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Abstract

Theories of General Purpose Technologies (GPT) introduced heterogeneity in the
world of technological change in order to explain fluctuations in economic growth,
productivity paradoxes, or technological clusters. The first part of this thesis ad-
dresses in detail a GPT’s emergence, presenting a new theoretical model that focuses
on pervasiveness character of a GPT emphasizing knowledge network characteristics.
Each new product in the economy is a result of a combination of technologies form-
ing a complex network structure of technological inter-dependencies, where a general
knowledge emerges as a result of knowledge spillovers, coordination of innovative
efforts among economic agents, dynamics of expected profits, and the structure
of knowledge base. The model demonstrates similar network characteristics when
compared to empirical networks of products and technologies as well as explains
clustering of innovations in time, change of technological paradigms and mechanism

leading to a technological lock-in.

It is argued that robotics and especially new developments in service robotics can
be considered as a potential GPT. Employing a machine learning technique, namely
Support Vector Machine, the second part of this thesis introduces a methodology
for identification of service robotics patents within databases. The result is a novel
possibility to allocate patents which reduces expert bias regarding vested interests
on lexical query methods, avoids problems with citational approaches, and facilitates
evolutionary changes. Resulting patents are geographically localized and analyzed,

being a proxy for knowledge production in service robotics.

The last part of the thesis focuses on a general detection of emergent patterns in
micro data. Firstly, a method for statistical identification of clusters of innova-
tive activity is applied to service robotics patents and all German R&D data. A
micro-geographic approach identifies spatial localization or dispersion by comparing
observable spatial distance patterns between R&D establishments to counter-factual
simulations. Findings demonstrate the localization of the knowledge production in
service robotics as well as the share of localized German industries in production
being higher than in services. Secondly, employing a new methodology based on
Markov chain simulations it is assessed whether the number of sustained superior
employment growth performing firms in four European economies is different from
what would be expected by chance. A mixed evidence of presence and absence of

factors determining firm dynamics is found.
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Chapter 1

Introduction

The following thesis is devoted to a various aspects of studying technological innova-
tions as well as the development and application of methods for pattern detection in
economics’ data. Due to the broad nature of the work this chapter provides a brief
introduction and motivation for each project. A more comprehensive and thorough
discussion on the embedding of each project into a current stream of literature is
provided within each chapter. For the same reason the conclusion of this thesis
highlights major contributions to the literature streams, while results sections in
each chapter offer more in-depth discussions. Figure graphically summarizes all

content and will serve as a guide throughout this chapter.

To a large extend this work concerns with structural technologies (left hand side of
the Figure . Economic interest in studying technologies has a very solid foun-
dation. As pointed out by Lipsey and Carlaw technological change "is a necessary
condition for sustained economic growth since growth based on capital accumulation
with constant technology would sooner or later come to a halt." (Carlaw and Lipsey
2011}, p. 564). Developed and developing countries have institutionalized innovation
and the creation of new knowledge which brought them on a track of an immense
growth in welfare and quality of life. Despite recent discussion on a slowdown in the
growth of total factor productivity spurred by the book of R. Gordon (Gordon|2016)
many so called "techno optimists" share the opinion that new wave of technologies

will bring significant advancements (Brynjolfsson and McAfee | 2011)).

Technological waves are thoroughly studied in economics and management theories
highlighting the heterogeneity of innovation nature and focusing on those that have
a drastic, and irreversible impact (Lipsey et al.|2005). Understanding the mecha-

nisms of those innovations has been a subject of the research in economics (Solow
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Figure 1.1: The structure of the dissertation.

1956, (1957, |Aghion and Howitt 1998, [Helpman||1998|, |[Rosenberg and Trajtenberg
2004, Petsas [2003| |(Cantner and Vannuccini [2012, |Ott et al.|2009, [Menz and Ott
2011} [Strohmaier and Rainer|[2016), and management (Youtie et al.[2008). One of

the predecessors of theoretical foundations to study the phenomena of technologi-
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cal change and innovation heterogeneity is a concept as techno-economic paradigm.
This concept includes a collection of related technologies and the associated eco-
nomic structure, that is represented by systemic relationships among products, pro-
cesses and institutions coordinating economic activity. This view on technologies is
complemented by the concept of micro and macro inventions, where the former is
a series of small incremental improvements while the latter is a set of radical new
ideas that arrive as idiosyncratic shocks. Recently these theories evolved into the
concept of structural technologies, in the center of which is the concept of general
purpose technology presented in a seminal book of Helpman| (1998), and continued
by Bresnahan and Trajtenbergl (1995), Bresnahan (2010), [Lipsey et al.| (2005) and
other scholars (Ott et al.2009). The name is given for technologies that allowed
the mankind to brake important limitations in mastering the forces of nature and
drive economic growth and prosperity. Think of a steam engine that allowed to
produce greater power than water and wind energy or electricity that broke another
limitation allowing the power to be produced in one place and be consumed in the
other (Rosenberg and Trajtenberg| 2004, Crafts 2004, Moser and Nicholas [2004)).
Other famous examples are three-masted sailing ship, information and communica-
tion technologies)(Brynjolfsson| 1993, |Vuijlsteke et al.|2007) and recently bio or nan-
otechnologies (Shea et al.[2011}, Lipsey et al.|2005) including modern developments
in robotics and artificial intelligence. All these examples have an immense influ-
ence on production capabilities and leave a lasting impact, which has been shown
by historical studies (Lipsey et al|2005). These technologies pushed productivity
to higher levels and changed organizational and managerial structures opening new
opportunities. Literature draws attention to the long lasting effect of these GPTs
on the economy, productivity slowdowns, as well as analyses from a historical point
of view. However, there has been no attempt to build a model of general knowledge

discovery keeping factors that influence the emergence of GPT innovations hidden.

Chapter [2| (see Figure of the following thesis narrows this gap, suggesting a
model of the endogenous formation of a GPT. In order to reveal mechanisms of
GPT emergence, one has to look at the knowledge itself and the process of its
creation. In economics literature knowledge is seen, first of all, as a factor of pro-
duction which properties are rather special. It is cumulative and produced using
the existing stock of knowledge. It is also non-rival in supply meaning that it can
be exploited by many agents simultaneously without decreasing its value for each
of them (Grossman and Helpman [1991)). Finally, the knowledge is only partially

excludable, making it impossible for its producers to enjoy full returns (Grossman

3
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and Helpman 1991)), which means that knowledge created and applied in a certain
context will also create a value for other contexts, introducing knowledge spillovers.
Due to these properties knowledge is treated specially in economic models using
functions with increasing returns to scale (Romer 1986, [1990a)) and traditionally is
incorporated as a homogeneous variable that can be accumulated. This treatment
of knowledge, however, does not allow to capture its heterogeneity which is essential

when modeling different types of technologies such as GPT and non-GPT.

Instead of a view on knowledge stock as an aggregate factor of production, this thesis
offers a discrete view seeing it as a network of interconnected pieces each representing
a fraction of the whole stock. The building block of this idea is an assumption that
knowledge is heterogeneous. A similar idea in relation to physical products was
offered in works of Hausmann and Hidalgo where authors introduce the concept of
"technological capabilities’ that are needed to produce every product (Hausmann
and Hidalgo|2011). Thus, the view on the concept of GPT in this thesis is located
between techno-economic paradigm and Mokyr’s macro inventions. It allows to
balance between a very inclusive former concept and the latter one binary dividing
innovations on incremental and radical. Assembling an argumentation line around
network concepts, a more smooth transition from incremental to radical innovations
is introduced and the role of four factors in the process of general purpose technology
adoption is demonstrated for a simulated economy. Those factors are knowledge
diffusion, coordination of agent’s innovative efforts, dynamics in expected returns on
innovation and density of agents’ knowledge network. The mechanisms of influence
are revealed by concentrating on the pervasive nature of GPTs and introducing its
emergence as a continuous process of technology adoption studying the mechanisms

fostering technological convergence.

The results of this work demonstrate that knowledge diffusion is a key prerequisite
for the emergence of a GPT since being discovered once the knowledge spills over
to many other applications benefiting most those technologies, which have a po-
tential to be used in many distinct products and industries. The structure of our
knowledge should have a sufficient density for a GPT to become pervasive, where
by structure the interconnectedness of innovators’ ideas is meant and by density
— interchangeability of our knowledge among various applications. With the novel
metric (Multiplicity Index) it is demonstrated how to measure that density given
the presence of knowledge spillovers. In addition to these factors coordination of

Research and Development (R&D) efforts (concentrating on technological trajecto-

4
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ries with more accumulated knowledge) favors GPT in a short term, but changes
the influence to an inverted U-shape form in a long run illustrating the famous ex-
ploitation vs. exploration trade-off. For the same reason, volatility in the rank of
expected returns on products has a negative effect on GP'T’s emergence in a long
run. In addition, the model replicates some known stylized facts (see left-hand side
of the Figure as S-shaped curve of technology adoption, temporal clustering of
innovations in time and some distinct features of networks of the product and tech-
nology relatedness discussed by [Hidalgo and Hausmann| (2009) as well as [Boschma;
et al.| (2014).

The focus on the knowledge discovery process brings empirical challenges when
attempting to measure knowledge. A proven standard here are bibliometric studies
of publication and patent databases. While a publication network might serve as a
proxy of a knowledge network however patents seem to be a better measure given
that patentability requires an indication of the intended commercial implementation.
Despite all the difficulties that arise in the use and interpretation of patents, they
are widely accepted as an indicator for innovative activity (Griliches| 1990}, Hall
et al.|2005). After theorizing about the emergence of technologies a methodology
is developed to detect and monitor the developments of a potential GPT in the
existing databases. The middle of the Figure depicts a major content of the
Chapter [3| that complements the theoretical work in this thesis with an empirical

methodology to detect a general purpose technology within a patent database.

The field of service robotics has been chosen as a part of a broader technology -
robotics that has a potential to become a future GPT of our time. Rapid develop-
ments recently observed in artificial intelligence, microelectronics, sensors and other
related technologies (Brynjolfsson and McAfee|2011], |Graetz and Michaels 2015, Ford
2016) indicate that robots might potentially disrupt current trends and significantly
contribute to economic growth. Beyond its potential productivity effects, service
robotics is believed to induce visible changes in employment structures (Autor et al.
2003, Ott/ 2012, [Frey and Osborne 2013, |Graetz and Michaels 2015)). It has a po-
tential to change an organization of processes in firms and everyday life of people
by the diffusion of at least semi-autonomous physical systems out of industrial fab-
rication and into service economies. Using the advances of modern digital economy
robotics can move from a professional use to a more private use. In order to under-
stand service robotics one needs to identify its scope and detect it within various

databases.



CHAPTER 1. INTRODUCTION 6

The process of detection is non-trivial due to the fact that there is no widely agreed-
upon definition of emerging technologies (Halaweh|2013)). The initial lack of com-
mon knowledge, standards, and specifications entails uncertainties along various
dimensions (Stahl 2011)). Future costs and benefits, relevant actors, technological
adoption, and potential socio-economic implications such as creative destruction are
highly unclear (Srinivasan|2008). Given these inputs a methodology is developed
that limits expert bias with respect to a technology definition. The method is based
on classification of patents and has several advantages over usual technology clas-
sification tasks. First, experts do not choose the terms and keywords should be
added to or excluded from the primal search. Hence, the typical lexical bias towards
preferred subfields is limited. Speaking of lexical versus citationist approaches, the
method also avoids a major drawback of citational methods which circle around a
core dataset and rely on future works explicitly referring to this prior art. Since
citations in patents are generally rare, for young emerging technologies the cita-
tion lag decreases the expected number of citations for any given document to a
negligible amount. Second, the procedure offers strong portability, so that it can
easily be applied to scientific publications. Moreover, the classification method de-
veloped in Chapter [3| can be applied to any emerging technology - not only those
that arise as an initially small subset consisting of niche applications like emerging
service robotics out of robotics. For example nanotechnology would have been hard
to detach from some well-defined mother technology, or Industry 4.0, which is a su-
perordinate concept describing digitally cross-linked production systems and, thus,

enveloping various heterogeneous sub-technologies that are hardly classifiable.

The methodological development started in the Chapter 3| of this thesis is continued
in Chapter [4] (see right-hand side of the Figure . Here the broader perspective
is taken considering the problem of technology detection as a part of a broader set
of problems in identifying micro trends and patterns in macro level data. Macro-
and microeconomics, unfortunately, largely remain separated from each other with
one being concerned with aggregate economy trends and the other being focused on
single markets and people behavioral patterns. Due to the fact that social systems
are shaped by humans whose behavior still remains to a large extend a mystery,
it is hard to predict macro trends from microeconomics data. However, recent
trends in machine learning, artificial intelligence, big data and the growing volume
of information, due to the developed ICT structures, are already helping to bridge
these two fields together. Modern techniques and methodologies, developed also in

other science domains, make it possible to consider in calculations enough micro
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patterns to generalize them on a macro level. Thus, as much as technologies drive
economic growth they themselves will drive the economics as social science helping
it to overcome its challenges. Chapter [4] targets the question of how not to be misled

by chance while observing micro data on a macro level.

Firstly, a geographical perspective on technological innovations is taken into account
including service robotics on the example of Germany. For the first time a distance-
based "dartboard approach" (Duranton and Overman|2008) to the new R&D data
from Germany is applied, showing whether clusters of innovative activities can be
significantly distinguished from the ones expected by a random process. A simu-
lation technique applied allows the detection of deviations from a normal pattern
that point to an existence of agglomeration forces. In particular, it is shown that
service robotics knowledge production is significantly clustered in southern regions
of Germany. Analyzing the overall industry location patterns of R&D on a 3-digit
level reveals that 40.8% of industries deviate significantly from random spatial lo-
cation patterns. In general, the share of localized industries in production is higher
than in service industries. Thus, knowledge creation in production industries tends
to be more localized than in services. In service industries dispersion occurs more
often than localization. Interestingly, especially research-intensive service industries
exhibit strong cross-distance indices of dispersion. Overall, the evidence on industry-
specific spatial concentration of R&D is relatively weak. The results indicate that
localization of both R&D establishments and researchers, if it occurs, mainly is
observable for production industries over relatively long distances. However, these
results do not contradict with the notion of R&D itself being concentrated. They
rather indicate that clustering of R&D establishments or researchers at short dis-
tances is not or only weakly connected to the 3-digit industries, where innovative

activities are performed.

Secondly, with a methodology using Markov chain simulations it is demonstrated
whether randomness can be ruled out when observing sustained superior job creation
in Spain, United Kingdom, France and Italy. It is shown that the observed number
of firms can not be explained with a simple process modeled through a first order
Markov chain, demonstrating that it is not enough to assume that the employment
growth of the firm in the next period depends solely on the growth in the current
period. This pattern can be seen regardless of the confidence level and definitions
of superiority of growth. The research strongly advises for a presence of drivers

enabling sustained high-growth performance in the economy. Economic theories

7
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explain such behavior with an idiosyncratic shock that helps those firms with higher
relative efficiency experience a reduction in prices, which allows them to expand at
the expenses of less efficient units. Together with higher profitability and sounder
financial conditions more productive firms access the resources needed to invest
and fuel additional growth. In accordance with managerial literature this drivers
might as well be firm’s dynamic capabilities and resources that are unique, durable,
create value on the market, and generate returns which are appropriated inducing
competitive advantages. All these factors combined lead to a sustained superior
performance of a firm. Accumulation of these capabilities overtime allows firms
to build various routines that help them to grow. Altogether the research grants
encouragements to the economic and management theories seeking for factors of
a persistent high-growth performance. It also provides a positive sign to policy-
makers indicating that if such factors exist they could be targeted by a specific

policies spurring employment.

As can be seen the following thesis concerns with a broad set of research questions
that can be united by the interest in technological change and the development
of new methodologies applicable in economics research. Chapter [2| addresses the
question of how do general purpose technologies emerge and what factors contribute
to this process. Chapter [3|continues with the question of how an emerging technology
of service robotics can be detected within databases using modern techniques such
as machine learning. Section in Chapter {4 assess the significance of spatial
clustering activity of innovative centers in Germany including service robotics, while
Section demonstrates a methodology to rule out chance in observing sustained
superior job creation in four European countries. Finally Chapter [5 highlights major

contributions to the various strands of literature.



Chapter 2

General Purpose Technologies as an

emergent propertyﬂ

2.1 Theories of general purpose technologies

Innovations are vital for the process of economic growth (Solow| 1956, Romer |1990al,
Aghion and Howitt| |1992) 1998, [Helpman| [1998)). Throughout the history con-
cepts such as techno-economic paradigms, technological trajectories and revolutions,
Mokyr’s macro inventions, or ’enabling technologies’ were introduced in order to dis-
tinguish within innovations and highlight those that have a drastic and irreversible
impact on a society (Lipsey et al.[2005)). A specific type of those drastic innova-
tions called General Purpose Technologies were introduced as one of the forces to
explain growth process and its cyclicality (Bresnahan and Trajtenberg|1995, Bres-
nahan|2010)). Ever since their wide acknowledgment in the book of [Helpman| (1998),
these technologies are seen as engines of economic development of countries (Ott
et al.[2009) or industries (Strohmaier and Rainer| 2016). Despite some disagree-
ments on what technologies shall be considered as GPTs, this concept stays relevant
up till now and is proved to be important during the first and the second industrial

revolutions as well as for an information age (Bresnahan| 2012, p. 612).

A formal definition of GPT put by Lipsey et al. (2005, p. 98) says a "... GPT is a
single generic technology, recognizable as such over its whole lifetime, that initially

has much scope for improvement and eventually comes to be widely used, to have

Korzinov, V., Savin, I. (2018) General Purpose Technologies as an emergent property. Tech-
nological Forecasting and Social Change, Vol. 129, 88-104.
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CHAPTER 2. GENERAL PURPOSE TECHNOLOGIES AS AN EMERGENT PROPERTY 10

many uses, and to have many spillover effects". The literature claims that in order
to be classified as a GPT an innovation has to possess three major characteristics.
The first one pervasiveness implies that a technology or its principle is used in vast
amount of products throughout an economy and in various applications (as, e.g.,
electricity is used from heating and lighting our houses to powering trains). The
second technological dynamism postulates that these technologies experience signifi-
cant improvement in their efficiency and effectiveness throughout their lifetime (one
example is the "Moore’s Law’ well-known in the semiconductor industry). Finally,
innovation complementarity (also called a ’dual inducement mechanism’) means that
these improvements induce innovations in application sectors of this technology (e.g.,
the evolution of semiconductors has led to the introduction of numerous portable

devices) and wice versa (Helpman|1998).

The majority of historical GPTs’ studies focused on their impact such as, for exam-
ple, the revolution in manufacturing brought with the introduction of electricity. In
the early formal models of GPT, the emphasis was on the attempt to account for
a "residual" in aggregate production functions of mainstream neo-classical models
(Bresnahan and Trajtenberg| /1995, [Helpman|[1998) and explain the famous "produc-
tivity paradox’ (Brynjolfsson/[1993)). In these models the new transforming technol-
ogy appears periodically and exogenously and induces changes in economic struc-
tures (like in Bresnahan and Trajtenberg (1995), where a switch to a new production
regime using a GPT happens after a certain number of the new intermediates becom-
ing producible, while agents realize their ability to produce these intermediates at a
pre-specified moment). In later models authors followed a so called "structuralist-
evolutionary approach" (Lipsey et al|[2005), where technologies “evolve under a
stream of innovations” and the effect of a newly arrived GPT on the economy is de-
termined endogenously, but the moment of arrival is still exogenous (see also Carlaw:
and Lipsey| (2006)). The work of Lipsey and Carlaw names GPTs as a part of ’struc-
tural technologies’ with eleven key characteristics incorporating them in a sequential
model with simultaneous GPTs (Carlaw and Lipsey| 2011). Similar to others this
model uses the concept of an aggregate production function, which does not allow
to reveal the heterogeneity of knowledge stock out of which GPTs emerge. More
recent models on GPT focus on a "dual inducement mechanism" between GPT and
its application sectors (Bresnahan|2012)) assuming one in a pair of complementary
technologies to have generality of purpose. These works also elaborate on different
types of knowledge or ’growth bottlenecks’ (Bresnahan|2012), but their arguments

take a GPT introduction for granted. Thus, the literature has long been focusing on

10
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explaining the effect, which GPTs have on economy, but so far none of the models
tried to address the process of GPT formation, or, as pointed by [Cantner and Van-
nuccini (2012, p. 74), in all current models a GPT "arrives from the outside of the
system". Therefore, factors and properties of the economic system, that influence

the GPT emergence, remain hidden.

The present study focuses on the pervasive nature of a GPT identifying factors that
foster it’s inclusion as an input into newly discovered products and proposing mech-
anisms how these factors work. Thus, we consider the emergence of a GPT not as
a binary outcome but as a continuous, where certain technologies may exhibit the
pervasive property to different extents, and the larger this extent, the more likely
the technology will be classified as a GPT. For the same reason, this work is not
meant to answer the question, in which exact moment a GPT can be considered
as an emergent. Instead, we look for forces boosting the process of "technolog-
ical convergence" coined by Rosenberg (1976), where economy utilizes the same
technologies for different purposes and consumer products become related through
similar technologies. We offer a novel perspective on the knowledge discovery pro-
cess as a network growth, where nodes are single technologies (knowledge pieces),
and each new connection (link) represents a new knowledge being discovered (tech-
nology combination resulting in value added); each technology allows to produce
a certain intermediate input, while fully connected groups of those nodes (cliques)

stand for producible final goods.

This work builds on the literature started by Schumpeter (1934, p. 65) defining
innovations as "mew combinations" of new or existing knowledge, and continued
by theories of architectural innovation (Henderson and Clark [1990), recombinant
growth (Weitzman|1998), combinatorial technology models (Arthur and Polak|[2006)
and works on technological capabilities (Hidalgo and Hausmann|2009), considering
knowledge as a collection of heterogeneous pieces, being interconnectable with each
other in one or another way. In other words, technologies are assumed to have a

hierarchical structure and be interrelated (Lipsey et al. 2005).E]

Thus, the process of GPT formation transforms into inclusion of a single technology

2While in reality a complex technology can consist of sub-technologies, which in their turn
consist of sub-sub-technologies and so on, we simplify this modular structure implying final goods
to be producible out of a large group of interconnectable but single technologies. Note that this
is done without loss of generality since those complex technologies can be seen as interconnected
groups of intermediates, which in their turn have to be all connected to further technological inputs
to invent new final goods.

11
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(potential GPT) in as many as possible final goods. To consider this, we model the
technology to have the potential to be included in all final goods, but without cer-
tainty to do so, which is achieved by allowing multiple competitive ways of producing
the same good. The models counts only first discovered combination of technologies
as production inputs for a product, which is done as a simplification to concentrate
on the process of product discovery and not further competition between substitute
goods over production costs,rﬂ and shall reflect the fact that technologies included
in early product discoveries have a lead time advantage over future competitors
(Arthur|[1989). The more often the potential GPT enters those early product dis-
coveries (in other words, fulfills its potential), the easier it should become to identify

an emergence of a GPT.

Thus, the aim of the present work is to reveal the factors that may foster or ham-
per inclusion of the potential GPT as an input for production. Among the usual
suspects we outline the process of knowledge diffusion, the structure of the techno-
logical network, the choice over technological trajectories to follow and the pressure
from the demand side (and, in particular, its variation over time) in discovering new
final goods. The knowledge diffusion is considered because of the famous public
good property of knowledge (Arrow||1962) and the resulting possibility to create
"complementarities among trajectories" (Dosil|1982, p. 154). The extent of this ef-
fect, however, is contingent on the exact network structure of knowledge considered,
since the complex interrelationships between technologies can result in some techno-
logical links being present in numerous products (as was the case, e.g., for a steam
engine combined with a wheel) or very few only. Another rationale to consider the
knowledge network is that the potential GPT is not necessarily the only technology
having large scope of applications, but that all technologies have a different potential
degree of pervasiveness, thus, affecting each other chances to become included as an
input in final goods. The mechanism behind choosing among technological trajec-
tories, in its turn, is important due to the competition among the aforementioned
alternative technological combinations in becoming first to satisfy each consumer
need. Since the innovation process is seen as search in complex technology spaces
(Silverberg and Verspagen| 2005, p. 226) and characterized by a strong path depen-
dence (Nelson and Winter|1982)), it is a key to our model to see how this mechanism
affects the GPT adoption. Last not least, the role of the demand side effects is not

3Introduction of production costs into the model is left for further extensions.

12
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clear. From a policy perspective this work focuses on the following question. Is it
beneficial for the knowledge discovery process in general and the GPT adoption in
particular that society starts favoring a certain product development as it was the
case, e.g., for nuclear power plants in the 1950s (Cowan!|1990)) or renewable energy
generation in the last two decades (Herrmann and Savin 2016)7 In both cases, the
policy maker was providing large subsidies to discover a product with certain char-
acteristics, while actual choice among different technological trajectories were left
to innovating firms. Clearly enough, none of the four factors shall be considered in
isolation from the others, and the rest of the study devotes particular attention to

the interplay between those forces on the GPT emergence.

The rest of the chapter is organized as follows. Section describes the basic set up
of our model and formulates four propositions on factors triggering the process of
GPT adoption. We provide results of the numerical analysis of our baseline model
in Section additionally extending it by the introduction of an increasing knowl-
edge base over time. In Section we outline some stylized facts that our study

reproduces, while Section discusses implications of the results and concludes.

2.2 The model of general purpose technology emer-

gence

2.2.1 Technology network

In this model we focus on the process of knowledge discovery. In particular, it
is assumed, that to satisfy the consumer needs, the certain population of product
types (P) is necessary to be introduced into the market (innovation as a problem-
solving process (Dosi [1988b, p. 1125)). For each product type to be discovered and
introduced onto the markets, some intermediates (I) need to be combined, which in
reality are typically combinations of other intermediates. We simplify our modeling
by considering only two layers (see left panel of Figure : the product types (final
goods e.g. Internet, transportation) and the intermediates (technologies used to

produce the intermediate input: transistor, combustion engine) E]

From the beginning, the technologies are present in the model as yet not connected

4Henceforth, we use the terms ‘technology’ and ‘intermediate’ as synonyms.
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nodes of the technology network (mid panel of Figure . For these technolo-
gies to find practical application, they need to become interconnected with other
technologies forming fully connected component (clz'que)E], which we schematically

demonstrate on the very right panel of Figure [2.1}

The intuition of the assumption is that constituent elements of a product shall be
all “adjusted” to one another so that the connected component of those elements
exhibits a larger value than those taken separately. One of the famous examples
of this nature is a printing press invented by Johannes Gutenberg. The major
contribution was in the ability to combine the existing elements of various industries
and specialties existed before, bringing them together to produce a commercially
viable technology. Another famous examples include the internal combustion engine
and the digital computer.ﬁ or a smartphone. Thus, the discovery of new products

becomes an incremental process of figuring out the combinations of intermediaries.

Pl Pz Pn—l Pn I.l {3 Iin—l I.m—z 1.1 13 1?1—1 I'm—2
- - . [ ] L 3
Iy I \ /
: y i : ot ) y y 12 Im—3 IZ Im—3
I I I Iy In-3 Lyp—y In-1 In

Figure 2.1: Layers of products and intermediates

We make another assumption that each product type has more than one way of

®In a similar way of reasoning, one could consider a fraction of technological links from the clique
also forming a fully connected component to be themselves technologies of a higher complexity
(combining more than one technological input) and necessary to be discovered for the respective
good to become producible. For simplicity, however, we avoid such a discussion to keep our
argument clear and simple.

6As stated by [Kauffman| (1995, p. 24): "The whole is greater than the sum of its parts". An
illustration of that definition in reality is another quote from |Holland| (1995): "Take two tech-
nological innovations that have revolutionized twentieth-century society, the internal combustion
engine and the digital computer. The internal combustion engine combines Volta’s sparking device,
Venturi’s (perfume) sprayer, a water pump’s pistons, a mill’s gear wheels, and so on. The first
digital computers combined Geiger’s particle counter, the persistence (slow fade) of cathode ray
tube images, the use of wires to direct electrical currents, and so on. In both cases most of the
building blocks were already in use, in different contexts, in the nineteenth century. It was the
specific combination, among the great number possible, that provided the innovation."

"Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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production, i.e. there is more than one technology combination satisfying a certain
need (compare technology network from Figures and consisting of the same
product types and intermediates). The intuition is that there is no consumer need to
be satisfied in a unique way. Those alternative technology combinations satisfying
the same need can be anything from having very different inputs (e.g., paper towel
vs textile one vs electric hand dryer) to fairly similar ones (different types of cheese,

all fermented out of milk by yeast).

P, P, P4 P, I I3 Ly—1  Ly—
- . . . . . * » 12 I:m Im_3

11 12 13 14 ]m—s Im—z Im—l Im

Figure 2.2: Alternative combinations of intermediates

Important to stress is that combination of two distinct technologies (like 7,,,—1 — I;,—3
on Figure or I,, — I,,_3 on Figure may enter more than one product both,
within one way of technological combination but also between them. This model
feature reflects the fact that in real world we may utilize the complementarity arising
from the combination of two technologies in more than one application )| Combining
all alternative technology combinations together (constructing a multiplex network)
one obtains a ‘potential technology network’ - mapping of all possible combinations
producing added value, (see left panel of Figure . The resulting network can
be considered as a technological paradigm in accordance with Dosi| (1982, p. 148)’s
definition: "an ’outlook’, a set of procedures, a definition of the ’relevant’ problems
and of the specific knowledge related to their solution",m while each single way of
technological combination as a technological trajectory — "the direction of advance

within a technological paradigm". Clearly, the position of each technology in such

8Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

9For example, combining tubes and lenses for telescopes, microscopes, photo equipment etc.

10Tn |Dosil (1988a, p. 1127), words on “.’pattern’ of solution of selected techno-economic problems
based on highly selected principles derived from the natural sciences" are used.
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a network is different. In accordance with the arguments presented in Section
we consider GPT to be the one with largest generality of purpose, thus, potentially
entering all product types in at least one technological combination (right panel
of Figure E However, there is no guarantee that the GPT will eventually be
included in any product type discovery. Our aim is to identify factors fostering

fulfillment of the GPT’s potential application in largest possible number of final
goods|]

P1 Pz n
. .. . %\
. [ . . . . =z ‘\%
L I I3 Iy In—2 Im-1 Iy
GPT

Figure 2.3: Potential technology network and GPT

2.2.2 Discovery process

The process of knowledge (and eventual product) discovery is the process of satisfy-
ing consumer needs. To keep the demand side simple, we consider each product type
having a certain value (V'), proxying an expected profit from its discovery. These
values are the driver for profit-oriented agents (anyone able to conduct R&D: firms,
entrepreneurs, scientists etc.) to conduct the discovery process upon the technology
network. In the baseline model agents are considered to be able to see all alterna-
tive ways of production (thus, setting the whole potential technological network to

be wvisible to all agents), an assumption that is necessary to test the mechanics of

1At the same time we rule out the option that GPT enters all product type within any single
way of technological combination to make its inclusion (in all products) a less trivial task.

12Henceforth, we refer to GPT as the technology with largest pervasiveness potential. While
examining to what extent this potential has been fulfilled, we interchangeably call it ‘GPT’ and
‘potential GPT’.

I3Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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our model and which is to be relaxed later (see Section [2.3.3)). Discovery of each
technology combination has certain difficulty (d) — the resistance of the link to be
discovered.@ This difficulty is not known to agents so that agents can only com-
pare alternative trajectories within one product type in terms of number of links yet
to be discovered. The latter introduces uncertainty into the model since the best
strategies are unknown, and agents can at most rank opportunities. The values, the
difficulties and the technologies are assigned independently from each other. Thus,
it may turn out that new knowledge necessary for a very valuable product type
can be invented with a small effort (e.g., as penicillin discovered accidentally by
Alexander Fleming) and the other way around. Also, the GPT is not necessarily
attributed with more or less difficult technological links, differentiating our model
from the existing studies attributing an ez ante advantage to the GPT, while the

only virtue of a potential GPT we allow is its a prior: larger scope of applicationE]

Over time, agents try to discover a certain technological combination from those
being visible for each product types, where the order of the products to be consid-
ered is random and set anew each cycle. The effort applied is equally distributed
among all yet undiscovered links so that once one of the constituent links becomes
discovered, the effort is redistributed among the remaining ones creating a cascade

effect of product discoveries in time (increasing number of innovations per period

over time, see Figure [2.4]).

