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Abstract. The first result of the lattice simulation and improved perturbative calculations have pointed to
a discrepancy between data on ε′K/εK and the standard-model (SM) prediction. Several new physics (NP)
models can explain this discrepancy, and such NP models are likely to predict deviations of B(K → πνν) from
the SM predictions, which can be probed precisely in the near future by NA62 and KOTO experiments. We
present correlations between ε′K/εK and B(K → πνν) in two types of NP scenarios: a box dominated scenario
and a Z-penguin dominated one. It is shown that different correlations are predicted and the future precision
measurements of K → πνν can distinguish both scenarios.

1 Introduction and Standard-Model
predictions of ε′

K

Charge-parity (CP) violating flavour-changing neutral cur-
rent decays of K mesons are extremely sensitive to new
physics (NP) and can probe radiative corrections of parti-
cles with masses far above the reach of the Large Hadron
Collider. Prime examples of such observables are a direct
CP violation in K → ππ decays and B(KL → π0νν).

In K → ππ decays, one distinguishes between two
types of CP violations: direct and indirect CP violations
which are parametrized by ε′K and εK , respectively. Both
types of CP violations have been quantified by many kaon
experiments precisely. While εK is a per mille effect in the
Standard Model (SM), ε′K is smaller by another three or-
ders of magnitude: ε′K ∼ O(10−6). This strong suppression
comes from the smallness of the isospin-3/2 amplitude
compared to the isospin-1/2 amplitude (∆I = 1/2 rule)
and an accidental cancellation of leading contributions in
the SM. Their suppressions lead to high sensitivity to the
physics beyond the SM.

Until recently, large theoretical uncertainties precluded
reliable predictions for ε′K . Although SM predictions of ε′K
using chiral perturbation theory are consistent with the ex-
perimental value, their theoretical uncertainties are large.
In contrast, calculation by the dual QCD approach [1]
finds the SM value much below the experimental one. A
major breakthrough has been the recent lattice-QCD cal-
culation of the hadronic matrix elements by RBC-UKQCD
collaboration [2, 3], which gives support to the latter re-
sult.
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Figure 1. Compilation of representative SM predictions and the
experimental values for Re(ε′K/εK). All error bars represent 1σ
range. The SM predictions are taken from Bertolini et al. (BEFL
’97) [4], Pallante et al. (PPS ’01) [5], Hambye et al. (HPR
’03) [6], Buras and Gérard (BG ’15) [7, 8], RBC-UKQCD lat-
tice result [2, 3], Buras et al. (BGJJ ’15) [9], and Kitahara et al.
(KNT ’16) [10], where magenta bars are based on analytic ap-
proaches to hadronic matrix elements, while blue bars are based
on lattice results. The black thick one is the world average of the
experimental values [15].

The compilation of representative SM predictions
and the experimental values for Re(ε′K/εK) is given in
Fig. 1. The SM predictions (colored bars) are taken from:
Bertolini et al. (BEFL ’97) [4], Pallante et al. (PPS
’01) [5], Hambye et al. (HPR ’03) [6], Buras and Gérard
(BG ’15) [7, 8] with lattice result for I = 2 (BG ’15+Lat.),
RBC-UKQCD lattice result [2, 3], Buras et al. (BGJJ
’15) [9], and Kitahara et al. (KNT ’16) [10]. The ex-
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perimental values (black bars) are taken from: E371 [11],
NA31 [12], NA48 [13] and KTeV [14] collaborations, and
the black thick one is the world average of the experimen-
tal values [15]

Re
(
ε′K/εK

)
exp = (16.6 ± 2.3) × 10−4. (1)

In order to predict ε′K in the SM, one has to calculate
the hadronic matrix elements of four-quark operators with
nonperturbative methods. The magenta bars in Fig. 1 have
utilized analytic approaches to calculating them: chiral
quark model (BEFL ’97), chiral perturbation theory (PPS
’01) with minimal hadronic approximation (HPR ’03), and
the dual QCD approach (BG ’15). Note that the dual QCD
approach predicts an upper bound on ε′K/εK . Recently,
the result of the chiral perturbation theory has been up-
dated [16]:

(
ε′K/εK

)
ChPT = (15 ± 7) × 10−4. (2)

On the other hand, a determination of all hadronic ma-
trix elements from lattice QCD has been obtained only re-
cently by the RBC-UKQCD collaboration [2, 3], and the
blue bars are based on the lattice result:

ε′K/εK =


(1.9 ± 4.5) × 10−4 (BGJJ ’15),
(1.06 ± 5.07) × 10−4 (KNT ’16).

(3)

These results are obtained by next-to-leading order (NLO)
calculations exploiting CP-conserving data to reduce
hadronic uncertainties and include isospin-violating con-
tributions [17] which are not included in the lattice re-
sult. Furthermore, the latter result includes an additional
O(α2

EM/α
2
s) correction, which appears only in this order,

and also utilizes a new analytic solution of the renor-
malization group (RG) equation which avoids the prob-
lem of singularities in the NLO terms. The two numbers
in Eq. (3) disagree with the experimental value in Eq. (1)
by 2.9σ [9] and 2.8σ [10], respectively. The uncertain-
ties are dominated by the lattice statistical and systematic
uncertainties for the I = 0 amplitude.

