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Abstract

Scheduling in the context of computer science is finding an efficient execution
plan called schedule for a single job (scheduling internal tasks) or a set of jobs
on a computing system. This includes assigning the used resources, for example
cores or memory/cache space as well as setting other parameters like operating
frequencies. Of course the found schedule should be feasible and realizable. Good
schedules are important for an efficient usage of computing systems regarding dif-
ferent goals like high throughput, small power consumption or small makespans.
Also it is important that the computation of the schedule itself does not require
too much time or resources.

Nowadays computers are usually parallel machines with several concurrently
working cores. Also the used applications (especially the ones with a high com-
putation demand) are more and more parallelized today. Hence the scheduling of
parallel applications is becoming an important factor of the efficiency and perfor-
mance of today’s computing systems.

Scheduling is a large field investigated in many different contexts and with
many different approaches. For example the "Handbook of Scheduling" (edited
by Joseph Y-T. Leung) has 1224 pages and references about 2000 other scientific
works in the field. Even scheduling parallel jobs on parallel machines is a large
field. Despite the invested effort there is a large gap between research in schedul-
ing theory and the engineering solutions for the scheduling of parallel jobs used
for experimental research or production implementations.

Our approach is to study the developments in theory as well as in practice
(engineering) and to use the knowledge from both sides to produce results which
might narrow the gap. One reason for the gap between theory and practice is that
the scheduling models used in theory assume more knowledge about the jobs than
the knowledge which is available in practice. Furthermore, some models from
theory assume even a possibility for the system scheduler to change the behavior
of the applications which does not exist in practice yet. But there are approaches



to make the applications more adaptive to changes of the system status and to
provide more information for the operating system. One example of develop-
ments that aim to improve the information exchange between operating system
and applications and also the adaptivity of applications is the InvasIC project. The
author of this work took part in this project for four years which led to a collab-
oration with experts for many different parts of modern computer systems. The
improved information exchange and the adaptivity of applications are engineering
steps which change the system such that results from scheduling theory are better
applicable. Especially the model of malleable jobs, which can adapt their resource
usage during runtime, looks like a fitting counterpart to the InvasIC developments
on the theoretical side.

During our work within InvasIC we were able to identify four main research
directions for the scheduling of parallel computing systems (each described in its
own chapter):

• Distribution of decisions and information among the different decision
makers within the system. In modern systems different decision makers are
present, for example the OS scheduler or application-internal schedulers.
These schedulers need some kind of coordination to produce good results.

• Fast and efficient finding of good decisions (the classical problem researched
in scheduling theory). The efficient solution of the often complex scheduling
problems remains the core of every scheduling system. A large basis for this
can be found in scheduling theory.

• The efficient usage of memory and caches. The efficient usage of the memory
system is a central requirement to reach high performance and efficiency.

• The reduction of power and energy usage. Energy consumption and heat
issues are a main barrier against easy performance gains through increasing
clock speeds. Moreover the rise of battery-powered devices increases the
importance of this area.

This work presents results in all of these four areas. The main result of this
work is a fast scheduling algorithm for malleable jobs that finds optimal schedules
given that the problem fulfills some conditions. The objective functions that are
minimized by our main algorithm can be either maxima of job properties or sums
of job properties. We also show that our main algorithm can be parallelized
and that the parallel version finds an optimal schedule in a polylogarithmic time
when the number of participating cores is at least as large as the number of jobs.
This makes this algorithm the first parallel scheduling algorithm for problems
with parallel jobs (to our knowledge). Some applications of the main algorithm
are presented including the minimization of the energy consumption of a set of
malleable jobs. To our knowledge, the application to energy minimization is the



first algorithm to optimally solve the energy minimization for a problem with
malleable jobs. Besides the main result we also describe a heuristic for the fast
and efficient scheduling which has proved successful in a competition.

Regarding the coordination and the information exchange between different
schedulers, this work contains some general considerations from other fields and
an example of a malleable application and a fitting interface.

The memory and cache behavior of modern computers is investigated with
extensive experiments in this work. Two case studies of memory-optimizations
for real-world problems were conducted with our contributions. Their results are
described following the basic experiments regarding cache and memory behavior.
We also look into the power consumption of memory operations.
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1
Introduction and Formal Basics

1.1 Introduction

What is Scheduling? Given a set of jobs scheduling is making the decision
when, with which worker and how to do each of these jobs. For example if a
large numerical computation consisting of many small sequential jobs has to be
done on a parallel computer, it has to be decided when to compute each job, which
core does the computation and maybe the operating frequency of the selected
core has to be determined. Of course, there might be a lot of constraints for
this decision, for example job A has to be completed before job B starts, two
jobs should not run on the same core at the same time or there might be an
upper power limit for the computer. There are also some possible goals for a
good scheduling like "completing the whole computation as fast as possible" or
"using as little energy as possible". Finding a schedule has obviously also some
practical constraints: finding the schedule should be fast compared to the whole
computation and the schedule should not consume too much memory.

The scheduling of a large numerical computation is an example for the field
of scheduling problems. Such problems can be categorized by their four main
properties:

• Decision Space: What can be decided, for example which job will run on
which core.

• Properties and Constraints: What are the main properties of the jobs and
cores, for example the amount of work in each job. What restricts the possible
decisions, for example two jobs cannot run on the same core at the same time.

• Goal: What is the goal of these decisions, for example to finish the whole
computation as fast as possible.

• Information: Which properties are known by the scheduler, for example the
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running time of the small jobs.

In order not to get lost in details the actual setting of a scheduling problem is
usually reduced to a model to get rid of the unnecessary details. This also helps
to find similarities between different scheduling problems.

Scheduling is a quite common part of many activities. If you want to cook
a meal consisting of meat, potatoes and vegetables you have to schedule when to
prepare each of the three parts and when to cook them (Baker and Trietsch [9] also
use a cooking example in their introduction on page 2). Maybe each of the three
parts needs a different time on the hotplate. If your goal is to get the meal ready as
fast as possible a typical scheduling decision might be to prepare the part which
needs the longest time on the hotplate first, so you can prepare the other parts
while the first is already cooking. This description already implies a simplified
model. There might be possibilities to reduce the cooking time by using a higher
temperature for example, but this is not part of the described decision space.

Nobody will think about a formal schedule for a job like cooking, but schedul-
ing (maybe without an explicit name) has a long history as some kind of time
planning was probably done (even hundreds of years ago) for example while
building large bridges or cathedrals. One of the first methods of planning jobs
formally were Gantt charts introduced at the beginning of the 20th century (see
Wilson [142]). These charts made job durations and dependencies explicit, but it
remained in the responsibility of the scheduler (a real person in the first half of the
20th century) and his intuition to create a good schedule from this information.

Scheduling algorithms appeared much later. One of the first scheduling al-
gorithms was Johnson’s algorithm for finding an optimal sequence in a job shop
problem, which was published in 1954 [82]. Hu’s algorithm (published in 1961
[68]) for scheduling a task-DAG to parallel workers is one of the first scheduling
algorithms for parallel workers. These algorithms and the introduction of com-
puters into manufacturing planning built the basis for modern scheduling.

Scheduling is now a very big field for example the "Handbook of Scheduling"
[93] one of many books about scheduling has 1224 pages and references about
2000 other scientific works in the field. Scheduling also plays an important role in
many different application fields from computer science to manufacturing plan-
ning over logistics to civil engineering (a book about scheduling especially aimed
at civil engineers is [69]). Scheduling is an important tool in these fields to reach
several important goals or combinations of them:

• Meet deadlines

• Speed up projects

• Increase the efficiency of workers

• Maximize throughput
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• Reduce costs

• Decide the most efficient application of resources

Hence scheduling plays an important role in the worldwide economy to provide
economic wealth, to reduce resource usage and to provide on time service. More
general optimization (like scheduling) is the often underestimated power that im-
proves efficiency in all parts of society (from plant schedules to faster journey
times) and hence facilitates a high standard of living.

In the first years after the invention of useful programmable computers in the
1940s scheduling in computer science was no important topic. Until the early
1960s most computers where specialized machines for either numerical computa-
tions or business management computations (see Tanenbaum and Bos [129, page
9] and Tanenbaum and Austin [128, page 38,39]). The programs were either run
by the programmers (who reserved the machine for a certain time) or by batch
processing. Especially there was at most one (sequential) program ready to run
at the same time. Hence there was no decision space for a scheduler inside the
computer. Thus the first schedulers inside computers appeared with the invention
of multi-programming. Multi-programming was introduced in the early 1960s to
use the waiting time for input in one program to run another one (see Tanenbaum
and Bos [129, page 11]). Having now possibly more than one program ready to
run at the same time there was a real decision to make. Since then schedulers are
a typical part of operating systems.

Scheduling in computer science has a lot in common with scheduling in other
fields, but there are also some specialties in computer science that are important
to find good schedules and scheduling algorithms. First of all scheduling in com-
puter science is usually fully automated. There are typically a lot of decisions to
make and many of them have to be fast. For example, if a job runs for an aver-
age of 5 milliseconds, then each 5 milliseconds a decision has to be made which
job to run next. Hence in computer science schedules are typically computed by
scheduling algorithms (and not by humans) and it is often not distinguished be-
tween scheduling and scheduling algorithms. Early computers had one sequential
core which ran sequential programs, hence the main decision space was which
ready program should run next. On parallel machines the decision space grows
because now it is not only necessary to decide which job is next but also on which
core. Also common resources like common caches and memory connections play
an important role now. Parallel programs might add some more constraints or
at least things to incorporate into a scheduling approach like which threads of a
parallel application should run in parallel or on the same NUMA socket. Large
parallel programs also often come with their own application-internal scheduler
which can use application-internal knowledge to schedule internal jobs. This leads
to the more complicated situation of a scheduling hierarchy with one scheduler
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on the operating system level responsible for the whole machine and possible
application-internal schedulers for each parallel application which have the ad-
vantage of a possible better knowledge about their application. Thus changes in
hard- and software have major implications on the scheduling in computer sci-
ence. Also the goal of saving energy during computations becomes more and
more important.

The constant changes in hard- and software lead to a constant adaption of
schedulers in practice. Scheduling theory instead often focuses on more general
models that might not fit all properties of modern computers. The common theo-
retical base of scheduling in computer science with scheduling in other fields also
slows down the adaption of new hard- and software developments in scheduling
theory. Also theory often assumes much knowledge about the jobs to schedule. A
major example of differences between scheduling theory and computers used in
practice are the memory system and caches which have a relevant influence on the
performance, but current scheduling theory pays little attention to them. Schedul-
ing in practice often has nearly no knowledge about the jobs because interfaces
designed long ago prevent these schedulers from accessing relevant information.
Hence these practical schedulers have no need for complex theory because with-
out this knowledge complex scheduling algorithms are hardly useful. Thus there
is a widening gap between research in scheduling theory and the scheduling that
is used in practice on real computers.

The goal of this work is to research scheduling solutions for future parallel
computer systems. Another goal is reducing the gap between scheduling the-
ory and scheduling practice in computer science. We work towards this goal by
applying the methods of algorithm engineering on scheduling and by further de-
velopment of the theory. On the practical side this is done by including ideas from
theory and by the proposal of new interfaces which can improve efficiency. On the
theory side the focus lies on the development of fast scheduling algorithms with
optimal or nearly optimal results. The work also lays more stress on the efficiency
gains through scheduling than on scheduling to meet deadlines. Thus it has more
a systems efficiency approach than a real-time systems approach. Our published
results related to this work are listed in Section 3.4.4.

Overview of the work In the rest of this Chapter the formal basis for the deci-
sion process of scheduling is specified in Section 1.2. Chapter 2 contains a de-
scription of the developments in computer science that are important for schedul-
ing. The main directions of work in theoretical and practical scheduling in com-
puter science are depicted in Chapter 3 which also contains a detailed description
of our approach. Our view of the interplay of different schedulers (system-wide,
application-internal) is described in Chapter 4. Our work concerning the compu-
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tation of schedules (which is usually meant with the term scheduling) is described
in Chapter 5. We also look into scheduling solutions for the memory hierarchy
(see Chapter 6) and energy-efficiency (see Chapter 7). This work is concluded by
a summary and an outlook in Chapter 8.

1.2 Formal Descriptions and Complexity
This section is devoted to the formal basis of scheduling. As already noted the four
main properties of a scheduling problem are the decision space, the constraints,
the goal and the information. For a general scheduling problem consisting of a
set of jobs J and a set of workers/machines M we will now define these four
properties:

Decision Space The decision space is everything that can and must be decided
by the scheduler. The fixed decisions form the schedule.

• Which workers work on which jobs at which time intervals.

• What are the execution parameters for the workers and the jobs (if the problem
contains such additional parameters).

• How are the additional resources distributed among the jobs (if the problem
contains such resources).

If all decisions are fixed for all jobs, the schedule is complete as there are no
further decisions to make. The decisions within the decision space can often be
described by decision variables.

Properties and Constraints The properties contain the relevant information
about the jobs and the workers. Not all possible combinations of decisions from
the decision space lead to feasible schedules. The constraints restrict the possible
combinations of decisions. The constraints also contain all other restrictions for
the problem.

• The availability of the workers, possibly time dependent.

• Which workers can work on which jobs and how fast is the progress for these
combinations.

• How do the additional parameters from the decision space influence progress
or resource consumption.

• The circumstances under which a job becomes ready to be worked on (release
time, dependencies).

• Deadlines and restrictions on additional resources.
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It is difficult to distinguish between properties and constraints. A deadline of a
job might be more a constraint than a property, but the amount of work of the
job which has to be completed before the deadline is a job property but clearly
restricts the possible decisions in the schedule.

Goal/Objective For some scheduling problems it is sufficient to find a schedule
that fulfills all constraints, but more often the problem is to find a schedule that
additionally optimizes a goal. In the classical scheduling theory the goal is usually
a non-decreasing function of the finishing times of all jobs of the problem (for
example the finishing time of the latest job Cmax or the sum of finishing times
of all jobs ∑ j ω jC j). Baker and Trietsch [9, page 13] call an objective function
Z = f (C1, . . . ,Cn) of the finishing times "regular performance measure" if Z′ > Z
implies that C j

′>C j for at least one job j. Additionally/alternatively the objective
function can include parts dependent on the amount of the used resources (for
example used energy).

Information The information is the knowledge the scheduler has about the
properties and constraints of the problem while making a decision. If parts of the
relevant information of the scheduling problem become known to the scheduler
only during the runtime of the schedule, scheduling becomes an online problem.
There are two reasons for missing information: the information is generated
during the scheduled process or the information is not accessible by the scheduler.
Information that is not accessible by the scheduler at all is usually not part of the
scheduling model.

Of course these four properties always heavily depend on the used model. The
modelling of parallel computers is described in Section 2.6.2.

For the rest of the Section we look into the details of the 3-field problem
classification which is widely used in scheduling theory. Finally we introduce
the theory of NP-completeness and some complexity theory in order to have a
basis to decide how difficult it is for certain scheduling problems to find a good
schedule.

1.2.1 3-Field Problem Classification
As there is such a big number of different scheduling problems there is a need
to describe them in a fast and standardized way. Graham et al. [55] introduced
the 3-field problem classification α|β |γ to cope with this problem. The classifica-
tion always describes the things which characterize the problem class. Individual
problems in that class contain additional input.
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The first field specifies the machine (or the workers), the second field describes
the jobs and the third field the goal (or optimality criteria). To get an idea how
this works we give some important descriptors for each field and some problem
examples afterwards.

Machine Field α α = 1 stands for a sequential machine, α = P for a parallel
machine with identical workers and α = Pm means that the number of available
parallel workers is fixed to m (otherwise the number of workers is part of the
input). Other possible machine types are α = Q which means uniform workers
which only differ in their general speed independent of the job. α = R means
unrelated workers such that the speed of each worker might be dependent on the
job. The necessary speeds for R and Q are part of the input. Hence the machine
field specifies the machine properties of the scheduling problem but also a part of
the decision space (number of possible workers for each job).

Job Field β If β contains pmtn, the jobs can be stopped and the rest of the job
can be completed later (preemption), otherwise all started jobs must run without
interruption. prec ∈ β denotes the existence of precedence relations between
the jobs, these relations form a DAG with the jobs as nodes where a directed
edge from a to b means that a has to be completed before b can start. di ∈ β

means that the jobs have individual deadlines, ri ∈ β analogously means that the
jobs have individual release times. If prec, di or ri are not present in β , this
means respectively that there are no precedence relations, deadlines or all jobs
are available from the start. In the opposite case when prec, ri or di are given,
concrete precedence relations, release times and deadlines for each job are part
of the input. Another important part of β is pi where pi = 1 means that all jobs
have the same running time and p̄ ≤ pi ≤ p̂ means that all running times lie in a
specified interval.

Although the 3-field notation was only intended for sequential jobs in the
beginning, it was later expanded for parallel jobs (the notations for parallel jobs
are taken from the "Handbook of Scheduling" [93, page 25-5]). If no indication of
job parallelism is given in the β field, all jobs are sequential. sizei ∈ β means that
there are parallel jobs with a fixed degree of parallelism which means that there
is a fixed number of workers for each job which must work in parallel on this job.
any is similar to size but the scheduler can decide the degree of parallelism for each
job when the job starts, these jobs are called moldable. var gives the scheduler
even more freedom as the degree of parallelism can be changed anytime during
the execution of a job, this includes using 0 workers and thus preemption, these
jobs are called malleable. For some problems a maximal degree of parallelism
for each job is given through δi ∈ β . When the scheduler can decide the degree
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of parallelism of a job, it is of course important how the parallelism affects the
job’s behavior, especially the running time. If nothing is given in the β field about
the working speed of a job with different numbers of workers, the speeds can be
defined completely arbitrary in the input, for example running with 4 workers can
even be slower than running with 3. If the speedup is a simple function of the
number of workers, it is often given in the form pi(q) =

pi
q (for a linear speedup, q

is the number of workers for the job) within β . More complex speedup functions
or function classes are usually given through an additional text outside the 3-field
classification.

There are several different notations for additional resource needs depending
on the nature of resources and other special conditions. A notation for discrete
resources is given by Błażewicz et al. [25].

The job field can also contain some description about the information the
scheduler has about the jobs. For example the Handbook of Scheduling [93,
page 15-2] defines online− time and online− time− nclv. In online− time the
scheduler learns about the existence of a job when it becomes ready but also gets
the knowledge about the running time of the job immediately. online−time−nclv
gives less information as the scheduler does not know the running time of a job
until the job is finished.

Altogether the job field specifies the properties of the jobs, the constraints of
the problem, the available information and parts of the decision space (degree of
parallelism). In some cases the job properties are too complex to be specified in
such a formal way.

Goal Field γ This field contains the definition of the goal of the scheduling
process. It is the measurement which makes one schedule better than another.
The goal of a scheduler is to minimize the function given in γ . The most common
component of such functions are the completion times of jobs, usually denoted
as Ci where i denotes the respective job. Typical goals are to minimize γ =Cmax,
which means the completion time of the last job, or γ = ∑ωiCi which means
the weighted sum of completion times with an individual weight for each job.
Resource usage dependent goals (energy minimization) do not have a widely used
standard in the 3-field notation yet.

Examples

• 1||Cmax describes problems on a sequential machine with unrelated sequential
jobs which are all available from the beginning and have no deadlines. The
running times of the jobs are part of the input. The goal is to minimize the
finishing time of the last job. This is one of the simplest problem classes.
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• P|pmtn|Cmax describes problems on a parallel machine with unrelated se-
quential jobs which are all available from the beginning and have no dead-
lines. The jobs can be preempted. The running times of the jobs are part of
the input. The goal is to minimize the finishing time of the last job.

• P|pmtn,sizei|Cmax is the same class as above but with parallel jobs instead of
sequential ones. The number of workers each job needs is part of the input.

The 3-field notation is a compact and useful way to define classes of schedul-
ing problems. Unfortunately for some problems there is no 3-field notation yet, for
example for scheduling problems from the field of dynamic voltage and frequency
scaling (DVFS). As the 3-field notation is the typical language of scheduling the-
ory, it will be used as often as possible in this work.

1.2.2 Computational Complexity

In order to find a solution for a scheduling problem, it is not only important to
find a good schedule, it is also important that finding a good schedule is not too
expensive and does not take too long. Hence we will give some basics from the
big O notation, NP-completeness and related subjects here in order to have the
tools to describe the computational complexity of scheduling algorithms.

Big O Notation A typical way to describe the computational effort of an al-
gorithm is the big O notation, which is a basic tool in many parts of computer
science. As this notation is used frequently throughout this work we will recapit-
ulate its basics here:

A function f :N→N is in O(g(n)) if and only if there exist c∈N and n0 ∈N
such that f (n)≤ c ·g(n) for all n≥ n0.

A function f :N→N is in Ω(g(n)) if and only if there exist c∈N and n0 ∈N
such that c · f (n)≥ g(n) for all n≥ n0.

A function f :N→N is in Θ(g(n)) if and only if f (n) ∈ O(g(n))∩Ω(g(n)).
These notations are commonly used to give a clue about running times of an

algorithm, where n denotes the size of the input in a useful way. The following
definition specifies the typical way of coarsely classifying algorithms in algorithm
theory.

Definition 1.2.1. An algorithm with running time f (n) for the worst input of size
n and f (n) ∈ O(g(n)) is called

• polylogarithmic time algorithm if and only if there exists a fixed k ∈ N such
that g(n) = log(n)k for all n.
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• polynomial time algorithm if and only if there exists a fixed k ∈ N such that
g(n) = nk for all n, and it is no polylogarithmic time algorithm.

• exponential time algorithm if and only if there exists a fixed r ∈R with r > 1
such that g(n) = rn for all n, and it is no polylogarithmic or polynomial time
algorithm.