The probability to discover a certain technological link x being a part of the product
type y discovery is modeled stochastically as a uniform random number Pr, € U|0, 1]

and turns this link into a discovered one if:

|4
P — v 2.1
T < d, X L, (2.1)

M Note that this does not necessarily introduce a discrete complexity ladder: goods consisting of
3 or 4 technologies would require 3 and 6 technological combinations, respectively, to be discovered.
One, however, can smooth the product complexity by randomly assigning zero difficulty values to
a certain fraction of edges. We conduct such an exercise as a robustness test.

15 In perhaps the most related to us studies by Bresnahan (2012, p. 629) combinations of
technologies (products) also have values and ’there are two potential ways to create new value’: a
compromise’ way does not involve GPT and has lower value than an ’efficient’” one including GPT.
Thus, the model assumes a higher expected profits to production of a good with GPT pointing
out that generality is expensive.

L6Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.4: Fixed amount of R&D effort is redistributed among three undiscovered links (dashed
lines on the lefthand side) or appllied to only one (dashed lines on the righthand side) because
discovered links (solid lines on the righthand side) are known to agents and require no R&DE;I

where L, is the total number of yet undiscovered links in the clique in which the link
x is located. Hence, the higher the product type value or the smaller the resistance
of the respective link or the smaller the number of yet undiscovered links in the

respective clique, the higher is the chance of that link to be discovered.

The described mechanisms introduce a strong path dependence in terms of past de-
cisions and outcomes (which cliques to concentrate effort on and which links become
discovered earlier) driving further results (which technology combinations become
invented first). Given that the present study is a model of discovery, once a certain
product type is discovered along one of its technological trajectories, the related
pressure from the demand side disappears. We are only interested in first product
type discoveries and those are analyzed in terms of GPT adoption. Though the
history of innovation has many examples when new products were displacing the
existing ones (smart phones against standard mobile phones, alternating current
against direct one or Video Home System (VHS) against Betamax), this has nor-
mally had to do with functional superiority (where it becomes increasingly difficult
to compare goods in satisfying exactly the same need) or cost advantage, which are
not the focus of the present work. In contrast, we argue that if a technology becomes
adopted in as many products as possible at the period of first invention, this does

not only give it time and cost advantages but also allows it to become a new GPT.

We model agents in a very simplified way assuming no heterogeneity or interaction
among them['’] Once certain knowledge piece is discovered, it is upon the knowledge
property, and not the agents, whether everyone or none of them gets access to this

knowledge. Similarly, coordination is made not with respect to which agents shall

17Similar to production costs, we leave this aspect aside of the model to concentrate on the
technology network effect first. In an extension, it will be certainly interesting to explore the issue
of heterogeneity and interaction among those agents.
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try to discover which technology link, but in terms of which technology clique one
shall try to discover first (see Section [2.2.3)). Thus, one can think of a ‘representative’
agent having the same incentives (V) and difficulties (d) in R&D process[™| Also,

no budget constraint for the agents is considered.

The notion of time is also present in our model and is kept simple. In particular,
at period t = 1 agents start discovering new technological combinations (as afore-
mentioned, none of them is present at the beginning of the simulation) and at each
period can apply effort only to one way of producing a product. In this way, the
model runs until all visible product types become producible (discovered in one of

the production ways).

2.2.3 Factors affecting GPT adoption
Knowledge diffusion

One of the key questions to address in the case of knowledge discovery process
is whether and to what extent does this knowledge diffuse to other products. A
historical example could be a steam engine which was initially invented to pump
water from coal mines, but with improvements spread to other applications finally
powering locomotives and revolutionizing transportation. In the model we have
already mentioned that some technology combinations can be utilized in more than
one good and more than one way of production. A relevant question in such a
case is whether the link between the two technologies I,,_1 and I, being discovered
once (i.e. for one way of producing the respective product type, see Figure
opens this link for any other way of technological combination or product type.
In the technology network context such a knowledge flow is contingent upon two

conditions:

e functional similarity in combining the two technologies is sufficiently high to
apply the same knowledge to other contexts: in the example of lenses and op-
tics it means that this knowledge is directly applicable in cameras, telescopes,
microscopes etc. This leads us to the discussion on technological standards

and dominant design (for an overview, see |Abernathy and Clark (1985) and

18 Alternatively, one may think of a number of agents with a perfect information flow that act
one at a time and all newly discovered knowledge becomes immediately available for everybody.
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Anderson and Tushman| (1990))), where being discovered once certain technol-
ogy combination becomes universal and does not have to be rediscovered for
other purposes (e.g., Global Positioning System (GPS) usage from military to

civilian applications and from weather forecasting to time synchronization);

e the knowledge discovered flows freely within the population of agents, i.e. there
are no firm- or institutional-based barriers preventing the flow of knowledge
(so-called knowledge spillovers). This condition addresses the public good
property (i.e., not appropriated by the owner) of knowledge coming back in
the literature to at least Arrow| (1962). This property is typically studied in
the context of the network of agents (see (Cowan and Jonard| (2007)) and it’s
magnitude depends on the extent to which it is codified and the effectiveness of
the mechanisms by which knowledge is protected, including the appropriability
conditions (Dosi|[1982).
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Figure 2.5: Knowledge diffusion regimes

We distinguish between three main regimes of knowledge diffusion (see also Figure

23):

1. sticky knowledge. In this regime there is either no functional similarity between
products, or no knowledge spillovers preventing the possibility that knowledge
discovery for one particular product (one of its production ways) can contribute

to a discovery of any other product containing the same link{?]

YReprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

29Tn such a case, inventor literally has to ‘reinvent the wheel’ for every new product.
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2. partially sticky knowledge. In this case, while the functional similarity between
goods is still limited, the flow of knowledge is not. To distinguish that regime
from the previous one, we make an assumption that limited functional similar-
ity allows to apply the discovered knowledge to other product types, but only
within the respective way of technological combination. This should reflect

the intermediate status of the regime with imperfect knowledge diffusion;

3. leaky knowledge. This is the regime with perfect knowledge diffusion — once
a certain technological link is discovered in any specific product, it becomes

available in all product types across all ways of technology combinations.

It is worth pointing out that while we consider the aforementioned regimes of knowl-
edge diffusion to be the result of innovation policy (affecting those through the
technological standards and appropriability conditions), we treat those regimes as
exogenous in our model, separately considering each of the three scenarios and ana-
lyzing implications for the emergence of GPT. In particular, we make the following

proposition with respect to the effect that the knowledge diffusion has on GPT:

Proposition 1 The larger the extent of knowledge diffusion, the more likely that a
potential GPT becomes an input of many different product types at the stage of their

discovery.

Proposition [1| has the intuition that GPT, having in the present study the only dis-
tinct property of highest pervasiveness resulting in a large number of links connecting
it to many other technologies in the network of intermediates, is also expected to
have the largest number of links entering more than one product type in more than
one way of production and, thus, must be the major beneficiary (among technolo-

gies) of the knowledge diffusion process.

Coordination of R&D efforts

Another mechanism, which plays a major role in technology emergence, is the deci-
sion heuristic of agents on how to innovate. Trying to solve a particular problem,
an agent might concentrate on the easiest trajectory trying to use a lot of exist-
ing knowledge no matter for which initial purposes this knowledge was discovered.

Alternatively, an agent might pursue an exploration strategy allocating its efforts
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equally among many alternatives. Let us take an example of a steam engine, which
was initially competing with wind and water power. One can work on the improve-

ments of wind, water, or steam power sources or concentrate its efforts on one.

Agents in the model do not know the difficulty of discovering a technological link and,
thus, can take into account only the number of links yet to be discovered. However,
the choice in favor of ‘smaller’ cliques (with least number of links yet to discover)
may not always be optimal. First, given the strong uncertainty with respect to the
difficulty of links, some cliques being larger in size may still be easier in terms of the
amount of effort to be applied. Second, agents may prefer knowledge breadth over
knowledge depth because of the interconnectedness between technological problems
and the potential to utilize the gained knowledge in other applications. We introduce
the factor of coordination in R&D effort through a logistic function determining the

probability of the respective trajectory to be chosen by agents:[ir]

61()ﬁ(L—L7;)

Z;’V e10B(L—L;)

where a parameter § € [0, 1] varies the scenarios from no (in favor of knowledge
breadth) to the perfect coordination (knowledge depth), L stands for the maximum
number of links to be discovered across all possible production combinations W and
L; is the number of yet undiscovered links in the trajectory 7. This is illustrated in
Table[2.1] Clearly, with § = 0 trajectories are chosen randomly without any account
for already accumulated knowledge, while for § = 1 agents always will concentrate
on the smallest clique. Intermediate values of 3 will squeeze probability distributions

towards cliques with the least number of undiscovered links.

Table 2.1: An example of how probabilities are distributed for different 5. L; - number of edges
yet to be discovered, W, - number of ways a single product can be produced.

w Wi W Wi W, Wi
L; 4 edges 2 edges 3edges 4 edges 5 edges
=0 0.2 0.2 0.2 0.2 0.2
g =0.2 0.019 0.850 0.110 0.019 0.002
g=1 0 1 0 0 0

21 Thus, at one period of time effort can be applied only to one technological trajectory in one
of the product types. The fact that agents may not all coordinate in pursuing one technological
trajectory is, thus, represented by no coordination.
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We propose the following proposition with respect to the coordination of R&D ef-

forts:

Proposition 2 Preference for knowledge depth over its breadth fosters adoption of
GPT under condition that knowledge spillovers are present between different tech-
nological combinations for different product types, and that those spillovers do not

change over time.

Proposition 2 consists of three parts: the first one conjectures that under no knowl-
edge diffusion between different problems agents’ coordination on any trajectory is
purely random;@ the second part postulates that in the presence of knowledge diffu-
sion coordination may force agents to switch the trajectory in favor of the one with
positive externalitiesEg] in the form of accumulated knowledge from a different prod-
uct type. Since our GPT is potentially the most pervasive technology, those positive
externalities are expected to be the largest for technological trajectories containing
it, resulting in a higher adoption of the potential GPT in the first product type
discoveries; finally, the third part ensures that those spillovers do not change over
time: for example an agent in the model discovers a technological link which can be
utilized in this period in one way of technological combination and one product type
only, but many years later people find a different application for this technological
combination in a different product type not considered before. In such a case, the
time gains an importance in our model, while for invariant knowledge spillovers dis-
covery of the link (or more generally, pursuing the technological trajectory with this
link) may look not as attractive originally, this changes if the spillovers alternate

over time P4

Potential technology network structure

Another core factor affecting the knowledge discovery process is the structure of

technological network. Apart from the number of product types (N), intermediates

22ZRemember that earlier we assumed no relation between values, difficulty and technologies
involved. Hence, in choice between two ways of production with the same amount of links agents
will be indifferent, otherwise they pursue trajectory with smallest amount of edges given R&D
coordination.

23In the words of Dosi| (1982, p. 154) "complementarities among trajectories".

24In other words, we follow (Carlaw and Lipsey| (2006, p. 159) in that because of Knightian
uncertainty agents do not have a “foresight about an unknowable future” and take decisions based
on the externalities “as being constant at the current period level”.
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(M) and the ways of technological combination (W), this shall be affected by at
least two more parameters: number of intermediate technologies in each technolog-
ical clique forming a technological combination (clique size, C'S) and the pervasive-
ness of the present intermediates within the product types. To keep the modeling
simple, we assume in the baseline model that all product types in all technological
combinations consist of the same number of intermediates”| while pervasiveness of
other technologies is modeled via two opposite views. In particular, while GPT per
assumption potentially enters all product types at least once and has the highest
potential pervasiveness, other technologies (from 2 to M) may either all be very
similar or very different in this respect. Based on the latter distinction we formulate

the third proposition:

Proposition 3 The larger the difference between the potential GPT and other tech-
nologies in terms of their technological pervasiveness, the more likely that the GPT

becomes an input of many different product types at the stage of their first discovery.

Proposition (3| is based on the intuition that the less potential synergy is concen-
trated between non-GPT technologies, the easier it must be for the GPT to fulfill
its potential. Similar to knowledge diffusion, we consider the technology network
structure as an exogenous factor. However, we do not argue that a policy maker
may have an impact on technology network structure, as it represents the knowledge
space itself; rather this network structure could be indirectly identified in order to

adjust policy decisions.

Changes in expected profits

Finally, one may expect some effect on GPT adoption from the demand side. The
expected profits for each product type proxy the priority from the side of society
(both, consumers and policy makers) on which needs shall be satisfied first. Thus,
any change in the rank of priorities can reflect either changes in preferences or

institutions?®] As an example of enforced preference change let us take the one

25In the robustness checks we relax this assumption highlighting that the main results remain
valid.

26Tnstitutional arrangement change incentives of entrepreneurs and investors to develop new
products. For example, policy instruments introduced in the German energy sector made it prof-
itable to concentrate on the renewable energy technologies (above all, wind and solar) (Herrmann
and Savin |2016)).
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considered by Cowan| (1990) on the nuclear power reactors. Because of the Cold
War and fierce competition with the Soviet Union for the technological leadership,
the U.S. government was heavily subsidizing the nuclear industry in the end of
1950s to foster building of the first commercial prototype and securing the global
market. However, to enable such a swift discovery of the product type, a critical
decision with respect to the preferred technological trajectory had to be taken (in
this case between light water, heavy water and gas graphite). Given that “typically
[...] when a technology is introduced its future payoffs are not well known” (Cowan
1990, p. 544), the choice has been made mainly based on knowledge accumulated
by the U.S. Navy adopting the light water for submarine propulsion. As history
illustrated, due to that exogenous shock introduced by the policy maker the market

eventually became locked into the inferior technology.

To examine such an exogenous effect on the knowledge discovery process and the
adoption of a potential GPT, but at the same time to keep the model simple, after
a fixed number of periods (throughout the experiments we keep it equal to 100)
for a certain fraction of product types we allow exchanging their expected profits,
proxied by parameter Value Dynamics (V D) between 0 to IOO%E] Thus, some less
‘valuable’ needs may instantly gain in priority and the other way around. All other
characteristics of the model remain unchanged. Having introduced this mechanism
in the model and keeping the example described by Cowan| (1990) in mind, we

formulate the following proposition:

Proposition 4 Frequent changes in the rank of product type expected profits nega-
tively affect the adoption of GPT and may lead to a technological lock-in in the long

term.

The intuition behind Proposition[4is that due to instant change in the product type’s
expected profit its discovery becomes faster and essentially random with respect to
the technological trajectory chosen, leaving not enough time to take an advantage
of positive externalities through the knowledge diffusion. Thus, we conjecture that
those changes in the rank of priorities diminish the effect of knowledge diffusion

combined with coordination of R&D efforts and may lead to a technological lock-

in %

2"This is done to prevent any volatility in the overall amount of effort the agents can apply to
discover all product types in at least one production way.
28 To address the possibility of a technological lock-in, we define as a lock-in the situation
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2.3 Numerical analysis and model extensions

In what follows we describe how we set up the numerical experiment and which
parameters we use as a default (Section [2.3.1)). Afterwards, results of the simulation
exercises (Sections [2.3.212.3.3) and robustness tests (Section [2.3.3)) are presented.

2.3.1 Numerical experiment

At the beginning of each simulation, a large network of potential technological inter-
connections has to be generated. For this a subset of technologies (of the size C'S)
has to be sampled for each product and each of its ways of technological combination.

In doing so, three conditions are ensured:

1. The sampling replicates one of the two sampling functions, which are chosen
in line with Proposition |3l In particular, both sampling procedures start from
ensuring that potential GPT enters first technological combinations for each
product type. Afterwards, one either follows a highly skewed distribution func-
tion or sets the sampling probability of them to be constant. Analytically this

is achieved by following one of the two probability distributions, respectively:

Mprobability, = W or Mprobabilitys = (1, seq(pm,pm, M — 1)) (2.3)
where seq(a,b,l) generates a vector of equally distant elements between a
and b of size [. As a result, the sampling function to the left in equation
creates highly skewed distribution, where the potential GPT still has the
largest scope of application and is followed by a small subset of ’competitor’
technologies also pretending to become included in many different product
types and technological combinations. The sampling function to the right in
, in contrast, generates a single 'champion’ with other technologies having

equal chance® to be included in any technological combination. Needless to

where the process of knowledge discovery is hampered (e.g., lower number of technological links is
discovered), which eventually leads to no or delayed product discovery.

29This is proxied by the parameter pm = (E (m) - 1) /(M — 1) chosen just to
seq(L,M,

ensure that in both sampling functions GPT has the same potential pervasiveness (number of times
being sampled for distinct technological combinations. For example, for M = 100 pm =~ 0.178.)
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say that no technology can enter any technological combination more than

once.

2. After all W technological combinations for all N final product types are con-
structed, they are rearranged randomly to ensure that GPT is equally present
in all of them 7

3. While creating the technological combinations, the code ensures no combina-
tion is repeated. The motivation behind that is to keep at least moderate

technological differences between discovered goods in our model.

The exercise results in a complex weighted network, having both the bipartite
(product-technology; presented in Figures and multiplex (W alternative
technological combinations consisting of the same number of nodes and links but
having different link allocation; Figure structure. As the default values we
consider the number of product types N = 60, the number of intermediate inputs
(technologies) M = 100, five ways of technological combination (/W' = 5) and four
technologies to be recombined per product (C'S = 4) so that the resulting network
of possible technological links is a highly interconnected graph. To illustrate the
difference between the two alternative sampling approaches described above, con-
sider a network of technologies where the weight of an edge represents the amount
of times this link is used in products. We examine the two network structures by
filtering edges with the weight below k& = 5. [ This allows one to concentrate
only on those edges which enter several product types. Clearly, in the case of equal
pervasiveness the potential of other M — 1 technologies, a 'star-type’ network struc-
ture is observed (see right plot in Figure . Almost all "heavy weighted’ links
lead to a GPT. In the alternative network structure of core-periphy type there is a
highly interconnected core of five-ten technologies including the potential GPT (left
plot in Figure , which are also well connected to technologies outside the core
(periphery). Henceforth, we denote the two alternative network structures as ’star

network’ and ’core-periphery network’.

30This is primarily done to avoid any strong assumption that GPT may benefit a lot from limited
knowledge diffusion within just one way of technological combination.

31The exact value of k is chosen just for visualization convenience. For different parameters of
the network, some different value of £ may be chosen instead.

32Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
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a) core-periphery type b) star type

Figure 2.6: Potential technological networks after filtering links with a low Weight

Then for the resulting networks we randomly distribute values (among final product
types) and difficulties (among links). Afterwards, starting from period ¢ = 1 agents
apply R&D effort in a sequential order to discover final product types. To avoid any
effect from specific product type order, each cycle the ordering of not yet discovered
product types is rearranged randomly anew. For the basic model described, R&D
agents continue inventing new technological links until for each product type at least

one way of production is discovered.@

To start exploring the basic model with regard to Propositions Il one first has
to fix some further parameters we use. We assume expected profits of product
types to be exponentially distributed with the parameter rate equaling 10, while the
difficulties to discover each of the links are normally distributed with A/(100, 25).
These parameters, thus, are chosen to keep the numerical simulation sufficiently
fast, avoiding discovery of many technological links within one cycle. Given the
stochastic nature of the model and unless specified otherwise, in what follows results

are reported for 50 restarts.

Describing the results, we primarily look on the (actual) pervasiveness of the po-

tential GPT (percentage of first product type discoveries where GPT becomes an

gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

33 As discussed before, any subsequent technological combinations, which can be discovered as a
byproduct of the R&D process directed on discovery of different product types, are not taken into
consideration.
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input). Furthermore, to account for the fact that for different network parame-
ters (like M, W or C'S) the potential of GPT to enter all products relative to the
potential of other technologies varies, we introduce an additional indicator, called
G PT pgoption, measuring to what extent GP'T has fulfilled its potential in comparison

to an average other technology in the technological space doing the same:

Actual Pervasivenessgpr Potential Pervasivenessagpr

GPTAdoption - (24)

M M

1 . 1 . .

e 2Actual Pervasiveness,, -7 > 2Potemfzal Pervasiveness,,
m= m=

Thus, GPT sgoption indicates not just how much more pervasive GPT has become in
comparison to an average other technology (after the discovery process is finished
and one calculates the "actual pervasiveness’), but compares this ratio with the one
using ’potential pervasiveness’, i.e. in how many different technological combina-
tions a given technology had a potential to be included | Additionally, we report
information on the discovered network size (in terms of number of links discovered)
or amount of time spent by agents, which complement the picture on the intuition

behind the results we obtain.

2.3.2 Results of the basic model

To understand the effect of network structure on GPT pervasiveness, one should
look at how the variation in network parameters affects it under ceteris paribus
principle for core periphery and star network structures (demonstrated on Figures
and . Increasing the number of technologies M naturally reduces the density
of the technological network, thus, lowering the externality effects that favor GPT
(left chart in Figure 2.7). A similar result with a level-off effect is obtained if we
increase the number of alternative ways of production (right chart in Figure ).
Here the explanation is also simple. The more alternative ways of production we
have the more competition a GPT has with other technologies and the harder it

is for it to become pervasive. A level-off effect appears because we keep a ratio of

34For example: GPT had the potential pervasiveness of 60 and other technologies on average only
10, while actual pervasiveness is 30 and 3, respectively. The resulting value of GPT sqoption =~ 1.67
implies that in comparison to its ’competitors’ GPT has fulfilled its potential 67% better. Note
here that the indicator value of 1 means that technologies have fulfilled their potential equally well.

29



CHAPTER 2. GENERAL PURPOSE TECHNOLOGIES AS AN EMERGENT PROPERTY 30

0.9
® ®
'EU'S -E 0.8
& 8
c c 07
206 z
§ 06
& &
0.4 =05
o o
0] Qo4
3 4 5 6 7 8 9 10

<
[N}
N}

40 80 120 160 200 240 280
M W

Network_stucture — Core_Periphery — Star Network_stucture ~ Core_Periphery — Star
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Figure 2.7: The effect of variation in the number of products (N) and the number of ways of
production (W) on the GPT pervasiveness@

Note: This result is produced under no dynamics in product values. The network parameters used: N = 60, M =
100,C'S = 4, W = 5.

products to technologies constant and at some time GPT starts to enter not one but
several ways of producing the same product type in a potential network increasing
the variance in the outcomes. An opposite trend is observed if one increases either
the number of products (N, left chart in Figure or the number of technologies
each product can be made of (C'S, right chart in Figure : as the network density
rises leading to larger externality effects, GPT becomes adopted in larger number

of final goods.

Hence, two conclusions can be made. First, one can observe a little difference
between two alternative network structures, namely core-periphery and star types
of network, thus, rejecting Proposition [3] Second, the more dense is the network in
terms of the amount of weighted links, the more likely is the GP'T adoption. By
"density’ here we mean the amount of links with the weight larger than 1. It is
clear that a typical definition of a network density employed from graph theory will
not fit to our problem. This definition says that density is a ratio of existing links
to all potential links. In our set up we are more interested in which links lead to
GPT and which do not. Thus, we construct an index that sums the differences in

those occurrences in favor and against GPT adoption, weights it according to the

35Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

36Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.8: The effect of variation in the number of technologies (M), and cliques size (C'S) on the
GPT pervasiveness

Note: This result is produced under no dynamics in product values. The network parameters used: N = 60, M =
100,CS =4,W =5.

likelihood to encounter in the technological network and normalizes it to the total

number of unique links in that network (¥):

1\1;:1 wy [max(wG"" —1,0) — max(w)*“"" —1,0)]

¥
v

Multiplicity Index = , (2.5)

where w,, is the number of occurrences of a unique link ¢ (the same pair of tech-

nologies) in our network of potential technological edges, wgp T is the number of

times this link leads to cliques containing GPT and w)°“"" is the number of times
the same link leads to cliques without GPT. In this way, we attempt to capture
the effect of knowledge externalities between competing technological trajectories in
our model. The larger the resulting Multiplicity Index the larger the actual GPT

pervasiveness is expected to be.

Figure illustrates how actual GPT pervasiveness depends on the index. Again
little difference can be observed regarding two contrast network structures. The
dependence is not linear and once the index exceeds a value of 1 GP'T pervasiveness
levels off around 80%. It is important to note that the index reacts to variation in all
key network parameters discussed earlier and can serve as a good ex ante estimate

of GPT adoption under leaky knowledge and coordination.

3TReprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.9: Multiplicity index reflecting resulting GPT pervasiveness under leaky knowledge
regime@

Note: We fit two polynomial lines for a better illustration purposes.

Figures and demonstrate the effect of the extent of knowledge diffusion
and coordination of R&D efforts on GPT pervasiveness and adoption for different
network structures. Since we do not observe a big difference among both network
structures, let us concentrate on Figure Start from the case of no coordination
(8 = 0): the more leaky is the flow of knowledge among technological combinations,
the more pervasive is GPT and the better its potential is fulfilled. New knowledge
embodied in discovered technological edges and applicable in different technological
combinations becomes available for agents working on different technological prob-
lems and enforces earlier discovery of products containing larger proportion of links
with such a multiple application. GPT is the main beneficiary of that ’knowledge
propagation’ process due to the network structure where by definition it potentially
has the largest amount of technological links used in more than one product type.
Thus, with leaky knowledge and no coordination GPT becomes a part of a much
larger number of new products, while in comparison to an average competing tech-
nology GPT fulfills its potential 1,3 times better (Figure at = 0). This result
fully supports Proposition [I}

38Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

39Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.10: The effect of knowledge diffusion and coordination on GPT adoption for core-periphery
type network. Dots represent the mean values while vertical lines represent the range of values

Note: This result is produced under no dynamics in product values. The network parameters used: N = 60, M =
100,CS =4,W =5.
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Figure 2.11: The effect of knowledge diffusion and coordination on GPT adoption for star type
network. Dots represent the mean values while vertical lines represent the range of values{ﬂ

Note: This result is produced under no dynamics in product values. The network parameters used: N = 60, M =
100,CS = 4,W = 5.

Furthermore, given that the knowledge diffusion propagates discovered solutions
(technological links) to many other applications, it is worth testing whether coordi-
nation of R&D can strengthen GPT adoption under leaky knowledge even further
and whether this is contingent on the presence of knowledge diffusion (Proposi-
tion . This factor is tested by varying the § parameter between 0 (preference
for knowledge breadth) and 1 (preference for knowledge depth) for the three differ-
ent knowledge diffusion regimes. Clearly, under leaky knowledge (Figure blue
square dots), an increase in coordination contributes to a larger GPT pervasiveness

and adoption. The more ’sticky’ is the knowledge, the smaller this contribution is
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until it vanishes completely confirming our Proposition [2][

Finally, we explore the effect of variation in expected profits by setting the VD
parameter equal to values between 0 (no variation) and 1 (all N product types change
randomly their rank in expected profits every 100 periods). Results of the exercise
are presented in Figure The absence of a clear effect on GPT adoption has an
explanation. In our model the demand side is interested in discovery of products (to
be precise, first discovery for each product type satisfying a certain need), but puts
no difference on which inputs shall be used to do so, leaving this choice to agents
doing R&D. The agents, in their turn, pursue trajectories with lowest expected
difficulty. As a result, this variation in expected profits has almost no impact on
the agent’s discovery choices. Hence, one has to reject Proposition [4] given that the
network of potential technological interrelations is fixed and knowledge spillovers

are constant over time.

What the variation in expected profits does affect, however, is the period of time
within which at least one technological combination for each product is discovered
(see right chart in Figure . Given that a high pressure from the demand side
rotates between different product types over time, some more difficult edges be-
come discovered much faster reducing the overall amount of time spent. A similar
effect on the time of discovery have the knowledge diffusion and coordination of
R&D efforts. Right charts on Figures and demonstrate for both network
types that coordination of R&D reduces time, and this effect is enhanced if knowl-
edge diffusion increases. Yet, the nature of those two effects is different. In the
case of diffusion, present knowledge diffusion stands for the possibility of utilizing
knowledge discovered elsewhere for a specific technological problem at hand. The
coordination force leads to a focus on technological trajectories where knowledge is

already accumulated and results in faster invention.

Another informative result is the size of the discovered graph reflecting the amount
of knowledge accumulated in model’s simulated economies. Knowledge diffusion
logically increases the knowledge base discovered. Left charts on Figures and
show that under all coordination regimes (5 = 0...1) the diffusion has a positive

4ONote here that varying the extent of knowledge spillovers, we keep those constant in time
implying that if a technology combination becomes discovered and the knowledge spillovers regime
allows the link to be applied elsewhere, this externality was taking place immediately (without any
time lag). In an extension of our model (Section we illustrate how such a time delay (in
terms of knowledge externalities to be utilized) can be taken into account.
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Figure 2.12: The effect of value dynamics on GPT adoption. Dots represent the mean values while
vertical lines represent the range of value.

Note: The result is obtained under leaky knowledge and full coordination (8 = 1). A similar result with quantita-
tively smaller values for GPT adoption is observed for no coordination (8 = 0).

impact on knowledge base for both network structures. Even though agents were
not aiming to discover all possible applications of a unique technological combina-
tion, this is done automaticallyf]] The same chart demonstrates that coordinating
R&D efforts (focus on knowledge depth) reduces the discovered base because agents
always follow the (seemingly) "least resistant’ clique not trying to discover edges in
alternative ways of production of the same product. Finally, left chart in Figure
demonstrates the negative effect of variation in expected profits on the amount
of accumulated knowledge, which is due to the high pressure from the demand side,
leading to fast product discovery, preventing agents to work more on different tech-
nological trajectories. This result is important to understand our findings for the

technological network growing over time[?]

Thus, one could conclude that in order to invent all products in a fastest way and
promote adoption of potential GPT, one shall promote knowledge diffusion, stimu-
late agents to concentrate their innovative efforts on the technological trajectories
with largest amount of accumulated knowledge and in parallel stimulate rotation
in the demand side pressure towards discovering distinct product types. Yet, as
we show in Section [2.3.3] such a conclusion would be too delusive in the long term

perspective.

41f in contrast, we would have counted only all unique edges (between unique pairs of technolo-
gies), the presence of knowledge spillovers would result in the smallest network discovered.

42Note that when coordination of R&D efforts is switched on, variation in profits has no clear
effect on the discovered knowledge base since under coordination agents quickly start disregarding
alternative trajectories.
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2.3.3 Growing technological network and modeling the ar-

rival of new ideas

Up till now in our model all ways to produce a singe product were known or visible
to agents ex ante and the discovery process stopped when at least one technological
combination was found for each product. However, innovation process is dynamic
and during the course of technological progress we come up with new ideas of new
products and new ways of technological combinations. The use of railroads would
be completely different from what we see today without a combination with a steam
engine which allows the development of locomotives - something that has never
been thought of before. Therefore, in the following we relax the assumption of fixed
number of technologies (as in Section and allow a visible network to grow
(both in terms of number of visible technological combinations for a given product
type, but also in terms of new product types/needs arising) calling this scenario
"growing technological network’. This scenario is logically close to the description by
Arthur (2015 p. 140) of an economy as a complex evolving system, where “structural
change is [...| a chain of consequences where the arrangements that form the skeletal

structure of the economy continually call forth new arrangements”.

We implement this extension into the model by adding a third layer to our multiplex
technological network (Figure . The model then constitutes discovered network
(consisting of combinations already discovered by agents), visible network (links that
agents become aware of, i.e. realize those links as we will call henceforth; so far we
were considering it to be the entire potential network and fixed over time) and a

third potential network (all possible technological combinations, including visible

37



CHAPTER 2. GENERAL PURPOSE TECHNOLOGIES AS AN EMERGENT PROPERTY 38

ones but also those that agents are not yet aware of)ﬂ Thus, invisible network
contains hidden ideas on new possible technological recombinations of existing but

also new product types.

