width parameter σA, hence fixed. In analogy to
∆qA =

∫
VA

d3r δρ , we define atomic charges qA as

qA =
∫

VA

d3r ρ(r) = ∑
i

fi

∫
VA

d3r φi(r)2 = ∑
i

fi ∑
µ,ν

cµicν i

∫
VA

d3r χµ(r)χν(r), (2.65)
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assuming real orbitals. In the tight-binding spirit, we approximate∫
VA

d3r χµ(r)χν(r)≈
1
2

∫
d3rχµ(r)χν(r) =

1
2

Sµν ,

or in other words, the overlap is only non-zero in the atomic regions and can be equally parti-
tioned between both involved atoms. Then qA simplifies to

qA = ∑
i

fi ∑
ν ,µ∈A

cµicν iSµν , (2.66)

which is the same as the famous Mulliken charge expression [55]. ∆qA can be computed as
∆qA = qA−q(0)A with the electronic charge q(0)A of a neutral atom A. The overlap matrix Sµν can
be precalculated, like H(0)

µν . Finally, the third order term E(3) remains to be determined. Because
E(3) is a function of ρ0 alone, and in turn ρ0 is a function of the nuclear positions RA, E(3) can
be written as a function of the RA. Since most of reference charge interactions happens between
atom pairs, with three center contributions smaller, we approximate

E(3) =
1
2 ∑

A 6=B
VAB(|RA−RB|). (2.67)

The functions VAB are called repulsive potentials. For the functional form of VAB splines or
polynomials are employed, where the exact choice does not matter. One function for each pair
of elements is used. While in principle VAB could be calculated directly from DFT, usually it
is fit to reference data. Hence, empirical corrections to the tight-binding approximation are fit
together with the reference as well. Reference data has to be hand-picked to generalize well,
and this can be a tedious process, normally the hardest part of the fitting procedure. One part
of this work is concerned with a generalization of the repulsive potentials to render the manual
selection obsolete by allowing very large data sets to be used. Repulsive potentials will be
discussed in more detail at this later point. Eventually, the full DFTB energy reads:

E = ∑
i

fi ∑
µν

cµicν iH
(0)
µν +

1
2 ∑

AB
∆qA∆qBγAB(|RA−RB|)+

1
2 ∑

A6=B
VAB(|RA−RB|). (2.68)

Like in full DFT, Kohn-Sham equations follow from energy minimization, constrained to or-
thonormal orbitals. Thus, we have:

∑
ν

(
H(0)

µν +
1
2

Sµν ∑
C
(γµC + γνC)∆qC

)
cν i = εi ∑

ν

Sµνcν i, (2.69)

where γµC = γAC for µ ∈ A. The equations have to be solved self-consistently in ∆qA to find
the Kohn-Sham orbitals φi and the energy E. Analytic nuclear gradient expressions ∇RE are
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2.1 Molecular simulation

available to calculate forces [53]. Note how the repulsive potentials only appear in the total
energy expression, but not in the Kohn-Sham equations. They are important for the descrip-
tion of molecular geometries and absolute energies, but do not affect the electronic structure
calculation.

Basis set and reference density

DFTB employs a minimal basis set for the sake of computational efficiency. However, naive
minimal basis sets are not usually sufficient for quantum chemical applications because they
lead to poor quantitative performance. Therefore, the basis sets used in DFTB are specially
optimized. As previously noted, DFTB relies on a tight-binding assumption in which electrons
are expected to be largely confined close to the atoms, what is normally the case to a good
extent within molecules. In free atoms, on the other hand, electron densities tend to be more
diffuse. Accordingly, orbitals coming from free atoms, such as the natural hydrogen s, p, d,
... orbitals, are not a suitable basis set choice. Instead, the basis set is taken from confined
free atom orbitals, where a confinement potential Vconf(r) simulates the effect of the molecular
environment. More explicitly, the basis functions χµ(r) centered on atom A are solutions to the
modified Kohn-Sham eigenvalue equation(

p2

2
+
∫

d3r′
ρA(r′)
|r− r′|

+
δEXC[ρA]

δρ(r)
− ZA

|r|
+Vconf(r)

)
χµ(r) = εµ χµ(r). (2.70)

The purpose of V conf is to compress the density, and consequently Vconf should grow with the
distance from the nucleus. The by far most common choice is a quadratic potential:

Vconf(r) =
(

r
rwf

)2

, (2.71)

albeit some DFTB parametrization have used other potentials, too [21, 56]. The parameter
rwf controls the extend of the confinement. DFTB parametrizations usually fine tune rwf for
optimal accuracy. The atomic density ρA that appears in the Kohn-Sham potential is like-
wise determined from a self consistent constraint free atom calculation, but with a differ-
ent constraint parameter rd. ρA also serves as atom A’s contribution to the reference density
ρ0. Thus, Hamiltonian elements H(0)

µν for atom pairs A and B are calculated and tabulated as
H(0)

µν =
∫

d3r χµ(r)H[ρA(r)+ρB(r)]χν(r). Eq. 2.70 is solved in a Slater type orbital basis, that
is with exponentially decaying basis functions. Therefore, the DFTB basis is also effectively
of Slater type. Because all integrals are precalculated, there is no associated computational ex-
tra cost over, say, Gaussian type functions. While the tabulated integrals H(0)

µν (RA−RB) and
Sµν(RA−RB) do, in principle, depend on three spatial coordinates, only one dimensional tables
for different combinations of orbital symmetry – e.g. s-s, s-px,y,z, px-py, etc. – need to be stored,
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Figure 2.2: The integral involving two arbritarily oriented p orbitals can be reduced to the sum
of integrals over orbitals of fixed relative orientation by exploiting that p orbitals
behave like vectors in R3 under rotation.

exploiting symmetry and the behavior of the spherical harmonics under rotation. See Fig. 2.2
for a visual explanation.

Long-range corrected DFTB

As introduced earlier, long-range corrected DFT functionals treat exchange at far distances at
the Hartree-Fock level and improve the description in many cases that are particularly rele-
vant for this thesis. The traditional DFTB formalism cannot be parametrized from such func-
tionals because it includes no exact exchange terms, nor are there expressions for screened
integrals. Therefore, Lutsker and Niehaus extended the formalism to permit long-range cor-
rected functionals [17, 57] (LC-DFTB). This formalism provides the foundation on which
the extension of TD-DFTB to long-range corrected functionals (LC-TD-DFTB), one of the
developments introduced in this thesis, rests. That merits a thorough introduction to LC-
DFTB. First, we move from a representation in terms of orbital coefficients cµi and Mulliken
charges qA to one in terms of one-particle density matrix coefficients Pµν = ∑i ficµicν i, with

∑i fi|φi〉〈φi| = ∑µ,ν Pµν |χµ〉〈χν |. This step will be necessary because the exchange terms de-
pend on the entire density matrix, rather than just its trace, which are the Mulliken charges. We
can then rewrite the DFTB energy expression eq. 2.68 as

Esr = ∑
µ,ν

PµνH(0)
µν +

1
8 ∑

µ,ν ,α,β

∆Pµν∆Pαβ SµνSαβ (γµα + γµβ + γνα + γνβ )+Vrep, (2.72)

where γµν = γAB for µ ∈ A and ν ∈ B. The tag “sr” has been added to indicate that later these
terms will entail the short range contribution. ∆Pµν = Pµν −P(0)

µν is the deviation of the density
matrix from the sum of free atom density matrices P(0)

µν , where for free atoms P(0),A
µν = δµν fµ

with the orbital occupation fµ . The form of the repulsive potentials Vrep is not affected by the
extension of the formalism, and we shall be no more concerned with them in this chapter. The
long-range corrected functional by Baer, Neuhauser, and Livshitz [58, 59] (BNL) underpins
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LC-DFTB. In their approach, the Coulomb interactions is split up with the switching function
e−ωr, i.e. 1

r = e−ωr

r + 1−e−ωr

r . The range-separation parameter ω controls the distance at which
Hartree-Fock exchange is turned on. ω = 0 leads to conventional DFT, ω→∞ to Hartree-Fock
theory. Short-range exchange-correlation is modeled at the GGA level for correlation and LDA
for exchange:

Eω,DFT
xc = EGGA

c +Eω,LDA
x . (2.73)

The suffix ω on the LDA energy indicates that it is evaluated for the screened, or Yukawa,
interaction, which is possible analytically, while full GGA correlation is included for lack of
a long-range correlation term. For LC-DFTB PBE is used as the GGA functional. Remember
that, with all long-range corrected functionals, long-range exchange is exactly accounted for
by a Hartree-Fock exchange term. The zeroth-order DFTB Hamiltonian H(0) is then calculated
with the BNL functional, fixing the terms in Esr. On top of the functional energy long-range
exchange

1
2 ∑

i, j

∫
d3rd3r′

φ∗i (r)φ∗j (r)e−ω|r−r′|φi(r′)φ j(r′)
|r− r′|

(2.74)

is added. Note that the first summand in 1− e−ωr went into the full-range Coulomb term.
Entering this into the DFTB energy approximation, applying the Mulliken approximation
χµ(r)χν(r) ≈ 1

2Sµν(χµ(r)2 + χν(r)2), and expanding in basis functions yields the long-range
term:

Eω,lr =− 1
16 ∑

µ,ν ,α,β

∆Pµν∆Pαβ SµαSνβ (γ
lr
µβ

+ γ
lr
µν + γ

lr
αν + γ

lr
αβ

), (2.75)

where the long-range integrals γ lr appear. They are approximated in the same way as the full-
range integrals, assuming charge distributions gA(r) around atom A:

γ
lr
AB =

∫
d3rd3r′

gA(r)e−ω|r−r′|gB(r′)
|r− r′|

(2.76)

For the Gaussian profile the long-range integral can also be evaluated analytically, with a final
form a little more complicated than for full-range [17]. The full energy is then the sum of Esr

and E lr:

E =∑
µ,ν

PµνH(0)
µν +

1
8 ∑

µ,ν ,α,β

∆Pµν∆Pαβ SµνSαβ (γµα + γµβ + γνα + γνβ )

− 1
16 ∑

µ,ν ,α,β

∆Pµν∆Pαβ SµαSνβ (γ
lr
µβ

+ γ
lr
µν + γ

lr
αν + γ

lr
αβ

).

+Vrep

(2.77)
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Minimization of eq. 2.77 yields Kohn-Sham equations, which have to be solved self consis-
tently. The Kohn-Sham Hamiltonian reads

Hµν =H(0)
µν +

1
4 ∑

α,β

∆Pαβ SµνSαβ (γµα + γµβ + γνα + γνβ )

− 1
8 ∑

α,β

∆Pαβ SµαSνβ (γ
lr
µβ

+ γ
lr
µν + γ

lr
αν + γ

lr
αβ

).

(2.78)

A major difference compared to conventional DFTB is that consistency in the full density ma-
trix, rather than merely in the charges is required. Another intricate point worth mentioning is
that the number of terms in the sum of exchange terms scales as O(N4) with system size N,
whereas conventional DFTB scales as O(N2). Hence, significantly deteriorated computational
efficiency could be expected. However, in practice quadratic scaling is restored through a cut-off
scheme, where the magnitude of terms is quickly checked with an easily evaluatable estimate,
and negligible contributions below a threshold εthreshold are discarded. A detailed description of
the cut-off procedure can be found in the original work [17].

2.1.4 Force-fields and molecular mechanics

Even the fastest empirical quantum mechanical methods are far too slow to simulate truly large
systems of ten thousands to millions of atoms, let alone on the nanosecond time scale and
beyond. Yet, such large scale problems appear abundantly. Take for example the folding of
proteins in solution, which is one of the preeminent subjects of biophysics and chemistry, or the
description of large sections of amorphous or crystalline organic semiconducting materials that
are studied in this thesis. Therefore, a faster set of methods is required to study them. The gap
is filled by so-called force-field methods. The term “force-field” refers to a fit of some mathe-
matical function V (R1, ..) of the nuclear coordinates Ri to a potential energy surface E(R1, ...),
most of the time the ground state, disregarding the other surfaces. Because usually only a small
subsection of the potential energy surface is of interest, reasonably simple functions suffice for
the fit. In particular, most force-fields do not attempt to describe chemical reactions, only cer-
tain molecules. Oftentimes one addresses large scale structural questions, like the secondary
structure of proteins that are not overly sensitive to the details of the potential energy surface,
so that force-fields are a very adequate manner of description. Indeed, dispersion forces, crucial
for the correct description of large scale and intermolecular arrangement, are poorly accounted
for by DFT and other fast quantum mechanical methods, which require fitted correction terms
akin to force-fields, or else would perform worse.
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Force-fields

There are many different force-fields in existence that differ in what reference data they employ
for fitting, and the precise functional form used. However, most share a number of basic, dom-
inant, and physically inspired terms. Equilibrium molecular geometries are described by way
of equilibrium bond lengths Rb, bond angles θb, and dihedral angles ωd . A series expansion
to second order for bonds, and a Fourier expansion for the periodic dihedrals then yields the
energetic costs of molecular perturbations. The corresponding bonded terms now read:

Vbond = ∑
b

1
2

kb(|R(b)|−Rb)
2, (2.79)

Vangle = ∑
b

1
2

kθb(θ
(b)−θb)

2, (2.80)

and

Vdihedral = ∑
d

Nd

∑
n=0

Vdn(1+ cos(nωdn−ω
(d)), (2.81)

where R(b), θ (b), and ω(d) are the bond lengths and angles, and dihedral angles, calculated at
the current geometry, respectively. Non-bonded interactions consist of two contributions: elec-
trostatic Coulomb interaction of atom centered charges qi and van-der-Waals interaction. The
former accounts for charge transfer within molecules or molecular fragments. The associated
potential reads:

Velectrostatic =
1
2 ∑

i6= j

qiq j

|Ri−R j|
, (2.82)

where i, j run over all atoms. The later entails short-range Pauli repulsion and dispersion inter-
action. Usually, the potential is approximated as

Vvan-der-Waals =
1
2 ∑

i 6= j
4εi j

((
σi j

Ri j

)12

−
(

σi j

Ri j

)6
)
, (2.83)

with interatomic distances Ri j and parameters εi j,σi j. The first summand belongs to Pauli
repulsion, and its form is purely empirical. An exponential decay would be more accurate, but
costly to evaluate numerically, which is why the 1/R12 form is chosen instead. The second
summand belongs to dispersion interaction. The 1/R6 form can be derived from perturbation
theory as the first correction to mean-field, Hartree-Fock like electronic interaction. Eventually,
bonded and non-bonded contributions together yield the complete force-field energy V :

V (R1, ...)=Vbond(R1, ...)+Vangle(R1, ...)+Vdihedral(R1, ...)+Velectrostatic(R1, ...)+Vvan-der-Waals(R1, ...)

(2.84)
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The free parameters can be fitted to experimental data or first-principle calculations. The devel-
opment of good force-fields is difficult. In this thesis, we use different force-field parameters
from the literature, except for the bonded parameters kB and Rb that we fit to equilibrium ge-
ometries and normal mode frequencies from first principle calculations. Because there is little
interdependence of those and other parameters, such a fit is straightforward and greatly im-
proves the accuracy of the molecular vibrational frequencies that affect intermolecular charge
and energy transport.

Molecular dynamics

Most of the time, force-field methods are not used to calculate static properties of single struc-
tures, but to sample static and time-dependent properties dependent on the nuclear coordi-
nates and momenta, like thermal expectation values 〈A(R,P)〉 and time-dependent correla-
tion functions 〈A(R(t),P(t))B(R(0),P(0))〉. Here, A and B are classical functions of the po-
sitions and momenta, not quantum mechanical operators. Likewise, we consider the posi-
tions and momenta as classical phase space variables. Molecular dynamics (MD) considers
the time evolution of a classical, many-atom system, described by a Hamiltonian function
H(R1,P1, ...) = T (P1, ...)+V (R1, ...). T = ∑i

P2
i

2Mi
, with the atomic masses Mi, is the classi-

cal kinetic energy; V the potential energy that can come directly from an electronic structure
calculation (ab initio MD), but for large systems is usually calculated with a force-field. The
system’s time evolution follows the classical canonical equations:

dRi

dt
=

∂H
∂Pi

(2.85)

and
dPi

dt
=− ∂H

∂Ri
. (2.86)

In the Cartesian coordinates we use here, eq. 2.86 reduces to dRi
dt = 1

Mi
Pi, yielding after insertion

into eq. 2.85:

Mi
d2Ri

dt2 =−∂V (R1, ...)

∂Ri
= Fi, (2.87)

with the forces Fi =−∂V (R1,...)
∂Ri

. This is the classical Newtonian equation of motion. Most MD
codes for chemical applications use Cartesian coordinates and, hence, solve Newton’s equation.
In this thesis, we use the Gromacs code [60] to integrate eq. 2.87 numerically. Gromacs offers
several integration algorithms, of which we opt for the leap-frog algorithm [61]. Leap-frog
evaluates positions and velocities V = dR

dt at alternating moments in time. First one expands

Vi

(
t +

1
2

∆t
)
≈ Vi

(
t− 1

2
∆t
)
+

1
Mi

Fi(t)∆t, (2.88)
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2.1 Molecular simulation

then
Ri (t +∆t)≈ Ri(t)+Vi

(
t +

1
2

∆t
)

∆t, (2.89)

with the time step ∆t, usually on the order of 1 fs. With initial conditions Ri(0) = R0 and
Vi
(
−∆t

2

)
= V0 these iterative expressions define the time evolution of the system. Locally

the expansion error is of O(∆t3) because quadratic terms cancel, so that globally the error is
O(∆t2). Crucially, leap-frog conserves energy on average for small enough time steps, leading
to stable and physically meaningful dynamics. The peculiar offset of ∆t/2 between position and
momentum evaluations avoids the addition of terms of different order in ∆t, which is important
for the numerical stability of the simulation.

Thermal and pressure equilibration

The canonical equations lead to energy conserving dynamics E = T (P)+V (R) = const. . Thus,
naive molecular dynamics simulations sample a microcanonical ensemble in the sense of statis-
tical mechanics. If N is the number of atoms, and V a volume to which the system is confined,
we also speak of an NV E ensemble. However, normally the canonical, or NV T , ensemble,
where only the expectation value 〈E〉 of the energy is fixed, corresponds best to experimen-
tal conditions that allow energy exchange with the environment. Then, the probability for the
system to attain energy E should be p(E) = e−βT/Z, with β = 1/(kBT ), temperature T , and
the partition function Z =

∫
d3NRd3NPe−βE(R,P). Canonical energy distribution has to be intro-

duced artificially by suitably altering the dynamics. To this end, there are various ways. One
way is to turn Newton’s equation into a stochastic differential equation by addition of a ran-
dom force term, leading to a Langevin equation. In this work, another approach is used. Nosé
and Hoover showed that there is a unique deterministic way to enforce a canonical ensemble
through the addition of a dummy degree of freedom s. This algorithm is known as the Nosé-
Hoover thermostat [62, 63]. s is linked to the rest of the system in the form of a friction term
−sP/M, yielding altered equations of motion:

Mi
d2Ri

dt2 = Fi− s
dRi

dt
. (2.90)

s obeys its own equation of motion:

ds
dt

=
1
Q
(T −T0). (2.91)

Q is a parameter controlling how strongly the thermostat alters the dynamics of the system. T0

is the desired temperature, while T is the estimated current temperature of the system. The
equipartition theorem is employed to estimate T = 2

3NkB
∑i

P2
i

2Mi
. Under experimental conditions

often the volume of the system may vary, while the pressure P is fixed, leading to an NPT
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ensemble. In that case, with a second dummy degree of freedom, dynamics can be altered to
achieve the correct average pressure. This Parrinello-Rahman barostat works similarly as the
Nosé-Hoover thermostat [64, 65]. Some of the dynamical simulations presented in this thesis
are in the NV T , some in the NPT ensemble. Usually, there is little difference for solids, but for
liquids effects of pressure coupling are more pronounced.

2.2 Fundamentals of charge and energy transport

This thesis aims to provide new tools for the study of charge and energy transport processes
in molecular materials. There is a wide range of materials than can be considered molecular
for the purpose of the methods to be introduced, but, specifically, we will think of bulk materi-
als composed of organic molecules that are semiconductors. Organic semiconductors come as
amorphous and crystalline materials. Since the latter tend to be particularly effective conduc-
tors, a special focus will be on molecular crystals. Organic semiconductors are of significant
and growing industrial interest. They feature prominently in three kinds of devices: as organic
field effect transistors (OFETs), as organic photovoltaic devices (OPVs), and as organic light
emitting diodes (OLEDs). In the light of their usefulness, much theoretical and modeling re-
search has been undertaken. Theory mostly contributes to development in two ways: through a
more thorough understanding of the fundamental driving forces, allowing for educated molecu-
lar design, and as a tool for fast screening of potential materials in the huge space of chemically
feasible molecules. Most of the commonly used models apply in one of two possible lim-
iting cases in which charge or excitations are spatially either highly localized on individual
molecules, or fully delocalized throughout the system. In the following, we will review the ori-
gin of both regimes and the fundamental ideas behind the methods dealing with them. As far as
energy transport is concerned, in this thesis we confine ourselves to energy transport in the form
of Frenkel excitons. A Frenkel exciton is a molecular excitation localized on a single molecule,
that is, there is no charge transfer from one molecule to another. One can also think of it as
an electron-hole pair bound on a single molecule. While the extend of the excitation itself is
confined, excitations on different molecules are coupled, so that excitons can move around via
the combined excitation and deexcitation of a pair of molecules. Exciton and charge movement
then take on the same form and can often be studied on the same footing, albeit arising param-
eters have different origins. Therefore, many results about charge transport apply to exciton
transport as well, and the following discussion is meant to apply to both of them. To simplify
language, we may sometimes refer to only one, but mean both. In chapter 4 the Frenkel exciton
model is explained in more detail.
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2.2 Fundamentals of charge and energy transport

One very important property of interest is how easily charges and excitons can move around.
For charge transport the corresponding quantity of interest is the charge carrier mobility µ:

µ =
〈v〉
E

. (2.92)

Here, the expectation value of the velocity v = dx
dt is the drift velocity of the charge under

the influence of the external electrical field of strength E. In principle, µ is a 2-rank tensor
because in anisotropic materials a field applied in a certain direction can cause charges to move
in another, but since µ is positive semidefinite, it can be diagonalized and decomposed into
three independent one dimensional mobilities. The conductivity σ of a semiconductor is to
µ alongside the charge carrier density ρ as σ = ρcµ . Because the Fermi level lies above the
valence band in semiconductors, charge carriers are either electron excited to the conduction
band, or the holes in the valence band, which they leave behind, that behave as effective particles
with positive charge. µ can depend on the field E, but is constant in the low field limit E → 0.
It is related to the diffusion constant D through a fluctuation-dissipation theorem, the Einstein-
Smoluchowski relation:

µ =
D

kBT
. (2.93)

The relation connects the field induced, directed movement with the random, thermally induced
movement, where the average distance traveled in time t is√

〈(x(t)− x(0))2〉 ∼
√

Dt. (2.94)

Obviously, because excitons posses no charge, electrical fields cannot cause them to move, and
consequently no mobility µ can be defined. They do, however, diffuse through the material
and their proneness to move is still quantifiable by the diffusion constant. For example, exciton
diffusion is very important in OPVs because phonons are absorbed in the bulk, but charge
separation takes place only at interfaces, which the excitons have to reach.

2.2.1 The Holstein model

In this section we explore the Holstein model [66], a simple toy model for an organic crystal.
While the model, introduced in 1959, simplifies much of the complex physics of molecular
materials, it still offers a useful picture that highlights the essential forces shaping transport
processes to large degree. The model is visualized in Fig. 2.3. We consider a one dimen-
sional molecular crystal into which we place a single charge or exciton. The nuclear de-
grees of freedom of each molecule i are described by a single coordinate xi, and the molec-
ular potential energy surface is expanded to second order, so that the nuclear potential energy
becomes a parabola Enuc = ∑i

1
2Mωx2

i , with the molecular vibrational frequency ω , and nu-
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Figure 2.3: The Holstein model for a one dimensional molecular crystal. Molecules are mod-
eled by one nuclear degree of freedom xi, and one electronic state per site i, cou-
pled to neighboring sites with coupling J.

clear effective mass M. For the wavefunction of the charge we assume only one state per
site is necessary to describe it, with identical site energies, all put to zero, and couplings J to
nearest neighbors. The corresponding Hamiltonian then takes on a simple tight-binding form
HTB = J ∑i

(
a†

i ai+1 +a†
i+1ai

)
, where the operator a†

i creates a charge at site i, and its conju-
gate ai destroys it. The ionization or excitation energy, as represented by the site energies,
depends on the nuclear conformation xi. To account for this, the change in energy is expanded
to linear order, yielding the electron-phonon interaction energy Eint = ∑i αxia

†
i ai, with cou-

pling constant α and the site occupation a†
i ai. α is related to the strength of the reaction of

a molecule to the presence of a charge. Completing the square, we see for a single molecule

Enuc +Eint =
1
2Mx2 +αx = 1

2M
(

x+ α

Mω2

)2
+ 1

2
α2

Mω2 . Therefore, the presence of the charge
causes a molecular reorientation, accompanied by an energy change

λ =
1
2

α2

Mω2 . (2.95)

λ is known as the internal reorganization energy of the molecule and has a very strong influence
on the transport regime. Eventually, the full electronic Holstein Hamiltonian, as the sum of all
terms, reads:

H = ∑
i

(
J
(

a†
i ai+1 +a†

i+1ai

)
+αxia

†
i ai

)
+∑

i

1
2

Mω
2x2

i . (2.96)
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Let |i〉= a†
i |0〉 be the state in which the charge is localized on a single site. The localized states

form a basis in which to expand electronic wavefunctions:

|Ψ〉= ∑
i

ci|i〉, (2.97)

with expansion coefficients ci. In case all nuclear coordinates agree x1 = x2 = ... the Holstein
model is identical to a simple, one dimensional tight-binding model. Then wavefunctions c j ∼
eikd j, with lattice spacing d and wavenumber k are electronic eigenstates, as is easy to verify by
insertion. The energy spectrum for x1 = x2 = ...= 0 forms a band with dispersion relation

E(k) =−2J cos(kd)

≈−2J+ Jd2k2 for small k.
(2.98)

The band is, however, not the ground state, but there are bound states with lower energy. Those
states require xi 6= 0, coupling the charge and the nuclei, and forming a bound pair of charge and
molecular deformation, known as a polaron. Clearly, the presence of bound states with energies
below the band can have a huge impact on charge mobility. When E(x1, ...) is the minimal
energy, then ∂

∂xi
E(x1, ...) = 0 for all i. Applying this condition to the electronic eigenvalue

problem establishes a connection between the wavefunction and the nuclear coordinates of the
polaron:

xi =
α

Mω2 |ci|2 =
2λ

α
|ci|2. (2.99)

Hereupon it is possible to find the minimum in two limiting cases of either very large or small
electronic coupling J between sites, relative to the electron-phonon coupling α . In the first case
of large J, the wavefunction should still look much like a band solution, and hence be spread
out over many sites. Therefore, this limit is known as the large polaron solution. Due to the
large extension of the wavefunction, we can assume that i is a continuous index and expand
ci+1 = ci +

∂ci
∂ i +

1
2

∂ 2ci
∂ i2 . Substitution into the eigenvalue equation yields the minimum energy

Elp =−2J− 1
48

1
J

(
α2

Mω2

)2

=−2J− 1
48

λ 2

J
. (2.100)

Compared with the minimum energy Eb = −2J of the band, this corresponds to a polaron
binding energy of Elp−Eb = − 1

48
λ 2

J . Assuming that in the large polaron limit λ is at most on
the order of J, and a typical large value of J ≈ 100meV, the binding energy is on the order of
1meV. At ambient temperature T = 300K the typical thermal energy is about kBT = 26meV,
which is much larger. Thus, as the band is easily thermally accessible, the Holstein model
suggests transport behavior in the large polaron limit is largely determined by the band structure
of the crystal.
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Next, we tend to the other limit where J is small. At J = 0 a possible eigenstate is given by
ci = δii0 for some i0. From this state perturbation theory in J yields the corrected solution:

ci = δii0 +
JMω2

α2

(
δi(i0+1)+δi(i0−1)

)
= δii0 +

J
2λ

(
δi(i0+1)+δi(i0−1)

)
. (2.101)

Because λ is much bigger than J, the wavefunction is almost completely localized on one side.
Therefore, this solution is known as the small polaron solution. The energy of the small polaron
is given by

Esp =−
α2

2Mω2 =−λ . (2.102)

The physical picture behind this is the charge localizing on one molecule and by reorganization
it creates a potential well of depth λ . The magnitude of the binding energy Esp−Eb =−λ +2J

is much larger than the thermal energy at T = 300K. Hence, the small polaron is stable, and
in order to move an energy barrier λ has to be overcome by thermal activation. That is a
typical scenario for transition state theory, which is, indeed, commonly used in this limit. In the
following section, we will elaborate more on how to deal with the two extreme cases predicted
by the Holstein model. Part of this thesis is concerned with the intermediate regime in between
the extremes. The Holstein model ignores some effects that become important exactly there,
such as the fluctuation of the couplings J here assumed to be constant. The extended Holstein-
Peierls model [67], which includes coupling fluctuations, is still used for practical, predictive
applications [68].