NP-Completeness A very important question for a scheduling problem is
whether or not an optimal solution is computable within a reasonable amount of
time. In complexity theory the common rough rule of thumb is that a polynomial
time algorithm can be computed within reasonable time limits, but an exponential
time algorithm can usually not be computed within a reasonable time.

There is an important class of problems called NP-complete problems which
allow a solution with a polynomial time algorithm on a nondeterministic Turing
machine, but it is still unknown if these problems can be solved with a polynomial
time algorithm on a deterministic Turing machine (or an ordinary computer). The
best-known problem in this class is called the 3-SAT problem, which is the ques-
tion "Given a Boolean logic formula in conjunctive normal form with at most 3
variables per clause is it possible to find a value in {true, false} for each variable
such that the outcome of the whole formula is true?". A problem in the class of
NP-complete problems is called NP-complete. Traditionally the theory of NP-
completeness considers only problems where for each instance the solution is just
yes or no. Here we consider problems where a useful solution is computed by the
algorithms.

Between all NP-complete problems there exist polynomial time algorithms
(on deterministic Turing machines) such that an algorithm A that solves one NP-
complete problem can solve all other NP-complete problems by adding such poly-
nomial time algorithms before and after A. Hence a polynomial time algorithm on
a deterministic Turing machine that could solve one NP-complete problem would
lead to polynomial time algorithms on deterministic Turing machines for all NP-
complete problems. As many important problems are in the class of NP-complete
problems and no algorithm was found yet to solve any of these problems with a
polynomial time algorithm on a deterministic machine, the conjecture is that it is
not possible to solve NP-complete problems with polynomial time algorithms on
deterministic machines.

A good introduction and reference for the theory of NP-complete problems is
given by Garey and Johnson [51]. For the reason of self-containedness we also
give a definition of NP-hardness and NP-completeness.

Definition 1.2.2. Let ASAT be an algorithm to solve the 3-SAT problem. Then a
problem P is called NP-hard if and only if for all algorithms AP solving P there
exist polynomial time algorithms ASP and APS on deterministic machines such
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that APS(AP(ASP(I))) is a solution for each 3-SAT input I. If additionally there
are polynomial time algorithms ĀSP and ĀPS on deterministic machines such that
ĀSP(ASAT (ĀPS(I))) is a solution for each P input I, then the problem is called
NP-complete.

In practice it is usually only important that a problem is NP-hard as this already
yields that finding a polynomial time algorithm on a deterministic machine is
highly unlikely as no NP-hard problem could be solved with a polynomial time
algorithm yet.

When finding the size n of an input I of a problem P, it is usually assumed
that more than one symbol is used to encode I especially the numbers in I. Hence
the value of the largest number contained in I does not have to be bounded by a
polynomial function of n. Let m be the maximum of n and the largest number
encoded in I. Then some NP-hard problems can be solved by polynomial time
algorithms with respect to m instead of n, for example PARTITION (see Garey
and Johnson [51, page 90] and [51, page 60] for the NP-Completeness of this
problem). If the problem restricted to the case that all numbers contained in I are
bounded by a polynomial function of n is still NP-hard, then the problem is called
NP-hard in the strong sense [51, page 95] or short sNP-hard or sNPh (a notation
frequently used in the Handbook of Scheduling [93]).

Example: P2||Cmax is NP-hard but not sNP-hard as it is equivalent to the
PARTITION problem (as pointed out by Lenstra et al. [92]). The more general
(the number of workers is part of the input) P|pmtn|Cmax with preemption is not
NP-hard as there exists a simple polynomial time algorithm called McNaughton’s
wrap-around rule [104] which finds the optimal solution. P||Cmax on the other
hand is sNP-hard as pointed out by Garey and Johnson [50] (reduction from 3-
PARTITION).

P-Completeness Given big parallel machines, it is often interesting whether
an input can be computed on a large machine in polylogarithmic time regarding
the size of the input (and thus make the running time less size-dependent). The
book by Greenlaw, Hoover and Ruzzo [57] introduces into the theory of the limits
of parallel computation. For a class of problems called Nick’s Class there exist
algorithms which can compute solutions in polylogarithmic time with a number
of processors polynomial in n. For some other problems such algorithms seem
impossible (similar to the NP-completeness there is no real proof other than many
have tried and all failed). These problems are called P-complete. Especially for
scheduling of big machines it is interesting to use all processors to compute the
schedule in order to complete the scheduling in polylogarithmic time. Hence it
is important to investigate if a scheduling problem is P-complete. Some special
scheduling problems have already been proven to be P-complete.
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1.2.3 Approximations and Heuristics
Algorithms which solve NP-hard problems optimally usually have an infeasible
running time (exponential time). Hence one often has to use algorithms that
may compute suboptimal solutions in order to get feasible (polynomial) running
times. There are two different ways to get a faster algorithm: approximation and
heuristic. Both ways are well-known in computer science but often differently
defined. Hence we give our own definition for the reason of self-containedness.

Let I be an instance of a problem class P and Aopt an algorithm (not nec-
essarily with feasible running time) which computes an optimal solution. For
any algorithm A let further γ(A(I)) be the resulting value of the objective func-
tion after A has been used on instance I. An approximation algorithm Aapp for
a problem P is an algorithm such that there exists a (useful) function f with
γ(Aapp(I)) ≤ f (γ(Aopt(I))) for all I ∈ P (assuming the goal is minimization).
Common functions are f : x 7→ (1+η) · x for an algorithm-specific η > 0, the re-
spective approximation algorithms are usually called (1+η)-approximation and
(1+η) is called the approximation ratio. If η is not too big, such an approxima-
tion might be very helpful in practice. Depending on the problem approximation
algorithms can be much faster than algorithms which compute an optimal solution
even for small η .

If it is not possible (for example because the algorithm development would
be too costly) to find a reasonably fast exact or approximation algorithm, one
often uses a heuristic algorithm. Heuristic algorithms are often based on general
optimization ideas. There are no guarantees for the solution quality compared to
an optimal solution, but there are good heuristic algorithms in practice which are
fast and yield quite good results for many of the relevant instances. Hromkovič
[67, chapter 6] gives a good introduction into heuristics and also reviews different
possibilities to define a heuristic.
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Scheduling Fundamentals

The goal of this chapter is to introduce the environment of scheduling within com-
puter science. Section 2.1 gives some examples of areas with high computational
demand today and in the future and takes a look at the cost of these computations
and how scheduling might help to further reduce these costs. In order to make
decisions about the use of computer systems, it is of course important to know
something about their build and structure. This topic is handled in Section 2.2
in which we first go into detail why we need parallel computers in order to ful-
fill high resource demands (Section 2.2.1). Then the parts of modern computer
systems that are relevant for scheduling are described (Section 2.2.2) and their
probable future development is depicted (Section 2.2.3). An idea from economics
why such development processes might lead to suboptimal results is presented
in Section 2.3. Some basics about the usage of parallel computer systems are
presented in Section 2.4. It is also important in which software hierarchy level
(library, application, operating system, etc.) the scheduling takes place and which
information is available on this level. The hierarchy and the information flow
through interfaces are depicted in Section 2.5. To develop a scheduling algorithm
one needs to abstract from many details of the machine and the programs, hence
one needs to use a model. The modelling of parallel computers and their applica-
tions is described in Section 2.6.2. The general algorithm engineering process is
introduced in Section 2.6.1, we use this methodology on scheduling (more details
in Section 3.4). We also introduce the DFG-project Invasive Computing, which
was the main work area of the author of this work, in Section 2.7. Our findings
during Invasive Computing are described in a later Section 4.4.
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2.1 Importance and Cost of Large Computations

To get an impression of the order of magnitude of expenses for today’s comput-
ing we can just take a look at Intel’s annual report [70] which reports revenues of
14 billion dollars in 2014 for the Data Center Group alone (56 billions for Intel
altogether) which is only a part of the sum spent on data center hardware (com-
puters) in 2014. Following a report of van Heddeghem et al. [138] data centers
worldwide used 268 TWh of electric energy in 2012 which is nearly one half of
the annual consumption of electrical energy in Germany. This spending shows the
huge importance of computations in today’s world.

So why do people spend that much on computation, what are the typical ap-
plications? From the early days of computation when Konrad Zuse invented the
computer, computers were used for numerical calculations in engineering. As
computers became more widespread, the users generated a lot more different ap-
plications of computing. Today computing intensive applications are not only
used in data centers but also on PCs and even smartphones. PCs and even smart-
phones today are parallel computers as they normally have more than one com-
puting core.

Hence we have a lot of different application types which require a lot of com-
putation effort. We list some of them:

• Numerical applications are still a big consumer of computing power espe-
cially in data centers of engineering companies or research laboratories. An
important property of linear algebra algorithms is whether they are for dense
linear algebra or sparse linear algebra, because the former is especially de-
pendent on the performance of the functional units of the computer system
whereas the latter is more dependent on the used data structures and the mem-
ory system. In both cases the floating point units and their memory connec-
tion play an important role. These applications play an important role in the
design of cars, planes and a lot of other things needed in everyday life to
improve their efficiency, safety and to reduce production costs. Research in
many areas like material sciences or fluid dynamics is heavily dependent on
these applications.

• Optimization applications play a role across all levels of computer systems,
from route and tour planning algorithms on smartphones to business opti-
mizations on servers. The resource demand of these applications can be dif-
ferent as a lot of different algorithms are used. Optimization (like scheduling
itself) is an important tool throughout the economy and thus an important
application of computers.

• Computer knowledge generation is the kind of application where the com-
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puter is used to gain knowledge out of unprepared, unstructured and some-
how natural data. This ranges from speech recognition in smartphones and
PCs to search engines and artificial intelligence.

• Special applications like in-memory databases or applications from the com-
putational biology also require high computational effort but are also an im-
portant service for their users.

Although there is no common special resource (floating point units, inte-
ger/logic units, cache, memory bandwidth, or others), all of these applications
have in common that they have significant computation costs but also provide a
high value for their users.

How can scheduling help to improve the efficiency of these applications and
thus reduce costs? Let us first take a look at the three main cost factors of compu-
tation besides administration:

1. Hardware. The purchase cost of the hardware or the depreciation during the
running time of the application.

2. Energy. The energy usage of the hardware due to the execution of the applica-
tion. Also cooling effort, which is an often underestimated part of the energy
usage.

3. Programming or software licences.

If programs run faster or more efficiently the applications use the hardware for
a shorter time or more applications can be run on the same hardware in the same
time. Scheduling can improve running time and efficiency for example through
useful resource distribution (allocate resources to the program which uses them
in the most efficient manner), better ordering of small tasks within programs to
reduce waiting times and through balancing temporarily changing resource de-
mands between different applications. Hence scheduling can reduce hardware
cost. Scheduling can also reduce the number of cache misses, memory swaps to
hard disk and the needed average core frequency. Thus scheduling can also im-
prove the energy consumption of a computing application. The cost for software
licences can be reduced in the case where licences are needed during the time a
special library runs or if the licence cost is proportional to the number of comput-
ers. In these cases the software cost has the same behavior like the hardware cost
(software licences are then like an additional piece of hardware). The program-
ming effort can not be reduced directly by scheduling, but maybe in an indirect
way. For applications with a high performance demand programmers often avoid
the use of libraries (for example parallelization libraries) to get the most out of
the machine through optimized code. If these libraries would include an efficient
scheduling such that their performance comes closer to the specialized code for
the situation then the programming effort for these applications could be reduced.
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So scheduling can be used to improve efficiency and reduce cost. In order
to reach that goal, the designer of scheduling algorithms has to know the per-
formance relevant parts of modern parallel computers which are introduced in
Section 2.2.

2.2 Parallel Computing Systems

2.2.1 Reasons for Parallelization
The applications described in the last Section have a high demand of computa-
tional power. The demand usually increases with the affordability of computing
power. In the beginning even supercomputers were sequential computing ma-
chines. Between 2005 and 2010 personal computers became parallel devices and
today even handheld devices have more than one computing core and thus are par-
allel computers. But what are the main reasons to move from sequential computers
to the more complex parallel computers? The main reason is that the performance
improvement of sequential computers was slowed by three performance walls:
The Power-Wall, the ILP-Wall and the Memory-Wall (Asanovic et al. [8]).

Power-Wall Following the work of Borkar and Chien [15] in the 20 years before
2011 we had a typical scaling factor s = 1.4 for every technology generation. This
means that for each generation the transistor dimensions are scaled by 1/s (also
the capacitance), hence the area of the same logic is scaled by 1/s2. Due to the
scaling the frequency could be scaled by s and the supply voltage by 1/s. Using
a formula from Kogge et al. [86] we get for the power density Pdens, the tran-
sistor capacitance C, the transistor density d (transistors per mm2), the operating
frequency f and the supply voltage Vdd:

Pdens =C ·d · f ·V 2
dd

Thus the power density stayed the same when scaling by s without regarding
the leakage power. As observed by Kogge et al. [86] in the last years the scaling of
the supply voltage slowed down, this is partly due to efforts to reduce the leakage
power [15]. Hence the power density is increasing if we continue scaling in the
same manner. Thus the gains in operating frequency will slow down or stop totally
when we have an upper limit for power density, which is indeed the case in order
to have an efficient affordable cooling. This reduces further gains in sequential
computing due to increased operating frequency substantially.

ILP-Wall More and more transistors per core were available over the last 20
years. Before the rise of parallel processors the designers used these transis-
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tors to build more complex cores in order to dynamically execute instructions
from a sequential program in parallel. This is called instruction level parallelism
(ILP), which includes techniques like pipelining, branch prediction, register re-
naming, alias analysis and multiple parallel functional units. According to Borkar
et al. [15] there was a 1000-fold microprocessor performance increase in the two
decades before 2011 of which at least one order of magnitude is due to microar-
chitecture improvements. The other nearly two orders of magnitude are due to
operating-frequency increases. In 1991 Wall [139] studied the limits of instruction
level parallelism for real programs. Even though he assumed extreme capabilities
for the processors, he found the average parallelism is around 7 and the median
around 5. Hence the reachable degree of instruction level parallelism is bounded.
Following Hennessy and Patterson [64, page 213] the returns of even more com-
plex architectures for increased instruction level parallelism diminished around
2005. So the industry will no longer deliver gains in instruction level parallelism
because it would be too costly and inefficient.

With 10.6 billion dollars Intel had the third largest research and development
spending of all companies in the world in 2013, according to Fortune [28], thus
one should not expect dramatically bigger spending for processor development in
the future. Hence further large gains by dramatically improved processor designs
are also unlikely from this perspective.

Memory-Wall Hennessy and Patterson [64, pages 18-21] picked 7 performance
milestones from the years 1982 to 2010. For the first milestone (Intel 80286
processor) the memory latency was about two thirds of the processor latency
(according to Hennessy and Patterson [64, page 20], probably memory access
latency and the latency of a simple operation are meant). For the last milestone
(Intel Core i7 processor) the situation changed dramatically, the memory latency
is now 9 times the processor latency. Figure 2.1 illustrates the general trend:
Both memory and processors gain speed through higher bandwidth and lower
latency where the bandwidth gains are in both cases much bigger than the latency
improvements. But especially in case of latency improvements the gain of the
processor was much bigger than the gain of the memory. Hence waiting for
a memory access is much more costly (in terms of possible operations during
the waiting period) today than it was 30 years ago. In 1994 Wulf and McKee
[143] realized that, if nothing changes, a processor would spend most of its time
waiting for the memory instead of working. So these high memory access times
(relative to the duration of an instruction) slow down sequential computations.
Cache improvements can help to reduce the number of memory accesses, but not
all these accesses can be saved. So the problem cannot be solved through caches
alone. In case of a multi-threaded application the processor/core can work on
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Figure 2.1. Log-log plot of the memory and bandwidth improvements of the performance
milestones from 1982-2010 taken from Hennessy and Patterson [64], who show a similar
picture.

one thread while another thread is waiting for the memory. We will present our
own measurements on current architectures and our work on dealing with these
latencies in Chapter 6.

The Power-Wall, the ILP-Wall and the Memory-Wall hinder bigger perfor-
mance gains in sequential computing but can be circumvented by parallelization.
So multi-threaded applications on systems with parallel computing cores are the
best way of getting substantial performance gains in the future.

Also the cost of energy plays a more important role in the future. Paralleliza-
tion can also help with that. Kogge et al. [86] point out that supply voltage scaling
can be used for more efficient computations. The idea is that if one runs a chip
with lower operating frequency, it is usually also possible to use a lower supply
voltage. As the power consumption of a chip is proportional to f ·V 2

dd , but its per-
formance is proportional to f , we can get half of the performance with less than
half of the power. So if we can parallelize an application without significant over-
heads, running it on two processors with half frequency leads to the same running
time but with a lower power consumption.
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Figure 2.2. A typical multicore uniprocessor with two levels of cache exclusive for every
core and one shared last level cache.

2.2.2 Build and Structure
Section 2.2.1 shows that parallel computing systems are needed for performance
and future performance gains. We now look into how they are built and how their
structure affects performance.

The by far most important producers for desktop and server processors are
Intel and AMD. So how are the current processors composed? Since the introduc-
tion of the K8-architecture in 2003 all AMD processors have their memory con-
troller on chip. Intel introduced the memory controller on chip with the Nehalem
architecture in 2008 and has also built all desktop and server processors with this
feature since then. Typically we have several independent cores on each processor
which have the computational units to compute their own thread. In some cases
such cores can even work on two independent threads which then share parts or
all of the computational units (Intel’s Hyper-Threading or the modules of AMD’s
Bulldozer architecture). These cores often share the memory controller and some
sort of last level cache. In nearly all current processors the last level of cache is the
third level where level 1 and 2 are not shared between cores. The level one cache
is usually divided between data and instructions which is not the case for the rest
of the cache hierarchy. A typical 4 core processor is depicted in Figure 2.2.

In case of a multiprocessor system several of these processors work together
in one system. A typical 4-socket system is depicted in Figure 2.3. As every pro-
cessor has its own memory controller, for a core on one processor it is faster to
read or write data from the memory directly connected to that chip instead of ac-
cessing memory connected to a neighboring processor. This is called non unified
memory architecture (NUMA) as access speeds to different parts of the memory
can differ. Processors designed for multi-socket usage have special components
to share their memory with processors on other sockets.
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Figure 2.3. A typical four-socket multiprocessor multicore with NUMA-memory archi-
tecture. Each processor has a NUMA-controller for the connection to other processors.

Many other parallel computing devices have a similar build like parallel uni-
/multiprocessor systems with several computing cores and a cache hierarchy be-
tween them and the memory.

The most important features of a parallel computer system hardware regarding
computing power are the number of cores, the performance of a single core and
the structure and the speed of the memory hierarchy. Of course the operating
system and the used compiler also have an influence on the performance of a
given program.

A careful design regarding the memory hierarchy (NUMA/non-NUMA, cache
sizes, shared caches) is important for performance and also affects the energy
consumption as a cache hit is much cheaper in terms of energy than a cache miss.

The producers of parallel computers have of course also found some ways to
deal with the walls (see Section 2.2.1) that block further performance gains of
sequential computers:

• ILP-Wall→ multi-core processors, multi-socket machines

• Power-Wall→ DVFS and lower frequencies in general

• Memory-Wall → cache-hierarchies and a large number of other techniques
like prefetchers

Also the applications are more and more prepared for parallel computers by
using multiple threads.
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2.2.3 Further Development
The further development of parallel computers will lead to more devices inte-
grated in even more parts of our everyday life. But also the computing power of
"ordinary" computers and servers will increase as it is demanded by the market.
After the end of frequency scaling computing power increase mainly stems from
the increasing integration density of integrated circuits which allow to use the ad-
ditional available transistors for example to build multicore processors or larger
caches.

In 1965 Moore [105] expected the cost-optimal number of components on a
single chip to double every year. This has become the basis of the term Moore’s
Law which is today used for many slightly different phenomena of exponential
growth regarding transistor density or transistor count of chips used in computers.
As already described in the discussion about the power wall in Section 2.2.1 volt-
age and frequency are not likely to scale anymore. Also semiconductor revenue as
an important driver of development has slowed down its increase as observed by
Mack [99]. It is likely that the increase in transistor density will continue for some
time thus further reducing the cost per transistor [99]. Hence future developments
will probably lead to processors with more cores and larger caches in order to
use the more available transistors. One major problem will be to avoid to hit the
power wall, as the voltage scaling has stopped and a significantly increased power
density is economically unsustainable.

Altogether there seem to be some design trends for computing systems, that
are without an alternative:

• Parallelization and multi-core processors

• Complex memory systems like several cache levels and multi-socket NUMA
systems

• Power/energy-efficiency

2.3 Possible Suboptimal Development Results

This section is based on ideas found in the book Increasing Returns and Path De-
pendence in the Economy by Arthur [7]. The term system here is meant as the
interfaces between hardware, operating system and applications and their usual
properties, that ensure compatibility and the possibility to exchange all compo-
nents independently of each other.

New hardware for a system is usually developed in order to speed up existing
programs on that system. Also improvements in compilers and efficiency-related
parts of operating systems (like schedulers) are designed to fit into the existing
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systems. The same is true for applications which are also designed to fit into ex-
isting systems. Hence optimizations that are not useful within an existing system
are usually not developed as they would bring no benefits.

Let us now look at systems in an abstract way. Imagine systems A and B
which are incompatible which means that there are substantial changes needed
to transfer hardware, operating systems or applications from one system to the
other. Let us further assume that the systems have similar benefits and initially
the same market share. If by chance the market share of A gets ahead of the
share of B, we can expect several results: as components of A generate more
revenue than components of B, probably more money is spent on the further
development of components for A; more software is designed to have a good
performance on A than on B (or even designed for A only) because A is the more
important platform. Hence customers choosing between system A and system
B can expect better performance of A because of the higher development effort
and the better fitting software. Thus the market share of A will further increase
compared to B. Altogether we have a positive feedback cycle for the market share
of A and B which will lead to the domination of the market by one system even if
the fundamental ideas of both systems are equally good. Hence the competition
between two systems is heavily influenced by past decisions/situations and is a
typical example of path dependence as described by Arthur [7].