Product-Technology Networks
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Figure 2.16: Three states of technological links

While the edge transition from visible to discovered state has been addressed in detail
in our baseline model, here we discuss the transition from the invisible state to the
visible one. In other words, we model the arrival of new ideas to our agents. This
process is contingent on the knowledge being already accumulated by them. Thus,
the growth of a visible network is highly dependent on a size and a structure of a
discovered one. In particular, agents tend to learn about new possible product types
or new ways of production of known product types depending on the extent they
are using constituent technological combinations. One important difference of the
mechanism making links visible to the one transforming them into discovered ones
is that edges become visible in cliques, while links become discovered individually
through practical tests more like an applied knowledge. The second difference comes
from our assumption that the process of recognizing new technological combinations

requires no R&D effort from the agents[*] In particular, agents can recognize a new

47Obviously, the latter network is most general one, while the former two represent its fractions
(discovered network - part of the visible one, while visible part of invisible potential network).

48Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

49The process can be better compared with Eureka’ moments preceding the application of R&D
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technological combination v at each period of time if the probability Pr, € U|0, 1]:

Pr, < aexp (v(sy — 1)) + fexp (v(sg — 1)) + vexp (v(s3 — 1)), (2.6)

where si, s, and s3 are shares of discovered, visible and invisible 1inkﬂ in the
technological clique v, while «, 3,7, v are parameters specifying the function’s shape,

so that it increases exponentially and the more links in v are visible and discovered
by agents.@

Figure illustrates the equation for different shares of si, s9, s3. Suppose
a product consists of five technologies, which makes a clique size of ten edges. If all
links of this clique are visible in other products than its probability to be recognized
by agents as visible is approximately 10%. If 70% of links are already discovered and
remaining 30% are visible in other products than this probability raises to almost
23%. All exact values can be found in Appendix [A] Table[A.1 Thus, if agents are
aware of the fact that a pair of technologies has an innovation potential (it is visible
for agents), or they have already discovered that link, it is more likely they will once
recognize that there is a new product type that can be created. Note here that even
if all edges in a clique are completely unknown to agents this probability is different
from zero. We can’t deny the fact that there is always a chance of the arrival of
new radical idea from different technological paradigm. This chance increases if all
respective links are already visible in different products, and by the time 100% of
those links are discovered the clique v becomes visible with certainty. In the words
of Atkinson and Stiglitz| (1969) or Nelson and Winter| (1982) agents search locally for
new knowledge trying extensions of existing one close to what they already possess
and use in some space of technological characteristics. The model now runs until

agents discover all product types that they see.

The exercise below takes into account the results of our baseline scenario. We

fix knowledge as ’leaky’ for the rest of the analysis given that without knowledge

effort.

590nce a new link has become either visible or discovered, one automatically updates the prob-
ability of yet invisible technological combinations containing this link to become visible.

5'In particular, we set v =15, a = 0.01, 3 =0.1, v = 1.

2Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.17: An Example of a probability of a product to become visible

Note: The figure illustrates the probability of a product consisting of five technologies and ten edges to become
visible. Values on the x-axis denote the percentage of discovered links in the clique, while values on the y axis show
the percentage of visible links. The remainder is by definition - invisible. Color intensity indicates the probability
of this clique having certain fractions of visible and discovered links to become visible to agents. All exact values
can be found in Appendix [A] Table

diffusion the role of other factors vanishes and discovery process turns random. We
also consider only core-periphery network structure as a more realistic one where a

potential GPT is followed by competitors.

Results for growing knowledge base

In this scenario we extend our baseline model adding a second generation of products
that is not visible to agents from the beginning. New generation has the same ratio
of products to technologies, namely N = 60 and M = 100 and mainly consists of
new technologies that were not present in the first generation (using technologies
from 96-195 and the potential GPT itself). Hence, there are only six common
technologies between the first and second product generations (see Figures m
and respectively). Those two generations are meant to represent two distinct
technological paradigms with former of complexity C'S = 4 and the latter of C'S =5
reflecting the fact that consumer products become more complex over time. The

value distribution of product types in the second paradigm is taken twice larger
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than in the former one, primarily to compensate for the complexity and boost the

simulation speed.

o

& o

Figure 2.18: Technological network of intermediaries for the case with two product generations and
a single GPT. Green network represents initially ’invisible’ technological combinations or ideas that
economic agents do not have at the start of each simulationlfl

The Figure [2.19b demonstrates that coordination of efforts instead of a strictly

53Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

>4 Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.19: The effect of coordination on GPT adoption for the case with two product generations
and a single GPT. Dots represent the mean values while vertical lines represent the range of

Values

positive (recall left-hand side of the Figure exhibits a 'level-off” effect on GPT
adoption. A key to understand the nature of this finding is on the upper right chart of
the figure. Being more focused on knowledge depth strategy (and, as a consequence,
discovering less technological links), one reduces the size of the visible network in the
second product generation, thus, limiting the externality effect that one can exploit.
In other words, in the dynamic perspective high coordination hampers agents in
discovering technological combinations with more pervasive technologies (including
potential GPT). The positive effect of coordination in the first product generation
is compensated by the negative effect in the second generation because an agent

cannot discover something it has no idea about (yet).

Results for two GPTs with different product generations

The negative effect of coordination becomes more pronounced if we consider the
second product generation to have its own potential GPT (for an illustration see
Figure [2.20). Results of the experiments are demonstrated in the Figure and
focusing on the GPT adoption in the second product generation since for the
first GPT the results repeat the pattern described in Section [2.3.2] Figure [2.21
demonstrates that by increasing coordination the size of the visible network falls.
As a result, we observe a pattern similar to an inverted U-shape form illustrating the
adoption of the second GPT in coordination. Thus, while moderate coordination is
better than no coordination at all, this trend changes its direction once coordination
approaches its maximum level, demonstrating, that neither no nor full coordination
is optimal. This trade-off between exploiting externality effects and keeping the size

of the visible technological network large enough (a sort of proxy for ‘new ideas’ in
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our model) reminds the classical ambidexterity trade-off known in the literature on

organization theory (see, e.g., the seminal paper by March (1991))@
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Figure 2.20: Technological network of intermediaries for the case with two product generations
and two distinct GPTs. Green network represents initially ’invisible’ technological combinations
(ideas) and a new GPT that economic agents do not have at the start of each simulation@

55 According to (March|[1991, p. 72), "choices must be made between gaining new information
about alternatives and thus improving future returns (which suggests allocating part of the invest-
ment to searching among uncertain alternatives), and using the information currently available
to improve present returns (which suggests concentrating the investment on the apparently best
alternative)”.

56Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.21: The effect of coordination on GPT adoption for the case with two product generations
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Figure 2.22: The effect of coordination on GPT adoption for the case with two product generations
and two distinct GPTs on the adoption process{ﬁ

As we know from Section the variation in expected profits has no clear effect
on GPT adoption in the short term while in the long term it reduces the size of the
discovered network and the period of time spent on the discovery process (Figure
, it is easy to foresee that the effect of value dynamics on GPT adoption in the
long term is strictly negative”]

5TReprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

58Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

59For brevity reasons we do not include those results here, but they are available on request.
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Robustness tests

It is important to point out that robustness test were conducted in all the nu-
merical experiments described above for different clique sizes of different product
types within one technological paradigm. Though on average the GPT adoption
has reduced over the experiments (because GPT was randomly allocated between
combinations of different size), the major results hold. We also conducted the exper-
iments with different distributions of difficulty and expected profits. Among others,
we considered the difficulty distribution being exponential reflecting the situation
where only few innovations are hard to discover. Additionally, we have considered
the case where certain percentage of technological links are given “for free’ implying
that their difficulty equals zero. Those modifications affect the speed of discovery
process but do not change our findings with respect to Propositions [IHd Further-
more, we considered alternative parameters for equation and also modified the
shape from exponential to logarithmic one. Our main findings do not change as
long as our main assumption that arrival of new ideas depending on the visible and

accumulated knowledge holds.

2.4 Stylized facts

Apart from theoretical results on GPT emergence, we would like to point here some
of the stylized facts of innovation process that our model replicates and illustrate
some steps in empirical verification of our predictions. In Proposition [4 we have
already mentioned the lock-in effect. This effect is replicated by our model in the
scenario with growing technological network, where low amount of knowledge accu-
mulated (either due to coordination of R&D efforts or variation in expected profits)

leads to many product types remained neither realized nor discovered (Figure [2.23)).

The model also demonstrates clustering of innovations in time (see Silverberg and
Lehnert (1993) for a literature review), which in the model is represented by the

discovery of products. To ensure that we replicate the procedure by [Silverberg and

%OReprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.23: Lock-in effect in the case of two product generations and two distinct GPTS

Verspagen| (2003) in generating an innovation time serieﬂ (periods when a new
product type has been discovered, see Figure for an example) and sequen-
tially fit the Poisson and negative binomial models with linear, quadratic and cubic
time trends as explanatory variables. The linear and quadratic time coefficients
are significant at the 5% level, while the negative binomial model is consistently
preferred over the Poisson one for all the three model specifications[”?] The simple
explanation of the temporal clustering of innovations by our model is that those
innovations share a common knowledge (technological edges), and agents coordinat-
ing their R&D activity exploit the knowledge externalities by discovering several
product types within a short period of timefﬂ This confirms ideas dating back to
the concept of “technological convergence’ described by Rosenberg (1976) and shows

the power of knowledge diffusion mechanism.

In addition to the aforementioned facts, we compare structural similarity of the
networks we generate with those we observe empirically. In particular, networks
of technologies and product relatedness are of interest. For many reasons (mainly
because of inuvisible and wvisible networks representing an ex-ante state of knowledge

we can only hypothesize), we concentrate on the final ex-post discovered networks

61Note that by definition of a time period in our model, it is unlikely two innovations to happen
at the same period. Therefore, without loss of generality we consider each twenty periods as one
time interval.

62This finding holds for the majority of parameter values we use. The notable exception is
variation in expected profits. If those change often, the process of discovery becomes close to
linear in time.

63This is particularly true if the technological link had a relatively large difficulty and, thus,
likely remaining one of the last barriers to introduce a new product.

64Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.24: Number of innovations per time interval. The result obtained for the scenario with
two distinct GPTs (N=120, M =195, CS=4, 5 = 1 and leaky knowledge). The left figure illustrates
bursts in the number of innovations (y-axis) in time (x-axis), while the right one is the histogram
of innovations, i.e. frequency of periods with 0,1, 2 or more innovations@

drawing parallels with the works of Hidalgo et al| (2007)), |Hidalgo and Hausmann
(2009) and |Boschma et al| (2014) based on trade and patent data. Hidalgo et al.
(2007) and Hidalgo and Hausmann| (2009) consider a product as a combination of
some hidden technological capabilities that economic agents possess. In our model
these capabilities are represented by technological combinations (a link between
two technologies being discovered). Boschma et al.| (2014)) investigates networks of
patent International Patent Classification (IPC)E] classes and their relatedness pro-
viding structural characteristics of those networks constructed by employing similar
techniques as [Hidalgo et al.| (2007)). Here we focus on technological networks, where
technologies are seen to be related if they share a patent. Thus, we see our model
as a mechanism by which these empirical networks of products and technologies are

formed.

There is no consensus in literature about graph comparison due to the nature of the
subject of study. This problem is tackled differently across scientific fields (Mern-
berger|[2011). In particular, three main strategies are identified: exact graph match-
ing, inexact graph matching, and feature-based approaches. The latter is preferred
because it allows observing empirical networks on an aggregate level, where each
IPC class or product is already a collection of knowledge pieces or smaller products.
Hence, we expect our simulated graphs, matching some general structural charac-

teristics of empirical graphs, to be an indication that forces behind the formation

65International Patent Classification
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of those graphs are similar. We choose four features of graphs to compare: density,
degree assortativity, and degree distribution. Density tells us about the interconnect-
edness (interrelatedness) of technologies in discovered products. Degree assortativity
reveals whether more pervasive technologies tend to be connected with less pervasive
ones. Average clustering illustrates to what extent do technologies cluster. Finally,
degree distribution reveals possible "hubs’ - few technologies dominating the oth-
ers in terms of their interconnectedness. Note that comparison of those network
features does not require to have the same number of nodes in the simulated and
empirical networks. We compare our product networks to the 'product space’ taken
from the atlas of economic complexity (Hidalgo et al.|2007, Hidalgo and Hausmann
2009). In particular, the data comes from the website of the observatory of eco-
nomic complexity (Simoes 2016). Our product networks have similar high density
and are disassortative (Table . Figure demonstrates how degree distribu-
tion changes for simulated graphs with different knowledge diffusion regimes. Only
‘leaky’ knowledge ensures products to be technologically highly interconnected as in

empirical networks.

Table 2.2: Comparison of simulated (product) and empirical (’product space’) networks

Network Empirical Network Simulated Network
parameters Mean(Standard Deviation)
N of nodes 773 60(0)

N of edges 282402 1720.4(23.8)
Density 0.967 0.972(0.013)
Degree assortativity -0.041 -0.042(0.004)

- Empirical Data ErﬁpiricélDaté EfnpiricélDaté

(a) Sticky (b) Partially leaky (¢) Leaky

Figure 2.25: Kernel-density estimations of degree distributions for product networks compared to
the ’product space’ (dashed line) under different knowledge diffusion regimes
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To validate the produced technological networks we compare their typical ex-post
(discovered) structure (for core-periphery structure, N=60, M =100, C'S=4) with
empirical networks of patent classes (kindly provided by P.-A. Balland for United
States Patent and Trademark Office (USPTO) data for the years 1976 - 2010). A
patent class can be considered as a piece of knowledge needed for production of
goods. Characteristics comparison is presented in the Table 2.3 Both networks
have similar density, implying almost the same ratio of existing links to all potential
links. They are also similarly disassortative meaning that technologies with high
degree centrality tend to be combined with technologies with low degree centrality.
This result demonstrates again that technologies become pervasive only when they
are combined with many infrequently used ones. We also report a typical for em-
pirical networks heavy-tailed degree distribution (Figure [2.26). Figure b) also
illustrates that empirical technological network has a core-periphery structure: there

are important 'gateway’ technologies that are connected to the core and peripheral

OHGS.@

Table 2.3: Comparison of simulated (technological) and empirical (IPC) networks

Network Empirical Network Simulated Network
parameters Mean(Standard Deviation)
N of nodes 438 100(0)

N of edges 12295 292(12)

Density 0.068 0.059(0.009)
Degree assortativity -0.152 -0.150(0.026)
Average clustering 0.479 0.501(0.038)

2.5 Conclusions on modeling emerging GPTs

General Purpose Technologies proved to be crucial for the process of technological
development providing a structure for other technologies and supporting economic

growth. Earlier GPT models emphasized their influence on "productivity paradox’,

66Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.

67If in contrast one looks at the star type network, such gateway technologies are absent.

68 Reprinted with the permission from Korzinov, V., Savin, I. (2018) General Purpose Technolo-
gies as an emergent property. Technological Forecasting and Social Change, Vol. 129, 88-104. (©
2017 Elsevier Inc. All rights reserved.
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Figure 2.26: a) - Kernel-density estimations of degree distributions for technological networks
compared to empirical network (dashed line) of IPC classes. b) - Visualization of a network of IPC
classes among patents (left) and simulated (right) technological networks@

accounting for a 'residual’ in aggregate production functions, focused on GPTs’
evolution under a stream of innovations as well as explained the ’dual inducement’
mechanism between GPT and its application sectors. Despite this extensive body
of literature, the emergence of these technologies deserved only a little attention so
far. Our study sheds light on this issue by concentrating on the pervasive nature of
GPTs. Introducing its emergence as a continuous process of technology adoption,
we look for mechanisms fostering technological convergence employing methods of

network science representing knowledge discovery as a growing technological graph.

Our results demonstrate that knowledge diffusion is absolutely necessary for GPT
emergence, since being discovered once the knowledge spills over to many other
applications, benefiting most those technologies, having the potential to be used in

many distinct products and industries.

The structure of our knowledge should have a sufficient density for a GPT to be-
come pervasive, where by structure we mean interconnectedness of our ideas and
by density — interchangeability of our knowledge among various applications. With
the novel metric (the Multiplicity Index) we demonstrate how to measure that den-
sity. Given the presence of knowledge spillovers and sufficient density of the network
structure, concentrating on technological trajectories, where more knowledge is accu-
mulated also favors GPT in the short term. However, once the technology network
is modeled as a growing knowledge base where agents become aware of novel pos-
sibilities to combine technologies through inventing simpler products, a trade-off
between coordinating on existing trajectories and pursuing novel technological com-

binations emerges. This transforms the pure positive effect of coordination into an
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inverted U-shape form, echoing the classical ambidexterity trade-off between ex-
ploration and exploitation. Similar to firms in the organizational theory (see, e.g.,
Sidhu et al.| (2007)), countries shall apply differentiated technological policy depend-
ing on whether the economy is in a more or less dynamic environment. Thus, in
the ‘path-following’ catching-up process (Lee and Lim 2001) countries aiming to
discover certain product types in the knowledge base where most of technological
trajectories are known from experience of advanced economies will find exploitative
strategy (high coordination on trajectories with most accumulated knowledge) most
attractive. In contrast, if the economy is currently at the technological frontier,
seeking to identify the next GPT, it shall put more focus on exploration of new
opportunities and provide incentives for sufficient knowledge breadth. For the same
reason, policy maker shall avoid supporting any specific product need, before the
economic agents accumulate enough information on alternative ways of producing
goods to satisfy that need and payoffs to adoption of the respective technologies.
Otherwise, the choice of the technological trajectory turns random and due to the
increasing returns to adoption described by |Arthur (1989) the economy risks to be

locked-in to inferior technologies.

Our model reproduces well-known stylized facts accompanying innovation processes
such as S-shaped curve of technology adoption, temporal clustering of innovations in
time and lock in effects. Furthermore, our model replicates many structural features
of the empirical product graphs (Hidalgo et al.|2007)) and those graphs constructed
based on networks of relatedness between technological IPC classes (Boschma et al.
2014).

One shall also point out that the current analysis is limited in a number of ways.
First, no production costs are taken into account. This together with explicit budget
restriction on the side of agents shall provide a more complete picture of the techno-
logical competition, and help to explore 'growth bottlenecks’ reported by Bresnahan
and Yin| (2010). We preferred to abstract ourselves from those issues here for the
sake of clarity. Furthermore, so far we have neglected heterogeneity among agents
in terms of their accumulated knowledge and possible cooperation/competition be-
tween them. All these aspects provide a natural direction to further develop the
present model opening a fruitful trajectory of further extensions in the direction of

GPT competition/succession.
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Chapter 3

A patent search strategy for service
robotics

3.1 Modern general purpose technologies

Examples of famous general purpose technologies are three-masted sailing ship,
steam engine (Rosenberg and Trajtenberg [2004, |Crafts 2004), electricity (Moser
and Nicholas|2004), ICT (Vuijlsteke et al.[2007) and currently bio or nanotechnolo-
gies (Shea et al. 2011, Lipsey et al.|[2005). Another potential GPT of our time is
robotics. In line with theoretical background (Bresnahan|2012) robotics is seen as a
potential driver of the fourth industrial revolution, being considered in a cluster of
technologies, together with artificial intelligence and big data. These technologies
can alter modern production chains and organizational routines as well as global
leadership. Robotics has all necessary characteristics of a general purpose technol-
ogy. Due to its potential broad application it has a pervasive character entering many
downstream products. Especially, a branch of robotics - service robotics (hereafter
Service Robotics (SR)) - has a general application potential. It shows a significant
technological dynamism. In recent decade a huge development is seen in robots and
their applications (IFR/2016). International Federation of Robotics (IFR) estimates
that the worldwide number of domestic household robots is rising up to 31 million
between 2016 and 2019 (IFR/[2016). Finally, robotics exhibits innovation comple-

'Kreuchauff F., Korzinov V. (2017) A patent search strategy based on machine learning for the
emergent field of service robotics. Scientometrics, Vol. 111, Issue 2, 743-772. doi 10.1007/s11192-
017-2268-3.
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mentarity while advances in robot development induce significant improvements in
downstream sectors and the same holds in reverse. Advances in manufacturing of

machines and new materials allows construction of better and safer robots.

On top of that robotics can be considered a structural technology as seen through
the lenses of eleven characteristics highlighted by Lipsey (Carlaw and Lipsey|2011).
While some of these characteristics are useful for modeling purposes others can serve
as a criteria for detecting a structural technology. We elaborate on these criteria
in the following numbering them in brackets. Robotics has been developed through
the endogenous research and development process (1) and its efficiency increases
gradually overtime (Ott/2012) (2). The use of robots spreads slowly in the economy.
It will take time before many of the modern inventions such as driverless cars or
service robots, will be fully commercialized and their markets will mature. Only
after these technologies enter many sectors all the advantages that they bring will
be reaped (3). In addition to robotics several potential non-identical GPTs exist
nowadays (4). Advances in nanotechnologies and MicroElectroMechanical Systems
(MEMSs) may revolutionize many production sectors. Bio-technologies and chemistry
developments in pharmaceutical industry promise a revolution in various medical ap-
plications and in a disease diagnosis and treatment. Moreover, robotics itself can be
seen as consisting of classes of technologies. Figure demonstrates technologies
constituting robotics based on the patent data and technology classifications devel-
oped by [Schmoch| (2008) | In the words of T. Bresnahan (Bresnahan[2012) GPT
itself is a cluster of technologies, which satisfies the fifth characteristic of Carlaw
and Lipsey (5). On top of that modern robots heavily stand on the advancements
and developments of previous GPTs, such as electricity and ICT (7). Invention,
innovation and diffusion of robots in the economy involves many uncertainties (8).
Firms, dealing with robotics, can not really maximize their returns over a life time
of a technology, due to many uncertainties involved in its development path (9). For
example, who would have known a decade ago that we will have real examples of
driverless cars on our roads by 2013, when several US states passed laws permitting

autonomous vehicles on their roads.

Thus we can see that robotics, especially considering its future developments in

service sectors, has a great potential as an emerging disrupting technology. The

ZPatents are taken from the PATSTAT database of the European patent office. The retrieval
query was IPC class "B25J" or a substring "robot" in title or abstract of a patent. For more
information see subsection
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Figure 3.1: Robotics represented as a cluster of technologies based on the IPC classes of patents
from PATSTAT database (version April 2016). Each node is a technology where technology-to-IPC
concordance is taken from |Schmoch| (2008). Each edge connecting two nodes is a patent. Edge
width reflects the number of patents.

following chapter demonstrates a methodology that helps to identify service robotics
patents within modern relational databases as well as provides some basic descriptive

statistic on patents identified with this methodology.

Innovation policies that address promising emerging technologies serve to reach
macroeconomic objectives such as promoting sustainable growth and prosperity.
They are legitimated due to the various uncertainties associated with new techno-
logical fields that result from coordination problems in complex innovation chains
with scale economies, multilateral dependencies, and externalities. In order to de-
velop effective policy measures, one has to carefully recognize emergence patterns
and assess possible downstream effects. This is a demanding task since these patterns
vary across technologies, time, scale, and regional and institutional environments.
It is important that the policy advises rely on credible data sources that accurately
depict early research and innovation results at the very beginning of value creation.
However, as long as a new technology has not yet been specified within official sta-

tistical schemes, the identification of delineating boundaries in respective data bases
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is a nontrivial problem.

Service robotics is a current example of an emerging technology. The International
Federation of Robotics (IFR) has been working on a service robot definition and
classification scheme since 1995. A preliminary definition states that a service robot
is a robot that performs useful tasks for humans or equipment excluding industrial
automation applications. Industrial automation applications include, but are not
limited to, manufacturing, inspection, packaging, and assembly (compare www.ifr.
org and ISO 8373:2012). Service robots can be further subdivided into those for non-
commercial personal use like domestic servant robots or automated wheelchairs, and
those for professional commercial services, for which they are usually run by trained
operators like fire-fighting or surgery systems in hospitals. Hence, SR contribute to

both traditional and new types of services.

Beyond its potential productivity effects SR is believed to induce visible changes
in employment structures (Autor et al. [2003, Frey and Osborne|[2013] |Graetz and
Michaels| 2015). SR has a potential to change organization of processes in firms
and everyday life of people by the diffusion of at least semi-autonomous physical
systems out of industrial fabrication and into service economies. Using the advances
of modern digital economy robotics can move from a professional use to a more
private use. In order to understand SR one needs to identify its scope and detect it

within various databases.

As a result of the arising multiplicity, the technology field so far is not clearly con-
fined and thus neither part of any existing official industry, patent or trademark
classification system nor of any concordances not to mention national account sys-
tems. Having said that, distinguishing SR from industrial robotics (hereafter Indus-
trial Robotics (IR)) is hardly possible. This so far has impeded a comprehensive
assessment of the economic impacts of SR diffusion, especially with respect to the

magnitude, timing and geographical localization.

This work makes SR tractable by developing a search strategy to identify it within
the patent databases. Moreover, we model the approach not to be limited to patents
but to be applicable for scientific publications as well. In addition, the general
methodology is not even confined to the field of robotics, but could be applied to any
similar identification problem. Differentiating from classical lexical and citational
approaches used by other scholars, our approach introduces a machine learning
algorithm that is utilized as a classifier. Being trained on some sample data this

classifier acts as an ’expert’. The machine is able to decide whether a patent belongs
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to the category of service robotics or not — with a certain degree of precision. Since
there are several approaches in the scientific literature which deal with analogous
problems of technology detection and classification, we hereby set out to (1) limit
expert bias regarding vested interests on lexical query methods (with respect to term
inclusion and exclusion), (2) avoid problems with citational approaches such as the

lack of portability, and (3) facilitate evolutionary changes.

The following sections are organized as follows: First, we give an overview of previous
technology identification approaches referring to examples of similar emerging fields
that lacked classification schemes in its infant phase. Second, we present our step-
by-step methodology for identifying developments in an emerging field characterized
only by its early applications. It successively describes the use of patents as data
source, the retrieval of a structured core dataset, and the use of an automated
machine learning algorithm, namely a support vector machine (hereafter Support
Vector Machine (SVM)). Finally, we present results of our pioneering approach and

conclude with future scope for improvement.

3.2 Detection of emerging technologies

There is no widely agreed-upon definition of emerging technologies (Halaweh [2013)).
The initial lack of common knowledge, standards, and specifications entails uncer-
tainties along various dimensions (Stahl 2011). Future costs and benefits, relevant
actors, adoption behaviour, and potential socio-economic implications such as cre-
ative destruction are highly unclear (Srinivasan |2008). Therefore, scientific studies
have been using bibliometrics to monitor trends for a variety of domains and as-
sess the nature of emerging technologies already within scientific research and early

development.

No matter what the paramount aim, all analyses greatly rely on well-founded data
acquisition, which first and foremost identifies the technology under consideration.
With ongoing technological advancements as well as computational power more and
more elaborated strategies have accrued. Most often, technology detection within
patent or publication databases is predicated on either (1) lexical, (2) citationist,

or mixed search strategies]’| For example, early conceptions of apt queries for nan-

3With respect to scientific publications another common strategy is to identify core journals.
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otechnology proved to be difficult, as the first specific IPC-subclass B82BfY, which
basically refers to nano-structures and their fabrication, was not introduced be-
fore the year 2000 and did not incorporate applications from former years (Noyons
et al. [2003). In its infancy, it contained only estimated 10 percent of all relevant
documents. Hence, the first scientific identification approach for nanoscience and
technology relied instead on a lexical query developed in 2001 by the Fraunhofer In-
stitute for Systems and Innovation Research (Fraunhofer Institute for Systems and
Innovation Research (ISI)) in Germany and the Centre for Science and Technology
Studies (Centre for Science and Technology Studies in Leiden (CWTS)) at Leiden
University in the Netherlands.

A lexical query is a search for specified terms, which in the most simple case might
consist of only one word (like 'nano™’ for nanotechnologies) or a basic combination
(like ’service robot*’). This primal string is applied to titles, abstracts, keywords or
even the whole text body of examined documents. Some of these documents might
prove to be relevant in the eyes of experts and, thus, offer additional terms starting
an iterative processE] Considering emerging fields, the number of terms within a
search string that is developed in such a lexical manner naturally grows rapidly.
More and more scholars and practitioners become attracted by the field [f] adding
alternatives and broadening interpretations in the course of time. For example, in
order to keep track of the dynamically spreading nano-fields |Porter et al. (2008])
comprised a modular Boolean keyword search strategy with multiple-step inclusion
and exclusion processes, which was subsequently enhanced and evolutionary revised
(Arora et al.2013)). In addition, both authors of scientific publications as well as
applicants of patents are interested in some rephrasing. The former, because they

might benefit from a serendipity effect if their label establishes itself in the scientific

All articles within those journals are then considered relevant. For patents though, this search
strategy is obviously not feasible, which is why we do not deepen it further.

40Only in 2011 a second sub-class, B82Y, focusing on specific uses or applications of nano-
structures was introduced for IPC and the Cooperative Patent Classification (Cooperative Patent
Classification (CPC)). Previously, related nano patent documents could only be identified if they
were classified via the European Classification System (European Classification System (ECLA))
with the specific sub-class YOIN.

5Such a search strategy is called evolutionary, if subsequent researchers may build upon existing
query structures by progressively incorporating terms that better specify the technology and widen
its scope (Mogoutov and Kahane|[2007)).

6For the instance of nanotechnology, to which we refer throughout, (Arora et al[[2014) measure
the growth in nano-prefixed terms in scholarly publications and find that the percentage of articles
using a nano-prefixed term has increased from less than 10% in the early 1990s to almost 80% by
2010.
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community, and the latter because of encryption and legalese issues. Applicants
may want to re-label critical terms, both to hide relevant documents and technical
information from actual rivals and to build patent thickets of overlapping Intellectual
Property Rights (IPR) which precludes potential competitors from commercializing

new technology altogether.

A lexical query can be enriched adding documents and inherent terms by citational
approaches, for instance, by including new publications, that are cited by at least
two authors belonging to the initial database (Garfield |1967, [Bassecoulard et al.
2007)[] or, regarding patents, by including applications, that refer prior art that
has been a part of the previously established core. In the example of nanotech-
nology Mogoutov and Kahane (2007) enriched an initial nanostring by a number
of subfields, automatically identified and defined through the journal inter-citation
network density displayed in the initial core dataset of nano-documents. Relevant
keywords linked to each subfield were then tested for their specificity and relevance

before being sequentially incorporated to build a final query.

The example of nanotechnology illustrates well how much effort the development of
an evolutionary query yields. Lately, private interests — rather than governmental
or scientific research — have driven even more elaborated technology identification
procedures: companies that seek to monitor competitors or investigate latest re-
search trends have started to rely on more cost-efficient processes in order to lower
resulting expenditures. As a side effect, some encompassing literature on specialized
text mining techniques has emerged, which goes beyond lexical and citation based
procedures. To name just a few, Li et al| (2009) attempt to find significant rare
keywords, considering heterogeneous terms used by assignees, attorneys, and inven-
tors. [Yoon and Park| (2004) argue that citation analysis has some crucial drawbacks
and propose a network-based analysis as alternative method, that groups patents
according to their keyword distances. Lee| (2008) uses co-word analyses regarding
term association strength and provides indicators and visualization methods to mea-
sure the latest research trends. Lee et al. (2009)) transform patent documents into
the structured data to identify keyword vectors, which they boil down to principal
components for a low-dimensional mapping. These facilitate the identification of

areas with low patent density, which are interpreted as vacancies and, thus, chances

"This approach naturally harbors the risk of including generic articles of any scientific field that
somehow happen to be cited in a technologically unrelated context. |Bassecoulard et al.| (2007),
therefore, incorporate a statistical relevance limit relying on the specificity of citations.

