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Abstract: Droughts are amongst the most destructive natural disasters in the world. In large
regions of Africa, where water is a limiting factor and people strongly rely on rain-fed agriculture,
droughts have frequently led to crop failure, food shortages and even humanitarian crises. In eastern
and southern Africa, major drought episodes have been linked to El Niño-Southern Oscillation
(ENSO) events. In this context and with limited in-situ data available, remote sensing provides
valuable opportunities for continent-wide assessment of droughts with high spatial and temporal
resolutions. This study aimed to monitor agriculturally relevant droughts over Africa between
2000–2016 with a specific focus on growing seasons using remote sensing-based drought indices.
Special attention was paid to the observation of drought dynamics during major ENSO episodes to
illuminate the connection between ENSO and droughts in eastern and southern Africa. We utilized
Tropical Rainfall Measuring Mission (TRMM)-based Standardized Precipitation Index (SPI) with
0.25◦ resolution and Moderate-resolution Imaging Spectroradiometer (MODIS)-derived Vegetation
Condition Index (VCI) with 500 m resolution as indices for analysing the spatio-temporal patterns of
droughts. We combined the drought indices with information on the timing of site-specific growing
seasons derived from MODIS-based multi-annual average of Normalized Difference Vegetation Index
(NDVI). We proved the applicability of SPI-3 and VCI as indices for a comprehensive continental-scale
monitoring of agriculturally relevant droughts. The years 2009 and 2011 could be revealed as major
drought years in eastern Africa, whereas southern Africa was affected by severe droughts in 2003
and 2015/2016. Drought episodes occurred over large parts of southern Africa during strong El Niño
events. We observed a mixed drought pattern in eastern Africa, where areas with two growing seasons
were frequently affected by droughts during La Niña and zones of unimodal rainfall regimes showed
droughts during the onset of El Niño. During La Niña 2010/2011, large parts of cropland areas in
Somalia (88%), Sudan (64%) and South Sudan (51%) were affected by severe to extreme droughts
during the growing seasons. However, no universal El Niño- or La Niña-related response pattern
of droughts could be deduced for the observation period of 16 years. In this regard, we discussed
multi-year atmospheric fluctuations and characteristics of ENSO variants as further influences on the
interconnection between ENSO and droughts. By utilizing remote sensing-based drought indices
focussed on agricultural zones and periods, this study attempts to contribute to a better understanding
of spatio-temporal patterns of droughts affecting agriculture in Africa, which can be essential for
implementing strategies of drought hazard mitigation.
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1. Introduction

Droughts are amongst the most destructive natural hazards and can arise virtually everywhere
on the globe [1]. Generally, three stages of drought can be distinguished according to its duration and
affected component of the hydrological cycle: meteorological, agricultural and hydrological drought.
Triggered by a rainfall deficit, agricultural droughts are characterized by reduced soil moisture and,
hence, a lacking water supply to vegetation [2,3]. Droughts can affect both ecosystems and society
in multiple ways by, on the one hand, being main drivers for land degradation and desertification
and, on the other hand, involving socio-economic impacts such as crop failure, food shortages, famine,
malnutrition, deaths and mass migration [4]. However, agricultural activity itself, including flow
regulation and irrigation practices, may also lead to reduced water availability and, thus, conditions of
agricultural drought [5]. In regard to a growing population and the ongoing climate change, water
and food security are major challenges facing humanity [6]. The assessment of droughts affecting
agricultural areas in Africa is highly relevant. With rainfall as the limiting factor for farming and many
African countries strongly relying on rain-fed agriculture, droughts can lead to severe socio-economic
consequences [7]. In total, drought events have caused more than 800,000 deaths and affected about
262 million people in Africa during 1900–2013 [8]. What is more, severe dry episodes in southern
and eastern Africa have often been linked with the effects of El Niño–Southern Oscillation (ENSO),
leading to regional precipitation and temperature anomalies around the globe [9]. Considering the
recent drought during El Niño 2015/2016, one of the strongest events of recorded history, and its
devastating effects on agriculture and food security over large parts of Africa [10], understanding and
monitoring ENSO-related droughts are of major concern for implementing measures of adaption to
drought hazards.

In this context, remote sensing data and methods are critical tools for studying the spatio-temporal
evolution and the underlying drivers of droughts due to limited availability and inconsistency of
drought-related in-situ data [11,12]. Earth observation can bridge this gap by providing the opportunity
to obtain continuous, consistent and timely information on meterological, hydrological and biophysical
parameters over large areas and long time periods. Thus, with recent advances in techniques and an
increased data availability, remote sensing-based time series analysis has become highly relevant for
environmental monitoring [13,14]. In the last decades, remote sensing-based drought indices have been
established in order to quantify the strength, duration and spatial extent of droughts. These indicators
rely on meteorological, soil, hydrological or vegetation-related parameters [15,16]. Numerous studies
and approaches dealing with remote sensing-based drought monitoring and with a focus on the
African continent have been published. In this connection, operational approaches on global- and
continental-scale drought monitoring [6,17–20] as well as remote sensing-based studies on droughts
in Africa focussing on selected regions and/or periods are to be mentioned. Here, topics of current
interest are the ongoing debate on the Sahelian “greening” [21–23], drought during 2010/2011 in the
Horn of Africa [13,24–26], rainfall and vegetation-related drought dynamics in southern Africa [27–30],
continental-scale drought assessment [12,31,32] as well as the relation between droughts in Africa
and ENSO [9,33–36]. However, either studies accounted for drought assessment on rather small
regional scales and did not assess the continental level or little attention was paid to drought affecting
agriculturally relevant areas and time periods.

The study aims to give a retrospective insight into the spatio-temporal evolution of agriculturally
relevant droughts over Africa during 2000–2016 in consideration of growing seasons and agricultural
areas. This has not yet been carried out on a continental scale. By further illuminating the occurrence of
droughts in eastern and southern Africa during major ENSO phases, the connection between ENSO and
drought indices is examined. The main objective of the study is to contribute to a better understanding
of regional patterns of agriculturally relevant droughts and its dependencies. The methodology is
based on classical drought indices derived from remotely sensed data. Here, agricultural drought is
not assessed in a direct way, quantifying soil moisture. We rather take rainfall deficit and vegetation
condition as proxies indicating agriculturally relevant droughts. In particular, we utilize Tropical
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Rainfall Measuring Mission (TRMM) precipitation estimates (0.25◦ resolution) for calculating the
Standardized Precipitation Index (SPI) as a first drought index. Secondly, we use Moderate-resolution
Imaging Spectroradiometer (MODIS) surface reflectance (500 m resolution) to derive the Normalized
Difference Vegetation index (NDVI) for determining the timing of growing seasons as well as the
Vegetation Condition Index (VCI) as a second drought index. Different to existing studies, this analysis
exclusively focuses on agricultural areas and agriculturally relevant seasons.