Following Arthur, it is even possible that the system which is worse in a
long-term perspective wins the market under these circumstances because the
initial benefits were greater or because the system was first in the market (for
example because it was developed from an old one). So it is possible that the
development path of modern computer systems is on a suboptimal path. The
problem that current solutions might be only a local optimum is amplified in
the computer industry by the extreme cost of replacing old interfaces with new
ones. A replacement of a substantial part of the application↔ operating system
interface would mean that all software programmed for that system would have
to be changed. Even for testing new interfaces many components have to be
re-designed and re-implemented. This makes testing alternative approaches for
system interfaces very costly.

But given that path dependency in computer system development, it is pos-
sible that there are unrealized design options that would lead to a much higher
efficiency. For example InvasIC is an approach to investigate such options.

2.4 Parallel Computer Systems in Use

Performance and efficiency of modern parallel computers does not only depend on
their hardware but also on the used software and proper management and schedul-



2.4. Parallel Computer Systems in Use 37

ing. Performance-demanding software for parallel computers typically offers the
possibility that several workers work on different instruction flows (multithreaded
software). An important property of such software for parallel computers is how
well it can use the available parallel workers of the machine. Typically this prop-
erty is measured by the speedup and the parallel efficiency. Given running times
T (1) on one core and T (p) on p cores, the speedup is defined as s(p) = T (1)

T (p) and

the parallel efficiency as e(p) = s(p)
p . Given s(p) for a certain job, it is called its

speedup function. By definition s(1) = 1 and s(0) = 0. In reality the speedup
functions depend on the used algorithm and other program characteristics but also
on properties of the used machine like latency on the connections between cores
or memory bandwidth of processors. Two rules of thumb are often used to guess
the possible speedup: Amdahl’s Law [5] and Gustafson’s Law [58].

Amdahl’s Law The general idea is that in all programs there exists a certain
fraction s of the work that can only be done sequential. The rest of the work (the
fraction r = 1− s) can be done in parallel. When p cores are used the running
time changes from T = (s + r)T to (s + r/p)T . Hence we get a speedup of
s(p) = s+r

s+r/p = p
sp+r which is smaller than 1/s for all p. Thus the speedup is

limited especially as Amdahl guessed that the sequential part would be 20% for
most programs which limits the speedup to a maximum of 5.

Gustafson’s Law Gustafson’s Law comes from an article where Gustafson crit-
icizes the speedup boundaries of Amdahl’s law as too pessimistic. Gustafson
assumes that the sequential part of a program is independent of the problem size
the program is working on. He also assumes that computers with a larger degree
of parallelism will rather be used for larger problem sizes instead of computing
the same problem size faster. He assumed the problem size (computation effort)
is proportional to the degree of parallelism of the machine. If the fraction of non-
parallelizable work of a run on a sequential machine is s and r = 1− s, then the
running time of the problem for the parallel machine on the sequential machine is
T (1) = s+ p · r and T (p) = s+ r on the parallel machine. This leads to a speedup
of s(p) = s+pr

s+r = s+ pr = p− (p−1)s.

Then Encyclopedia of Parallel Computing [109] identifies the often used term
weak scaling with Gustafson’s Law and the term strong scaling with Amdahl’s
Law. Also an often used term is the efficiency of a certain parallel program given
as e(p) = s(p)/p. Inefficiencies might stem from the algorithm (sequential parts,
P-completeness, see Section 1.2.2), the implementation or the machine.

The parallelization overhead of machine and implementation often increases
with the degree of parallelism and stems from different sources:
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• When more cores are used, data access over NUMA-connections or even
network is needed when not all used cores can be part of the same processor.

• The expected average waiting time at barriers and other synchronization
points increases. With more threads it is more likely that one thread needs
more than for example 110% of the average running time between two
synchronization points. Variance in running time between different threads
are common because of machine disturbances like different cache hit rates or
because of data-dependent computation effort.

• A higher degree of parallelism often also leads to a higher fraction of waiting
time per core while waiting for sequential resources like locks.

• When resources like disks or network are the main bottlenecks of an applica-
tion, a higher degree of parallelism just decreases efficiency.

• Shared resources like the memory controller or L3-caches are often also a
reason for slowly increasing speedup functions.

In order to increase efficiency, it might be beneficial to run several programs
in parallel on one parallel machine. If one program cannot use all the available
cores of the machine (maybe only for some time interval) or runs its sequential
part, other programs can use the free cores. The same is true if one application
waits for input, disk or network. Also otherwise unused resources like memory
bandwidth can be utilized better if a compute-intensive program is combined with
a memory-intensive one. Of course it is important to take care that different
programs do not slow down each other and thus decrease efficiency. This can
happen if only one thread is slowed down between two synchronization points or
if common resources are used in a way that slows down all users (for example
cache thrashing). Thus there has to be an instance (scheduler) which distributes
the available resources between different programs. Hence scheduling can play
an important role to gain efficiency when using parallel computers.

2.5 Abstraction Hierarchies and Interfaces

One of the core concepts which made computer-science so successful is abstrac-
tion. Complex parts of a system that has to be used but not understood are en-
capsulated and the only thing to be known to the user is the interface. These
encapsulations and interfaces are also relevant for scheduling.

Tanenbaum and Bos [129, page 4] give a nice example: The hardware interface
of SATA hard disks had a 450 page description in 2007. No sane application
programmer wants to deal with the hard disk at that level, because it would just
take too long. Hence the operating system (or more precisely the disk driver)
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provides the programmer with a much simpler interface which provides reading
and writing of blocks and encapsulates the more complex parts. This leaves more
time for the programmer to work on the relevant parts of the application.

From this simple example we can already see the three main benefits of ab-
straction through encapsulation and interfacing:

• Complexity reduction. One only has to understand a relatively simple inter-
face instead of the whole complex thing.

• Development work must be done only once. The interface can be used by
many different clients, but the work within the encapsulation has to be done
only once.

• Hiding of change. If the encapsulated function changes without changing the
interface, the client does not need to be adapted. The client can even use
different systems as long as the interface stays the same.

Today’s modern computers even encapsulate the access to the basic resources
every computation needs, to the computing cores and the memory. Modern com-
puter architects have developed a whole hierarchy of abstractions from the basis of
digital circuits up to modern programming languages. According to Tanenbaum
and Austin [128, page 24] we have the following six layers of abstraction (five
interfaces) in our modern computers:

1. Digital logic, consisting of transistors and gates.

2. Micro architecture, execution units and register files. Usually controlled by
micro code.

3. Instruction set architecture, the language of interaction between software and
hardware.

4. Operating system.

5. Assembler language.

6. Problem oriented language.

For this work the different layers of hardware abstraction are not important as
there is no room for independent decisions in layers 1 and 2. We thus will look at
the hardware (layers 1-3) as one layer that can make some decisions, for example
cache replacement. The step from layer 6 to layer 5 is done via compilers which
are not part of this work so we will look at the application software as one layer
regardless of the used language.

An important layer missing from our perspective is the layer of libraries. Mod-
ern computers with parallel cores and cache hierarchies have made programming
more complex, especially if an important goal is performance or efficiency. In
order to make the task of programmers easier, there are a lot of libraries for the
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performance-consuming algorithms that sometimes also include their own par-
allelization. It is even possible that an otherwise sequential program only uses
parallelism within its used libraries for example by using the MCSTL as devel-
oped by Singler et al. [121]. Also libraries are often provided by computer sys-
tems vendors which gives another reason to separate them from the application
code. Unfortunately the border between library and application is less clear than
the border between hardware and operating system or operating system and li-
brary/application. Also many libraries might use other libraries or there might
be programs without complex libraries. In some domain-specific cases (numeri-
cal linear algebra for example) it is clearer where the border between application
and library layer is. Hence we omit the library layer for the general considera-
tions although we think that it is an important layer to reduce complexity for the
application programmers.

Hence for the rest of this work we will look at 3 different abstraction layers of
computer systems:

1. Hardware

2. Operating system

3. Application code (including potential libraries)

Each layer has its own decision space relevant for the performance and effi-
ciency of the machine:

On the hardware layer cache replacement, memory prefetching, processor in-
ternal branch prediction and superscalar execution are decided. Also memory
controllers or network devices may reorder data transfers within their own deci-
sion space.

The operating system level has the biggest decision space, hence it is the layer
most people think about when they hear scheduling. The operating system decides
the resource allocation between different jobs and the placement on the hardware.
More specific: Which thread runs on which core and for how long (libraries or
programs might request special cores). The thread-based decisions might also
be based on the job that created the thread. It also decides about the memory
allocation requests and on which NUMA-node they are fulfilled (except the library
or program requesting the memory give special orders about that). Also the access
to other types of hardware is usually managed by the operating system.

The application can decide the degree of parallelism and the order and the
specific thread on which small sub-tasks are computed. Also the used algorithm
is part of the decision space of the application. If the application is programmed
such that it uses the computing resources of many computers connected over the
network, it may also move work and data between computers. In some cases the
amount of computation needed might be a decision of the application, for example
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it may reduce the quality of a video in order to keep the frame rate when there is
not enough computing power available for high quality.

The advantages of this abstraction hierarchy obviously include the advantages
of encapsulation as stated above. Especially the independent development and
optimization of hardware, operating system and application (with restrictions by
the stable interfaces) are important because each of these development processes
is huge on its own and would be impossible without separation. Another very
important reason for this abstraction hierarchy is that an operating system and
applications can run on different kinds of computers, and applications are usually
portable within the same operating systems family. Also applications do not need
to know if other applications are running and which ones (this can also be seen
as disadvantage, see below). Even a crash in one application often does not affect
the others.

The operating system virtualizes computing cores which means that a job can
be stopped and later restarted without preparations in the program. Hence pre-
emptability (pmtn in the 3-field notation) can be usually assumed, but there might
be performance losses through these preemptions, especially for parallel jobs or
by losing the cache context. With the virtualization of memory and the operating
system control over the other resources a program virtually has the whole com-
puter for itself (from its own perspective). Hence the application programmer has
no burden to think about other programs on the same machine. Also for the deci-
sion which algorithm to use for a task the application is independent of the state
of the system or the hardware.

Unfortunately the abstraction hierarchy has not only advantages but also some
disadvantages. The main disadvantage is the loss of information through the in-
terfaces. Neither operating system nor hardware know much about the programs’
internal data structures or computation flow. Also the programs usually have no
knowledge about the system status, for example if other programs are present and
how much resources they use, and the state of the hardware.

Also the optimization goals of the program (frame rate is more important than
quality in the example above) are generally unknown to the lower layers of the
system. This can lead to performance and efficiency penalties because decisions
made within the lower levels have unwanted effects. DVFS of different cores may
speed up the core computing the result needed last, NUMA-placement of threads
may lead to many unnecessary memory accesses over the NUMA-connections,
and an important thread may be stopped instead of a less important thread of the
same application to make room for a new application. In Chapter 4 we take a
deeper look into the interplay of different decision makers and its interference
with the abstraction hierarchy.
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A further disadvantage is that interfaces are difficult to change once they are
established (see Section 2.3).

2.6 Algorithm Engineering and Modelling

2.6.1 Algorithm Engineering
An important scientific methodology which is used in this work is algorithm en-
gineering as defined by Sanders [115]. We will summarize the most important
aspects of algorithm engineering here and describe the adaptions for this special
work in Section 3.4.
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Figure 2.4. Algorithm engineering as a cycle of design, analysis, implementation and
experimental evaluation of algorithms. Graphic received from Peter Sanders.

Algorithm engineering (AE) is the approach to design algorithms that are not
only good in theory but also in practical applications. The core process of AE is a
feedback loop or cycle: Design an algorithm→Analyze it in theory→ Implement
it→ Perform experiments which might lead to new insights for a better algorithm
design. This is different from the algorithm theory methodology which has a
shorter loop which only consists of design and analysis.

The main parts of the AE process are:

1. Models: Good realistic models are the base of AE. Good models abstract
from reality by keeping the important properties and are simple. Such models
are often hard to find.
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2. Algorithm design: In AE the goal of algorithm design is not only the best
asymptotic worst case efficiency but also takes care of constant factors and
the performance for real world inputs. Also the needed implementation effort
plays a role in the design of algorithms.

3. Analysis: The analysis of algorithms can lead to performance guarantees but
is often hard for practical algorithms under real circumstances.

4. Implementation: The implementation is an important part of AE not only
to have code for the experiments but also the crossing of the semantic gap
between theory and programming languages can lead to new insights.

5. Experiments: Well planned experiments with realistic input data are the best
way to prove the quality of an algorithm for some kind of application.

6. Libraries: A good implementation of a good algorithm is often not easy.
Implementations with good software quality can be used as library and reduce
the complexity for the application programmers.

7. Real inputs: Meaningful tests require realistic inputs to get meaningful re-
sults.

8. Applications: A clear definition of the application scenario for an algorithm
to develop is important.

In practice the AE cycle is followed for several iterations to get good results.
The methodology is used in many different domains of efficient algorithm re-
search.

2.6.2 Important Models
The methodology of algorithm engineering relies on useful models. This is also
the case for scheduling theory which is dependent on models as basis for the
investigation of decision problems. Hence we will describe some widely used
models for parallel systems here.

An often used model for sequential machines in algorithm analysis is the ran-
dom access machine model (RAM model). In this model a central computing unit
(e. g. a processor core) with limited own storage can access a large main memory
by directly addressing the memory cells. In order to describe parallel machines,
this model is often expanded to the parallel random access machine model (PRAM
model) with m > 1 central computing units. These m computing units access a
common main memory. Usually the PRAM model is further specified by the kind
of operations different computing units can execute on the same memory cell at
the same time. Exclusive read exclusive write PRAM (EREW PRAM) means that
only one computing unit can read or write a memory cell at the same time, concur-
rent read exclusive write PRAM (CREW PRAM) and concurrent read concurrent
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write PRAM (CRCW PRAM) are further often used PRAM models. JáJá [83,
page 9] gives a more detailed introduction to the PRAM model.

The other commonly used model for parallel computers is the network model
(JáJá [83, page 16]). These two models are also the two machine models described
by JáJá [83]. The basis for the network model is a graph (the network) in which
each node is a computation unit with local storage. These compute nodes can send
each other messages over the edges. Nodes not directly connected can reach each
other by routing over other nodes such that a path between the two communicating
nodes is formed. Usually the length of this path plays a role for the duration of a
data movement between the nodes.

Both parallel models are widely used for the development and analysis of par-
allel algorithms even as they ignore a lot of (more or less) important properties of
modern computing systems for example memory hierarchies, hierarchical connec-
tions (same socket, same machine, same local network) and others. On the other
hand ignoring less important properties and concentrating on the most important
aspects of reality is the basic of modelling. Models must reduce the complexity of
reality to make them useful. This helps the users of models to focus on the central
properties of a problem/solution without getting distracted by too much informa-
tion about less relevant aspects of the problem/solution. This leads to the central
problem of creating models: which are the relevant properties of reality and what
can be ignored? The answer to this question is unfortunately situation-dependent.
For basic parallel algorithms the PRAM model might be the right choice, but if we
want to develop especially cache-efficient parallel algorithms, the PRAM model
is probably the wrong choice. Hence the right choice of the used model depends
on the question to be investigated.

We use different models in this work. The job models from scheduling theory
are introduced in Section 3.1.1. The Roofline model for the relation of memory
bandwidth and computation is introduced in Section 6.2.1 and the energy model
for energy-efficient schedules used by us in Section 7.1.

2.7 Introduction to Invasive Computing
Invasive Computing (Acronym: InvasIC) is a DFG funded project (transregional
collaborative research centre) in which the author of this work took part as a PhD-
student for 4 years. For a short definition of the principle idea we cite an overview
article by Teich et al. [131]:

Definition: Invasive Programming denotes the capability of a pro-
gram running on a parallel computer to request and temporarily claim
processor, communication and memory resources in the neighbor-
hood of its actual computing environment, to then execute in parallel
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the given program using these claimed resources, and to be capable
to subsequently free these resources again.

The intended development of a new paradigm of parallel computing includes
the redevelopment of all parts of a computing system: New language (at least in
parts) and compiler, new operating system and new hardware. The central idea is
resource aware programming which means that programs are self-organizing such
that they can adapt to the available resources and negotiate with other programs
about the usage of scarce resources. As these adaptions naturally can only take
place during runtime the programs must be able to change their degree of paral-
lelism and other resource needs after being programmed. This is facilitated by
special programming techniques implemented in the language and the compiler
and an agent system for the negotiation between the programs. The operating
system and the hardware support collect the information needed for the decisions
about the resources and support the resource allocation and deallocation. Some
optimizations might also be in the responsibility of operating system and hard-
ware. The negotiations and decisions are done by an agent system. We take a
more detailed look at the scheduling decision making in the InvasIC system in
Section 4.4

During the time the author of this work worked on InvasIC the project con-
sisted of 12 research sub-projects (the list of projects can also be found in the
annual reports [132] or [133]):

• A1 Basics of Invasive Computing: Modelling and definition of the program-
ming language and the resource adaption techniques.

• A3 Scheduling and Load Balancing: Scheduling, the sub-project in which the
author of this work took part.

• B1 Adaptive Application-Specific Invasive Microarchitecture: Reconfig-
urable processors for InvasIC.

• B2 Invasive Tightly-Coupled Processor Arrays: Special hardware accelera-
tors for nested loops.

• B3 Invasive Loosely-Coupled MPSoCs: Development of special hardware
controllers for the collection of scheduling relevant data and for making local
decisions.

• B4 Hardware Monitoring Systems and Design Optimization for Invasive Ar-
chitectures: Hardware monitors (temperature, degradation, power consump-
tion, ...) for InvasIC.

• B5 Invasive NoCs – Autonomous, Self-Optimizing Communication Infras-
tructures for MPSoCs: The network on chip controllers for InvasIC.

• C1 Invasive Run-Time Support System (iRTSS): The operating system of
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InvasIC.

• C2 Simulation of Invasive Applications and Invasive Architectures: Develop-
ment of simulators.

• C3 Compilation and Code Generation for Invasive Programs: The compiler
for InvasIC and its new language.

• D1 Invasive Software-Hardware Architectures for Robotics: Application 1.

• D3 Multilevel Approaches and Adaptivity in Scientific Computing: Applica-
tion 3.

During the author’s work on InvasIC a further sub-project Z2 was added in
order to build a hardware simulator.

As one can see from the setup of the project the idea was to build a completely
new architecture in order to escape the problems of the current architectures. This
fits into the considerations about path dependence from Section 2.2.3. It is also
clear that a core idea was to distribute the decision making process of resource al-
location. The NoC-controllers and the controller developed by B3 make schedul-
ing decisions as well as the operating systems and the applications (or their agent
part). Especially the idea of the applications adapting to the available resources
and taking part in the resource allocation process had a big influence on this work.
InvasIC was also helpful to gain understanding of all principal parts of a computer
system as specialists for these parts were involved. The results and its differences
to this work are reviewed in Section 4.4.

Another observation from the list of sub-projects is the large share of hardware
development projects.
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Scheduling of Computer Systems

This chapter describes the starting point of our research: the existing theoreti-
cal solutions in Section 3.1, the existing solutions in scheduling practice in Sec-
tion 3.2. We then take a look at the major differences between the scheduling
solutions in theory and practice in Section 3.3. In Section 3.4 we present our own
approach and our research directions.

3.1 Developments in Theory

3.1.1 Models

Theoretical work in the area of scheduling usually starts from a model in order
to have a defined basis for mathematically proven results. Due to the influential
3-field-notation (see Section 1.2.1) the models used in theory usually consist of
a machine model, a job model and an objective function. The most common
objective function is to minimize the finishing time of the last job (Cmax), but
also other objective functions are relevant. As the objective functions are closely
problem-related, we will look at them together with the problems.

There are also many machine models. This work is dedicated to the scheduling
on uniform parallel machines which means that all cores are similar and differ
at most by their general speed. Hence we restrict our theory survey to parallel
machines with uniform Q or even identical P workers (P,Q here mean the same
as in the 3-field problem classification, see Section 1.2.1). Today’s modern multi-
core machines or clusters typically fit very well into the model of identical or
uniform workers if the application is compute-intensive. If the memory or other
devices are more important, there are influences between the operation of different
cores which are usually not part of models in theory. In theory P (parallel identical
workers) is the most common model for parallel machines.
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As this work is dedicated to the scheduling of parallel jobs we will describe the
most important models for parallel jobs. Of course sequential jobs are always part
of these models as extreme cases. One of the main differences between the models
is how much the scheduler knows about the internals of the parallel job and how
much it interacts with internal structures. The first case in which the scheduler
only assigns resources to a possibly parallel job without managing the distribution
between job-internal tasks is called parallel job scheduling. The second case in
which the scheduler (also) manages the internal tasks is mainly DAG-scheduling.

Parallel Jobs

As already noted in Section 1.2.1 there are three typical models of parallel jobs:

• Fixed-size jobs: the degree of parallelism is fixed.

• Moldable jobs: the degree of parallelism is decided by the scheduler when
the respective job starts but cannot be changed later.

• Malleable jobs: the degree of parallelism can be changed anytime by the
scheduler. This includes preemption by setting the degree of parallelism to
zero for some time.

Feitelson and Rudolph [43] introduce the terms malleable and moldable in
the way we use them here. Their definition is the same as the one used in the
Handbook of Scheduling [93, pages 25-5 to 25-7] which classifies parallel jobs in
a similar way as it is done here.