2.2.2 The hopping regime

In this section, we explore the hopping limit of charge and energy transport. As previously
established, if the molecular reorganization energy is much larger than the intermolecular elec-
tronic coupling J, the charge or exciton becomes localized on a single site, and in order to move
to a neighbor it has to overcome an energy barrier. The barrier is higher than the typical thermal
energy in the molecule, so to reach the top of the barrier is a random event, driven by molecu-
lar vibration,+ that happens only occasionally. When the barrier is overcome through thermal
activation, transport happens swiftly before the charge becomes trapped again on the next site.
Essentially, the charge moves around by random hopping events, performing a random walk
throughout the material bulk. Because the charge usually stays long enough on each site for
it to relax and thermally equilibrate to a Boltzmann energy distribution, the charge’s random
walk is a Markov process. If pi(t) is the probability to find the charge on site i at time t, the
time evolution of the probabilities, and hence the movement of the charge, obeys the master
equation:

d pi(t)
dt

= ∑
j

(
p j(t)k ji− pi(t)ki j

)
, (2.103)
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2.2 Fundamentals of charge and energy transport

Figure 2.4: Visualization of free energy surface of the transfer process and the important quan-
tities that appear in the rate equation.

where ki j is the rate of transition from site i to j, i.e. the expected number of hops per time
interval. Put into words, the change in probability to be on site i is composed of the chance to
be on another site and move to i, reduced by the chance to already be on i but to move away
to some other site. When an external field E is applied, the charge is more likely to hop into
the field’s direction, resulting in a drift. The transition rates ki j determine the drift velocity
〈v〉 = ∑i, j di jki j, with the distances di j between sites. The drift may be anisotropic, but we
suppress directional indices here for simplicity. The field induced drift is associated with the
mobility

µ =
1
E ∑

i, j
di jki j. (2.104)

One of the fundamental problems of charge and energy transport in the hopping regime has
now become to determine the transition rates ki j. Under various assumptions about the nature
and conditions of the intersite transfer, different expressions can be derived [69]. Classical
transition state theory assumes that transfer only happens in a transition state, which is a well
founded approximation if λ is much larger than J. Thus, transition state theory can be applied
with the charge localized and relaxed on one site as initial state A, and localized and relaxed
on a neighboring site as final state B. After expansion of the initial and final potential energy
surfaces to quadratic order the transition state rate equation can be derived as [70, 71]:

kAB = νeffκele−β∆G†
. (2.105)
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Here, νeff is the frequency of the effective mode that drives the transition, i.e. it is related
to the curvature of the potential energy surface expanded in the reaction coordinate. A re-
action coordinate commonly used for electron transfer processes [72, 73] is the energy gap
∆E(R) = EB(R)−EA(R) between the energy of the initial and final state at the nuclear confor-
mation R. κel is the electronic transmission coefficient, the probability of a transfer to actually
happen when the transition state is reached. Assuming a single crossing of energies EA and
EB, the transfer probability may be derived from the Landau-Zener model [74, 75], which ex-
actly calculates the transition probability PLZ in a two state system where the energy gap varies
linearly in time ∆E ∼ t from −∞ to +∞. Then [74, 75],

κel =
2PLZ

1+PLZ
, (2.106)

with

PLZ = 1− e−2πΓ,

2πΓ =
π

3
2 〈|HAB|2〉TS

νeff
√

λkBT
,

(2.107)

where HAB = 〈A|H|B〉 is the electronic coupling of initial and final state. HAB is the same as
J in the Holstein model, but since the coupling may actually fluctuate, the expectation value at
the transition state must be taken. The final quantity in the transition state rate expression is the
activation free energy ∆G†, the height of the reaction barrier. For charge and exciton transfer
between small molecules the free energy is mostly identical to the energy because entropic
contributions are small. ∆G† can be decomposed into two contributions:

∆G† = ∆G‡−∆
‡. (2.108)

∆G‡ is the diabatic activation energy, the energy of the initial state at the transition geometry. It
is determined by the reorganization energy λ and the driving force ∆G0, the equilibrium energy
difference between final and initial state [76]:

∆G‡ =
(λ +∆G0)

2

4λ
. (2.109)

In crystals all sites are equivalent, so that ∆G0 is entirely brought about by the external field:
∆G0 =±EdAB for charges or ∆G0 = 0 for excitons. In amorphous materials different environ-
ments, including polarizability, need to be taken into account. ∆‡ is the lowering of the barrier
due to the energy splitting caused by the interaction of initial and final state [76]:

∆
‡ = 〈|HAB|2〉

1
2
TS−

1
λ
〈|HAB|2〉A. (2.110)
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The rate expression can be further simplified in the nonadiabatic limit Γ� 1 that assumes very
fast transfer at the transition state. Under this assumption e−2πΓ can be expanded to first order,
such that 1− e−2πΓ ≈−2πΓ, and the rate simplifies to

kAB =
2π√

4πλkBT
〈|HAB|2〉TSe−β∆G‡

. (2.111)

Eq. 2.111 is the famous Marcus rate expressions that has found ample use in charge transport
simulations [77–80]. It has also been applied to exciton transport [81], although the alternative
Förster rate [82] expression is far more popular for energy transport [83].

2.2.3 The band regime

Many high-performance organic semiconductors form crystals. As such they do not differ fun-
damentally from inorganic semiconductors, except for the usually weaker bond between lattice
sites, and the larger electron-phonon coupling due to intramolecular relaxation. As already in-
dicated by the Holstein model, if relaxation is not too strong, the crystalline band structure may
prevail. Therefore, the band regime is the second commonly discussed transport regime, on
the opposite end from hopping. Note that while band structure is most of the time associated
with charge transport, the translational symmetry that leads to electronic bands can also cause
excitonic bands to form. The methods for the study of the band transport regime are largely
the tools solid-state physics has developed for inorganic semiconductors. The crystal geometry
is invariant under translations R→ R+ a, where a is a multiple of the crystal lattice vectors.
Because for that reason the Hamiltonian commutes with translation operators, there is a joint
basis of eigenvectors, or in other words, electronic wavefunctions take the form of Bloch waves
[84]:

Ψ(r) = eikruk(r), (2.112)

where uk(r+ a) = uk(r) for a multiple a of the lattice vectors, and the wave number k is the
momentum of state Ψ. Bloch states are spatially delocalized across the entire crystal, and hence
the exact opposite of the localized states of hopping transport. The electronic spectrum then
consists of a discrete set Eα , α = 1,2, ... of continuous energy bands Eα(k). In semiconductors
the Fermi levels falls in between bands, so that all bands are either fully occupied or vacated.
Some charges are thermally excited from the filled valence band to the empty conduction band,
resulting in only partially filled bands for electrons and holes. Excitonic bands are also normally
only occupied by a few quasi-particles. Therefore, charge and energy carries can usually be
modeled as quasi free particles. For a free particle the relation between its momentum k and
kinetic energy T is E(k) = k2

2m , with the particle mass m. Then, one of the classical canonical
equations reads dr

dt =
∂E(k)

∂k = k
m , relating momentum and velocity. The semiclassical approach

to particle dynamics in semiconductors is to assume that the classical canonical equations are
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Figure 2.5: A charge is excited from the the valence to the conduction band, leaving behind
a hole. The Fermi level EF falls in between the two bands. The curvature of the
bands is related to their effective mass m∗ that can be negative.

valid, but the free particle dispersion relation is replaced with the band structure dispersion
Eα(k) [85]. The velocity dr

dt can in this context be interpreted as the group velocity of the
wavefunction. Near the band minima and maxima, where ∂Eα (k)

∂k = 0, Eα(k) can be expanded

Eα(k)≈ E0+
1
2

∂ 2Eα (k)
∂k2 k2 = E0+

k2

2m∗ , resulting in same form as for the free particle, but with an
effective mass m∗ given by the band structure:

1
m∗

=
∂ 2Eα(k)

∂k2 . (2.113)

The effective mass m∗ can differ extremely from the real mass of the charge carriers. In fact,
m∗ can even be negative and is typically anisotropic, although directional indices have been
suppressed here for simplicity. Besides the band structure entering into m∗, the interaction
of carriers and phonons needs to be accounted for, too. However, in the band limit, we may
assume the interaction to take the form of occasional, random scattering events. Let f (k,r, t)

be the distribution function of momenta and positions at time t. In thermal equilibrium the
time and position independent distribution f0(k) is given by the Fermi-Dirac or Bose-Einstein
distribution:

f0(k,r) =
1

1± e(Eα (k)−µ)/(kBT )
, (2.114)

where µ is not the mobility, but the chemical potential, and the sign is positive for fermions like
electrons and holes and negative for bosons like singlet and triplet excitons. The time derivative
of f excluding interaction with phonons is d f (k,r,t)

dt =
(
∂t +

dr
dt ∂r +

dk
dt ∂k

)
f (k,r, t) by the chain

rule. The derivatives of r and k can be calculated according to the semi-classical equations of
motion from above: dr

dt =
k

m∗ , and dk
dt =±E, in an external electrical field E. For excitons we set

38



2.2 Fundamentals of charge and energy transport

E = 0 because they have no charge, and in the following we pick the minus sign of the electron
case for simplicity. Hence follows the Boltzmann equation for transport in bands [85]:(

∂t +
k

m∗
∂r−E∂k

)
f (k,r, t) =

(
∂ f
∂ t

)
coll

. (2.115)

The term
(

∂ f
∂ t

)
coll

is called the collision integral and describes scattering on phonons. At only
small deviations from the equilibrium distribution the relaxation time approximation is valid. It
assumes that the extend of scattering is proportional to the distance from equilibrium:(

∂ f
∂ t

)
coll

=− f (k,r, t)− f0(k)
τ(k)

. (2.116)

Here, τ(k) is the relaxation time, which determines how fast the system relaxes back to equi-
librium after a perturbation. τ is available from ab initio electronic structure calculations. One
condition for the Boltzmann equation based approach to be valid is that τ is significantly larger
than the typical transfer time from one site to the other, since otherwise the random scattering
assumption breaks down. In the relaxation time formalism the Boltzmann equation is solvable
in closed form, and one obtains for the conductivity σ [85]:

σ =− 1
3π2

∫
dk

∂ f0(k)
∂k

k3

m∗
τ(k). (2.117)

At small temperatures ∂ f0(k)
∂k is strongly peaked at the Fermi level: ∂ f0(k)

∂k ∼−δ (k− kF), allow-
ing to approximate further σ ≈ ρτ

m∗ , with the carrier density ρ and the relaxation time τ at the
Fermi level. Then, we directly find the mobility µ = σ/ρ:

µ =
τ

m∗
. (2.118)

This approximate expression for the mobility is known as the Drude form. It tells us that in the
band limit the mobility is determined by the band structure and electron-phonon scattering. The
former enters through the effective mass m∗, related to the curvature of the band, and the later
in the from of the scattering time τ . The mobility increases with τ , that is, less scattering leads
to higher mobilities. It decreases with m∗, which means that flat bands lead to lower mobilities.
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3 Simulation of charge transport in bulk
organic materials

3.1 Introduction

Charge transport in high performance organic semiconducting materials can be an intricate phe-
nomenon. In the context or organic semiconductors, high performance usually means charge
carrier mobilities on the order of ∼ 1 cm2

Vs to 10 cm2

Vs . Amorphous materials often exhibit mobili-
ties of 0.1 cm2

Vs or less, while in traditional inorganic semiconductors mobilities far in excess of
100 cm2

Vs are observed. In both extreme cases the mechanisms of charge transport are clear. In
disordered materials with low mobilities, charges are localized on single molecules or molec-
ular fragments and charge diffusion happens through random hops from one site to the other,
brought about by thermal activation. In ordered, inorganic materials, on the other hand, elec-
tronic states are spatially extended, with well defined momenta, and form a clear band structure.
Charges move around as quasi-free particles with an effective mass m∗, given by the band cur-
vature, and randomly scatter off phonons on a time scale τ that is much larger than the time it
takes to move from on atom to the other. However, because many materials such as organic and
liquid crystals fall in between, the dominant mechanism is often not clear a priori. In fact, the
intermediate may be a distinct regime altogether [10]. That casts doubt on the applicability of
methods derived for the extreme cases in this regime. For example, the rate expressions used
to calculate transition probabilities in the hopping regime assume thermal equilibration on each
site. It has been known for some time that for many materials this is a questionable assumption
[86]. Moreover, if states are localized over multiple sites, and localization fluctuates in time, it
becomes difficult to define initial and final states among which transition probabilities can be
calculated. Coming from the other end of the spectrum, if electron-phonon scattering times τ

fall below the transition time from one site to the next, a Boltzmann equation based description
of scattering is rendered invalid, and so are many methods from solid state physics. Then,

Reproduced in part with permission from “Heck, A., Kranz, J. J., & Elstner, M.
(2016). Simulation of Temperature-Dependent Charge Transport in Organic Semicon-
ductors with Various Degrees of Disorder. J. Chem. Theory Comput, 12(7), 3087-
3096”. Copyright 2016 American Chemical Society. ACS article-on-request link:
http://pubsdc3.acs.org/articlesonrequest/AOR-dVFGzXBpJQHRnyGUJ4yX
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a different approach is required that explicitly takes into account the interaction of electronic
and nuclear degrees of freedom. Obviously, a full solution of the time-dependent Schrödinger
equation for both electrons and nuclei would be appropriate, but alas, is entirely untenable for
the tremendous computational cost involved. Instead, one requires an approximate description
on different levels. The nuclear dynamics can be treated classically, while the electrons have to
be treated with quantum mechanics, so that a mixed quantum-classical dynamics scheme has
to be used. Further, electronic structure calculations need to be fast, and therefore no high level
methods can be used. Some have parametrized simple model Hamiltonians [68], which limits
the generality of the model and requires ample preparation of each simulation. Others have used
force-field like approaches to calculate electronic parameters [87], which also requires prepara-
tion and is somewhat less accurate. In this chapter, we apply a model for charge transport that
exploits the molecular structure of a material and uses the approximate DFTB method [52, 53]
for electronic calculations, as well as a force-field method for a large bulk of molecules. This
method was first developed to simulate charge transport in DNA [88–90], was later applied to
proteins [91], and eventually adapted by Heck et al. [14] for organic semiconducting materials.
We will focus on the temperature dependence of the hole mobility µ as the property of interest
because it is a characteristic reflection of the underlying transport mechanism. Depending on
the active mechanism, vastly different trends are observable [92]. In amorphous materials and
impure crystals mobility can often be observed to increase with temperature because thermal
activation of the underlying hopping mechanism increases. If hopping takes place, there are
actually various different transport regimes. Asymptotically for large temperatures, mobility
follows a power law with an exponent of −3/2: µ ∼ T−3/2. If band like transport dominates,
mobility uniformly decreases with temperature because of increased electron-phonon scatter-
ing. In that case, the mobility universally follows a power law µ ∼ T−n, where the exponent n

can take on different values, and is not limited to n = 3
2 . Rate equation based approaches can

not reproduce this behavior, because possible predictions are limited by the mathematical form
of the rate expression that does not entail power law behavior over an extended temperature
range with an exponent different from the asymptotical.

In the next section of this chapter, we will describe and explain the multiscale approach that
has been used to simulate charge transfer. Then, simulations of hole transfer in an anthracene
crystal are presented and results compared to experiment. Finally, we present results for other
materials and draw conclusions.
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3.2 Methodology

In this section, we introduce the multiscale method that has been used to perform the charge
transport simulations. In its form adapted for organic semiconducting materials, it was origi-
nally published in Ref. [14], where a detailed derivation and explanation can be found.
We start out with a big bulk system that can contain hundreds of thousands or millions of atoms.
If, for example, the system studied is a crystal, this would be a large cut out of the entire crystal,
or, in other words, a k×m×n-fold duplication of the unit-cell, with k,m,n copies, respectively
in the different crystal directions. The energy Etot of this system is described at the force-field
level. Compared to the cost of the quantum mechanical calculations the cost for the force-field
calculations will be negligible, allowing a truly large environment. Partial charges on the atoms
provide the electrostatic background. Out of this bulk, we select a subsection for quantum
mechanical treatment. The charge will be confined to this region. At this point, we exploit
the molecular structure of the problem. Electronic coupling between neighboring molecules
in dispersion bound molecular materials is considerably smaller than interatomic coupling in
inorganic crystals, held together by covalent interacions. Therefore, the material’s electronic
structure is well approximated by a composition of the electronic structures of the individual
molecules or molecular fragments. For each molecule or fragment, a DFTB single-point calcu-
lation is run, either self-consistently (DFTB2) or not (DFTB1). Because there is usually little
interatomic charge transfer in unpolar organic molecules, the DFTB1 level is sufficient [14],
saving about 5 to 10 self-consistency cycles and an according factor in computational cost. The
environment is included in this calculation through the force-field’s atomic point charges as
QM/MM coupling. If molecular fragments, rather than complete molecules, are present, the
fragments are cut-off from the remainder of the molecule by replacing marginal atoms with
hydrogen as linking atoms. Note that for fixed molecular size the calculation is naturally linear
scaling with the size of the quantum region, and independent DFTB calculations are trivially
parallel, permitting efficient parallelization. Hence, for each molecule I we find molecular
Kohn-Sham orbitals |φ m

I 〉. m labels the relevant molecular orbitals. Here, the next approxi-
mation comes into play. We shall consider only the transport of individual, isolated charges.
The charge is transported through states that lie close to the Fermi level, and those states, in
turn, are composed of molecular states near the HOMO level for holes, or LUMO for electrons.
Therefore, depending on the energy gaps between Kohn-Sham orbitals, the index m is confined
to HOMO or LUMO and perhaps some orbitals close in energy. The molecular orbitals then
provide a small, yet sufficiently complete, basis set to express the charge wavefunction:

|Ψ〉= ∑
I

∑
m

cIm|φ m
I 〉. (3.1)
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3 Simulation of charge transport in bulk organic materials

Next, we make use of Janak’s theorem [24] that states that the DFT HOMO orbital eigenvalue is
the same as the ionization potential of a molecule, and hence the expectation value of the Kohn-
Sham Hamiltonian with respect to the HOMO orbital. While true for the exact functional, the
statement does not hold as well for practical approximations, in particular GGA functionals.
However, we only need to reproduce relative energies of different molecules, which by error
cancellation is far more accurate. Then, the energy of the charge is ±〈Ψ|H[ρ]|Ψ〉, with plus
for electron transport and minus for hole transport. To maintain simplicity of notation, we shall
henceforth assume hole transport and pick the negative sign, as generalization remains straight
forward. The full energy of a positively charged system now reads:

E = Etot−〈Ψ|H[ρ]|Ψ〉+EQM/MM

= Etot−∑
I,J

∑
m,n

c∗ImcJn〈φ m
I |H[ρ]|φ n

J 〉+EQM/MM.
(3.2)

EQM/MM is the Coulomb interaction energy of the charge with the bulk environment described
with a force-field. At the DFTB level, the charge can be described by a Mulliken charge on the
atoms A:

∆qA = ∑
I

∑
m
|cIm|2

(
∑

µ∈A,ν
aµmaνmSµν

)
, (3.3)

where the aµm are the orbital coefficients, and the sum in braces can be limited to the molecule
containing atom A because the overlap Sµν decays exponentially with distance. Then, summing
over all atoms A ∈QM that belong to the QM region, and the atoms B ∈MM that belong to the
force-field region and have partial charge qB, we have:

EQM/MM = ∑
A∈QM

∑
B∈MM

∆qAqB

|RA−RB|
. (3.4)

Now, we can derive equations of motion for the electronic wavefunction and the nuclear posi-
tions. The wavefunction obeys the time-dependent Schrödinger equation, with the Hamiltonian
Hmn = 〈φ m

I |H[ρ]|φ n
J 〉, suppressing the molecular index:

i∂tcm = ∑
n

Hmncm− i∑
n

cn〈φm|∂t |φn〉. (3.5)

The Hamiltonian can be calculated with the DFTB expressions, which is fast, so that com-
putational cost of this step is lower than the cost of the single molecular calculations. It has
been found that while the magnitudes of the Hamiltonian elements calculated for fragments are
systematically to small, multiplied with an appropriate correction factor, DFTB predicts very
accurate Hamiltonians with an error small compared to other error sources [93, 94]. Such a
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3.3 Simulation of hole transport in anthracene

Figure 3.1: Structure of an anthracene molecule. Crystalline anthracene is prototypical for
many high-performance organic semiconducting materials.

correction factor is applied. The last term represents the non-adiabatic coupling. The coupling
can be rewritten as

〈φm|∂t |φn〉=
〈φm|(∂tH[ρ]) |φn〉

εm− εn
, (3.6)

emphasizing its relationship with the orbital energy gap εm−εn. The coupling is low, effectively
zero, whenever states are energetically well separated, or when the nominator matrix element is
small, which is the case for states located on different molecules. For not too big molecules the
energy spacing is usually quite large, so that the couplings are not very important. It becomes
infinite when states cross. Here we assume 〈φm|∂t |φn〉 ∼ δ (εn− εm) for states on the same
molecule. The nuclei coordinates follow the classical equation of motion:

Mi∂
2
t Ri =−∇iE

=−∇iEtot +∑
m,n

c∗mcn∇iHmn−∇iEQM/MM.
(3.7)

The first derivative is calculated from the force-field, the final two can be analytically evaluated
at the DFTB level. This way of calculating the forces as the derivative of the total energy is
equivalent to the Ehrenfest, or mean-field, mixed quantum-classical propagation scheme [95].
Other schemes could be applied as well. In fact, in the next chapter, concerned with energy
transport, surface-hopping will be used instead, and this is crucial, as will be addressed there.
We find that because molecular relaxation tends to be weaker for charge than for energy trans-
port, Ehrenfest propagation is often sufficient in case of the former.

3.3 Simulation of hole transport in anthracene

In this section, we look at hole transport in an anthracene (see Fig. 3.1) single crystal. An-
thracene is an outstanding benchmark system to test methods for the prediction of charge trans-
port properties in high mobility organic materials. First of all, it is a prototypical and simple
system, consisting of three completely flat aromatic rings, with well understood electronic struc-
ture, and forming a crystal held together by dispersion interactions. Furthermore, high-quality
experimental results are available. Because transport properties are extremely sensitive to crys-
tal defects and impurities that can easily reduce mobility hundredfold and alter the transport
mechanism, reliable measurements are hard to come by. Karl et. al. provide very detailed
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3 Simulation of charge transport in bulk organic materials

time-of-flight mobility measurements for electrons and holes in ultra pure anthracene crystals
[15]. Their measurements are resolved by crystal direction and temperature, allowing insides
into the transport mechanism. Finally, for these reasons, many other theoretical studies address
anthracene [67, 87, 96, 97], and direct comparison among them is possible.