28



CHAPTER 3. A PATENT SEARCH STRATEGY FOR SERVICE ROBOTICS 59

for further technical exploitation. [Erdi et al| (2013) use methods of citation and
social network analysis, cluster generation, and trend analysis. Tseng et al.| (2007)
attempt to develop a holistic process for creating final patent maps for topic anal-
yses and other tasks such as patent classification, organization, knowledge sharing
and prior art searches. They describe a series of techniques, including text segmen-
tation, summary extraction, feature selection, term association, cluster generation,
topic identification and information mapping. For the field of robotics, Ruffaldi
et al.| (2010) is a good instance: They visualize trends in the domains of rehabil-
itation and surgical robotics identified via text mining. Following [Mogoutov and
Kahane, (2007), the relative performance of different identification approaches may
be compared via (a) the respective degree of intervention of experts, (b) their porta-
bility, (¢) their transparency regarding core features and respective impacts on final
results, (d) their replicability, (e) their adaptability, meaning its ability to produce
valid results while the technology in question keeps evolving, (f) their updating ca-
pacity, and (g) the extent and relevance of the data obtained. Certainly, no single
best approach exists, since any method has its advantages and drawbacks according
to these criteria. We will conclude on the relative performance of our approach at
the end of this chapter.

Instead of purely lexical, purely citationist or mixed query, that are similar to the
current text mining literature, we propose a machine learning algorithm. For this
purpose, we first identify a small core patent dataset consisting of 228 patent appli-

cations and then let automated algorithms identify emerging technology boarders.

3.3 Machine learning for technology detection

Patents as Data Source

As soon as a technology is sufficiently well specified, generically distinguishable, and
ideally properly classified there are various techniques to map ongoing advancements.
However, if such a delineation is not yet established and no broadly accepted con-
sensus has been reached so far, economists most often rely on lexical, citation based,
or mixed search strategies for prior identification purposes that help to trace related

emerging fundamental and application knowledge in academic articles and patent
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documents.ﬁ] As regards the technology under consideration, it is important to ac-
knowledge that according to the IFR, the intended use, and as a consequence, the
factual field of application determines the delimitation of SR from IR. Thus, patents
are the data source of choice for an automated SR identification, since patentabil-
ity requires an indication of the intended commercial implementation. Despite all
difficulties that arise in the use of patents and their interpretation, they are widely
accepted as indicator for innovative activity |Griliches|[1990, [Hall et al.|[2005. Espe-
cially citation structures facilitate tracing knowledge flows (see, for instance, Jaffe
et al.[[1993, Thompson| 2006, Fischer et al. 2009, Bresnahan 2010) and thus make
technology development patterns visible. Hence, we started with a patent search

strategy with a vision to extrapolate it to other lexical sources.

Building a structured core dataset that is suitable for the later application in machine
learning, requires the identification of a sufficiently large number of documents, that
are validated as part of the technology and capture most of its hitherto variety
of developments. This validation is granted by independent technological experts,
who can either provide those documents themselves or may be given a predefined
assortment to adjudicate on. The latter decreases a potential expert bias with
respect to multifaceted preferences but might give rise to a negative influence of the
researcher himself, who has to develop a search method for this primal assortment.

In this work experts are provided with a predefined core dataset.

Retrieval of a core service robotics patent dataset

All unstructured patent text data as well as related document meta data were ex-
tracted from the "TEPO Worldwide Patent Statistical Database’ (PATSTAT), version
April 2013f] First, we extracted all patents that were either sorted in IPC class
B25J7 or contained a substring like 'robot*” in their respective title or abstract/]

Hence, we established a set of documents describing robotic devices. Second, in

8 Consequently, the adequate data sources for this identification process are the same that com-
prise the targets of subsequent analyses which might give cause for some criticism.

9This database encompasses raw data about 60 million patent applications and 30 million
granted patents, utility models, Patent Cooperation Treaty (PCT) applications, etc. filed at more
than 100 patent authorities worldwide.

IOMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES. See
http://www.wipo.int/classifications/ipc/en/

t According to the USPTO, most of the manipulators classified in B25J are industrial robots.
See http://www.uspto.gov/web/patents/classification/cpc/html/defB25J . html|
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order to identify a subset of potential SR patent documents that comprise most of
the hitherto existing developments we created 11 sub-queries, based mainly upon
IFR application fields for service robots. These queries consisted both of TPC sub-
classes (mostly on 4-digit-level) and stemmed lexical terms, combined modularly in

a Boolean structure™

The second step provided us with 11 non-disjunct subsamples of potential SR
patents. While other approaches regarding similar tasks of technology identification
from there on further evaluate candidate terms by testing, assessing and adjusting
terms and class codes to address weaknesses and follow emerging research trails
manually (Porter et al.|2008)), we did not alter the primal modular Boolean search.
Instead, as indicated above, we left it to technological experts to verify the under-
lying categorization. Two independent academic expert groups with 15 scientists,
affiliated with the

e High Performance Humanoid Technologies (H2T) from the Institute for An-
thropomatics and Robotics at KIT, Germany, and the

e Delft Center for Systems and Control / Robotics Institute at TU Delft, Nether-

lands,

took on the task to decide which of the patents belonged to SR and which belonged
complementarily to IR. The above experts were specialized in humanoid robotics,
computer science, and mechanical engineering. Their experience in the field of
robotics varied between 1 and 15 years. We provided them with 228 full body
versions of potential SR patents from all over the world, extracted with the primal
subsample queries. All patents listed in PATSTAT disclose at least English titles
and abstracts. Thus, the judging scientists could always refer to these text parts as
well as to all engineering drawings, independent from the language of the remaining
text body.

For the application of automated machine learning approaches we then transformed
the unstructured patent document text into structured data. This included several
steps, namely (1) combining titles and abstracts in one body and splitting the re-
sulting strings into single terms in normal lower cases, (2) removing stop words, (3)

stemming, i.e. reducing inflected words to their stem, (4) constructing n-grams of

I2The queries are available upon request.
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term combinations (up to 3 words in one), and (5) deriving normalized word and

n-gram frequencies for each document[”]

With these normalized frequencies a matrix was constructed with columns, being
variables, and rows, being their observations. This matrix, shown in table [3.1],
together with the binary vector indicating which observations had been identified
as SR patents, served as a training input for the machine learning algorithm.

Table 3.1: Structure of patent word and n-gram frequency matrix with binary decisions as input for
machine learning. The lighter gray shaded area indicates an example of a subsample, on which the
machine is trained. The darker gray area is then a respective example for a subset of data which is

used for testing the fitness of the classification process. The non-shaded area at the bottom refers
to new data, on which the SVM is able to decide based on the previous traininﬂ

Attribute vectors x ‘ binary

patent | wordq1 word,a bigramy;  bigramys trigram;;  trigramgo decision y

206 | freq.o06|w1 aoo aoa 1
228 freq.228|w1 000 freq-228|t2 -1

xxxX | fred.geq|wi .. e ?
XXX fred.pza|wi

Statistical classification, using machine learning algorithms, has long been imple-
mented for the purpose of solving various problems and tasks, such as computer
vision, drug discovery or handwrite and speech recognition. Numerous different
methods were developed and new ones still appear. However, there has been no
one, at least to our knowledge, using statistical classifiers on the basis of a primal

lexical query for the purpose of detecting an emerging technology. We considered

a number of alternatives (Kotsiantis |2007) to the aforementioned SVM, such as k-

nearest neighbor, neural networks, and genetic algorithms before starting with our
particular algorithm. According to the so called no-free-lunch theorem (Wolpert and

13We also tried to incorporate another step (6), which added IPC dummy variables to indi-
cate class belongings. These additional attributes where later abandoned by the following feature
[selection process, which suggests that these IPC class belongings are not significant for the cate-|
gorization at hand.

TReprinted with permission from Kreuchauff F., Korzinov V. (2017) A patent search strategy
based on machine learning for the emergent field of service robotics. Scientometrics, Vol. 111,
Issue 2, 743-772. Copyright (© Akadémial Kiado, Budapest, Hungary 2017 |
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Macready||1997), there is no general superior machine learning method and every
problem has to be tackled individually depending on its properties. We assessed the
aforementioned algorithms according to run-time performance, sensitivity to irrele-
vant or redundant features, and ability to overcome local maximums. In a nutshell,
SVM proved to be the most suitable algorithm and this decision was in line with
computer science experts’ opinions from robotics groups at the Karlsruhe Institute

of Technology.

The k-Nearest neighbor classifier was not chosen due to a poor run-time perfor-
mance, its sensitivity to irrelevant or redundant features and weaknesses compared
to the SVM, regarding difficult classification tasks (Cunningham and Delany|2007)).
Although, the first disadvantage of the algorithm is not that important for our prob-
lem, the next two are highly relevant. We do not know in advance, which keywords
or features will be significant within the identification process of SR patents and it
is also hard to assess the difficulty of our task up front. Despite the popularity of
deep learning algorithms, the second abandoned algorithm was a neural networks
classifier (Rojas [1996), which is difficult to retrain and hard to extend. This is
important for our problem since we would like to diversify and expand our sample
size as well as the expert pool if this proves to be advisable. On top of that, this
algorithm may get stuck on local maximums and requires quite large datasets to
be trained. Finally, we rejected genetic algorithms which give no assurance of an
optimum solution in terms of a best fit function (Rojas/|1996). Nevertheless, this
algorithm is probably the best substitution for a SVM and an implementation of it

could offer some future improvement of our methodology.

Support Vector Classification

The method of support vectors was introduced in the middle of the 1960s (Guyon
et al. 1993, (Cortes and Vapnik [1995). The original approach together with its
various extensions is now one of the most acknowledged and recommended tools
among modern machine learning algorithms. In the following we briefly describe its
core concept and discuss some advantages that are found relevant for the problem
at hand. The core idea of the method is to create a unique discrimination profile

(represented by a linear function) between samples from different classes.

The result is a line — or more generally a hyperplane — which is constructed in such

a way, that the distance between two parallel hyperplanes touching nearest samples
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becomes as large as possible. This way the method is trying to minimize false clas-
sification decisions. The "touching” data points are termed support vectors. In fact,
the resulting separation plane is shaped only by these constraining (= supporting)
points. Below we provide the mathematical notation of a support vector machine,
following Hsu et al.| (2010).

Formally defined, we have a training set (x;,y;) of i = 1,...,l sample points, where
every x; € R" is an attribute vector (consisting of our normalized word and n-gram
frequencies) and y; € {—1,1}! is a decision for that specific data point, which, thus,
defines its class. Each point represents a patent. The SVM then yields the solution
to the following optimization problem (Boser et al.|[1992, |Guyon et al.[[1993):

!
: I 7
min oW W+C;§-

s.t. yi (Who(x;) +b) > 1—¢ (3.1)
§& >0

where w is the normal vector between the separating hyperplane and the parallel
planes spanned by the support vectors. The mapping ® is related to so called
Kernel functions, so that K(x;,x;) = ®(x;)?®(x;). For problems in which the data
under consideration are not linearly separable, ® maps the training attributes into a
higher dimensional space, where a hyperplane may be found. Table summarizes
common Kernel functions and their respective parameters v, r, and d (Burges||1998|,
Ali and Smith-Miles |2006|, Pedregosa et al. 2011, [Manning et al. 2008)@

Table 3.2: Kernel functions used for the SV

Kernel function Formula
Polynomial (y{(z, 2y +r)?
Radial basis function (rbf) exp(—~v|z — 2/|?)
Sigmoid tanh((x, ) + )

15Gince there is no possibility to determine in advance which Kernel function should be used,
the choice of the depicted functions was mostly motivated by their popularity in classifiers and
availability within the software package used.

16Reprinted with permission from Kreuchauff F., Korzinov V. (2017) A patent search strategy
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The above version of the classification procedure also incorporates the so called Soft-
Margin method (Cortes and Vapnik|(1995), that allows for mislabeled training sample
points. The approach introduces &; as non-negative slack variables which measure
the extent of incorrectly classified items in the training set. Zizl &, is, thus, a penalty
term, and C a penalty parameter. The chosen method provides certain advantages.
It is generally accurate, does not get stuck on a local maximums and is tolerant
to irrelevant or redundant attributes (Kotsiantis|[2007)). The latter is probably the
most important for the purpose of patent detection, since it is impossible to know in

advance which keywords or keyword combinations will be relevant for identification.

Training Algorithm, Classification, and Evaluation

Figure depicts the flow chart of our algorithm. First, we preprocessed the data
in order to eliminate irrelevant features and to obtain a final dataset of feature
vectors. When we turn to the result section, the necessity of this preprocessing
becomes clearer. In a second step we started the SVM training process, comprised
of three iterative steps: training of the model, model evaluation and optimization.
We realized all these steps for our SVM, using the python programming language
and its library scikit-learn for machine learning (Pedregosa et al. 2011).E] Finally,
the classifier with the best model fit was applied on PATSTAT data to identify new

service robotics patents.

Firstly, the algorithm randomly splits the training dataset X into training and test
parts. Second, it fits the model based on the training dataset leaving out the test
data. During the training process the data are again split into k parts. The algorithm
then trains the model on k-1 parts and validates on the k-th part. The training is
performed several times so that every part serves as a validation dataset. The
number of training repetitions is reflected by a cross-validation parameter and can

be specified and is subject to variation during the fitting of the model.

based on machine learning for the emergent field of service robotics. Scientometrics, Vol. 111,
Issue 2, 743-772. Copyright © Akadémiai Kiad6, Budapest, Hungary 2017

1T"We do not discuss the exact implementation of the support vector machine algorithm using the
python scikit-learn library. All necessary materials can be found in open access libraries following
the reference provided (Pérez and Granger|[2007).
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Figure 3.3: k-fold cross-validation process. Part Y serves as an independent test set, while part Z
serves as a cross validation set{:gl

Figure[3.3]illustrates the k-fold cross-validation process. The evaluation of our model
is based on the criteria of precision and recall. The former measures the ability of
a classifier not to label objects as positive that should have been labeled negative.
Formally, precision is the total number of true positives (tp) divided by the sum of
all positives including false positive errors (fp).

t
precision = P (3.2)

tp+ fp

The latter (recall) measures the ability of a classifier to find all positives or the

number of true positives divided by a sum of true positives and false negative errors

(fn).

tp

N=—>"_
reca tp—l— fn

(3.3)

On the one hand, a model with a good recall but bad precision will find all positive
samples — but will have some of them being actually negative. On the other hand, a
model with bad recall but high precision will not have false positive objects, however
it will miss some of the true positives. In order to balance these two measures we

used a fl-score that can be seen as their weighted average:

8Reprinted with permission from Kreuchauff F., Korzinov V. (2017) A patent search strategy
based on machine learning for the emergent field of service robotics. Scientometrics, Vol. 111,
Issue 2, 743-772. Copyright © Akadémiai Kiad6, Budapest, Hungary 2017

YReprinted with permission from Kreuchauff F., Korzinov V. (2017) A patent search strategy
based on machine learning for the emergent field of service robotics. Scientometrics, Vol. 111,
Issue 2, 743-772. Copyright (©) Akadémiai Kiad6, Budapest, Hungary 2017
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precision x recall

fl1=2 (3.4)

precision + recall

To optimize our classifier we calibrated it to have the highest possible fl-score.
Tuning of the model was done by varying the cross-validation parameter, the kernel

functions, and their respective parameters.

3.4 Resulting learned model of patent classification

The sample used in the machine learning process consisted of 228 patents with valid
expert decisions. It contained 98 SR patents and 130 IR patents, according to our
expert group’s validation. As a result of the transformation of unstructured patent
text into structured data, we observed 30,987 different features (or variables) within

these patents, which included keywords, bigrams, and trigramsm

The resulting matrix (228 x 30,987) had to be pre-processed before serving as an
input for the SVM, due to its sparsity. This means, that only a small number of
keywords and n-grams are shared by a majority of the patents. At first glance
this information could appear confusing. The explanation lies in the variety of SR
applications: Descriptions of significantly different service robots with very unlike
applications contain a huge number of dissimilar keywords and keyword combina-
tions. Most of these are uniquely used in their specific contexts and, thus, appear
with a very low frequency. Figure illustrates this fact by showing typical relative

appearances of normalized frequencies of two randomly chosen variables.

Thus, some variables contained too little information and introduced noise instead.
Consequently, these insignificant features had to be excluded from the data, since
they do not contain information relevant for classification purposes. For example,
if a keyword (or n-gram) appeared in only one patent, this variable would not have

helped in solving the problem of classification. Our feature selection process served

20We even included IPC classes in an early stage of development, but did not find any of these
classifications to become part of the support vectors. They turned out to irrelevant for the dis-
crimination procedure and were thus removed during the feature selection process

21 Reprinted with permission from Kreuchauff F., Korzinov V. (2017) A patent search strategy
based on machine learning for the emergent field of service robotics. Scientometrics, Vol. 111,
Issue 2, 743-772. Copyright (© Akadémiai Kiad6, Budapest, Hungary 2017
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Figure 3.4: Two histograms of exemplary chosen keyword.
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Figure 3.5: Normalized frequencies of randomly chosen attribute pairs — here keywords. Colored
dots indicate the expert classification as SR (red) and IR (blue).

to exclude such a redundant feature. We implemented a threshold that at least 2%
of the entries of a variable in each class (SR vs. IR) should have non-zero entries.
The table in the flow chart (figure shows the dependency between the number of
variables and different thresholds. With this selection process the resulting matrix
was reduced to 1206 variables for our 228 observations/patents. We provide these
variables/terms in the tables to in the appendix. Finally all variable
frequencies were scaled to the interval [0, 1], so that a second normalization process
set the maximum frequency in the sample to 1. Figures and show normalized
frequencies of attribute pairs and groups of three, respectively. Colored dots indicate
the expert classification as SR (red) and IR (blue).
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Figure 3.6: Normalized frequencies of randomly chosen attribute groups of three — here keywords.
Colored dots indicate the expert classification as SR (red) and IR (blue).

SVM specific outcomes

In order to eliminate negative influence of the unbalanced dataset we introduced
weights in our SVM proportionate to SR and IR classes. Following the cross-
validation procedure the support vector machine was fit on to a 85% of the original
dataset. The remaining 15% were kept for testing purposes. The split was random

and its ratio is an arbitrary choice.

Table 3.3: Model tuning parameters and respective value

Parameter Varied values  Chosen values
cross-validation (cv) 3,4 3

complexity (C) 10,...,1000 10

~ of rbf kernel 107%,...,1072 0.005

~ of polynomial kernel 107%,...,1072 not chosen

d of polynomial kernel 1,2,3 not chosen

r of polynomial kernel 1,2,3 not chosen

7 of sigmoid kernel 107%,...,1072 not chosen

r of sigmoid kernel 1,2,3 not chosen

The cross-validation parameter was set to 3 and 4, determining the amount of ran-

dom splits of training dataset into a training and evaluation sets. Another param-

22Reprinted with permission from Kreuchauff F., Korzinov V. (2017) A patent search strategy
based on machine learning for the emergent field of service robotics. Scientometrics, Vol. 111,
Issue 2, 743-772. Copyright (© Akadémiai Kiad6, Budapest, Hungary 2017
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eter, that was varied while searching for a better model, is so called C parameter.
The following citation nicely explains the main properties of this penalty parameter:
"In the support-vector network algorithm one can control the trade-off between com-
plexity of decision rule and frequency of error by changing the parameter C” (Cortes
and Vapnik|[1995, p. 286).

Table 3.4: Classification repor

precision  recall  fl-score  No. of patents in test set

SR 75% 94% 83% 16
IR 93% 74% 82% 19
Avg. / total 85% 83% 83% 35

Finally, the three different kernel functions from Table [3.2] were considered. In
particular, the first was a polynomial function and its v, degree, and r coefficient.
The second was a radial basis function (rbf) and its v constant. The third was a
sigmoid function and its 7 and r constant. Table [3.3] presents all kernel parameters
and their values, that were considered to find the best performing classifier — as well

as all eventually chosen values.

The best fl1-score of the model was obtained after a grid-search, performing simula-
tions with all possible combinations of the above mentioned parameters. The final
model showed an 85% precision and 83% recall. It contained a radial basis function
kernel with v equal to 0.005 and C' equal to 10. The training set was randomly split
into 3 equal parts for cross validation. The resulting discrimination plane between
the two classes of patents was constructed using 192 support vectors, meaning that
only these sample observations were significant for classification. Table presents

a classification report after classifying the test set of our sample.

Service Robotics Patents: Overview

Below we provide some descriptive statistics of patents identified based on our
methodology without elaborating on them since this is out of scope of this research.
We identified 21286 priority patents in the period 1980 - 2010 in the world data.

Z3Reprinted with permission from Kreuchauff F., Korzinov V. (2017) A patent search strategy
based on machine learning for the emergent field of service robotics. Scientometrics, Vol. 111,
Issue 2, 743-772. Copyright (© Akadémiai Kiad6, Budapest, Hungary 2017
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Figure [3.7/shows that majority of the inventors are coming from the Republic of Ko-
rea and United States of America followed by Japan and Germany. Similar picture
is obtained when considering applicants (Figure or in other words companies,

that patented a particular invention.

2000 +

KR Us P DE CN FR CA SE TW IT Us KR JF DE FR CMN SE CA NL CH

(a) Inventors (b) Applicants

Figure 3.7: The number of inventors and applicants in service robotics in top 10 coun-
tries. KR=South Korea, US=United States of America, JP=Japan, DE=Germany, CN=China,
FR=France, CA=Canada, SE=Sweden, TW=Taiwan, I'T=Italy.

Figure demonstrates a geographical distribution of German applicants in Ser-
vice robotics depicting their postcodes on the map. We can see, that knowledge
production activity is concentrated in the south-west part of the country, which is
known to be economically developed. In the Chapter 4 section [4.2] we assess to
what extend these clustering activity differs from an overall pattern of knowledge
production activity in Germany and show that there is a significant deviation from

a random pattern.
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Figure 3.8: Location of firms patenting in service robotics in Germany. The size of the circle
corresponds to the number of firms.

3.5 Conclusion on patent search strategy

In this Chapter we proposed a novel methodology for detecting early developments of
an emerging technology in patent data. Our method uses a support vector machine
algorithm on the example of robotics patents. The resulting model was able to find
83% of service robotics patents and classify them correctly with a probability of
85%.

There are several advantages of our method regarding technology classification tasks,

which we discuss along the criteria of Mogoutov and Kahane (2007)). Firstly, experts

do not choose, which terms should be added to or excluded from the primal search,
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hence, the typical lexical bias towards preferred subfields is limited. Speaking of
lexical versus citationist approaches, our method, also avoids a major drawback of
citational methods, which circle around a core dataset and rely on future works
explicitly referring to this prior art. Since citations in patents are generally rard®]
for young emerging technologies in particular the citation lag decreases the expected
number of citations for any given document to a negligible amount. Secondly, the
procedure offers strong portability, so that it can easily be applied to scientific pub-
lications. Moreover, our step-by-step classification method can basically be applied
to any emerging technology — not only those, that arise as an initially small subset
consisting of niche applications like SR emerging out of robotics. Nanotechnology
would have been hard to detach from some well-defined mother technology. The
same is true for Industry 4.0, which is a superordinate concept describing digitally
cross-linked production systems and, thus, enveloping various heterogeneous sub-
technologies, that are hardly classifiable. One of our future tasks will thus comprise
the application of our method on historical nanotechnological patent sets as well as
on Industry 4.0 technologies in order to demonstrate the general applicability and
robustness of our method. Thirdly, our algorithm approach shows high adaptability.
Due to its learning nature it is able to produce valid outcomes although the technol-
ogy under consideration is constantly evolving. Fourth and of capital importance,
the proposed method performs well in terms of recall and precision scores, proving

sufficient extent and relevance of the obtained data.

There is some scope for an even more precise technology identification. First, there
is still room to increase the performance of the SVM method, namely regarding the
kernel functions. Although there have not been any successful attempts to introduce
automatic kernel selection algorithms yet (Ali and Smith-Miles 2006)), it is probably
possible to find a better kernel function for our problem at hand. Second, the
support vector machine can be seen as a first-tier machine classifier that we just
started with. Other methods like genetic algorithms, neural networks or boosting
as well as their combinations could be applied in additional steps. Finally, applying
Principal Component Analysis (PCA) to our matrix of variables could provide some
insights about a similar behavior of different key words in patents. This, however,
comes at a costs of interpretability of results. Nevertheless, words could be grouped

and analyzed together, to see whether these groups of variables are significant in

24Within PATSTAT, for instance, more than 90% of the listed patent applications are followed
by less than three forward citations, 74% do not show any at all.
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identifying an emerging technology, which is a subject for further research.
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Chapter 4

Patterns in innovation clustering and job

creation

4.1 Introduction

'God does not play dice ...
A. Einstein

The methodological research of this thesis, started in Chapter |3| with the develop-
ment of a technique for the detection of an emerging technology, continues in chapter
Chapter {4l In the following a broader perspective is taken on the concept of pattern
detection in economics. In particular, the problem of technology detection is a part
of a broader set of problems in identifying micro trends and patterns, that emerge
on a macro level. Macro- and microeconomics, unfortunately, largely remain sepa-
rated from each other, with one being concerned with aggregate economy behavior
and the other being focused on an single markets and people behavioral patterns.
One of the primary reasons for that is a complexity of the smallest unit of study,
which, in social systems, is often a person who’s behavior we still can’t fully describe
and predict. Modern technological advancements provide us with more and more
micro data as well as tools to proxy and simulate the real world social systems.
The discussion in the following chapter continues methodological research of this
thesis in the direction of pattern detection in micro data. What is meant by pattern
detection is a statistically significant deviation from a benchmark generated with a

process driven by chance.
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In economics Ellison and Glaeser (1997) apply those techniques to construct an
index of industrial concentration. The so called "dartboard approach" compares
locations of actual industry establishments to average location of hypothetical es-
tablishments allocated by a random process within a given administrative region.
This idea was further developed by Duranton and Overman| (2005) were space is
treated homogeneously and the frequency of bilateral distances between all estab-
lishments is benchmarked against a random frequency. Various similar works apply
this methodology to a different datasets as well as improve it (Duranton and Over-
man 2008, |/Albert et al.[2012, Nakajima et al. 2012, Barlet et al.[2013, Koh and Riedel
2014). To the best of our knowledge, the only two studies by Buzard and Carlino
(2009) and Carlino et al. (2012) apply a similar approach to analyze innovations and

emerging technologies which is a primary concern of this thesis.

Section addresses this research gap by taking a geographical perspective on tech-
nological change and identifying clusters of innovations, that can be significantly
differentiated from the ones expected by a random allocation. It is known that
general economic activity tends to be geographically concentrated, and innovation-
related activities are even more spatially clustered (Audretsch and Feldman||{1996).
This work demonstrates how some observed clusters of industrial innovations signif-
icantly deviate from an overall spatial distribution in the case of Germany, opening
a new perspective on innovation clustering and contributing to the literature on
spatial organization of innovative activities. A high clustering of service robotics
innovators is also depicted, which indicates the presence of agglomeration forces in
this field.

The second section of this chapter concerns with another application of the bench-
marking idea in the economics context. Namely, it focuses on the topic of a sustained
superior performance of a firm. The work of Henderson et al.| (2012)) draws first at-
tention to this interesting phenomena. In order to illustrate the problem arising in

this topic, let us take a broader perspective on pattern perception.

People tend to be misled by chance, while looking for a meaningful patterns. For
instance, there is a bizzare but an illustrative example. The letters in the name of
William Shakespeare can be rearranged in a sentence 'Here was I, like a Psalm’[l]
The 46th word from the top of the Psalm 46 in the King James Bible is ’shake’

!Psalm 46, Wikipedia (2018, July 1st.) Retrieved from https://en.wikipedia.org/wiki/
Psalm_46
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and 46th word from the bottom is ’spear’ (Psalm 46, Bible (1999)). Sir William
Shakespeare was 46th years old, when the first version of this Bible was completed.
This is a completely random fact. Actually, given the vast amount of information
and enough patience for a search, one can find a numerous examples of such strange
'facts’. As noted by [Tversky and Kahneman| (1971)), it is easy, thus, to be misled by
this randomness perceiving patterns were they do not exist. Another examples of
randomness misconception are the "hot hand fallacy’” and the "'gambler fallacy’. Many
fans, coaches and even sports commentators will be positive about the statement,
that, if a basketball player hits five shots in a row, he is more likely to hit another
one. This is wrong. This phenomena is known as a ’hot hand fallacy’ and is studied
since the work of (Gilovich et al.[(1985). It is shown that "... people not only perceive
random sequences as positively correlated, they also perceive negatively correlated
sequences as random." (Gilovich et al[1985, p. 311) This mismatch between beliefs
and facts is partly explained by the law of small numbers coined in the paper of
Tversky and Kahneman| (1971). If we now replace a player throwing a ball with
a tossing coin or turning roulette, many people tend to say that the opposite is
likely, which is widely known as a ’gambler fallacy’ (Roney and Trick 2009)). Both

phenomena are well studied and deal with people’s perceptions of a chance.

What if one now asks a question of whether a firm, that has been growing in terms of
employment higher than others in the economy for a number of years, will continue to
do so? The famous examples are companies like Google or Amazon. This question is
very relevant, given that unemployment and job creation are at the core focus of the
political agenda and high growth firms are at the center of a European policy debate
(EU/ 2013). The literature provides a scant evidence regarding this phenomena,
showing that it is difficult to identify determinants of sustained job creation. It is
observed that firms do fail often (Parker et al.|2010)) and superior growth is typically
a temporary phenomenon in the life of a firm (H61z1[2014). The persistence of growth
is smaller for small firms and larger for large firms (Acs and Mueller|[2008). Even
more profounding is the evidence that persistent job creators exist, but do not differ
from other (non persistent) high growth companies (Capasso et al. 2014, Bianchini
et al.|2016).

The research in Section answers a question of whether the number of persistent
high growth firms can be explained by a simple random process. A method based
on Markov property is developed allowing to abstract from distributional assump-

tions. We find a mixed evidence of presence and absence of factors determining
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sustained superior growth performance. In some countries firm dynamics can’t be
explained with a model driven by chance, indicating that firms might possess supe-
rior operating capabilities and/or technological traits as well as better managerial
and organizational strategies. In contrast, the data from other countries (Italy and
Spain, for example) indicate that we cannot rule out chance as an explanatory
mechanism for the firm’s growth trends, pointing out that it could be a merely tem-
porary phenomenon, implying that firms create new jobs, but very likely these jobs
will be lost. Finally, we also find a contradictory evidence where depending on the

underlying model, growth measure and confidence level, the results may vary.

The chapter continues as follows, Section first takes a dive into the economics lit-
erature on clustering and discusses classical theoretical constructs. It then describes
the data and methodology applied to service robotics patents and German R&D
data, while appendix tables report on all findings, results subsection focuses on a
listing of the most interesting ones. The Section concludes with discussion about
contributions to the geographical economics literature. The Section develops the
idea of random benchmarking elaborating on the literature about persistent growth
and its implications. It then describes the methodology developed to study persis-
tent growth using data of four European economies, followed by presentation of the
resulting mixed evidence. Conclusion subsection summarizes main methodological

contributions of this chapter.
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4.2 Spatial distribution of innovative activities: The

example of Germanyf|

4.2.1 Spatial distribution of innovative activities

Economists have theoretically and empirically demonstrated a positive relationship
between investments in research and development (R&D), resulting innovations and
economic growth. Models of endogenous growth lead to the conclusion that R&D is
one of the main drivers of national welfare (Romer|[1990b, |Grossman and Helpman
1991}, /Aghion and Howitt||1992). These theories are supported by multiple empirical
studies that also confirmed the importance of R&D for technological progress and

productivity (see, for example, |Akcay| 2011 for a survey of this literature).

Given the broad literature regarding the spatial distribution of innovation, R&D,
and industrial activity, this work aims to fill a gap regarding locational patterns of
R&D input by empirically exploring micro-geographic data for Germany. In order
to measure spatial concentration early studies, as for example Krugman (1991) and
Audretsch and Feldman| (1996)), use a locational Gini coefficient. However, as argued
by [Ellison and Glaeser, (1997), one problem with this coefficient is that it may
spuriously indicate the localization of an industry resulting from the lumpiness of
plant employmen‘ﬂ Ellison and Glaeser| (1997) improve this approach by offering
an alternative index, that controls for the organization of an industry by adopting

a so-called dartboard approach (Ellison and Glaeser (EG) approach).