The Handbook of Scheduling also defines a special sub-category of fixed-size
jobs where the degree of parallelism is a power of 2 which is less relevant for
this work. We can regard the degree of parallelism as some kind of interface. The
scheduler decides (if possible) about the number of cores that are given to a job but
does not care about their internal use. In the case of fixed-size jobs there is even
only one amount of cores which can be used by these jobs. In case of malleable
or moldable jobs the scheduler has to know how long a job will run (or other
objective-related properties) for different degrees of parallelism. The jobs provide
the scheduler with the information how fast they work with different degrees of
parallelism. This information is also part of the application↔ scheduler interface
at least in the used scheduling models. Unfortunately on current standard systems
there is no common interface to pass speedup functions (or other objective-related
properties) from the application to the system scheduler.

Sequential job scheduling is always an extreme case for these models, in case
of fixed-size jobs all jobs can have one as degree of parallelism, in case of mold-
able or malleable jobs the running time (or other objectives) with more than one
core can be at most as good as the running time with one core which makes par-
allel execution useless.
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Due to virtualization it is possible on most modern machines to stop a thread
and to continue the execution later at the stopping point (see Section 2.5). If
only one thread of a multi-threaded application is stopped, this might lead to
heavy performance losses if the other threads are dependent on the results of
the stopped thread. Hence stopping only some (but not all) threads of a job is
usually not useful at least for fixed-size or moldable jobs. Stopping all threads
at the same time can also lead to some performance losses as important cache
contents might be evicted while the job is not running. Hence preemption of jobs
is always possible on modern computer systems, but it might come along with
some performance penalties.

Now we take a close look at the three used models of parallel jobs and the
basic problems resulting from their execution on parallel identical cores (P in the
3-field problem classification) with the goal of minimizing the makespan (Cmax in
the 3-field problem classification). We also describe how the job models can be
justified from practice.

Fixed-size jobs have a degree of parallelism that is an individual property of
each job. This degree of parallelism cannot be changed during runtime (especially
not by the scheduler). The basic problem for this kind of jobs is P|size j|Cmax (and
with preemption P|size j, pmtn|Cmax) which is the scheduling of the given fixed-
size jobs on a given number of cores in order to minimize the finishing time of the
job finishing at last (see results in Section 3.1.3).

A practical example of this kind of jobs would be an application with a degree
of parallelism fixed at programming time. The different threads are interrelated in
a way such that stopping some (but not all) of them (or not running some threads
from the start) causes huge performance penalties or even a deadlock. For example
the program might contain a barrier at which all threads wait until a certain number
of threads arrive. Hence one is forced to run all threads of the job at the same time
in order to run the job efficiently. Most applications that allow parallelism can be
programmed to fit into the fixed-size job model.

Moldable jobs are similar to fixed-size jobs, but their degree of parallelism can
be decided by the scheduler at the start of the job. This degree of parallelism
cannot be changed afterwards. Of course the scheduler needs information about
the effects of the different degrees of parallelism in order to make a useful deci-
sion. The basic problem for this kind of jobs is P|any|Cmax (and with preemption
P|any, pmtn|Cmax) which is the scheduling of the given moldable jobs on a given
number of cores in order to minimize the finishing time of the job finishing at last
(see results in Section 3.1.3). In case of the basic problem the scheduler needs
the information on how long a job runs with each possible degree of parallelism.
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This information can either be given as running time for each possible degree of
parallelism or as speedup function s(p) which maps a degree of parallelism p to
the quotient of sequential running time of the job divided by the running time on
p cores.

A practical example of this kind of job would be a numerical simulation. In
the beginning the simulation space is partitioned between the participating threads
(for example 3D points for a fluid simulation). Then each thread works on the
properties (for example pressure and flow) of its points and their change over
time. This includes an intensive exchange of data between threads which work on
neighboring parts of the simulation space. Stopping one thread also hinders other
threads in their progress severely.

Malleable jobs on the other hand are able to change their degree of parallelism
(according to orders from the scheduler) without efficiency losses, or the effi-
ciency losses are so small that they can be ignored for the model. For malleable
jobs the decision space of the scheduler is much larger than for moldable jobs. As
the degree of parallelism can change during the execution of a job, it is necessary
to know the progress a job makes when running on p cores during a time of t.
This is usually given through speedup functions for each job. Let T be the se-
quential running time of a job and s its speedup function, then the job is finished
after the k-th time interval Ik when T = ∑

k
i=1 ti · s(pi) and a degree of parallelism

pi is used during intervals Ii of length ti. The basic problem for this kind of jobs
is P|var|Cmax (preemption is included as the scheduler can set the degree of par-
allelism to 0), which is the scheduling of the given malleable jobs on a given
number of cores in order to minimize the finishing time of the job finishing at last
(see results in Section 3.1.3).

One typical example for such jobs are applications whose threads work on
independent (small) workpackages and have nearly no interaction. If a thread is
stopped after finishing such a workpackage, it can be stopped without negative
effects on the other threads. The number of cores is of course important for the
performance of these applications, but typically they gain efficiency with fewer
cores rather than losing efficiency (or even deadlock) like fixed-size or moldable
jobs. In the future jobs might also be developed to be malleable because they need
mechanisms designed to cope with hardware failures.

One must be careful when reading literature that is concerned with malleable
jobs because at least two different definitions exist and are widely used. According
to Jansen and Zhang [80] the term malleable was introduced by Turek et al. [135].
Both articles use the term malleable for jobs that would be called moldable in this
work.
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Task-DAGs

Task-DAGs are directed acyclic graphs in which the nodes are sequential tasks
and the directed edges are dependencies between the tasks which are represented
by their incident nodes. Parallel jobs can consist of (small) sequential pieces
of work and dependencies between these tasks. If one task b has to wait for
input of another task a before it can start, b is dependent on a. We write a→ b,
so the direction of the edges in the task-DAG indicates the operation flow. Of
course if one task is (indirectly) dependent on itself, it can never be done. If
there are no dependencies, we get back to the extreme case of sequential job
scheduling. The structure of the task-DAG is important for scheduling. Schedules
for simple DAG structures like trees are often easier to find than schedules for
general DAGs. An important overview paper for DAG-scheduling is written by
Kwok and Ahmad [90]. Often the tasks of a task-DAG are called jobs and the
dependencies precedence constraints.

DAG-scheduling is typically the work of application-internal schedulers. For
example in numerical applications the tasks are the calls of the sequential libraries.
The system scheduler usually does not know about the tasks contained in a job or
their dependencies as it just schedules threads that execute these tasks.

Further Properties of Job Models

Both model groups can be enhanced by release times, deadlines and further re-
strictions. A release time can be given for each job and is the earliest time at
which we can start working on a job. A deadline can also be given for each job
and is the time at which a job has to be finished. Schedules in which a job is
not finished until its deadline are infeasible. Another property that can occur in
both models is preemption. A job that is preemptable can be stopped at some
time and later restarted without performance penalties. Together all parts of the
preempted job have the same running time as if the job is run in one piece, but it
is not possible to run different parts of the same preempted job in parallel.

More complex models like for example DAGs of malleable tasks are not in the
focus of this work. The work of Marchal et al. [101] is an example for the work
on this topic.

3.1.2 Basic Solutions and Properties

Basic Solutions

The first basic solution is McNaughton’s Wrap-Around-Rule [104] for
P|pmtn|Cmax. Although the solution is only for sequential, independent jobs, it is
often part of solutions for more complex problems. Also the scheduling problem
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for sequential, independent jobs is an extreme case of both scheduling of parallel
jobs and DAG-scheduling. The description is taken from [93, page 3-6] as it is
shorter and easier to understand than the original article.

Given a set of k sequential independent jobs with running times p j and a
machine with m parallel identical cores (k, the p j and m are part of the input)
we compute D = max{max{p j| j ∈ {1 . . .k}},∑k

j=1 p j/m}. Starting with job 1 we
put jobs on the first core until with job i the running time of the jobs on core 1
exceeds D. The remaining part (∑i

j=1−D) of job i which would run after D is then
"wrapped around" and placed as the job first to run on core 2. As pi ≤ D, the two
parts of job i never run in parallel. Continuing with the same method all k jobs
can be placed on the m cores within a time limit of D which is also the optimal
solution for P|pmtn|Cmax.

An important basic algorithm for many heuristics and approximation algo-
rithms is list scheduling (as described in many textbooks about scheduling like
[93, page 9-2], [9, page 202 ff], [122, page 108 ff] and [23, page 138 ff]). For
list scheduling the unfinished jobs are kept in an ordered list. Every time a core
becomes idle the first ready job is assigned to that core (often all jobs are assumed
to be sequential). Many easy heuristics can be implemented on the basis of list
scheduling. For example largest processing time first (LPT) can be implemented
by sorting the list of jobs beginning with the largest. Approximation algorithms
based on list scheduling were investigated as early as 1966 by Graham [54]. It is
important to note that the first ready job is assigned to the free core and not nec-
essarily the next job in line regarding the list order (some jobs might be blocked
due to precedence constraints). This is even more important for the scheduling of
parallel jobs. If for example only k cores are idle at the same time, the first job
with a degree of parallelism of at most k is selected. Hence jobs which use many
cores in parallel might be overtaken by jobs which are behind them regarding the
list order.

Dominant Set of Schedules

The idea of a dominant set of schedules is taken from the book of Baker and
Trietsch [9, page 14]. For most scheduling problems there exists a huge and in
most cases even infinite number of schedules which fulfill all constraints. Take
for example an arbitrary number r ∈ R+ as starting time for the first job instead
of 0. In most cases it is possible to find some properties of schedules such that for
each feasible schedule S there exists a feasible schedule S′ that has these properties
and that S′ is at least as good as S for the given objective. In such a case the set of
all schedules which fulfill these properties is called a dominant set of schedules.
The restriction to the dominant set of schedules can be useful as it can be much
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smaller and the reachable quality of schedules is the same.

3.1.3 Parallel Job Scheduling
The scheduling of parallel jobs is still a young and small topic within scheduling
although we have already seen (Section 3.1) that the model is justified by and
useful in practice. Probably one of the first papers concerned with the scheduling
of parallel jobs was published in 1984 by Błażewicz, Weglarz and Drabowski
[27]. Even some recent textbooks like Principles of Sequencing and Scheduling
[9] from 2009 do not cover the topic at all. Although being such a new subject,
there is quite some theory in the field of parallel job scheduling, the Handbook of
Scheduling [93] from 2004 devotes two chapters to the topic and gives more than
150 references in these chapters. In order to keep the overview small, we stick to
the parallel job scheduling problems with independent jobs. We will first look at
the computational complexity (NP-hardness) of some relevant problems and then
take a look at some fast algorithms that may be suitable for practice.

NP-Hardness

The most basic problem of parallel job scheduling is P|size j|Cmax which is
scheduling fixed-size non-preemptable jobs in order to minimize the total
schedule length. Du and Leung [40] prove that this problem is sNP-hard even for
a fixed number of cores m if m ≥ 5 (problem Pm|size j|Cmax). The proof is done
by reduction from 3-PARTITION. The authors also show that the problem is not
sNP-hard and only NP-hard for m = 2,3. Only very recently it was shown by
Henning et al. [65] that the problem is sNP-hard for m = 4. The article of Henning
et al. [65] also contains a lower approximation bound of 5

4 for pseudo-polynomial
strip packing which is matched by Jansen and Rau [78], who present an algorithm
with an approximation ratio of 5

4 + ε .
The problem P|size j, pmtn|Cmax with additional preemptability of jobs is eas-

ier. For all fixed m it is possible to compute an optimal schedule in time polyno-
mial in the number of jobs n as shown by Błażewicz et al. [22]. The idea is to com-
pute all possible combinations of jobs that can run at the same time (their number
is in O(nm)) and assign to each a variable xi which contains the running time of
this combination. With some linear constraints which ensure that all jobs are fin-
ished by the end of the schedule the sum of these xi (∑xi = Cmax) is minimized
through a linear program. This linear program and thus the optimal schedule can
be computed in time polynomial in n. If m is not fixed, P|size j, pmtn|Cmax remains
NP-hard which is shown by Drozdowski [39]. This is proven by reduction from
PARTITION (hence the proof needs an m which can be exponential in the input
length). If for each element with size a j there exists a job for which the number
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of cores denoted by size j is equal a j and a running time of 1, then a schedule
with Cmax = 2 exists if and only if the PARTITION instance allows an equal split.
Jansen and Porkolab [77] show that the optimal schedule for P|size j, pmtn|Cmax
can be computed in O(n)+ a term polynomial in m. The result does not conflict
with the NP-hardness of P|size j, pmtn|Cmax as m as part of the input can be expo-
nential in n, it just shows that P|size j, pmtn|Cmax cannot be sNP-hard. For realistic
settings the number m of cores is always polynomial in the number of jobs n.

Du and Leung [40] also describe the idea why the more "variable"
problems (P|any|Cmax, P|any, pmtn|Cmax and P|var|Cmax) with moldable or
malleable jobs are at least as hard as the fixed-size problems (P|size j|Cmax
and P|size j, pmtn|Cmax) if the possible speedup functions are not restricted.
However we are not sure if the authors themselves recognized the implication
for P|var|Cmax as malleable jobs do not occur in their paper. If we set the speed
for a job to 0 for all numbers of assigned cores q less than size j and to the same
speed for all q ≥ size j, then the only useful number of cores to use is size j in all
cases. Hence P|size j|Cmax and P|size j, pmtn|Cmax are special cases of P|any|Cmax,
P|any, pmtn|Cmax and P|var|Cmax respectively (remember var contains pmtn by
default). The increased decision space can even lead to a harder problem. Du and
Leung [40] show that P|any, pmtn|Cmax is sNP-hard (even for an m polynomial
in the input length) where for P|size j, pmtn|Cmax only NP-hard was shown (for
m polynomial in the input length the problem is even in P). For fixed m ≥ 2
the problem Pm|any, pmtn|Cmax with a fixed number of cores m is shown to be
NP-hard [40] instead of polynomial time like Pm|size j, pmtn|Cmax.

Jansen and Porkolab [77] show that an optimal solution for Pm|var|Cmax can
be computed in polynomial time with a linear programming approach. The idea
is similar to the one used for the solution of Pm|size j, pmtn|Cmax, compute all
possible configurations of the machine and minimize the sum of running times of
the configurations with the restriction that each job is finished by the end of the
schedule. Here one just has to include the speedup function into the computation
when a job is finished and the number of possible configurations is higher due to
the variability of the job’s parallelism.

An interesting observation in case of fixed m and pmtn is that the growth of
the decision space from fixed-size to moldable leads to a higher complexity, but
the further growth from moldable to malleable reduces the complexity.

Instead of such special speedup functions which create highly complicated
scheduling problems the speedup functions in reality are often less steep and easier
to handle. Hence there is an important part of theory about handling scheduling
problems with restricted classes of speedup functions. Often also a maximal
degree of parallelism δ j for each job is given, which is nearly the same as if there
are no further speed gains if the core amount grows larger than δ j.
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speedup funct. pmtn/ m in input fixed-size moldable malleable

general/none

no / yes sNP-hard sNP-hard –
yes / yes NP-hard sNP-hard NP-hard
yes /m ∈ poly(n) P sNP-hard ?
no / no sNP-hard sNP-hard –
yes / no P NP-hard P

linear yes / yes – ? P
concave yes / yes – ? P

Figure 3.1. Computational complexity of different parallel scheduling problems on par-
allel identical cores with the objective of minimizing Cmax.

The two typical restricted classes of speedup functions are linear speedup
functions and concave speedup functions. Linear speedup functions are realistic
for easily parallelizable applications where the speedup against a computation on
one core is just proportional to the number of used cores. Linear speedup functions
are also a special case of concave speedup functions.

A function is concave when the straight connection between two points of the
function graph is never above the function graph between these two points. This
means that given a larger u and a smaller ` core amount the speedup of the av-
erage core amount can never be below the average speedup with ` and u cores
or in formula: s(βu+(1−β )`) ≥ β s(u)+ (1−β )s(`) for β ∈ [0,1]. With this
restriction it is possible to avoid local minima that can occur with more general
speedup functions and compute the optimal result quite fast. Błażewicz et al. [26]
showed that the optimal result when non-integer core amounts are allowed can
be computed in time O(nmax{m,n log2 m}) for scheduling problems with only
moldable or malleable jobs (moldable or malleable is no difference in this case)
with concave speedup functions. We describe their approach in more detail, be-
cause we speed up and parallelize their result in this work. Given is a set of
jobs j1, . . . , jn, each with a concave, piecewise linear speedup function si and an
amount of work to do wi. Their goal is to find a possibly non-integer distribution
(x1, . . . ,xn) ∈ Rn

≥0 of the available m cores such that Cmax is minimized. They
define R = {(x1, . . . ,xn) ∈ Rn

≥0|∑n
i=1 xi ≤ m} as the set of possible resource dis-

tributions and U = {(s1(x1), . . . ,sn(xn))|(x1, . . . ,xn) ∈ R} as the set of resulting
possible speeds. They note that U is a convex set due to the concavity of the
speedup functions. They use a result of Weglarz [144] that there is an optimal
solution in the intersection of U with the straight line I through the origin and
(w1, . . . ,wn). This is intuitively clear as wi/Cmax is the least needed speedup of
job ji to reach Cmax. By interval halving the amount of needed cores for a given
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speedup xi = s−1
i (wi/C) can be computed in time O(logm). For each job jk the

authors compute a point u(k) on the line I with an integer component u(k)k . This

point is chosen such that ∑
n
i=1 s−1

i (u(k)i )≥m and the point on I for the next smaller
integer component u(k)k −1 does not fulfill this condition (I crosses the surface of
U between those points). This is done by interval halving for xk which needs at
most O(logm) steps, and in each step there are n−1 inversions to compute. Thus
finding u(k) takes time O(n log2 m). Computing u(k) for each job jk takes time
O(n2 log2 m). Among the n points u(k) the one with the smallest u1 is taken (this
point also has the smallest ui as I is a line through the origin). With this point
the final solution is computed by using the linear interpolations of the speedup
functions. The authors write that the computation of all coefficients of the linear
interpolations (between all neighboring points of all speedup functions) can be
done in time O(nm) which leads to the remaining part of the running time. It
looks as if for large m it would be more efficient to compute only the needed co-
efficients which would lead to a total running time in O(n2 log2 m). For situations
where m might be exponential in n this running time would still be polynomial.

As non-integer core amounts are not realistic, Błażewicz et al. [24] also cre-
ated an algorithm which converts the non-integer schedule to an integer schedule
for malleable jobs in time O(n) (in Section 5.2.2 we describe a version of the
algorithm that is adapted to our approach, both versions of the algorithm do not
work for moldable jobs). Together with Błażewicz et al. [26] this solves the prob-
lem P|var|Cmax with concave speedup functions (and also for the subset of linear
speedup functions) altogether in time O(nmax{m,n log2 m}). This algorithm is
fast enough to be useful in many areas of computer scheduling and was further
sped up and parallelized by us (see Section 5.2).

Fast Algorithms

As scheduling itself should not be the main task of computers there is a need
for fast scheduling algorithms. For many problems there is no known algorithm
which can compute the optimal solution in a reasonable time. Hence also algo-
rithms which might compute a suboptimal solution, but are fast, are of interest
(approximation algorithms and heuristics, see also Section 1.2.3). As there is not
much that can be proven about a heuristic, heuristics usually are of lower interest
in theory. In the case of parallel jobs there are also usually quite fast approx-
imation algorithms with good approximation ratios which also leads to a lower
interest in heuristics.

Let us first take a look at the scheduling problems with fixed-size jobs
P|size j|Cmax and P|size j, pmtn|Cmax. Although P|size j|Cmax looks similar to the
2D strip packing problem by placing jobs in the core × time rectangle, there are
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some differences. In 2D strip packing it is not allowed to split the rectangles
to be placed, but in scheduling there is no need to assign a job to a continuous
set of cores. Modern architectures have no connection networks that are built
like a line. Usually the networks look like a mesh, a cycle, a tree or an even
more complex graph. Turek et al. [135] give an example in which the optimal
solution for P|size j|Cmax is better than the optimal solution for the analog strip
packing problem. Garey and Graham [49] show that each algorithm based on list
scheduling can take at most twice as long as the list scheduling algorithm with
the optimal list order (they write about a continuous resource instead of cores, but
the result applies to P|size j|Cmax). The proof by Garey and Graham uses the fact
that no list scheduling schedule can take more than twice the time of the optimal
schedule. If we update the list of times after each core is available for each job as-
signment, we can perform the list scheduling with a low polynomial running time.
Hence list scheduling is a fast approximation algorithm. Johannes [81] shows
that there can be no polynomial algorithm with an approximation ratio better
than 1.5 for P|size j|Cmax (unless P = NP) and also gives factor 2 list scheduling
approximation algorithms for P|r j,size j|Cmax and P|r j,size j, pmtn|Cmax for the
more complex problem with release times. As the release times are part of
the input, these approximations also hold for instances where all jobs have the
same release time. Jansen [74] presents an 1.5+ ε approximation algorithm for
P|size j|Cmax which runs in time O(n logn)+ f (1/ε). This algorithm also works
for moldable jobs and even with a mixture of moldable and nonmoldable jobs
with the same approximation ratio but with a larger polynomial running time.

If m is not part of the input or if there are restrictions on the size of m, better
and faster approximations are obtainable. For the case of m polynomially bounded
in n Jansen and Thöle [79] give a factor (1+ ε) approximation algorithm (PTAS)
for the problem P|size j|Cmax. Although too complicated for the application in
practical computer scheduling, this kind of algorithms is of high theoretical inter-
est. For the case when m is fixed Amoura et al. [6] give linear time algorithms
(with respect to n) to compute the exact solution for Pm|size j, pmtn|Cmax and a
factor (1+ ε) approximation for Pm|size j|Cmax. Unfortunately the running time
is exponential in m, and thus these algorithms are unlikely to be fast in practice.