In Fig. 2, the contributions of individual operators to
ε′K/εK are shown, where yi for i = 3, 4, . . . , 10 are the cor-
responding Wilson coefficients. These values are based on
Ref. [10]. Q3–Q6 are called QCD penguin operators,
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Figure 2. The composition of ε′K/εK with respect to the oper-
ator basis. The right and left side of the dashed lines represent
positive and negative contributions to ε′K/εK , respectively. This
figure is based on the result of Ref. [10].

while Q7–Q10 are called electroweak penguin operators,
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q̄βqα
)

V−A
, (11)

where V ∓ A represents γµ(1 ∓ γ5), α and β denote color
indices, and eq is the electric charge of the quark q. The
leading contributions come from Q6 and Q8, having op-
posite sign, and thus a cancellation emerges. Remarkably,
this figure also shows that even if one includes sub-leading
contributions, the cancellation still exists with high preci-
sion.

The main difference between each result of analytic
approaches and the lattice result comes from the hadronic
parameter B(1/2)

6 ∝ ⟨(ππ)I=0 |Q6|K0⟩, which controls the
largest positive contribution to ε′K/εK (the y6Q6 compo-
nent in the Fig. 2). In chiral perturbation theory, typically
large values are obtained: B(1/2)

6 ∼ 1.6 (BEFL ’97), ∼ 1.6
(PPS ’01), and ∼ 3 (HPR ’03, see Ref. [7]). On the other
hand, the dual QCD approach predicts a smaller number,
B(1/2)

6 ≤ B(3/2)
8 ∼ 0.8 (BG ’15). The lattice result is consis-

tent with the latter result: B(1/2)
6 = 0.56 ± 0.20 [3, 10]. Al-

though the lattice simulation [3] includes final-state inter-
actions partially along the line of Ref. [18], final-state in-
teractions have to be still fully included in the calculations
in light of a discrepancy of a strong phase shift δ0 [19, 20].
In the near future, the increasing precision of lattice cal-
culations with improved methods will further sharpen the
SM predictions in Eq. (3) and answer the question about
NP in ε′K/εK [21].
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perimental values (black bars) are taken from: E371 [11],
NA31 [12], NA48 [13] and KTeV [14] collaborations, and
the black thick one is the world average of the experimen-
tal values [15]
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’01) with minimal hadronic approximation (HPR ’03), and
the dual QCD approach (BG ’15). Note that the dual QCD
approach predicts an upper bound on ε′K/εK . Recently,
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Figure 2. The composition of ε′K/εK with respect to the oper-
ator basis. The right and left side of the dashed lines represent
positive and negative contributions to ε′K/εK , respectively. This
figure is based on the result of Ref. [10].
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where V ∓ A represents γµ(1 ∓ γ5), α and β denote color
indices, and eq is the electric charge of the quark q. The
leading contributions come from Q6 and Q8, having op-
posite sign, and thus a cancellation emerges. Remarkably,
this figure also shows that even if one includes sub-leading
contributions, the cancellation still exists with high preci-
sion.

The main difference between each result of analytic
approaches and the lattice result comes from the hadronic
parameter B(1/2)

6 ∝ ⟨(ππ)I=0 |Q6|K0⟩, which controls the
largest positive contribution to ε′K/εK (the y6Q6 compo-
nent in the Fig. 2). In chiral perturbation theory, typically
large values are obtained: B(1/2)

6 ∼ 1.6 (BEFL ’97), ∼ 1.6
(PPS ’01), and ∼ 3 (HPR ’03, see Ref. [7]). On the other
hand, the dual QCD approach predicts a smaller number,
B(1/2)

6 ≤ B(3/2)
8 ∼ 0.8 (BG ’15). The lattice result is consis-

tent with the latter result: B(1/2)
6 = 0.56 ± 0.20 [3, 10]. Al-

though the lattice simulation [3] includes final-state inter-
actions partially along the line of Ref. [18], final-state in-
teractions have to be still fully included in the calculations
in light of a discrepancy of a strong phase shift δ0 [19, 20].
In the near future, the increasing precision of lattice cal-
culations with improved methods will further sharpen the
SM predictions in Eq. (3) and answer the question about
NP in ε′K/εK [21].

Flavour changing and conserving processes

We also should comment on the ∆I = 1/2 rule
(ReA0/ReA2)exp. = 22.45±0.05. Although none of the an-
alytic approaches can explain such a large value, the first
lattice calculation has found a consistent value within 1σ,
(ReA0/ReA2)Lat. = 31.0 ± 11.1 [2, 3, 8].