The approach compares the degree of spatial concentration of employment in a given
sector with the degree of concentration that would arise if all plants in that sector
were located randomly across locations. In other words, it answers the question of
whether a location behavior of plants can be distinguished from a random distribu-
tion of plants in a given country. However, the approach has mainly been criticized
as it relies on a discrete definition of space and is, thus, affected by the underly-

ing spatial zoning system, i.e. shape, size and relative position of spatial units[]

2Parts of this work benefited from collaboration with Dr. Andrea Hammer and Dr. Florian
Kreuchauff

3The expression lumpiness of plant employment relates to different patterns of plant size dis-
tributions each leading to the same amount of total employment.

4For further elaborations on the so-called Modifiable Areal Unit Problem (MAUP) see Briant
et al.| (2010).
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The critique, together with enhanced availability of micro-geographic data sets, has
lead Duranton and Overman| (2005) to develop an approach (Duranton and Over-
man (DO) approach) that is based on continuous space by utilizing address data
of establishments. In order to assess statistical significance of the deviation from
randomness, the density distribution of bilateral distances is compared to coun-
terfactuals constructed by randomly distributed establishments with the help of

simulations.

Although, both the EG and the DO approach have been widely adopted in the
literature in order to measure industrial concentration]] a few studies use them to
determine agglomeration patterns of innovation-related activities. Moreover, the
scarce evidence on innovation-related activities based on the DO approach mostly
refers to patent data and technology classes (Murata et al.[2014, Kerr and Kominers
2015). Only two studies by Buzard and Carlino| (2009) and |Carlino et al.| (2012)
relate to the DO approach in order to analyze locational patterns of R&D estab-
lishments. However, these studies only cover geographic partial areas of the United

States and do not differentiate between industries.

This work conducts the analysis using the data provided by the "Stifterverband
fiir die Deutsche Wissenschaft" (Donors’ Association for the Promotion of Sciences
and Humanities in Germany) that constitutes the most comprehensive database for
private R&D in Germany. In total, the analyses is based on 19,804 company R&D
establishments in Germany that employ 476,575 researchers in all economic sectors

— agriculture, production industries and service industries.

It is revealed that with reference to the overall spatial distribution of R&D, 40.8%
of 3-digit industries exhibit significantly different patterns of spatial R&D organi-
zation. In general, deviations occur more often in the production industry than in
the service sector. Moreover, production industries exhibit a higher propensity to
cluster in geographical space. However, taking distances into account, clustering of
R&D activities in production industries mostly occurs at relatively high distances
of around 100km. Deviations from spatial randomness in service industries tend
to exhibit dispersion, i.e. for service industries, we do find statistically significant
larger distances between R&D establishments than we would expect from taking the

overall spatial distribution of R&D as a reference.

5See, for example, [Duranton and Overman| (2005, 2008) for the UK, Albert et al. (2012) for
Spain, Nakajima et al.| (2012) for Japan, Barlet et al.| (2013) for France and [Koh and Riedel| (2014)
for Germany.
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This section is organized as follows. Section introduces the database, descrip-
tive statistic and the basic estimation methodology. Results on spatial patterns
of industry-specific R&D are presented in Section [{.2.3 Finally, conclusions are
derived in Section together with the policy implications.

4.2.2 Data and basic estimation methodology

In the following we discuss the data used in our analysis together with the basic
estimation methodology (DO approach). The introduction of the database includes
both the description of the database and the first descriptive statistics on R&D
on the level of industry divisions for Germany. Subsequently, the basic estimation
methodology is presented to depict industry-specific location patterns of company
R&D establishments. It implies estimating industry-specific estimations of kernel
density functions and counterfactuals based on measures of great-circle distances.
The methodology is illustrated by exemplary location patterns of R&D on the level
of 3-digit industries.

R&D-survey and descriptive statistics of R&D in Germany

In order to identify location and size of R&D establishments in Germany we use
data from the biennial survey conducted by the "Stifterverband fiir die Deutsche
Wissenschaft" (Donors’ Association for the Promotion of Sciences and Humanities
in Germany) which constitutes the most comprehensive database for private R&D
in Germany. By means of a standardized written survey the Stifterverband collects
data reflecting different aspects of company R&D activity — e.g. internal and ex-
ternal expenditures, personnel, location and size of establishments — on behalf of
the German Federal Ministry of Education and Research. The survey is designed
as full census, so that it raises the claim to cover the whole population of compa-
nies conducting R&D in Germany. Reporting unit on company level is usually the
smallest independent accounting unit. All companies in Germany that are assumed
to conduct R&D are included in the survey. They are identified by preceding sur-
veys and auxiliary variables — including industry, company size and information on
public R&D funding. However, as pointed out by the Stifterverband, the detection
of all companies in Germany that conduct R&D remains a challenge as no complete

database exists. Thus, although the survey is designed as a full census, the coverage
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Table 4.1: Size distribution of companies and R&D companies in Germany

Employees subject to social insurance

0 to <10 10 to <60 50 to <250 250 and Total
more
No. of companies [Germany, 2013] 3,290,579 268,263 57,712 13,112 3,629,666
Share [%] 90.7 7.4 1.6 0.4 100.0
No. of companies [Sample] 3,139 7,431 5,510 2,790 18,870
Share [%] 16.6 39.4 29.2 14.8 100.0

might be incomplete, especially with respect to small and medium-sized companies
(Stifterverband fiir die Deutsche Wissenschaft| 2015)).

Table compares the overall company structure in Germany in 2013 to the R&D
company structure extracted from the database provided by the Stifterverband.
The size distribution of R&D companies in the database is skewed towards bigger
companies. This leads us to assume that — compared to the overall company size
distribution — bigger companies are more likely to conduct R&D activities. This
conclusion is in accordance with evaluations for Germany based on the KfW panelf
over the years 2005 to 2012 where shares of companies conducting R&D increase
from 24.0% for companies with 0 to less than 10 employees over 41.0% for companies
with 10 to less than 50 employees up to 60.0% for companies with 50 to less than
250 employees (Baumann and Kritikos|2016)).

In order to identify spatial patterns of private R&D activity, the adequate unit of
analysis is not the company but the company’s R&D establishments. Because the
survey collects information on the postcodes of a company’s R&D establishments
and of the fraction of total R&D workforce employed in these establishments, we are
able to identify not only the location of R&D establishments, but also their size in
terms of the number of researchers employed. Thus, for every R&D establishment we
know its postcode, its 2- and 3-digit industrial classification (Statistical classification
of economic activities in the European Community (NACE) Rev. 2), and its size.
We assume that a private R&D activity is a long term investment and, therefore,
subsume five consecutive surveys of the years 2005, 2007, 2009, 2011 and 2013. This
allows us to gather data on 19,804 R&D establishments that occupy in total 476,575

researchers in Germany.lj As each establishment is assigned a unique identifier, we

6The KfW SME panel ("KfW Mittelstandspanel") is a representative survey of micro, small
and medium-sized companies in Germany that have an annual turnover of up to 500 Million Euro.
"Note that by merging five consecutive surveys we implicitly assume that the spatial distribution
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Table 4.2: Size distribution of R&D establishments

Number of researchers

0 to <10 10 to <50 50 to <250 250 and more Total
No. of R&D establishments 14,398 4,042 1,080 284 19,804
Share [%)] 72.7 20.4 5.5 1.4 100.0

exclude multiple entries by taking the most current information available in the
database. In total, we identify 81 industries at the 2-digit and 235 industries at the
3-digit level of industrial classification with at least one R&D establishment. Out
of the 235 industries, that we identify at the 3-digit level, 140 have more than ten
R&D establishments. Table [{.4 shows the size distribution of R&D establishments.
The majority of R&D establishments (72.7%) employ less than 10 researchers, while
the fraction of big R&D establishments with 250 and more researchers employed is
only 1.4%.

Table and Table [C"F in the Appendix [C] depict the descriptive statistics at
the 2-digit industry level, i.e. statistical divisions, for agriculture, production in-
dustries and the service industries in terms of the number of establishments, R&D
establishment-company ratio, average number of researchers per R&D establishment
and number of 3-digit industries contained. Analyzing the number of establish-
ments and the number of researchers employed shows a dominance of production
industries, especially of manufacturing (divisions 10 to 33), concerning not only the
number of R&D establishments but also and even more the number of researchers
employed. While 67.0% of all R&D establishments and 81.1% of the R&D work-
force are in manufacturing (70.6% and 82.0% in production industries), 25.6% of
R&D establishments and 17.6% of R&D workforce are in the service sector. How-
ever, the biggest divisions with more than 1,000 R&D establishmentsf| are not only
in manufacturing, but also in the service sector. In the production industries, the

majority of industry divisions shows an R&D establishment-company ratio greater

of R&D establishments in space is solid and they are not easily moved in geographical space. This is
a quite restrictive assumption on spatial dynamics of R&D. However, merging of data is necessary
in order to collect information on as many R&D establishments as possible as the DO approach
requires at least ten establishments per industry in order to derive significant results on location
patterns.

825 Manufacture of fabricated metal products, except machinery and equipment, 26 Manufacture
of computer, electronic and optical products, 28 Manufacture of machinery and equipment n.e.c.,
62 Computer programming, consultancy and related activities, 71 Architectural and engineering
activities; technical testing and analysis, 72 Scientific research and development
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than one, indicating that in most divisions the number of R&D establishments ex-
ceeds the number of companies conducting R&D. In contrast, in the service sector
divisions the ratio often is exactly one indicating that in many service industries
R&D companies only dispose on one R&D establishment. However, as the total
R&D establishment-company ratio is 1.05, establishing several R&D establishments
seems to be quite rare for most companies that conduct R&D. Looking at the av-
erage number of researchers per R&D establishment shows substantial differences
among divisions ranging from 2.5 (56 Food and beverage service activities) to 212.6
(29 Manufacture of motor vehicles, trailers and semi-trailers) researchers per R&D
establishment. The average size of R&D establishments in terms of R&D workforce
is 24.1.

The locations of establishments are geocoded by using centroids of postcodes. In
Germany, postcodes are very useful for locating establishments because they cover
relatively fine grained areas. In comparison to 402 Nomenclature of Territorial Units
for Statistics (NUTS) 3 regions, we have identified 8,212 postcode areas. In 4,865
of them at least one R&D establishment is located. Figure demonstrates the
distribution of postcodes in geographical space differentiating between production
and service industries. On average, each postcode belongs to 4.1 establishments
with a minimum value of one R&D establishment for 30.9% of the postcodes and a
maximum value of 106 R&D establishments for one postcode in Berlin. More than

90% of the postcodes are home to less than ten establishments.

Basic estimation methodology

Estimating kernel density functions
To assess the spatial concentration of R&D establishments in an industry, we first
calculate great circle distances’] between all R&D establishments in that indus-

try which generates @

unique bilateral distances. The great circle distances
only serve as a proxy for true geographical distances, thus distributions are kernel-
smoothed in order to estimate the industry specific distribution of bilateral distances
between R&D establishments. The estimator of the density of R&D establishments

in a given industry m at any distance d is:

%d = acos(singl*sing2+cosplxcosd2+cosAN) * R, with d=distance, p=latitude, A=longitude,
R=radius
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» *+ Production Industries
x % x Service Industries

Figure 4.1: Location of production and service industry R&D establishments in Germany.
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Rold) =t 5 (155, (1)

i=1 j=i+1

where h is a bandwidth parameter defined according to Silverman (1986), and f a
standard Gaussian kernel function. d; ; depicts the bilateral distance between R&D

establishments ¢ and j. n is number of R&D establishments in a given industry m.

Counterfactuals for each industry are constructed in order to assess weather the esti-
mated kernel density functions significantly deviate from the overall location pattern
of R&D. We first determine all sites in Germany where R&D facilities could possibly
be located as a reference. Note that the general spatial distribution of R&D activity
in Germany — which we take as a reference — was formed historically being influ-
enced by a variety of factors. Figure indicates that this basic distribution is not
random and exhibits clustered as well as dispersed areas. However, addressing the
question of why this general location pattern of R&D occurs goes beyond the scope
of this work. Instead, by taking the spatial distribution of R&D as a reference, we
explore whether there are deviations from this general picture, implicitly control-
ling for other factors that have influenced the observable spatial pattern of R&D.
Counterfactuals are then constructed by randomly drawing n R&D establishments
from the population of all R&D establishments in Germany, and determining kernel
density functions for their bilateral distance distributions. To be able to draw statis-
tically significant conclusions, we run 1000 simulations for each industry (Duranton
and Overman| 2005, 2008).

After calculating f(m(d) and constructing the counterfactuals, both need to be com-
pared. To make comparison easier across industries and to account for the re-
dundancy of information on long distances, we choose a threshold of 456km which
corresponds to the median distance of all R&D establishments in Germany. This
redundancy occurs as the area under each kernel density function needs to sum to
unity. Thus, information on long distances is redundant if we know what happens at
relatively short distances. In order to be able to make statements about deviations
from randomness over the entire range considered in our analyses, we calculate and
draw global confidence bands, so that only 5% of the randomly generated kernel
density functions cross the upper K,,(d) and lower K _(d) global confidence bands
for all d € [0, 456] . If K,,(d) > K,,(d) for at least one distance d € [0,456], R&D in

19Tn our work we implement global confidence bands meaning that we always focus on the whole
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that industry is said to exhibit localization. Accordingly, if we find K, (d) > K,,(d)
for at least one distance d € [0,456] and we do not detect localization, R&D in
that industry exhibits dispersion. Perhaps another way of explaining it is that R&D
localization (dispersion) in an industry is thus observed when there are more (less)
R&D establishments at shorter distances than would be expected if firms would have
chosen location sites at random. Figure illustrates examples of one localized (a),
one random (b) and one dispersed (c) industry at the 3-digit level together with
their respective maps of R&D establishments. In (a) we observe K,(d) > K,,(d)
for all distances from Okm to 232km and thus localization of R&D activity. In (c)
we detect no localization but K, (d) > K,,(d) for all distances from Okm to 99km.
This leads to the conclusion that the industry exhibits dispersion. Industry (b) ex-
hibits a random location pattern. The shape of the confidence bands reflects the
distribution of R&D in Germany for an average industry with the same amount of

establishments as in industry m.

Following the reasoning set out above, we define
[, (d) = maz(K,,(d) — K,,(d),0) (4.2)

as an index of localization and

max B ,0),1 d=456 =
¥, (d) = { (K, (d) — Kin(d),0),if Y4=40 T, (d) = 0 (4.3)

0, otherwise

as an index of dispersion. To reject the hypothesis of randomness of R&D for in-
dustry m at distance d because of localization (dispersion) I',,,(d) > 0 (¥,,(d) < 0)
is sufficient. In order to indicate to which degree an industry is dispersed or
localized we define the following cross-distance indices ', = 222356 [ (d) and
v, = 23356 U,.(d) as indices of localization and dispersion across all distances

d € [0, 456].

As noted already by Duranton and Overman, (2005 the methodology described is
sensitive to the number of R&D establishments in an industry. Industries with
relatively few R&D establishments will show a very broad confidence band since
there are many possible ways to randomly draw this small number out of the whole

population of possible R&D establishment sites. We have thus chosen to analyze

range of distances. The literature also sometimes refers to local confidence bands defined for each
distance independently. This constitutes a less strict definition of deviation from randomness.
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locational patterns of industries with more than ten establishments only since below
that number we are not able to draw statistically significant conclusions. This leads
us in total to simulating and analyzing 140 industries on the level of 3-digit industries
of which three are in agriculture, 100 are in the production industry and 37 in the

service sector.

4.2.3 Spatial patterns of industry-specific R&D in Germany

Two approaches are employed for our analysis. Firstly, we apply the basic esti-
mation methodology introduced in Section in order to determine if industrial
location patterns of corporate R&D are random, localized or dispersed in relation to
the overall distribution of R&D. Calculating cross-distance indices of localized and
dispersed industrial R&D activities leads to the identification of industries exhibit-
ing relatively strong deviations from randommness. The results derived are put in
relation to findings on locational patterns for economic activities in Germany. Sec-
ondly, by modifying the basic estimation methodology, we shift the level of analysis
from R&D establishments to the individual researcher. This researcher-weighted

approach leads us to derive further insights regarding the spatial organization of
R&D.

Location patterns of corporate R&D establishments

We first explore the sectoral scope of location patterns in order to detect if 3-digit
industries belonging to the same industry division — and thus conducting R&D
for the same group of products or services — exploit identical spatial organization
patterns of R&D. Table [C.5 and Table in the Appendix [C] depict the shares of
localized, dispersed and randomly distributed 3-digit industries within each industry
division. In general, we can say that 3-digit industries in the same division do not
follow identical patterns of R&D location. This leads us to conclude that, even
within divisions, R&D activities follow their own specific spatial patterns. This
holds especially for the production industry where we find diverse location patterns.
For example, the six 3-digit sub-industries of industry division 20 Manufacture of
chemicals and chemical products, are to one third localized, dispersed and randomly

distributed across geographical space.
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(a)255 Forging, pressing, stamping and roll-forming of metal.
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(b)432 Electrical, plumbing and other construction installation activities.
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(¢)620 Computer programming, consultancy and related activities

Note: X-axis on a graph indicates distances in km and Y-axis probability density.

Figure 4.2: Examples of the industrial location patterns of R&D establishments.
These diverse patterns lead us to relate to the 3-digit aggregation level in our analy-
sis. We also report our results highlighting production and service industries because

the nature of R&D activity in these sectors differs significantly regarding organiza-
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tion and content. In service industries, R&D is not always organized as formally
as in the production industry; for example, it is unusual for firms in most service
industries to have an own R&D department. Major developments are more likely to
be conducted by temporary project development groups. Regarding content, social
sciences and design activities play a more prominent role in service R&D than in
production-oriented R&D [T

Comparing the kernel density estimates for R&D in every industry on the 3-digit
level with the industry specific counterfactuals shows that R&D activities of 40.8%
of industries deviate significantly from random spatial location patterns of total
R&D being localized or dispersed. Deviation from randomness occurs more often in
production than in service industries: While 50.0% of all industries in production
deviate from random spatial distribution, the share of diverging industries in ser-
vices is only 18.9%. In agriculture, spatial distribution of R&D activity is random
for all industries implying that the location of innovation creation centers in the
agricultural sector is influenced by factors affecting the overall spatial distribution
of R&D in Germany.

Looking at the direction of deviations from spatial random distribution, we find
22.9% of all industries localized and 17.9% dispersed. Differentiating between pro-
duction and service industries leads to further insights. With 30.0% of localized
industries within the production sector, the share of localized industries is consider-
ably higher than in services where we only find 5.4% of industries exhibiting localized
R&D patterns. Regarding dispersion, we detect dispersed R&D activities in 20% of
production and in 13.5% of service industries, leading to a conclusion that knowledge

creation in production industries tends to be more localized than in services.

Taking a more detailed look at the spatial patterns of localized and dispersed in-
dustries we identify at which distances these patterns are observable. Figure
shows the number of localized and dispersed industries at each distance for all 3-
digit industries. Note that if both localization and dispersion occur in the same
industry, localization drives out dispersion. Consequently, an industry is only de-

fined as being dispersed, if for all distances d € [0, 456] no localization occurs. Thus,

1n their definition of R&D activity the Stifterverband follows the comprehensive concept put
forward in the Frascati Manual (Stifterverband fiir die Deutsche Wissenschaft| 2015, OECD|2002]).
Although this concept relates to a relatively broad definition of R&D aimed at covering both
organizational and content-related differences between R&D in production and service industries,
it may lead to under-coverage of R&D activity in the service sector. For a comprehensive review
see Miles| (2007). Bryson et al. (2004)) list R&D sources in service industries.
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Figure 4.3: Distance patterns of industries exhibiting localization and dispersion in R&D.

dispersion occurring in localized industries is not represented by the distance-based
frequency distributions set out in Figure While only 6.3% of localized R&D
activities are localized at a distance interval from Okm to around 20km, we observe
a constant increase of localized industries up to a distance of approximately 95km
where 65.6% of all localized industries show significant localization. The frequency
distribution of dispersed industries shows a sharp decrease of dispersion with grow-
ing distance. Dispersion occurs at a range of distances from Okm (88% of samle)
till 110km. These spatial patterns of localization and dispersion are observable for

both R&D in production and service industries.

As we are the first to apply the DO approach in order to analyze spatial variations
of industry-specific R&D activities with reference to the overall spatial pattern of
R&D, we are not able to classify our results with respect to other studies. How-
ever, comparing our findings to locational patterns of economic activity leads to
further interesting insights. For our comparison we mainly refer to Koh and Riedel
(2014) who applied the DO approach on all plants in manufacturing and services
in Germany with at least one employee subject to social insurance[”?] Taking the
overall establishment distribution in Germany as a reference, they find that 78.0%

of industries are localized and that the share of localized industries is substantially

12The results of Koh and Riedel (2014) are based on industry classification NACE Rev 1.1 (WZ
2003) at the four digit-level. Nevertheless, rough comparisons to our data are still possible.
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higher in services (98.0%) than in manufacturing (71.0%). Accordingly, they find
low shares of dispersed industries. Relating their observations to distances they —
in accordance with other studies on the spatial distribution of economic activities
(e.g. Duranton and Overman 2005, Barlet et al|2013) — find localization at small
distances and a quite equal distribution of dispersion over all distances. These re-
sults differ considerably from our aforementioned findings of industry-specific R&D
activities. In general, the different findings lead us to conclude that industry-specific
deviations from the general spatial distribution are rarer in R&D than in economic
activity, and if deviations from the overall spatial patterns occur, than dispersion
is of more relevance for industry-specific R&D patterns than for industry-specific
economic activity. These general differences become even more pronounced when

we look at services[F]

Analyzing the geographical patterns of the most localized and dispersed industry-
specific R&D activities identified by cross-distance indices I',,, and ¥,,, leads to fur-
ther interesting insights. Table[{.3and Table[{./] each depict the ten most localized
and dispersed 3-digit industries in production. With 248 [ 255 [ 259 [5and 257
7] four of the most localized industries in terms of R&D activity are part of the
metal processing industry. The highest index of localization is measured for 243 [[¥]
where spatial concentration of R&D establishments can be found in the Ruhr area.
] For 255 P% 259 P and 257 P2 we not only observe spatial concentration of R&D
establishments in the Ruhr area but also in other parts of North Rhine Westphalia,
Baden-Wiirttemberg, Thuringia and Saxony. R&D in the industries 293 % and 222

P¥ exhibit relatively high localization indices. However, taking into account the dis-

13Note that we do not compare the distribution of economic activity and R&D activity in general.
Le. our statements do not refer to the spatial concentration of the one relating to the other but
on the within variation of activities with reference to the respective overall spatial distribution.
Thus, our findings do not contradict the statement that R&D in general is more concentrated in
geographical space than economic activity.

MManufacture of other products of first processing of steel

5Forging, pressing, stamping and roll-forming of metal

L6 Manufacture of other fabricated metal products

"Manufacture of cutlery, tools and general hardware

8 Manufacture of other products of first processing of steel

19Maps of localized industries where reference is made to specific regions or cities in Germany
are depicted in Appendi:c[g

20Forging, pressing, stamping and roll-forming of metal

2IManufacture of other fabricated metal products

22Manufacture of cutlery, tools and general hardware

23Manufacture of parts and accessories for motor vehicles

24Manufacture of plastic products
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Table 4.3: Most localized R&D activities in production industries

3-digit industry No. of R&D I'm
establishments

243  Manufacture of other products of first processing of steel 36 0.1044
255  Forging, pressing, stamping and roll-forming of metal 143 0.0463
293  Manufacture of parts and accessories for motor vehicles 365 0.0395
222  Manufacture of plastic products 667 0.0226
231  Manufacture of glass and glass products 126 0.0163
284  Manufacture of metal forming machinery and machine tools 458 0.0148
259  Manufacture of other fabricated metal products 327 0.0127
139  Manufacture of other textiles 181 0.0122
143  Manufacture of knitted and crocheted apparel 20 0.0114
257  Manufacture of cutlery, tools and general hardware 343 0.0107

Note: An overview on all cross-distance indices of localization and dispersion is provided in Appendiz|C.3

tance intervals of localization reveals that they are quite broad ranging from about
60km to 290km. These findings indicate a significant localization for R&D in these
industries, however this clustering — in terms of distance — yet occurs on a relatively
large geographical scale. R&D in industry 281 7] is observable in Thuringia and
Saxony. Like in 293 P% and 222 Manufacture of plastic products the distance inter-
val of significant localization is broad and on a relatively large geographical scale
starting at 86km and ending at 280km. For 284 P"] concentration of R&D establish-
ments is observable in Baden-Wiirttemberg. Finally, R&D activities in the textile
related industries 139 Manufacture of other textiles and 143 @ in particular exhibit
spatial concentration in the North of Bavaria and Saxony but also in some regions
in Baden-Wiirttemberg and North-Rhine Westphalia.

Indices of dispersion ¥,,, are on a lower level than indices of localization I',, indicating
that deviations from randomness are weaker for dispersed than for localized R&D ac-
tivities. In production, industries connected to the medical sector (325 Manufacture
of medical and dental instruments and supplies, 212 Manufacture of pharmaceuti-
cal preparations) and to the production of electrical equipment (271 Manufacture
of electric motors, generators, transformers and electricity distribution and control
apparatus, 279 Manufacture of other electrical equipment) as well as industries 251
Manufacture of structural metal products, 236 Manufacture of articles of concrete,
cement and plaster and 205 Manufacture of other chemical products are among the

most dispersed. Compared to the overall spatial pattern of R&D in Germany, we see

25Manufacture of glass and glass products

26 Manufacture of parts and accessories for motor vehicles
2TManufacture of metal forming machinery and machine tools
28Manufacture of knitted and crocheted apparel
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less-than-usual concentrations of these industries in areas that are quite populated
with R&D establishments (e.g. Ruhr Area and around Stuttgart). Although we
observe significant dispersion for R&D in both industries 266 Manufacture of irra-
diation, electromedical and electrotherapeutic equipment and 303 Manufacture of air
and spacecraft and related machinery distance intervals that exhibit dispersion start
at relatively high distances, i.e. 370km and 356km. R&D activities in 108 Man-
ufacture of other food products show dispersion because they are located in more
rural areas in North Rhine Westphalia and Saxony where general R&D activity is

relatively low.

Table 4.4: Most dispersed R&D activities in production industries

3-digit industry No. of R&D W
establishments

325  Manufacture of medical and dental instruments and supplies 379 0.0028

212  Manufacture of pharmaceutical preparations 231 0.0023

266  Manufacture of irradiation, electromedical and electrotherapeutic 124 0.0022
equipment

271 Manufacture of electric motors, generators, transformers and electric- 379 0.0017
ity distribution and control apparatus

251  Manufacture of structural metal products 247 0.0015

279  Manufacture of other electrical equipment 275 0.0014

303  Manufacture of air and spacecraft and related machinery 80 0.0011

108  Manufacture of other food products 122 0.0010

236  Manufacture of articles of concrete, cement and plaster 135 0.0007

205  Manufacture of other chemical products 281 0.0007

Note: An overview on all cross-distance indices of localization and dispersion is provided in Appendiz|[C.3

As mentioned above, the share of non-random spatial R&D distribution in service in-
dustries compared to production industries is relatively low. Table shows indices
of localization I',, and dispersion W,, for R&D in all service industries that devi-
ate from randomness. The two service industries 711 Architectural and engineering
activities and related technical consultancy and 467 Other specialized wholesale are
the only service industries in which R&D activities are localized. However, distance
intervals exhibiting localization start at 106 km and 166 km. This indicates that
R&D activities in these industries are clustered at relatively long distances. Ad-
ditionally, comparing the index values shows stronger localization of R&D in the
ten most localized production industries than in the localized service industries. In
total, we find five service industries with dispersion of R&D establishments. Inter-
estingly, the four most dispersed industries 620 Computer programming, consultancy
and related activities, 721 Research and experimental development on natural sci-

ences and engineering, 712 Technical testing and analysis and 631 Data processing,
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Table 4.5: Service industries exhibiting localized and dispersed R&D activities

3-digit industry No. of R&D I'm
establishments
711 Architectural and engineering activities and related technical consul- 1,175 0.0018
tancy
467  Other specialized wholesale 88 0.0002
3-digit industry No. of R&D W
establishments
620  Computer programming, consultancy and related activities 1,617 0.0061
721 Research and experimental development on natural sciences and en- 994 0.0057
gineering
712 Technical testing and analysis 261 0.0022
631  Data processing, hosting and related activities 93 0.0021
702  Management consultancy activities 152 0.0008

Note: An overview on all cross-distance indices of localization and dispersion is provided in Appendiz|C.3

hosting and related activities are all service industries that are identified as being
research-intensive®] and thus devote above average financial resources on R&D. In
terms of index values, these dispersed service industries display index values higher
or quite close to the index values of the ten most dispersed production industries.
In 702 Management consultancy activities the index of dispersion shows a relatively

low value.

The comparison of results on geographical patterns of the most localized and most
dispersed industrial R&D activities to patterns found in economic activities reveals
new insights into spatial R&D organization. For example, economic activities in
production industries, traditional manufacturing industries that evolved with the
industrial revolution in the 19th century (e.g. industries connected to metal pro-
cessing and textile) are among the most localized industries showing persistent lo-
calization patterns in traditional regions (Koh and Riedel|2014). Our analyses of
localized industries reflect this observation regarding R&D activities in these tradi-
tional manufacturing industries. This leads us to conclude that relative spatial orga-
nization of R&D is partly congruent with relative spatial organization of economic
activity in these traditional manufacturing industries. However, turning our atten-
tion to location patterns in services, our results on R&D distribution do not reflect
the strong localization patterns regarding the administration of financial markets

and the entertainment sector found for economic activity as we find R&D activities

P Gehrke et al.| (2010, 2013) define research-intensive industries and services on a 3-digit level
for Germany based on different data sources. The main criterion for identification is a threshold
of 3% of R&D expenditures on sales. A complete list of research-intensive industries is provided

in Appendiz[C.3 Tables[C.9)and [C-6
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in these industries randomly distributed.

4.2.4 Researcher-weighted location patterns of corporate R&D

Up to this moment all conclusions are based on the spatial distribution of R&D
establishments. In other words, when assessing the deviation from randomness we
take into account current location of R&D regardless of the number of people that
conduct research there. However, in order to deepen our understanding of the spatial
organization of R&D, it seems reasonable not only to focus on places where people
are employed in knowledge creation, but also to take into account how many of
them are involved in the process. This approach shifts the unit of analysis from
the individual R&D establishment to the individual researcher. The issue of R&D
establishment size in terms of researchers employed is crucial as R&D establishment-
size distributions, like company-size distributions, are skewed. For example, 72.7%
of R&D establishments in our dataset employ less than ten researchers but account
for only 11.2% of total R&D workforce.

Some previous studies concerned with spatial patterns of economic activity tackled
the issue of skewed company-size distributions by censoring smallest plants in in-
dustries applying absolute or relative thresholds or by weighting according to the
number of employees. The former in our case is not advisable as, given the lim-
ited size of our data in terms of R&D establishments compared to establishments
reflecting general economic activities, it will lead to omitting a number of industries
in the analysis. We thus choose to weight according to the number of researchers
employed in R&D establishments. Following |Duranton and Overman| (2005) in this
shift in unit of analysis from establishment to workforce, we exclude zero distances
between researchers employed at the same R&D establishment in order to avoid
that localization might be driven by the concentration of research personnel within
a particular establishment. Formally, denoting r(i) as research personnel of R&D
establishment i and respectively r(j) as research personnel of R&D establishment
J the researcher-weighted kernel density function of industry m takes the following

form:

Ko (d) = S S () (5
m ey i)

All other variables are defined according to Equation [{.1}

(4.4)
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(a)R&D establishments (b)Researchers

Figure 4.4: Spatial frequency distribution of R&D establishments and researchers.