2. Study Area

The study area covers the African continent. Being the second largest continent on earth, Africa
covers about 30 million km2 and borders the Mediterranean Sea in the North, the Atlantic Ocean in
the West, the Indian Ocean in the East and the Red Sea in the Northeast [37].

As a consequence of convective rainfalls and air transportation between the Inner Tropical
Convergence Zone (ITCZ) and subtropical high pressure cells on each of the northern and southern
sides, precipitation can be considered as a key factor of the African climate. In total, Africa consists
of areas under arid (57.2% of surface area), tropical (31.0%) and temperate (11.8%) climate. The arid
climate zone comprises an extensive area under warm desert climate, regions under cold desert as
well as semi-arid steppe climate [37,38]. The distribution of soil types across the African continent
is directly linked to its climate zones. Among the most productive soils for agriculture in Africa are
Luvisols, Vertisols, Chernozems, Kastanozems and Fluvisols, which are ideally suited for agriculture
and represent about 10% of the African farmland, mainly situated south of the Sahel (Senegal, Mali,
Burkina Faso, Ghana, Togo, Benin, Nigeria, Chad) and in southern Africa, e.g., Mozambique, Zambia,
Zimbabwe and South Africa [37,39]. Figure 1 displays the spatial distribution of European Space
Agency (ESA ) Climate Change Initiative (CCI ) land cover classes [40] in Africa, including the
location of major agricultural zones. In general, forests, savannah, grassland and deserts are the major
vegetation zones of Africa. The highest primary productivity and biodiversity is generally found in
the tropical climate zone [37,39]. Seasonal precipitation is the dominant climatic force of savannah
biomes. Within the semi-desert biome, which is regarded as a transition zone between savannah and
desert areas, short grasses and typical iconic acacias are predominant. With a generally very low
biomass, the desert biome consists of vegetation highly adapted to precipitation deficits and extreme
temperatures. What is more, a zone of temperate grassland is located in southern Africa [39].

Figure 1. Land cover of Africa for 2008–2012, data source: [40].
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3. Materials and Methods

Figure 2 gives an overview of the major methodological steps applied in this work. Firstly, we
used remote sensing-based data sets (see Table 1) to derive meteorological and vegetation-based
indices for agriculturally relevant droughts and to identify cropland areas. Secondly, phenological
information was extracted from the temporal vegetation profiles based on the NDVI in order to
characterize the average timing and duration of the growing season. On that basis, spatio-temporal
patterns of agriculturally relevant droughts were detected and analysed for the period of 2000–2016.
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Figure 2. Schematic overview of the methodological approach.

Table 1. Remote sensing-based data sets and their specifications utilized in this study.

Dataset TRMM 3B43 (V7) MODIS MOD09A1 (V6) ESA CCI-LC 2010

Variable Precipitation rate (mm/h) Surface reflectance Land Cover classification
Source TRMM, gauge analysis MODIS MERIS and SPOT-Vegetation
Temporal coverage 1 January 1998 to present 26 February 2000 to

present
2008–2012

Spatial coverage 50◦S to 50◦N Global Global
Temporal resolution 1 month 8 days (composite) no time series
Spatial resolution 0.25◦ × 0.25◦ 500 m 300 m
Data format netCDF HDF GeoTIFF

3.1. MODIS Data and Calculation of NDVI and VCI

We derived a vegetation-based drought index based on 8-day composites of MODIS MOD09A1
Surface Reflectances with 500 m spatial resolution. These were retrieved for 41 granules covering the
African continent for the study period of 26 February 2000 to 30 April 2016, which provided a data
base totalling 30,668 images. The MOD09A1 product from MODIS-Terra, a near-polar orbiting satellite
operated by the NASA, provides reflectance information of seven spectral bands in the form of 8-day
composites [41].

We derived NDVI [42] and VCI [43] based on MOD09A1 spectral reflectance values of the RED
(red) and NIR (near infrared) spectral domain, respectively. Here, VCI was retrieved from the generated
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time series of 8-daily NDVI images. The methodology relies on the computed minimum and maximum
NDVI for each of the 46 composites representing days of year (DOY) 1-361:

VCI =
(NDVIj − NDVImin)× 100

NDVImax − NDVImin
, (1)

where NDVIj is the average NDVI over a composite period of 8 days, NDVImin and NDVImax are
the corresponding multi-year minimum and maximum NDVI for the specific analysed period of
a year [16,43,44]. The VCI represents the health of the ground vegetation with values below 50%
indicating below-normal conditions. It shows the potential of measuring drought intensity, duration
and dynamics based on its large-scale impact on vegetation and has proven suitable for monitoring
agricultural drought [44–46].

3.2. TRMM Data and Derivation of SPI

We used Tropical Rainfall Measuring Mission (TRMM), a joint mission of the U.S. National
Aeronautics and Space Administration (NASA) and the Japanese National Space Development
Agency (NASDA), as a data source for calculating the meteorological drought index SPI [47].
The product combines remotely sensed precipitation estimates with land surface gauge analyses [48].
Based on gridded monthly TRMM 3B43 (Version 7) rainfall data from March 2000 to April 2016
[49], we summed up the precipitation rates over the accumulation period of 3 months for each pixel.
The 3-monthly aggregated SPI (SPI-3) is regarded as a suitable index for agricultural drought by the
World Meteorological Organization (WMO) [50].