Several NP models including supersymmetry (SUSY)
can explain the discrepancy of ε′K/εK . It is known that
such NP models are likely to predict deviations of branch-
ing ratios of the kaon rare decay from the SM predictions,
especially B(K → πνν) which includes CP-violating
flavour-changing neutral current decay and can be probed
precisely in the near future by NA62 and KOTO experi-
ments.1 In this contribution, based on the lattice result of
ε′K/εK and Eq. (3), we present correlations between ε′K/εK

and B(K → πνν) in two types of NP scenarios: a box
dominated scenario and a Z-penguin dominated one, and
discuss how to distinguish between them.

2 Box dominated (Trojan penguin)
scenario

We first focus on the box dominated scenario, where all
NP contributions to |∆S | = 1 and |∆S | = 2 processes are
dominated by the four-fermion box diagrams. Such a sit-
uation is realized in the minimal supersymmetric standard
model (MSSM) [23]. The desired effect in ε′K is gener-
ated via gluino-squark box diagrams which are shown in
Fig. 3, when the mass difference between the right-handed
up and down squarks exists. Such a contribution is called
Trojan penguin because its effect is parameterized by the
electroweak penguin operator at low energy scale [24].

While the sizable effects in ε′K are obtained by the Tro-
jan penguin contributions, a simultaneous efficient sup-
pression of the SUSY QCD contributions to εK can also
be achieved, which is shown in the following subsection.

2.1 Suppression of contributions to εK

An explanation of the puzzle between Eq. (1) and Eq. (3)
by physics beyond the SM requires a NP contribution
which is seemingly even larger than the SM contribution.
However, it is known that once constraints from the cor-
responding |∆S | = 2 transition are taken into account, one
expects that NP effects in a |∆S | = 1 four-quark process
are highly suppressed. To explain the NP hierarchy in
|∆S | = 1 vs |∆S | = 2 transitions, we specify to ε′K and
εK : The SM contributions are governed by the combi-
nation τ = −VtdV∗ts/(VudV∗us) ∼ (1.5 − i0.6) × 10−3 with
ε′ SM

K ∝ Im τ/M2
W and εSM

K ∝ Im τ2/M2
W . If the NP con-

tribution enters through the |∆S = 1| parameter δ and
is mediated by heavy particles of mass M, one obtains
ε′NP

K ∝ Im δ/M2, εNP
K ∝ Im δ2/M2, and therefore the ex-

perimental constraint |εNP
K | ≤ |εSM

K | leads to

������
ε′NP

K

ε′SM
K

������ ≤
���ε′NP

K /ε
′SM
K

������εNP
K /ε

SM
K

��� = O
(

Re τ
Re δ

)
. (12)

1The correlations between ε′K/εK , B(K → πνν), and εK through the
CKM components in the SM are discussed in Ref. [22].

Figure 3. Trojan penguin contributions to Im A2 for mŪ � mD̄.

If NP enters through a loop with particles of mass M ∼> 1
TeV, the NP effects can be relevant only for |δ| ≫ |τ|, and
thus Eq. (12) seemingly forbids detectable NP contribu-
tions to ε′K .

In the MSSM, there is a bypass to Eq. (12). The
Majorana nature of the gluino leads to a suppression
of gluino-squark box contributions to εK . This is so,
because there are two such diagrams (crossed and un-
crossed boxes) with opposite signs. If the gluino mass
mg̃ equals roughly 1.5 times the average down squark
mass MS , both contributions to εSUSY

K cancel [25]. For
mg̃ > 1.5MS , the gluino-box contribution approximately
behaves as [m2

g̃ − (1.5MS )2]/m4
g̃, and the 1/m2

g̃ decoupling
sets in. Note that this suppression appears only when a hi-
erarchy ∆Q,12 ≫ ∆D̄,12 of ∆Q,12 ≪ ∆D̄,12 is satisfied, where
the following notation is used for the squark mass matri-
ces: M2

X,i j = m2
X

(
δi j + ∆X,i j

)
, with X = Q, Ū, or D̄.

2.2 Contributions to ε′
K

The master equation for ε′K/εK (see e.g. Ref. [9]) reads:

ε′K
εK
=

ω+√
2|εexp

K |ReAexp
0

[
ImA2

ω+
−
(
1 − Ω̂eff

)
ImA0

]
, (13)

with Ω̂eff = (14.8 ± 8.0) × 10−2, the measured |εexp
K |,

ω+ = (4.53 ± 0.02) × 10−2, and the amplitudes AI =

⟨(ππ)I |H|∆S |=1|K0⟩ involving the effective |∆S | = 1 Hamil-
tonian H|∆S |. I = 0, 2 represents the strong isospin of the
final two-pion state.