3.3.1 Simulation setup and computational details

We simulate an anthracene single crystal block of 20×20× unit-cells. Each unit-cell contains
two molecules, leading to a total of 384000 atoms. The well known Herringbone structure of
anthracene crystals and initial crystal parameters were adopted from experiment, but later al-
lowed to change during pressure equilibration. We calculated force-field partial charges for the
atoms according to the RESP fit procedure [98], where charges are fit to reproduce the molec-
ular electrostatic potential predicted by a quantum chemical calculation. Bonded force-field
parameters were assigned to reproduce ab initio predictions at the MP2/6-31G* level of the-
ory. The GAFF force-field [99] is used for non-bonded interactions. GAFF has been found
to perform reasonably well for organic crystals [100]. At the molecular mechanics level, we
apply periodic boundary conditions, implemented as particle mesh Ewald sums for long-range
electrostatic interactions and minimum image convention for short-range van-der-Waals interac-
tions. The classical equations of motion for the nuclei are integrated with the leap-frog scheme
[61] and a time step of δ t = 1fs. Version 4.6 of the Gromacs [60] molecular dynamics code
performs all classical force calculations and integration of the classical equations of motion.
We have implemented the DFTB and quantum dynamics code on top of Gromacs. Within the
anthracene block, we have selected sets of 18 sequential molecules in each crystal direction
(see Fig. 3.2). Thus, we regard a three dimensional problem as effectively one dimensional.
Artificial confinement of the charge to one dimension does, of course, introduce an error, but
since the probability to bypass a site in a given direction through entering the others is the prob-
ability to take the direct way squared (because two steps, rather than one, are taken), the effect
should be small. Each molecule is a site for the purpose of the charge transport calculations.
We confine ourselves to hole transport. Because anthracene is an unpolar molecule, there is
little charge transfer between atoms, so we found the effect of self-consistency on the DFTB
singe-point calculations to be negligible. Therefore, DFTB single-point calculations are carried
out non-self-consistent, or, in other words, at the DFTB1 level. A Runge-Kutta (RK) integrator
solves the time-dependent Schrödinger equation. Although RK is not unitary, and hence does
not exactly preserve the norm of the wavefunction, we can set precision high enough to ensure
that to within numerical accuracy the norm is preserved at each step, since computational cost
is small compared to the DFTB single-point calculations. Thus, all simulations are numerically
stable. We study hole transport at different temperatures to investigate temperature dependence
as a proxy for the underlying transport mechanism. Temperature ranges from T = 150K to
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3.3 Simulation of hole transport in anthracene

Figure 3.2: A 20× 20× 20 block of anthracene. The colored molecules are selected for the
DFTB and quantum dynamics calculations. The three crystal directions are: a
(red), b (green), and c (blue).

T = 400K in steps of 50K. The Nosé-Hoover [62, 63] thermostat is used for temperature
equilibration, with initial equilibration lasting several nanoseconds. Pressure is equilibrated to
P = 1bar with the Parinello-Rahman [64] barostat.
Using 100 uncorrelated, thermalized initial structures, the time evolution |Ψ(t)〉 of the hole
wavefunction is computed, and each simulation lasts for 1ps. The charge is initially located on
a single site at the center of the molecular chain. Because mobilities are only extracted from
the asymptotic diffusion of the charge, the initial conditions do not affect the results. At each
point in time the position of the charge can be calculated as the expectation value of the position
operator 〈Ψ(t)|x|Ψ(t)〉. Then, the statistical mechanical expectation value 〈x(t)〉 is the average
of the quantum expectation over all trajectories |Ψk(t)〉:

〈x(t)〉= lim
N→∞

1
N

N

∑
k=1
〈Ψk(t)|x|Ψk(t)〉 ≈

1
Nsample

Nsample

∑
k=1
〈Ψk(t)|x|Ψk(t)〉, (3.8)

with the number of trajectories Nsample = 100. We calculate 〈Ψ|x|Ψ〉 as

〈Ψ|x|Ψ〉= ∑
I,m,J,n

c∗ImcJn〈φ m
I |x|Φn

J〉 ≈∑
I,m
|cIm|2xCM

I , (3.9)

where xCM
I is the center of mass of molecule I. The approximation holds well given the sym-

metry of the molecule. The charge performs a random, diffusive motion with diffusion constant
D. In one dimension the squared spatial spread σ(t)2 = 〈x(t)2−〈x(0)〉2〉 of the charge is then:

σ(t)2 = 〈x(t)2−〈x(0)〉2〉= 2Dt. (3.10)
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3 Simulation of charge transport in bulk organic materials

Figure 3.3: Sample trajectory of hole diffusion in anthracene in b-direction. The index on the
x-axis represent the location of the charge.

Hence, we can calculate σ(t)2 from the simulations and, in turn, compute D from a linear
fit σ(t)2 = at + b with D = a/2. For this fit, we cut off the initial, ballistic regime, where
σ(t)2 ∼ t2. At the other end, simulation time is limited by the time it takes the charge to
reach the boundary of the quantum region. We fit over a 500fs interval in between. Diffusivity
and mobility at low external fields are linked by a fluctuation-dissipation theorem, the Einstein
relation:

µ =
D

kBT
. (3.11)

Thus, we obtain mobilities from quantum dynamics simulations. Alternatively, one may directly
apply an external field and calculate the drift velocity as a function of field strength. We tried
this and found similar results. The alternative approach will, however, not be discussed further.

3.3.2 Results

A sample trajectory that exemplarily demonstrates the time evolution of the hole wavefunc-
tion is shown in Fig. 3.3. The charge is bounced around, and eventually the wave packet is
broken up by scattering off phonons, whereupon it increasingly delocalizes until it is evenly
spread throughout the system. This means, no stable polarons exist on the time scale of the
simulations. Quick oscillations between neighboring sites are observable. They should be due
to Rabi-like behavior of the charge when the energy levels of neighboring sites cross. The
temperature dependent mobilities µ in all three crystal directions as extracted from the simu-
lations are displayed in Fig. 3.4, and in Tab. 3.1 they are compared to experimental results at
three different temperatures. We observe uniformly decreasing mobilities, following power-law
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Figure 3.4: Simulated temperature dependence of hole mobility in anthracene in the different
crystal directions. Mobilities follow a power-law µ ∼ T−n with different exponents
n also shown in the figure.

Temp. a-direction b-direction c-direction

sim. exp. sim. exp. sim. exp.

200 K 1.37 2.22 3.95 5.05 1.41 1.98

250 K 1.14 1.51 3.09 3.74 0.96 1.2

300 K 0.87 1.14 2.01 2.93 0.7 0.85

Table 3.1: Simulated and experimentally measured [15] hole mobilities µ

[
cm2

Vs

]
in anthracene

at different temperatures.

a-direction b-direction c-direction

sim. exp. sim. exp. sim. exp.

Exp. n 1.09 1.5 1.45 1.34 1.46 2.38

Table 3.2: Simulated and experimentally measured [15] power-law exponents n of the temper-
ature dependence µ ∼ T−n of the hole mobility in anthracene.
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behavior µ ∼ T−n in all directions, in contrast to predictions by hopping models, but in accor-
dance with experiment [15]. Exponents vary between n = 1 to n = 1.5. This indicates band-like
behavior. Quantitatively, the predicted mobilities fall within a factor of two of experiment. For
the formidable task of mobility prediction, such an agreement is very good, as it is often very
difficult to even predict the correct order of magnitude. At ambient temperature the anisotropy
of transport in different directions is correctly reproduced, although, as the relative temperature
dependence is not exactly correct, there must, of course, be a temperature at which the ranking
of transport efficiencies in different directions will no longer be correct. The power-law expo-
nents n are reasonably well predicted, but the predicted exponent in c-direction in particular
is somewhat too small. Two exponents are overestimated, while one is underestimated, so the
error is not systematic.

3.4 Conclusion

By considering the real time evolution of the charge wavefunction, we successfully predicted
the power-law form of the temperature dependence of the hole mobility. As has been outlined
in the introduction, in order to predict the power-law, a band-like transport mechanism must
be reproduced. The real time propagation scheme indeed achieves a description of this mech-
anism, confirming that it is appropriate in this regime. Visual inspection of the wavefunction
time evolution, as in Fig. 3.3, reveals a tendency of the charge to completely delocalize with
time. The strong delocalization is likely an artifact of the mean-field coupling of the classical
and quantum subsystems. The Ehrenfest mean-field approach fails to account for decoherence.
Therefore, once a wave packet gets split in two by scattering off a phonon, the wavefunction al-
ways remains in a superposition of the two new wave packets and is never recollapsed unto one.
Because the forces exerted on the nuclei by the charge are a weighted average over all charge
locations (see eq. 3.7), molecular relaxation due to the charge will decrease with delocaliza-
tion. Yet, we observe no artificially growing diffusivity over time. This result indicates that
not relaxation, but fluctuation of the electronic coupling between molecules controls transport
in the band-like regime, as some authors have proposed [10]. Indeed, the molecular relaxation
energy of a single anthracene molecule at the mixed force-field/DFTB level is λ = 87meV and
states tend to be delocated over two molecules, cutting the effective value in half. Then, the
relaxation energy is of the same size as the typical intermolecular coupling, a ratio much lower
than in amorphous organic semiconductors, where couplings are smaller. The erroneous delo-
calization caused by mean-field coupling begs the question of what happens in other materials
with slower charge transport. Fig. 3.5 lists a set of different materials for which we performed
hole transport simulations in analogy to those presented in this chapter for anthracene. Since the
focus of this chapter is on the ability of the presented method to correctly describe the band-like
regime in anthracene, we will not discuss the details of these simulations at this point. They are
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Figure 3.5: Five different materials: a) anthracene; b) α-NPD, an amorphous material; c)
P3HT, considering interstrand transport in an order section of the regioregular ma-
terial; d) HBC-LC, considering transport in the columnar direction of the columnar
liquid crystalline material; e) HBC-SAM, modified HBC forming a self assembled
monolayer.

Figure 3.6: Simulated temperature dependencies of hole mobilities for the materials listed in
Fig. 3.5.
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available in the literature [101]. Nevertheless, it is illustrative to briefly compare the results that
are displayed in Fig. 3.6. All but one of the studied materials are highly ordered and exhibit the
same power-law temperature dependency we found for anthracene. All in all, observed mobili-
ties in the ordered materials vary between µ ≈ 0.1 cm2

Vs and µ ≈ 10 cm2

Vs , that is, they stretch over
two orders of magnitude. One material, α-NPD, stands out. α-NPD is a typical amorphous
material, and we see mobilities a hundred times smaller than in the other materials. Notably,
mobility grows with temperature, implying that transport is thermally activated. This is an
important results because it strongly suggests that real time propagation can actually describe
different regimes, even though in the activated regime hopping based approaches are preferable.
It has to be noted that for very long simulation times the mean-field delocalization error does
affect α-NPD simulations, but charges remain localized for several picoseconds, long enough
to observe charge hops.
Overall, real time propagation for charge transport yields very promising results. Its perfor-
mance for anthracene and other materials suggests that it can be a valuable addition to the tool
box of charge transport study in molecular materials. One important question is the effect of
the mean-field quantum-classical coupling. This is a recurring theme that will come up again in
the next chapter when energy transport is studied. There plain mean-field is found to be entirely
insufficient, and we will turn to surface-hopping and other approaches.
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organic materials

4.1 Introduction

Following up on the discussion of charge transfer in the last chapter, this chapter discusses
the simulation of singlet exciton transport in anthracene. A new method relying on dynamical
propagation of the excitonic wavefunction will be introduced. In such a way, energy transport
will be treated in analogy to hole transport in the last chapter.
Exciton migration in organic semiconductors is of great practical interest. Charge separation in
organic photovoltaics [102–106] (OPVs), for example, occurs at the interfaces between differ-
ent materials, but the majority of excitons are created in the bulk, where photons hit with largest
probability. Therefore, exciton migration is a crucial step in the energy generation chain, criti-
cally influencing the overall performance. A thorough understanding of this process is therefore
a prerequisite for an educated device and molecular design [83, 107].
So far, exciton migration in OPVs is mostly modeled by stochastic approaches, where it is
assumed that localized excitations migrate via a random hopping process [83, 107]. This is
justified when local relaxation energies (exciton-phonon-coupling) are large compared to inter-
action integrals [108, 109], which applies to many materials. Hopping rates are then obtained
from theories such as Förster resonant energy transport theory [82, 110], requiring the deter-
mination of the spectral overlap, which can be somewhat cumbersome. Recently, also Marcus
rates have been used for exciton transport in molecular crystals [81] bypassing spectral over-
laps. In many applications, the fluctuations of couplings are not explicitly incorporated, which
implies that one important dimension of exciton migration is missing in the picture. Couplings
which appear as parameters in stochastic models may fluctuate strongly, with magnitudes com-
parable or even larger than average values [11, 12]. Not only rate-based models for incoherent
transport are affected by strong fluctuations. The magnitude of the fluctuations rules out an-
alytic approaches near the band-limit, which use re-normalization techniques to account for

Reproduced in part with permission from “Kranz, J. J., & Elstner, M. (2016). Simulation
of singlet exciton diffusion in bulk organic materials. J. Chem. Theory Comput., 12(9),
4209-4221”. Copyright 2016 American Chemical Society. ACS article-on-request link:
http://pubsdc3.acs.org/articlesonrequest/AOR-pWfcdpVKg5cmIvuzYVj9
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polaronic effects as discussed e.g. in Refs. [111, 112]. Furthermore these fluctuations may
have contributions on the time scale of intermolecular transport, making it difficult to consider
these fluctuations as static disorder or as much faster as any other timescale. This renders
many more models inapplicable, such as the Haken-Strobl-Reineker model for fast oscillations
[113, 114] or a treatment of the disorder as static [115].

To circumvent these difficulties, we present a computational model which allows a direct sim-
ulation of non-adiabatic dynamics based on Frenkel-type excitons in molecular systems. While
non-adiabatic simulation of excited states is a common tool e.g. in computational photo-
chemistry, the focus of such approaches tends to be on short time-scales and usually small
system sizes, not on transport through the bulk, studying relaxation processes [116–119] or
energy transfer between two molecules [120]. To extend this approach to organic materials
containing several hundreds of atoms and time-scales in the pico- to nano-second regime, we
present here a multiscale-approach in the spirit of our previous work on electron transfer in bi-
ological [88, 121, 122] and organic materials [14]. The methodology is based on a combination
of a model Hamiltonian with classical force field based molecular dynamics simulations, where
both approaches are coupled going beyond standard QM/MM schemes. The QM basis is given
by the fast approximated DFTB method [52, 53], and fewest-switches surface-hopping [123],
as well as the Boltzmann corrected Ehrenfest methods [124, 125] are applied to couple classical
and quantum degrees of freedom. Therefore, although certain approximations are required to
establish a computationally efficient methodology, no fundamental assumptions about transport
mechanisms have to be made.
The chapter is organized as follows:

First, we introduce the methodology fundamentally based on the TD-DFTB method, which
is used to compute excitation energies and Coulomb couplings, which constitute the Frenkel
Hamiltonian. This Hamiltonian is combined with the force field description of the entire sys-
tem using a QM/MM type of approach. Coupled equations of motion for nuclear and electronic
degrees of freedom are introduced, which are solved using Ehrenfest and surface-hopping ap-
proaches.

In a second step, we test the DFTB based Hamiltonian for excitation energies, excitonic cou-
plings and relaxation effects, also considering the impact of structural fluctuations. The impact
of the applied approximations, in particular the use of DFT-GGA functionals and neglect of
exchange effects are evaluated.

Third, we apply the methodology to study the exciton diffusion in crystalline anthracene. The
use of DFT-GGA functionals for this purpose is critically examined.
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4.2 Methodology

4.2.1 QM/MM Approach

For the large systems treated here, we use a combined quantum mechanics/molecular mechan-
ics (QM/MM) approach, where the majority of the atoms are described by a classical force field
and only a small subset of molecules is selected for a quantum mechanical treatment and form
our QM region, embedded into the classical environment. The QM/MM interaction term con-
tains only non-bonding interactions, the VdW terms are taken from the force field and for the
electrostatic interaction atomic point charges are obtained from a RESP fit [98]. For the MM
part, we used the GAFF [99] force field, where we adjusted the bonding parameters in order to
reproduce DFTB ground state geometries. This is a way to achieve a consistent treatment of
ground and excited states geometries within the DFTB framework, since excited states forces
and geometries are computed from TD-DFTB, as described below.

4.2.2 Excited states: Frenkel-Hamiltonian

The treatment of excited states is one of the crucial points in this methodology. One of the
interesting questions, also determining the mechanism of exciton migration, is that of localiza-
tion vs. delocalization of the energy carriers [83, 107]. A straightforward approach would be
a super-molecular calculation, treating the excited state of the whole system, thereby allowing
the excitation to (de-)localize according to energetic criteria. This is, however, not feasible,
on the one hand from computational consideration, on the other hand due to errors inherent in
many popular QM approaches. In gradient corrected DFT (GGA), for example, the delocal-
ization error leads to a wrong description of charge transfer (CT) states, which would intrude
the description of the low lying excitations, as discussed below in more detail. Unfortunately,
even the use of range separated functionals is not necessarily of help, since the range separation
parameter and the intermolecular distance intervene [126]. The use of a Frenkel-type Hamilto-
nian [127] circumvents this problem by constructing super-molecular excitations from locally
excited states of the monomers. As long as CT states do not play a vital role in the migration
process e.g. as trap states [126], this approach can effectively deal with the DFT errors. While
such CT excitations with low energies can exist in organic semiconductors, their oscillatory
strengths are normally close to zero and they are usually no major contributor to transport, so
long as pure Frenkel states exist. Note that the same argument also applies for the description of
electron transfer in chapter 3, where the fragmentation of the system effectively circumvents the
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DFT delocalization problem [14]. Frenkel states can be expressed as a superposition of single
molecular excitations [110]

|Ψ〉= ∑
I

∑
i

c(i)I

(
∏
J<I
|0〉J

)
|i〉I

(
∏
J>I
|0〉J

)
. (4.1)

Here, the states |·〉 refer to the states of the single molecules whose tensor product forms the state
of the system. The index I runs over all molecules, whereas i labels excited states on molecule
I, with i = 0 being the ground state, i = 1 the first excited, i = 2 the second excited state, and
so on up to, in principle, infinity. In many cases, however, there will be only one, or a few, low
lying single molecular excitation of interest; all others can be pragmatically excluded from the
description. In the following we will assume this for clarity of presentation and suppress the
index i. However, generality is not lost and generalization of all expressions will be obvious.
While there is no charge transfer between molecules, excitations on different molecules still
couple. This results in the intermolecular Hamiltonian

HFrenkel = ∑
I

ΩIa
†
I aI + ∑

I 6=J
JIJa†

I aJ (4.2)

with JIJ = 〈I|H|J〉. ΩI is the excitation energy and |I〉 represents the state where the excitation
is located on molecule I. The Coulombic contribution to the coupling JIJ can be expressed in
terms of transition densities [110]

JIJ =
∫

d3rd3r′
NI(r)NJ(r′)
|r− r′|

, (4.3)

which are in turn given by
NI(r) = 〈0|I n̂(r)|i〉I. (4.4)

Transition densities are a property available from single molecule TD-DFT response calcula-
tions [51, 128] and by extension available from TD-DFTB [129] as well, which we will use in
the following. To build the Frenkel-Hamiltonian, we have to perform quantum calculations only
for each molecule separately. This leads to an enormous performance gain and to linear-scaling
of computing time with the number of molecules. The reason why this expression includes only
Coulombic, but not exchange, contributions is that in the ansatz for the Frenkel wavefunction
no anti-symmetrization is performed. Had it been done, there would be further integrals con-
tributing, which are not as readily evaluated. Further, we also assume that different molecular
wave-functions are orthogonal. Neglecting exchange and overlap is a common approximation
and justified for well separated molecules, though this is not necessarily the case in crystalline
organic semiconductors, as detailed below. The two approximations are discussed in the litera-
ture [11, 130, 131] and have consequences in particular for exciton transfer between molecules,
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separated by less than 5 Å, as they appear in organic materials. The assumptions, however, are
not easy to drop. The evaluation of couplings using a super-molecular approach in combination
with a diabatization scheme (e.g. Ref. [11, 132]) is more time-consuming, less computationally
stable (state selection etc.) and does not work with DFT-GGA, because spurious CT states are
introduced.
TD-DFT does not provide exact excited-state wavefunctions, even though the Casida-ansatz
[128] can serve as an approximate replacement. Within this ansatz, approximate wave-function
overlaps can be calculated and the overlap could be determined. The Casida-ansatz has been
used before, e.g. to determine non-adiabatic couplings [133].

4.2.3 DFTB & TD-DFTB Method

All our quantum mechanical calculations are based on the semi-empirical method DFTB [52,
53], which results in a speed-up of several orders of magnitude compared to DFT. DFTB has
been introduced in the background chapter, see section 2.1.3. The mio parameter set [53], based
on the PBE [16] functional, is used.
After a self-consistent DFTB ground-state calculation, we are left with the ground-state density,
but are interested in excited states. As detailed in section 2.1.2, within DFT one way to access
excited states is via the time-dependent TD-DFT formulation by linear-response theory. One
solves for singularities in the linear response to a time-dependent perturbation [128]. The same
treatment is possible in TD-DFTB [129], leading, similarly to DFT, to the so called Casida
equation

∑
jt

(
(εs− εi)

2
δi jδst +4

√
εs− εiKis, jt

√
ε j− εt

)
Fjt = Ω

2Fis (4.5)

This is a Hermitian eigenvalue problem on the space of orbital excitations. Indices i, j, ... label
occupied orbitals, while s, t, .. refer to unoccupied virtual orbitals. The eigenvalues Ω are the
excitation energies. The coupling matrix Kis, jt describes the Coulombic interaction between
orbital excitations and can be approximated in a DFTB spirit as [129]

Kis, jt = ∑
A,B

qis
Aq jt

B γAB (4.6)

with the Mulliken transition charges

qis
A = ∑

ν∈A,µ

1
2
(cν icµs + cµicνs)Sµν . (4.7)

To solve the full eigenvalue problem is costly, as it requires O((Nocc. ·Nvirt.)
3) operations. How-

ever, if only low lying eigenvalues are required, algorithms, such as the Davidson algorithm
[134], allow to restrict the problem to a much smaller subspace. For the application to exci-
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4 Simulation of singlet exciton diffusion in bulk organic materials

ton transport this is particularly easy. It is sufficient to limit the number of occupied orbitals
included in the calculation to the highest Nocc. incl. occupied and the lowest Nvirt. incl. virtual or-
bitals. Because a very similar eigenvalue problem is solved over and over again for different
molecules and at each time step, it is possible to verify by inspection whether the number of
included orbitals is large enough for the eigenvalues to be converged to the correct value. Thus,
no iteration is necessary.
Besides the excitation energies, we also require the transition densities to form the Frenkel-
Hamiltonian. In linear-response DFT they are given by

N(r) = ∑
is

√
2(εi− εs)

Ω
Fisφi(r)φs(r) (4.8)

The Frenkel-coupling can then be written directly as [135]

JIJ = ∑
A∈I,B∈J

QAQBγAB, (4.9)

where the many-body transition charges are

∑
is

√
2(εi− εs)

Ω
Fisqis

A . (4.10)

Note again, that all TD-DFTB calculations are performed for individual molecules. Only in the
final calculation of the coupling in eq. 5.15 references to pairs of molecules are made. With the
above set of equations the Frenkel-Hamiltonian can be build and is then used to describe the
excited states dynamics. Tests for several organic molecules show a good performance of DFTB
with respect to full TD-DFT results [135]. DFTB and TD-DFTB provide analytic expressions
for the gradients of the energy and excitation energy, which we use to calculate the forces on the
nuclei. For the rather complicated expressions, please refer to the original publications [136].

4.2.4 Real-time Propagation

With the Frenkel-Hamiltonian at hand, we can describe the exciton dynamics. The excited state
|Ψ(t)〉 follows the time-dependent Schrödinger equation (TDSE)

i∂t |Ψ〉= HFrenkel|Ψ〉. (4.11)
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As throughout the rest of this thesis, atomic units are used, so that h̄ = 1. Also, henceforth, the
Frenkel suffix will be suppressed and the Hamiltonian H will refer to the Frenkel-Hamiltonian.
Expanding out the TDSE in the basis of single molecular excitations, the equation becomes

iċI = ΩIcI + ∑
J 6=I

JIJcJ− i∑
J

cJ〈I|∂t |J〉 (4.12)

The last term contains the non-adiabatic couplings of excitations. For excitations on differ-
ent molecules, it is roughly proportional to the change in overlap of the states and small since
the overlap of states localized on different molecules is small to begin with. Thus, if there
is only one excitation per site, the basis of molecular excitations becomes diabatic upon ne-
glect of the non-adiabatic couplings. In an adiabatic basis of eigenstates of the Hamiltonian
the non-adiabatic couplings remain a significant contribution. Between excitations on the same
molecule on the other hand, non-adiabatic couplings are responsible for photochemical relax-
ation processes, e.g. a transition to the ground state. The terms are small as long as the energy
gap between the states is large, in this case they can be neglected. In case these couplings
become large, the molecules act as traps in the exciton transfer process. To account for these
effects, high level quantum chemical methods have to be applied, i.e. these effects can not
be treated on the model Hamiltonian level aimed at here. It is, however, possible in principle
to account for the relaxation processes by ab initio calculations of these events, and supply a
phenomenological rate for the relaxation, i.e. these effects could be fed into eq. 4.12 via a
decay parameter determined from these more detailed investigations. We will not take this into
account in the present work and therefore neglect the non-adiabatic coupling terms altogether.
Therefore, the TDSE as applied simplifies to

iċI = ΩIcI + ∑
J 6=I

JIJcJ, (4.13)

and the basis of localized excitations effectively becomes a diabatic basis.
The nuclei are described classically and follow Newton’s law

mi∂
2
t Ri =−∇iVFF +FQM. (4.14)

The classical force-field potential VFF gives rise to all ground-state forces. FQM is the negative
derivative of the excitation energy and represents the difference of atomic forces in the ground
and excited states.
The excited state forces are directly computed from TD-DFTB [136] and enter the equations
of motion here. Thus, we include the dynamic response of the system to the excitation, which
in rate based theories is represented by the reorganization energy. This is usually the factor
with the strongest effect in thermally activated transport, because it enters exponentially. These
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4 Simulation of singlet exciton diffusion in bulk organic materials

forces are used for the propagation using Tully’s fewest switches surface-hopping [123] and an
Ehrenfest type approach.