To derive SPI-3, rainfall data for each month of a year was analysed per pixel so as to estimate the
key coefficients for a transformation of the observed frequency distribution to a gamma distribution

g(xk) =
1

βαΓ(α)
xα−1

k e−xk/β f or xk > 0 (2)

with α > 0 as shape and β as scale factor, xk > 0 as the amount of precipitation over k consecutive
months (here k = 3) and Γ(α) as the gamma function

Γ(α) =
∫ ∞

0
yα−1e−ydy (3)

via maximum likelihood estimation [51,52]. Afterwards, rainfall values were transformed to normally
distributed SPI based on its respective cumulative probability value. Finally, the SPI is generally
described as

SPI =
P − P∗

σP
(4)

with P as the aggregated precipitation for a certain time interval (here: 3 consecutive months), P∗

as the respective mean and σP representing the standard deviation over the available data record
for the studied interval [51]. We applied this calculation procedure using the language and software
environment R [53].

3.3. Ancillary Data

The European Space Agency (ESA) Climate Change Initiative (CCI) global land cover
map representative for the epoch of 2008–2012 was used for differentiating agricultural from
non-agricultural areas. The ESA CCI land cover product comes with 300 m spatial resolution and was
generated implementing a multi-year and multi-sensor strategy [40]. To address agriculturally relevant
drought, we extracted cropland-related land cover classes (Cropland, rainfed; Cropland, irrigated or
post-flooded; Mosaic cropland/natural vegetation) and masked all non-cropland areas.
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To examine the effect of detected droughts on national agricultural production within the focal
regions, we used yearly crop statistics from the FAOSTAT database [54]. Here, focus is on primary
crops including vegetables, fruits, treenuts, cereals, pulses, roots and tubers, fibre crops and oil crops.
We retrieved respective production quantity data for the period of 2000–2013.

3.4. Extraction of Average Growing Season with TIMESAT

A specific aim of this study is to assess droughts that affect agricultural production. In order
to identify the timing and duration of major growing seasons, i.e., the periods that are relevant for
agricultural production, we retrieved phenological information from previously generated NDVI time
series using the software package TIMESAT 3.2 [55]. For each pixel, the average timing of the growing
season was determined based on the multi-annual median NDVI time series as an indicator of the
average change of vegetation throughout the year. After deriving the median for each 8-day composite
of the NDVI data sets from 2000 to 2016, smoothing was carried out with the Savitzky–Golay filter
using a window size of 4 [56]. We set the seasonal parameter of TIMESAT to 0 in order to consider
areas of bimodal rainy seasons. To account for growing seasons spanning from one calendar year to
another, the considered annual time span for extracting the timing of the growing season was set from
DOY 241 of the first year (28/29 August) to DOY 361 of the second year (26/27 December). We used
the 20% fraction of the amplitude for determining the Start (SOS) and End Of Season (EOS).

3.5. Detection of Agriculturally Relevant Droughts

To quantify the strength and duration of agriculturally relevant droughts over Africa for each
seasonal year, we derived statistical and threshold-based parameters from time series of SPI-3 and
VCI. Note that a seasonal year starts at DOY 241 of the corresponding previous year (see Section 3.4).
Based on the timing and duration of the growing season, the number of observations under drought
conditions was extracted by using defined thresholds for both drought indices.

We categorized SPI-3 based on the classification of the WMO [50], which is outlined in
Table 2. Accordingly, a threshold of −1 was used for SPI-3, with values below the threshold
representing moderate to extreme drought conditions. With respect to VCI, Kogan [57] proposed
a threshold of 35% for identifying drought conditions, which has widely been adopted by the drought
monitoring community [18,58]. Related to this, we applied the drought classification stated by
Klisch and Atzberger [59] for VCI (see Table 2), in which the 35% threshold indicates moderate to
extreme drought conditions. Consequently, all observations below the mentioned thresholds were
counted for each pixel and related to the duration of the growing season. A parameter of relative
duration of drought was produced for each seasonal year, representing the percentage duration of the
growing season affected by drought. Since agricultural areas of eastern and southern Africa have been
particularly affected by droughts during the study period, we chose these regions as focal areas.

Table 2. Drought categories based on SPI [50] and VCI [59].

Drought Category SPI Range VCI Range (%)

Extreme drought SPI ≤ −2 VCI < 10

Severe drought −2 < SPI ≤ −1.5 10 ≤ VCI ≤ 20

Moderate drought −1.5 < SPI ≤ −1 20 < VCI < 35

No drought SPI > −1 VCI ≥ 35
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4. Results

4.1. Timing of Average Growing Season

We derived the average start (SOS) and end (EOS) of one or-if applicable-two predominant
growing seasons from multi-annual (2000–2016) MODIS-based median NDVI time series. The months
of SOS and EOS are displayed in Figure 3. Due to the zonally graduated distribution of precipitation
and climate zones across the African continent, growing seasons show spatially varying lengths
and differing timing within the average seasonal year. Whereas the Sahel region exhibits a rather
short growing season of about 3–5 months (see frame A in Figure 3), regions under tropical climatic
conditions show growing seasons spanning more than 10 months, e.g., parts of Zambia, Zimbabwe
and Mozambique (see frame B in Figure 3). Further, a bimodal distribution, where two growing
seasons occur within one seasonal year, could be identified in the Nile delta, along the West African
coast and in eastern Africa, especially in southwestern Ethiopia, Kenya, Somalia, Uganda, Rwanda
and Burundi (see maps of SOS-2/EOS-2 in Figure 3, bottom).

Figure 3. Start and end of detected growing seasons within average seasonal year (SOS-1/SOS-2: start
of first/second growing season; EOS-1/EOS-2: end of first/second growing season) for agricultural
areas in Africa.
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4.2. Spatio-Temporal Patterns of Agriculturally Relevant Droughts over Africa

Droughts occurring at agriculturally relevant growing seasons were analysed with respect to
their intensity and duration. The spatio-temporal pattern of agriculturally relevant drought events
over Africa in 2001–2016 is displayed as mean drought indices SPI-3 and VCI averaged per pixel over
the growing season period (Figures 4 and 5). Figures 6 and 7 show the relative duration of drought
conditions per growing season defined by the percentage of time that SPI-3- and VCI fall below
a certain threshold (see Section 3.5). All in all, a temporally and spatially dynamic drought pattern
could be revealed for the examined time period. Hereby, seasonal years of regionally widespread
drought conditions, mostly located over core areas with particularly strong drought signals, were
exhibited. For many areas in Africa, a larger part of the growing season was affected by droughts
indicated by VCI, compared to the SPI-3-based signal (compare Figures 6 and 7). For the focal regions
of eastern and southern Africa, Table 3 lists countries that were affected by severe agricultural droughts
in a corresponding seasonal year of the study period. This information is based on visual examination
of the retrieved SPI-3- and VCI-based images of drought durations during the agricultural growing
season (Figures 6 and 7). Particularly drought-affected years, in which long-lasting droughts occurred
across a major part of the focal region, are highlighted with a frame.