The MSSM contributions to ε′K/εK have been widely
studied in the past. However, the SUSY-breaking scale MS

was considered in the ballpark of the electroweak scale, so
that the suppression mechanism inferred from Eq. (12) is
avoided. The low-energy Hamiltonian in the case of small
left-right squark mixing reads

H|∆S |=1
eff, SUSY =

GF√
2

∑
q


2∑

i=1

cq
i (µ)Qq

i (µ)

+

4∑
i=1

[c′qi (µ)Q′qi (µ) + c̃′qi (µ)Q̃′qi (µ)]

 + H.c.,

(14)
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where GF is the Fermi constant and

Qq=u,c,t
1 =

(
s̄αqβ
)

V−A

(
q̄βdα
)

V−A
, (15)

Qq=u,c,t
2 = (s̄q)

V−A
(q̄d)

V−A
, (16)

Q′q=all
1 = (s̄d)

V−A
(q̄q)

V+A
, (17)

Q′q=all
2 =

(
s̄αdβ
)

V−A

(
q̄βqα
)

V+A
, (18)

Q′q=all
3 = (s̄d)

V−A
(q̄q)

V−A
, (19)

Q′q=all
4 =

(
s̄αdβ
)

V−A

(
q̄βqα
)

V−A
. (20)

Here, opposite-chirality operators Q̃′qi are given by inter-
changing V − A↔ V + A.

In this section, we focus on a case that the dominant
SUSY contribution comes from Trojan penguin diagrams
in Fig. 3. The other SUSY solution focusing the Z-penguin
contributions is investigated in the next section. The box
diagrams contribute to Im A2 when mŪ � mD̄. Because
these contributions are governed by the strong interaction
and there is an enhancement factor 1/ω+ = 22.1 for the
Im A2 term in (13), they easily become the largest contri-
bution to ε′K/εK [24]. In order to obtain the desired large
effect in ε′K , one needs a contribution to the operators Q′1,2
with (V − A) × (V + A) Dirac structure, whose matrix ele-
ments are chirally enhanced by a factor (mK/ms)2. Hence,
the flavour mixing has to be in the left-handed squark mass
matrix. The opposite situation with right-handed flavour
mixing and ũL-d̃L mass splitting is not possible because of
the SU(2)L invariance.

For the calculation of SUSY contributions to ε′K/εK ,
one has to use the RG equations to evolve the Wilson
coefficients calculated at the high scale MS down to the
hadronic scale µh = 1.3 GeV at which the hadronic ma-
trix elements are calculated [2, 3, 10]. To use the well-
known NLO 10 × 10 anomalous dimensions for the SM
four-fermion operator basis [26], we switch from Eq. (14)
to

H|∆S |=1
eff, SUSY =

GF√
2

10∑
i=1

[Ci(µ)Qi(µ) + C̃i(µ)Q̃i(µ)] + H.c.,

(21)

where Q1,...,10 are given in Eqs. (4)–(11), (15), and (16),
and

C1,2(µ) = cu
1,2(µ), (22)

C̃1,2(µ) = 0, (23)

C3,4,5,6(µ) =
1
3

[c
′u
3,4,1,2(µ) + 2c

′d
3,4,1,2(µ)], (24)

C7,8,9,10(µ) =
2
3

[c
′u
1,2,3,4(µ) − c

′d
1,2,3,4(µ)], (25)

and the coefficients C̃3,...10 for the opposite-chirality oper-
ators can be obtained from C3,...10 by replacing c

′q
i → c̃

′q
i .

Note that the contribution of Fig. 3 is collected into the
coefficients C7,8. For the RG evolution of the coefficients,
we use the new analytic solution of the RG equations dis-
cussed in Ref. [10].
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Figure 4. The ε′K/εK discrepancy between Eq. (1) and Eq. (3) is
resolved at the 1σ (2σ) level within the dark (light) green region.
The red shaded region is excluded by εK at 95 % C.L. using the
inclusive value |Vcb| , while the region between the blue-dashed
lines can explain the εK discrepancy which is present if the exclu-
sive determination of |Vcb| is used [27]. The blue shaded region is
excluded by the current LHC results from CMS and ATLAS [28–
30]. The only nonzero off-diagonal element of the squark mass
matrices is ∆Q,12 = 0.1 exp(−iπ/4) for mŪ > mD̄ = MS (upper
branch) and ∆Q,12 = 0.1 exp(i3π/4) for mŪ < mD̄ = MS (lower
branch). Black contour represents B(KL → π0νν)/BSM(KL →
π0νν).

In Fig. 4, the portion of the squark mass plane which
simultaneously explains ε′K/εK discrepancy and εK con-
straint is shown. As input, we take the grand-unified the-
ory (GUT) relation for gaugino masses, αs (MZ) = 0.1185,
mg̃/MS = 1.5 for the suppressed εK , and mQ = mD̄ =

µSUSY = MS with varying mŪ . The universal slepton mass
is set to be mL = 300 GeV. Furthermore, the trilinear
SUSY-breaking matrices Aq are set to zero, tan β = 10,
and the only nonzero off-diagonal element of the squark
mass matrices is ∆Q,12 = 0.1 exp(−iπ/4) for the left-
handed squark sectors for mŪ > mD̄ = MS (upper branch)
and ∆Q,12 = 0.1 exp(i3π/4) for mŪ < mD̄ = MS (lower
branch). We have calculated all relevant one-loop contri-
butions to the coefficients in Eq. (14) in the squark mass
eigenbasis. The ε′K/εK discrepancy between Eq. (1) and
Eq. (3) can be resolved at 1σ (2σ) in the dark (light) green
region. The red region is excluded by the measurement
of εK at 95 % C.L. in combination with the inclusive |Vcb|,
while the region between the blue dashed lines can explain
the εK discrepancy at 95 % C.L. for the exclusive value of
|Vcb| [27]. Note that θ = ±π/4 maximizes the effect in
εSUSY