Fewest switches surface-hopping

In surface-hopping approaches the forces FQM are calculated from single eigenstates FQM =

−∇Ei with H|Ψi〉 = Ei|Ψi〉, where the active state |Ψi〉 used to calculate the forces is chosen
stochastically. Recall that the Ei are eigenvalues of the Frenkel-Hamiltonian and thus represent
excitation, rather than total, energies. For excitations largely localized on a single molecule I

the gradients will be dominated by the gradient of the corresponding excitation energy FQM =

−∇ΩI .
In Tully’s fewest switches algorithm the probability Pi→ j to hop from one active state to another
is given by

Pi→ j = δ thop.
2Re c̃ic̃∗j〈Ψi|∂t |Ψ j〉

c̃ic̃∗i
. (4.15)

Here, thop. is the time step between hopping attempts and the c̃i refer to the adiabatic expan-
sion coefficients of |Ψ〉 = ∑I ci|I〉 = ∑i c̃i|Ψi〉. As we have no analytic expression for the non-
adiabatic couplings 〈Ψi|∂t |Ψ j〉, we approximate them with a numerical derivative 〈Ψi|∂t |Ψ j〉 ≈
〈Ψi(t − δ thop.)|Ψ j(t)〉, i 6= j. To ensure correct Boltzmann statistics, we multiply Pi→ j with
Boltzmann factors for transitions leading to increases in energy [137], rather than rescale ve-
locities. Since we lack analytic expressions for the non-adiabatic couplings, we are barred from
properly adjusting velocities of individual modes anyways and may assume immediate thermal-
ization among them.
Usually, decoherence corrections are required with surface-hopping to produce the correct scal-
ing of transfer rates with the coupling elements [138]. We follow Persico [139] and rescale the
coefficients of the inactive states with an exponential decay factor

c̃ j← c̃ je−δ thop./τi j , (4.16)

where the decoherence time τi j for the transition from active state i to state j is calculated with
the phenomenological expression of Truhlar [140]

τi j =
1

|Ei−E j|

(
1+

C
Ekin.

)
. (4.17)

Ei, E j are the respective energy eigenvalues, Ekin. is the nuclear kinetic energy and C adaptable
parameter. Finally, the modulus of c̃i is adjusted to preserve the norm of the wave function.
As it turned out, though, in our study decoherence correction had only a negligible effect on the
results, even for minimal values of C, and could be ignored for our test system. Calculations on
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model molecular stacks have yielded the same conclusion [141], indicating that for transport in
monomolecular organic semiconductors decoherence correction may often be unnecessary.
In extended systems with localized eigenstates, as are many bulk molecular systems at finite
temperature, surface-hopping suffers from the trivial crossing problem. When the energies
of two states cross, non-adiabatic couplings become very sharply peaked and diverge at pre-
cisely the crossing point. To alleviate this problem we take several measures. First, the state
is always propagated in the diabatic basis of molecular excitations, where no reference to the
non-adiabatic couplings is made and the TDSE is therefore very stable numerically. Even if
intermolecular non-adiabatic couplings were not neglected, they would be small and hardly af-
fect the stability of the propagation. Second, we use the flexible surface-hopping approach of
Beljonne et al. [142] to reduce the number of crossing that occur. In this method a criterion
is introduced based on which diabatic states |I〉 are dynamically included or ignored in the de-
termination of the adiabatic states, whenever they couple weakly with the active surface |Ψs〉.
Formally, molecule I is only included in the calculation, if

|〈I|H|Ψa〉|
|〈Ψs|H|Ψs〉−〈I|H|I〉|

> Rc, (4.18)

where Rc is a parameter adjusting the fractions of molecules included. A reduction in the num-
ber of diabatic basis functions leads to less adiabatic states and naturally reduces the number of
trivial crossing. Finally, different time steps δ t,δ thop. and δ tQM are used for the propagation of
the nuclei, between hopping attempts and for the propagation of the TDSE, respectively. Quan-
tum calculations are performed with an interval of δ t, which is chosen short enough to yield a
smooth representation of the Hamiltonian and accurate nucleic dynamics. Even if the Hamil-
tonian varies smoothly, eigenstates may vary quickly near crossings, so we choose δ thop. < δ t

and interpolate the Hamiltonian between times t−δ t and t

H(t ′) =
(

1− t ′− t
δ t

)
H(t−δ t)+

t ′− t
δ t

H(t), t ′ ∈ [t−δ t, t] (4.19)

Because the computational effort of handling the Frenkel-Hamiltonian is negligible compared
to the DFTB calculations, the hopping time step can be chosen much smaller. The state is
propagated between hopping attempts with a time step δ tQM, dynamically chosen for desired
accuracy.

Boltzmann corrected Ehrenfest method

A straight forward approach to the quantum forces FQM is to adopt a mean-field (Ehrenfest)
approximation. However, as it turns out, in this approximation |Ψ(t)〉 artificially delocalizes,
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4 Simulation of singlet exciton diffusion in bulk organic materials

leading to an underestimation of molecular relaxation and hence a massive overestimation of
diffusivity. As simple correction of one particular failure of this approach, the so called Boltz-
mann corrected Ehrenfest method [124, 125], has been suggested, which enforces a correct
population of eigenstates. In the Boltzmann corrected Ehrenfest method the forces are also cal-
culated in the mean-field approximation, like in conventional Ehrenfest approach. That means
the quantum expectation value is used, but the dynamics themselves are modified. In order
to achieve a Boltzmann population of eigenstates, the off-diagonal Hamiltonian elements are
rescaled with Boltzmann factors

Hqc
IJ =

√
2

1+ e−(ΩJ−Ωk)/(kBT )
HIJ (4.20)

H̃IJ = H̃JI = |cI| ·Hqc
IJ −|cJ| ·Hqc

JI , k > j (4.21)

The scaling factor modifies transition probabilities between states so that detailed balance holds
and the correct equilibrium distribution is obtained. If non-adiabatic coupling terms (here ne-
glected) are present, they need to be rescaled as well, precisely as the Hamiltonian, in order to
achieve correct quantum statistics [125]. Technically rescaling should be performed in the adi-
abatic basis where actual energies are known. Nevertheless, when diabatic and adiabatic states
are similar, it is possible to work in a diabatic basis [124]. In practice it should be verified to
what extend this is fulfilled, which can be done readily through examination of the eigenstates
from a sample simulation, either manually by visual inspection or quantitatively, for example by
considering the inverse participation ratio. Similar adiabatic and diabatic states can be expected
whenever there is strong localization, either caused by molecular relaxation or disorder. In the
case of clearly coherent transport, adiabatic and diabatic states will likely be very different, al-
beit in this case the unaltered Ehrenfest method can already be expected to work well because
missing decoherence is less important.
The corrected Ehrenfest approach has the advantage of simplicity and also efficiency as it turns
out that mean-field calculations need less statistics than surface-hopping simulations. It must
be stressed that this method does not include decoherence in a formally correct way. Therefore,
it will fail to account for molecular relaxation due to artificial delocalization in the limit of long
simulation times in the same way as the conventional Ehrenfest method. For the anthracene test
system, however, this effect is mitigated at least for the time scales necessary to compute the
relevant observables, as discussed in the results section. As long as the wave-function remains
localized, as observed for these time-scales of about 10 ps, the missing decoherence does not
seem to affect the dynamics significantly. This finding is also supported by the accurate pre-
dictions of charge transfer rates with mean-field methods [141] for a molecular dimer. There,
a wave-function is initially localized on one molecule, a similar situation as found in our sim-
ulations for the bulk system, where the wave-function initially resides on a single molecule.
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Moreover, decoherence corrections appear to have only a weak effect in surface-hopping trans-
port simulation [141]. Our simulations using surface hopping with and without decoherence
corrections lead to the same finding, the difference in diffusivity is very small (see results). Ex-
citon transfer dynamics not including decoherence leads to a superposition of eigenstates, which
can be spatially delocalized. In surface hopping simulations, this leads in principle to errors in
the hopping probabilities, which does not seem to affect the dynamics seriously according to
Ref. [141] and our simulations, while the excitation remains on a single adiabatic surface. The
latter guarantees the correct evaluation of relaxation effects (λ ), which is essential for correct
description of diffusivity. In mean-field simulations, however, the artificial spread of the wave
function leads to a superposition of adiabatic states, where as a result the relaxation effects are
underestimated or practically neglected. And this is the effect which is efficiently suppressed
by the Boltzmann weighting.
Generally, localization over sufficiently long time spans can be expected for systems with trans-
fer parameters similar to anthracene, because the rate of delocalization will be about the same.
If transport is fully coherent, delocalization is likely to occur too quickly, but then relaxation
effects on transport are weak.

4.2.5 Implementation Details

For the molecular dynamics part of the simulation, force-field evaluation, and PME calculation
of the electrostatic potential, we use Gromacs 4.6.1 [60]. On top of this, we have built our own
implementation of DFTB and TD-DFTB, directly including it into the Gromacs code without
making use of the QM/MM interface provided by Gromacs. Such a set-up was used before in
our charge-transfer studies [13, 14]. The quantum dynamics methods have been implemented
within Gromacs as well. The TDSE is propagated with a Runge-Kutta (RK) scheme. Although
RK is not Hermitian and could thus lead to numerical stability issues, we dynamically choose
the propagation time-step δ tQM such, that the norm is always conserved within numerical pre-
cision and, therefore, no problems arise. The time steps δ t for propagation of the nuclei and
DFTB calculations were 1fs and 0.5fs in Boltzmann corrected Ehrenfest and surface-hopping
simulations, respectively. The hopping time step δ thop. was set to δ t/10000. For the parameter
Rc in flexible surface-hopping we set a value of Rc = 50, which we verified to be large enough
to accurately represent relevant eigenstates in our test system anthracene.

4.3 Results

4.3.1 System Set-up

Crystalline anthracene is particularly suited as a test system, since experimental results on sin-
glet exciton diffusion are available [143–145] and the lowest energy excitation is very well
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Figure 4.1: Four sequential molecules in a-(left) and b- (right) direction. The QM regions con-
tained chains of 18 molecules.

described by a Frenkel-like picture, thus avoiding complications with the electronic structure
[146]. Furthermore, exciton couplings in anthracene show strong fluctuations [11], which pro-
vide motivation to consider direct dynamics. On the other hand, due to the large molecular
relaxation energy of the anthracene molecule, we expect rather localized eigenstates. At first
sight, simple hopping models may seem more appropriate, however, as has been pointed out be-
fore [11, 12] the time scales of fluctuation and transfer are similar. Further, the large relaxation
energy allows us to assess how well we can handle these important effects and thus can be seen
as beneficial for a benchmark.
The simulated system consisted of a crystal section made up of 20×20×20 unit-cells. As the
anthracene unit-cell is composed of two molecules, this means 16000 molecules were included
overall. The Herringbone crystal structure is known from experiment which also provided ini-
tial lattice constants. These were allowed to change in a temperature and pressure equilibration
at 300K and 1bar. Equilibration lasted several nanoseconds until temperature and volume had
converged, with the Nosé-Hoover thermostat and Parinello-Rahman barostat applied.
We used the GAFF force-field [99] for the molecular mechanics description of the ground state
potential energy surface, but adapted the geometry parameters to yield DFTB equilibrium ge-
ometries. Partial charges on the atoms were obtained from a RESP fit [98]. GAFF has been
shown to work reasonably well for benzene crystals and other organic crystals [100].
In order to investigate exciton diffusion in two different directions, we selected two different
QM regions made up of 18 sequentially aligned molecules along axes in the a− and b−crystal
directions (see Fig. 4.1).
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4.3.2 Single-molecular Excitation

In a first step, we have to identify the relevant on-site excitations of which Frenkel-states are
composed. We took single anthracene molecules from the equilibrated bulk for which we per-
formed TD-DFTB calculations using our local Gromacs implementation, as well as the TD-
DFTB implementation in the DFTB+ program [18] for comparison, showing identical results.
Relevant excitations are those low in energy and with a non-vanishing oscillator strength f ,
meaning transition charges do not vanish. These can be excited by radiation and diffuse through
the system, hence contributing to energy transport. We confine ourselves to singlet excitations.
Calculations were also performed at the PBE/6-31G(d,p), B3LYP/6-31G(d,p) and ωB97X-D/6-
31G(d,p) levels of theory, for comparison. PBE, from which DFTB is parametrized, helps to
assess the quality of the tight-binding approximations. B3LYP contains some exchange but is
known to underestimate excitation energies of the lowest lying excitations (precisely La and
Lb) in oligoacenes [147, 148] while the range-separated ωB97X-D functional performs well for
molecular dimers [149]. Note, that for higher energy excitations it has been found that hybrid
and range-separated functionals actually overestimate excitation energies and local functionals
may do better [150].
The calculated excitation spectrum shows that the lowest energy singlet excitation is the only
one with a non-vanishing f within an energy range of more than 1eV. For the sample geometry
TD-DFTB predicts an excitation energy of 2.72eV and oscillator strength f = 0.056 for this
excitation. We find that this excitation is of Bu symmetry and is dominated by the transition
from HOMO to LUMO (see Fig. 4.2).
PBE yields a very similar spectrum with an excitation energy of 2.79eV and coupling strength
of 0.042 for the considered excitation, in good agreement with DFTB. TD-DFTB generally
tends to reproduce PBE excitation energies well, including the whole potential energy surface,
albeit also sharing its failings [151].
The B3LYP and ωB97X-D spectra are qualitatively similar, but with the relevant excitation
energies shifted upwards, as expected. For the HOMO to LUMO excitation the energies and
oscillator strengths are 3.037eV with f = 0.063 and 3.36eV with f = 0.096 for B3LYP and
ωB97X-D, respectively. Since the monomer description is not problematic, we evaluate the
estimates of the Frenkel couplings in a second step. For this, we perform calculations on a
dimer of two neighboring molecules in the b-direction, again extracted from a MD trajectory.
B3LYP predicts two low-energy charge-transfer states which, naturally, cannot be reproduced
in the Frenkel spectrum. Two states composed of Frenkel excitations are predicted by B3LYP
and the Frenkel-Hamiltonian. B3LYP excitation energies are again shifted upwards but the gap
matches very well (see Fig. 4.3), since it is determined by relative single-molecular excitation
energies and couplings. We did also perform (super-molecular) PBE calculations. PBE adds
strong charge-transfer contributions to all excitations, because it underestimates their energies,
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Figure 4.2: HOMO (top) and LUMO (bottom) orbitals of an anthracene. We consider the
single-molecule excitation dominated by the transition from HOMO to LUMO.

thereby becoming unsuitable for such calculations. In summary, these tests indicate a reasonable
description of exciton couplings using the fast TD-DFTB approach, despite the approximative
character as described above.

4.3.3 Coupling Elements J

For a first analysis of the Frenkel couplings J in a- and b-direction we consider their distribution,
determined from several hundred picoseconds of simulation. We find roughly normal probabil-
ity density functions and particularly strong fluctuations in the a-direction (see Fig. 4.4). The
average couplings and standard deviations are 〈J〉= 4.7meV, σJ = 10.4meV in the a-direction
and 〈J〉= 30.3meV, σJ = 3.8meV in the b-direction (see Table 4.2).
The values of the average and also most probable couplings fall within the range of previously
reported values (see Table. 4.1). Variations of values obtained in different studies may not
only be due to different electronic structure methods but as well a consequence of somewhat
different geometries coming from different force-fields or experiment crystal structures. It can
be concluded that Coulombic couplings from TD-DFTB describe the most typical magnitude
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Figure 4.3: Low lying excitations of an anthracene dimer with B3LYP and the Frenkel Hamil-
tonian parametrized from TD-DFTB. TD-B3LYP predicts two low lying charge-
transfer states (dashed line) and generally higher excitation energies. The gap in-
duced by coupling Frenkel states is well reproduced.

Table 4.1: Comparison of average (DFT and DFTB) and static crystal structure (CC2) cou-
plings [meV], obtained with different methods

Direction TD-DFTB Coulomb ωB97X-D Coulomb [11] ωB97X-D supermol. [11]

a 4.7 6 8

b 30.3 23 35

Direction SCS-CC2 dipole [81] SCS-CC2 supermol. [81]

b 22 26

Table 4.2: Fluctuations σ =
√
〈J2〉−〈J〉2 of the excitonic couplings J in [meV].

Direction σ TD-DFTB Coulombic σ

〈J〉 σ with exchange [11] σ

〈J〉

a 10.4 2.21 22 3.1

b 3.8 0.125 10 0.28
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Figure 4.4: Histograms of the magnitudes |J| of the excitonic couplings, in the both directions.

quite well.

The couplings in both directions fluctuate around their average values but fluctuations in the
a-direction are far more pronounced. In particular, because the average coupling value in a-
direction is very small, the sign can change over time. The ratios 〈J〉

σJ
between the standard

deviations σJ of the couplings and the average values 〈J〉 are 2.21 in the a-direction and 0.125
in the b-direction. That is, in the a-direction the fluctuations are much larger than the average
value and correspondingly are the dominant contribution to the transport, since the diffusion
constant D should be approximately D ∼ 〈J2〉 = 〈J〉2 +σ2

J . This means, fluctuations σ2
J con-

tribute more than 4 times as much to transport as the average 〈J〉2 < 22σ2
J . In b-direction

fluctuations are much less pronounced in relation, yet are still not quite an order of magnitude
smaller than the average.

In comparison to reported results, which include exchange effects [11], our fluctuations are
smaller by a factor of about 2.5 and 2, in a− and b−direction respectively. While differences
in the force-field description could in principle play a role, it is very likely a result of the
neglect of exchange and overlap contributions to the coupling, as has been pointed out before
[11], following a comparison of full couplings and Coulomb couplings. Reported distributions
of Coulomb couplings (Ref. [11] in Supplementary Information) look very similar to ours.
It is noteworthy, that we reproduce average couplings better than the fluctuations. Exchange
effects appear to become particularly important at the tails of the coupling distributions, which
come from more ”extreme” geometrical conformations, such as pairs of molecules brought
particularly close together by lattice vibrations.
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Figure 4.5: Fourier transformed auto-correlation function of J in the a-direction.
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Figure 4.6: Fourier transformed auto-correlation function of J in the b-direction.
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To investigate the time-scale of the coupling fluctuations, we calculate their spectra as the
Fourier transform of the auto-correlation function C(t) = 〈(J(t)−〈J〉)(J(0)−〈J〉)〉. The spectra
show many slow mode contributions, but also some faster contributions above 300 wavenum-
bers. The spectra are qualitatively similar to the previously reported ones [11, 12], though
frequencies are shifted upwards somewhat. As the slow phonon frequencies are determined by
the chosen force-field, it would be interesting to study not only the accuracy of their predicted
structures but of the frequencies too.
Because TD-DFTB reproduces the results of of Aragó and Troisi [11, 12] reasonably well, their
interpretation holds valid also for our study. The magnitude of fluctuations renders a band de-
scription of excitonic motion with phonon coupling inclusion via renormalization techniques
impossible, because average couplings and fluctuations are comparably large. The time-scale
of the fluctuations further complicates things as they are too slow to apply theories based on a
decoupling of nuclear and electronic degrees of freedom, yet about as fast as the transport itself,
so that a description as purely static disorder is invalid. Because of this, for transition rate based
methods, which should be applicable for anthracene, non-Condon effects should be included.

4.3.4 Relaxation

Exciton-phonon coupling or molecular relaxation in the excited state is an important effect in
excitation energy transport in organic semiconductors. Due to large relaxation energies trans-
port tends to become decoherent. In order to study relaxation unbiased by diffusion, we placed
a single excitation on a molecule and constrained it there. Molecular relaxation takes place very
quickly, with the excitation energy dropping to a new equilibrium value on the time-scale of
10fs (see Fig. 4.7). This is much shorter than the typical intermolecular transport time, thus
rendering transport incoherent almost instantly.
For incoherent transport, the relaxation energy λ = Eexc.−E∗exc. is decisive for transport effi-
ciency, because the diffusion constant is related to it exponentially. Here, Eexc. refers to the
single-molecule energy in the ground state optimized geometry, whereas E∗exc. denotes the ex-
citation energy in the geometry optimized in the corresponding excited state. The combina-
tion of a force-field description for the ground state and TD-DFTB for the excited state yields
λ = 302meV, in good agreement with the PBE/6-31(d,p) value of λ = 315meV. However,
this is much smaller than the reported value [81] of λ = 533meV from more accurate coupled-
cluster calculations. As TD-HF overestimates the value by about as much as we underestimate
it, the self-interaction error of DFT is likely responsible for the poor performance of local func-
tionals and range-separated functionals would be a cure. The diffusion constant, however, is
highly sensitive to the chosen functional [81], therefore fine-tuning at this point is the key to
quantitative simulations of diffusivity.
The ratio of relaxation energy to typical coupling λ/J is about 10 in b− and 50 in a-direction.
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Figure 4.7: The red curve shows the excitation energy of a molecule unto which an excitation
has just been placed, while the other curves refer to the excitation energies of un-
perturbed sites. The molecule relaxes within 10fs to a new equilibrium level.

In either case this is quite large, predicting incoherent transport. With the coupled-cluster values
for λ this becomes even more pronounced.

4.3.5 Diffusion

Ultimately, the objective is to predict transport efficiency by direct simulation of the semi-
classical dynamics of the system. We performed simulations in which we excited a single
molecule, equilibrated the system for a few hundred fs with the location of the excitation fixed
and then evolved the wave-function and nuclear positions in time.

First, we performed simulations neglecting the excited states forces FQM in eq. 4.14 and us-
ing conventional Ehrenfest propagation only. Both approaches reveal themselves as unfit very
quickly, because they do not properly account for relaxation (see Fig. 4.8). Without quantum
forces, diffusion constants come out on the order of magnitude of 10−4 m2

s , several orders of
magnitude too large. In Ehrenfest simulations the excitation delocalizes rapidly, thus leading to
vanishing contributions of the excited states forces, which is effectively the same as if there was
no excited states relaxation at all. It is crucial that the simulated transport remains thermally
activated. A localized exciton on a single molecule leads to a large structural relaxation, hence
creating a potential trap from which escape is suppressed exponentially with a Boltzmann-like
factor. The pace of diffusion is thus reduced by orders of magnitude. Therefore, artificial delo-
calization invalidates simulations as soon as molecular relaxation does no more occur.
Surface-hopping and BC-Ehrenfest work better than the two simple approaches. In surface-
hopping simulations the exciton moves around, strongly localized on single molecules at all
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4 Simulation of singlet exciton diffusion in bulk organic materials

times (see e.g. Fig. 4.9). This means transport is decoherent, and thermally activated via
hopping events, as could be expected due to the high reorganization energy and is also well
established both experimentally and theoretically [12, 132, 144].It also implies that the assump-
tion of similar adiabatic and diabatic states underlying the BC-Ehrenfest approach is justified.
Systematic studies of the surface-hopping approach for charge transport have demonstrated its
ability to describe spatial transport in organic crystals [141], even in the hopping regime, and,
as exciton transport is formally equivalent and parameters are similar, this justifies the applica-
tion for this purpose, too. We tried various values for the constant C in the expression for the
decoherence time (Eq. 4.17), including the extremes C = 0 and C→ ∞ (i.e. no decoherence
correction). The effect was small. Results changed by no more than 10%, less than the margin
of error. Therefore, we report only the results with no decoherence correction. Often the inclu-
sion of decoherence is very important, but it appears to have much less effect on transport in
homogeneous molecular crystals, as has been noted before [141]. Further, one may not expect
too strong an effect in the first place, because all average couplings exceed 1% of the relaxation
energy [138].
BC-Ehrenfest, unlike surface-hopping, must eventually delocalize the wave-function like con-
ventional Ehrenfest, because it still includes no decoherence to re-collapse the wave-functions
once it extends over multiple molecules. Nevertheless, by enforcing correct Boltzmann statis-
tics, not normally achieved without correction, we observe that this process becomes so slow,
that the wave-function remains localized, and transport thermally activated, over at least 10ps,
our longest simulation time. We use the initial regime of activated transport to derive diffusion
constants. It has been demonstrated for model systems that mean-field approaches with correct
Boltzmann statistics can yield accurate charge transfer rates, and diffusion shows hopping char-
acteristics if the simulation is run for an appropriate time span [141]. The resulting diffusion
constants are not exact, but the errors found in the sample study in the temperature range of
200K – 400K were lower than the error expectable from other sources like the crystal structure
description and the electronic structure calculations. One particular problem with the cut-off
approach is that transport is not described in equilibrium, because equilibrium is reached only
after a certain amount of time has passed. Consequently, the values of all derived properties de-
pend on the duration of the simulation with too short and long simulation times leading to poor
results, even though we observed little variation with simulation time in the test calculations on
anthracene. We derive diffusion constants from linear fits, as detailed below, and the results of
such fits are insensitive to the fit range if the fitted data resembles closely a straight line. The
extend to which the data dependence on time can actually be considered as linear can be used
as a first criterion for the validity of a simulation. Further, to complement the direct analysis
of diffusion, we also derive transfer rates from our method and derive diffusion constants from
them. Thus, an error estimate can be obtained, whereas otherwise the validity of the results
would be unclear.
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Figure 4.8: Sample trajectory of an exciton from a run with no relaxation forces. The exciton
delocalizes almost immediately.

Figure 4.9: Sample surface-hopping trajectory. The exciton remains largely localized on a sin-
gle molecule, though it is excited to more extended states for short times.

Analysis from direct-dynamics

In order to determine the diffusion coefficient D, quantifying transport efficiency, we consider
the time evolution of the exciton location x(t):

σ(t)2 = 〈(x(t)− x(0))2〉 ∼ 2Dt. (4.22)

The average of the square displacement σ2 = 〈(x(t)− x(0))2〉, where x is the position operator
in the studied direction, was taken over 160 trajectories, each with different initial conditions.
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Figure 4.10: Evolution of the average mean square displacement of the exciton in time in the
b-crystal direction, calculated with different methods.
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Figure 4.11: Evolution of the average mean square displacement of the exciton in time in the
a− and b−crystal directions, calculated with the Boltzmann corrected Ehrenfest
method. Transport in the b−direction is roughly twice as fast.

Each trajectory was recorded over at least 4ps. Initial ballistic regimes were identified as regions
with clearly non-linear behavior of the square displacement and cut off from the time series. Fig-
ures 4.10 and 4.11 show 1ps of the temporal evolution of 〈(x(t)− x(0))2〉 in the a,b directions
for surface-hopping and BC-Ehrenfest. It is apparent by visual inspection that surface-hopping
sampling is much worse than BC-Ehrenfest sampling. The latter is a mean-field approach and
entails some averaging in each run explaining the smoother curves. In the slower a-direction we
only report BC-Ehrenfest results because surface-hopping sampling becomes poorer as diffu-
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sion slows down. In fact, the expected hopping rate as estimated a posteriori from the diffusion
constant comes out as only a few hopping events per picosecond, meaning long simulations with
surface-hopping are required. Many more trajectories could have been computed in principle
and simulation times increased, but it did not appear reasonable as the mean-field approach
seemed more natural for very slow transport. It may not be entirely correct, but should give
the right picture, while the lower need for sampling we observed pays off very much and the
assumption of fast thermalization implied in the use of a Boltzmann factor to rescale couplings
is justified if the exciton rests on a molecule for many periods of molecular vibrations. The
diffusion coefficient is determined from linear fits to the data. We find for surface-hopping and
BC-Ehrenfest in b-direction Db = (8.4± 4)10−7 m2

s and Db = (2.4± 0.2)10−7 m2

s , respectively
(see Table 4.3). In a-direction diffusion is slower with Da = (5.5± 2.5)10−8 m2

s from surface-
hopping and Da = (7.1±0.4)10−8 m2

s predicted by BC-Ehrenfest. The errors are estimated from
the statistical errors for each point 〈(x(t)−x(0))2〉 by the largest slopes compatible with the er-
ror bars. Since sampling is considerably worse, the error on the surface-hopping result is much
larger. Within error range the values in a-direction agree, while in b-direction surface-hopping
predicts somewhat larger diffusivity. From those values, we can also estimate the diffusion
length LD as LD =

√
2Dτ with an excitation life-time of τ = 10ns [145]. The resulting diffusion

lengths are LD = 37.6nm in a− and LD = 69.3nm in b−direction.