With focus on eastern Africa, 2009 and 2011 stand out as years of extensive agricultural droughts
based on intensity and relative duration (see Table 3 and Figures 4–7). Additionally, VCI-based
parameters reveal 2001, 2005 and 2006 as drought-affected seasonal years for Kenya and Somalia.
Further, droughts were also detected for 2002/2003, 2008/2009 and 2015/2016 over central Ethiopia.
In 2009, regions of major precipitation deficits were concentrated in northern Ethiopia and Eritrea
as well as in southern Kenya and north-eastern Tanzania, consisting of large areas with mean SPI-3
ranging between −1 and −1.5 (Figures 4 and 6). The vegetation-related drought index basically
retraces this pattern. However, VCI-based indicators reveal strikingly stronger drought conditions
over northern Ethiopia, in the Rift Valley, and across Kenya, where agricultural droughts affected a large
part of the growing season (Figures 5 and 7). According to mean SPI-3, the seasonal year 2011 was
influenced by increased drought conditions in south-eastern Sudan and west Eritrea. Severe drought
(mean SPI-3 between −1.5 and −2) could locally be found over southern Ethiopia, as well as moderate
drought signals (mean SPI-3 between −0.5 and −1, Figure 4) spanning across Kenya and southern
Somalia. Here, the mean VCI drought signal is similar to SPI-3 and especially striking for Kenya
and Somalia (VCI between 20% and 30%, Figure 5). However, no significant drought indication is
present over western Ethiopia and Uganda, where a precipitation deficit persisted during the growing
season. The relative VCI-based drought duration pattern retraces the SPI-related signal and particularly
highlights northern Kenya and Somalia, where over 50% of the growing season was influenced by
drought (Figure 7).

Southern Africa was extensively affected by severe agricultural droughts during the seasonal
years 2003 and 2015/2016 according to both drought severity and indicators of relative duration
(see Table 3 and Figures 4–7). Further drought-affected years were 2005, 2007 and 2013. For 2003,
both precipitation-based drought indicators expose drought conditions centred over north-eastern
South Africa, Lesotho, eastern Botswana and west Zimbabwe (Figures 4 and 6). The vegetative
drought pattern mostly agrees with these findings, but reveals a larger extent of drought-affected
area. Accordingly, nearly the complete agricultural area of Botswana and Namibia was influenced
by drought, showing a mean VCI of below 20% (Figure 5) and relative drought durations of over
70% of the growing season (Figure 7). For 2016, which was analysed only until April, SPI-3-based
drought signals are centred over South Africa/Lesotho and Namibia with mean SPI-3 as far as −1.5
and a relative drought duration of up to 100%. Drought indications are also given in eastern South
Africa and southernmost Mozambique, showing a large area of severe drought conditions according to
both indicators. Strikingly, a core area with high drought signals situated over Mozambique, Malawi,
eastern Zimbabwe and Zambia can be revealed from SPI-3. Values are below −1 with a circular
pattern of SPI-3 between −1.5 and −2 and drought durations of 80–100% of the growing season
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(Figures 4 and 6). However, no major vegetation-related drought signal is present for the mentioned
region (Figures 5 and 7), which marks the area of strongest deviations between SPI-3- and VCI-based
drought patterns.

Figure 4. Intensity of drought: Mean SPI-3 per growing season from 2001 to 2016 (seasonal years).
The lower the SPI-3, the more intense is the drought.
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Figure 5. Intensity of drought: Mean VCI per growing season from 2001 to 2016 (seasonal years).
The lower the VCI, the more intense is the drought.
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Figure 6. Relative duration of drought: Percentage of growing season affected by drought events
(SPI-3 below −1) from 2001 to 2016 (seasonal years).
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Figure 7. Relative duration of drought: Percentage of growing season affected by drought events
(VCI below 35) from 2001 to 2016 (seasonal years).
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Table 3. Seasonal years and countries of focal regions affected by agriculturally relevant droughts
based on drought indices SPI-3 (Figure 6) and VCI (Figure 7). Matches of both indices are displayed
in bold.

Region Years
Countries * Affected by Drought Based on

Rainfall Anomalies Vegetation Condition

(Relative Duration of SPI-3 < −1) (Relative Duration of VCI < 35)

Eastern
Africa

2000/2001 ER ET KE SD SO SS
2001/2002 ER ET SD ER ET KE SD SS TA
2002/2003 ER ET KE TA ER ET SD SS KE TA
2003/2004 BI ET SD TA ER ET KE SD SO SS TA
2004/2005 BI KE SD SO TA ER ET KE SD SS TA
2005/2006 KE TA ER ET KE SD SO TA UG
2006/2007 SO ET SD
2007/2008 ET KE TA ER ET KE SO SD TA
2008/2009 ER ET KE SD SO SS UG TA ER ET KE SD SO SS TA

2009/2010 BI ER RW SD SO SS UG TA ER ET SD SO SS TA
2010/2011 ER ET KE SD SO SS UG TA ER ET KE SD SO TA

2011/2012 ET SD SS UG TA ER ET KE SD SO TA
2012/2013 ER SD SS TA UG ER ET SD SS TA
2013/2014 KE RW UG TA KE SD SO TA
2014/2015 ER ET KE UG TA ER ET KE SD SO TA
2015/2016 ER ET KE RW SD SO UG ER ET SD

Southern
Africa

2000/2001 AO AO NA ZA
2001/2002 AO BW SZ ZA ZW BW MZ NA ZA ZM ZW
2002/2003 BW NA SZ ZA ZM ZW BW NA SZ ZA ZM ZW

2003/2004 AO MW SZ AO BW ZA
2004/2005 BW MW MZ ZM ZW AO BW MW MZ NA ZA ZM ZW

2005/2006 BW MZ ZA
2006/2007 BW LS ZA BW LS MZ NA ZA ZW
2007/2008 MG MZ ZW BW MW MZ ZM ZW
2008/2009 MG MZ MZ ZA ZW
2009/2010 AO MZ NA ZA AO ZA
2010/2011 MG MW MZ ZA MZ ZW
2011/2012 AO BW LS MZ ZA ZW AO BW MZ ZW
2012/2013 AO BW MG NA ZM ZW AO BW MW NA ZA ZM ZW
2013/2014 MG MZ ZA ZM MW MZ ZM ZW
2014/2015 AO BW LS MW MZ NA ZA ZM ZW AO BW LS MW MZ NA SZ ZA ZW