Counterfactuals, confidence bands and indices are constructed following the proce-
dure described in Section Technically, taking into account that our spatial
modeling is based on postcodes, in constructing our counterfactuals the base for sim-
ulations is a new distribution of selection probabilities for postcodes. Before we turn
to the results of the researcher-weighted approach, we should devote some attention
to the implications of this shift in approaches. Figure visualizes the resulting
differences in distributions and thus selection probabilities that constitute the base
for the counterfactuals. At first sight, we not only see a general shift of R&D activity
towards south-western regions of Germany but also a higher concentration of R&D
activities in individual postcodes implying that the distribution in the researcher-
weighted approach becomes more skewed. This change is reflected by the fact that
the Gini-coefficient for the frequency distribution of postcodes augments from 0.49
in the non-weighted approach to 0.81 in the researcher-weighted approach. Statisti-
cally, the selection probability of 55 postcodes increases more than tenfold, including
three postcodes where it augments by more than 100. The researcher-weighted ap-
proach also induces changes regarding the weighting of industries in the reference
distribution of R&D Y Although the Gini-coefficient for the frequency distribution
of industries only increases slightly from 0.78 in the non-weighted approach to 0.86
in the researcher-weighted approach, we see one industry, 291 Manufacture of Motor
Vehicles, which accounts for 0.3% of establishments and 11.7% of R&D personnel.

30As we know from the descriptive data in Section [4.2.4 production industries represent 70.6%
of R&D establishments and 82.0% of researchers.
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Thus, selection probability of postcodes occupied by that industry increases by factor
41 when the number of researchers is taken into account instead of R&D establish-
ments. Taking a closer look at industry 291 Manufacture of Motor Vehicles reveals
that 57 R&D establishments in total employ 55,702 researchers. Moreover, 94.5%
of all these researchers are employed by seven automotive manufacturers: Daim-
ler, Volkswagen, BMW_ Audi, Porsche, Opel and Ford. Thus, analyzing the results
for researcher-weighted postcodes, it is important to keep in mind that not only
selection probabilities are distributed more unequally between postcodes but also
that they are influenced considerably stronger by the location pattern of the motor

vehicles industry that in turn is dominated by few big automotive manufacturers.

In total, the researcher-weighted analyses show that 58.6% of industries deviate from
randomness with 17.2% being localized and 41.4% exhibiting dispersion. Looking at
industry sectors, in production industries we find 63.0% deviating from randomness
of which 21.0% exhibit localization and 42.0% dispersion. In services 48.6% indus-
tries are not randomly distributed with 8.1% being localized and 40.5% dispersed.
Overall we note more deviation from randomness in the researcher-weighted ap-
proach than in the establishment-based approach. Especially the share of industries

exhibiting dispersion increases in both services and the production industry.

50 50
40 40
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(a)Localization (b)Dispersion

Figure 4.5: Distance patterns of researcher-weighted industries exhibiting localization and disper-
sion in R&D.

A detailed look at the distances at which industries are localized or dispersed (Figure
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reveals pictures similar to the unweighted approach.@ However, if before we
observed most of the localized industries at a distance of around 100km, we now see
that they are concentrated around 260km and 350km. This means that industrial
clusters of R&D activity from the perspective of an individual researcher occur
at a higher distance. In total, our results indicate that taking into account the
size of R&D establishments in terms of researchers employed there, leads either
to dispersion or random distribution at close distances from Okm to 200km. This
implies that at this distance interval the number of researchers in an industry either
follows the general distribution of R&D workforce or is even less than one would
expect from taking the general spatial distribution of researchers as a reference.
Again, we need to keep in mind that these results do not contradict the notion of
R&D itself being concentrated compared to economic activities. They indicate that
clustering of researchers at short distances is not connected to the 3-digit industries

in which they are employed.

Calculating the cross-distance indices for localization and dispersion in the researcher-
weighted approach reveals major changes in both production and service industries
in relation to the approach based on R&D establishmentsl?] Not only that — as one
might conclude from the distance distributions depicted in Figure[4.5— indices of lo-
calization become weaker and indices of dispersion become stronger, but also radical
shifts in locational patterns occur. For example, four of the most dispersed produc-
tion industries (325 Manufacture of medical and dental instruments and supplies,
271 Manufacture of electric motors, generators, transformers and electricity dis-
tribution and control apparatus, 251 Manufacture of structural metal products and
205 Manufacture of other chemical products) and the two most dispersed service
industries (620 Computer programming, consultancy and related activities, 721 Re-
search and experimental development on natural sciences and engineering) in terms
of R&D establishments become localized. However, these localization patterns oc-
cur at relatively large distances and this is why we do not explore these industrial

spatial patterns in more detail.

31Distance patterns for production industries and service industries are provided in Appendiz

Figure[C.2]

An overview on all cross-distance indices of localization and dispersion is provided in Appendix

G
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Service Robotics

In Chapter [3| we have introduced a patent search strategy for service robotics and
identified German firms patenting in the field. Here with the methodology applied
above we can assess clustering activity of these firms depicted on Figure 3.8 Figure
demonstrates that the observed cluster of service robotics firms significantly
deviates from the overall R&D distribution in Germany. Literature demonstrates
that the general economic activity tends to be geographically concentrated while
innovation-related activities — like, for example, R&D activities — are even more

spatially clustered.
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Figure 4.6: Clustering of service Robotics.

These observable spatial patterns of R&D might be related to multiple Marshallian
channels, i.e. specialized inputs, labor market sharing and knowledge spillovers.
However, empirical evidence indicates that they are mostly linked to knowledge
spillovers which are not only limited in geographical space (Rosenthal and Strange
2004, [Ellison et al. 2010) but also fostered by high densities of people (Glaeser
et al.|1992, Henderson et al. 1992, |Glaeser| 1999, Bettencourt et al.|2007) Sedgley
and Elmslie 2011) and industrial structures (Marshall/[1920, [Jacobs 1969, for a re-
cent overview see: [Beaudry and Schiffaueroval[2009). This leads to the conclusion

that even though the yield of R&D activities is influenced by multiple aspects, the
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exchange of ideas and thus the case of physical proximity remains a key ingredient.

4.2.5 Conclusion on the study of spatial clustering

This section empirically contributes to the literature about clustering of innovation
and R&D activity by indicating if and how spatial patterns of R&D in industries

deviate from the overall spatial distribution of R&D in Germany.

Analyzing the industry location patterns of R&D on a 3-digit level reveals that 40.8%
of industries deviate significantly from random spatial location patterns and thus
are localized or dispersed. In general, the share of localized industries in production
is higher than in service industries indicating that knowledge creation in production
industries tends to be more localized than in services. In service industries disper-
sion occurs more often than localization. Interestingly, especially research-intensive

service industries exhibit strong cross-distance indices of dispersion.

Taking into account distances where localization occurs, reveals that industry-specific
R&D is clustered over relatively long distances of about 100 km. Shifting the per-
spective from R&D establishments to the individual researcher even increases that
relatively long distance of clustering to an interval from 260 km to 350 km. In to-
tal, our results indicate that taking into account the size of R&D establishments in
terms of researchers employed there, either leads to dispersion or random distribu-
tion at distances from 0 km to 200 km. This implies that at this distance interval
the number of researchers in an industry either follows the general distribution of
R&D workforce or is even less than one would expect from taking the general spatial

distribution of researchers as a reference.

Overall, the evidence on industry-specific spatial concentration of R&D is relatively
weak. Our results indicate that localization of both R&D establishments and re-
searchers, if it occurs, mainly is observable for production industries over relatively
long distances. However, these results do not contradict the notion of R&D itself
being concentrated. They rather indicate that clustering of R&D establishments or
researchers at short distances is not or only weakly connected to the 3-digit indus-

tries in which innovative activities are performed.

While the analyses explicitly step back from theoretical concerns but aim to con-
tribute to the empirical examination of industry-specific agglomeration patterns of

innovative activity, they nevertheless implicitly relate to the continuing debate on
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Marshall-Arrow-Romer-externalities and Jacobs-externalities. Assuming that the
expected returns to R&D activities are taken into account when companies decide
where to locate their R&D, as for example demonstrated in [Duranton and Overman
(2005)), thus knowledge potential in space hints to anticipated knowledge spillover
mechanisms. In the light of that reasoning, localization, as identified in Section
[£.2.3 might be defined as industry-specific spatial specialization in R&D activities.
It indicates that industries with localized R&D activities profit or expect to profit
from above-average spatial proximity of their R&D activities, i.e. an R&D-related

intra-industry transmission of knowledge.

Interpreting industry-specific localization as indicator for Marshall-Arrow-Romer-
externalities suggests that they are either of minor relevance for R&D activities or
occur over relatively long distances. It thus appears likely that spatial clustering
of R&D establishments and researchers is only weakly connected to the industry
in which the innovative activities are performed. Moreover, as we find a strong
concentration of R&D activities themselves, especially in the researcher-weighted
approach, R&D appears to attract R&D rather on a general than on an industry-

specific level.

The results have implications for the ongoing debate on German cluster policy[?|
Numerous cluster initiatives have been launched in Germany at both federal and
state levels during the last 20 years. FEvaluations of these cluster policies have
revealed several positive influences. For instance, an analysis on the impact of
the Leading-Edge Cluster Competition ] on the formation of innovation networks
showed a significant effect on the network structure in terms of density, centralization
and geographical reach. On average, more than half of the existing linkages were
either initiated or intensified by the cluster policy, leading to an increased density

of the network.

However, it is crucial to know that most policies follow a definition of clusters as "ge-
ographic concentrations of interconnected companies and institutions in a particular
field." (Porter|[1998)). Thus, the aim of cluster policies is to encourage the spatial

agglomeration of firms and other organizations belonging to a particular sectoral or

33For a detailed overview of the varying implementations and effects of German cluster policies
and initiatives, see [EFI| (2015)

34The Leading-Edge Cluster Competition was launched by the Federal Ministry of Education
and Research in 2007 as part of the High-Tech Strategy. It addressed high-performance clusters
formed by business and science.
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technological field and to support cooperation primarily among those entities that
are technologically close in order to generate positive network effects. However, our
results indicate that spillover-caused incentives for spatial proximity to technologi-
cally related knowledge-producers — reflected by their common industry affiliation —
are likely to be rather weak. The provision of various facilitating resources outside of
the firm’s industry specific knowledge sphere appears to be more important for the
settlement of innovative activity. The implications for policy indicate that Marshall-
Arrow-Romer-ezternalities — if at all — only secondarily affect localization decisions
regarding R&D. Instruments aimed at stimulating R&D agglomeration need to be

designed accordingly.

One immediately following question is, which combinations of industries are clus-
tering their respective R&D activities in relation to one another. As far as it can
be judged at present, this needs more thorough analysis and reflection than we
can provide here without going far beyond the scope of this work. This research
could moreover be continued by further thorough investigation of forces that lead
to dispersion and localization of various industries. Using multivariate econometric
approaches one can analyze clusters of R&D activity in Germany. One can also use
as a benchmark in simulations not only the distribution of R&D activity in Germany
but instead the distribution of economic activity tackling the question of whether
knowledge production is concentrated or dispersed in relation to it. Answers to these
further questions will bring us closer to understanding the choices made by firms in

locating their R&D and, thus, lead to the development of better policies.
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4.3 Firms’ sustained superior job creation. Myth
or reality?’”’]

4.3.1 Sustained superior performance of firms

The global economic downturn that follows the Great Recession of 2007-2009 has
led to a dramatic industrial decline and, with this, to prolonged unemployment in
virtually all developed economies. In Europe, for example, the unemployment rate
peaked at 11% in the second quarter of 2013, had slightly fallen the year after, and
reached the level of 9% at the end of 2015. The most optimistic projections suggest

that these negative values will persist for many years.

Not surprisingly, job creation has become a dominant theme in the policy arena
worldwide. Several actions have been put in place to spur employment in existing
companies and many others to offer fertile ground for the growth of new businesses.
Such initiatives are aimed mainly at restoring competitiveness through innovation
and productivity gains, revising the functioning of labour markets, and reducing
barriers that prevent firms with growth potential from expanding (Stangler 2010,
EU|2013). Most of the debate has been for long directed to a small share of the
overall firm population, the so-called high-growth companies, that typically accounts

for a disproportionate share of net job creation.

In the last decade, a large body of economic and management research has sought
to identify the drivers of such a superior growth performance. Common practice has
been to distinguish between two types of determinants. On the one hand, we find
studies concerned with the identification of structural characteristics specific to the
firm, such as productivity, financial constraints, innovative outcomes, management
practices and organizational traits (see, among the many, Bottazzi et al.| (2008),
Coad and Rao| (2008), |Parker et al.| (2010), Bloom and Van Reenen| (2010)), Harri-
son et al.| (2014). On the other hand, scholars have searched for factors external to
the firm that might indirectly shape its performance, such as institutional factors
or characteristics of the location (see, among the many, Davidsson and Henrekson
(2002), |Audretsch and Dohse (2007), Acs and Mueller| (2008)). Although it is hard to
draw “stylized facts” due the peculiarities of the samples analyzed, there is general

consensus that high-growth companies tend to be in all industries (contrary to the

35in collaboration with Dr. Stefano Bianchini
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popular belief about an overrepresentation in the high-tech sectors) and geograph-
ical areas, they are typically young but not necessarily small, and they are more

innovative and productive than other firms.

Most studies produced so far have linked the occurrence of high-growth events both
to macro-level and firm-specific characteristics from a static point of view, often
ignoring that high growth episodes in firms are rare and most unlikely to be repeated.
However, scholars, policy-makers, and practitioners have recently begun to shift their
attention to longer-term growth history, putting more emphasis on "how" firm grow
instead of on "how much" (McKelvie and Wiklund [2010)). A substantial body of

this research has focused on sustained high-growth patterns.

Different economic theories have developed explanations for persistence in superior
growth performance. Contributions stem from alternative schools of thought, but
despite differences in the underlying assumptions, they share a common mecha-
nism of firm selection and growth, which is made explicit in disequilibrium models,
while it is implicitly described as the convergence to the equilibrium path in equilib-
rium models (Jovanovic||1982, Dosi et al.[1995, Ericson and Pakes/1995| |Cooley and
Quadrini 2001} |Asplund and Nocke| 2006, Luttmer| 2007). Theory predicts that an
idiosyncratic shock affecting firm-specific unobserved factors leads to heterogeneous
efficiency across firms; those firms with higher relative efficiency experience a reduc-
tion in prices which allows them to expand at the expenses of less efficient units. At
the same time, higher profitability and sounder financial conditions grant to more
productive firms the access to the resources needed to invest and fuel additional
growth. The existence of growth persistence resides in the fact that either firms
are assumed to choose long-run stable growth paths depending on their utility func-
tions and on their resource and other constraints, or that inter-firm asymmetries in
productivity, profitability, and financial conditions are not immediately reabsorbed,

creating in turn a long lasting virtuous cycle with growth.

Complementing the economic theory, there is a long standing management literature
on dynamic capabilities and resources as source of sustained superior performance.
Underpinning these theories is the idea that competitive advantages are the basis
of firm performance, and the presence of such advantages relies upon the possession
of finest resources, routines, technological and organizational capabilities (Teece
et al. 1997, Eisenhardt and Martin| 2000, Teece |2007). These core competencies
create value on the market, are unique, durable, and generate returns which are

appropriated. The inherent firm-specific nature of capabilities as well as the way
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firm can adapt them to the changing environment, induce non-transitory competitive
advantages which get reflected into sustained superior performance. Whilst these
concepts have been mostly applied to explain profitability dynamics, they are also

relevant to explain patterns of persistent growth and job creation (Dosi et al.|[2001).

Despite the abundance of complementary theories, little consensus exists on the
path-dependent nature of the process of high growth, not to say on the drivers
enabling sustained high-growth performance. Recent contributions connote no or
negative autocorrelation of high-growth rates over time (Parker et al. 2010, Holzl
2014, Daunfeldt and Halvarsson|2015)), though the magnitude can change according
to the age and the size of the companies (Coad| 2007, |(Capasso et al.|[2014)). Other
contributions fail to detect any association between the canonical economic and
financial variables and patterns of sustained high growth (Bianchini et al.[2016). As
such, the growth behaviour of outperforming firms appears to be very fragile and
the overall economic impact rather circumscribed to the short term. The mounting
empirical evidence on the erratic and difficult to predict nature of growth rates is
therefore incompatible with most theories of firm growth which have been developed
over the years, and tend to support that random variation can be an important

explanatory mechanism of the observed growth dynamics.

Despite the increasing availability of studies that model strategic management, or-
ganization behaviour, and corporate performance by mean of random variation, no
attempts have been done in order to rule out chance in sustained superior growth
performance. This is somewhat surprising since, as we have seen, the ability to
create a disproportionate amount of new jobs repeatedly over time is the primary
concern of policy-makers and researchers. On the one hand, if sustained higher
employment growth deviated from randomness, there would be some hope for re-
searchers to identify what micro and macro-level factors do actually spur this mode
of growth. More empirical research would be needed to develop reliable and con-
sistent answers, in turn, sounder policies could be designed to solve job crisis not
only in the short term but also in the long one. On the contrary, we should resign
ourselves that high-growth performance is merely a temporary phenomenon: firms
create new jobs but very likely these jobs will be lost. Hence, that policies aimed at
scaling up high-growth businesses in economies could be indirectly responsible for
the increasing trend in firm-level volatility often advocated in the literature (Comin
and Philippon|2005]).

In the following we show for four European countries that there must be factors
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influencing firm’s sustained superior job creation, however sometimes the number
of sustained superior employers is not different from the one generated by a process
driven purely by chance. At subsection we describe the methodology and
the choice of two models, than in subsection we present the data and basic
descriptive statistics. Subsection demonstrates the results, while subsection
[4.3.4] concludes with discussion of possible implications of our findings.

4.3.2 Methodology employing Markov chains

Firstly, we specify the calculation of the growth rate of employment between two
subsequent years. |Magnus Henrekson| (2010) demonstrates different measures of firm

growth in terms of employment, among which we highlight two:

e relative growth rate in percentage points. Given E; and Es as numbers of
employees in periods 1 and 2 consecutively, the growth rate is calculated in

accordance with the equation 4.5|

Ry = (B2 — Ey)/Ey (4.5)

e absolute growth measured by a difference in logarithms of a number of new

employees in a company. Given E; and E, as numbers of employees in periods

1 and 2 consecutively, the growth rate is calculated in accordance with the
equation [4.6]

Ay = log(Ey) — log(Ey) (4.6)

Moreover, in order to exclude influence of possible macro shocks and firms charac-
teristics, we control for the age of the firm, it’s sizd’®, industry specificity 7] and
time dummies @ In particular, we estimate the least absolute deviation regression
that also accounts for fat-tailed distributions of growth rates. Equation specifies
the regression and Figure demonstrates a typical distribution of growth rates.

36The size of the firms is control as a dummy variable, where we see if the firm is a small and
medium enterprise (SME) with less than 250 employees or not.

3"Industries are control in a form of dummy variables specified by 2 digit NACE classification
codes.

38Period of observation of a particular growth rate.
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We than use the residuals of the regression (¢) as a measure of growth rate for a

simulation model.

growth; = log(age;) + size; + industry; + time; + €; (4.7)

20

20 25 30

Figure 4.7: A histogram of regression residuals of the relative growth measure for a dataset includ-
ing all countries.

A natural way of modeling the random process of firm growth is a law of propor-
tionate effects (Gibrat‘s Law) which is widely discussed in the literature (Henderson

2012) and can be seen in equation . This idea posits that firm’s size can be
explained purely in terms of its idiosyncratic history of multiplicative growth shocks.

[t assumes that a firm’s performance in period ¢ is some function of it’s performance

in the period ¢ — 1 plus a random error that controls for other factors.

growth;; = f(growth;;—1) + €; 4 (4.8)

The literature provides an extensive discussion of Gibrat’s Law. [Lotti et al.| (2009),

for example, take into account market selection and find convergence toward Gibrat-

like behaviour in the long-run, implying that the growth path of surviving firms do

not deviate from a random process. (Coad et al.[ (2013)) conclude that the growth pat-

tern of a large sample of UK start-ups is largely random, and add that randomness
not only can explain growth in any given year, but also that can be a good approxi-

mation for longer-term growth path over a number of years. In a similar vein,
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et al. (2014) conclude that randomness can often provide parsimonious explanations
of several important empirical regularities in management science. However, it has
to be mentioned that such an approach relies on distributional assumptions. In
order to model the behavior of firms one has to assume a distribution of the error

(i.e., Gaussian normal distribution).

In our approach we chose to abstract from these assumptions borrowing the dy-
namics of firm growth from the observed data. In order to model randomness, we
employ a discrete-time homogeneous stochastic process characterized by a Markov
chain with transition probability matrices that capture the dynamics of the pro-
cess purely from the data. The Markov chain is specified by a finite set of states
S = s1, S9, ..., S, and a transition probabilities between all states. The system starts
in one state s; and sequentially moves to another s; with a probability p;;. We
model random process with first and second order Markov chains formally specified
by equations and [£.10} The first order Markov chain represents a simple hypoth-
esis that the growth of the firm in next periods solely depends on it’s current growth
and is independent from other factors. However, one might object with the hypoth-
esis that the probability that a firm will be successful in the next period, given that
it is successful in the current period, might be different depending on whether it has
been top performer or outsider in the previous period. This is captured by addi-
tionally modeling the random process with second order Markov chain which better
reflects the idea that there is some inertia in the form of organizational learning or

accumulation of experience and the process is not completely 'memoryless’.

PT(Xt = xt|Xt71 =21, K49 = X9, .. X1 = ﬂUl)

(4.9)
= PT(Xt = fL“t|Xt—1 = xt—l)

P?"(Xt = xt|Xt—l = Tt—1, Xt—2 = T¢—2, Xl = xl) (4 10)
= PT(Xt = l’t|Xt—1 = x4 1, Xt 2= $t—2)

The state space of the Markov chains is determined by calculating 100 percentiles
for each period and assigning every firm to its percentile/state. This rank-order
statistic based on percentiles is robust and provides useful information about relative

standing regardless of how a variable is distributed (Henderson et al.2012). Having
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done that we can calculate probabilities of a firm to transit from a particular state
based on the real transitions that we observe in the data, thus allowing us to avoid

distributional assumptions.

We define a superior job creator as a firm that persistently stayed in the top 10% of
employers in a given period. We complement this definition considering also top 20%
which allows us to assess the robustness of our results. In order to define how many
times a firm should be observed in a top ten percent of employers to be considered
a superior performer, we set benchmarks for every firm grouping them by identical
observed life spans. A firm that is observed for 7 periods has a higher chance of

staying longer in the top than a firm with only 4 years of observations.

Benchmarks are set by simulating firms’ histories 1000 times. In every simulation
we let the same number of firms as in the observed panel to transit in accordance
with transition matrices. Thus, if we observe 10 firms for 7 periods, there will be
10000 simulated firms with identical observation life spans. In order to be confident
with p < 0.05 or p < 0.01, that an observed number of times a firm was a top
employer is not a false positive, we count how many times each of the simulated
firms stayed in top 10% (or 20%) and equal a benchmark for this life span to a
95th (p<<0.05) or 99th (p<0.01) percentile. In doing so we abstract ourselves from
a definition of persistence letting the data determine how many years a firm must
be a top performer in order to be considered as superior. Thus, for every observed

life span there is a benchmark.
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Figure 4.8: A histogram of how many times firms observed for 7 periods stayed in the top 10% of
employers for the Spanish dataset measuring growth in relative terms.
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Figure 4.9: The summary of the analysis flow.

However, among those firms that met their respective benchmarks there are still
some that can meet them due to chance. In order to statistically determine that the
observed number of firms is higher than the expected number due to a Markov chain
simulation we apply the above mentioned benchmarks to every simulated history.
For every simulation we count how many times a firm stayed in the top 10% (or
20%) of employers and mark it a sustained superior performer if it met it’s respective
benchmark. This provides an expected number of firms that can be considered a
superior job creators with a mean p and standard deviation 0. We conclude that
there is a deviation from normality and that the number of observed firms can’t
be explained by a random process only if this number falls outside the region of
three standard deviations from the mean (u 4 3y/0) and the distribution fulfills
Kolmogorov-Smirnov test of normality. If, however, the observed number falls into
that range, than we can’t statistically differentiate it from an expected number of

firms. Figure |4.9| summarizes all steps of our methodology.
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Table 4.6: Unbalanced panel statistic. Years 2004 - 2011

Country Data
UK IT FR ES
Number of firms 120.690 386.123 624.878 724.848
Firms in simulation 72.064 152.075 245.146 426.816
Firms out of simulation | 48.626 234.048 379.732 298.032
Balanced panel 20.246  19.696  36.332  40.549
Missing first/last year 36.743  46.212  77.133 197.922

Data

Our data set comes from the Amadeus database provided by the Bureau van Dijk and
covers years from 2004 to 2011. It represents five countries: United Kingdom(UK),
I[taly(IT), France(FR), and Spain(ES). Table demonstrates the number of ob-
servations for all countries. In total our analysis covered around 1.3 million firms.
Since we employ a second order Markov process the firm must be observed for three
subsequent years at least once imposing a restriction to the number of firms that
can be taken into account in the simulation. We call such firm an active since it pro-
vides important information for the transition of firms between states in the Markov
simulation. Second and third row of the Table reflect number of inactive and
active firms subsequently. Additionally, we demonstrate the sizes of balanced and

almost balanced panels.

4.3.3 Mixed evidence from four European economies

The methodology explained in subsection and demonstrated on the Figure [4.9
is applied to the data of every country. Firstly, we estimate transition probability
matrices for our Markov chains. Figure demonstrates the Markov chain for a
relative growth measure created based on the UK dataset. One hundred nodes rep-
resent percentile states. The thickness of edges indicate probabilities of transferring
from one state to anotheﬂ All Markov chains are ergodic (irreducible) Markov
chains meaning that it is possible to go from any state to any state. This is impor-

tant since it means that any firm can potentially reach any growth rate. Another

39Note here that this picture reflect a first order Markov chain. It is impossible to visualize in a
meaningful way all transition probabilities of a second order Markov process.
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interesting observation is that often there is a lot of dynamics among 1st and 2nd
on the one side and 99th and 100th percentiles on the other side. This implies that
in the observed data there are relatively many cases where a top employer in one

year suddenly shrank in the next year and the other way around.
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Figure 4.10: Markov Chain for a relative growth measure for UK data set. Nodes represent
percentile states. Thickness of the links indicate a probability of transiting to another state as
proxied by a first order Markov process.

Having calculate transition probabilities for Markov chains, we have uniformly dis-
tributed N number of firms, where N comes from a second row of the Table
and run the transition steps for the exact same number of years as in the observed

data for every country.

Afterwards, we have counted how many periods each firm has stayed in the top
10% (or 20%) of job creators which results in a similar histogram as shown on the
Figure for every life span. Out of this distribution we are able to calculate how

many firms are top job creators by counting ones that meet their benchmarks (see
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Table 4.7: Results for the first order Markov process simulations

p Relative Growth Measure
value Top United Kingdom Spain
expected p(o) observed # || expected (o)  observed #

p<0.05 10% | 2287.1 (47.4) 2887 10502.7 (105.1) 14968
20% || 1950.6 (39.7) 2422 13128.0 (119.5) 15427

p<0.01 10% || 412.6 (17.0) 708 2155.4 (50.3) 4110
20% || 287.9 (16.3) 2039.2 (50.9) 2979

p Top France TItaly

value expected p(o) observed # H expected p(o)  observed #

p<0.05 10% || 7427.4 (77.3) 10493 3390.4 (53.5) 4266
20% || 10067.5 (87.6) 12008 5743.6 (72.3) 7026

p<0.01 10% || 1673.8 (40.0) 3149 1251.0 (33.6) 1893
20% || 945.8 (33.0) 1477 694.8 29 6) 833

p Absolute Growth Measure

value Top United Kingdom Spain

expected p(o) observed # H expected p(o)  observed #

p<0.05 10% || 2311.1 (46.1) 2909 10502.7 (105.1) 14968
20% || 1959.8 (41.5) 2494 12961.5 (126.2) 16060

p<0.01 10% || 426.1 (21.4) 722 2209.7 (41.0) 4295
20% | 291.4 (20.3) 594 1982.6 (19.5) 3136

p Top France Italy

value expected p(o) observed # || expected (o)  observed #

p<0.05 10% | 7576.9 (86.6) 10658 4862.0 (65.5) 6583
20% || 10200.5 (97.7) 12297 5566.6 (73.8) 7396

p<0.01 10% || 1759.2 (41.3) 3355 1181.5 (28.0) 1962
20% 962.6 (28.6) 1580 674.8 30 4) 902

Note: values in bold exceed the expected range of values.

Tables [D.3] [D.4] [D.5] D.6] in Appendix [D]). This process is repeated for observed

firms. Finally, having 1000 numbers reflecting simulated histories, we can calculate

how many firms we expect to be sustained superior job creators and can compare

this number with an observed value.

Tables and summarizes results for all countries for both growth measures.
Each table demonstrates the results first for relative and then for absolute growth

measures. Observed values highlighted in bold lie above the expected range of values.
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Table 4.8: Results for the second order Markov process simulations

p Relative Growth Measure
value Top United Kingdom Spain
expected p(o) observed # || expected pi(o) observed #
p<0.05 10% || 2091.9 (50.6) 2349 10352.2 (97.3) 7589
20% || 2001.6 (45.1) 3102 6696.0 75 0) 8811
p<0.01 10% 347.2 (17.4) 518 995.8 (29.5) 927
20% 311.4 (21.8) 856 1651.0 (42.5) 2965
p Top France TItaly
value expected p(o) observed # H expected p(o) observed #
p<0.05 10% || 6787.8 (78.3) 5307 3780.6 (62.7) 2695
20% || 4328.4 (65.2) 6394 2963.6 (53.7) 2737
p<0.01 10% 632.1 (24.0) 693 473.1 (16.9) 341
20% || 1387.6 (30.7) 2656 677.5 27 4) 842
p Absolute Growth Measure
value Top United Kingdom Spain
expected p(o) observed # || expected p(o) observed #
p<0.05 10% || 2175.8 (45.1) 2358 8270.9 (80.7) 7786
20% || 2359.3 (49.6) 3125 5624.9 79 6) 8961
p<0.01 10% 362.7 (16.6) 526 773.0 (27.6) 994
20% 200.9 (15.1) 584 1358.2 (31. 4 3124
p Top France Italy
value expected p(o) observed # || expected (o) observed #
p<0.05 10% || 7368.6 (85.2) 5454 4209.4 (58.5) 2950
20% || 4423.5 (68.3) 6409 2994.9 52 2) 2828
p<0.01 10% 793.5 (26.3) 769 443.2 (18.4) 354
20% || 1439.9 (31.9) 2806 697.8 (28.6) 906

Note: values in bold exceed the expected range of values.

Our conclusions are based on comprehensive analysis taking into account different

growth measures, confidence bands and definitions of superiority.

As can be seen from the Table [1.7] first order Markov process is unable to generate
observed number of firms regardless of the way it is calculated. In all countries,
for all confidence levels and definitions of the superiority we see that the observed
number of superior job creators lay above the expected range of values. With the

introduction of the second order Markov process results become heterogeneous as
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seen in the Table We can see that in United Kingdom the amount of observed
companies is still more than expected, whereas Italy demonstrates a rather reversed

pattern. In the following we closely elaborate on this issue.

4.3.4 Conclusion on sustained superior performance of firms

Job creation has become a dominant theme in the policy arena worldwide. Most of
the debate has been for long directed to a small share of the overall firm population,
the so-called high-growth companies, that typically accounts for a disproportionate
share of net job creation. Large body of economic and management research has
distinguished between two types of determinants of such a superior growth perfor-
mance. These are structural characteristics specific to the firm and factors external
to the firm that might indirectly influence its performance. A substantial body of
this research has recently focused on sustained high-growth patterns, targeting the

question of not "how much" but "how" a firm growths.