Analysis from transfer rates

As explained earlier, the diffusion constants extracted directly from the simulations may not
describe the equilibrium transport reliably. Therefore, we also extracted exciton transfer rates k

from the trajectories as an extra validation of the BC-Ehrenfest results. Such rates still include
fluctuations on time scales of up to about 1ps dynamically, while slower fluctuations are frozen
and included as static disorder in the averaging over multiple trajectories. Thus, not all infor-
mation about fluctuations is lost. In order to determine k, the function aexp(−kt)+b was fitted
to the time evolution of the average population 〈|c0(t)|2〉 of originally occupied sites

〈|c0(t)|2〉 ∼ aexp(−kt)+b. (4.23)

Eq. 4.23 should hold in the beginning, when only one site is occupied and all others unoccupied.
Therefore, we fitted directly from the start of the simulations. The initial linear regime in
ln
(
〈|c0(t)|2〉

)
was identified as the suitable fit range, as it indicates the time span over which

eq. 4.23 is valid. With the so obtained transfer rates we performed Kinetic-Monte-Carlo [152]
simulations of a random walk to simulate the time evolution of the exciton location. More
precisely, at each step the exciton hops to the right with probability p= 1

2 or to the left otherwise
and the time is increased by ∆t = ln(1/u)

k , where u is random, uniformly distributed in between
0 and 1. Then, with a diffusion analysis identical to the treatment of the trajectories from
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4 Simulation of singlet exciton diffusion in bulk organic materials

quantum-dynamics simulations, we computed the diffusion constants. The results are Da =

7.8 · 10−8 m2

s in a- and Db = 2.9 · 10−7 m2

s in b-direction. These values are slightly, but not
significantly, larger than the ones obtained directly and support the use of the method.

Comparison to Marcus theory

For an assessment of the actual relevance of fluctuations we use the previously calculated re-
organization energy λ = 302meV predicted by TD-DFTB together with the intermolecular ex-
citonic couplings Ja = 4.7meV, Jb = 30.3meV at the static, optimized geometry in the Marcus
rate expression

kMarcus = J2
√

π

λkBT
exp
(
− λ

4kBT

)
, (4.24)

and the rates in Kinetic-Monte-Carlo simulations to yield diffusion constants unaffected by fluc-
tuations. Marcus rates are probably closest in spirit to our semi-classical description, and are,
therefore, a good choice. We find Da = 9.7 · 10−9 m2

s in a-direction and Db = 5.6 · 10−7 m2

s in
b-direction. The diffusion constant in b−direction predicted by Marcus theory falls in between
the surface-hopping and BC-Ehrenfest results. The fluctuations of the couplings in this direc-
tion are comparatively weak and lead only to a quantitative correction. Our method lacks the
precision to accurately discern the subtle impact. On the other hand, in a− direction, where
fluctuations dominate the coupling, Marcus theory predicts a results smaller by a factor of five
to about one order of magnitude. That is, by inclusion of fluctuations the ratio Da/Db increases
about tenfold. Then, while transport in b-direction remains more efficient, diffusion lengths
in both directions are of the same magnitude; transport appears as a two dimensional process
in the ab-plane. Without fluctuations the picture is closer to one dimensional transport in the
b-direction only. For the relative transport efficiency in different directions the effect of fluc-
tuations is crucial, whereas the absolute values of diffusion constants may be more affected by
effects such as molecular relaxation. An increase in the Da/Db ratio by a factor of about 7 after
inclusion of fluctuations has been reported previously [12].

Implicit treatment of relaxation effects

As discussed in a previous section the use of DFT-GGA functionals leads to an underestimation
of relaxation effects, i.e. to an underestimation of λ . In transition rate expressions, λ usually
appears exponentially and therefore a seemingly small error can lead to large discrepancies
in rates and hence diffusion constants. This merits a further investigation of the effect the
underestimation of λ has on the results of the presented simulations.
So far relaxation was described by direct inclusion of exciton-phonon coupling via the forces
FQM in eq. 4.14. In our early work on charge-transfer in DNA [90], intra-molecular relaxation
was not treated explicitly by including forces like FQM, but was included implicitly by a pre-
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Figure 4.12: Evolution of the mean square displacement if exciton-phonon coupling is treated
with a parameter.

calculated parameter, which can be added to the diagonal part of the Hamilton matrix. The same
approach can also be used for exciton transfer, i.e. by subtracting the reorganization energy λ

from the diagonal part of the Frenkel Hamiltonian. For an accurate estimate of λ , we use the
coupled-cluster value λ = 533meV from Ref. [81]. That is

H̃II = HII−|cI|2λ , (4.25)

with cI the relevant wave-function component. On each site a potential well of depth |cI|2λ

is created, the same way it would be by molecular relaxation, but with different depth. Thus,
the reorganization energy parameter λ simulates molecular relaxation. This approach assumes
an immediate relaxation through an infinitely fast mode. Because relaxation is indeed fast,
occurring within about 10fs, the approximation should be reasonable. In addition, we also tried
this approach with the value of λ = 302meV predicted by TD-DFTB and could reproduce the
results with full forces to within an error of less than 5%.

Expecting a strong slow down of diffusion, only calculations with BC-Ehrenfest were per-
formed. The diffusion coefficient in the b-direction reduces by one order of magnitude to
D = (1.09± 0.1)10−8 m2

s . The diffusion length decreases to LD = 14.76nm. Precisely, dif-
fusion is slowed down by a factor of 0.05. Marcus transfer rates, for comparison, suggest a
slow down in line with this, by a factor of about exp

(
−λCC2−λDFTB

4kBT

)
= 0.1, where λCC2 is the

reorganization energy used as a parameter and λDFTB is the TD-DFTB value effective in the
simulations with explicit forces.
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Table 4.3: Diffusion constants D [m2

s ] from different methods and corresponding diffusion
lengths LD [nm] (τ = 10 ns assumed).

Direction D D LD LD

(BC-Ehrenfest) (surface-hopping) (BC-Ehrenfest) (surface-hopping)

a 7.1 ·10−8 5.5 ·10−8 37.6 33.2

b 2.4 ·10−7 8.4 ·10−7 69.3 129.6

Direction D (KMC) D (Marcus) LD (KMC)) LD (Marcus)

a 7.8 ·10−8 9.7 ·10−9 39.6 13.93

b 2.9 ·10−7 5.6 ·10−7 76.1 105.8

Direction D (λI = 302meV) LD (λI = 302meV) D (λI = 533meV) LD (λI = 533meV)

b 2.5 ·10−7 70.71 1.09 ·10−8 14.8

Direction LD (exp. [144])

a 60

b 100

Comparison to previous studies

Experimental values for LD are LD = 60nm in a− and LD = 100nm in b−direction [144].
Direct measurements of the diffusion constants yielded estimates of D ≈ 10−8 m2

s or less in
b−direction [143]. It is important to note that the directly estimated diffusion constants in-
dicate diffusion lengths roughly one order of magnitude smaller than directly measured, and,
thus, experiments are not entirely conclusive. All our calculate values fall into the range of
experimental values yielding qualitatively correct predictions. With the BC-Ehrenfest predicted
diffusion lengths –the most reliable values sampling wise, though not from the theoretical stand
point– we find an anisotropy LDa/LDb = 0.54 in very good agreement with the experimen-
tal estimate LDa/LDb ≈ 0.6. Generally, all methods which include fluctuations predict lower
anisotropy than Marcus theory, in line with experimental results. The prediction of anisotropy
may benefit from a cancellation of error not affecting absolute values. Rate expressions suggest
a factorization of the transfer rate into a coupling dependent term and some exponential factor
stemming from molecular relaxation. Then relaxation cancels from the Da/Db ratio and this
should hold approximately true for the real-time dynamics as well. Many error contributions,
such as the underestimated relaxation energy and erroneous delocalization because of missing
decoherence, primarily affect the canceling exponential term. It is difficult to decide which are
ultimately the best predictions. The use of a correct λI parameter, rather than forces, reduces the
diffusion constant and hence brings results closer in agreement with the experiment where dif-
fusion constants have been directly measured, but then diffusion length estimates deviate more
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from the measured values.
A comparison to previous theoretical studies may point out a further source of error and help
put results into perspective. Investigations of exciton diffusion in anthracene utilizing Marcus
rates to calculate the hopping probabilities predicted slower diffusion than studies with rates
based on the spectral overlap, but with otherwise similar parameters [81, 132]. The authors
attributed the effect to the lack of multiple modes, rather than just one effective mode, in Mar-
cus theory. When λI is used as a parameter in our simulations, we find diffusion constants in
b-direction (where coupling fluctuations are not as dominant as in a-direction) of similar mag-
nitude as obtained in these studies by Marcus theory. Certainly, though, all modes are included
if the full classical dynamics of the nuclei is considered. We believe a classical treatment of all
modes, common to our simulations and Marcus theory, is at fault for underestimating diffusion
constants. The largest contribution to molecular relaxation in anthracene has been shown to
stem from high frequency, quintessentially quantum-mechanical modes [12]. If this is taken
into account, effective relaxation energies come out smaller than the actual value [12], fur-
ther indicating a classical treatment of modes might not be entirely justified, and explaining
the lower diffusivity predicted by approaches which treat modes classically. It would then so
happen that the underestimated relaxation in a GGA-functional description provides a better
classical approximation to the quantum mechanical treatment and, by cancellation of errors, the
uncorrected results would be more accurate. Such an argument supports the results with larger
diffusion constants, in line with the experimentally measured diffusion lengths .

4.4 Conclusion

In this chapter we introduced an approach where singlet exciton diffusion in anthracene was
modeled by direct non-adiabatic coupled quantum-classical simulations. Since long time-scale
simulations for relatively large quantum systems are required, a fragmentation approach was
used where quantum calculations were performed for individual molecules with the fast TD-
DFTB method and Coulomb-couplings were used to build the intermolecular Hamiltonian de-
scribing the exciton dynamics in the system. Tully’s fewest switches surface-hopping, with
adaptions for bulk systems, alongside the Boltzmann corrected Ehrenfest algorithm were ap-
plied to combine quantum and classical simulation. The latter has, to our knowledge, not been
used before in transport simulations. Results with both algorithms agree reasonably well. We
also tried to account for an underestimation of molecular relaxation due to the local functional
underlying DFTB, by describing relaxation with a parameter, rather than with actual forces.
Our results for the diffusion constants D and diffusion lengths LD in two different directions
agree qualitatively well with experiment. Because results differ somewhat with different sim-
ulation setups and also because of different experimental results, a precise evaluation of the
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methodology is difficult at the moment.

As it turned out, there are three issues adversely affecting the performance of the method. One
is the failure of local functionals to accurately describe low-energy excited states in oligocenes.
This could be remedied by using long-range corrected functionals. In fact, such functionals
have recently become available in DFTB [17]. In the next chapter, the ground-state formalism
is extended to TD-DFTB, and in future work we plan to combine this method with the exciton
transport approach. Another issue is the neglect of exchange and overlap contributions to the
excitonic coupling, resulting in too small fluctuations. The common approach to include them
is via supermolecular calculations for dimers and diabatization schemes. While performance
wise the higher computational cost could be stemmed, incorrect descriptions of non-symmetric
dimers with local functionals render this impossible. Again, range-separated functionals in
DFTB could solve this in the near future. Finally, the classical description of quantum modes
seems to be a source of error. Applying path-integral methods for the nuclear dynamics may
address this issue, but it is not clear whether this will provide a solution in quantitative terms.
Research along this lines is currently underway in our laboratory.

On the upside, the method is able to make reasonable predictions at a low cost. This may be in
part due to an error cancellation of relaxation and nuclear quantum effects. It would be inter-
esting to explore in the future whether this can be used in a systematic way. The method can
be used as a black box, while for example the calculation of spectral overlaps can require much
human and computational effort. Direct MD trajectories of several picoseconds length with 18
molecules in the QM region can be performed within a day on a single core, making it about a
1000 times faster than the TD-DFT calculations presented in Ref. [11].

Because exciton transport in anthracene is incoherent, it is a challenging regime for real-time
propagation methods and hopping models are the most appropriate approach. The current work
suggests that this challenge can be met by direct simulations and as a main application, the
method should be able to distinguish transport regimes without prior assumption. Materials
where coherent transport takes place hold great technological promise and likely there are many
borderline cases in between coherent and incoherent, where hopping models will fail. For the
study of these systems the presented methodology can be a very useful tool, in particular since
it can be used without the need to parametrize model Hamiltonian. Therefore we think that this
approach can be a useful tool for the study of exciton diffusion in molecular materials.
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5 Time-dependent extension of the long-range
corrected DFTB method

5.1 Introduction

The methods presented in chapters 3 and 4 rely heavily on the DFTB method for electronic
structure calculations. However, the electronic states relevant for charge and energy transport
processes in anthracene and many other typical organic semiconductors are known to be poorly
described by the PBE functional underlying DFTB.
A significant drawback of DFTB was the limited lexibility in terms of available exchange-
correlation (xc) functionals. Only local and semi-local functionals like the LDA or gradient-
corrected functionals could be used in the DFTB framework. This left the important class of
functionals that incorporate Hartree-Fock exchange out of reach. On the DFT level, such global
hybrid and long-range corrected (LC) functionals are widely and successfully used. Global
hybrids, like B3LYP or PBE0, provide a balanced description of electronic and vibrational
properties for a wide class of materials [153]. LC functionals effectively minimize the self-
interaction error in DFT and overcome the trend for over-delocalization of the electron density
typically found in local DFT approaches [154–160].
Through a complete reformulation of the DFTB derivation, the LC-DFTB method, which allows
to incorporate arbitrary LC functionals in the DFTB context, has been developed by Niehaus
et al. [17]. Benchmark calculations showed that the benefits of self-interaction minimized
approaches, like improved quasiparticle energies and electric field response, are also obtained
in LC-DFTB at strongly reduced computational cost. This motivates us to also extend the
time-dependent (TD) formulation of DFTB, in order to access electronic excited states (LC-
TD-DFTB). Beside improving the description of excitations in anthracene and many similar
molecules [161], LC functionals are known to remedy the notorious underestimation of charge

Reproduced in part with permission from “Kranz, J. J., Elstner, M., Aradi, B., Frauenheim,
T., Lutsker, V., Garcia, A. D., & Niehaus, T. A. (2017). Time-dependent extension of
the long-range corrected density functional based tight-binding method. J. Chem. Theory
Comput., 13(4), 1737-1747”. Copyright 2017 American Chemical Society. ACS article-on-
request link: http://pubs.acs.org/articlesonrequest/AOR-iH3mwNWiyPpktJV6m3wE
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transfer excited states in local and gradient-corrected TD-DFT [162]. This problem is espe-
cially pronounced for large distance intermolecular transitions but also for intramolecular ex-
cited states of extended and therefore large systems. In fact, this is exactly the typical domain
of application for the DFTB method and hence there is a need for such a development. Efforts
in this direction have already been undertaken by Humeniuk and Mitric [163]. Here we derive
the time-dependent response consistently from the LC-DFTB Hamiltonian, which itself was
derived directly from the LC-DFT energy functional earlier. The theory can also be seen as an
extension of the TD-DFTB method [164], and we will often make reference to this earlier work
to keep the presentation short. This section is followed by an extensive benchmark of excitation
energy and oscillator strength predictions for a test set of small organic molecules. Then the
method’s ability to correctly describe charge-transfer excitations is investigated, as well as its
description of the La,LB excitations in polyacenes, where, in full DFT, long-range corrected
functionals cope better than local or hybrid functionals. The polyacenes include anthracene,
which provided the motivation for the extension of TD-DFTB in the context of this work. Fi-
nally, we analyze the computational efficiency of the method and close with conclusions.

5.2 Methodology

As discussed in section 2.1.2, electronic excited states and response properties are available in
TD-DFT through the RPA equations [50, 165, 166]A B

B A


X

Y

= Ω

1 0

0 −1


X

Y

 , (5.1)

where the eigenvectors X,Y determine the transition density and oscillator strength of a certain
excited state, while Ω denotes the associated transition energy. In the following we denote
general molecular orbitals (MO) with the indices p,q, . . . occupied orbitals with indices i, j, . . .

and virtual (unoccupied) orbitals with indices a,b, . . .. We also introduce spin indices σ ,τ ,
molecular orbital energies εpσ and occupations npσ . The matrices A and B take the form [50]:

Aiaσ , jbτ =
δi jδabδστω jbτ

n jτ −nbτ

+Kiaσ , jbτ

Biaσ , jbτ = Kiaσ ,b jτ , (5.2)
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where ω jbτ = εbτ − ε jτ with niσ > naσ and n jτ > nbτ . The coupling matrix Kiaσ ,b jτ quantifies
the linear response of the Hamiltonian due to a (electric field) perturbation and is defined as:

Kiaσ , jbτ :=
∂Hiaσ

∂Pτ
jb

. (5.3)

In order to assess excited states in the LC-DFTB method it is therefore sufficient to evaluate
eq. 5.3 in the LC-DFTB framework. LC-DFTB has been introduced in section 2.1.3, and the
most relevant parts are also briefly repeated in the following section. The Coulomb interaction
is split as

vC = vsr
C + vlr

C =
exp(−ωr)

r
+

1− exp(−ωr)
r

, (5.4)

with the range-separation parameter ω . The BNL functional [58, 59] is used for the short-range
component, and non-local Hartree-Fock exchange for the long-range part.
In the LC-DFTB method the BNL energy functional is expanded around a reference density
matrix P0,σ up to second order in the fluctuations ∆Pσ = Pσ −P0,σ , where Pσ is the desired
solution at self-consistency. We are interested here in the Hamiltonian that arises from the en-
ergy expression. To ease the derivation of the coupling matrix, we first reformulate the original
closed shell method in a spin-unrestricted form. We obtain (see section 2.1.3 or Refs. [17, 57]):

Hσ
µν = H0,ω

µν +∑
τ

∑
αβ

∆Pτ

αβ
(µν |vC + f xc,ω

στ |αβ )

− 1
2 ∑

αβ

∆Pσ

αβ
(µα|vlr,ω

C |βν), (5.5)

where the superscript ω indicates a dependence on the range-separation parameter. In eq. 5.5
the Greek indices stand for the Slater type atom-centered basis functions φµ that have been
defined in Ref. [17]. The term H0,ω

µν denotes the zeroth order LC-DFTB Hamiltonian which
is obtained by evaluating the BNL Hamiltonian at the reference density P0 in a two-center
approximation [17]. The reference is simply the sum of density matrices at the BNL level of
theory for all atoms in the system. In line with the spin-polarized implementation of DFTB
[167], we chose the reference to be spin-restricted (P0,↑ = P0,↓). We further introduced the
following abbreviation for a general two-electron integral over a kernel g(r,r′):

( f |g|h) =
∫∫

f (r)g(r,r′)h(r′)drdr′, (5.6)

where f and h stand for atomic orbital (AO) products, and g corresponds to vC, vlr
C or the

exchange correlation kernel f xc
στ = δ 2Exc/δρσ δρτ , with ρ the electron density. Transformation
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from the set {ρ↑,ρ↓} to the total density ρ = ρ↑+ρ↓ and magnetization m = ρ↑−ρ↓ allows one
to write [168]:

f xc
στ = f xc +δσ δτ f̃ xc (5.7)

f xc =
δ 2Exc

δρδρ
, f̃ xc =

δ 2Exc

δmδm
, (5.8)

with δσ = 2δ↑σ −1. In Ref. [17] expressions for the main required two-electron integrals were
derived in the Mulliken approximation. Generally one finds:

(µν |g|αβ )≈ 1
4

SµνSαβ [(µµ|g|αα)+(µµ|g|ββ )+(νν |g|αα)+(νν |g|ββ )] , (5.9)

where S is the overlap matrix. Let l and m denote the angular momentum and magnetic quantum
number of AO φµ , centered on atom A. We then have for µ = {Alm}, ν = {Bl′m′}:

(µµ|vC + f xc,ω |νν) ≈ γ
fr
Al,Bl′ (5.10)

(µµ|vlr,ω
C |νν) ≈ γ

lr
Al,Bl′ , (5.11)

where γ lr/fr
Al,Bl′(|RA−RB|,UAl,UBl′) are functions that depend on the distance between the atoms

on which the basis functions µ,ν are located and on the atomic Hubbard parameters UAl . In
order to approximate the remaining integral we follow Dominguez et al. [168]:

(µµ| f̃ xc|νν)≈ δABWAl,l′, (5.12)

and introduce for later reference

Γ
στ

Al,Bl′ := γ
fr
Al,Bl′+δσ δτδABWAl,l′, (5.13)

with atomic constants WAl,l′ that are already used in the conventional DFTB method for spin-
polarized systems [167, 169]. These parameters, as well as atomic parameters entering the
functions γ lr/fr

µν , are evaluated using first principles BNL calculations. Note that eq 5.5 reduces
to the spin-restricted result of Ref. [17] for closed shell systems. In this case the constants WAl,l′

do not influence the ground state and only play a role for triplet excitations, as it will become
clearer in the following. The generalized Kohn-Sham equations for spin-unrestricted LC-DFTB
finally read:

∑
ν

Hσ
µνcσ

ν i = εiσ ∑
ν

Sµνcσ
ν i. (5.14)

Assuming real MO, the density matrix is then given by Pσ
µν = ∑i niσ cσ

µ,ic
σ
ν i.
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Having defined the ground state Hamiltonian of LC-DFTB we are now in the position to derive
the coupling matrix. Transforming from the AO to the MO basis by Hσ

pq =∑µν cσ
µ pcσ

νq we arrive
at the central result:

Kiaσ , jbτ = ∑
AB

∑
ll′

(
qiaσ

Al Γ
στ

Al,Bl′q
jbτ

Bl′ −δστqi jσ
Al γ

lr
Al,Bl′q

abτ

Bl′

)
. (5.15)

The terms qpqσ

Al have been denoted transition charges earlier [168, 170] and are evaluated ac-
cording to

qpqσ

Al =
1
2 ∑

µ∈A,l

(
cσ

µ pc̃σ
µq + cσ

µqc̃σ
µ p

)
, c̃p = cp ·S. (5.16)

In the limit of a purely local or gradient-corrected functional (ω→ 0) the contribution due to the
long-range part in eq. 5.15 vanishes and one recovers the original TD-DFTB method [168, 170].
In the general case however, the long-range part introduces an asymmetry in the coupling matrix
(e.g. Kiaσ , jbτ 6= Kiaσ ,b jτ ) similar to other DFT methods that feature non-local exchange. As a
consequence, the eigenvalue problem (eq. 5.1) can not generally be recast into Hermitian form
and one has to resort to specialized algorithms as given by Stratmann et al. [171].
After the solution, oscillator strengths f are readily available:

f =
2Ω

3

3

∑
k=1

∣∣∣∣∣∑iaσ

〈ψiσ |rk|ψaσ 〉
√

(niσ −naσ )(Xiaσ +Yiaσ )

∣∣∣∣∣
2

, (5.17)

where rk denotes the k-th component of the position operator. Like in conventional TD-DFTB
[168, 170], the transition-dipole matrix elements are subjected to a Mulliken approximation:

〈ψiσ |r|ψaσ 〉 ≈∑
A

RA

(
∑

l
qiaσ

Al

)
. (5.18)

5.3 Implementation details

The long-range corrected TD-DFTB method has been implemented in the development branch
of the DFTB+ program [18] that already contains the ground-state method with long-range cor-
rection. In this section, we concretize some aspects of the method with respect to its actual
implementation and focus on the excited state part of the calculation. For detailed information
on the implementation of the ground state LC-DFTB method, we refer to the original publica-
tion [17].
In the previous section, the method has been introduced in a more general form than currently
implemented. As in the original TD-DFTB method [170], we neglect the dependence of Hub-
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bard parameters (UAl =UA) and spin constants (WAl,l′ =WA) on the orbital angular momentum
and evaluate them for the highest occupied atomic orbital only. The resulting coarsened func-
tions γAB now describe the interactions between total atomic transition densities.
We further confine ourselves to closed-shell ground states, which reduces the dimensionality of
the RPA equations by half. The orthogonal transformation through the matrix

M =
1√
2

1 1

1 −1

 (5.19)

separates the RPA equations into independent eigenvalue problems for singlet and triplet exci-
tations. With eliminated spin indices, the resulting coupling matrices read

KS
ia, jb = Kia↑, jb↑+Kia↑, jb↓, (5.20)

KT
ia, jb = Kia↑, jb↑−Kia↑, jb↓, (5.21)

where S and T refer to singlet and triplet excitations, respectively. The DFTB expressions then
simplify to

KS
ia, jb = ∑

AB

(
2qia

A γ
fr
ABq jb

B −qi j
A γ

lr
ABqab

B

)
, (5.22)

and

KT
ia, jb = 2∑

A
qia

A WAq jb
A −∑

AB
qi j

A γ
lr
ABqab

B , (5.23)

with the total transition charges qpq
A = ∑l qpq↑

Al = ∑l qpq↓
Al .