2015/2016 AO BW LS MG MW MZ NA SZ ZA ZM ZW BW LS MZ NA SZ ZA ZW

* Country codes: AO = Angola, BI = Burundi, BW = Botswana, ER = Eritrea, ET = Ethiopia, KE = Kenya,
LS = Lesotho, MG = Madagascar, MZ = Mozambique, MW = Malawi, NA = Namibia, RW = Rwanda,
SD = Sudan, SO = Somalia, SS = South Sudan, SZ = Swaziland, TA = Tanzania, UG = Uganda, ZA = South
Africa, ZM = Zambia, ZW = Zimbabwe.

4.3. Agricultural Droughts during El Niño-Southern Oscillation (ENSO) Events

The development of agricultural droughts during the two strongest El Niño events and one
remarkable La Niña episode registered for the study period is shown in Figures 8–10 for the study
regions of southern and eastern Africa, respectively. Here, drought indices SPI-3 and VCI are compared
on a monthly scale, where August (Aug) represents conditions during the onset, December (Dec) and
January (Jan) is the time of the highest intensity and April (Apr) stands for the declining stage of
an ENSO event. These periods were chosen according to their coincidence with major growing seasons
over agricultural areas in the focus regions. Hence, areas where site-specific average growing seasons
do not coincide with the selected months were excluded from the analyses (dark grey colours in maps).
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In the recent El Niño 2015/2016, which was categorized as a strong event, droughts could be
monitored over Ethiopia, Eritrea, Kenya and Uganda showing extensive, severely to extremely dry
conditions based on SPI-3 (see Figure 8, August 2015). Further, Sudan was affected moderately.
VCI showed a similar pattern with droughts concentrated over Ethiopia, Eritrea, Kenya and Sudan
(see Figure 9, August 2015). Though, Uganda was not affected by vegetative droughts. The largest
extent of SPI-3-based droughts in southern Africa was recorded in December 2015. At this stage,
especially Zambia, Zimbabwe, South Africa, Swaziland and Lesotho were affected by extreme
droughts, indicated by SPI-3 below −2 (see Figure 8, December 2015). In the following month, the core
zone of drought decreased and moved in north-eastern direction towards Malawi and Mozambique.
Monthly means of VCI also indicate extreme drought conditions during the peak of El Niño, with large
areas showing VCI values below 20% (see Figure 9, December 2015 and January 2016). However, VCI
exhibits a strikingly smaller drought extent over southern Africa than SPI-3. Here, the zone of drought
over Malawi and Mozambique that was revealed from SPI-3, is lacking and drought signals are in fact
concentrated over Botswana, South Africa and Lesotho. During the decline of El Niño, droughts were
still persistent in southernmost South Africa, Namibia and southern Mozambique according to both
drought indices (see Figures 8 and 9, April 2016).

Figure 8. Drought dynamics based on monthly SPI-3 during El Niño events 2015/2016 (strong) and
2002/2003 (moderate) for August (Aug.), December (Dec.), January (Jan.) and April (Apr.) in East and
southern Africa.
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Figure 9. Drought dynamics based on monthly means of VCI during El Niño events 2015/2016 (strong)
and 2002/2003 (moderate) for August (Aug.), December (Dec.), January (Jan.) and April (Apr.) in East
and southern Africa.

El Niño 2002/2003 exhibits a drought pattern roughly similar to the 2015/2016 situation. First
of all, eastern Africa was affected by droughts during the onset of El Niño (see Figures 8 and 9,
August 2002). Regarding the phase of high El Niño intensity, a major drought signal could be identified
over southern Africa during December and January adapted from both drought indices. Based on SPI-3,
drought-affected regions were eastern Botswana and South Africa, Zimbabwe, Lesotho and Swaziland,
where dry conditions were particularly emergent during January 2003. VCI-based drought signals were
centred over Namibia, Botswana and South Africa, whereas Zimbabwe did not exhibit a noteworthy
drought pattern (see Figures 8 and 9, December 2002 and January 2003). Further, a vegetation-based
drought signal was still present in the declining stage of El Niño (see Figure 9, April 2003). Thus,
compared to SPI-3-based images, the core region of VCI-related droughts was shifted more to the west
and showed a higher persistence.

During the onset of moderate La Niña in 2010/2011, a precipitation deficit was observed over
central Sudan and southern South Africa (see Figure 10, August 2010). The vegetation-based pattern
retraces the SPI-3 drought signal in South Africa, however, indicates merely small spots of drought in
Sudan. SPI-3 and VCI reveal a pronounced extensive agricultural drought in eastern Africa during
December and January, when La Niña reached its highest intensity. Most affected areas are situated
in Ethiopia, Kenya, Uganda and Somalia with extreme SPI-3 values of below −2 and VCI of below
10% (see Figure 10, December 2010 and January 2011). This extensive eastern African drought showed
a high persistence, since even in the declining stage of La Niña, a severe drought signal could be
observed from both indicators (see Figure 10, April 2011).
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Figure 10. Drought dynamics based on SPI-3 and monthly means of VCI during La Niña event
2010/2011 (moderate) for August (Aug.), December (Dec.), January (Jan.) and April (Apr.) in
East Africa.

4.4. Drought-Affected Cropland and Agricultural Production

The effects of the particularly severe East African drought in 2010/2011 on cropland and
national agricultural production were exemplarily analysed. Hereby, regional drought severity
is expressed by means of the relative duration and the spatial extent of agricultural droughts
based on VCI thresholds on cropland areas within national and subnational administrative units,
respectively (see Figures 11 and 12). Accordingly, regions with most persistent agricultural droughts
were Shabeellaha, Banaadir and Galguduud in Somalia with relative drought durations of over 60% of
the growing season period. The border region between Sudan and Eritrea (Al Jazirah and Al Qadarif,
Sudan and Gash Barka, Eritrea) exhibit values of over 50%. Other areas of remarkably high drought
persistence (over 30% of growing seasons affected) can be identified over Sudan, central Kenya
and Tanzania.