Despite the abundance of complementary theories, little consensus exists on the
path-dependent nature of the process of high growth, not to say on the drivers
enabling sustained high-growth performance. The underlying empirical evidence
on the erratic and difficult to predict nature of growth rates is incompatible with
most theories of firm growth which have been developed over the years, and tend to
support the fact that random variation can be an important explanatory mechanism

of the observed growth dynamics.

This section investigated whether a random variation can be an explanatory mech-
anism of the observed growth dynamics for four European countries. Abstracting
ourselves from distributional assumptions we determine the dynamics of the model
from the observed data using a first and second order Markov chain simulations.
Controlling for firm age, size, industry and time dummies we find a mixed evidence
of presence and absence of factors determining sustained superior growth perfor-

mance.

We can not explain the observed number of firms with a simple process modeled
through a first order Markov chain implying that it is obviously not enough to assume
that the assumption that growth in the next period depends solely on the growth in
the current period. This pattern can be seen regardless of the confidence level and
definitions of superiority, which so far where top 10% and top 20%. This strongly

indicates for a presence of drivers enabling sustained high-growth performance in
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the economy. Economic theories explain such behavior with, for example, an id-
iosyncratic shock that helps those firms with higher relative efficiency experience
a reduction in prices which allows them to expand at the expenses of less efficient
units. Together with higher profitability and sounder financial conditions more pro-
ductive firms access to the resources needed to invest and fuel additional growth.
In accordance with managerial literature this drivers might be firm’s dynamic ca-
pabilities and resources that create value on the market, are unique, durable, and
generate returns which are appropriated, and induce competitive advantages which
get reflected into sustained superior performance. Accumulation of these capabilities

overtime allows firms to build various routines that help them to grow.

A model using second order Markov chain captures the idea that a growth process
involves some kind of 'memory’ and organizations ’learn’ how to grow or fail. The
obtained results demonstrate heterogeneity across countries considering that the
definition of superiority as being in the top 10% of job creators. Firm dynamics in
the United Kingdom can’t be explained with a model driven by chance. There are
many more sustained performers as could be expected by a homogeneous second
order Markov process for different confidence levels. A similar result is obtained
for Spain which mostly shows a presence of certain factors except for one case.
In contrast, data from Italy demonstrate that we can not rule out chance as an
explanatory mechanism for firm behavior. French data also point out to the similar
direction although being contingent on the way we measure growth process and
confidence level we set. These results suggest that we should resign ourselves that
high-growth performance is merely a temporary phenomenon: firms create new jobs
but very likely these jobs will be lost. Hence, that policies aimed at scaling up high-
growth businesses in economies could be indirectly responsible for the increasing
trend in firm-level volatility often advocated in the literature (Comin and Philippon
2005)). However, these results are not supported if we take into account companies
that stayed not only within top 10% but within top 20% where we observe same

results as for the model with first order Markov chain.

Altogether this research grants encouragements to the aforementioned economic and
management theories seeking for factors of persistent job creation. It also provides
a positive sign to policy makers indicating that if such factors exist they could be
targeted by specific policies spurring employment. We also indirectly point out
where to look for these factors. Setting benchmarks of how long a firm should grow

in terms of employment in order to rule out chance, we provide evidence of which
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firms to focus on, while looking for possible dynamic capabilities, resources and

other internal factors.

4.4 Conclusion

We started this chapter by generalizing the problem of emerging technology detec-
tion to the identification of patterns in micro data. The approach that is chosen com-
pares the observable reality to another reality generated using simulations guided by
random processes. This allows to identify statistically significant deviations point-
ing to the existence of forces creating those patterns. There is an advantage in
comparison to a classical econometric regression approach. A regression can point
to the influence of a particular factor on the dependent variable. However, it is
almost impossible to prove with the regression that a process can be a byproduct of
chance. Consider the case when none of the regression variable coefficients is signif-
icant. Given that enough statistical robustness checks and tricks has been applied,
the only conclusion that can be made here is that these variables have no influence
on the dependent one, but this does not mean that there exists no other variable
that has an influence. Thus, methods of comparison to a random benchmark nicely
complement classical econometrics methods. Where the former can point out on

existence of forces the latter can show what are those forces.

Two application cases used in this chapter demonstrate the power of these method-
ologies. Firstly, we demonstrate a comprehensive assessment of German R&D al-
location in private sector. A method based on distance approach and simulations
allows to claim that some industries including service robotics tend to cluster and
this clustering is significantly different from an average allocation of R&D. As noted
in subsection this result spurs some discussion with respect to Marshall-Arrow-
Romer or Jacobs knowledge spillovers and leads to implications for R&D develop-
ment and clustering policy. These is in a line with major literature strands, however,
may be one of the most important lessons here is that there is something worth in-
vestigation going in those industries that distinguishes them from average and this

type of techniques allow us to capture and detect this phenomena.

In a second application case the methodology applied was a little more sophisticated
with two models of firm growth based on the Markov chain property. Here important

to note is that the probabilities that drive simulations are derived from the data.
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Such "let the data speak" approach coupled with exhaustive robustness tests allows
to make strong conclusions with respect to the strange patterns that are observed
for UK data for example where the amount of top sustained performers can not be
explained by a random process. This similar to the case with clustering points to
forces in our social system that lead to this behavior. Again important message is
that the technique allows to detect patterns in micro data. The investigation of the
mechanisms that created those patterns is a subject of another study with, perhaps,

another methodology.
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Chapter 5

Conclusion and contributions

Technological change brought an immense growth in welfare and quality of life in the
last century. A constant flow of innovations and the appearance of new technologies
are at the heart of this process. This thesis elaborates on the mechanisms of the
emergence of a generally applicable knowledge - general purpose technologies - in the
form of a theoretical model. Tt is shown how a technology can become very pervasive
and emerge as a result of forces of economic agents. While the mainstream economics
literature uses the concept of aggregate production function treating knowledge as
a factor of production that can be accumulated, the developed model takes alter-
native view emphasizing heterogeneity of knowledge pieces reflecting the difference
between technologies in economic structures. Abstracting the concept of knowledge
as a network of interconnected technologies and simulating its discovery through
the actions of agents the model demonstrates the influence of four factors on the
emergence of general purpose technologies. This process of technological formation
transforms into inclusion of a single technology in as many goods in the simulated

economy as possible.

First socio-economic factor, influencing the process of emergence, is knowledge dif-
fusion, given the famous public good property of knowledge (Arrow 1962) and the
resulting possibility to create "complementarities among trajectories" (Dosi (1982,
p. 154). The results demonstrate that this factor was a key prerequisite for the
emergence of a GPT, both in terms of being used in many distinct products as well
as spreading among economic agents doing R&D. Once discovered, the knowledge
spills over benefiting most those technologies having multiple potential applications
in combination with other intermediates in the production of different final goods.

This result found support in practical studies, e.g., software security industry, high-
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lighting the importance of external knowledge exploitation for the production of
GPTs (Gambardella and Giarratanal2013). The extent of this effect, however, is
contingent on the second factor considered - the exact network structure. Complex
interrelationships between technologies can result in some technological links being
present in numerous products or very few only. This structural property of knowl-
edge is measured through an introduced multiplicity index reflecting the share of

combinations in favor and against a potential GPT.

Literature demonstrated that the innovation process could be seen as a search in
complex technology spaces "shrouded in uncertainty" (Silverberg and Verspagen
2005, p. 226) and was characterized by strong path dependence (Nelson and Winter
1982)). Thus, another factor considered in the model was the choice over techno-
logical trajectories to follow while conducting R&D activities. Given the presence
of knowledge spillovers, concentrating on technological trajectories with more ac-
cumulated knowledge (coordination of R&D efforts) also favors GPT, assuming a
constant size of the knowledge base in the economy. However, once the technology
network was modeled as a graph, growing over time, where agents become aware
of new technological combinations through inventing simpler products, this posi-
tive effect of coordination transformed into an inverted U-shape form, illustrating
the famous exploitation vs. exploration trade-off. Thus, it was beneficial for the
knowledge discovery process in general and the GP'T emergence in particular that
society started favoring a certain product development after a sufficient knowledge
had been accumulated as it was the case, e.g., for nuclear power plants in the 1950s
(Cowan||1990) or renewable energy generation in the last two decades (Herrmann
and Savin|[2016)). In both cases, the policy maker was providing large subsidies to
discover a product with certain characteristics, while actual choice among different
technological trajectories was left to innovating firms. Finally, the negative influence
of frequently changing demand side was demonstrated, indicating that a society that
swaps its vector of technological development too often may not benefit from general

purpose knowledge.

This work depicted that the GPT formation should not necessarily be treated as
a ‘black box’ where GPT comes from the outside of economic system, but could
be produced (or not) by the forces within the system itself helping us to learn
how to foster its emergence. Despite its many simplifying assumptions, the model
successfully reproduced a wide range of stylised facts such as S-shaped curve of

technology adoption, temporal clustering of innovations in time, lock in effects, as
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well as many structural features of the empirical product graphs (Hidalgo et al.|2007))
and graphs constructed based on networks of relatedness between technological TPC
classes (Boschma et al.|[2014]).

Though one shall be careful in drawing policy implications from the present suffi-
ciently abstract model, some directions of thought can be outlined. It was argued,
that similar to firms in the organisational theory (see, e.g., (Sidhu et al.[[2007)),
individual firms and whole countries should apply more differentiated technological
policy, depending on their stage of development. In the ‘path-following’ catching-up
process (Lee and Lim|[2001) countries, aiming to discover certain product types in
the knowledge base, where most of technological trajectories are known from ex-
perience of advanced economies find exploitative strategy (knowledge depth) more
attractive. In contrast, if the economy is currently at the technological frontier,
seeking to identify the next GPT (become ’path-creator’), it shall put more focus
on exploration of new opportunities and provide incentives for sufficient knowledge
breadth. For the same reason, policy maker shall avoid supporting any specific prod-
uct need before the economic agents accumulate enough information on alternative
production capabilities to satisfy that same economic need and payoffs to adoption
of the respective technologies. Otherwise, the economy risks to be locked-in to in-
ferior technologies due to a random choice of the technological trajectory and the

increasing returns to adoption described by |Arthur| (1989).

Complementing theoretical work in Chapter [2|in Chapter 3| of this thesis a potential
general purpose technology of our time - robotics was taken into account. Being
considered in a cluster of technologies together with artificial intelligence and big
data, it is seen as a potential driver of the fourth industrial revolution, that can
alter modern production chains and organizational routines as well as global leader-
ship. Robotics has all necessary characteristics of a general purpose or a structural
technology. Due to its broad application it has a pervasive character entering many
downstream products. It shows a significant technological dynamism demonstrating
in recent decades, an increase in the number of applications (IFR}[2016) and it ex-
hibits innovation complementarity inducing significant improvements in downstream

sectors.

For all those reasons a fast developing service branch of robotics was chosen as an
emerging technology for an empirical study. The Chapter [ covered the new method-
ology developed to detect this emerging GPT within a patent database, overcoming

the initial lack of common knowledge, standards, and specifications as well as an
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absence of a widely agreed-upon definition of emerging technologies (Halaweh|[2013).
Given all these uncertainties a multiple step method was developed. Firstly, a core
set of robotics patents was created using a well-established definition of robotics
within a patent database based on an IPC class 'B25J’. Secondly, experts separated
a sample of service robotics patents, which served as a training set for a support
vector machine that was trained to classify patents. The resulting model was able
to classify patents with an f1 score of 83%, allowing to retrieve patents in service

robotics for further analysis.

The application of the machine learning allows avoiding human introduced bias. The
experts did not choose which terms and keywords should be added to or excluded
from the primal search, limiting the typical lexical bias towards preferred subfields.
The developed method avoided a major drawback of citational methods, which cir-
cled around a core data set and relied on future works explicitly referring to this
prior art. This is inapplicable given that citations in patents are generally rare for
young emerging technologies. The procedure additionally offered strong portabil-
ity and can easily be applied to scientific publications or other textual databases.
Moreover, the developed step-by-step classification method can be applied to any
emerging technology and not only those, that arise as an initially small subset con-

sisting of niche applications such as service robotics out of robotics.

Taking a broader perspective of emergence and its detection Chapter[4 of the current
research focused on macro pattern detection techniques in micro (firm and estab-
lishment level) data. These efforts target the question of how not to be misled by
chance. In order to differentiate between a statistically significant pattern and a pat-
tern that might emerge by chance, benchmarks were generated, using simulations
driven by random processes, which allowed to reveal deviations from normality in

two applications to the real-world data.

The first application analyzed the technological change and innovations from a geo-
graphical perspective, applying the "dartboard approach" (Duranton and Overman
2008) to the establishment level R&D data and service robotics patent applicants
in Germany. It is shown that service robotics knowledge production is significantly
clustered in southern regions of Germany. On top of that, using the data from a na-
tionwide R&D survey the analysis of the industry location patterns on a 3-digit level
(NACE) revealed that 40.8% of industries deviate significantly from random spatial
location patterns. In general, knowledge creation in production industries tends to

be more localized, than in services, where the dispersion occurs more often than
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localization. Interestingly, especially research-intensive service industries exhibited
strong cross-distance indices of dispersion. Overall, the evidence on industry-specific
spatial concentration of R&D was found to be relatively weak. The results indicate
that localization of both R&D establishments and researchers was mainly observ-
able for production industries over relatively long distances. However, these results
do not contradict the notion of R&D itself being concentrated, but rather indicate
that clustering of R&D establishments or researchers at short distances is not or
only weakly connected to the 3-digit industries in which innovative activities are

performed.

The second application uses simulations based on Markov chain property and demon-
strated whether randomness could be ruled out when observing sustained superior
job creation in Spain, United Kingdom, France and Italy. It was shown, that the ob-
served number of firms could not be explained with a simple process modeled through
a first order Markov chain. The inconsistency of the assumption was demonstrated
that the employment growth of the firm tomorrow depends solely on the growth
today. This pattern could be seen regardless of the confidence level and definitions
of superiority (top 10 % and top 20 % levels considered in this work), strongly
indicating for a presence of drivers enabling sustained high-growth performance in
the analyzed economies. Economic theories explain such a behavior with an id-
iosyncratic shock, that helps those firms with higher relative efficiency experience a
reduction in prices, allowing them to expand at the expenses of less efficient units.
Together with higher profitability and sounder financial conditions more productive
firms access to the resources needed to invest and fuel additional growth. In accor-
dance with managerial literature, this drivers might be firm’s dynamic capabilities
and resources that are unique, durable, create value on the market, and generate re-
turns which are appropriated, inducing competitive advantages which get reflected
into sustained superior performance. Accumulation of these capabilities overtime
allows firms to build various routines that help them to grow. Altogether the re-
search grants encouragements to the economic and management theories seeking
for factors of persistent high-growth performance. It also provides a positive sign
to policy-makers indicating that if such factors exist they could be targeted by
specific policies spurring employment. These methods of comparison to a random
benchmark nicely complement classical econometrics methods. Where the former
can point out on existence of forces, the latter can investigate the mechanisms that

created those patterns, which is a subject of another study.
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Table A.1: Probabilities of a product to become visible depending on the percentage of discovered,
visible and invisible links in accordance with equation

Discovered (%) | Visible (%) | Invisible (%) | Probability
1.00000000 0.00000000 0.00000000 0.01741174
0.90000000 0.10000000 0.00000000 0.01391415
0.80000000 0.20000000 0.00000000 0.01224831
0.70000000 0.30000000 0.00000000 0.01198899
0.60000000 0.40000000 0.00000000 0.01307001
0.5000000 0.5000000 0.0000000 0.0157673
0.40000000 0.60000000 0.00000000 0.02076935
0.30000000 0.70000000 0.00000000 0.02935294
0.20000000 0.80000000 0.00000000 0.04370905
0.1000000 0.9000000 0.0000000 0.0675021
0.0000000 1.0000000 0.0000000 0.1068053
0.9000000 0.0000000 0.1000000 0.0178481
0.80000000 0.10000000 0.10000000 0.01589869
0.70000000 0.20000000 0.10000000 0.01517186
0.60000000 0.30000000 0.10000000 0.01548209
0.50000000 0.40000000 0.10000000 0.01690855
0.40000000 0.50000000 0.10000000 0.01981537
0.3000000 0.6000000 0.1000000 0.0249445
0.20000000 0.70000000 0.10000000 0.03360517
0.10000000 0.80000000 0.10000000 0.04800803
0.00000000 0.90000000 0.10000000 0.07182944
0.80000000 0.00000000 0.20000000 0.02266823
0.70000000 0.10000000 0.20000000 0.02165784
0.60000000 0.20000000 0.20000000 0.02150056
0.50000000 0.30000000 0.20000000 0.02215623
0.40000000 0.40000000 0.20000000 0.02379222
0.30000000 0.50000000 0.20000000 0.02682611
0.20000000 0.60000000 0.20000000 0.03203232
0.10000000 0.70000000 0.20000000 0.04073974
0.00000000 0.80000000 0.20000000 0.05517096
0.70000000 0.00000000 0.30000000 0.03310248
0.60000000 0.10000000 0.30000000 0.03266164
0.5000000 0.2000000 0.3000000 0.0328498
0.40000000 0.30000000 0.30000000 0.03371499
0.30000000 0.40000000 0.30000000 0.03547806
0.20000000 0.50000000 0.30000000 0.03858904
0.100000 0.600000 0.300000 0.043842

0.00000000 0.70000000 0.30000000 0.05257778
0.60000000 0.00000000 0.40000000 0.05181422
0.50000000 0.10000000 0.40000000 0.05171882
0.4000000 0.2000000 0.4000000 0.0521165
0.30000000 0.30000000 0.40000000 0.05310878
0.20000000 0.40000000 0.40000000 0.05494893
0.10000000 0.50000000 0.40000000 0.05810666
0.00000000 0.60000000 0.40000000 0.06338798
0.50000000 0.00000000 0.50000000 0.08357964
0.40000000 0.10000000 0.50000000 0.08369377
0.30000000 0.20000000 0.50000000 0.08421854
0.20000000 0.30000000 0.50000000 0.08528789
0.1000000 0.4000000 0.5000000 0.0871748
0.00000000 0.50000000 0.50000000 0.09036088
0.4000000 0.0000000 0.6000000 0.1365069
0.3000000 0.1000000 0.6000000 0.1367482
0.20000 0.20000 0.60000 0.13735

0.1000000 0.3000000 0.6000000 0.1384661
0.0000000 0.4000000 0.6000000 0.1403814
0.3000000 0.0000000 0.7000000 0.2241059
0.2000000 0.1000000 0.7000000 0.2244242
0.1000000 0.2000000 0.7000000 0.2250728
0.0000000 0.3000000 0.7000000 0.2262173
0.2000000 0.0000000 0.8000000 0.3687364
0.1000000 0.1000000 0.8000000 0.3691014
0.0000000 0.2000000 0.8000000 0.3697784
0.1000000 0.0000000 0.9000000 0.6073155
0.0000000 0.1000000 0.9000000 0.6077089
0.000000 0.000000 1.000000 1.000741
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Appendix. A patent search strategy for

service robotics

Table B.1: Important robot definitions according to ISO 8373:2012

Definition

Robot: Actuated mechanism programmable in two or more axes with a degree of autonomy,
moving within its environment, to perform intended tasks.
Note 1 to entry: A robot includes the control system and interface of the control system.
Note 2 to entry: The classification of robot into industrial robot or service robot is done
according to its intended application.

Autonomy: Ability to perform intended tasks based on current state and sensing, without human
intervention.

Control System:  Set of logic control and power functions which allows monitoring and control of the me-
chanical structure of the robot and communication with the environment (equipment and
users).

Robotic Device:  Actuated mechanism fulfilling the characteristics of an industrial robot or a service robot,
but lacking either the number of programmable axes or the degree of autonomy.
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Table B.2: SR application examples for personal / domestic use according to the IFR

Applications

Robots for domestic tasks

Entertainment robots and Toy robots

Handicap assistance and Robotized wheelchairs

Personal transportation

Home security and surveillance

Robot butler, companion, assistants, humanoids
Vacuuming, floor cleaning

Lawn mowing

Pool cleaning

Window cleaning

Robot rides
Pool cleaning
Education and training

Personal rehabilitation
Other assistance functions
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Table B.3: SR application examples for professional / commercial use according to IFR

Applications

Field robotics Agriculture
Milking robots
Forestry
Mining systems
Space robots

Professional cleaning Floor cleaning
Window and wall cleaning
Tank, tube and pipe cleaning
Hull cleaning

Inspection and maintenance systems Facilities, Plants
Tank, tubes and pipes and sewer
Other inspection and maintenance systems

Construction and demolition Nuclear demolition and dismantling
Other demolition systems
Construction support and maintenance
Construction

Logistic systems Courier/Mail systems
Factory logistics
Cargo handling, outdoor logistics
Other logistics

Medical robotics Diagnostic systems
Robot assisted surgery or therapy
Rehabilitation systems
Other medical robots

Defense, rescue and security applications Demining robots
Fire and bomb fighting robots
Surveillance/security robots
Unmanned aerial and ground based vehicles

Underwater systems Search and Rescue Applications
Other

Mobile Platforms in general use Wide variety of applications

Robot arms in general use Wide variety of applications

Public relation robots Hotel and restaurant robots

Mobile guidance, information robots
Robots in marketing

Special Purpose Refueling robots
Customized robots Customized applications for consumers
Humanoids Variety of applications
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Table B.4: Ezemplary extract of robot patents under consideration with respective titles, publication
numbers (given by the patent authority issuing the patent), filing dates (on which the application
was received), and expert classifcation decisions

Title Publication no.  Filing date SR y/n?
Remote control manipulator 968525 1962-06-25 n (-1)
Folded robot 2061119 1979-10-24 n (-1)
In vivo accessories for minimally invasive robotic surgery 2002042620 2001-11-06 y (1)
Apparatus and method for non-destructive inspection of large struc- 6907799 2001-11-13 v (1)
tures

Surgical instrument 2002128661 2001-11-16 v (1)
Robotic vacuum cleaner 2003060928 2001-12-04 v (1)
A cleaning device 1230844 2002-01-21 n (-1)
Climbing robot for movement on smooth surfaces e.g. automatic 10212964 2002-03-22 y (1)

cleaning of horizontal / vertical surfaces has chassis with crawler
drive suspended and mounted turnable about vertical axis, to detect
obstacles and prevent lifting-off

Single Cell Operation Supporting Robot 2004015055 2002-08-08 y (1)
Underwater Cleaning Robot 2007105303 2006-03-14 v (1)
Position determination for medical devices with redundant position 1854425 2006-05-11 v (1)
measurement and weighting to prioritise measurements

Mobile Robot and Method of controlling the same 2007135736 2006-05-24 y (1)
Customizable Robotic System 2012061932 2011-11-14 y (1)
Positioning Apparatus for Biomedical Use 2012075571 2011-12-06 n (-1)
Apparatus and Method of Controlling Operation of Cleaner 2012086983 2011-12-19 n (-1)
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Table B.5: List of the 1206 variables used in the SVM for classification: Part 1/4 of the 726

unigrams.

la

abl
abnormal
accelerat
access
accommodat
accord
accordanc
accurat
achiev
acquir

act

action
activ
actual
actuat
adapt
adapter
addition
adhesiv
adjacent
adjust
adjustabl
adjustment
advanc
advantag
agricultural
aid

aim

air
algorithm
allow
amount
analysi
analyz
angl
angular
animal
annular
apertur
apparatus
appearanc
appli
applianc
applic
appropriat
architectur
arm

arrang
arrangement
arriv
articulat
assembl
assist
associat
attach
attachabl
attachment
auto
automat
automatic
autonomous
auxiliari
avoid

axe

axi

axial
backlash
balanc
barrier
base

basi

beam
bear
behavior
bend
bicycl
bipedal
blade
block
board
bodi

bore
bottom
box

brush
build

built
button
cabl
calculat
camera
capabl
capillari
captur

car

cardiac
carri
carriag
carrier
caus

cell

center
centr
central
chang
characteris
characteristic
characteriz
charg
chassi
check
circuit
claim
clamp
clean
cleaner
climb

clip

close

coat

code
collect
collision
column
combin
combinat
comfortabl
command
common
communic
compact
compar
compartment
complementari
complet
component
compos
compris
computer
condition
configur
configurat
confin

confirm
connect
connection
consequent
consist
constitut
construct
construction
contact
contain
container
continuous
control
controller
convention
convert
conveyor
coordinat
correspond
cost

coupl
cover

creat

crop
current
customizabl
cut

damag
data
decision
defin

degre
deliver
deliveri
deploy
depress
describ
design
desir
detachabl
detect
detection
detector
determin
determinat
deviat
devic
diagnosi
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Table B.6: List of the 1206 variables used in the SVM for classification: Part 2/4 of the 726

unigrams.

differenc
difficult
digital
dimension
dimensional
dip

direct
direction
discharg
disclos
disconnect
dispens
displac
displaceabl
displacement
display
dispos
distal
distanc
dock

door
doubl

draw

drill

drive
driven

dust
dynamic
earth

easili

edg

effect
effectiv
effector
efficienc
elastic
electric
electronic
element
elongat
embodiment
emit
emitter
employ
employment
enabl
enclos
endoscop

endoscopic form
energi frame
engag free
enhanc freedom
ensur frequenc
enter front

entir function
environment gear
environmental  generat
equip glove
equipment grasp
error grip
especial gripper
essential groov

ete ground
exampl guid
exchang guidanc
exhaust hand

exist handl
expensiv har
extend head
extension heat
external held
extract help
extraction hip
extrem hold
facilitat holder
faciliti horizontal
factor hose
fasten hous
featur human
feedback hydraulic
field identifi
fig imag

figur implement
fill improv
filter improvement
finger includ

fit incorporat
fix increas
flang independent
flat individual
flexibl industrial
floor informat
flow inner

fluid input

forc insert
foreign insertion

inspection
instal
installat
instruction
instrument
integrat
interaction
interconnect
interfac
interior
internal
invasiv
invention
involv
item

jet

join

joint

knee

laser

latter

lawn

layer

leg

length
lever

lift

light

limb

limit

line

linear

link

liquid

load

local

locat

lock
locomotion
log
longitudinal
loop

low

lower
machin
magnetic
main
maintain
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Table B.7: List of the 1206 variables used in the SVM for classification: Part 3/4 of the 726

unigrams.

make
manipulat
manner
manoeuvr
manual
manufactur
map
marker
master
material
mean
measur
measurement
mechanic
mechanism
medic
medicin
medium
memori
method
micro
militari
milk

mine
minimal
mobil
modal
mode
model
modul
monitor
motion
motor
mount
movabl
move
movement
mow
mower
mri

multi
multipl
navigat
network
normal
nozzl
object
obstacl

obtain
oper
operabl
operat
oppos
optic
option
orient
orientat
orthogonal
outer
output
overal

pair

pallet
panel
parallel
part
partial
particular
pass

path
patient
pattern
payload
perform
performanc
period
peripheral
permit
perpendicular
photograph
pick

piec

pipe

pivot
pivotabl
place

plan

plane
plant
plastic
plate
platform
play
plural
pneumatic
port

portion
position
possibl
power

pre

precis
predefin
predetermin
preferabl
preparat
press
pressur
prevent
procedur
process
processor
produc
product
production
program
project
propos
propulsion
protectiv
provid
proximal
purpos
quantiti
rack
radar
radial
radio

rail

rais

rang
rapid
reach
reaction
real

realiti
realiz

rear
receiv
receiver
reciprocat
recognition
record
reduc

referenc
region
register
relat
relationship
relativ
releas
reliabl
remot
remov
removal
replac
requir
resolution
respect
respectiv
result
retain
return
rigid
ring
risk
robot
robotic
rock
rod

roll
roller
rotari
rotat
rotatabl
rough
run
safeti
sampl
save
scale
screen
seal
section
sector
secur
select
send
sens
sensor
sent
separat
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Table B.8: List of the 1206 variables used in the SVM for classification: Part 4/4 of the 726

unigrams.

sequenc
seri

serv

servo

set

shaft
shape
shield
ship

short
signal
significant
simpl
simulat
simultaneous
singl

site

situat
size

skin

slave
sleev
smooth
sourc

SOW

space
spatial
special
specifi
specific
speed
spiral
spray
spring
stabiliti
stabiliz
stabl
stage
station
stationari
steer
step

stop
storag
store
structur
subject
subsequent

substantial
substrat
subsystem
suction
suitabl
suppli
support
surfac
surgeon
surgeri
surgic
surround
sutur
switch
system
take

tank
target
task
techniqu
telepresenc
telescopic
terminal
terrain
test
therebi
therefrom
thereof
thereon
thereto
third
tight

tilt

time

tip

tissu

tool
tooth

top

torqu
torso
touch

toy

track
train
trajectori
transfer
translat

transmission  wire
transmit wireless
transmitter workpiec
transport worn
transportat wrist
transvers zone
travel

treat

treatment

tube

type

typic

ultrasonic
underwater

uneven

unit

universal

unload

upper

use

user

utiliz

vacuum

valu

variabl

varieti

vehicl

velociti

vertic

vessel

video

view

virtual

visual

volum

walk

wall

wast

water

weed

weight

weld

wheel

wherebi

wherein

wide

winch

window
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Table B.9: List of the 1206 variables used in the SVM for classification: Part 1/2 of the 370

bigrams.