There are also approximation algorithms for the scheduling problems for
moldable jobs P|any|Cmax and P|any, pmtn|Cmax. Some authors use the term
malleable for the kind of jobs that are called moldable in this work. The speedup
functions or the class of speedup functions that are allowed play an important role
in this case. Depending on the assigned number of cores q, we use t j(q) as the job
duration and u j(q) = q · t j(q) for the usage of core time (often called work w j(q)
in other publications) for job j. Jobs for which t j(q) is a decreasing function and
u j(q) an increasing one are called monotonic (see [93, Chapter 26]). It is quite
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natural to assume that the computation time of a job can only go down by adding
more cores (otherwise leave the additional cores idle) and the overhead (and thus
the accumulated time on all used cores) can only go up. Jansen and Land [75]
show that P|any|Cmax is still sNP-hard for monotonic jobs. The Handbook of
Scheduling [93] has a good overview of approximation algorithms for scheduling
problems with malleable and moldable jobs in Chapter 26. If speedup functions
are given as lists of different speeds for every possible core number for each
job, then m is implicitly polynomially bounded in the input length as we have m
values for each job in the input.

When the scheduler has fixed the degree of parallelism p j for each job j, we
get a lower bound of the execution time by b = max{∑u j(p j)/m,max j t j(p j)}.
The only thing that remains to do in this case is to use an approximation algo-
rithm for the scheduling problem for fixed-size jobs. We will now take a look at
the results of this approach of using fixed-size job scheduling solutions together
with estimations of the degree of parallelism. Turek et al. [135] give an easy 2
approximation algorithm for P|any|Cmax that has no prerequisites on the speedup
functions. For each job they start with using the amount of cores that results in
the lowest usage of core time, and based on this core assignment they use a factor
2 approximation for the resulting fixed-size problem. In further steps they assign
more cores to the job with the highest running time until it reaches the next lowest
usage of core time with a shorter running time and use the fixed-size approxima-
tion algorithm again. The repeated adding of cores to the job with the highest
running time stops when this job cannot use more cores. The fastest among those
(at most nm) computed schedules has at most the core time usage for each job
as the optimal schedule has. With the approximation for the resulting fixed-size
problem this results in a factor 2 approximation algorithm for P|any|Cmax. Lud-
wig and Tiwari [98] further speed up the schedule computation as they minimize
b=max{∑u j(p j)/m,max j t j(p j)} only once and then pass the jobs with the com-
puted p j to a fixed-size approximation algorithm. This also leads to a factor two
approximation but with a total running time in O(n log2 m)+L(m,n) (instead of
O(nm) ·L(m,n) from the algorithm of Turek et al. [135]) where L(m,n) is the run-
ning time of the used factor two approximation algorithm for P|size j|Cmax. The
algorithms of Turek et al. and Ludwig and Tiwari rely on the fact that a list
scheduling solution for P|size j|Cmax has an upper bound of 2b for Cmax. Garey
and Graham prove that implicitly in their work [49] already mentioned above.
With the result of Johannes [81] (a non-preemptive list scheduling algorithm is a
factor 2 approximation algorithm for P|r j,size j, pmtn|Cmax) we even get a factor
2 approximation of P|any, pmtn|Cmax.

A better factor 3
2 + ε approximation algorithm is given by Mounie et al. [106]

for P|any|Cmax and monotonic jobs. The authors use a knapsack approach to
fill two shelves, one of length d and one of length d/2. d is a guess of the
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length of the optimal schedule which is rejected if it is too small (this enables
the authors to approximate the optimal schedule length). The already mentioned
work of Jansen [74] produces the same approximation in the general case (general
speedup functions). Jansen [73] describes an asymptotic fully polynomial time
approximation scheme (AFPTAS) for P|any|Cmax. For the case of a fixed m Jansen
and Porkolab [76] show a factor (1+ ε) approximation algorithm which runs in
time O(n). Jansen and Land [75] introduce a new technique called compression
(reducing the degree of highly parallel jobs slightly) for the case of monotonic
jobs. This technique is used by them for an FPTAS for the case m ≥ 8n

ε
with

running time O(n logm(logm+ log 1
ε
)). They also use the compression technique

to speed up the knapsack approach of Mounie et al. [106] in order to reach a factor
3
2 +ε approximation for P|any|Cmax and monotonic jobs with a running time linear
in n and logm.

No approximation algorithms for the problem P|var|Cmax could be found for
general speedup functions or concave speedup functions. Algorithms for some
more specialized problems are described in Chapter 26 of the the Handbook of
Scheduling [93]. There seems to be not much need as the optimal solutions can be
computed quite fast for many kinds of speedup functions. It is also possible to use
the approximation algorithms for P|any, pmtn|Cmax and thus not using the jobs’
adaption capabilities to the full extent. The approximation ratios may be worse
than those for P|any, pmtn|Cmax because the optimal schedule for P|var|Cmax can
be shorter than the optimal schedule for P|any, pmtn|Cmax. Our results for the
P|var|Cmax problem are described in Section 5.2.

3.1.4 DAG-Scheduling
Research in DAG-scheduling is much larger and has a much longer history than
the research in parallel job scheduling. This is probably due to the fact that DAG-
scheduling has applications in production scheduling and is thus not dependent
on the existence of parallel computers. The work by Kwok and Ahmad [90] gives
an overview about the wide spectrum of results in DAG-scheduling for multicore
machines. In another overview article of Kwok and Ahmad [89] different DAG-
scheduling solutions are compared by benchmark results. We only take a brief
look into DAG-scheduling as it is not in the main focus of this work.

NP-Hardness

Ullman [136] shows that P|prec, p j = 1|Cmax is NP-hard, hence the general prob-
lem with arbitrary job lengths P|prec|Cmax is also NP-hard. The NP-hardness also
holds for uniform and unrelated cores (Q|prec|Cmax and R|prec|Cmax).
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As the general problem is NP-hard, it is an obviously interesting direction of
research how much one has to restrict the problems in order to get a polynomial
time scheduling algorithm that finds the optimal solution. The problem P||Cmax
for parallel jobs without precedence constraints is NP-hard for all core numbers
m ≥ 2. This makes the DAG-scheduling problem NP-hard for all cases with
general job lengths, parallelism and classes of precedence constraints that allow
an unrestricted number of independent jobs. Ullman [136] also shows that the
problem P2|prec, p j = 1,2|Cmax (two cores, job length one or two) is NP-hard
thus reducing the possibility of polynomial-time solvable problems to those with
unit job length (for general precedence conditions).

On the other hand Kwok and Ahmad [90] note in 1999 that there are only 3
results known for optimal DAG-scheduling in polynomial time. The three prob-
lems are P2|prec, p j = 1|Cmax and P|prec, p j = 1|Cmax for the special cases that
the precedence conditions form a tree or an interval-ordered DAG.

Fast Algorithms

One of the first articles about scheduling DAGs of jobs was published by Hu [68]
in 1961. Hu showed that list scheduling with the ordering "highest label first"
leads to the optimal solution for P|intree, p j = 1|Cmax. Graham [54] shows that
list scheduling with any list order produces an approximation algorithm with ap-
proximation ratio at most 2−1/m. He also looks at the "quite reasonable" strategy
in which a free core always starts to execute the ready job which heads the longest
chain of unexecuted tasks. For this strategy he notes that the approximation ratio
of this algorithm cannot be better than 2− 2

m+1 .

3.1.5 Energy Scheduling
Given the importance of energy usage of computing systems a large amount of
work was done on how to reduce the energy usage by scheduling. According to
Albers et al. [4] there are two key mechanisms that can be used by scheduling
in order to produce energy savings: speed scaling (in this work: dynamic voltage
and frequency scaling DVFS) and sleep states (switching to sleep modes when the
system is idle). We only look at speed scaling in this work as it seems to be more
densely related to the scheduling of parallel jobs.

A very important work about speed scaling is by Yao et al. [148] which intro-
duced the well-known YDS algorithm. Yao et al. only look at sequential machines
and of course sequential jobs. For the power function they only assume that the
consumed power is a convex function of the core’s speed which can be selected
fromR>0. The work was later expanded by Li and Yao [94] to the case when only
discrete frequency levels are available. The obvious next step for energy schedul-
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ing is to schedule sequential jobs on a parallel machine. For the problem with
common release times and deadlines, sequential preemptable (and migratable)
jobs, Chen et al. [30] give an O(n logn) algorithm which computes the energy-
optimal schedule. They also look into the problem when tasks cannot be migrated
from one core to another. Albers et al. [4] work on the more general problem
when jobs can have individual release times and deadlines and they also look into
related online problems. As an important restriction they assume that jobs can be
preempted but cannot be migrated. With this they reach an optimal polynomial-
time algorithm for the case of unit-size jobs and a special deadline/release time
structure (later release time of a job compared to another implies a later or equal
deadline of this job compared to the other). The special structure is needed be-
cause they prove afterwards that the problem becomes NP-hard without it. For
arbitrary sized jobs they give two approximation algorithms for the case of a com-
mon release time and the special structure. They also give an online-algorithm
with constant factor competitive ratio for the case of unit-sized jobs with the spe-
cial structure.

Energy scheduling of parallel jobs has got less attention than the energy-
efficient scheduling of sequential jobs, but still there are some works (mostly
heuristics). Kong et al. [87] present heuristics for the energy minimizing schedul-
ing of fixed-size and moldable jobs (common release time and deadline) based on
level-packing. They assume that the power usage of a core is proportional to f α

when it runs with a speed of f with 2 ≤ α ≤ 3. The paper is later enhanced by
Xu et al. [147] (two authors are also authors of [87]) with ILP solutions for the
level-packing and a discrete frequency model. Chan et al. [29] and Fox et al. [46]
look into online problems regarding the energy-efficient scheduling of paralleliz-
able jobs. Heuristics for the energy-efficient scheduling of moldable streaming
tasks are investigated by Melot et al. [84].

3.1.6 Parallel Computation of Schedules

As we have already seen the scheduling of parallel machines and the schedul-
ing of parallel jobs gained much attention in scheduling theory. Interestingly the
parallel computing of schedules has got much less attention. There are only few
works about computing schedules in parallel. Helmbold and Mayr [61], [62],
Dolev et al. [38] and Sunder and He [126] focus on polylogarithmic scheduling
of sequential unit-sized tasks in the case of either special precedence structures or
only two executing cores. Most of these works also show that problems with dif-
ferent precedence constraints become P-complete. The Ph.D.-thesis of Stadtherr
[124] gives a good overview of the results reached in the field of parallel schedule
computation.
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3.1.7 Further Enhancements

There are many other things relevant for scheduling, but they are too small or too
loosely connected to this work to justify a detailed description. Little could be
found in scheduling theory about scheduling with respect to memory hierarchies.
Of course one can treat memory bandwidth or cache space just as another addi-
tional resource and use scheduling results for additional resources like the work
of Garey and Graham [49], but caches and memory connections are usually no
global resource but are shared between some but usually not all cores. Addition-
ally most systems do not have mechanisms to assign fixed portions of cache and
memory bandwidth to a certain computation. On the other hand there is some
work about optimizing cache misses by scheduling (but the execution time and
other parameters are not used as objectives), for example the work of Blelloch
et al. [11]. We look in more detail at the scheduling methods to improve the ef-
ficiency of the memory in Section 3.2.2 as most of these methods use a practical
approach.

Another widely researched topic is online scheduling. Some of the already
mentioned articles also include online scheduling algorithms, for example the
work of Johannes [81] about online scheduling of fixed-size parallel jobs. This
work mainly focuses on malleable jobs which can be easily adapted to new situ-
ations, and hence online scheduling of these jobs is less important (but a relevant
topic for future work).

3.2 Developments in Scheduling Practice

In this section we look at the the way scheduling is used in practice. One of the
most used scheduling systems in practice is probably the thread scheduler of the
Linux-kernel. We take a closer look at this scheduler in Section 3.2.1. The already
mentioned practical results of scheduling to increase the efficiency of the memory
hierarchy (or short memory scheduling) are described in Section 3.2.2. We also
take a brief look at other scheduling solutions used in practice in Section 3.2.3.

3.2.1 Linux Completely Fair Scheduler

The Linux Completely Fair Scheduler (CFS) has been the scheduler of the Linux
Kernel for non-real-time processes since kernel version 2.6.23. As such it is an
important example of a real world scheduler. Due to its importance a lot of effort
is put into the Completely Fair Scheduler. Hence we will look at this scheduler as
a good example for scheduling practice. The description of the Linux Completely
Fair Scheduler is mostly taken from the Linux-kernel books of Mauerer [102] and
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Love [96].
The Linux scheduler has 4 goals:

• Dividing the available core time between different jobs in a fair manner. Dif-
ferent priority levels should be recognized for the fairness.

• Trying to run each job within a certain interval to avoid starvation.

• Reducing task switch overhead (for example the loss of cache locality).

• Providing interactive jobs with a low latency.

Although CFS has some desirable properties for operating system schedulers
which are explained later, there is no precise objective function for the Linux
scheduler. According to Love [96] CFS uses the approach of fair queuing known
from queuing theory with additional priorities (Demers, Keshav and Shenker [37]
describe a popular algorithm for fair queuing). The kernel has 140 different pri-
ority levels for jobs from 0 to 139 where a lower number is equivalent to higher
priority. The range from 0 to 99 is reserved for real-time processes. The known
nice values from −20 to +19 for normal processes are mapped to the range 100
to 139.

General Idea

The goals of the Linux CFS are similar to the goals of a router in a packet-switched
network. The router also has to share the available connection bandwidth fairly,
starvation (or high latency) should be avoided and interactive connections (for
example SSH-connections) should have a low latency. The network scheduler in
the router always transfers a full packet which is similar to the operating system
scheduler awarding each job a certain amount of uninterrupted time in order to
reduce task switch overhead. A popular fair queuing algorithm for routers of
packet-switched networks was introduced by Demers, Keshav and Shenker [37]
and refined by Greenberg and Madras [56].

If a resource has to be shared fairly between n consumers (all with the same
priority), an easy way is to give each customer 1/n of the resource. For example a
water stream can be shared between farmers in this way. Unfortunately there are
resources which do not allow continuous sharing, for example only one packet
can travel over a line at the same time, or only one job can run on a single core
machine at any given time.

An obvious adaption to exclusive resources would be to serve each customer
exclusively for a very short time and then switch to the next customer so that each
customer gets his fair share within a short time frame. Unfortunately in computer
scheduling a too short service time leads to inefficiencies, the switching overhead
has to be accounted for more often, and caches lose efficiency because the locality
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of computations is reduced.
Hence a fair scheduling system should be able to cope with larger workpack-

ages of even different size as a job can block during a longer workpackage or
an interrupt can happen. In the easiest case when all jobs are runnable and all
have the same priority, CFS accumulates the running time of each job and always
schedules the one with the lowest accumulated running time.

In order to handle priorities, the decision-relevant running time is the vir-
tual running time which is computed from the real running time by dividing by
priority-specific weights. If a job has a low priority it gets a low weight and thus
gains more virtual running time for the same amount of real time on the core.
Hence it is sooner moved away from the core by the scheduler or has to wait
longer to be scheduled again than jobs with higher priorities.

If a job blocks because it has to wait for input, it does not accumulate further
virtual running time. Of course a job that often blocks because it has to wait for
input is probably an interactive job and should get fast service by the system once
input arrives. But using the real small virtual running time of it for scheduling
decisions might lead to starvation of the other jobs if the blocked period was quite
long. Hence CFS takes the smallest virtual running time of the runnable jobs
minus some constant as lower bound of the virtual running time of a job that
gets unblocked. This provides an advantage for probably interactive jobs without
leading to starvation for other jobs.

The task switch overhead is bounded by using a minimal time quantum during
which a job is not replaced by another one. If there is a large number of different
jobs present in the system this inevitably might lead to starvation.

Implementation and System Integration

The Linux scheduler has 5 policies for scheduling entities:

• SCHED_NORMAL for the normal jobs.

• SCHED_BATCH for CPU-intensive batch jobs.

• SCHED_IDLE for low importance jobs.

• SCHED_FIFO for first in, first out scheduled real-time jobs.

• SCHED_RR for round robin scheduled real-time jobs.

SCHED_NORMAL, SCHED_BATCH and SCHED_IDLE are handled by the Com-
pletely Fair Scheduler, SCHED_FIFO and SCHED_RR by the real-time scheduler.
As long as there are runnable real-time jobs these jobs are executed and the other
jobs have to wait. Hence real-time jobs are not important to describe the CFS.
For the remainder of this section we have to distinguish between the global Linux
scheduler and CFS which is part of the Linux scheduler, but the Linux sched-
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uler also contains other schedulers and general functionality and data structures
supporting all schedulers.

An important decision for the design of a scheduler is whether the scheduler
schedules processes or single threads. For the Linux scheduler the scheduling
entities are threads which coincide with processes for singe-threaded processes.
There is no special handling for threads of the same process.

For different applications the Linux scheduler needs the load of a job or a
group of jobs. As no other information is available, the load is directly defined
through the priority of the jobs. The priority of (non-real-time) jobs which are set
by the nice values between−20 and +19 are mapped to the range 100 to 139. The
according load for priority 100 is 88761, for 139 it is 15. The load values for each
priority are set such that one additional priority level means multiplying the load
value with a factor of 1.25.

The Linux scheduler maintains one run queue for each core. All jobs (all of
them are threads) can only be part of one queue. The Linux scheduler computes
the sum of loads for each queue. CFS regularly examines the load of the differ-
ent queues of the system and moves jobs in order to balance the load between
them. Core affinities are respected in this process and other things (for exam-
ple NUMA-affinities) are regarded to reduce the side effects of the movements.
The load balancing between the different queues is quite complex and seems to
produce suboptimal results sometimes. The work of Lozi et al. [97] named "The
Linux Scheduler: a Decade of Wasted Cores" describes some problems with the
balancing.

If there is more than one job in a queue, CFS has to decide which one to
run. Every time CFS makes a decision, it selects the job with the lowest virtual
running time to run next. The jobs in one queue are kept in a Red-Black-Tree in
order to be able to select the one with the lowest virtual running time fast. Also
insertions and other operations are fast within that data structure. In order to give
more running time to jobs with higher priority, the virtual running time of a job
is updated after it has run some time by adding the real running time multiplied
by the load value of a priority 120 job and divided by its own load value. With
this the virtual running times of jobs with high priorities increase slower because
of their higher load values and thus gives them more running time. If there are
two jobs in the queue and one is one priority level higher than the other, their load
values differ by a factor of 1.25, and hence the job with the higher priority will get
a fraction of 1.25

1+1.25 ≈ 0.56 of the running time and the other a fraction of ≈ 0.44.
The behavior of CFS is influenced by many different parameters. The

sched_latency_ns parameter specifies the time interval within which each job
should run once and the sched_min_granularity_ns which is the minimal run-
ning time of a job with average priority should get at once. If there are too many
jobs to fulfill both restrictions, CFS keeps sched_min_granularity_ns and thus
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prioritizes efficiency over latency. If a new job is put into the queue or a blocked
job is unblocked, their virtual running time is set relative to the minimal virtual
running time of the queue with some additional enhancements.

CFS is not only able to distribute the processing time fairly between different
jobs but also between groups of jobs in order to gain a fair distribution between
users or other entities.

Summary of the Linux Completely Fair Scheduler

The Linux CFS scheduler is widely used as it is part of Linux and hence deployed
on a large number of different systems. It also is highly relevant for the system
performance and user satisfaction. Thus it is likely that there is a lot of effort put
into its development in order to improve the results.

On the other hand the Linux CFS scheduler knows little about the objectives of
the applications it schedules. The only knowledge the scheduler gets about these
objectives are the priorities. Without these objectives the only thing a scheduler
can do is to provide fairness (with regard to the priorities) between the different
threads, which is done by the Linux scheduler.

When moving threads due to load balancing the Linux scheduler tries to con-
serve cache- and NUMA-locality if possible by doing load balancing in a hier-
archy (Zhuravlev et al. [153]). The hierarchy reflects the common caches and
NUMA-nodes of the cores by building appropriate groups. By trying to move a
thread in the lowest possible level of hierarchy (within its group), most of data lo-
calities can be preserved. Contention of shared resources is not taken into account
by the Linux scheduler (Zhuravlev et al. [152]).

The Linux scheduler has no interface to get information from the application
or give information to the application. This leads to poor coordination between the
applications and the Linux scheduler. An example of the poor coordination is the
work of Harris et al. [60] which shows large improvements of the performance
of two computing intensive applications by an additional coordination between
them.

Also the distribution of work between the different cores seems to leave some
room for improvement. The already mentioned work of Lozi et al. [97] named
"The Linux Scheduler: a Decade of Wasted Cores" demonstrates how changes
might improve the performance. Lozi et al. [97] measured performance degrada-
tions for typical Linux workloads between 13 and 24% because of "performance
bugs" in the Linux scheduler related to the load balancing between cores.
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3.2.2 Scheduling in the Memory Hierarchy
The amount of work about utilizing the memory hierarchy more efficiently is quite
huge. We see four main areas of work about scheduling in the memory hierarchy:
constructive cache sharing, avoidance of destructive cache sharing, management
of memory bandwidth usage and NUMA-awareness. Of course combinations of
all areas exist.

Constructive cache sharing was noticed by Blelloch and Gibbons [12] who
showed that different threads of the same application can profit from commonly
using cache contents. Tam et al. [127] and Chen et al. [31] apply the constructive
sharing to different applications and show performance improvements.