The extent of agriculturally relevant droughts in eastern Africa during 2010/11 is displayed as pie
charts in Figure 12. In total, 88% of Somalian, 64% of Sudanian, 41% of Kenyan and 36% of Ethiopian
cropland areas have been affected by severe to extreme drought conditions with over 30% of the
growing season period showing VCI values of below 35%. In comparison, statistical data of national
crop production from the FAOSTAT database [54] are shown in bar diagrams (see Figure 12). Crop
production numbers reveal low values for Sudan in 2010, showing a 36% decline in cereal production.
For 2011, however, rather stable crop production values were registered. Since produced crops in
Ethiopia have generally been growing from 2000 to 2013, no clear drought impact can be retrieved from
the data. Remarkably, statistical data for Somalia indicate a clear break in cereal production for 2011,
showing a decrease of 67% compared to 2010. Produced cereals came to their lowest value between
2000 and 2013. Since cereals account for a major part of the Somalian crop production, the overall
amount of produced crops in Somalia during 2011 represent the minimum of the studied time series.
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A decline in crop production in 2011 can be monitored for Kenya, too. Most notably, vegetable and
fruit production decreased about 22% and 20% with respect to the previous year. Further, a slight drop
(−7%) in produced cereals is visible.

Figure 11. Duration of agriculturally relevant droughts in East African regions during 2010/2011.
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≥

Figure 12. Cropland areas affected by agriculturally relevant droughts in selected East African countries
compared with national statistics on annual crop production (Data: FAO [54]).

5. Discussion

5.1. Monitoring Agricultural Droughts over Africa

The retrospective analysis of agriculturally relevant droughts over Africa shows that major
drought events, which are mentioned in literature or registered in the EM-DAT disaster database [8],
are largely mirrored in the data. Index-based spatio-temporal drought patterns denote nearly all
officially registered drought years between 2000 and 2016 (see Table 4). However, indices uncover
a significantly higher amount of agricultural droughts over the selected regions. Here, small-scale
drought areas are detected as well. Those may not have led to severe drought effects on a national
level and, thus, have not been included in the drought database. For eastern Africa, the precipitation
deficit in southeastern Ethiopia during 2009 [60], the extensive vegetative drought over Kenya and
Tanzania in 2005/2006 [61] as well as the most striking, severe 2010/2011 drought period that affected
large parts of the Horn of Africa, particularly Ethiopia, Kenya and Somalia e.g., [13,24–26], could
be identified. Southern African drought events mentioned in literature such as the prolonged and
extensive drought in 2002/2003 [29,62], the 2007/2008 drought period in Zimbabwe [27,28] and the
2004/2005 drought in southern Malawi [63] could also be affirmed through the results of our study.
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Table 4. Seasonal years and countries of focal regions affected by extensive droughts according to the
EM-DAT disaster database [8]. Framed years are in agreement with revealed SPI-3- and VCI-based
results (see Table 3).

Years
Countries * Affected by Drought

Eastern Africa Southern Africa

2000/2001 SD SO AO MG MZ NA SZ ZW

2001/2002 UG LS MW MZ SZ ZW

2002/2003 ET RW TA LS MG MZ NA SZ ZW

2003/2004 BI ET KE RW SO TA SZ ZA

2004/2005 BI RW UG SO AO MW MZ ZM

2005/2006 ET KE RW TA UG MG MW MZ

2006/2007 RW SZ ZW

2007/2008 ET UG SO LS MG MZ MW ZW

2008/2009 BI ER ET KE SO SS UG MG MZ ZW

2009/2010 BI ET SO SS MG MZ ZW

2010/2011 BI ET KE SO TA UG MG ZW

2011/2012 ET KE SD SO TA AO LS MW ZW

2012/2013 MW NA ZW

2013/2014 KE SO NA

2014/2015 KE SD SO MG NA ZA ZW

2015/2016 ET KE SO SS BW LS MG MW MZ SZ ZA ZW

* Country codes: AO = Angola, BI = Burundi, BW = Botswana, ER = Eritrea, ET = Ethiopia, KE = Kenya,
LS = Lesotho, MG = Madagascar, MZ = Mozambique, MW = Malawi, NA = Namibia, RW = Rwanda,
SD = Sudan, SO = Somalia, SS = South Sudan, SZ = Swaziland, TA = Tanzania, UG = Uganda, ZA = South
Africa, ZM = Zambia, ZW = Zimbabwe.

5.2. Comparison of SPI-3 and VCI

Although drought patterns indicated by SPI-3 and VCI agree to a large extent, major deviations
could be found for several seasonal years. A striking example is the discrepancies between
rainfall-based and vegetation-related drought signals in Zimbabwe, Zambia, Malawi and Mozambique
in 2015/2016 (see Figures 8 and 9, maps for December and January 2015/2016). Here, VCI mostly
indicates higher vegetation activity than normal, even though pronounced rainfall deficits were
observed from SPI-3. On the one hand, these differences can be explained by the particular
characteristics of the drought indices themselves. Whereas SPI-3 measures the rainfall deficit from a
primarily meteorological point of view, VCI assesses the condition of the vegetation cover, which is
not only influenced by water availability from precipitation but is also affected by human activities in
form of agricultural practices (e.g., irrigation, tillage, fertilization), land use changes (e.g., exploitation
of natural resources) and by other natural influences such as extreme temperatures, fires, pests or
plant diseases. These influencing factors can be equally responsible for variations in NDVI, which
provides the basis of VCI [64–66]. Irrigation practices can play a major role for discrepancies between
the derived drought signals. According to the Global Map of Irrigation Areas (GMIA) 2005 [67],
eastern Africa shows numerous scattered areas of irrigated cropland (see Map A of Figure 13). Further,
the high presence of irrigated land area in Malawi can be one of the main causes for the mentioned
disaccordance (see Map B of Figure 13). In these areas, the lower reliance of vegetation on rainfall is
a possible explanation for the missing match between SPI-based and VCI-based drought severity).
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Figure 13. Area of irrigation for selected regions, A: Eastern Africa, B: Malawi (Data: [67]).