1,2

1,compris
1,computer
1,connect

1,disclos

12,includ
12,provid

13,14

2,3

2,compris

2,move

3,4

3,compris
3,connect

4,5

43,connect
5,arrang

5,provid
accord,invention
actual,position
actuat,control
addition,equipment
adjust,position
adjustabl,surgeon
allow,surgeon
angl,adjust
apparatus,compris
apparatus,method
apparatus,perform
arm,coupl
arm,includ
arm,instrument
arm,join
assembl,method
automatic,clean
automatic,control
automatic,robot
autonomous,move
autonomous,robot
axe,rotat
balanc,control
base,informat
base,station
bodi,2

bodi,robot
bodi,surgic
button,allow
button,depress

button,effector
capabl,control
cardiac,procedur
chassi,frame
claim,includ
clean,horizontal
clean,method
clean,operat
clean,robot
cleaner,compris
cleaner,invention
comfortabl,position
component,provid
compris,base
compris,bodi
compris,main
compris,plural
compris,robot
compris,robotic
computer,program
connect,clamp
control,box
control,cabl
control,devic
control,input
control,joint
control,manipulat
control,method
control,movement
control,operat
control,panel
control,provid
control,resolution
control,robot
control,robotic
control,system
control,unit
controller,handl

correspond,movement

coupl,pair
degre,freedom
deliveri,system
depress,surgeon
detect,obstacl
detect,position
detection,mean
determin,position
determin,spatial

deviat,actual
devic,17
devic,compris
devic,control
devic,determin
devic,direct
devic,includ
devic,main
devic,position
devic,provid
devic,robot
devic,system
direction,drive

displacement,sensor

distanc,measur
door,10
drive,actuat
drive,devic
drive,forc
drive,ground
drive,mechanism
drive,system
drive,unit
drive,wheel

€,8
effector,control

effector,correspond

effector,handl

effector,manipulat

effector,move

effector,movement

effector,perform
element,5
endoscopic,imag
error,signal
factor,adjustabl
front,bodi
front,rear
front,robot
guid,mean
hand,surgeon
handl,controller
handl,move
handl,scale
har,1

hold,sutur
horizontal,vertic
imag,data

imag,process
implement,method
includ,base
includ,main
includ,pair
includ,step
independent,claim
industrial,robot
informat,relat
informat,sensor
informat,set
inner,surfac
input,button
input,data
instrument,coupl
instrument,effector
instrument,mount
invasiv,cardiac
invention,compris
invention,disclos
invention,propos
invention,provid
invention,relat
joint,provid
laser,emitter
leg,joint
longitudinal,direction
machin,tool
main,bodi
main,controller
manipulat,arm
manipulat,hold
master,handl
mean,14

mean,2
mean,detect
mean,receiv
measur,devic
mechanism,rotat
method,apparatus
method,autonomous
method,clean
method,control
method,invention
method,provid
method,system
method,thereof
method,use
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Table B.10: List of the 1206 variables used in the SVM for classification: Part 2/2 of the 370

bigrams.

minimal,invasiv
mobil,robot
mobil,robotic
motion,control
motion,controller
motor,drive
motor,vehicl
mount,chassi
mount,robot
move,button
move,comfortabl
move,devic
move,effector
move,floor
move,robot
move,surgeon
movement,effector
movement,handl
movement,movement
movement,perform
movement,robotic
movement,typic
navigat,system
object,provid
operat,accord
operat,clamp
operat,devic
operat,operat
operat,perform
operat,power
operat,rang
operat,remot
operat,robot
operat,unit
output,signal
overal,structur
pair,master
pair,robotic
pair,surgic
path,robot
patient,s
patient,treat
perform,clean
perform,hand
perform,minimal
perform,surgic
position,base
position,compris

position,coordinat
position,determinat
position,devic
position,handl
position,informat
position,robot
position,robotic
position,system
power,sourc
predetermin,position
predetermin,time
procedur,system
produc,correspond
provid,mean
provid,platform
provid,robot
provid,surgic
purpos,robot
real,time
relat,automatic
relat,method
relat,mobil
relat,robot
remot,control
remot,view
resolution,effector
robot,1

robot,10
robot,arm
robot,arrang
robot,automatic
robot,bodi
robot,capabl
robot,clean
robot,cleaner
robot,communic
robot,compris
robot,control
robot,includ
robot,invention
robot,main
robot,method
robot,mobil
robot,motion
robot,move
robot,movement
robot,mower
robot,operat

robot,pick
robot,position
robot,realiz
robot,robot
robot,s
robot,system
robotic,arm
robotic,control
robotic,devic
robotic,surgeri
robotic,system
rotari,brush
rotat,axe
rotat,head
rotat,motor
rotat,movement
rotat,shaft
scale,effector
scale,factor
seal,access
send,imag
sensor,mount
servo,motor
signal,receiv
signal,robot
signal,transmitter
slave,robot
smooth,surfac
sow,weed
surfac,clean
surgeon,adjust
surgeon,control
surgeon,input
surgeon,produc
surgeon,scale
surgeri,surgic
surgic,instrument
surgic,operat
surgic,procedur
surgic,robot
surgic,site
surgic,system
surgic,tool
sutur,tissu

system,autonomous

system,compris
system,control
system,devic

system,includ
system,method
system,mobil
system,perform
system,robot
system,use
thereof,invention
time,period
tissu,robotic
travel,perform
tube,apparatus
typic,movement
uneven,terrain
unit,arrang
unit,compris
unit,control
unit,drive
unit,generat
unit,provid
upper,lower
use,robotic
use,surgic
user,operat
vacuum,clean
vacuum,cleaner
vehicl,bodi
vertic,axi
video,signal
walk,robot
water,discharg
wheel,instal
wire,wireless
X7y

y:z
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Table B.11: List of the 1206 variables used in the SVM for classification: All 110 trigrams.

adjust,position,handl
adjustabl,surgeon,control
allow,surgeon,adjust
apparatus,perform,minimal
arm,coupl,pair
arm,instrument,effector
button,allow,surgeon
button,depress,surgeon
button,effector,move
cardiac,procedur,system
clean,horizontal,vertic
clean,robot,1
cleaner,invention,relat
compris,main,bodi
control,input,button
control,method,thereof
control,resolution,effector
controller,handl,move
correspond,movement,effector
correspond,movement,typic
coupl,pair,master
coupl,pair,robotic
depress,surgeon,input
devic,main,controller
devic,robot,arm
effector,control,input
effector,correspond,movement
effector,handl,move
effector,manipulat,hold
effector,move,button
effector,movement,handl
effector,movement,movement
factor,adjustabl,surgeon
front,robot,arm
hand,surgeon,scale
handl,controller,handl
handl,move,comfortabl
handl,move,effector
handl,move,surgeon
handl,scale,effector
hold,sutur,tissu
includ,pair,surgic
independent,claim,includ
input,button,allow
input,button,effector
instrument,coupl,pair
instrument,effector,manipulat
invasiv,cardiac,procedur

invention,relat,automatic
invention,relat,method
invention,relat,mobil
manipulat,hold,sutur
master,handl,controller
method,invention,relat
method,thereof,invention
minimal,invasiv,cardiac
mobil,robot,invention
mobil,robotic,devic
mount,robot,arm
move,button,depress
move,comfortabl,position
move,effector,handl
move,surgeon,produc
movement,effector,control
movement,effector,movement
movement,handl,scale
movement,movement,effector
movement,perform,hand
movement,typic,movement
pair,master,handl
pair,robotic,arm
pair,surgic,instrument
perform,clean,operat
perform,hand,surgeon
perform,minimal,invasiv
position,handl,move
position,robot,arm
procedur,system,includ
produc,correspond,movement
relat,automatic,robot
resolution,effector,movement
robot,arm,includ
robot,cleaner,compris
robot,cleaner,invention
robot,control,method
robot,control,system
robot,invention,relat
robot,system,method
robotic,arm,coupl
robotic,arm,instrument
robotic,devic,compris
scale,effector,correspond
scale,factor,adjustabl
surgeon,adjust,position
surgeon,control,resolution
surgeon,input,button

surgeon,produc,correspond
surgeon,scale,factor
surgic,instrument,coupl
surgic,instrument,mount
surgic,robot,compris
surgic,robot,system
sutur,tissu,robotic
system,control,movement
system,includ,pair
system,perform,minimal
thereof,invention,disclos
tissu,robotic,arm
typic,movement,perform

X7y7Z
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Table C.1: Descriptive statistics on industry divisions: Agriculture and production industries

Industry division No. of Ratio Resear- No. of
R&D R&D est. chers 3-digit
est. / industries

R&D
comp.

Agriculture

1 Crop and animal production, hunting and related service ac- 95 1.22 17.6 6

tivities

2  Forestry and logging . . . 2

Production industries

5  Mining of coal and lignite 2
6  Extraction of crude petroleum and natural gas 2
7  Mining of metal ores . . . 1
8  Other mining and quarrying 29 1.00 4.3 2
9  Mining support service activities 8 1.00 7.9 2
10 Manufacture of food products 307 1.09 11.1 9
11 Manufacture of beverages 35 1.00 4.0 2
12 Manufacture of tobacco products . . . 1
13 Manufacture of textiles 270 1.01 5.8 4
14 Manufacture of wearing apparel 79 1.00 12.2 2
15 Manufacture of leather and related products 29 1.00 7.7 2
16 Manufacture of wood and of products of wood and cork, ex- 118 1.02 5.2 2

cept

furniture; manufacture of articles of straw and plaiting mate-

rials
17 Manufacture of paper and paper products 122 1.05 8.7 2
18 Printing and reproduction of recorded media 64 1.00 19.0 2
19 Manufacture of coke and refined petroleum products 19 1.00 26.9 2
20 Manufacture of chemicals and chemical products 841 1.09 32.9 6
21 Manufacture of basic pharmaceutical products and pharma- 269 1.09 92.5 2

ceutical preparations
22 Manufacture of rubber and plastic products 779 1.07 14.7 2
23  Manufacture of other non-metallic mineral products 494 1.05 9.6 8
24  Manufacture of basic metals 298 1.12 214 5
25 Manufacture of fabricated metal products, except machinery 1,446 1.02 8.6 8

and

equipment
26 Manufacture of computer, electronic and optical products 2,436 1.06 29.7 8
27 Manufacture of electrical equipment 907 1.06 28.7 6
28 Manufacture of machinery and equipment n.e.c. 3,178 1.03 18.8 5
29 Manufacture of motor vehicles, trailers and semi-trailers 480 1.28 212.6 3
30 Manufacture of other transport equipment 198 1.14 88.8 5
31 Manufacture of furniture 136 1.02 5.7 1
32  Other manufacturing 553 1.03 12.1 6
33 Repair and installation of machinery and equipment 207 1.11 18.7 2
35 Electricity, gas, steam and air conditioning supply 85 1.04 14.1 3
36 Water collection, treatment and supply 15 1.00 6.2 1
37 Sewerage 5 1.00 3.6 2
38 Waste collection, treatment and disposal activities; materials 73 1.03 3.5 3

recovery
39 Remediation activities and other waste management services 6 1.00 3.5 1
41 Construction of buildings 74 1.03 8.4 2
42  Civil engineering 64 1.02 4.1 3
43 Specialised construction activities 346 1.02 4.2 4

(.) Statistical confidentiality because of 3 or less R&D establishments in the industry
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Table C.2: Descriptive statistics on industry divisions: Service industries

Industry division No. of Ratio Resear- No. of
R&D R&D est. 3-digit
est. / chers industries

R&D
comp.

Service industries

45 Wholesale and retail trade and repair of motor vehicles and mo- 45 1.02 10.6 4

torcycles

46 Wholesale trade, except of motor vehicles and motorcycles 486 1.02 7.7 8

47 Retail trade, except of motor vehicles and motorcycles 118 1.03 5.0 8

49 Land transport and transport via pipelines 28 1.08 14.0 4

50 Water transport 4 1.00 4.3 3

51 Air transport 4 1.00 17.7 2

52 Warehousing and support activities for transportation 54 1.00 11.4 1

53 Postal and courier activities . . . 2

56 Food and beverage service activities 4 1.00 2.5 2

58 Publishing activities 112 1.00 5.8 2

59 Motion picture, video and television program production, sound 11 1.00 2.6 2

recording and music publishing activities

60 Programming and broadcasting activities . . . 2

61 Telecommunications 35 1.17 81.7 4

62 Computer programming, consultancy and related activities 1,618 1.03 16.8 1

63 Information service activities 113 1.02 15.9 2

64 Financial service activities, except insurance and pension fund- 15 1.07 29.1 3

ing

65 Insurance, reinsurance and pension funding, exc. comp. social 17 1.00 24.5 1

sec.

66 Activities auxiliary to financial services and insurance activities 4 1.00 206.9 2

68 Real estate activities 16 1.07 7.1 3

69 Legal and accounting activities . . . 1

70 Activities of head offices; management consultancy activities 200 1.03 10.6 2

71 Architectural and engineering activities; techn. testing and anal- 1,436 1.04 11.8 2

ysis

72 Scientific research and development 1,017 1.04 22.1 2

73 Advertising and market research 34 1.00 8.8 2

74 Other professional, scientific and technical activities 61 1.02 6.9 4

75 Veterinary activities 4 1.00 6.9 1

77 Rental and leasing activities 19 1.12 3.7 3

78 Employment activities 4 1.00 3.0 2

79 Travel agency, tour operator and oth. reservation service and 1

rel. act.

80 Security and investigation activities . . . 2

81 Services to buildings and landscape activities 16 1.00 4.0 3

82 Office administrative, office support and oth. bus. support ac- 103 1.00 6.0 4

tivities

84 Public administration and defense; compulsory social security . . . 1

85 Education 10 1.00 8.4 3

86 Human health activities 31 1.00 3.4 3

87 Residential care activities 2

88 Social work activities without accommodation . . . 2

90 Creative, arts and entertainment activities 4 1.00 3.0 1

93 Sports activities and amusement and recreation activities 4 1.00 3.0 2

94 Activities of membership organizations 7 1.00 3.7 2

95 Repair of computers and personal and household goods 6 1.00 4.0 2

96 Other personal service activities 65 1.00 4.3 1

TOTAL (divisions 01 to 96) 19,804 1.05 24.1 235

(.) Statistical confidentiality because of 3 or less R&D establishments in the industry
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Table C.3: Industrial scope of localization patterns in agriculture and production industries

Industry division No. of LocalizedDispersedRandom
3-digit [%] [%] [%6]
industries

Agriculture

1 Crop and animal production, hunting and related service ac- 3 100.0

tivities

Production industries

8 Other mining and quarrying 2 100.0

10 Manufacture of food products 7 28.6 71.4

11 Manufacture of beverages 1 100.0

13 Manufacture of textiles 4 25.0 75.0

14 Manufacture of wearing apparel 2 50.0 50.0

15 Manufacture of leather and related products 1 100.0

16 Manufacture of wood and of products of wood and cork, ex- 2 50.0 50.0

cept furniture; manufacture of articles of straw and plaiting
materials

17 Manufacture of paper and paper products 2 100.0

18 Printing and reproduction of recorded media 1 100.0

19 Manufacture of coke and refined petroleum products 1 100.0

20 Manufacture of chemicals and chemical products 6 33.3 33.3 33.3

21 Manufacture of basic pharmaceutical products and pharma- 2 50.0 50.0

ceutical preparations

22 Manufacture of rubber and plastic products 2 100.0

23 Manufacture of other non-metallic mineral products 8 37.5 12.5 50.0

24 Manufacture of basic metals 5 60.0 40.0

25 Manufacture of fabricated metal products, except machinery 8 50.0 12.5 37.5

and equipment

26 Manufacture of computer, electronic and optical products 7 42.9 57.1

27 Manufacture of electrical equipment 6 33.3 66.7

28 Manufacture of machinery and equipment n.e.c. 5 80.0 20.0

29 Manufacture of motor vehicles, trailers and semi-trailers 3 66.7 33.3

30 Manufacture of other transport equipment 4 50.0 25.0 25.0

31 Manufacture of furniture 1 100.0

32 Other manufacturing 5 20.0 40.0 40.0

33 Repair and installation of machinery and equipment 2 50.0 50.0

35 Electricity, gas, steam and air conditioning supply 2 50.0 50.0

36 Water collection, treatment and supply 1 100.0

38 Waste collection, treatment and disposal activities; materials 2 100.0

recovery

41 Construction of buildings 1 100.0

42 Civil engineering 3 100.0

43 Specialized construction activities 4 25.0 75.0
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Table C.4: Industrial scope of localization patterns in service industries

Industry division No. of LocalizedDispersedRandom
3-digit [%] [%] [%6]
industries

Service industries

45 Wholesale and retail trade and repair of motor vehicles and 2 100.0

motorcycles

46 Wholesale trade, except of motor vehicles and motorcycles 8 12.5 87.5

47 Retail trade, except of motor vehicles and motorcycles 3 100.0

49 Land transport and transport via pipelines 1 100.0

52 Warehousing and support activities for transportation 1 100.0

58 Publishing activities 2 100.0

61 Telecommunications 1 100.0

62 Computer programming, consultancy and related activities 1 100.0

63 Information service activities 2 50.0 50.0

64 Financial service activities, except insurance and pension 1 100.0

funding

65 Insurance, reinsurance and pension funding, except compul- 1 100.0

sory social security

68 Real estate activities 1 100.0

70 Activities of head offices; management consultancy activities 2 50.0 50.0

71 Architectural and engineering activities; technical testing and 2 50.0 50.0

analysis

72 Scientific research and development 2 50.0 50.0

73 Advertising and market research 2 100.0

74 Other professional, scientific and technical activities 1 100.0

77 Rental and leasing activities 1 100.0

82 Office administrative, office support and other business sup- 1 100.0

port activities

86 Human health activities 1 100.0

96 Other personal service activities 1 100.0
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C.1 Distance-based sectoral location patterns
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Figure C.1: Sectoral distance patterns of industries exhibiting localization and dispersion of R&D.
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Figure C.2: Sectoral researcher-weighted distance patterns of industries exhibiting localization and
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C.2 Research-intensive 3-digit industries in Germany

Table C.5: List of research-intensive 3-digit production industries in Germany

3-digit production industry

202 Manufacture of pesticides and other agrochemical products

211 Manufacture of basic pharmaceutical products

212 Manufacture of pharmaceutical preparations

254 Manufacture of weapons and ammunition

261 Manufacture of electronic components and boards

262 Manufacture of computers and peripheral equipment

263 Manufacture of communication equipment

265 Manufacture of instruments and appliances for measuring, testing and navigation

266 Manufacture of irradiation, electromedical and electrotherapeutic equipment

267 Manufacture of optical instruments and photographic equipment

303 Manufacture of air and spacecraft and related machinery

304 Manufacture of military fighting vehicles

201 Manufacture of basic chemicals, fertilizers and nitrogen compounds, plastics and synthetic rubber in primary
forms

205 Manufacture of other chemical products

221 Manufacture of rubber products

264 Manufacture of consumer electronics

271 Manufacture of electric motors, generators, transformers and electricity distribution and control apparatus

272 Manufacture of batteries and accumulators

274 Manufacture of electric lighting equipment

275 Manufacture of domestic appliances

279 Manufacture of other electrical equipment

281 Manufacture of general-purpose machinery

283 Manufacture of agricultural and forestry machinery

284 Manufacture of metal forming machinery and machine tools

289 Manufacture of other special-purpose machinery

291 Manufacture of motor vehicles

293 Manufacture of parts and accessories for motor vehicles

302 Manufacture of railway locomotives and rolling stock

325 Manufacture of medical and dental instruments and supplies

Source: |Gehrke et al.| (2013])

Table C.6: List of research-intensive 3-digit service industries in Germany

3-digit service industry

620 Computer programming, consultancy and related activities

631 Data processing, hosting and related activities

712 Technical testing and analysis

721 Research and experimental development on natural sciences and engineering
722 Research and experimental development on social sciences and humanities

Source: |Gehrke et al.| (2010)
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C.3 Cross-distance indices of localization and dis-

persion

Table C.7: Cross-distance indices of localization and dispersion

3-digit industry Location
R&D Researchers
establishm.
Agriculture
011  Growing of non-perennial crops v =0.0017
016 Support activities to agriculture and post-harvest crop
activities
Production industries
081 Quarrying of stone, sand and clay
089  Mining and quarrying n.e.c.
101  Processing and preserving of meat and production of
meat products
103  Processing and preserving of fruit and vegetables v,,,=0.0000 wr =0.0023
105  Manufacture of dairy products vy, =0.0013
106  Manufacture of grain, mill products starches and v, =0.0000
starch products
107  Manufacture of bakery and farinaceous products
108  Manufacture of other food products v,,=0.0010 wr =0.0117
109  Manufacture of prepared animal feeds
110  Manufacture of beverages
131  Preparation and spinning of textile fibres
132 Weaving of textiles
133  Finishing of textiles
139 Manufacture of other textiles I,,=0.0122 v, =0.0007
141 Manufacture of wearing apparel, except fur apparel w7 =0.0003
143  Manufacture of knitted and crocheted apparel I',=0.0114
151  Tanning and dressing of leather
161  Sawmilling and planing of wood
162  Manufacture of products of wood, cork, straw and ¥,,=—0.0001 wr =0.0043
plaiting materials
171  Manufacture of pulp, paper and paperboard vy, =0.0007
172 Manufacture of articles of paper and paperboard wr =0.0025
181  Printing and service activities related to printing vy, =0.0017
192  Manufacture of refined petroleum products
201 Manufacture of basic chemicals, fertilisers and nitro- I',,,=0.0013 I7,=0.0011
gen compounds, plastics and synthetic rubber in pri-
mary forms
202  Manufacture of pesticides and other agrochemical wr =0.0007
products
203  Manufacture of paints, varnishes and similar coatings, I';,=0.0020 I'7,=0.0008
printing ink and mastics
204 Manufacture of soap and detergents, cleaning and pol-  ¥,,=0.0000 W =0.0042
ishing preparations, perfumes and toilet preparations
205 Manufacture of other chemical products v,,=0.0007 I'7,=0.0009
206  Manufacture of man-made fibres
211  Manufacture of basic pharmaceutical products vy, =0.0018
212  Manufacture of pharmaceutical preparations v,,=0.0023 vy, =0.0137

Note: I'),=Cross-distance index of localization, ¥,,=Cross-distance index of dispersion
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Table C.8: Cross-distance indices of localization and dispersion — continued

3-digit industry Location
R&D Researchers
establishm.
Production industries — continued
221  Manufacture of rubber products I'»=0.0010 W =0.0025
222 Manufacture of plastic products I,,,—0.0226 I'7,=0.0083
231  Manufacture of glass and glass products ',=0.0163 I'7,=0.0012
232  Manufacture of refractory products v, =0.0000
233  Manufacture of clay building materials
234  Manufacture of other porcelain and ceramic products I',,=0.0021 w7, =0.0002
235  Manufacture of cement, lime and plaster
236  Manufacture of articles of concrete, cement and plaster ~ ¥,,=0.0007 W, =0.0059
237  Cutting, shaping and finishing of stone
239  Manufacture of abrasive products and non-metallic I',,=0.0000 wr =0.0004
mineral products n.e.c.
241 Manufacture of basic iron and steel and of ferro-alloys I';,,=0.0100
242  Manufacture of tubes, pipes, hollow profiles and re-
lated fittings of steel
243  Manufacture of other products of first processing of I',,=0.1044
steel
244  Manufacture of basic precious and other non-ferrous I';;,—0.0085 Wy, —=0.0012
metals
245  Casting of metals wr =0.0008
251 Manufacture of structural metal products v,,=0.0015 v, =0.0004
252 Manufacture of tanks, reservoirs and containers of v =0.0010
metal
253  Manufacture of steam generators, except central heat-
ing hot water boilers
254  Manufacture of weapons and ammunition
255  Forging, pressing, stamping and roll-forming of metal I'y,=0.0463 I'7,=0.0001
256 Treatment and coating of metals I,,,=0.0003 I'7,=0.0090
257  Manufacture of cutlery, tools and general hardware ',=0.0107 I'7,=0.0083
259  Manufacture of other fabricated metal products I,=0.0127 I7,=0.0017
261 Manufacture of electronic components and boards I,,,=0.0016 I'7,=0.0057
262  Manufacture of computers and peripheral equipment v,,=0.0001 I';,=0.0002
263  Manufacture of communication equipment v,,=0.0006 v, =0.0105
264 Manufacture of consumer electronics v,,=0.0003 wr =0.0038
265 Manufacture of instruments and appliances for mea- I',,=0.0001 I'7,=0.0098
suring, testing and navigation
266 Manufacture of irradiation, electromedical and elec- ¥,,=0.0022 v, =0.0058
trotherapeutic equipment
267 Manufacture of optical instruments and photographic  I';,,=0.0005 vy =0.0105
equipment
271 Manufacture of electric motors, generators, transform-  ¥,,=0.0017 I';,=0.0033
ers and electricity distribution and control apparatus
272  Manufacture of batteries and accumulators
273  Manufacture of wiring and wiring devices v, =0.0010
274  Manufacture of electric lighting equipment v =0.0004
275  Manufacture of domestic appliances w7, =0.0001
279  Manufacture of other electrical equipment v,,=0.0014 vy =0.0168
281  Manufacture of general-purpose machinery ' =0.0047 I';,=0.0012
282  Manufacture of other general-purpose machinery ', =0.0003 I'7,=0.0083
283  Manufacture of agricultural and forestry machinery wr =0.0014
284 Manufacture of metal forming machinery and machine I';,,=0.0148 I;,=0.0119
tools
289  Manufacture of other special-purpose machinery ', =0.0086 I'7,=0.0086

Note: I';,=Cross-distance index of localization, ¥,,=Cross-distance index of dispersion
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Table C.9: Cross-distance indices of localization and dispersion — continued

3-digit industry Location
R&D Researchers
establishm.

Production industries — continued

291  Manufacture of motor vehicles ' =0.0003

292  Manufacture of bodies (coachwork) for motor vehicles vy =0.0021

293 Manufacture of parts and accessories for motor vehi- TI',,,=0.0395 I'7,=0.0141
cles

301 Building of ships and boats I, =0.0001

302  Manufacture of railway locomotives and rolling stock

303 Manufacture of air and spacecraft and related machin-  ¥,,=0.0011 v, =0.0014
ery

309 Manufacture of transport equipment n.e.c. I'n=0.0027

310  Manufacture of furniture I',=0.0010 wr =0.0037

322  Manufacture of musical instruments

323  Manufacture of sports goods

324  Manufacture of games and toys v,,=0.0001

325 Manufacture of medical and dental instruments and  W¥,,=0.0028 I'7,=0.0028
supplies

329 Manufacturing n.e.c. T,,,=0.0003 v, =0.0048

331  Repair of fabricated metal products, machinery and Wy, —=0.0022
equipment

332 Installation of industrial machinery and equipment v,,=0.0003 v =0.0069

351 Electric power generation, transmission and distribu-  ¥,,=0.0006 v, =0.0096
tion

353  Steam and air conditioning supply

360  Water collection, treatment and supply

382  Waste treatment and disposal

383  Materials recovery w7 =0.0004

412 Construction of residential and non-residential build- TI',,,=0.0005 I';,=0.0008
ings

421  Construction of roads and railways

422 Construction of utility projects

429  Construction of other civil engineering projects

431  Demolition and site preparation

432 Electrical, plumbing and other construction installa-  W¥,,=0.0001 v =0.0050
tion activities

433  Building completion and finishing v =0.0026

439  Other specialised construction activities v =0.0032

Note: I'y,=Cross-distance index of localization, ¥,,=Cross-distance index of dispersion
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Table C.10: Cross-distance indices of localization and dispersion — continued

3-digit industry Location
R&D Researchers
establishm.
Service industries
452  Maintenance and repair of motor vehicles
453  Sale of motor vehicle parts and accessories
461  Wholesale on a fee or contract basis v =0.0062
462  Wholesale of agricultural raw materials and live ani-
mals
463  Wholesale of food, beverages and tobacco
464  Wholesale of household goods v =0.0079
465  Wholesale of information and communication equip- W, =0.0000
ment
466  Wholesale of other machinery, equipment and supplies v =0.0066
467 Other specialised wholesale I,,,—0.0002 v, =0.0032
469 Non-specialised wholesale trade
474  Retail sale of information and communication equip- w7, =0.0016
ment in specialised stores
475  Retail sale of other household equipment in specialised
stores
477  Retail sale of other goods in specialised stores
493  Other passenger land transport
522  Support activities for transportation wr =0.0006
581  Publishing of books, periodicals and other publishing
activities
582  Software publishing vy, =0.0079
619 Other telecommunications activities
620  Computer programming, consultancy and related ac-  ¥,,=0.0061 I';,=0.0095
tivities
631  Data processing, hosting and related activities v,,=0.0021 vy =0.0111
639  Other information service activities
641  Monetary intermediation
651 Insurance
682  Rental and operating of own or leased real estate
701  Activities of head offices Wy =0.0015
702  Management consultancy activities V,,=0.0008 vy =0.0178
711 Architectural and engineering activities and related I',,,=0.0018 I';,=0.0096
technical consultancy
712 Technical testing and analysis v,,,=0.0022 vy =0.0142
721  Research and experimental development on natural W,,=0.0057 I'7,=0.0102
sciences and engineering
722 Research and experimental development on social sci-
ences and humanities
731 Advertising
732  Market research and public opinion polling
749  Other professional, scientific and technical activities wr =0.0034
n.e.c.
773 Rental and leasing of other machinery, equipment and
tangible goods
829 Business support service activities n.e.c. v =0.0052
869  Other human health activities
960  Other personal service activities v =0.0014

Note: I'),=Cross-distance index of localization, ¥,,=Cross-distance index of dispersion
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C.4 Selected maps of localized 3-digit industries
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284 Manufacture of metal forming machinery and machine tools
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APPENDIX D. APPENDIX. FIRMS’ SUSTAINED SUPERIOR JOB CREATION

Table D.1: Results of simulations for top 10 %

Markov p Relative Growth Measure

order UK ES FR 1T DE

I p<0.05 | 2287.1 (47.4) 2887 | 10502.7 (105.1) 14968 | 7427.4 (77.3) 10493 | 3390.4 (53.5) 4266 | 2560.5 (53.4) 3065
I p<0.01 412.6 (17.0) 708 2155.4 (50.3) 4110 1673.8 (40.0) 3149 1251.0 (33.6) 1893 | 352.6 (21.5) 586
I p<0.001 | 25.4 (5.0) 81 118.4 (11.9) 322 97.4 (7.9) 231 19.9 (4.4) 18 17.2 (3.7) 84

11 p<0.05 | 2091.9 (50.6) 2349 | 10352.2 (97.3) 7589 6787.8 (78.3) 5307 3780.6 (62.7) 2695 | 2603.1 (50.0) 2149
I p<0.01 | 347.2 (17.4) 518 995.8 (29.5) 927 632.1 (24.0) 693 473.1 (16.9) 341 339.7 (19.7) 323

II p<0.001 | 245 (5.1) 78 109.6 (10.0) 277 | 1106 (10.3) 232 9.3 (3.3) 7 8.9 (3.5) 15

Markov ) Absolute Growth Measure

order UK ES FR 1T DE

I p<0.05 | 2311.1 (46.1) 2909 | 10502.7 (105.1) 14968 | 7576.9 (86.6) 10658 | 4862.0 (65.5) 6583 | 2252.2 (53.0) 2830
I p<0.01 | 426.1 (21.4) 722 | 2209.7 (41.0) 4295 | 1759.2 (41.3) 3355 | 1181.5 (28.0) 1962 | 286.2 (18.9) 493
I p<0.001 | 26.3 (4.9) 85 119.8 (8.7) 321 34.3 (5.8) 65 65.4 (82) 103 | 13.4 (3.4) 82

11 p<0.05 | 2175.8 (45.1) 2358 8270.9 (80.7) 7786 7368.6 (85.2) 5454 4209.4 (58.5) 2950 | 2193.5 (51.6) 1941
I p<0.01 | 362.7 (16.6) 526 773.0 (27.6) 994 793.5 (26.3) 769 443.2 (18.4) 354 490.8 (20.3) 485
II p<0.001 | 23.4 (4.9) 82 130.1 (12.9) 327 26.9 (5.6) 36 26.6 (5.0) 16 40.8 (7.0) 75
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Table D.3: Benchmarks for various life spans of the firm. First order Markov. Top 10%

Observed p Relative Growth Absolute Growth
life span

UK ES FR IT || UK ES FR IT

2 0.05 1 1 1 1 1 1 1 1

0.01 2 1 1 1 2 1 1 1

3 0.05 1 1 1 1 1 1 1 1

0.01 2 2 2 2 2 2 2 2

4 0.05 2 1 1 2 2 1 1 1

0.01 2 2 2 2 2 2 2 2

5) 0.05 2 2 2 2 2 2 2 2

0.01 3 2 2 2 3 2 2 2

6 0.05 2 2 2 2 2 2 2 2

0.01 || 3 3 3 3 3 3 3 3

7 0.05 2 2 2 2 2 2 2 2

0.01 || 3 3 3 3 3 3 3 3

Table D.4: Benchmarks for various life spans of the firm. First order Markov. Top 20%

Observed p value

Relative Growth

Absolute Growth

life span
UK ES FR IT| UK ES FR IT
2 0.05 2 1 1 1 2 1 1 1
0.01 2 2 2 2 2 2 2 2
3 0.05 2 2 2 2 2 2 2 2
0.01 3 2 3 2 3 2 3 2
4 0.05 2 2 2 2 2 2 2 2
0.01 3 3 3 3 3 3 3 3
5 0.05 3 3 3 3 3 3 3 3
0.01 4 3 3 3 4 3 3 3
6 0.05 3 3 3 3 3 3 3 3
0.01 4 4 4 4 4 4 4 4
7 0.05 4 3 3 3 4 3 3 3
0.01 5 4 4 4 5 4 4 4
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Table D.5: Benchmarks for various life spans of the firm. Second order Markov. Top 10%

Observed p value

life span

Relative Growth

UK ES FR IT

Absolute Growth

UK ES FR IT

0.05
0.01
0.001

0.05
0.01
0.001

0.05
0.01
0.001

0.05
0.01
0.001

0.05
0.01
0.001
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Table D.6: Benchmarks for various life spans of the firm. Second order Markov. Top 20%

Observed p value
life span

Relative Growth

UK ES FR IT

Absolute Growth

UK ES FR IT

3 0.05
0.01
0.001

4 0.05
0.01
0.001

d 0.05
0.01
0.001

6 0.05
0.01
0.001

7 0.05
0.01
0.001
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