The opposite effect, that threads can interfere with the cache usage of other
threads can even occur on single core machines (see Agarwal et al. [2]). Different
methods can be used to circumvent that problem: scheduling approaches (see for
example Zhuravlev et al. [152]) or direct hardware methods like Intel’s Cache
Allocation Technology (as described in a white paper from 2015 [71]).

Of course there is also negative interference if different threads on different
cores compete for the same shared memory bandwidth. Eklov et al. [41] introduce
a method to classify different applications regarding their performance degrada-
tion if bandwidth is used by other jobs. Yun et al. [150] and Cheng et al. [32]
introduce mechanisms on how to manage the bandwidth usage by slowing down
or pausing threads that use too much bandwidth.

NUMA-aware placement has a long history, one of the oldest articles address-
ing this problem is by Bolosky et al. [14] from 1989. A more recent approach to
control NUMA-effects through scheduling is described by Dashti et al. [35].

A survey of the different techniques of dealing with the shared components
of the memory hierarchy of multicore processors is published by Zhuravlev
et al. [153]. An extreme approach of dealing with caches is proposed by
Boyd-Wickizer et al. [17] who propose to store memory objects in caches and
move the accessing threads around such that they work on the core belonging to
the appropriate cache when they access a certain object.

3.2.3 Other Examples for Scheduling Practice
A relevant topic in scheduling (which is not in the main focus of this work) is
the management of large clusters or even computing centers. Feitelson et al. [44]
give a survey on the theory and practice of scheduling supercomputers. Many
different strategies are implemented and tested which use the knowledge about
future jobs given through a long job queue, for example backfilling (see Mu’alem
et al. [107]).Supercomputers are often even combined to grids which require even
different scheduling strategies (see Hamscher et al. [59]). Here we can also see
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examples of hierarchical scheduling structures (a global scheduler for the grid and
one for each supercomputer).

As it is very complicated to program for large supercomputers, frameworks
following the MapReduce programming model (see Dean and Ghemawat [36])
were built, for example Spark [151]. A similar development occurs for normal
parallel machines. In order to ease parallel programming on these machines, li-
braries like OpenMP [34] or QUARK [149] (the DAG-scheduler behind PLASMA
[21]) are developed. These libraries and frameworks usually contain their own
scheduling.

Some more scheduling results are described in Section 4.3.3 where we look
especially at hierarchies of schedulers and decision distribution.

3.3 Gap between Theory and Practice

After the presentation of scheduling results from theory and practice let us now
take a look at the differences between them. A scheduling problem in theory is
typically described with the 3-field problem classification α|β |γ . A scheduling
algorithm working on this problem gets precise information about the machine,
the jobs and the objective. In contrast the Linux scheduler (for example) has little
information about the objectives of the users or the system owner, just the priority
values. Also the information about the job’s amount of work and future behaviour
is unknown to common real system schedulers, although this information might
exist. For example an application which has to sort an array usually knows the size
of the array and thus the work amount of the used sorting algorithm, but without
an interface it is impossible for such an application to give the information to the
scheduler. This problem also occurs the other way round. The global system
scheduler knows about the amount of threads in the system. If there are several
parallel applications which assume to be alone on the machine, all of them might
use as many threads as there are cores on this machine. This might lead to a lot of
context switches and resulting cache context losses and might be far less efficient
than partitioning the available cores into disjoint sets and giving each application
such a set (see for example Harris et al. [60]). Especially there is no common
system to inform jobs if they can use the whole machine or if they should restrict
themselves to parts due to the presence of other jobs. In theory malleable and
moldable jobs are a solution for this problem as their degree of parallelism can be
adjusted with regard to the load situation of the system.

The efficient common usage of shared memory hierarchy components is an
important topic of scheduling practice. Unfortunately there seems to be no widely
accepted model of memory hierarchy behaviour in scheduling theory. In schedul-
ing practice many different heuristics are used to optimize the usage of the mem-
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Theory Practice
job information detailed shallow

clear objective function yes often ambiguous mixture
adaptivity to moldable jobs virtualization
system load malleable jobs → bad performance
influence of not investigated, but

shared memories considered different approaches

Table 3.1. The gap between scheduling theory and practice

ory hierarchy. We summarize our findings about the gap between theory and
practice in Table 3.1.

3.4 Own Approach
Most of the research for this work was done while the author was part of the
InvasIC-project and concerned with scheduling within this project. Hence the per-
spective on scheduling is wide and application-oriented as the goal of InvasIC was
to implement a real, working system. On the other hand efficiency was an impor-
tant goal for InvasIC, and the system design of the InvasIC system was different
from existing systems in many ways. Thus there were no existing scheduling so-
lutions or performance models for this kind of system and the existing theory also
had to be adapted. As the design of the InvasIC system is a conclusion of many
current trends in system design (see Section 2.2.3), the main parts of this work
reflect those trends in order to get results that are not InvasIC-specific. Hence
most of the research was done with the application on current systems (or their
further developments along those design trends) in mind, and experiments were
also conducted on current systems.

3.4.1 Development Paths
If one wants to design a scheduling system for a real system with parallelism
and abstraction layers, one has to decide where to make the decisions and how
to get the needed information there. It is also necessary to decide how to make
the decisions or more specifically which scheduling algorithm should be used. In
Section 2.2.1 we discussed the reasons (Power-Wall, ILP-Wall and Memory-Wall)
which hinder sequential computing systems to gain more computing power. Of
course one has to keep an eye on these issues for parallel computing systems as
well.
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• The instruction level parallelism wall is far less important as soon as paral-
lel jobs are used on multicore systems. With explicit parallelism available
one can overcome the limitations of instruction level parallelism, hence this
problem can be considered more or less solved.

• Increasing transistor density (heat issues) and the increasing cost of eletricity
make power consumption still an important topic. Also for devices depending
on batteries power consumption is important.

• Also on parallel systems memory accesses cause waiting times. An additional
challenge on parallel systems comes from the fact that usually several cores
are sharing memory interfaces and last level caches.

As computers are getting more and more complex, the decision space for
schedulers becomes larger as well as more decisions have to be made. Hence
the decisions have to be split up in order to reduce latency, overloaded decision
makers and high efforts for the transfer of system status data. The distribution of
decision makers and local decisions are also a key feature of InvasIC (see Sec-
tion 4.4), but we see our development paths not as InvasIC-specific. We identify
4 main research directions for the scheduling of parallel computing systems:

1. Where are the scheduling decisions made and how do the different schedulers
interact? This includes communication between different schedulers as well
as the parallelization of scheduling (see Chapter 4).

2. How are the decisions made? This is the main connection to the existing
scheduling theory and is mainly focused on efficient decision making (see
Chapter 5).

3. How can the cache hierarchy and other parts of the memory subsystem be
efficently used? This is especially important as their usage is shared between
different cores (see Chapter 6).

4. How can energy consumption be reduced and the Power-Wall be avoided (see
Chapter 7)?

This work differs from many other works in the area of scheduling, in the way
that it does not only focus on the decision making process of scheduling itself
but also looks at the system properties (decision space, properties and constraints,
goal and available information) in order to adapt these to get a better scheduling
result for the whole system.

3.4.2 Methodology

The research field on scheduling is huge. So one task is to get some kind of survey
about which parts can be used for which goal. When looking at such a big field
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in order to produce useful results for a special project like InvasIC, it cannot be
expected to produce a whole new branch of theory and practical results. Instead,
we followed the development paths as described in Section 3.4.1 and tried to gain
smaller results along these paths while producing a big picture.

Like in many parts of computer science there are two main ways to get mean-
ingful results:

1. Based on a mathematically defined model, one proves certain properties of
algorithms by mathematical conclusions.

2. Based on an implementation of an algorithm/technique one proves properties
of it by experiments.

The first approach heavily depends on simple models which are also realistic.
Simple models require simplifying assumptions which might differ a lot from
reality (see our introduction to models in Section 2.6.2). On the other hand models
need less implementation effort than real systems as one can just define things
instead of implementing them. This makes it possible to make statements about
general classes of systems and applications which are not possible by experiments.
Also systems that do not exist yet can be examined by the use of an appropriate
model. Successful models in engineering can lead the development process for
real systems such that these models change the real systems (see below). Hence
model-based research can also overcome the problem of path dependency (see
Section 2.2.3) as it makes it possible to compare different systems without having
to put in a big effort to implement them.

The experimental approach has the advantage that modelling errors are less
likely. Modelling problems might still influence the experimental design, but if
one uses realistic inputs on realistic machines, algorithms that perform well in
experiments will also be good in practice. In most cases it is not possible to test
every input that can occur in practice, so usually experiments are not that good to
prove properties of an algorithm for a wide range of inputs. Also the experimental
approach can be very costly as everything that is needed for a realistic setup has
to be bought or implemented.

Algorithm engineering (see Section 2.6.1) combines the prediction strength of
both approaches. Algorithm engineering gives performance guarantees through
theoretical analysis and results for practical performance through experiments.
Unfortunately it also needs the combined effort of both approaches.

Simulation stands somehow between experiments and mathematical conclu-
sions. One needs a model, but it can be more complicated than models used in
theory. At the same time the implementation effort is reduced compared to exper-
iments. The way of how results are proven in simulations is much more similar to
experiments than to mathematical methods.
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So which methods should be used for which kinds of scheduling algorithms?
It is clear that experimental approaches require more effort when more parts of

the system to test differ from existing systems. So the investigation of scheduling
algorithms that require totally different systems to be useful is much easier with
the theoretical approach than with the experimental one. The amount of different
new components that have to be implemented for experiments certainly depends
on the layer of abstraction (as defined in Section 2.5; hardware, operating system
or application software) in which the scheduling algorithm is implemented and
how it interacts with scheduling on other layers.

The most easily accessible layer of scheduling for experiments is the applica-
tion layer. As long as the application runs on a machine without other applications
competing for resources, it is only necessary to adapt the application and imple-
ment the scheduler in order to do experiments. Hence an in-application scheduler
is a perfect fit for the experimental or AE approach.

If the in-application scheduler is able to comply with different resource alloca-
tions of the operating system (because there are other applications on the system),
things get more complicated. The behavior and the resource demands of the other
applications are now part of the experiment similar to the inputs. Also the operat-
ing system scheduler and the interface between application and operating system
play an important role in this case. This makes meaningful realistic experiments
much more difficult.

These problems (application behavior as input and the importance of inter-
faces) are even more important for scheduling on the operating system layer. The
relevant scenario for an operating system scheduler is the scheduling of different
applications. Experiments for a scheduler developed for a new system design (for
example InvasIC) require the implementation of a new operating system, new ap-
plications and other components. Hence realistic experiments require the work of
a whole group of people in this case.

In real systems we have decisions made by applications, the operating system
scheduler and different hardware components. Decision making on the hardware
layer is not studied itself in this work. For the combined scheduling process over
all layers the effort for an experiment is huge: one has to adapt the applications to
a new scheduler, develop an application scheduler, new interfaces to the operating
system, a new scheduler on the operating system and maybe even new hardware
parts (and also new hardware interfaces). All these developments have to be good
enough to enable meaningful experiments. Of course this is beyond the scope for
a single person and also shows the effect of the path dependency (as described in
Section 2.2.3) in experiment-based computer science.

So research with limited resources is only possible based on models for operat-
ing systems schedulers or scheduling systems. The used models are often specific
to the examined problem and are described together with them.
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The models used for scheduling describe the reality of existing systems more
or less accurately, but they also have another function. Implementing new real
systems is expensive, modelling new systems is cheap. For example, if an inter-
face enhancement proves itself to be hugely beneficial within a model, it is likely
that it will also be implemented in practice. If, more general, some kind of model
is successful in the sense that simple scheduling algorithms lead to an efficient
schedule, this model might also influence the further development of applications,
operating systems and hardware. So successful scheduling models can shape fu-
ture computer systems. This is a retroactive effect of modelling which occurs in
computer science but is impossible in natural sciences. For example programming
languages usually have a formal structure in order to enable compilers to parse
them. Here the theory of formal languages created its own application field. An-
other example is number theory which prepared the basics for parts of the modern
cryptology.

3.4.3 Detailed Research Directions
In Section 3.4.1 we identified the four global development directions: distribution
and interaction of schedulers, efficient solution computation, efficient usage of the
memory hierarchy and energy-efficiency.

Our target systems are parallel computing systems with parallel jobs with
flexible adaptivity and the goal of high efficiency. It is immediately clear that
the theory of parallel job scheduling will provide an important basis for the global
approach. Given that we assume an increase in job flexibility in future systems,
the scheduling of malleable jobs seems to be a fitting specialization. Of course
being fast is an important condition for the resulting scheduling algorithms. This
can be reached for example by parallelization. On the other hand in practice
there are no existing malleable jobs as current operating systems usually do not
tell their applications which degree of parallelism they should use. Hence it is
also important to show that it is possible to develop efficient malleable jobs and
to show the benefits of adaptivity. As it is not that easy to implement a new
system scheduler which also needs completely new applications and interfaces,
we restrict ourselves to the algorithm development of the schedulers.

In practice not all scheduling problems might fit into the model used for mal-
leable job scheduling or other relatively easy models known from scheduling the-
ory. Hence there is a need for useful heuristics in case of complicated systems
which do not allow a simple model.

Another topic is the efficient usage of the memory hierarchy. There seems to
be little work in scheduling theory about that topic, much more is done in practice.
As long as there is no widely accepted model for scheduling in the memory hier-
archy, we can only approach this topic from the experimental side. Compared to



74 Chapter 3. Scheduling of Computer Systems

experiments with application-internal schedulers, experiments with system sched-
ulers are much more difficult and labor-intensive. Hence we approach the topic
of efficient scheduling of the memory hierarchy by trying to improve application-
internal schedulers. The improved understanding of the properties of the memory
hierarchy might even lead to ideas how to build such a model for memory schedul-
ing.

In contrast to the situation of memory-efficiency, there are widely accepted
models of energy-efficiency in scheduling theory. Hence it looks promising to
investigate the energy-efficient scheduling of malleable jobs as there is still little
work about energy-efficient scheduling of parallel jobs.

Given the gap between scheduling theory and scheduling practice, it is beyond
the scope of this work to develop models and scheduling algorithms that bridge
that gap for upcoming systems. But working on both sides might bring improve-
ments that close this gap in the future and are a progress in theory and in practice.
For more about our expectations about the scheduling of future systems see Sec-
tion 8.2. Our results from this approach are described in Section 3.4.4, which also
contains the references to the more detailed descriptions within this work.

3.4.4 Results

The main findings of our research are presented in the remaining Chapters. Chap-
ter 4 discusses the place where a scheduling decision should be made especially in
terms of abstraction hierarchy and locality and how to get the needed information
there. How these decisions then are made is discussed in Chapter 5. The efficient
handling of memory hierarchies and memory accesses is the topic of Chapter 6.
In Chapter 7 the topic of energy consumption and the influence of scheduling is
handled. Some results (with our contributions) that are part of this work have
already been published:

• Efficient Parallel Scheduling of Malleable Tasks (joint work with Peter
Sanders, [116]) In this work a scheduling algorithm for malleable jobs
(with some restrictions for speedup functions) is developed that is faster
than previous ones and even parallelizable. The observation that previous
algorithms for this problem can be sped up was made by Jochen Speck, and
Peter Sanders contributed the idea for the parallelization. The remaining
parts of the paper were done in close collaboration. This result is described
in more detail in Section 5.2.5.

• Energy Efficient Frequency Scaling and Scheduling for Malleable Tasks (joint
work with Peter Sanders [117]) Here we develop a scheduling algorithm for
malleable jobs (with some restrictions for speedup functions) which computes
the schedule with the lowest energy consumption which finishes all jobs by a
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given deadline. This article uses a continuous approach to a discrete problem
similar to the previous article. The idea for this result was contributed by
Jochen Speck who also did the main work on the mathematical techniques
used in the paper. Peter Sanders guided the work and helped to make the
article understandable. This result is described in more detail in Section 5.2.5.
How a malleable job optimally uses the given frequencies depending on its
assigned amount of cores is discussed in Section 7.1.1.

• Malleable Sorting (joint work with Patrick Flick and Peter Sanders [45]) This
work is an implementation of a sorting algorithm that fits into the definition
of a malleable job. Especially the effect of providing the application with
information about other running jobs is investigated. This information flow
enables a much higher efficiency (at least in some cases) showing that inform-
ing the application about the system status can be beneficial. It is discussed in
Section 4.6. Here Jochen Speck contributed the idea on how to build a mal-
leable application and Peter Sanders contributed knowledge about sorting.
Patrick Flick did the implementation as main part of his bachelor thesis under
the guidance of Jochen Speck. During the implementation Patrick Flick (also
with the guidance of Jochen Speck) developed solutions for sub-problems of
the approach like an efficient lock-structure for the work queue and an im-
proved splitting algorithm. The experiments for the article were done after
the bachelor thesis was finished.

• Constraint-Based Large Neighborhood Search for Machine Reassignment
(joint work with Felix Brandt and Markus Völker [18]) This work inves-
tigates scheduling in a case with very high complexity when computing
the optimal solution is totally out of scope. We also take a deeper look
into this result in Section 5.3. The article describes the approach of the
program the authors developed for the ROADEF/EURO Challenge 2012
(Machine reassignment) where they reached a second place in the junior
category (no group member had his Ph. D. yet). The idea to use a constraint
programming approach was contributed by Felix Brandt who also did all
of the programming directly related to constraint programming like the
propagators and branchers. Markus Völker contributed the ideas for some
of the used strategies and Jochen Speck the parallelization. The main part
of the work was tuning the strategies and their combinations, experiments
and analyzing results and inputs which was done in close collaboration of all
authors.

• Locality Aware DAG-Scheduling for LU-Decomposition (joint work with To-
bias Maier and Peter Sanders [100]) In this work an in-application scheduler
is developed and experimentally studied which places and orders computa-
tions in a memory-efficient way which is also more energy-efficient. The
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ideas and findings are described in Section 6.2.2. The main ideas for this
work like common usage of L3-cache contents and the possiblity of improve-
ments for the LU-decomposition were contributed by Jochen Speck who also
provided the knowledge about DAG-scheduling. Peter Sanders contributed
an idea how to distribute the scheduling and also provided some guidance to
improve the quality and comprehensibility of the article. Tobias Maier did
the implementation and experiments as main part of his master thesis under
the guidance of Jochen Speck. The NUMA-awareness of the approach was
developed by Tobias Maier and Jochen Speck together.

In the previous Section 3.4.2 about our methodology we pointed out that the
experimental evaluation of operating system level schedulers and whole schedul-
ing systems require big efforts and thus large projects. InvasIC was/is such a
large project also dedicated to develop a new system design and with that new
scheduling techniques. A more detailed description of the results of InvasIC from
a scheduling perspective is given in Section 4.4.



4
Hierarchical and Distributed Scheduling

This chapter is dedicated to the question where scheduling decisions should be
made and how they can (and why they should) be divided between different levels
of the abstraction hierarchy (see Section 2.5 for an introduction into abstraction
hierarchies) and different entities on the same level. Section 4.1 motivates why
this is a relevant topic and why it might be helpful to take a look at the world
outside of computer science where similar problems arise. The possibly helpful
results and definitions from outside are presented in Section 4.2. The reasons and
characteristics for distributed scheduling in common systems and the resulting
problems are described in Section 4.3. The author of this work contributed to In-
vasive Computing (InvasIC) which takes a new approach towards scheduling and
resource distribution. The general approach of InvasIC and its results are depicted
in Section 4.4. Some possible future improvements of of the scheduling system
are presented in Section 4.5. A proposal how to make an application malleable
by an enhanced application interface for better communication between decision
makers and increased flexibility in the resource demand is given in Section 4.6.
Hierarchical in the chapter title has a double meaning in this case: on the one hand
we look at the scheduling in abstraction hierarchies (hardware, operating system,
application) and on the other hand one scheduling unit might be subordinate to
another such that they form an organizational hierarchy.

4.1 Motivation

Let us take a look at the decisions that have to be made on a computer while it
is performing its tasks. Twenty years ago most computers were simple: they had
usually one processor with one core and fixed frequency. Hence only few deci-
sions were needed: the hardware had to control the cache, the operating system
had to schedule the application to run next and the application had to decide which
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task to perform next. These decisions were relatively easy and usually had only
small effects on other decisions.

Today we have parallel machines where more decisions have to be made and
the results are more important for other decisions (see also Section 2.2.2 and Sec-
tion 2.4). Today the hardware can control the cache and the operating frequencies
of the cores together with the operating system. The operating system has to de-
cide which job to run on how many cores and on which cores, and additionally
the operating system has to decide the NUMA node which fulfills memory re-
quirements (the application might overrule some of these decisions). The applica-
tion itself can interfere with some operating system decisions and also has some
internal decisions to make like which thread works on which node of a DAG-
structured task. These decisions interfere with each other: threads are scheduled
onto cores by the operating system scheduler, but their work is assigned to them
by the application-internal scheduler. Different cores of the same processor might
work on different jobs but share some common resources like a common last level
cache, memory interface or heat capacity. This might lead to interferences be-
tween different applications.

The problem is further complicated as no scheduler (decision maker within
the application, operating system or hardware) has all relevant information. Much
information is not accessible due to abstraction hierarchies (see Section 2.5). For
example the operating system knows nothing about the application-internal task-
DAG and hence does not know which thread works on the critical path. Another
example is that usual applications do not take care of other applications and thus
fail to adapt their degree of parallelism to the current resource demand in the sys-
tem which can lead to unnecessary context switches and resulting cache context
losses. A lot of the decision-relevant information is also generated at runtime like
data-dependent running times of tasks or the processor temperature (dependent on
ambient temperature).