K , while the SUSY contributions to ε′K/εK is maxi-
mized at θ = ±π/2 resulting instead in a vanishing effect
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where GF is the Fermi constant and

Qq=u,c,t
1 =

(
s̄αqβ
)

V−A

(
q̄βdα
)

V−A
, (15)

Qq=u,c,t
2 = (s̄q)

V−A
(q̄d)

V−A
, (16)

Q′q=all
1 = (s̄d)

V−A
(q̄q)

V+A
, (17)

Q′q=all
2 =

(
s̄αdβ
)

V−A

(
q̄βqα
)

V+A
, (18)

Q′q=all
3 = (s̄d)

V−A
(q̄q)

V−A
, (19)

Q′q=all
4 =

(
s̄αdβ
)

V−A

(
q̄βqα
)

V−A
. (20)

Here, opposite-chirality operators Q̃′qi are given by inter-
changing V − A↔ V + A.

In this section, we focus on a case that the dominant
SUSY contribution comes from Trojan penguin diagrams
in Fig. 3. The other SUSY solution focusing the Z-penguin
contributions is investigated in the next section. The box
diagrams contribute to Im A2 when mŪ � mD̄. Because
these contributions are governed by the strong interaction
and there is an enhancement factor 1/ω+ = 22.1 for the
Im A2 term in (13), they easily become the largest contri-
bution to ε′K/εK [24]. In order to obtain the desired large
effect in ε′K , one needs a contribution to the operators Q′1,2
with (V − A) × (V + A) Dirac structure, whose matrix ele-
ments are chirally enhanced by a factor (mK/ms)2. Hence,
the flavour mixing has to be in the left-handed squark mass
matrix. The opposite situation with right-handed flavour
mixing and ũL-d̃L mass splitting is not possible because of
the SU(2)L invariance.

For the calculation of SUSY contributions to ε′K/εK ,
one has to use the RG equations to evolve the Wilson
coefficients calculated at the high scale MS down to the
hadronic scale µh = 1.3 GeV at which the hadronic ma-
trix elements are calculated [2, 3, 10]. To use the well-
known NLO 10 × 10 anomalous dimensions for the SM
four-fermion operator basis [26], we switch from Eq. (14)
to

H|∆S |=1
eff, SUSY =

GF√
2

10∑
i=1

[Ci(µ)Qi(µ) + C̃i(µ)Q̃i(µ)] + H.c.,

(21)

where Q1,...,10 are given in Eqs. (4)–(11), (15), and (16),
and

C1,2(µ) = cu
1,2(µ), (22)

C̃1,2(µ) = 0, (23)

C3,4,5,6(µ) =
1
3

[c
′u
3,4,1,2(µ) + 2c

′d
3,4,1,2(µ)], (24)

C7,8,9,10(µ) =
2
3

[c
′u
1,2,3,4(µ) − c

′d
1,2,3,4(µ)], (25)

and the coefficients C̃3,...10 for the opposite-chirality oper-
ators can be obtained from C3,...10 by replacing c

′q
i → c̃

′q
i .

Note that the contribution of Fig. 3 is collected into the
coefficients C7,8. For the RG evolution of the coefficients,
we use the new analytic solution of the RG equations dis-
cussed in Ref. [10].
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Figure 4. The ε′K/εK discrepancy between Eq. (1) and Eq. (3) is
resolved at the 1σ (2σ) level within the dark (light) green region.
The red shaded region is excluded by εK at 95 % C.L. using the
inclusive value |Vcb| , while the region between the blue-dashed
lines can explain the εK discrepancy which is present if the exclu-
sive determination of |Vcb| is used [27]. The blue shaded region is
excluded by the current LHC results from CMS and ATLAS [28–
30]. The only nonzero off-diagonal element of the squark mass
matrices is ∆Q,12 = 0.1 exp(−iπ/4) for mŪ > mD̄ = MS (upper
branch) and ∆Q,12 = 0.1 exp(i3π/4) for mŪ < mD̄ = MS (lower
branch). Black contour represents B(KL → π0νν)/BSM(KL →
π0νν).

In Fig. 4, the portion of the squark mass plane which
simultaneously explains ε′K/εK discrepancy and εK con-
straint is shown. As input, we take the grand-unified the-
ory (GUT) relation for gaugino masses, αs (MZ) = 0.1185,
mg̃/MS = 1.5 for the suppressed εK , and mQ = mD̄ =