In this regard, the effect of temperature on evapotranspiration is worth mentioning, which in turn
considerably controls vegetation condition [68]. These aspects, however, are not considered by the
SPI. Other potential reasons for deviations between the used drought indices are the accumulated
effects of rainfall deficits on vegetation condition and its consecutive delayed response. In this regard,
the storage of water in the soil reservoir is an important buffer between rainfall events and soil moisture
availability for plants, controlling vegetation condition. The magnitude of this temporal delay depends
on vegetation type and characteristics, soil conditions, and potential evapotranspiration [69].

Further, the SPI-3-based rainfall anomalies include events of intense rains that do not necessarily
have a positive effect on vegetation condition. Hereby, infiltration to the soil reservoir is minor,
since most of the water is lost due to immediate surface run-off [36]. What is more, the timing of
rainfall deficits is decisive for the occurrence of vegetative stress and the associated decrease in VCI.
Rainfall deficits have different effects depending on their occurrence inside or outside the growing
season, but also depending on the phase of the growing season they affect or the specific phenological
stage. Although the general timing of the growing season has been accounted for in this study,
the crop specific phenological stage, which would have required additional large-scale crop type
information, has been neglected. Hence, not all rainfall-derived drought events lead to a pronounced
vegetation-based drought signal in the data and, vice versa, not all events of vegetative drought occur
as a consequence of a rainfall deficit.
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Another explanation for these deviations is that the sensitivity of vegetation to rainfall is
dependent on climate zones, which in turn are controlled by latitudinal bands of mean annual
precipitation. Accordingly, areas of arid and semi-arid climate, where water is a limiting factor, show
higher sensitivity than more humid subtropical zones [28,69]. Vegetation types and biomes play
an important role on land surface response to rainfall variability. Accordingly, areas with shrub- and
grassland-dominated vegetation such as savannah systems or cropland exhibit higher sensitivities to
rainfall anomalies than tree-dominated vegetation such as forest and woodland systems, which are
located in Zambia and central Mozambique (see Figure 1) [69]. Hence, the vegetation type might be
one of the reasons for the differing drought patterns in these areas.

5.3. Spatio-Temporal Variability of Agricultural Droughts during ENSO Events

By comparing the African rainfall anomalies and vegetation condition for selected months
(see Figures 8–10), drought conditions during El Niño events were observed over southern Africa,
which agrees with observations from numerous scientific studies e.g., [9,27,33,70,71]. Eastern African
rainfall anomalies and vegetation are sensitive to ENSO during both first growing seasons (Ethiopian
“meher”, Somalian “deyr” and Kenyan “short rains” from October to December) and the early second
growing seasons (Ethiopian “belg”, Somalian “gu” and Kenyan “long rains” from February to May)
over areas with bimodal rainfall cycles (compare also Figure 3). This was revealed from observed
droughts during La Niña phases that coincide with respective growing seasons (see Figure 10).
However, Philippon et al. [36] suggested a remarkably weaker effect of ENSO for the secondary,
compared to the first growing season, based on long-term analysis of NDVI and its sensitivity to
ENSO. In the present study, drought signals were observed over central Ethiopia, Uganda and
western Kenya in the ongoing stage of El Niño, prior to the phase of highest ENSO intensity
(see Figures 8 and 9). These findings can be confirmed by Philippon et al. [36], who identified negative
correlations between NDVI and ENSO for August to November during the onset of El Niño. This in
turn could directly be connected to preceding rainfall deficits during the rainy season from June
to September [72,73]. Further, these negatively related areas mainly coincide with zones of intense
agricultural production [36]. Thus, it can be stated that drought response to ENSO is dependent on the
climate zone and the corresponding rainfall regime in eastern Africa. In this regard, areas showing
a bimodal rainfall cycle are more prone to droughts during La Niña, whereas regions with unimodal
rainfall distribution exhibit drier conditions in the onset stage of El Niño [1].

The multi-annual analysis further shows that each El Niño and La Niña event leads to different
drought patterns. Based on the findings of Ropelewski and Halpert [74] and further studies
investigating the major effects of ENSO on temperature and precipitation around the globe, e.g., [75,76],
dry conditions over southeastern Africa are frequently identified during El Niño events, whereas
the southern part of eastern Africa shows a drying pattern during the peak phase of La Niña.
Thus, although this typical continental-scale teleconnection pattern could broadly be confirmed from
observations of the present study, no universal ENSO-induced drought effect could be derived for
the African continent, since every event shows its distinct spatio-temporal drought response pattern.
Accordingly, not every El Niño causes severe drought conditions over southern Africa (as during
El Niño 2002/2003 and 2015/2016), which could be seen in the case of 2009/2010. Likewise, droughts
in Kenya and Somalia during La Niña are not always as pronounced and extensive as in 2010/2011.

Recently, an important influencing factor for the differing effects of ENSO on drought patterns
has been discussed in the scientific community, which involves different ENSO variants [73,77,78].
The so-called “Modoki” type of ENSO differs from the conventional canonical ENSO variant in its
signature of SST anomalies over the equatorial Pacific. In this context, El Niño (La Niña) Modoki is
associated with an anomalous warming (cooling) of sea surface temperatures in the central Pacific,
in contrast to the canonical event that corresponds to the eastern Pacific [73]. Both Manatsa et al. [77]
and Ratnam et al. [78] mention the weak effect of ENSO on precipitation anomalies over southern
Africa during the 2009/2010 El Niño that was identified as a Modoki event. Accordingly, heat-induced
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tropical circulation and tropospheric stationary wave responses are different for Modoki events, which
may lead to suppressed negative rainfall anomalies over southern Africa. This might be a possible
reason for the revealed poor agreement between 2009/2010 and the other studied El Niño events
(compare maps of respective seasonal years in Figures 4–7).

What is more, each ENSO event must be put in relation with its large-scale chronology. In this
regard, Rojas et al. [79] identified temporal cycles in the order of several years in which the influence
of one ENSO phase overbalances the other. Accordingly, the effects of ENSO events differ if either El
Niño or La Niña years predominate the corresponding temporal cycle. Thus, an El Niño year taking
place during a cycle of La Niña dominance, as it was the case during 2009/2010, shows lower drought
impacts on agricultural areas than anticipated from previous events being related to El Niño dominance
cycles. In contrast, La Niña events taking place during the dominance of El Niño are attributed to bring
about extended agricultural droughts [79]. It was observed that vegetation-based drought response
showed particularly high cumulative effects when La Niña years followed after pronounced El Niño
episodes, e.g., 1999/2000 revealed from [34], which was the case for La Niña 2010/2011.