At this point, the eigenvalue problems to be solved are of dimension 2Nocc×Nvirt , for Nocc oc-
cupied and Nvirt virtual molecular orbitals. The form of the equations allows a further reduction
of dimensionality by a factor of two. In purely local variants of TD-DFT and TD-DFTB the
Casida equation [50] is usually employed:

(A−B)1/2(A+B)(A−B)1/2T = ω
2T, (5.24)

where T = (A−B)−1/2(X+Y). This is a Hermitian problem. If the coupling matrix Kia, jb is
invariant under exchange of j and b, (A−B) is diagonal, such that no actual matrix inversion is
required. However, because non-local exchange destroys this symmetry, we work instead with
the non-Hermitian form:

(A−B)(A+B)(X+Y) = ω
2(X+Y). (5.25)
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Usually, only a few low-lying excitations are of interest, not the entire spectrum. Algorithms
solving only for a subset of eigenvalues are then typically employed, bypassing a full solution
in the large space. For this purpose, we implemented the algorithm of Stratmann et al. [171],
details of which can be found in the original publication. The evaluation of products of (A+

B) and (A−B) with vectors of dimension NvirtNocc determines the scaling of the algorithm,
implying O(N2

virtN
2
occ) asymptotic scaling for first principles LC-DFT. In contrast, the special

structure of the LC-DFTB coupling matrices allows to reduce the computational effort. Here,
the matrix products can be written as

(A+B)v =ωiavia +4∑
A

qia
A

[
∑
B

γ
fr
AB

[
∑
jb

q jb
B v jb

]]
−∑

A, j
qi j

A

[
∑
B

γ
lr
AB

[
∑
b

qab
B v jb

]]

−∑
A,b

qib
A

[
∑
B

γ
lr
AB

[
∑

j
q ja

B v jb

]]
(5.26)

for singlets, and analogously for (A− B)v and triplets. If the terms in the square brackets
are precalculated and stored, the scaling improves to O(Nat ·max

{
N2

occNvirt ,N2
virtNocc

}
). This

requires the storage of arrays of size Nat ·max{N2
virt ,N

2
occ,NvirtNocc}. For systems with many

atoms much memory is required, but on modern computers this will likely only be an issue
for very large systems. As an example, a model with thousand atoms requires about 64 GB of
memory. In the present implementation the user one can select whether or not to precompute
terms. All calculations presented in this work use the precomputation option. Thus, the method
should asymptotically scale quartic with system size, whereas the conventional, local variant of
TD-DFTB exhibits only cubic scaling.

5.4 Results

In the following, we apply TD-LC-DFTB in various test cases to assess the performance of the
method. Electronic parameters (Hamiltonian, overlap and atomic parameters UA,WA ) were
computed with the range-separation parameter ω set to ω = 0.3/a0. This value provided
accurate predictions of ionization energies and band gaps from orbital eigenvalues with the
ground state LC-DFTB method [17]. The ground state calculations employ a prescreening with
a threshold of ε = 10−6 to decide whether Hamiltonian elements need to be calculated [17]. In
DFTB, the density and wave function compression radii rd and rwf determine the shape of the
reference density and the basis set, respectively [172]. Given that the range-separation changes
both potential and resulting densities, optimal radii for the local and non-local variant of DFTB
are not necessarily the same. Indeed, excitation energies turned out to be systematically overes-
timated if the conventional radii of the well established GGA parameter set mio-0-1 [173] were
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employed. Much better results were obtained by a homogeneous scaling of all radii by a factor
of 0.8, independent of the element in question:

rd/wf = 0.8rmio-0-1
d/wf .

This scaling factor was chosen because it worked well for some sample molecules, but has not
been thoroughly optimized up to now. With the reduced compression radii the gap between
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) shrinks and orbital eigenvalues are lowered. Hence, predictions of ionization poten-
tials and band gaps computed with the new parameters are slightly worse than reported in the
original study [17], although this effect is small with changes of usually less than 5%. It is
conceivable that by error cancellation the smaller orbital gaps correct for an underestimation
of the response in the TD-DFTB approximations as the magnitudes of these two terms have
opposite effects on excitation energies. In any case, it is not surprising that a change in the form
of the DFTB Hamiltonian requires adapted parameters. Indeed, the long-range exact exchange
contributions considerably increase the magnitude of the Hamiltonian elements. In addition,
decreased compression radii correspond to a more compact density and the need for rescaling
may be a consequence of a reduced self-interaction due to exact exchange. Ultimately, the
method will work best with an adjusted, new parameter set, but this is beyond the scope of the
present work and unnecessary for a first benchmark.

5.4.1 Small molecule test set

We benchmarked the accuracy of TD-LC-DFTB for the prediction of singlet excitation energies
of typical, medium-sized organic chromophores. For this purpose, we selected the molecules in
the benchmark set proposed by Thiel and co-workers [174]. Results for large benchmark sets
give a good overall impression of the accuracy of the method. Calculations were performed
directly on the geometries provided by Thiel et al., which they optimized at the MP2/6-31G*
level. Besides LC-DFTB, we also ran calculations with conventional DFTB (mio-0-1 param-
eters), LC-ωPBE [175]/6-31(d,p), and two additional long-range corrected DFT functionals,
CAM-B3LYP [176] and ωB97X [177]. Because the latter two functionals and LC-ωPBE gave
similar results with relative differences well below the error of LC-DFTB, their results are not
presented. The full DFT calculations were carried out with the 09 version of Gaussian [178],
and we kept the default value of ω = 0.4/a0 for LC-ωPBE.
We calculated the five lowest singlet excitations with each method and and classified the states
according to symmetry in order to account for differing energetical order. DFTB results are not
reported if there were no excitations among the five lowest that match the corresponding states
predicted by LC-ωPBE. Our own calculations are complemented with CC3/TZVP and best
estimates from the literature [174], available for some of the systems. These best estimates are
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based on various high-level calculations and molecule specific assessments. Figure 5.1 provides
a graphical representation of the results, while several comparisons of the mean average error
(MAE) can be found in Tab. 5.1 (a detailed list of all results is found as Tab. A1 in the appendix).
The MAE of DFTB based methods compared to LC-ωPBE decreases from 1.01 eV with DFTB
to 0.44 eV with LC-DFTB. A steep drop in this error is expected, because LC-DFTB should re-
semble full DFT with long-range corrected functionals. Nevertheless, even if the tight-binding
approximations were perfectly valid, the difference would not vanish as the the underlying func-
tionals are not exactly the same. Compared to the best estimates, both DFTB methods and full
DFT perform almost equally well on average, with MAEs of about 0.5 eV. This is due to the
known tendency of long-range corrected functionals to overestimate many excitations in the
test set [179], so that functionals without exact exchange, such as PBE (and by the same token
DFTB) yield better accuracy. To analyze the performance of LC-DFTB in cases where long-
range corrected DFT does indeed provide the better description, it is illustrative to look at the
MAEs against the best estimates taken only over excitations where LC-ωPBE does at least out-
perform DFTB. Then we find MAEs of 0.73 eV for DFTB, 0.28 eV for LC-DFTB, and 0.21 eV
for LC-ωPBE. Clearly, LC-DFTB yields much better results than DFTB for such excitations.
In fact, on average LC-DFTB is almost as accurate as LC-ωPBE. A closer inspection of the
individual results relativizes this somewhat. Trends can best be seen in the graphical represen-
tation given in Figure 5.1. Compared with LC-ωPBE, LC-DFTB fares worst for the molecules
ranging from ethene to norbornadiene. Those are small linear or non-planar cyclic molecules,
and higher lying excitations are described worse than lower lying excitations. LC-DFTB tends
to underestimate the LC-ωPBE excitation energies, which could be due to the minimal basis set
which can hardly describe high-lying and diffuse excited states. On the other hand, LC-ωPBE
calculations with small basis sets, such as STO-3G or 3-21G, overestimate the excitation ener-
gies, questioning this assumption. In any case, given that LC-ωPBE overestimates the higher
excitations, the MAE of LC-DFTB and LC-ωPBE with respect to high-level methods are actu-
ally quite similar due to error cancellation.
In contrast, LC-DFTB performs very well for the molecules ranging from benzene to tetrazine,
which are planar, cyclic molecules, some containing nitrogen. There the MAE compared to LC-
ωPBE is much smaller than the overall error of 0.4 eV. Finally, for the RNA bases cytosine to
adenine LC-ωPBE predicts much larger excitation energies than DFTB. The bases are a difficult
case for local functionals, with many excitations strongly underestimated by functionals such
as PBE [179]. LC-DFTB follows the trend of LC-ωPBE, also predicting much higher values,
albeit not reaching quite as high for some excitations.
Besides excitation energies, we also analyzed the oscillator strengths f . The oscillator strengths
of the brightest excitation among the five lowest are shown in Figure 5.2 for each molecule in
the test set. All oscillator strengths with f > 0.01 as calculated with LC-ωPBE, DFTB and
LC-DFTB can be found in Tab. A2. Long-range correction usually increases the magnitudes
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5 Time-dependent extension of the long-range corrected DFTB method

Figure 5.1: Singlet excitation energies for molecules in the benchmark set as predicted by
time-dependent LC-DFTB, conventional DFTB with mio-0-1 parameters, and
other methods. Coupled-cluster results and best estimates are taken from Ref.
[174]. Where DFTB values are missing, excitations corresponding to the five low-
est states predicted by LC-ωPBE were not present. Curves belonging to different
excitations have been shifted vertically for better overview.
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5.4 Results

MAE vs. LC-ωPBE

DFTB 1.01

LC-DFTB 0.44

MAE vs. CC3

DFTB 0.64

LC-DFTB 0.43

LC-ωPBE 0.33

MAE vs. best est.

DFTB 0.51

LC-DFTB 0.47

LC-ωPBE 0.46

CC3 0.24

MAE vs. best est. (where error LC-ωPBE < error DFTB)

DFTB 0.73

LC-DFTB 0.28

LC-ωPBE 0.21

CC3 0.20

Table 5.1: MAE [eV] for the first five excitations (where values present) for different compar-
isons. CC3 and best estimates from Ref. [174].

of the predicted oscillator strengths and, indeed, LC-DFTB predicts larger values than DFTB
for all excitations. LC-DFTB results are generally in very good agreement with LC-ωPBE;
most relative errors are below 5%. For the hydrocarbons, furan and benzoquinone, LC-DFTB
and LC-ωDFTB oscillator strengths match well, with varying, sometimes large differences to
DFTB. This applies also for the small molecules, where excitation energies were often under-
estimated, even though the bright excitations happen to be the ones were the errors in excitation
energy are also rather small. For the aromatic nitrogen compounds all methods predict small
oscillator strengths, except for pyrrole, where LC-DFTB and LC-ωPBE are in good agreement.
For the RNA bases, LC-ωPBE predicts values about twice as large as DFTB. While LC-DFTB
and LC-ω agree well for uracil and adenine, the LC-DFTB results are too small for the other two
bases, albeit larger than the DFTB results. Lastly, for all the molecules containing acyl groups,
except for benzoquinone, LC-DFTB tends to overestimate the LC-ωPBE oscillator strengths.
Noting that even DFTB overestimates the values, this points to a problem either with the tight-
binding approximation or the minimal basis set. Overall, averaged over all of the five lowest
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Figure 5.2: Oscillator strengths of the brightest excitation among the five lowest computed for
different methods.

excitations and all molecules in the set, the MAE of the oscillation strengths with respect to
LC-ωPBE decreases from 0.08 for DFTB to 0.04 for LC-DFTB.

5.4.2 Charge-transfer excitations

One of the most common applications of long-range corrected functionals is the treatment of
charge-transfer (CT) excitations, which are wrongly described by functionals containing no or a
fixed amount of Hartree-Fock exchange. Naturally, CT excitations are also an important poten-
tial application for LC-DFTB. In this section, we investigate whether the method can properly
describe such states. A prototypical case of CT excitations can be found in dimeric molecular
complexes where both molecules in the dimer are mostly neutral in the ground state, but upon
excitation, an electron is transferred from one molecule to the other. For large intermolecular
separations R, the excitation energy ΩCT should be [180]

ΩCT = IP(Donor)−EA(Acceptor)− 1
R
,

where IP is the ionization energy, EA the electron affinity, and the last term is due to the
Coulomb interaction of the electron-hole pair. Local/semi-local DFT fails to predict the −1/R

term because the response is exchange like, while Hartree-Frock and long-range corrected DFT
[181] yield the correct behavior. To test whether LC-DFTB exhibits the correct scaling with
distance, we start by considering an ethylene· · ·tetrafluorethylene dimer, as proposed by Head-
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Gordon et al. [162]. Figure 5.3 shows the dependence of the first excitation energy on the
intermolecular distance for LC-DFTB, LC-ωPBE/6-31(d,p), and B3LYP/6-31(d,p). All curves
where shifted to coincide at R = 5Å. LC-DFTB clearly exhibits the correct 1/R behavior,
while B3LYP, as expected, does not. Therefore, also in tight-binding approximation the exact
exchange term fully cancels the self-interaction in the limit of large separations as it should.
Next, we want to benchmark the quantitative performance of LC-DFTB for CT excitations.
We follow Baer et al., who considered CT excitation complexes of tetracyanoethylene (TCNE),
which serves as the acceptor, with various organic donor molecules [181]. Their B3LYP/cc-
PVDZ optimized structures have been directly used for our computations. Results of the LC-
DFTB calculations for the lowest excitations are shown in Figure 5.4 and Tab. A3, alongside
experimental references [182, 183]. Tab. 5.2 contains MAEs against experiment over the test
set. As theoretical references, we include TD-DFT results obtained with LC-ωPBE/6-31(d,p)
and results from Baer et al. computed with B3LYP and a tuned BNL range-separated func-
tional [181]. Within the tuned approach, the range parameter ω is optimized so that the HOMO
energy of the TCNE-Benzene complex is as close as possible to its ionization potential value.
Additionally, we compare our results to a simplified particle-particle random phase approxi-
mation (pp-RPA) formalism using DFTB eigenvalues and eigenfunctions [184]. Pp-RPA has
recently proven as a promising tool for the study of CT excitations in atomic and molecular
systems [185, 186]. It is based on the pairing matrix fluctuations and uses a N − 2 electron
single-determinant reference, thus giving access to the ground and excited states of the N elec-
tron system through two-electron addition processes. The method describes correctly Rydberg,
double and CT excitations and it has a similar computational cost as TD-GGA or TD-LDA. A
series of approximations can be applied within the pp-RPA scheme to avoid the on-the-fly com-
putation of two-electron integrals. The combination of these approximations with the DFTB
calculation of the N−2 reference leads to a computationally efficient, yet fairly accurate frame-
work for the computation of CT energies. Since this method (so called pp-DFTB) employs
DFTB orbitals and energies, as well as contains the same sort of approximations applied in
LC-DFTB, it is interesting to include pp-DFTB CT energies here for comparison.
The failure of B3LYP is immediately obvious, as it vastly underestimates most excitations and
describes trends incorrectly because the CT nature of the excitations is not accounted for. All
other methods, including LC-DFTB and pp-DFTB, yield much better results and correct trends.
Much smaller MAEs, on the order of 0.2 to 0.3 eV for LC-ωPBE, LC-DFTB, and pp-DFTB, or
0.1 eV for BNL, reflect this.
LC-DFTB and LC-ωPBE agree well with each other, but tend to systematically overestimate all
excitation energies. The overestimation is likely caused by a poorly tuned range parameter ω .
The tuned BNL results are closer to experiment and show no systematic deviation. Indeed, fine-
tuning was found to be necessary for such good quantitative performance [181] with BNL. To
investigate whether LC-DFTB results improve with a better chosen range parameter, we have
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Figure 5.3: CT excitation energies in an ethylene· · ·tetrafluoroethylene dimer with various
methods. Curves have been shifted to coincide at R0 = 7Å, that is the quantity
∆ΩCT = ΩCT(R)−ΩCT(R0) is shown for each method. LC-ωPBE and LC-DFTB
exhibit the correct −1/R scaling with distance, while B3LYP does not.

recalculated the excitation energies with a range parameter of ω = 0.25/a0, rather than the de-
fault ω = 0.3/a0 used for all other calculations. We did not arrive at that value by fine-tuning,
which for lack of spin polarization parameters we can not do at the moment, although it is
possible in principle. Rather, we chose the value heuristically, as decreases in ω also lead to de-
creases in the excitation energies and thus should lower the error. With the changed parameter,
LC-DFTB reproduces the experimental results very well. The overestimation is eliminated and
the MAE drops to 0.07 eV, the smallest of all methods. Notably, LC-DFTB then predicts very
good results for methyl- and dimethylanthracene, whereas BNL overestimates the excitation
energies. Seeing that the full DFT methods tend to predict larges values than the corresponding
DFTB methods, this suggest that for those to molecules a fortuitous cancellation of error with
the error due to the tight-binding approximation improves the results.
The accuracy of pp-DFTB is comparable to that of LC-DFTB without parameter fine-tuning.
However, excitation energies tend to be under-, rather than overestimated, lending further sup-
port to the suspicion that the overestimation with ω = 0.3/a0 is caused by the choice of range
parameter, not by the tight-binding approximation. The pp-DFTB excitation energies have an
outlier at o-xylene that does not appear with LC-DFTB, pointing to a problem with the pp-RPA
approximation for this molecule.
Ultimately, the data shows clearly that LC-DFTB can account for the CT nature of excitations
and therefore be a tool to study them.

5.4.3 Excitations in polyacenes

Now we look at the much mentioned excitations involving large π states that were brought up
as a motivation for the work in this chapter. Many organic semiconducting materials consist of
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Figure 5.4: CT excitation energies in dimer complexes of TCNE with different molecules. Ex-
perimental results (in the liquid phase for the first three molecules and in the gas
phase for the rest) have been taken from Refs. [182, 183], B3LYP results from Ref.
[181].

B3LYP LC-ωPBE LC-DFTB LC-DFTB pp-DFTB Tuned-BNL

[181] (ω = 0.3) (ω = 0.25)

MAE 1.20 0.30 0.24 0.07 0.22 0.12

Table 5.2: MAEs [eV], compared with experiment [182, 183], for the lowest CT excitation
energies in dimers of TCNE with various molecules, as computed with different
methods.
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5 Time-dependent extension of the long-range corrected DFTB method

π-conjugated molecules, which for this reason are of great practical interest for the design of
organic semiconducting devices. The polyacenes are an exemplary class of molecules exhibit-
ing conjugation, and in pure crystals, charge mobilities can reach as high as several cm2/V · s
[15, 187], making them interesting for applications and as benchmark systems. The molecule
anthracene from the previous chapters is one of the smaller polyacenes, with three rings. As
stressed before, the treatment of such molecules is challenging for TD-DFT methods. Specif-
ically, local and hybrid functionals underestimate the La excitation [188], the lowest singlet
excitation with B2u symmetry. In chapter 4 we saw that DFTB inherits this error from PBE.
The error grows with the number of rings, so that progressing through the acenes series true
value and prediction diverge further from each other. When the exchange contribution in hy-
brid functionals is increased, the error decreases, but then the Lb excitation, singlet of B3u

symmetry, is described worse. It has been demonstrated that long-range corrected functionals
substantially improve the description of both states at the same time. This circumstance has
been attributed to “CT excitations in disguise” [161], sharing some characteristics with true CT
excitations. To investigate the performance of LC-DFTB in the description of the La and Lb

excitations, we performed LC-DFTB, LC-ωPBE/6-31(d,p), and B3LYP/6-31(d,p) calculations
on the acene molecules from naphtalene to heptacene. The molecular geometries were opti-
mized in the ground state at the DFTB level. The observed trend with growing ring number
can be seen in Figure 5.5. LC-DFTB correctly reproduces the full long-range corrected DFT
and experimental behavior. Therefore, it can account for the factors rendering the polyacenes a
difficult case for DFT methods. Exact values are listed in Tab. A4. The long-range corrected
methods overestimate the Lb excitation energies and LC-DFTB slightly more than LC-ωPBE. It
is, however, possible to improve the numerical agreement for long-range corrected functionals
by fine-tuning the range-separation parameter ω [181]. The same should hold for LC-DFTB
since it appears capable of describing the relevant physics.

5.4.4 Computational efficiency

DFTB is chosen over DFT when the computational requirements of a full DFT treatment of the
problem at hand become excessive. Accordingly, good computational performance, as offered
by the conventional DFTB method, is paramount for the usefulness of LC-DFTB. To benchmark
the computational efficiency of the method, we performed calculations on a growing cluster of
anthracene molecules in the herringbone arrangement of the bulk crystal. The ten lowest singlet
excitation energies were computed for each configuration. Besides our LC-DFTB implemen-
tation, calculations were also run with the conventional linear response DFTB implemented in
DFTB+, and with NWCHEM [190] (version 6.6) to perform LC-ωPBE/6-31(d,p) calculations.
All jobs ran on a single core of an Intel Xeon E5-2630v3 processor, and except for system pro-
cesses, no other jobs were active at the same time. Wall times, determined with the UNIX time
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Figure 5.5: Energies of the La (solid lines) and Lb (dashed lines) excitations in the acenes se-
ries in terms of the wavelength of absorption λ = hc

Ω
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rings. Experimental results from Ref. [189]. Curves were shifted vertically to co-
incide for naphtalene, that is we plot ∆λ = λn− λ2. LC-DFTB and LC-ωPBE
reproduce the experimental trend, whereas B3LYP increasingly underestimates the
La excitation.

utility, are displayed in Tab. A5 and plotted in Figure 5.6. Run times divided by the number of
matrix-vector multiplications performed are also included for the DFTB calculations. All DFTB
results have been averaged over five runs. Because we only allowed run times of up to two days,
no NWCHEM results are available beyond a system size of 4 anthracene molecules. Note that
for the two largest systems actually 15 excitations had to be computed with conventional DFTB,
because the algorithm would not converge for 10, instead requesting a larger number of roots to
solve for.
LC-DFTB turns out to be about three orders of magnitude faster than full LC-DFT. Such a
speed-up permits the treatment of much larger system sizes, or a greatly increased number of
single-point calculations, for example in molecular dynamics simulations. Surprisingly, LC-
DFTB also runs almost as fast as conventional DFTB for all system sizes, despite its less fa-
vorable nominal scaling (see section section 5.3). Indeed as expected, a single matrix-vector
multiplication of the kind of eq 5.26 takes much less time in the local formalism. The observed
run time divided by the number of executed matrix-vector multiplications scales as O(N3) with
system size N for conventional DFTB. For LC-DFTB we see a crossover from O(N3) scaling
to the theoretically predicted O(N4) scaling. The cubic scaling can be attributed to the time
required to setup the initial subspace that becomes insignificant for larger systems. While the
performance for individual multiplications differs, the overall performance is almost the same.
This happens because the conventional DFTB implementation executes about a hundred times
more matrix-vector multiplications. Unlike the specific Stratmann algorithm implemented for
LC-DFTB, the Arnoldi algorithm [191] currently used in DFTB+ is generic, and apparently
less efficient for the solution of the RPA equations. These results are in full agreement with
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Figure 5.6: Run times (ttot) for the calculation of the ten lowest singlet excitations in a growing
anthracene crystal for different methods. For the DFTB based calculations, compu-
tation times per matrix-vector product (tmvp) are also given.

the findings of Stratmann et al. [171] at the level of full DFT. In any case, the performance of
LC-DFTB for reasonable system sizes turns on par with the current linear response DFTB im-
plementation in DFTB+. This means that LC-DFTB should be applicable in most of the fields
where DFTB is currently used with out significantly increasing the computational requirements.