µSUSY = MS with varying mŪ . The universal slepton mass
is set to be mL = 300 GeV. Furthermore, the trilinear
SUSY-breaking matrices Aq are set to zero, tan β = 10,
and the only nonzero off-diagonal element of the squark
mass matrices is ∆Q,12 = 0.1 exp(−iπ/4) for the left-
handed squark sectors for mŪ > mD̄ = MS (upper branch)
and ∆Q,12 = 0.1 exp(i3π/4) for mŪ < mD̄ = MS (lower
branch). We have calculated all relevant one-loop contri-
butions to the coefficients in Eq. (14) in the squark mass
eigenbasis. The ε′K/εK discrepancy between Eq. (1) and
Eq. (3) can be resolved at 1σ (2σ) in the dark (light) green
region. The red region is excluded by the measurement
of εK at 95 % C.L. in combination with the inclusive |Vcb|,
while the region between the blue dashed lines can explain
the εK discrepancy at 95 % C.L. for the exclusive value of
|Vcb| [27]. Note that θ = ±π/4 maximizes the effect in
εSUSY

K , while the SUSY contributions to ε′K/εK is maxi-
mized at θ = ±π/2 resulting instead in a vanishing effect

Flavour changing and conserving processes

in εSUSY
K . Therefore, Fig. 4 is a conservative result in light

of the CP-violating phase.
The blue shaded region is excluded by the current LHC

results [28–30]. Here, in order to be conservative, we use
the most stringent one, i.e. we maximize the bound which
is a function of the neutralino mass.

The black contour represents B(KL→ π0νν) which is
normalized byBSM(KL → π0νν) = (2.9±0.2)×10−11 [31].
In this setup, we find that B(KL → π0νν)/BSM(KL →
π0νν) ≃ 1.05–1.1 is predicted in light of the ε′K/εK dis-
crepancy (and the potential εK discrepancy) if mŪ > mD̄.
More detailed investigation of B(KL→ π0νν) is shown in
the next subsection.

2.3 B(KL→ π0νν) and B(K+→ π+νν)

The SUSY contributions to εK can be suppressed by the
crossed and uncrossed box diagrams when the gluino mass
is heavier than the squark mass, while there is no such can-
cellation in a chargino box contribution to KL → π0νν and
K+ → π+νν which permits potentially large effects. We
investigate the correlation between ε′K and B(K → πνν)
varying the following parameters:

|∆Q,12|, θ, M3, mŪ/mD̄, (26)

with 0 < |∆Q,12| < 1 and 0 < θ < 2π. Here, defining the
bilinear terms for the squarks as θ ≡ arg(∆Q,12). We fix
the slepton mass and the lightest squark mass close to the
experimental limit (mL = 300 GeV and mq̃1 = 1.5 TeV)
and use GUT relations among all three gaugino masses.

Figure 5 shows the correlations between ε′K and
B(K → πνν) in the B(KL → π0νν)–B(K+ → π+νν) plane
which are normalized by their SM predictions [31]. We
find that the necessary amount of the tuning in the gluino
mass and the CP violating phase in order to suppress con-
tributions to εK determines deviations of B(K → πνν)
from the SM values. A quantity which parameterizes
the fine-tuning parameter is defined in Ref. [31]. The
current ε′K/εK discrepancy between Eq. (1) and Eq. (3)
is resolved at 1σ (2σ) within the dark (light) green re-
gion. In the top (bottom) panel we used mD̄/mŪ = 1.1
(2) with mŪ = mQ for 0 < θ < π, and mŪ/mD̄ = 1.1
(2) with mD̄ = mQ for π < θ < 2π. Numerically, we
observe B(KL → π0νν)/BSM(KL → π0νν) ≲ 2 (1.2) and
B(K+ → π+νν)/BSM(K+ → π+νν) ≲ 1.4 (1.1) in light of
ε′K/εK discrepancy, if all squarks are heavier than 1.5 TeV
and if a 1 (10) % fine-tuning is permitted.

We also observe a strict correlation between B(KL →
π0νν) and mŪ/mD̄: sgn [B(KL → π0νν) − BSM(KL →
π0νν)] = sgn [mŪ − mD̄]. Thus, B(KL → π0νν) can in-
directly determine whether the right-handed up or down
squark is the heavier one.

3 Z-penguin dominated (modified
Z-coupling) scenario

Next, we focus on the Z-penguin dominated scenario. The
negative dominant contribution to ε′K/εK comes from Z-
penguin diagrams in the SM as y8Q8 (see Fig. 2). Since
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Figure 5. The correlation is shown in the Trojan penguin sce-
nario. The light (dark) blue region requires a milder parameter
tuning than 1 % (10 %) of the gluino mass and the CP violating
phase in order to suppress contributions to εK . The red contour
represents the SUSY contributions to ε′K/εK , and the ε′K/εK dis-
crepancy is resolved at 1σ (2σ) within the dark (light) green re-
gion. The lightest squark mass is fixed to 1.5 TeV. In the top
panel, mD̄/mŪ = 1.1 (mŪ/mD̄ = 1.1) is used for 0 < θ < π
(π < θ < 2π) to obtain a positive SUSY contribution to ε′K/εK .
While, mD̄/mŪ = 2 (mŪ/mD̄ = 2) is used for 0 < θ < π
(π < θ < 2π) in the bottom panel. The region on the right side
of the blue dashed lines are allowed by the current experimental
measurements.

in the SM there is a large numerical cancelation between
QCD-penguin and the Z-penguin contributions to ε′K/εK ,
a modified Z flavour-changing (s–d) interaction from NP
can explain the current ε′K/εK easily [32]. Then, the de-
cay, s → dνν, proceeding through an intermediate Z bo-
son, is modified by NP. Therefore, the branching ratios of
K → πνν̄ are likely to deviate from the SM predictions
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once the ε′K/εK discrepancy between Eq. (1) and Eq. (3)
is explained by the modified Z-coupling. They could be a
signal to test the scenario. In the MSSM, such a scenario
is also realized when the off-diagonal components of the
trilinear SUSY-breaking couplings are large [33–35].