Future systems probably have an even larger decision space. First of all more
things can be steered. For example cache partitioning or the operating frequency
of the memory controller. Furthermore the degree of parallelism will grow (see
Section 2.2.3). Also some applications will become more complex with different
parallel subtasks which themselves might be parallelized.

Hence we have many different decisions to make and no scheduler can ac-
cess all information (see Figure 4.1). On top of this, these decisions have to be
made quickly at reasonable cost. Thus we do not want to move too much informa-
tion around in order to keep a centralized scheduler informed as the information
movement might be costly and increases the latency of the decisions. Another
problem with information flows between different hierarchy levels is that each
flow complicates the interface. Large interfaces are complicated to develop and
interface changes (new information flow, possible error) are expensive because of
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Application 1 Application 2

Memory Memory

Mem
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?

Figure 4.1. Example for different decisions while running two applications on a two
socket multicore system: Job-internal: which thread does what; OS: which thread runs on
which core; OS: which memory allocation is satisfied on which socket; Hardware: which
core runs on which speed; Hardware: which piece of memory is loaded into the cache.
All these decisions interfere with each other.

compatibility reasons, they also might hinder the freedom of development on both
sides. Hence we want small and simple interfaces and thus only a small informa-
tion flow through them at least in terms of different kinds of information. Also a
central scheduler that works with all this information might also be slow and ex-
pensive in terms of computational effort. Thus there is a need to split up decisions
between different schedulers and only communicate the things needed. On the
other hand it is also possible that additional information passed between different
parts of the system might be beneficial for efficient decisions. This might out-
weigh the additional effort consisting of the higher complexity of interfaces and
the additional transmission and computation effort.

Hence it is clear that a computer scheduling system should have an efficient
structure that uses upcoming information where it is generated and thus saves
communication and preserves the more central scheduling units from overload.
The information transmitted between the different decision makers should be near
the amount which keeps the effort for the transmission and the facilitated decision
improvement balanced.

There is some work in computer science about decision distribution in real-
time systems and cluster and computing center scheduling (see also Section 3.2.3)
which is discussed in Section 4.3.3. Also agent systems (see for example Kobbe
et al. [85], also mentioned below in the description of InvasIC) and work stealing
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(see for example Blumofe and Leiserson [13]) are typical methods of scheduling
decision distribution in computer science.

But computer science is not the first field where such decision organization
problems arise. The probably oldest large organization which needed a distribu-
tion of decisions was the military. The military domain also provides a lot of
examples for the need of decision distribution which are easy to understand. An-
other field with a need for decision distribution which is not as old but intensively
researched is corporate organization. There is an abundance of books about man-
agement which usually include the delegation of decisions. We took a look into
these areas and some definitions and ideas that might be helpful in computer sci-
ence are presented in Section 4.2. The main difference between these fields and
computer science is that it is usually assumed and probably the case in practice
that the decisions are made by humans rather than computers. An important prop-
erty of human decision makers is that the quantity of information they can absorb
and process is limited. This somehow fits our goal stated above that the informa-
tion amount and computational complexity of decisions should be kept small in
order to facilitate fast decisions. Even as a processor core might be able to store
and process structured information much faster than a human, the scheduling de-
cisions it has to make are needed within a much smaller time frame. Hence as
the decision maker becomes faster, also the decisions have to be made faster and
the need for fast decisions remains. Of course decision tasks for human deciders
have to be designed in such a way that motivation is kept up and selfishness and
fraud are kept down. As computer programs do not need motivation and we only
consider cooperative scheduling in this work we do not need to consider these
problems.

The author of this work was part of the InvasIC project from 2010 to 2014 in
which the distribution of decision making also played an important role. Of course
the discussions within the InvasIC team influenced this work (especially this chap-
ter) and the author of this work contributed to the discussions within InvasIC as
well. We present our view on InvasIC and especially its scheduling structure in
Section 4.4. A lot of discussions during the work on InvasIC contained the topic
of interacting decisions of different components. Within these discussions the au-
thor of this work sometimes had a problem with using proper names for his more
abstract remarks. Hence while writing this work, he took some time to look up
similar problems in other fields where names already exist for these abstract prob-
lems. The results of this research are presented in Section 4.2. On the other hand
these general problems do not only exist for InvasIC but are a general problem
for all kinds of modern computing platforms. Hence the second purpose of this
chapter is to point out reasons why these problems exist on many platforms and
that it is worthwhile to think about them. The proposed approaches and solutions
are meant as an initial step and not as a final solution.
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4.2 Results in Other Areas

In this section we present some definitions and ideas from outside computer sci-
ence that seem helpful for scheduling from our perspective. Not only ideas but
also definitions are presented as it is often very helpful if a thing has a name that
can be used in discussions or descriptions. Although there is an abundance of
books about management and corporate organization most of them do not present
their results on an abstract level which makes it difficult to transfer the results
to computer science. An important exception is Frese [47]. Hence most of the
ideas presented in this section are from this book. We give more detailed refer-
ences directly with each definition or idea. We also add some computer science
interpretation to each item in order to demonstrate its applicability in computer
science.

Decision structure: field, action, goal (see Frese [47, page 39 ff]) According
to Frese each decision consists of 3 components:

• Field: State of reality at the time the action we have to decide about takes
place. The field is further divided into resources and environment, where the
resources are the part of the field that is under the control of the decision
maker and the environment is the part that is outside this control.

• Action: Usage of resources. Leads to a final state.

• Goal: The set of final states that are pursued by the decision maker combined
with a preference structure among them.

This is similar to our definition of scheduling in Section 1.2 (except for the infor-
mation part which is introduced later in the book): the field are the properties and
constraints and the decision space is the set of actions. This similarity makes the
definitions and ideas from the book of Frese look promising.

Interdependence (see Frese [47, page 58 ff]) We look at two decision makers
A and B which are not in a hierarchical relationship with each other. If decisions
of A change the decision field of B such that the optimality order of B’s actions is
changed, then we have an interdependence.

Hierarchical here means the organizational hierarchy and has nothing to do
with the abstraction hierarchies in computer science. An example where an in-
terdependence might occur in computer science is: If A is the operating system
scheduler and B an application-internal scheduler which coordinates the work on
a task-DAG, A decides which threads that belong to the application will run next.
If B has a task on the critical path, it wants to assign this task to a thread of those
which run next. Hence the best decision of B is dependent on the decision of A.
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Another example is the usage of common resources. Let A and B each manage
a different core of the same processor with a common last level cache. A makes
the decision whether to run a cache consuming job or a job with small cache
footprint on its core. B has to decide to run a job that profits from a large cache or
a job that does not depend on the available cache size. There is an interdependence
between the decisions of A and B because there is an influence of A’s decisions
on the optimality order of B’s decisions through the common last level cache.
Hence interdependence is important between abstraction hierarchy levels as well
as within them.

Coordination (see Frese [47, page 69 ff]) Coordination means the orientation of
the actions of single decision makers towards the common global goal. It consists
of two parts: the definition of which unit is allowed to make which decisions and
the definition of communication connections between the decision makers. These
parts are not independent of each other. More coordination means less autonomy.

A typical example of coordination in computer science are cache coherence
protocols. The common goal is to provide fast memory operations to all cores
by the usage of local caches. This must be done in a way such that different
cores modifying the same memory address produce the same result as without
the caches. The different cache controllers are separate decision making units,
but they communicate with each other in order to provide a coherent cache sys-
tem. Another example for coordination is the work of Harris et al. [60] in which
different parallel runtime systems are coordinated in order to improve efficiency.

Separation of resource potentials (see Frese [47, page 14]) A global resource
is split up into smaller parts which then are managed independently by different
units. This can lead to an inefficient usage of the resource. We will also use the
term separation of potentials.

An example for the separation of resource potentials in practice is presented
in the work of Lozi et al. [97]. As described in Section 3.2.1 the Linux-scheduler
manages one run-queue for each core. These queues have to be balanced, oth-
erwise there would be a severe problem with the separation of potentials. This
balancing between cores uses a hierarchical structure which groups for example
cores of one NUMA-node and also tries to balance the work between the different
groups. Lozi et al. [97] have found a problem with this approach they call "The
Group Imbalance Bug". When running one heavy (with regard to the Linux load
balancing) thread and another program with a large number of light threads, the
situation can occur that cores on the same NUMA-node as the core working on
the heavy thread stay idle even if there are a lot of other waiting threads ready to
run. The resources (cores) are separated by the scheduler structure and thus not
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used optimally.

Tradeoff: autonomy cost↔ communication cost (see Frese [47, page 124 ff])

coordination intensity0 1

communication cost

cost

autonomy cost

total cost

Figure 4.2. Connection between coordination intensity and autonomy and communica-
tion cost. Symbolic picture according to the one in Frese [47, page 126].

If a decision-making problem is divided between different units, communi-
cation is important to reach the common goal. When all interdependences are
included in a coordination system, then this might be optimal for the common
goal but leads to high workloads of the central decision units (and also to high
communication cost). Hence we probably will not have coordination for all pos-
sible interdependences. Thus some decisions of local units might be suboptimal
with respect to the theoretically possible optimal global goal. The difference be-
tween the theoretically possible optimal global goal and the real result with some
not coordinated interdependences is the cost of the autonomy of the local decision
makers. In order to reduce the autonomy cost, the local decision makers need
to communicate more (or use coordination systems which also include commu-
nication). Communication also leads to cost. Hence we have a tradeoff between
communication cost and autonomy cost. If additional communication is added,
one usually starts with the interdependence which produces the highest autonomy
cost in relation to the additional communication effort. Hence the positive effects
of less autonomy cost are decreasing and the negative effects of more commu-
nication cost are increasing with the total amount of communication. Figure 4.2
shows a symbolic effect of this. Thus there is an optimal tradeoff of autonomy
and communication which most likely will be between communication for every
interdependence and no communication at all.

In computer science a large part of the communication cost comes from the
effort of building appropriate interfaces. For example it might be helpful in prac-
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tice if an application-internal scheduler can inform the operating system about the
importance of different threads (see example of the application-internal DAG-
scheduler above). The possible benefits in this case might be larger than the
cost for the additional interface. On the other hand there might be small inter-
dependences between the application-internal scheduler and the operating system
scheduler that do not justify the additional effort of constructing an interface. For
example an application-internal DAG-scheduler might know that there are slight
differences in the power consumption of different workpackages and the threads
of the application run on different sockets. The transmission of this knowledge
might help the operating system scheduler to manage the heat capacity on the
different sockets, but the possible improvement might be too small to justify the
additional effort to implement an interface. Another implicit cost of communi-
cation might come from the fact that more information leads to more complex
decision processes in order to use the additional information.

Mission-type tactics (Auftragstaktik) Armies were probably among the first
institutions to realize that there is a benefit in making decisions where the most
information is available and the latency is small enough that the situation has not
changed much when the resulting orders arrive. Thus most decisions have to be
made at a low level in military hierarchy. This also helps to protect the higher
levels of command from overload. Especially the German military developed a
way of leading which is called ’Auftragstaktik’. A military commander should
give orders to his subordinates in a way such that the command includes goals
and the means to be used to reach them but leaves the freedom how to do this to
the subordinates. This reduces the communication between the commander and
his subordinates as well as the latency of the decisions. The historic development
of the ’Auftragstaktik’ is described by Oetting [108]. Creveld [137, page 269 ff]
analyzes the military information-processing and its implications to the command
structure and where to make decisions. This also includes a short analysis of the
’Auftragstaktik’.

The typical example in computer science might be the distribution of the
CPU-cores of the system among the different applications. Today an applica-
tion exposes a number of threads to the operating system, and if there are more
threads (maybe from different applications) than cores, the operating system de-
cides which threads can run. Usually the operating system knows very little about
a thread’s work within an application. An application of the mission-type tactics
would be to give each application a number of cores and let the application itself
decide which of its own threads to run on these cores. A similar result can be
reached if the application is informed by the OS about upcoming scheduling deci-
sions. Both ways of setting the degree of parallelism and informing the application
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about it are closely related to our understanding of malleable jobs.

4.3 Decision Distribution in Computer Science

In this section we take a look at the decision-making structure of common com-
puter systems. We start with the reasons why there must be a distribution of
scheduling decisions in computer systems in Section 4.3.1. The characteristics of
scheduling systems in computer science that differ from other decision-making
systems are described in Section 4.3.2. We also take a look at the previous work
of scheduling decision distribution in computer science in Section 4.3.3 and ana-
lyze its differences to the approach of this work. Some of the problems due to the
current uncoordinated scheduling systems which are the basis for InvasIC and our
own work are described in Section 4.3.4.

4.3.1 Reasons
"The most fundamental problem in software development is complexity. There
is only one basic way of dealing with complexity: divide and conquer. A prob-
lem that can be separated into two sub-problems that can be handled separately
is more than half solved by that separation." (Stroustrup [125, page 693]). The
decomposition of large systems into simpler sub-systems is a typical method of
software (and system) design that can be found in textbooks of software engineer-
ing, for example see Sommerville [123, page 242]. An important example is the
splitting of computer systems into hierarchies from the hardware over the operat-
ing system up to the application which is described in more detail in Section 2.5.
So the splitting of the software in a computer system into an operating system and
different applications is the result of a globally accepted design principle which is
to partition big systems into smaller sub-systems.

The goal is to have related parts of the system in the same partition of the
system in order to reduce the relations between different partitions and thus the
interface complexity. Here we have some kind of dilemma. The parts of the
applications, the operating system and the hardware that are involved in schedul-
ing decisions are closely related to the component (application, operating system,
hardware unit) they are part of. The application-internal scheduler which controls
the behavior of the application was developed by the application developers and
uses code and data structures of the application to manage its internal algorithms
and data processing. The operating system scheduler (or schedulers for different
resources) uses the means of the operating system to control the resources which
it divides between the applications. Also hardware-internal decision makers are
closely related to their means by which they exercise their control. On the other
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hand the schedulers are related to each other as the combination of their decisions
is the scheduling of the machine which should lead to an efficient result. Hence
scheduling is a cross-sectional part of the system as the relations of the different
schedulers with their components are so dense that the combination of all sched-
ulers within one system component seems impossible. Thus computer systems
have scheduling-related parts in many different system components.

In the old times when sequential programs ran on sequential machines the
scheduling decision space within an application was very limited. Also the appli-
cation did not need to adapt that much to the situation on the system as no other
application could run in parallel. Hence such applications had no possibility to
contribute much to the overall scheduling of the machine. Today with parallel
applications on parallel machines applications can decide upon their degree of
parallelism, which operation to perform, by which thread and the use of common
resources and thus have an impact on the overall scheduling and its results. In the
future the decision space and the impact of the application-internal schedulers is
likely to grow even more. On the other hand the operating system scheduler is
and will still be important as it controls the resources and their division between
different applications, and systems will be shared by more than one application.

The degree of parallelism is also an example that decisions are also divided
between development/compile time and runtime. The degree of parallelism of an
application can be fixed within the implementation, or it can be left to one or more
decisions during runtime. Compile time decisions are not part of scheduling and
are not considered in this work. For reasons of portability between machines with
different numbers of cores and an increased adaptivity to the load situation on
the machine it is likely that such decisions will be moved from compile time to
runtime. This increases the decision space and the importance of the application-
internal scheduler even more.

Altogether scheduling decisions are spread over different components of mod-
ern computer systems, and different components play an important role. Thus
scheduling is (and will be even more in the future) a problem with distributed
decisions.

We already gave some examples why many of these decisions have interdepen-
dences (application-internal DAG-scheduler and operating system thread schedul-
ing and the work on the critical path). Hence there is a need to look at possible
ways of coordination.

The reasons for decision distribution that are common to most organizations
also apply to computer scheduling: the limited capacity of central decision makers
and the cost of communication lead to a more distributed decision organization.
The number of overall decisions within a computer system grows thus increasing
the decision space (see Section 4.1). Also the amount of information needed for
these decisions is likely to increase. As the speed of a single core is not likely
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to increase much in the future, the problem with the limits of central decision
makers will become even more visible. As the number of cores increases, the
interconnection networks and their latencies will also increase which increases
the cost and latency of communication.

4.3.2 Characteristics
The distributed decision making for scheduling in computer science has some
characteristics that are different from other distributed decision making problems.
As already explained in Section 4.1 the decisions in computer scheduling are
not made by humans which makes the problem somewhat simpler as we can
ignore selfishness, motivation and possibilities for fraud. But there are also some
differences that have nothing to do with the decision makers themselves.

Unit splits for reasons independent of decision making Most organizations
split their decisions into smaller units mainly because of reasons that lie in the
decision making itself: units are kept small to make it possible for one man-
ager/officer to know enough about their status for useful decisions; sales organiza-
tions are usually split into units for every country to reduce latency and to adapt to
local habits; companies and the military are split into specialized branches in order
to allow the branch manager/commander to develop specialized knowledge about
his branch to enable better decisions. In computer scheduling decision making
is also distributed because of reasons not directly related to the decision making
itself. As described in the previous section decisions are split up because of en-
gineering reasons. The most important example for such a split is the division
between applications and operating systems.

Stable and small interfaces There are good reasons to have a small interface
between applications and the operating system with little (or no) changes for dif-
ferent versions of the operating system: the development of applications and oper-
ating systems is independent in large parts which makes the work easier for their
respective developers, and applications are portable between different operating
systems (at least within the same operating system family). The effort for a big
change in the application interface is very high as all applications and operating
systems have to be adapted and also the knowledge of the developers about the
interfaces is lost. This might lead to a path dependence problem with suboptimal
results as described in Section 2.3. Of course operating systems can offer differ-
ent interfaces for different applications. The interfaces in computer science are
usually developed to provide some functionality to the other side and usually not
to enable coordination for distributed scheduling decisions. Hence the distributed
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scheduling problem has the additional difficulty of interfaces that are developed
for other reasons and that are expensive to change.

Speed and number of decisions On most machines there is a decision for each
core which thread to run next every couple of milliseconds (see Section 3.2.1).
One reason is to divide the work of the core fairly between different applications
and to enable a small response time to user input for each application. Hence the
number of decisions is huge, and it is impossible to spend too much time on them
as this would lead to a machine spending much of its work deciding what to work
on instead of actually doing work.

Decisions about resources and work contents rooted in different units In
most organizations the top level decider decides (at least in principle) what to do
and also decides about the division of resources between different goals. For
example a military commander might decide which targets to attack and how
many troops take part in each attack. In computer scheduling the applications
decide about the work contents, for example which algorithm to use or which data
to store, but the division of resources is usually done by the operating system. The
operating system (or some kind of middleware for clusters) is the only part of the
system that knows all applications and all resource demands. It also controls the
resources. Hence making the decision about resource distribution in the operating
system makes sense, but it needs some information about a global objective.

Decision distribution between compile time and runtime An important part
of the scheduling problem is the distribution of decisions between compile time
and runtime. For example a parameter to adapt the displayed image quality to the
available computing power has to be implemented at compile time to enable its
usage at runtime. The same is true for the degree of parallelism that can be fixed at
compile time, or the program is implemented in a way which leaves the decision
to a runtime decision maker. Of course if all scheduling decisions of a program
are made by the developer at compile/implementation time, there is no decision
space left for an application-internal scheduler.

4.3.3 Previous Work
There are several other areas in computer science that are concerned with hierar-
chical scheduling and similar things.

In real-time scheduling the term hierarchical scheduling is used for methods
that distribute the available core time between different sets of applications. Each
set then does a sub-distribution between its components. An example for this is
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the work of Lipari and Bini [95]. This approach differs from our problem as the
problem is much more specialized, and also flexibility of jobs is no issue.

Hierarchical scheduling also occurs in the area of computing center scheduling
(an already mentioned example is the work of Hamscher et al. [59]). The comput-
ing center scheduling usually works on one level of the abstraction hierarchy and
also is different in many other respects.

An article which argues for a hierarchical control of the system through a
tree of controllers is the publication of Feitelson and Rudolph [42]. This work
concentrates on a possible additional hardware system for load balancing and
control and is restricted to decisions typically done on the OS level. It additionally
looks on fault tolerance and fairness but does not look into the coordination with
application-internal deciders.

The work of Peter et al. [110] discusses the relation of interfaces between ap-
plication and operating system and the system scheduler. This article first gives
arguments that future parallel workloads will be more dynamic and will run simul-
taneously on the same machine. It then discusses the runtime decisions needed for
this and that the application↔ OS interface has to be enhanced. The actual deci-
sion making processes, their distribution and hierarchies are not discussed.

4.3.4 Problems
The split between operating system and applications and the small application
interfaces which are designed for the provision of functionality but not for coor-
dination lead to some problems:

• Operating system decisions without knowledge about the application-internal
status: Examples for this problem are described during this chapter. An
application-internal scheduler distributes work among the different threads
of the application, some packets might be bigger or more important than oth-
ers. With optimal coordination the operating system would give the threads
working on these packets more time on the cores or even a higher operating
frequency (on DVFS systems). When the operating system does not know
about these facts, it can only treat all threads equally.

• Inefficient resource competition between different applications: The typical
example for this is the distribution of the available cores between two appli-
cations. Assume two applications which together have more runnable threads
than the machine has cores are running on the machine. First we get unneces-
sary context switches if the operating system scheduler tries to run all threads
which might also lead to cache context losses. A second problem are pos-
sible additional waiting times as one thread waits for the results of another
thread that is currently blocked because no core is available. Also the usage
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of common resources like last level caches or memory interfaces might be
suboptimal.

• Application-internal decisions without knowledge about the system load sit-
uation: For example in a system with high load it might be beneficial for an
application that displays images to the user to use a lower quality in order to
reduce waiting times. Hence it can be beneficial for an application to know
about the current load in order to decide the optimal tradeoff between quality
and waiting time.