5.4. Potential and Limitations

As demonstrated in this study, a comprehensive insight into the spatio-temporal dynamics of
large-scale drought patterns can be gained by means of the analysis of remote sensing-based drought
indices. On the one hand, the applied methodology yields promising results, providing the basis for
potential further research. On the other hand, it has to be considered that the used approach holds
certain limitations. As a first constraint, the availability of MODIS data (from February/March 2000)
accounts for the relatively short study period, which limits the significance of statistical analysis
forming the basis for the used drought indices. However, other comparable data sets, e.g., SPOT-VGT
or Proba-V, do not provide a longer temporal coverage either [80,81]. As an alternative, AVHRR data
offers a long image record beginning in the early 1980s. However, AVHRR data over Africa are only
available at course spatial resolutions of 1 km and even 8 km for NDVI in a consistently processed
database [82]. This limits its application for drought monitoring, particularly when considering
the relatively small-scaled agriculture of Africa. Other restrictions originate from the limitations of
remotely sensed data used in this study. The TRMM data set, which was used for calculating the SPI,
includes uncertainties that lead to errors in rainfall estimates. For Africa, uncertainties are mainly
related to areas with complex topography or humid climate [31,83]. Further, calculations of VCI are
based on NDVI as an index for vegetation vigour. However, NDVI holds certain limitations, too.
As an example, the sensitivity of NDVI to soil moisture and colour leads to soil-related effects on NDVI
over sparsely vegetated areas. Other weaknesses of NDVI are its tendency of saturation in densely
vegetated areas as well as observed atmospheric interferences related to aerosols and cloud cover [16].
However, the used data and applied indices are broadly approved within the scientific community
and are among the most fitting available instruments for remote sensing-based drought assessment
over large areas.

In order to test for the quality of the presented drought index- and growing season-based
approach of continental drought monitoring, an accurate validation would be necessary. For this
purpose, detailed statistics on agricultural yields, sampled ground truth data or measured rainfall
anomalies would be required, which however were not available at continental scale for this study.
Validation and an uncertainty analysis remain outstanding issues, which could possibly be assessed in
a larger study framework. Furthermore, for examining the relation between ENSO and agriculturally
relevant droughts over Africa in more depths, additional influencing factors such as temperature,
evapotranspiration, soil properties and crop types could be considered. Multiple regression analyses
and testing for non-linear relations are suggested in order to quantify the connection between ENSO
and rainfall deficits.

Nevertheless, we proved the applicability of SPI-3 and VCI for monitoring agriculturally relevant
droughts on a continental scale. A huge amount of drought-related data sets were processed and
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newly generated for the whole African continent. Furthermore, the usage of two different drought
indices illuminated both rainfall as the main trigger and vegetation as a land surface response to
drought. Therefore, agriculturally relevant droughts could be assessed from two complementary
perspectives. The special value of this study is its exclusive focus on agricultural areas and its
consideration of the timing of site-specific growing seasons assessing droughts relevant for agricultural
production. Such knowledge is crucial and forms the basis for implementing strategies of drought
hazard mitigation. Farmers of drought-prone regions could adapt their agricultural practices by using
drought-resistant crop varieties or implementing sustainable irrigation applications. The prediction of
future droughts depends on accurate retrospective monitoring and becomes increasingly important for
taking measures to reduce the impacts of severe droughts on society. On this basis, precautions could
be made by local authorities and timely humanitarian aid can be given to drought-affected regions in
case of extensive crop failures and food shortage.

6. Conclusions

In this study, we examined the spatio-temporal evolution of droughts affecting agriculture
in Africa and their connection to ENSO events during the last 16 years by applying two different
drought indices. Based on remotely sensed rainfall anomalies (SPI-3) and surface reflectance data
related to vegetation condition (VCI), large-scale patterns of agriculturally relevant droughts could
be identified. For eastern Africa, 2009 and 2011 could be revealed as major drought years, whereas
southern Africa was affected by particularly severe agriculturally relevant droughts in 2003 and
2015/2016. Additionally, numerous regional-scale dry episodes could be detected. The findings are
in broad accordance with major recorded drought events. We proved the applicability of SPI-3 and
VCI as indices for a comprehensive continental-scale monitoring of agriculturally relevant droughts.
Differences between the drought signals derived from each of the used indices could be explained
by the complex relationship between rainfall anomalies and vegetation condition, which by itself is
influenced by multiple environmental parameters and land use practices such as irrigation.

The tendency of drought occurrence during El Niño could be observed over large parts of southern
Africa. In contrast, eastern Africa exhibits an east–west dipole pattern: Zones with two major growing
seasons tend to respond to droughts caused by La Niña events. In contrast, we revealed drought
tendencies during the onset of El Niño for areas with a single growing season. By studying drought
patterns for each of the major ENSO events from 2000 to 2016, it could be concluded that every El
Niño and La Niña episode shows its distinct signal of rainfall- and vegetation-related droughts. In this
context, the effect of different ENSO variants as well as multi-year cycles with either El Niño or La
Niña dominance were discussed as possible influencing factors.

Overcoming the methodological limitations of the study, a comprehensive validation and the
assessment of uncertainties would be required. However, adequate reference data sources are
scarce and have to be considered in a larger framework. All in all, a comprehensive insight into
spatio-temporal drought dynamics was gained through this study by providing a complementary
perspective on agricultural droughts based on both rainfall and vegetation condition. Above all,
the exclusive consideration of average site-specific growing seasons and agricultural areas is the unique
feature of the study. Moreover, we illustrated the relationship between ENSO events and drought
evolution over Africa in its fundamentals. This is regarded as essential for a better understanding of
the interconnections between global climate oscillations and rainfall anomalies leading to droughts
in Africa. The opportunities of drought monitoring using advanced remote sensing techniques and
the increased availability of earth observation data will likely continue to contribute and to build up
a solid knowledge base related to droughts in African agricultural areas. Altogether, this lays the
foundation for decision making and capacity building to mitigate the effects of severe droughts and
adapt to existent drought hazards.
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