Such a signal is constrained by εK . The modi-
fied Z couplings affect εK via the so-called double pen-
guin diagrams; the Z boson mediates the transition with
two flavour-changing Z couplings. Such a contribution
is enhanced when there are both left-handed and right-
handed couplings because of the chiral enhancement of the
hadronic matrix elements. An important point is that since
the left-handed coupling is already present in the SM, the
right-handed coupling must be constrained even without
NP contributions to the left-handed one. Such interfer-
ence contributions between the NP and the SM have been
overlooked in the literature. References [35–37] have re-
visited the modified Z-coupling scenario including the in-
terference contributions, and found the parameter regions
allowed by the indirect CP violation change significantly.

We find that similar to the previous section, the devia-
tions of B(K → πνν) from the SM values are determined
by the necessary amount of the tuning in NP contributions
to εK . We parametrize it by ξ: A degree of the NP pa-
rameter tuning is represented by 1/ξ, e.g., ξ = 10 means
that the model parameters are tuned at the 10% level. The
definition of ξ is given in Ref. [36].

In Fig. 6, contours of the tuning parameter ξ are shown
for the simplified scenarios: LHS (all NP effects appear as
left-handed), RHS (all NP effects appear as right-handed),
ImZS (NP effects are purely imaginary), and LRS (left-
right symmetric scenario) on the plane of the branching ra-
tios of K → πννwhich are normalized by their SM predic-
tions. We scanned the whole parameter space of the modi-
fied Z-coupling in each scenario, and selected the parame-
ters where ε′K/εK is explained at the 1σ level. The experi-
mental bounds from εK , ∆MK , and B(KL → µ+µ−) are sat-
isfied. In most of the allowed parameter regions, ξ = O(1)
is obtained. Thus, one does not require tight tunings in
these simplified scenarios. In the figures, B(KL → π0νν)
is smaller than the SM value by more than 30%. On
the other hand, B(K+ → π+νν) depends on the scenar-
ios. In LHS, we obtain 0 < B(K+ → π+νν)/B(K+ →
π+νν)SM < 1.8. In RHS, B(K+ → π+νν) is comparable
to or larger than the SM value, but cannot be twice as
large. In ImZS, the branching ratios are perfectly corre-
lated and B(K+ → π+νν) does not deviate from the SM
one. In LRS, B(KL → π0νν) does not exceed about a half
of the SM value. The more general situation is discussed
in Ref. [36].

4 Discussion and conclusions
In this contribution, we introduced the current situation for
the ε′K/εK within the SM. The first lattice result and the im-
proved perturbative calculations have shown the discrep-
ancy between the predicted value and the data. Several NP
models can explain the discrepancy of ε′K/εK , and then
B(K → πνν) are predicted to deviate from the SM predic-
tions. We have presented the correlations between ε′K/εK ,
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Figure 6. Contours of the tuning parameter ξ are shown in the
simplified modified Z-coupling scenarios: LHS, RHS, and ImZS
(top panel) and LRS (bottom). In the colored regions, ε′K/εK is
explained at 1σ, and the experimental bounds of εK , ∆MK , and
B(KL → µ+µ−) are satisfied. The right region of the blue dashed
line is allowed by the measurement of B(K+ → π+νν) at 1σ. The
NP scale is set to be µ = 1 TeV.

B(KL → π0νν), and B(K+ → π+νν) in the box dominated
scenario and the Z-penguin dominated one. It is shown
that the constraint from εK produces different correlations
between two NP scenarios. In the future, measurements of
B(K → πνν) will be significantly improved. The NA62
experiment at CERN measuring B(K+ → π+νν) is aim-
ing to reach a precision of 10 % compared to the SM value
already in 2018 [38]. In order to achieve 5% accuracy
more time is needed. Concerning KL → π0νν, the KOTO
experiment at J-PARC aims in a first step at measuring
B(KL → π0νν) around the SM sensitivity. Furthermore,
the KOTO-step2 experiment will aim at 100 events for
the SM branching ratio, implying a precision of 10 % of
this measurement [39]. Therefore, we conclude that when
the ε′K/εK discrepancy is explained by the NP contribu-
tion, NA62 experiment could probe whether a modified Z-
coupling scenario is realized or not, and KOTO-step2 ex-
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once the ε′K/εK discrepancy between Eq. (1) and Eq. (3)
is explained by the modified Z-coupling. They could be a
signal to test the scenario. In the MSSM, such a scenario
is also realized when the off-diagonal components of the
trilinear SUSY-breaking couplings are large [33–35].