5.5 Conclusion

We have presented an implementation of linear response DFTB with an underlying long-range
corrected functional. The method builds on top of a fully consistent LC treatment of the ground
state. This sets it apart from a previous, more empirical variant of TD-LC-DFTB. [163] Bench-
mark calculations were presented for various systems in which long-range corrections may be
usefully employed. Good quantitative performance was found for molecules in a test set con-
taining small chromophores, particularly for flat, cyclical molecules. It has been demonstrated
that the method can treat charge-transfer excitations correctly and handle the La, Lb excitations
in polyacenes. Therefore, we can expect LC-TD-DFTB to be useful in the context of charge
and energy transport simulations based on DFTB. Oscillator strengths were likewise found to
be in excellent agreement with full DFT calculations. Hence, also for excited states, LC-DFTB
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offers a solution in cases where conventional DFTB fails due to the underlying GGA functional.
In terms of computational efficiency, LC-DFTB is slower than DFTB, but as it was revealed,
not by much compared to the current implementation in DFTB+. Here the proper choice of an
adapted algorithm plays a crucial role.
During this study, we also found that the compression radii for density and wave function that
are typically used in DFTB can not directly be taken over to LC-DFTB without compromis-
ing the accuracy. In the future, an automatic determination of these parameters along the lines
proposed by Heine and co-workers [56] seems to be promising. It will be interesting to see if
and to what extent the range-separation parameter ω can be varied without a need to adopt the
compression radii, too. Certainly, every change in ω requires a reparametrization of DFTB.
Electronic parameters are easy to calculate and sufficient for single point calculations, but refit-
ting repulsive potentials, required for full potential energy surfaces, is more laborious, an aspect
addressed in the next chapter.
Finally, it is noteworthy that there is nothing in the formalism and implementation of LC-DFTB
that would prevent the inclusion of full-range exact exchange. As the same is true for the
ground-state formalism, an extension to hybrid functionals such as B3LYP is straightforward
from this point.
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6 Generalized DFTB repulsive potentials from
unsupervised machine learning

6.1 Introduction

The LC-DFTB method from the previous chapter adds a new parameter, the range-separation
parameter ω . ω does in principle depend on the system at hand and should therefore be fine-
tuned system specific. However, every new value of ω requires a reparametrization of DFTB.
Electronic parameters are straightforward to calculate, but the repulsive potential terms tradi-
tionally require much manual effort, handpicking a training set of a few reference data points
that generalizes well. In this chapter, we introduce a scheme for automatized repulsive potential
paramterization. In doing so, we try be innovative, also tackling other limitations of the existing
approach, by combining DFTB with unsupervised machine learning methods.
DFTB in recent years has seen major improvements in accuracy concerning covalent [192–
194] and non-bonding interactions [195]. Despite those improvements, it seems the method has
reached its limits due to its inherent inflexibility to reflect all chemical situations with its rela-
tively fixed current form. For example, heats of formations and reaction energies for standard
test sets show errors of 3-7 kcal/mol, depending on the focus of the parametrization strategy.
The repulsive potentials, which are one part of the DFTB total energy, are already determined
in a fitting procedure and can be based completely on empirical data or quantum chemical cal-
culations. The other part of the total energy, the electronic terms, can be completely computed
from DFT, traditionally using GGA functionals, or long-range corrected functionals for the new
LC-DFTB formalism [17] (sec. 2.1.3 and chap. 5). With the availability of large amounts of ref-
erence data, data driven approaches become interesting alternatives to physical model potentials
and approximate solutions of the Schrödinger equation. Lately, artificial intelligence techniques
have become increasingly popular in molecular modeling, quantum chemistry, and condensed
matter physics [196–201]. Several applications of machine learning techniques [198, 199] and
neural networks [200, 201] to traditional quantum chemical problems show the great promise
of this approach. A typical feature of data driven methods is its interpolative nature. Extrapola-

Reproduced in part with permission from J. Chem. Theory Comput., submitted for publica-
tion. Unpublished work copyright 2017 American Chemical Society.
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6 Generalized DFTB repulsive potentials from unsupervised machine learning

tions beyond the data set are difficult, and convergence beyond a certain accuracy can be slow
if poor choices are made among the many representations, similarity and regressor options.
It has been suggested to combine efficient semi-empirical (SE) methods with ML approaches
[202, 203], since the former contributes important chemical information “easy” to capture,
while the latter may improve on the accuracy, thereby extending the limited flexibility of the SE
methods due to their inherent approximations, such as minimal basis sets, integral approxima-
tions, or use of atomic charges in the Hamilton. One possibility is to augment SE methods with
machine learning corrections in the so-called ∆ML [202] method, where results are corrected
based on a description of the entire molecule. Alternatively, parameters of an SE Hamiltonian
matrix [203] can be trained. Both approaches lead to significant improvements in accuracy.
In this chapter, we combine the semi-empirical DFTB method with ML to improve the predic-
tion of thermochemical data and molecular structures. In doing so, we tackle the problem of re-
pulsive potential fitting and attempt to move forward the method as such. In contrast to other SE
methods, the DFTB Hamilton matrix elements are computed in a two-center approximation and
are not derived by fitting to experimental or computed data. However, the repulsive potential,
which is bond-specific rather than atom or molecule-specific, is fitted to reproduce molecular
energies and structures. The machine learning trend exploits ever larger sets of molecular data.
So far the DFTB methodology did not benefit from this development, since parameterizations
were created manually [173], although progress has been made on automatizing the process
[19, 21]. Yet, since the number of free parameters is small, only limited and handpicked data
can be included in the fit. ∆ML fits corrections globally to reproduce molecular properties. In
contrast, DFTB fits bond-specific properties, which requires a different approach for the inclu-
sion of ML corrections.
Targeting bonds with ML has specific advantages: Because the set of possible bond topologies
is much smaller than the set of possible molecular conformations, such an approach should have
the advantage of lower training data requirements and better expected transferability. For exam-
ple, the ∆ML approach will fail for molecules larger than those included in the training set as it
only interpolates between known molecules. A bond based repulsive potential approach, on the
other hand, will work for molecules of any size as long as the constituent bonds are known. It
has been shown that atom pairwise potentials can be used to predict atomization energies [198].
However, only equilibrium energies can be included since potential energy surfaces would re-
quire too much training data, and only a certain accuracy can be achieved. Both limitations can
be lifted when combining ML with DFTB: Potential energy surfaces are naturally described by
the DFTB repulsive potentials because the mathematical form of the repulsive potentials treats
both, equilibrium and deformed molecular geometries, on equal footing. This also opens the
path to train for transition state structures. Further, to improve accuracy, information beyond
two-body interactions is required, which already is partly contained in the DFTB electronic
energy.
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In this chapter, we propose a generalization of the DFTB repulsive potentials, which depends
on a quantitative notion of the bond topology, rather than on atom types. In the context of
machine learning, it may also be understood as an attempt to exploit the hierarchical structure
of molecules – built up of atoms, then bonds – in order to create a model that is able to make
predictions also for molecules not well represented in the training set. The method is designed
to require as little user input as possible. It is meant to scale to arbitrarily large training data
sets, hence rendering the growing amount of available data useful for DFTB parameterization.
The chapter is structured as follows: We first briefly recapitulate the repulsive potential con-
cept and then introduce the generalized repulsive potentials, for which we provide a proof-of-
principle implementation. Then we analyze its performance. Finally, we discuss some technical
details necessary for practical implementation and draw conclusions.

6.2 DFTB Background

6.2.1 DFTB

This sections recalls the DFTB formalism very briefly to highlight the different nature of the
electronic parameters and the repulsive potentials. The background chapter contains are more
in-depth discussion (sec. 2.1.3). The DFTB methodology consists of a series of computational
models, which are derived as an approximation to DFT. The total energy E[ρ] is expanded at a
reference electron density ρ0, which is taken as the sum of contracted free atom densities. The
expansion may be truncated at the first, second or third order and the corresponding models are
known as DFTB1 [52], DFTB2 [53] and DFTB3 [54]. Introducing Kohn-Sham orbitals φi the
energy functional expansion in the DFTB2 case reads:

E[ρ]≈∑
i

fi〈φi|−
1
2

∇
2 +

∫
d3r′

ρ0(r′)
|r− r′|

+
δExc[ρ0]

δρ(r)
+Vext(r)|φi〉

+
1
2

∫
d3rd3r′

(
1

|r− r′|
+

δ 2Exc[ρ0]

δρ(r)δρ(r′)

)
δρ(r)δρ(r′)

+Exc[ρ0]+Enuc-nuc−
1
2

∫
d3rd3r′

ρ0(r)ρ0(r′)
|r− r′|

−
∫

d3r
δExc[ρ0]

δρ(r)
ρ0(r).

(6.1)

The fi are orbital occupations, Vext includes electron-nuclei and external field interaction,
Enuc-nuc denotes the inter-nuclear interaction, and Exc refers to the exchange-correlation func-
tional, where DFTB employs the gradient-corrected PBE functional. The terms in the last line
depend only on the reference density ρ0 and the nuclear repulsions, which form the so-called
repulsive potential Vrep. This is the focal point of our method and will be discussed in more
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detail in the next section. The linear and second order terms in eq. 6.1 in the first and second
line are further approximated and expressed as:

E(1)
DFTB = ∑

i j
∑
µν

cµicν jH
(0)
µν (6.2)

E(2)
DFTB =

1
2 ∑

A,B
∆qA∆qBγAB, (6.3)

where the ∆qA are the differences between the Mulliken charges of atom A and the corre-
sponding neutral atom, and the cµi are the expansion coefficients of the Kohn-Sham orbital
φi = ∑cµiχµ in the basis {χi} that consists of a minimal basis of Slater-type orbitals confined
to the valence shell. The zeroth order Hamiltonian

H(0)
µν = 〈χµ |−

1
2

∇
2 +

∫
d3r′

ρ0(r′)
|r− r′|

+
δExc[ρ0]

δρ(r)
+Vext(r)|χν〉

is pre-calculated in a two-center approximation, where ρ0 is the sum of atomic densities around
the atoms on which the basis functions χµ and χν are centered. At second order, the shape of
the local density around atom A is assumed to be well described by a spherical function ΦA, so
that the Coulomb integrals γAB =

∫
d3rd3r′

(
1
|r−r′| +

δ 2Exc[ρ0]
δ (r)δr′

)
ΦA(r)ΦB(r′) can be evaluated

analytically. In the DFTB3 model, resulting from a third order expansion, eq. 6.1 is augmented
by an extra term as follows:

E(3)
DFTB =

1
3 ∑

AB
∆q2

A∆qBΓAB (6.4)

The off-diagonal terms ΓAB are analytic representations of third order integrals and the diagonal
terms can be calculated as atomic hardness derivatives.
Note that the first, second, and third order terms, which make up the set of electronic terms
because they appear in the Hamiltonian, are calculated, not fitted to data. They are, therefore,
rather rigorous, and we do not want to tamper with with them by adding any fitted, empirical
ML correction to them.

6.2.2 Repulsive Potential

The last row of eq. 6.1 contains the core-core repulsion and those energy contributions that
depend on the reference density ρ0 only. They are grouped together into a single term called
the repulsive potential Vrep, which is approximated as a sum of two-center repulsions,

Vrep =
1
2 ∑

A,B
VAB(|RA−RB|). (6.5)
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These two-body potentials are fitted to the difference of the total energy of a reference calcula-
tion and the DFTB electronic energy,

Vrep(|RA−RB|) = Eref(|RA−RB|)−EDFTB(|RA−RB|),

with the energy contributions eqns. 6.2, 6.3 and 6.4,

EDFTB = ∑
i

E(i)
DFTB.

The DFTB pairwise potentials VAB depend only on the atom types of A and B, in contrast e.g.
to force field models, where different bonding environments are encoded by different bonding
parameters. Since the terms from eq. 6.1 grouped into the repulsive potential contribution
depend on the reference density only, the adaption to different bonding situations is governed
by the DFTB electronic energy contributions, in principle.
Atomization and reaction energies can form part of the reference energies, as well as forces, in
particular at equilibrium structures [194]. In previous work, the repulsive potential contributions
have been fitted to minimize the errors for atomization energies, geometries and vibrational
frequencies for the G2/97 reference set.
However, since these terms are subjected to approximations as well, using a minimal basis set,
applying a monopole approximation, neglecting three-center contributions, to name only the
most prominent ones, the transferability is limited in practice. This shows up, e.g., in an op-
timization conflict for atomization energies and vibrational frequencies. To reach a reasonable
accuracy for both properties, two distinct parameterizations had to be generated [194], which
is due to the limited transferability of the parameters between different hybridization states, i.e.
single, double and triple bonds. This is due to a number of reasons: (i ) For good vibrational fre-
quencies, the repulsive potentials need to have certain curvatures at the equilibrium distances,
for atomization energies certain absolute values are needed, and these two conditions can not
be fulfilled simultaneously when a certain accuracy is targeted. (ii) Further, a different degree
of over-binding is found for single, double and triple bonds, leading to a relative shift of the
potentials between the binding regimes, which is not possible to integrate into a single repulsive
potential function. (iii) Finally, the repulsive potentials have to vanish before the second neigh-
bour distances in order to avoid spurious long-range effects, which put additional restraints on
the optimisation for the bonding properties.
Therefore, entangling theses different issues in a more adaptive repulsive energy scheme should
lead to an overall improvement in accuracy.
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6.3 Methodology

6.3.1 Generalized repulsive potentials

In the standard DFTB approach only one repulsive potential

VAB =Vt(A)t(B),

is used to connect two atoms A and B of certain atom types, denoted by t(A) and t(B).
In contrast, we now introduce a variable number of different potentials

VAB(R) =Vt(A)t(B)(R)+∆Vb(A,B)(R), (6.6)

called generalized repulsive potentials, which depend also on the bond type b(A,B) to be de-
fined. They are generated automatically and in a scalable way and augment the element pair
repulsive potential Vt(A)t(B)(R) from an existing DFTB parameterization. In this work, we use
the repulsive parameters from 3OB [194, 204], while ∆Vb(A,B)(R) is a correction to this poten-
tial that can incorporate environment-specific information not grasped by the electronic parts
of DFTB. By fitting corrections, rather than entirely new potentials, the existing potentials con-
tinue to serve as a fall-back for very unusual bonds, while for known bonds the correction term
will improve the description. As b(A,B) will denote bonds much more specific than the ele-
ment pair t(A)t(B), there is a chance to encounter bond topologies in applications for which
no specific repulsive potential has been fitted yet. For example, it is possible to assign differ-
ent repulsive potentials to different bond types (e.g. single, double, triple), but also distinguish
various chemical environments. A carbon-carbon single bond may be subject to change when,
e.g., neighboring electronegative atoms withdraw electrons, compared to the situation in pure
hydrocarbons.
For the functional form of ∆V (R) we chose to use polynomials of degree k:

∆Vb(R) =
k

∑
i=0

a(b)i Ri. (6.7)

Other forms, such as splines, are possible as well, but at present we find simple polynomials to
be sufficient. Note that if the forms of Vt(A)t(B) and ∆Vb(A,B) agree, to linearly fit a correction

potential ∆Vb is equivalent to fitting parameter corrections ∆a(b)i . This holds for polynomials,
splines, and other models linear in the parameters. Repulsive potentials should be short ranged
and therefore tend to zero at large distances. To impose such asymptotic behavior, a cut-off Rc

can be introduced at which ∆Vb(R) is smoothly set to zero. At present, we only run tests on
geometries near equilibrium. Therefore, the asymptotic behavior is not relevant in this context.
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Figure 6.1: Example of a potential bond descriptor. The two large carbon atoms form the
bond, all atoms displayed as balls are included in the descriptor. Atoms are labeled
as they appear in the descriptor.

Eventually, the full generalized repulsive potential for a given molecular geometry reads

Vrep =
1
2 ∑

AB

(
Vt(A)t(B)(RAB)+∆Vb(A,B)(RAB)

)
, (6.8)

RAB = |RA−RB| is the distance between atom A and B and b(A,B) adds corrections for a set of
bond types much larger than in traditional DFTB.

6.3.2 Bond descriptor

To determine b(A,B), bond descriptors have to be introduced, which allow the recognition of
certain bonds in molecular structures. This information is basically encoded in the geometrical
arrangement of atoms in the immediate vicinity of the bond to be fitted. For instance, single and
double bonded atoms will have a different number of nearest neighbor contacts, determining
their hybridization state. The atom type of the neighbors can indicate certain properties of the
local electronic structure (like local electron density). Lately, machine learning techniques for
the prediction of molecular properties have become popular and accordingly much research on
molecular descriptors has been undertaken, providing many options of varying sophistication,
see e.g. Refs. 205, 206. Here, we started out with the rather simple Coulomb matrix descriptor
[196], which turns out to work satisfactorily for the purpose of this work. The molecular geom-
etry is represented by a matrix with diagonal terms identifying an atom type and off-diagonal
terms are given by the nuclear Coulomb-repulsion of the respective atom pairs. The atoms are
ordered unambiguously and the descriptor respects all the important symmetries like transla-
tional and rotational invariance of the molecule.
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The bond descriptor requires two parameters and is defined as follows: Two atoms A and B are
considered bonded for the purpose of the repulsive potentials, if their distance RAB = |RA−RB|
is smaller than an element dependent cut-off RAB < Rc

t(A)t(B). A second parameter Rc
b defines a

region within which all atoms O are included to specify the chemical environment of the bond
between A and B (see Fig. 6.1). Specifically, an atom O is included in the descriptor if

min
C=A,B

|RO−RC|< Rc
b. (6.9)

Then the bond-descriptor b(A,B) is defined as

b(A,B) =



1
2ηZ2.4

A
ZAZB
|RA−RB|

ZAZO1
|RA−RO1 |

...

ZAZB
|RA−RB|

1
2ηZ2.4

B
ZBZO1
|RB−RO1 |

...

ZO1ZA
|RO1−RA|

ZO1ZB

|RO1−RB|
1
2Z2.4

O1
...

...
...

... . . .


. (6.10)

Attention has to be paid to the order of the atoms to make the descriptor unambiguous. The two
atoms of the bond, A and B come first and their order is determined by their norm, that is(

1
2

ηZ2.4
A

)2

+ ∑
C 6=A

(
ZAZC

|RA−RC
|
)2

≥
(

1
2

ηZ2.4
B

)2

+ ∑
C 6=B

(
ZBZC

|RB−RC|

)2

,

where C runs over all atoms in the descriptor. Likewise, the other atoms O1,O2, ..., following
A,B are ordered by the norms of their rows.
b(A,B) is equal to the Coulomb matrix of the bond environment, except for the special signif-
icance of the first two rows that always contain the information about the bonded atoms and
the factor η that scales the diagonal entries for atoms A and B. η should be larger than one to
give particular weight to the atom types of the bonded atoms and to ensure that bonds involving
different elements are always further apart than bonds involving the same elements in the space
of bonds spanned by the bond descriptors. There is no sensible dependence on the precise value
of η .
Finally, we need to define a notion of distance between two bonds b(1) and b(2). We use the
2-norm

d(b(1),b(2)) =

√
∑
i j

(
b(1)i j −b(2)i j

)2
, (6.11)

where bi j are the entries of the descriptor matrix. The 2-norm provides the practical advantage
that certain libraries can be used directly in the implementation of the method, which do not
support the 1-norm that is often used for estimating similarity of structures when using the
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Coulomb matrix [196]. However, there is no significant difference between the two choices
for our application. All Coulomb matrices need to have the same dimension, and for chemical
environments characterized by a smaller number of participating atom the matrix is filled with
zeros. The zeros may be thought of as atoms infinitely removed from the bond.
The parameter Rc

b critically affects the specificity of the bond descriptor. If it is smaller than the
shortest typical bond length, only the two bonded atoms will be included, and nothing is gained
over the existing DFTB repulsive potentials since no information about the environment enters
the description. Using values larger than typical bond lengths, the nearest neighbors of the
bonding atoms will be included, the minimal representation of the chemical environment, which
already leads to very good results. Further increasing the parameter, non-local information can
be included as well. Hence, the method can take in ever more information as the amount of
training data grows, what is a desired feature of the approach. This can be expanded up to
the limit where the entire molecule forms the descriptor and one has a molecule specific fit.
Such descriptors are used e.g. in the ∆ machine-learning approach [202], i.e. molecule-specific
parameters are determined which are used for an interpolation to molecules not present in the
training set.

6.3.3 Bond clustering

The next step is the automatic identification, i.e. the clustering, of relevant bond-types from
a large training set of molecular structures, based on the descriptor. Every cluster, or bond
type, will define one generalized repulsive potential. In each of the molecular structures bonds
and their respective environments are identified according to the two cut-off criteria, and the
Coulomb-matrices are then set up. Similar bonds yield very similar descriptors, although they
are not exactly identical due to slightly varying interatomic distances. Hence, bonds form clus-
ters of a finite, but narrow width in the high dimensional feature space spanned by the bond
descriptors, where different clusters correspond to different bond types. The dimension of the
feature space is determined by the size of the largest Coulomb matrix and depends on the value
of Rc

b. When Rc
b is such that nearest neighbours are included in the descriptor, the dimension

is bounded from above by about 82 = 64 because there are 8 atoms in the descriptor of a C-C
single bond, and it is not chemically feasible to gather many more atoms in such a small volume.
Identifying bond types then becomes a clustering problem. Such a problem is commonplace
in unsupervised machine learning [207], and many methods have been proposed for its solu-
tion. The choice of an appropriate algorithm, however, turned out to be not completely straight
forward. In particular, the highly unbalanced number of data points in different clusters was
problematic. Since some bond types are far more abundant than others, the clustering algorithm
has to be insensitive to the number of cluster members. For example, the popular k-means
[208, 209] algorithm turned out to be unsuitable for this reason, as our training set contained,
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6 Generalized DFTB repulsive potentials from unsupervised machine learning

among others, far more, C-H than C-F bonds and k-means would only produce a large amount
of C-H, but no C-F cluster.
The mean-shift algorithm [210, 211] that was originally developed for image processing ap-
plications, in contrast, turned out to work well. Here, we give only brief description of the
algorithm; more detail can be found in original literature [210, 211]. Let

m(b) =
∑i biK

(
d(b,bi)

h

)
∑i K

(
d(b,bi)

h

) (6.12)

be the mean-shift vector at position b. b is a general bond descriptor, the bi are the bond
descriptors in the set to be clustered, the real number h > 0 is the kernel width, and the function
K is the kernel function. K can be any positive function integrating to one, but for the purpose
of this work we adopt a flat kernel:

K(x) =

1 for 0≤ x≤ 1

0 otherwise
. (6.13)

The flat kernel is a simple choice and performs well for our application. With the mean-shift
vector clusters are now identified through the iteration

b(t+1) = m(b(t)), t = 0,1, ... (6.14)

that will converge to a value b∗, the centroid of a cluster. One scans sufficiently many initial
values b(0) to find all centroids and thus all clusters.
The algorithm in this form appears rather abstract, but it has an intuitive interpretation. If we
assume the data points bi to be samples from a continuous density ρ(b), then with the smoothing
kernel function K the smooth density can be approximated as ρ(b)≈ 1

Nhd ∑i K
(

d(b,bi)
h

)
, where

N is the number of samples and exponent d is the dimension. It can be shown that ∇ρ(b) ∝

m(b). Consequently, the mean-shift algorithm can be thought of as steepest-descent to find the
local maxima of ρ , and clusters can be identified with blobs in the density. Although the flat
kernel is not a smooth one, it can be approximated arbitrarily well by a smooth kernel and,
therefore, the argument still holds.
The mean-shift algorithm is available as part of the scikit-learn Python module [212], which we
use in our implementation of the method.
The kernel width parameter h is of crucial importance, since it sets the minimal distance of two
points to be still regarded as members of the same cluster. Therefore, it also determines the
number of different bond types to be identified. Because the number of clusters M is the more
tangible quantity, we will classify the resulting repulsive potentials by M, rather than h. Yet,

110



6.3 Methodology

even when we refer to M for clarity, h remains the fundamental variable.
The number of clusters M can be increased as the amount of training data grows. Hence, the
method can scale to large training sets by fitting many different potentials. In the limit of very
large sets, every individual bond could be represented by its own fitted potential.
At last, with bond types defined through clustering, any new bond b not in the training set must
be assigned the cluster or bond type it belongs to. Alternatively, it may also happen that no
existing bond type describes b well. This case must be recognized, too. A mean field iteration
started from b will converge to the centroid b∗ of the cluster best describing b, thus identifying
the bond type. For simplicity’s sake, we assume b∗ to be the centroid closest to b according to
the metric d(b,b∗), an assumption we found well justified. Then, b∗ can be identified as

b∗ = argmin
b̃∈centroids

d(b, b̃).

To rule out the cases where b∗ does not describe b well, we demand that the centroid and bond
are closer to each other than a certain tolerance distance w∗:

d(b,b∗)< w∗.

A well chosen value of w∗ depends on whether the cluster of b∗ is narrow or wide. Therefore,
we calculate the cluster width σ∗ from the training data:

σ
∗ =

√
∑

b̃ belongs to b∗
d(b̃,b∗)2.

The sum runs over all bond descriptors in the training set belonging to centroid b∗. Hence, we
set

w∗ = τ ·σ∗,

with a tolerance factor τ to be set manually.

6.3.4 Potential fit

In the next step, the repulsive potentials ∆Vb(R) for all new bond types b are fitted in the same
way as the standard DFTB repulsive parameters.The a(b)i in eq. 6.7 are determined in order to
minimize a fitness function f (a(1)0 ,a(1)1 , ...,a(2)0 , ...), which as target properties contains molec-
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6 Generalized DFTB repulsive potentials from unsupervised machine learning

ular atomization energies Eat and forces F for a set of equilibrium and perturbed molecular
geometries:1

f (a(1)0 ,a(1)1 , ...,a(2)0 , ...) = ∑
m∈equi

(
Eref

at,m−EDFTB
at,m − ∑

b∈m
∆Vb(Rb)

)2

+ fopt ∑
m∈equi

1
3Nat,m

(
Fref

at,m−FDFTB
at,m + ∑

b∈m

Rb

Rb

∂

∂R
∆Vb(Rb)

)2

+ epert ∑
m∈pert

(
Eref

at,m−EDFTB
at,m − ∑

b∈m
∆Vb(Rb)

)2

+ fpert ∑
m∈opt

1
3Nat,m

(
Fref

at,m−FDFTB
at,m + ∑

b∈m

Rb

Rb

∂

∂R
∆Vb(Rb)

)2

.

(6.15)

Perturbed geometries are created from equilibrium geometries through displacement along nor-
mal mode coordinates. The fitness function is generated by summing of all equilibrium and
perturbed molecular geometries, and by computing the energy and force contributions resulting
from the repulsive potentials, which sum over all bond types b. The potentials can be written as

∆Vb(Rb) =
(
1Rb R2

b ...
)
·
(

a(b)0 a(b)1 ...
)T

,

and therefore the optimization procedure is a least squares problem of the form minx |y−Ax|2,
with given vector y and matrix A, where the parameter vector x has to be determined. Many
tools exist to solve this problem. We use the Numpy [213] least-squares function that utilizes a
singular value decomposition.
The weight factor 1

3Nat,m
is added since for each geometry only one energy but 3Nat,m force

conditions have to be fulfilled. In that way energies and forces are given the same initial weight.
The additional weight factors fopt,epert, and fpert control the relative weights of energies and
forces for equilibrium and perturbed geometries, respectively. They must be set manually.

6.4 Application

The approach is applied to a large molecule set, which features structures and energies computed
at the B3LYP/6-31G(2df,p) level of theory. For a final reparameterization a higher level of
theory is desirable. Therefore, we use these data for a proof-of-concept approach in order to
evaluate the procedure suggested in this work.

1The atomization energy is the difference between the molecular energy and the sum of free
atom energies of the atoms constituting the molecule. To the DFTB free atom energies spin
polarization terms are added to account for the lack of direct spin polarization [194].
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6.4 Application

6.4.1 Data set

To test the approach we use a molecular data set created by Ramakrisgnan et al. [214], which
provides optimized structures and properties for small organic molecules from the GDB-17
[215] set, containing the elements C, H, O, N, and F with up to nine non-hydrogen atoms. The
set contains 133,885 molecules, geometry optimized at the B3LYP/6-31G(2df,p) level of theory
[38–40].
The molecule set is separated into a training set of the first 2100 molecules and a test set con-
taining the rest. The training set is supplemented with non-equilibrium geometries generated
as follows: Starting from relaxed geometries, all coordinates are displaced in both directions
of all those normal modes which change bond lengths. The amount of displacement if chosen
such that the energies vary only on the order of 1 kcal

mol with respect to the equilibrium energy.
For the distorted structures, energies and forces are computed using B3LYP/6-31G(2df,p), to
be consistent with the other reference data. Eventually the training set contains about 150000
relaxed and unrelaxed structures in total. For every molecule in the test set we run DFTB calcu-
lations with 3OB parameters and the full third order formalism [54, 194] that yields the DFTB
base-line of electronic and repulsive potential contributions.