Such a signal is constrained by εK . The modi-
fied Z couplings affect εK via the so-called double pen-
guin diagrams; the Z boson mediates the transition with
two flavour-changing Z couplings. Such a contribution
is enhanced when there are both left-handed and right-
handed couplings because of the chiral enhancement of the
hadronic matrix elements. An important point is that since
the left-handed coupling is already present in the SM, the
right-handed coupling must be constrained even without
NP contributions to the left-handed one. Such interfer-
ence contributions between the NP and the SM have been
overlooked in the literature. References [35–37] have re-
visited the modified Z-coupling scenario including the in-
terference contributions, and found the parameter regions
allowed by the indirect CP violation change significantly.

We find that similar to the previous section, the devia-
tions of B(K → πνν) from the SM values are determined
by the necessary amount of the tuning in NP contributions
to εK . We parametrize it by ξ: A degree of the NP pa-
rameter tuning is represented by 1/ξ, e.g., ξ = 10 means
that the model parameters are tuned at the 10% level. The
definition of ξ is given in Ref. [36].

In Fig. 6, contours of the tuning parameter ξ are shown
for the simplified scenarios: LHS (all NP effects appear as
left-handed), RHS (all NP effects appear as right-handed),
ImZS (NP effects are purely imaginary), and LRS (left-
right symmetric scenario) on the plane of the branching ra-
tios of K → πννwhich are normalized by their SM predic-
tions. We scanned the whole parameter space of the modi-
fied Z-coupling in each scenario, and selected the parame-
ters where ε′K/εK is explained at the 1σ level. The experi-
mental bounds from εK , ∆MK , and B(KL → µ+µ−) are sat-
isfied. In most of the allowed parameter regions, ξ = O(1)
is obtained. Thus, one does not require tight tunings in
these simplified scenarios. In the figures, B(KL → π0νν)
is smaller than the SM value by more than 30%. On
the other hand, B(K+ → π+νν) depends on the scenar-
ios. In LHS, we obtain 0 < B(K+ → π+νν)/B(K+ →
π+νν)SM < 1.8. In RHS, B(K+ → π+νν) is comparable
to or larger than the SM value, but cannot be twice as
large. In ImZS, the branching ratios are perfectly corre-
lated and B(K+ → π+νν) does not deviate from the SM
one. In LRS, B(KL → π0νν) does not exceed about a half
of the SM value. The more general situation is discussed
in Ref. [36].

4 Discussion and conclusions
In this contribution, we introduced the current situation for
the ε′K/εK within the SM. The first lattice result and the im-
proved perturbative calculations have shown the discrep-
ancy between the predicted value and the data. Several NP
models can explain the discrepancy of ε′K/εK , and then
B(K → πνν) are predicted to deviate from the SM predic-
tions. We have presented the correlations between ε′K/εK ,
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Figure 6. Contours of the tuning parameter ξ are shown in the
simplified modified Z-coupling scenarios: LHS, RHS, and ImZS
(top panel) and LRS (bottom). In the colored regions, ε′K/εK is
explained at 1σ, and the experimental bounds of εK , ∆MK , and
B(KL → µ+µ−) are satisfied. The right region of the blue dashed
line is allowed by the measurement of B(K+ → π+νν) at 1σ. The
NP scale is set to be µ = 1 TeV.

B(KL → π0νν), and B(K+ → π+νν) in the box dominated
scenario and the Z-penguin dominated one. It is shown
that the constraint from εK produces different correlations
between two NP scenarios. In the future, measurements of
B(K → πνν) will be significantly improved. The NA62
experiment at CERN measuring B(K+ → π+νν) is aim-
ing to reach a precision of 10 % compared to the SM value
already in 2018 [38]. In order to achieve 5% accuracy
more time is needed. Concerning KL → π0νν, the KOTO
experiment at J-PARC aims in a first step at measuring
B(KL → π0νν) around the SM sensitivity. Furthermore,
the KOTO-step2 experiment will aim at 100 events for
the SM branching ratio, implying a precision of 10 % of
this measurement [39]. Therefore, we conclude that when
the ε′K/εK discrepancy is explained by the NP contribu-
tion, NA62 experiment could probe whether a modified Z-
coupling scenario is realized or not, and KOTO-step2 ex-

Flavour changing and conserving processes

periment can distinguish the box dominated scenario and
the simplified modified Z-coupling scenario.

We should also comment on KS → µ+µ−, which pro-
ceeds via long-distance CP-conserving P-wave and short-
distance CP-violating S-wave processes. Since the de-
cay rate is dominated by the former, whose uncertainty
is large, the sensitivity to the short-distance contribu-
tions is diminished. However, it is pointed out that the
short-distance contribution is enhanced through an inter-
ference between the KL and KS states in the neutral kaon
beam [40]. Therefore, one can also distinguish the NP
scenarios using the correlation with KS → µ+µ−. Such a
correlation has been investigated in the box dominated sce-
nario (with large tan β) [41] and the modified Z-coupling
scenario [35, 40].
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