6.4.2 Clustering and fit

The cut-off parameters Rc
t(A)t(B), that determine atom pairs connected by generalized repulsive

potentials are chosen as the cut-off parameters of the 3OB repulsive potentials [194]. The cut-
off parameter Rc

b that determines which atoms enter into the Coulomb-matrix descriptor is set
to Rc

b = 1.8Å. For the molecular structures considered here, this includes nearest neighbors of
the bonded atoms. The parameter η , which gives special weight to the bonded atoms, is chosen
as η = 5 and selective tests show that the results are not very sensitive to the precise value of
η once η > 2. Lastly, the tolerance factor τ is put to τ = 3, and again results are not very
sensitive to the precise value of the parameter within reasonable bounds. Mean-shift clustering
is performed on the set of all the bonds found in the equilibrium geometries of the training set
molecules for these parameter values. As a precaution, to prevent over-fitting, we drop bond
types that are not present in at least three different molecules. Especially when two bonds occur
only once and in the same molecule, their potentials can cancel each other and therefore assume
arbitrary values. To solve this problem, one can simply generate more data from geometry
perturbations for bonds that do not occur often enough, but we refrained from doing so at the
present exploratory stage.
Hence, sets with M = 10,25,42,84,111,200, and 259 different bond types are created. Tab. 6.1
gives values of h for each M for reproducibility. M does not vary continuously with h, but tends
to jump, so there is no exact one-to-one correspondence.
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6 Generalized DFTB repulsive potentials from unsupervised machine learning

M 10 25 42 84 111 200 259

h 93.26 75.525 58.627 43.402 36.089 27.130 23.4

q 15% 9% 5% 3% 2% 1.3% -

Table 6.1: Values for the Kernel width h resulting in certain numbers of potentials M. Most
widths h were in terms calculated as the qth percentile of pairwise distances of data
points, explaining their odd values. The percentiles q are then also given.

Varying numbers of generalized repulsive potentials allow us to investigate whether the perfor-
mance of the method indeed improves with growing numbers, and at what point performance
saturates.
For each set of bond types, we fit generalized repulsive potentials ∆Vb(R) as polynomials of
degree k = 6, that is with 7 free parameters. The weight of equilibrium forces fopt is set to
fopt = 100, non-equilibrium force weight is put to fpert = 1, and non-equilibrium atomization
energies carry weight epert = 1. We found those values by trial and error. They have not been
properly optimized, yet.

6.4.3 Results

First, we investigate the clustering step that is pivotal for the method, which stands and falls with
the meaningful identification of bond types for the generalized repulsive potentials. Fig. 6.2
shows two dimensional projections of all the bond descriptors in the training set, generated by a
principle component analysis [216, 217] (PCA). PCA identifies the two dimensional subspace
in which the variance of the data is maximal. Various clusters of different sizes appear already
in two dimensions that in higher dimensions in terms decompose into more, smaller clusters.
Clusters correspond to different kinds of bonds, many of which are indicated in the figure.
Also displayed in Fig. 6.2 are the centroids of the clustering with M = 200 clusters. For every
centroid there is one generalized repulsive potential. All clusters are covered with centroids, and
the large clusters carry many centroids because of the many smaller clusters they contain, but
small, isolated clusters are covered too. This is important, and, for example, k-means failed to
achieve this. Altogether, Fig. 6.2 shows a reasonable clustering according to bond topology and
supports that the Coulomb matrix based bond descriptor, together with mean-shift clustering,
can indeed identify meaningful bond types.
Next, we examine the fitted potentials ∆V . Higher order polynomials can oscillate significantly
in the case of over-fitting. By visual inspection the potentials are confirmed to be well be-
haved. Fig. 6.3 shows two representative sample potentials for a single and double C-C bond.
Position, slope and curvature of the repulsive potentials are altered, but the functions remain
monotonously decaying without spurious behavior. Of course, because no boundary conditions
were applied, this is only true for distances sufficiently close to the respective bond lengths,
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Figure 6.2: Visualization of the bond descriptors from the training set and M = 200 centroids
from mean-shift clustering in two dimensions. The high dimensional descriptor
space has been projected to two dimensions by a principle component analysis
[216, 217]. Note that the large clusters decompose into many smaller clusters cor-
responding to different chemical environments. The mean-shift algorithm covers
all clusters well regardless of the number of data points in them.
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Figure 6.3: Sample repulsive potentials for a C-C single and double bond with M = 111 gen-
eralized repulsive potentials. Magnitude, slope and curvature are altered by the
potential corrections.
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Figure 6.4: Generalized repulsive potentials for different types of C-C single bonds. The
atoms that make up the descriptor are displayed in the legend. Potentials differ,
particularly by a vertical displacement, with slopes more similar.
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Figure 6.5: Mean absolute error in atomization energy for the molecules in the test set for a
growing number M of generalized repulsive potentials. As the number of poten-
tials grows, the error decreases quickly and significantly, demonstrating that in-
creasing the number of repulsive potentials indeed improves the method.

but in the present study we only work with such geometries. It is also interesting to see how
different potentials for the same bond topology, like e.g. C-C single bonds, can occur. Fig. 6.4
shows various potentials for C-C single bonds. While most of them remain close to the uncor-
rected potential VCC, there is a considerable variation for some of them. They appear to be up-
and down-shifted, slopes remain similar. For chemical environments with more electronegative
substituents on the bonded atoms, the potentials are shifted up.
Ultimately, the method’s usefulness is determined by its quantitative performance. For a bench-
mark, we applied it to all of the ∼ 130,000 molecules in the test set. Fig. 6.5 shows the
mean absolute errors (MAEs) in atomization energy with varying numbers of generalized re-
pulsive potentials; Tab. 6.2 displays MAEs and root mean squared errors (RMSE). The MAEs
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M 0 10 25 42 84 111 200 259

MAE [kcal/mol] 7.38 7.34 4.32 3.71 3.01 2.97 2.89 2.64

RMSE [kcal/mol] 9.31 9.74 5.65 5.46 3.94 3.95 4.00 3.82

Table 6.2: Mean absolute (MAE) and root mean squared (RMSE) error in atomization energy
taken over all test set molecules.
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Figure 6.6: Normalized histogram of absolute errors in atomization energy for the ∼ 130000
molecules in the test set with M = 259 generalized repulsive potentials.

monotonously decay with a growing number of potentials. The first step is very small, then
the error decreases rapidly. The improvement brought about by the addition of generalized po-
tentials is clear. With M = 259 generalized repulsive potentials the remaining error is ∆E259 =

2.64 kcal
mol , down from ∆E0 = 7.34 kcal

mol with the original 3OB repulsive potentials. Therefore, the
error is significantly reduced to about a third of the original error. Figs. 6.6 and 6.7 show
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Figure 6.7: Normalized histogram of the magnitudes of errors in force per atom for the
molecules in the test set with M = 259 generalized repulsive potentials.
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Figure 6.8: Normalized histogram of absolute errors in atomization energy for the 622
molecules in the Jorgsen test set with M = 259 generalized repulsive potentials.
The histogram for the large test set is also shown for comparison.

histograms of absolute errors in atomization energies and force per atom, respectively. The dis-
tribution of errors in the atomization energy becomes significantly more narrow, demonstrating
a systematic improvement, already reflected in the lower MAEs. Forces improve too. Initially
the histogram shows two peaks, a large and a much smaller one at a higher error. The second
peak indicates a small, systematic error in the predicted geometries, and this is removed after the
addition of generalized repulsive potentials. However, the large peak is hardly moved. DFTB
already predicts geometries well, and most of the error is in the bond angles, not lengths. Be-
cause repulsive potentials only yield forces along bond axes, the generalized potentials cannot
reduce those errors.
Overall, a clear improvement of the performance of the method by the addition of generalized
repulsive potentials is apparent.
We have also analyzed MAEs for molecules from a smaller test set introduced by Jorgsen et al.
[218] that has been previously used to benchmark DFTB [194]. The set contains 622 molecules
containing C, H, N, and O. Most molecules of the Jorgsen set are contained in the large test
set, but the smaller set has been used often for quantum chemistry benchmarks, and therefore
it is illustrative to compare performance on the well known subset with the whole. For a fair
assessment we did not use results reported in the literature, but rather created data at our own
reference level of theory, B3LYP/6-31G(2df,p). Fig. 6.8 shows error histograms with and
without generalized repulsive potentials. A clear improvement is visible. Results look very
similar to the large test set results, albeit more oscillatory due to sparcity of data. The MAEs of
∆E0 = 8.26 kcal

mol with the original DFTB and ∆E259 = 3.64 kcal
mol are somewhat larger because of

a few outliers, which are less frequent in the large set. That may be regarded as an example that
good performance on average not necessarily implies good performance for every problem.
Finally, in Tab. 6.3 we investigate the effects of training set size. A clustering and fit was
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training set size M h MAE [kcal
mol ] RMSE [kcal

mol ]

2100 200 27.13 2.89 4.0

2100 111 36.09 2.97 3.95

1000 156 24.71 3.52 5.52

Table 6.3: Comparison of errors in atomization energies for ∼ 130k molecules with results
obtained from smaller training sets.

performed with only 1000, rather than 2100, molecules in the training set. MAEs of atomization
energies are about 1/2 kcal

mol larger than for comparable parameterizations with the larger training
set. A training set of 1000 molecules is already large enough to be useful, but there is still clear
improvement with training set size.

6.5 Conclusion

We have introduced generalized repulsive potentials for the DFTB method, where the traditional
atom-type potentials are substituted by bond-type potentials. Bond types are determined by
automatic clustering, leading to a description which reflects the chemical environment. Due to
the automatic bond identification, repulsive potentials can be parametrized to fit large data sets
and are not limited by the number of parameters, which can be scaled up as required. This brings
DFTB into the age of data driven approaches. We presented a preliminary implementation of
the method that clearly demonstrates its potential, offering significantly improved quantitative
performance.
Since the present work only reports a proof of concept, further developments are required be-
fore routine application to quantum chemical problems:

(i) The reference data should be computed using a higher level method than used here. Now that
the principle functionality of the method has been established, a smaller test set for verification
can be applied, which allows to compute using higher level approaches.

(ii) Using better reference data, a test of different descriptors should be performed in order
to evaluate whether the final performance can be improved. The literature offers a rich choice
of options, and in future work we will try to identify the best solution.

(iii) Finally, a smooth switching between different bond-potentials is required, in particular
when this scheme is to be applied for molecular dynamics simulations. Up to now, hard cut-offs
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are assigned, which have to be substituted by switching functions f . The generalized repulsive
potential becomes

∆VAB(RAB) = ∑
b̃

f (d(b(A,B), b̃))∆Vb̃(RAB),

where b̃ runs over all bond types and f interpolates smoothly between f (0) = 1 and f (∞) = 0.
One possibility would be the use of an error-function, which is often used in such contexts.

(iv) Further, the description of chemical reactions can be improved by adding transition state
geometries to the training set.
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7 Outlook

Throughout this work several new methodologies have been introduced that open paths for fu-
ture research and development.

In chapters 3 and 4 mixed quantum-classical, nonadiabatic dynamics of charge and energy
carriers in bulk materials were simulated. The use of nonadiabatic dynamics based methods
for the study of transport phenomena is becoming more popular, with other groups going in the
same direction [87, 219, 220]. We have already seen in chapter 4 that the choice of quantum-
classical coupling – mean-field Ehrenfest, a surface-hopping method, or something different
– affects the prediction and can even have a qualitative effect. Since, despite many attempts,
hitherto quantum-classical dynamics methods can usually not be derived rigorously, but are
proposed on heuristic arguments, the choice of the correct algorithm is very non-trivial. And as
one of the primary incentives to use such methods over less costly and often simpler approaches,
such as transition rate based methods, is that in principle they allow precise quantitative pre-
dictions in cases where it can be shown that other methods will not be exact, uncertainty over
the choice of algorithm seems hardly acceptable. So far, systematic benchmarks of different
quantum-classical dynamics schemes for spatial transport applications are still missing and ap-
pear a logical next step. This would shed more light on what effects are important and how to
best incorporate them, removing some uncertainty over the choice of algorithm.

Another problematic aspect mentioned in chapter 4 is the presence of high frequency molecular
vibrations coupling to excitons and charges. Such vibrational modes are quintessentially quan-
tum mechanical in nature, but so far treated classically. We have already experimented with
path-integral based methods along the lines of Ref. [221], but lacking rigorous foundations,
have not yet reached any conclusions. Future research in this direction might lead to a solid
way to deal with quantum modes. Certainly, it is worthwhile to investigate their role in more
detail.

While the method for charge transport simulations in chapter 3 was originally developed for
application to biomolecules in solutions, the newly presented method for exciton dynamics has
so far not been applied in other contexts. In the light of the complex movement of molecules in
solution and the large interest in exciton dynamics in such systems [222, 223], it seems promis-
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ing to apply the method to those problems, too. Up to now, Förster rate based models still
feature most prominently, even though it is known that, for example, solvent fluctuation can be
very important [224], just as in charge transfer.

We constructed the LC-TD-DFTB method because GGA functionals perform poorly for ex-
tended π-electron systems, ubiquitously occurring in organic semiconductors. Of course, the
next step is to replace TD-DFTB by LC-TD-DFTB within the exciton transport method. Charge
transport may also profit when LC-DFTB is used for ground state calculations. Moreover, with
underlying long-range corrected functionals we can try to calculate excitonic couplings from
dimer calculations and diabatization, rather than as mere Coulomb couplings. Without long-
range correction this is not possible because along molecular dynamics trajectories the involved
molecules are not equivalent, and then local functionals admix spurious charge transfer states.
The LC-TD-DFTB method is also likely to be useful for many other applications. For in-
stance, DFTB is often used for QM/MM molecular dynamics simulations of biomolecules in
solution. Because of the polar environment, charge transfer excitations are very common in this
setting and cause problems for DFTB. LC-DFTB should perform much better in such situations.

Finally, we have already pointed out in chapter 6 that the generalized repulsive potential method
is still in a development stage. The first results, however, demonstrate that data driven methods
work successfully with DFTB, and this may be a path for DFTB to take. To make the method
more practical, the potentials need to be next extended to full potential energy surfaces, as
explained in the respective chapter. Machine learning and data science in molecular modeling
is growing fast, and the pace of evolution is still high. Likewise, the amount of data is ever
increasing. For example, Ref. [225] uses training data very similar to ours, but with much more
complete potential energy surface scans. If such data was publicly available, and in the future
it likely will be, there would be much room for improvement. It is well conceivable that the
final model for a data derived DFTB framework will follow the general development and look
different from what it looks like right now.

In conclusion, in this thesis we have introduced three new methods, and tested one, that will
hopefully be useful in the future, either for direct application to intriguing problems or as a
foundation for further development. Charge and energy transport are often intriguing phe-
nomena, whose full understanding requires clever ideas and therefore will continue to inspire
methodological development with reach far beyond.
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Table A1: Excitation energies for a set of small organic molecules as proposed by Thiel et
al.[174].

Molecule Symmetry LC-ωPBE best est.[174] CC3[174] DFTB LC-DFTB

Ethen B1u 8.2536 7.8 8.37 6.884 7.424

B1g 8.5419 7.666 8.358

B2G 9.746 8.389 9.045

B3u 10.186 9.169 10.067

B1g 10.335 11.935 12.467

Butadien Bu 6.3199 6.18 6.58 5.498 6.167

Au 7.685 5.543 6.091

Ag 8.526 6.55 6.77 6.389 7.211

Au 8.603 6.403 7.503

Ag 8.808 6.691 7.801

Hexatriene Bu 5.26 5.1 5.58 4.429 5.06

Ag 7.4 5.09 5.72 5.391 6.22

Bg 7.424 5.053 5.569

Ag 7.662

123



A Extensive LC-TD-DFTB benchmark data

Molecule Symmetry LC-PBE best est. CC3 DFTB LC-DFTB

Au 7.99 5 6.627

Octatetraen Bu 4.596 4.66 4.94 3.756 4.372

Ag 6.548 4.47 4.97 4.14 5.805

Ag 6.807

Au 7.304 4.706 5.34

Bg 7.638 4.91 5.746

Cyclopropene B1 6.861 6.76 6.9 6.442 7.244

B2 6.954 7.06 7.1 6.399 7.079

A2 7.735 7.652 8.543

A2 9.436 9.629 10.438

B1 10.034

Cyclopentadiene B2 5.467 5.55 5.73 4.781 5.363

A1 7.582 6.61 6.31 6.025 7.023

A2 8.145 6.5 7.294

B1 8.329 6.204 6.876

B1 8.549

Norbornadiene A2 5.645 5.34 5.64 5.215 6.335

B2 6.616 6.11 6.49 5.328 6.422

A2 7.864 7.71 6.369 7.196

B2 7.918 7.64 6.718 7.707

B1 7.992 6.545 7.485
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Molecule Symmetry LC-PBE best est. CC3 DFTB LC-DFTB

Benzene B2u 5.66 5.08 5.07 5.297 6.074

B1u 6.51 6.54 6.68 5.673 6.376

E1u 7.54 7.13 7.45 6.79 7.571

7.54 7.13 7.13 6.79 7.571

E2g 8.227

Naphtalene B2u 4.747 4.77 5.03 4.011 4.789

B1u 4.986 4.228 4.98

B2u 6.419 6.33 6.57 5.0108 5.899

B1u 6.736 5.308 6.352

B3g 6.875 5.625 6.387

Furan B2 6.602 6.058 6.614

A1 7.489 6.57 6.62 6.494 7.433

A1 8.829 8.13 8.53

A2 9.049 8.006 8.823

B1 9.078 7.755 8.47

Pyrrolle B2 6.8587 6.57 6.71 6.386 6.877

A1 7.23 6.37 6.4 6.438 7.246

A2 7.94

A1 8.595 7.91 8.17 7.884 8.594

B1 8.768

Imidazole A′ 6.968 6.93 7.1 6.357 6.875
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Molecule Symmetry LC-PBE best est. CC3 DFTB LC-DFTB

A′′ 7.001 6.81 6.82 6.211 6.914

A′ 7.607 6.863 7.478

A′′ 8.118 7.93 7.207 7.879

A′′ 8.434

Pyridine B1 5.265 4.518 5.146

A2 5.687 5.11 5.5 4.808 5.604

B2 5.707 4.85 5.15 5.366 6.041

A1 6.71 6.26 6.85 5.818 6.482

B2 7.74 7.27

Pyrazine B2u 4.3353 3.95 4.24 3.721 4.249

Au 5.21 4.81 5.05 4.343 5.165

B2u 5.501 4.64 5.02 5.24 5.76

B2g 6.018 5.56 5.74 5.529 6.095

B1u 6.848 6.58 7.07 5.908 6.517

Pyrimidine B1 4.717 4.55 4.5 4.23 4.842

A2 5.077 4.93 4.91 4.528 5.255

B2 5.922 5.44 5.36 5.259 5.886

A2 6.227 5.578 6.201

B1 6.505 6.674

Pyridazine B1 3.977 3.78 3.92 3.502 3.996

A2 4.757 4.31 4.49 4.141 4.858
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Molecule Symmetry LC-PBE best est. CC3 DFTB LC-DFTB

A1 5.93 5.18 5.22 5.259 5.95

A2 5.978 5.77 5.74 4.924 5.434

B1 6.678 6.41 5.564 6.254

Triazine 4.864 4.6 4.78 4.585 5.209

4.9826 4.585 5.209

4.9826 4.585 5.209

5.037 4.7 4.81 4.585 5.209

6.304 5.79 5.71 5.961 6.534

Tetrazine B3u 2.531 2.29 2.367 2.758

Au 4.016 3.51 3.677 4.379

B1g 5.157 4.73 4.626 4.732

Au 5.534 5.5 4.407 5.073

B2u 5.65 4.93 5.238 5.614

Formaldehyde A2 3.888 3.88 3.95 4.251 4.54

B1 9.115 9.1 9.18 8.337 8.795

A1 9.847 9.3 10.45 9.368 10.068

B2 10.032

A2 10.374 8.931 9.771

Aceton A2 4.3482 4.4 4.4 4.49 4.906

B1 9.0245 9.1 9.17 8.196 9.376

A2 9.119 7.556 8.579
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Molecule Symmetry LC-PBE best est. CC3 DFTB LC-DFTB

A1 9.381 9.4 9.65 8.308 9.099

B2 9.793 7.712 8.443

Benzoquinone B1g 2.942 2.76 2.75 1.666 2.271

Au 3.148 2.77 2.85 2.1 2.921

B3g 4.556 4.26 4.59 3.743 4.586

B1u 5.603 5.28 5.62 4.383 5.187

B1g 6.511 4.696 5.532

Formamide A′′ 5.59 5.63 5.65 5.51 5.909

A′ 8.1618 7.39 8.27 8.211 8.7

A′′ 9.057

A′′ 9.8443

A′ 10.22 9.172 9.701

Acetamide A′′ 5.635 5.69 5.69 5.513 6.014

A′ 8.123 7.27 7.67 8.031 8.556

A′′ 8.914 9.03 9.685

A′ 9.671 9.326 10.299

A′′ 9.985 9.201 10.25

Propanamide A′′ 5.685 5.72 5.72 5.485 5.985

A′ 8.111 7.2 7.62 7.998 8.574

A′′ 8.921 8.391 9.405

A′ 9.74 10.06 8.309 9.531
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Molecule Symmetry LC-PBE best est. CC3 DFTB LC-DFTB

A′′ 9.908 8.971 10.399

Cytosine A′ 5.235 4.66 4.124 4.977

A′′ 5.449 4.87 3.357 4.613

A′′ 5.995 5.26 4.64 5.62

A′ 6.374 5.62 5.182 6.011

A′′ 6.6521 5.022 5.993

Thymine A′′ 5.156 4.82 3.789 4.799

A′ 5.581 5.2 4.787 5.578

A′′ 6.468 6.16 4.297 5.908

A′ 7.133 6.27 5.194 6.202

A′ 7.237 6.53 6.216 7.228

Uracil A′′ 5.122 3.701 4.722

A′ 5.718 4.238 5.817

A′′ 6.414 5.147 5.75

A′ 7.104 4.852 6.096

A′ 7.436 5.912 7.535

Adenine A′′ 5.532 4.586 5.471

A′ 5.65 4.765 5.415

A′ 5.688 5.088 5.688

A′′ 6.17 5.332 6.106

A′′ 6.546 5.405 6.279
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Table A2: Oscillator strengths of the bright exciations among the five lowest exciations of the
molecules in the test set.

Method LC-ωPBE DFTB LC-DFTB

Molecule Symmetry

Ethen B1u 0.38 0.28 0.36

Butadien Bu 0.72 0.52 0.69

Hexatriene Bu 1.13 0.84 1.09

Octatetraen Bu 1.56 1.16 1.5

Cyclopropene B2 0.094 0.079 0.12

Cyclopentadiene B2 0.089 0.085 0.11

A1 0.048 0.058 0.13

Norbornadiene B2 0.05 0.01 0.04

B2 0.21 0.15 0.26

B1 0.01 0.04 0.034

Benzene E1u 0.59 0.43 0.59

Naphtalene B1u 0.09 0.012 0.021

B2u 1.3 0.9 1.23

Furan B2 0.14 0.12 0.15

Pyrrole B2 0.15 0.11 0.14
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Method LC-ωPBE DFTB LC-DFTB

Molecule Symmetry

A1 0.01 0.01 0.026

A1 0.46 0.36 0.47

Imidazole A′ 0.15 0.1 0.14

Pyridine B2 0.03 0.025 0.041

A1 0.02 0.01 0.0093

Pyrazine B2u 0.09 0.07 0.1

B1u 0.072 0.034 0.03

Pyrimidine B2 0.033 0.025 0.036

Pyridazine A1 0.021 0.021 0.034

Triazine 0.02 0 0

Tetrazine B2u 0.063 0.059 0.08

Formaldehyde A1 0.1 0.22 0.28

Aceton A1 0.22 0.23 0.33

B2 0.01 0.008 0.00086

Benzoquinone B1u 0.51 0.26 0.48

Formamide A′ 0.18 0.3 0.35

A′ 0.18 0.07 0.09

Acetamide A′ 0.16 0.24 0.29

A′ 0.097 0.16 0.2

Propanamide A′ 0.15 0.17 0.27
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Method LC-ωPBE DFTB LC-DFTB

Molecule Symmetry

A′ 0.09 0.097 0.093

Cytosine A′ 0.07 0.015 0.039

A′ 0.21 0.067 0.13

Thymine A′ 0.22 0.078 0.23

A′ 0.062 0.09 0.052

A′ 0.26 0.1 0.15

Uracil A′ 0.21 0.11 0.19

A′ 0.06 0.02 0.05

A′ 0.19 0.09 0.13

Adenine A′ 0.042 0.018 0.009

A′ 0.28 0.17 0.27

Table A3: Energy of the lowest excitation [eV] in a dimer complexes of TCNE and another
molecule.

TCNE · · · exp. B3LYP LC-DFTB LC-ωPBE pp-DFTB LC-DFTB Tuned-BNL

[182, 183] [181] (ω = 0.3) [184] (ω = 0.25) [181]

benzene 3.59 2.10 3.86 3.91 3.93 3.58 3.80

toluene 3.36 1.80 3.51 3.59 3.53 3.22 3.40

o-xylene 3.15 1.50 3.27 3.35 2.53 2.988 3

naphthalene 2.6 0.90 3.02 2.93 2.56 2.75 2.7

antracene (anth.) 2.05 1.00 2.27 2.36 1.91 2.05 2.14

9-cyanoanth. 2.33 0.50 2.68 2.65 2.18 2.395 2.35

9-carbo-methoxyanth. 2.16 0.90 2.37 2.42 1.93 2.131 2.16

9-methylanth. 1.87 1.10 2.10 2.18 1.66 1.87 2.03

9,10-dimethylanth. 1.76 1.40 1.92 2.2 1.46 1.707 2.09

9-formylanth. 2.22 1.00 2.51 2.5 2.25 2.278 2.27
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La Naphtalene Anthracene Tetracene Pentacene Hexacene Heptacene

B3LYP 4.42 3.22 2.43 1.87 1.47 1.17

LC-ωPBE 4.76 3.84 3.04 2.48 2.07 1.77

LC-DFTB 4.78 3.67 2.95 2.46 2.12 1.88

exp.[189] 4.66 3.60 2.88 2.37 2.02

Lb Naphtalene Anthracene Tetracene Pentacene Hexacene Heptacene

B3LYP 4.52 3.90 3.52 3.26 3.07 2.94

LC-ωPBE 4.99 4.15 3.76 3.49 3.30 3.16

LC-DFTB 4.95 4.35 3.97 3.72 3.54 3.43

exp.[189] 4.13 3.64 3.39 3.12 2.87

Table A4: La and Lb excitation energies [eV] in the polyacenes.

Num. of unit-cells 0.5 1 2 3 4 5

Num. of atoms Nat 24 48 96 144 192 240

DFTB (DFTB+) 0.44 3 44.9 444 781 3820

TD-DFTB (DFTB+) 0.48 3.3 47 470 1685 4785

LC-ωPBE/6-31(d,p) (NWCHEM) 5280 32130 150733

Table A5: Run times [s] of LC-TD-DFTB in DFTB+ and other methods and programs for the
calculation the ten lowest singlet excitations in clusters of anthracene molecules of
various sizes.
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