An example of the negative effects due to a lack of coordination is given in
the Ph. D. thesis of Johannes Singler [120, page 40]. Singler developed a new
sorting algorithm and tested its behavior when one core was permanently blocked
by another program. Running the sorting algorithm with seven threads on an eight
core machine was more than twice as fast as with eight threads. He also compared
his algorithm with another sorting algorithm (with better internal load balancing)
which was slower in general but had a much smaller loss when running with eight
threads and one blocked core. But there was still a loss in performance when eight
threads were used instead of seven. This is a typical example where coordination
between the operating system scheduler and the application-internal scheduler can
improve the efficiency of the system. This was also the basic observation that led
to the idea of creating a malleable sorting algorithm (see Section 4.6).

Today such problems are often solved by running only one program at the
same time on the same machine or other static resource partitioning schemes that
reduce (or even eliminate) the interdependences between different applications
and reduce the relevant decision space of the operating system scheduler. This
works against the trend of consolidation which means that more applications run
in parallel on one powerful machine instead of several smaller ones in order to
reduce energy consumption and to prevent a separation of potentials. Also fluctu-
ating resource demands and loads cannot be efficiently met by this measure (see
Section 2.4). Other measures are compile time decisions (in the application) like
thread pinning where the application programmer reduces the decision space of
the operating system scheduler. The downside of this approach is that the system
efficiency can be very bad if something happens at runtime that was not expected
by the application programmer. The operating system also tries to estimate the ap-
plication actions in order to make decisions beneficial for efficiency. For example
the Linux scheduler tries to conserve cache- and NUMA-locality if possible by
doing load balancing in a hierarchy (Zhuravlev et al. [153]). A better coordination
can replace estimations by knowledge and thus improve the situation. An exam-
ple is the work of Harris et al. [60] in which different parallel runtime systems are
coordinated in order to improve efficiency.
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Altogether we have seen that there is a problem because of a lack of coordina-
tion across the application↔ operating system interface. Hence more coordina-
tion and an improved interface will lead to better scheduling decisions. Of course
these decisions are only useful if they can be made during runtime. Thus decision
movement from compile time to runtime within the applications is an important
precondition for better coordination. In the future the increased decision space
and degree of parallelization will also enforce a decision distribution because of
the overload of single decision makers.

4.4 Invasive Computing Results

This section is devoted to the Invasive Computing (InvasIC) project in which the
author of this work took part for most of the time of his Ph. D. studies (2010-2014).
The outline of InvasIC is described in Section 2.7. The author of this work was
part of the scheduling sub-project A3 as the only full-time employee of this sub-
project (the list of InvasIC sub-projects can be found in the annual reports [132] or
[133]). In this section we only look at the scheduling-related parts of InvasIC. We
present the main ideas and development directions of InvasIC in Section 4.4.1. We
also take a look at the important question which scheduling decision makers are
planned in InvasIC. The main basis for the description of InvasIC is an overview
article by some of the project leaders (Teich et al. [131]), the annual reports 2011
[132] and 2012 [133] and the memories of the author of this work who was a
participant of InvasIC and worked on the scheduling of the system and thus took
part in a lot of internal discussions and other information exchanges. Also other
InvasIC-related publications are considered.

In Section 4.4.2 we then take a look at the developments within InvasIC. The
section is finished with an analysis of the results of InvasIC. As the development
process within InvasIC was never documented in total (it seems unlikely that this
would even be possible for such a large project), the contents of Section 4.4.2 are
based on the memories of the author of this work.

4.4.1 Main Ideas and Approaches
InvasIC aims to develop a complete new system, including new hardware, oper-
ating system, compiler and a new way of writing applications. The hardware is
planned as a large chip consisting of different kinds of tiles with different compu-
tation capabilities or IO and off chip memory connections. The different tiles are
connected through a network on chip (NoC). The typical picture used to illustrate
the InvasIC hardware is shown in Figure 4.3. The computing tiles can consist of
(several) normal cores (CPU), reconfigurable cores (iCore) or combinations and
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some tile local memory. Another option for a tile are tightly-coupled processor
arrays (TCPA) for special computations.

Figure 4.3. The planned architecture of the InvasIC system. The picture is copied from
the InvasIC overview paper [131].

The system hierarchy (hardware, operating system, application) follows the
common approach similar to Section 2.5 with one important exception: the oper-
ating system is not planned with a central scheduler but relies on an agent system
for the distribution of resources [63]. The applications communicate with and
through these agents and provide a lot of performance-relevant information and
detailed requirements for additional resources.

Applications are not only required to provide more information interfaces, it
is also required that they are able to adapt to the available resources. This is even
the central idea of InvasIC called Invasive Programming (definition from [131]):

Definition: Invasive Programming denotes the capability of a pro-
gram running on a parallel computer to request and temporarily claim
processor, communication and memory resources in the neighbor-
hood of its actual computing environment, to then execute in parallel
the given program using these claimed resources, and to be capable
to subsequently free these resources again.

Hence InvasIC requires and facilitates applications that are able to fit their re-
source usage to the given resources at runtime. The goals of InvasIC are to provide
a way to deal with systems consisting of thousands of cores, fault tolerance, higher
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resource utilization and (hopefully) performance gains (annual reports 2011 [132]
and 2012 [133], both page 8).

Another important part of InvasIC is the distribution of scheduling decisions.
As the InvasIC ideas target systems with hundreds or more cores, a central
scheduling decision maker is not appropriate (annual reports 2011 [132] and
2012 [133], both page 8) as it would become overloaded and too slow. Thus
decisions must be distributed especially by self-organizing applications. Of
course this comes along with a higher overhead and a bigger programming effort,
but these additional costs are acceptable compared to the expected benefits. This
is expressed in the following quotation "there is a price to pay in order to exploit
the benefits of invasive computing" on the last page of the overview article [131].

In order to describe a scheduling system, it is important to identify the decision
making units. For InvasIC we can identify four decision makers:

• Applications are adaptive in InvasIC. Thus they are of course capable of mak-
ing decisions how to use the offered resources. They also decide which re-
sources to request.

• The agent system/operating system gets the requests from the applications. It
also has to decide how to distribute the given resources between the applica-
tions. For more information about the architecture of the operating system
and the agent system see the annual reports 2011 [132, page 49 ff] and 2012
[133, page 56 ff].

• On each tile of the InvasIC architecture there exists a Dynamic Many-Core
i-let Controller (CiC). The CiC does scheduling in hardware in order to speed
up the decisions. It is also responsible for gathering system status data. Also
more detailed descriptions of the CiC and its responsibilities can be found in
the annual reports 2011 [132, page 35 ff] and 2012 [133, page 38 ff].

• The network on chip controllers (iNoC) can make decisions about network
routing in order to optimize the connections and provide support for the em-
bedding of application-specific communication topologies. See also the an-
nual reports 2011 [132, page 45 ff] and 2012 [133, page 51 ff].

The interface between the applications and the agent system enables the appli-
cation to constrain the set of requested resources. A large number of constraints
were developed within InvasIC and are depicted in Figure 4.4. Apart from differ-
ent constraints to specify the requested hardware (e. g. FpuAvailable), the hard-
ware status (e. g. MaximumTemperature) or orderings of resource collections ac-
cording to these specifications we also have an important information transmis-
sion from the application to the operating system/agent system: hints. These hints
provide the agent system/operating system with the information how much the
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application profits from additional resources. A typical example of these hints are
speedup curves. Hence hints provide the information basis for decisions about re-
sources for which different applications compete. Hints are especially important if
the goal of scheduling is to increase the overall efficiency or to reach performance
gains.

Constraint

MultipleConstraints

AND
OR

PredicateConstraints

MaximumLoad
MaximumTemperature

FpuAvailable
LocalMemory
ScratchPadSize
TypeConstraint

CacheConstraint
Migratable

NonPreemptible
TcpaLayout

OrderConstraints

OrderedByLoad
OrderedByTemperature

OrderedByMemory
OrderedBySpeed

SetConstraints

PEQuantity
PartitionConstraints

PlaceCoherence
TypeHomogenity

CacheHomogenity

Hint

EfficiencyCurve

Figure 4.4. The structure of possible constraints for new resources that the application
can pass to the agent system. The picture is copied from the InvasIC annual report 2011
[132, page 19].

4.4.2 Development

Goos [53, page 73] discusses two different approaches for the development of
computing systems: top down design and bottom up design.

Top down design is the approach that one starts with a global goal (e. g. ef-
ficient computation on thousands of cores) and then divides the global goal into
subgoals. The recursive division of goals leads to small tasks that then can be
solved and work as components for a solution of the global goal. The risk of this
approach is that one of the small tasks might turn out to be unsolvable.

In bottom up design one starts with already known or easy to get solutions
for subproblems. After that these small solutions are combined until a solution for
the global goal is found.

The main difference of these design approaches is the chronological order
between the work within the subproblems and their combination. The top down
approach puts the work on the combination before the work on the subproblems,
the bottom up approach does it the other way round.
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The InvasIC development process included both approaches (as all real devel-
opment processes do), but the bottom up approach was dominating. Some central
ideas were fixed at the beginning, and there was a division into sub-projects, but
the main work of the sub-projects was done within them. Also the initial focus of
InvasIC was to provide a working system and thus putting efficiency and perfor-
mance concerns into the second place. An important reason for that was the com-
prehensible desire to be able to present something working in the first evaluation
after four years. Five of the twelve accepted sub-projects (see Section 2.7) were
hardware development projects and the other seven were divided into applications,
language, compiler, operating system, simulation and scheduling thus giving the
hardware development the most importance. Thus scheduling in software which
has to coordinate different subsystems (sub-solutions) for a non-functional objec-
tive was a rather marginal topic of the development. Unfortunately the simulators
developed within InvasIC were not built for the simulation of non-functional pa-
rameters (e. g. memory latencies, task switching overhead, NoC latencies) and
were rather dedicated to test the functional correctness of some system compo-
nents. In a bottom up development with no experimental or simulation results for
non-functional parameters it is also difficult to build a meaningful model to com-
pare different scheduling strategies. Hence there was no possibility for testing
a combined scheduling process over all system layers within InvasIC and hence
no possibility for the application of the algorithm engineering methodology (see
Section 2.6.1) on scheduling as described in Section 3.4.2. On the other hand it
was possible to observe some upcoming scheduling problems of the InvasIC ap-
proach. As the author of this work was part of the InvasIC development team,
it was possible to discuss with other team members if these problems are due to
fundamental reasons or if they can be solved or moderated by small changes of
interfaces or other components. We will now look into some of these scheduling
problems encountered in InvasIC and discuss how they were solved or if they are
still open (we refer to the project status at the beginning of 2014 when the author
of this work left the project).

Application interface In computer scheduling and many other kinds of decision
making organizations there is a tradeoff between autonomy cost and communica-
tion cost (see Section 4.2). To decide anything in this tradeoff one must be able to
estimate the cost. Without models, simulation or experiments the autonomy cost
or communication cost could not be estimated in InvasIC. Together with the rather
functional than non-functional approach there was a risk of building an applica-
tion interface that leads to heavily constrained resource requests (see Figure 4.4).
These too constrained requests bring the risk of fragmentation as exact fulfillment
becomes impossible without leaving many components idle. Also there is a risk
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that the possibility of detailed constraints will lead to decisions made within the
application that are better made by the operating system because decisions within
the applications constitute the risk of separation of resource potentials. In order to
increase the decision space of the operating system/agent system and to provide
the necessary information for good decisions, performance hints were introduced.
The performance hints provide information that can be helpful to make good deci-
sions regarding the overall goal. Especially if these hints are combined with mod-
estly restricted resource requests, they leave the operating system with a greater
freedom to divide the resources among the applications. Performance hints like
speedup curves are commonly assumed in the models in scheduling theory. With
the help of some other colleagues the author of this work could convince the In-
vasIC developers to include hints (especially speedup curves) into the application
interface. When the author of this work left the project, the final interface design
was still open.

Complexity of scheduling The computational complexity of finding an optimal
or at least good schedule is an important part of scheduling (see Section 5.1). It
is not clear yet if the rather big decision space (scheduling decisions can be made
about memory, communications, cores) and the large set of constraints lead to a
complicated scheduling problem in practice. Due to the lack of possibilities for
experiments this problem could not be investigated.

Vertical coordination As described in Section 4.4.1 there are many different
decision makers within the InvasIC system. Interdependences between the de-
cisions of the operating system/agent system and the CiCs and iNoCs certainly
exist as the CiCs should make decisions on behalf of the operating system and
intra-application communication between tiles through the network on chip are
obviously performance-relevant. There were some discussions about coordina-
tion and information exchange between these decision makers, but no solution
could be found during the author’s participation in InvasIC.

Horizontal coordination A central problem in scheduling computer systems is
to distribute the available resources between different applications. Doing this by
an agent system that makes all decisions with only local knowledge might lead to a
separation of potentials and thus to a suboptimal usage of resources. On the other
hand scalability of such an agent system is easy. A centralized scheduler can per-
form a global coordination but might become overloaded. Kobbe et al. [85] (all au-
thors were working on InvasIC) compared a simple centralized heuristic (running
on one core) for the distribution of cores among jobs with a decentralized heuristic
developed by them. The comparison was conducted in a simulation environment
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(not especially InvasIC-related) by comparing the results of both approaches on
some generated scheduling instances. The comparison showed that the decen-
tralized approach saves a lot of communication and computation effort while the
reached average speedup among the jobs is 84% of the centralized approach (av-
erage over all instances). This work shows that decentralized approaches can save
a lot of communication effort compared to centralized approaches which might
become a bottle neck. Unfortunately neither the centralized nor the decentralized
algorithm comes along with a guarantee for the solution quality.

A solution approach that does the scheduling decentralized but aggregates
a central value (e. g. the current global demand of a resource) to prevent the
separation of potentials was developed by the author of this work together with
Peter Sanders [116]. Hence our approach does not become a bottle neck but also
produces optimal scheduling results. This work (which is the parallelization of
our main algorithm) is described in more detail in Section 5.2.4.

Altogether InvasIC worked on the main problems of scheduling within modern
machines (as described in Section 4.3.4): within the applications performance-
relevant decisions were moved from compile time to runtime; the application
interface was enlarged in order to prevent information loss and to enable coor-
dination; decision making was decentralized to prevent the overload of central
decision makers. But there were also some problems that remained unsolved (at
the time the author of this work left the project): the coordination of different de-
cision makers; the possibility of a separation of potentials due to local decisions;
the possibility of fragmentation due to too tight constraints; the possibility of too
complex scheduling problems.

This work is clearly influenced by InvasIC, but unfortunately the author’s
hope to compare different scheduling systems in experiments or simulations as
described in Section 3.4.2 could not be fulfilled as the basis for such experiments
was not given. On the other hand InvasIC provided a lot of open scheduling
problems and insights to the problems of different parts of a computer system.
Also the author was able to support and influence the InvasIC development process
with a scheduling perspective.

4.5 Ideas for Improvement

In this section we describe how the scheduling decision makers should be orga-
nized in our view in order to get good scheduling results without too much over-
head. We also give an overview where scheduling organization ideas influenced
our work.
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Move decisions from compile time to runtime Changing the applications such
that more things can be decided during runtime is very important in order to have
a big enough decision space at runtime to be able to react to things that can occur
during runtime (e. g. load situation, machine temperature or special inputs). We
see several possibilities for application decisions that can be made during runtime:

• Degree of parallelism.

• Usage of other resources especially cache and local memories.

• Dynamic work distribution among the threads that belong to the application
(e. g. task DAGs within the application).

• The used algorithm. Being able to use different algorithms is expensive in
terms of development effort as all of these algorithms have to be implemented.

• The solution quality (e. g. image resolutions or objective function values of
optimizations).

Moving decisions from compile time to runtime can be beneficial for scheduling,
but it also comes along with more implementation effort. Hence it is especially
useful when the runtime costs (hardware and energy usage) are much higher than
its development costs. The movement of decisions from compile to runtime was
also a core feature of InvasIC and thus was intensively discussed there.

Better decision coordination An important problem of today’s computing sys-
tems is the lack of coordination between the applications and the rest of the sys-
tem. We give some examples in Section 4.3.4, and also this topic was discussed
within InvasIC. For future systems with more distribution and self-organization
also the coordination within the operating system and across the hardware inter-
face becomes more important. On the other hand the coordination should not grow
too much as it comes along with communication overheads and possible latencies.
Hence one has to find a good tradeoff between autonomy cost and communication
cost (see Section 4.2). But the direction is clear that the application interface has
to be enhanced to allow more coordination although this comes along with large
development costs.

Move decisions to the information Information plays a key role in making de-
cisions. Of course all (with reasonable cost) available relevant information should
be used in order to make good decisions. If possible, the decision maker should be
moved to a place where most information can be made available cheaply and with
low latency. For example a military commander of a company does not work in an
office far away from the battle but is usually located close to his soldiers. Hence
a decision maker should be placed where the supply with relevant information
can be enabled in the cheapest way. A development that moves decisions from
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the operating system to the application can lead to effects contradictory to this
approach. For example core pinning moves the decision about which core is used
by which thread from the operating system to the application. But the application
probably does not know about the current load and which other applications use
the core to which it has pinned its thread. If the application-internal scheduler
should make such decisions, it has to know something about the system status,
and thus the system status is replicated among all application-internal schedulers
which leads to overhead and communication cost. Thus global decisions should
be made within a system component with global span which is usually the oper-
ating system. On the other hand scheduling decisions mainly influenced by the
application-internal status should be made within the application. The mission-
type tactics (Auftragstaktik) pattern can be helpful to structure such decisions and
thus lead to the encapsulation of local decisions with all benefits like interchange-
ability of sub-solutions and low latency and communication cost. For example the
operating system usually knows far less about the work of different threads of an
application than the application itself. Hence the decision which work (assigned to
a thread) should be stopped and which should be continued is better made within
the application. On the other hand the operating system knows more about the
global demand for cores and thus can make better decisions about the number of
running threads for each application.

Distributed decisions without separation of potentials As already noted in
previous sections there is a problem with central decision makers becoming over-
loaded in large systems. Hence decisions must be divided even within the same
component (in most cases the operating system). On the other hand dividing de-
cisions between different autonomous units can lead to a separation of potentials
and autonomy costs. A distributed decision system with a small amount of coor-
dination might be the best compromise. For example the decision about the usage
of a global resource can be made in a distributed way, but something like a price
for each unit of the resource that reflects the (global) demand can be added. Thus
the price of the resource works as a lightweight coordination system. The aggre-
gation of supply and demand can be done via broadcast and reduction operations
which leads to a fast and efficient realization. See for example the parallelization
of our main algorithm in Section 5.2.4.

Tradeoffs An important task when designing a scheduling system is finding
good tradeoffs between contradictory approaches. We have already seen in Sec-
tion 4.2 that there is a tradeoff between autonomy cost and communication cost for
all kinds of organizations. In computer science an increased latency can also be
considered as communication cost. Another well-known tradeoff exists between
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the solution quality of the scheduling and its computational effort. There are many
works on approximation in scheduling (see Section 3.1.3). Finding good tradeoffs
for a specific system is a complicated task. Thus such tradeoffs are usually in-
vestigated by performing experiments on real systems or simulations on system
models which are detailed enough.

Examples in this work The idea of distributed decisions without the separation
of potentials is part of the article Efficient Parallel Scheduling of Malleable Tasks
(joint work with Peter Sanders, [116]). The parallelization of our scheduler is
discussed in Section 5.2.4 in greater detail. An example of a job with a flexible
degree of parallelism (can be changed from outside) is presented in Section 4.6
(the next section).

4.6 Malleable Sorting

Malleable jobs occur in scheduling theory (see Section 3.1.1) and are a good ex-
ample for programs in which decisions are moved from compile time to runtime
(the degree of parallelism). Unfortunately such jobs seem to be without good ex-
amples in practice. Hence the development of such a job is interesting. However,
in order to prove that the additional malleability does not cost too much efficiency,
one has to compare the result with existing implementations for the same prob-
lem. Sorting algorithms are relatively easy to compare in their performance. Thus
we implemented a malleable sorting algorithm and compared it with state of the
art parallel sorting algorithms in a joint work with Patrick Flick and Peter Sanders
(Malleable Sorting [45]). The competitors were the multiway merge sort from the
multicore standard template library (MCSTL) as developed by Singler et al. [121]
and the sorting algorithm from Intel’s TBB [112, page 78] (called TBB in the
remainder of this section). This section is based on the article Malleable Sort-
ing [45] and the measurements and implementations done for the article (for the
individual contributions to the articles used in this work see Section 3.4.4). The
idea of creating a sorting algorithm that can adapt its degree of parallelism to the
system load is based on an observation that was described by Johannes Singler in
his Ph. D. thesis [120, page 40]. Singler developed the multiway merge sort and
tested its behavior when one core was permanently blocked by another program.
Running the multiway merge sort with seven threads on an eight core machine
with one blocked core was more than twice as fast as with eight threads. Hence it
seems obvious that adaption can lead to big efficiency gains.

We call our algorithm malleable merge sort (MALMS). It is based on the
multiway merge sort from the MCSTL (the abbreviation STLMS for standard
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template library merge sort is used in the remainder of this section). Hence we
start with an explanation of STLMS and our changes in order to build MALMS.
Then we look at the background and the details of the malleable interface that was
developed by us. After that we explain the experiments and present some results
of the comparison of the different sorting algorithms. We finish the section by
fitting the malleable sorting results into the broader perspective of this chapter.

Merge sort basics We first briefly explain the multiway merge sort (STLMS).

unsorted unsorted unsorted

k blocks

step 1

step 2

step 3

Figure 4.5. The three steps of multiway merge sort. Johannes Singler uses a similar
picture in his Ph. D. thesis [120, page 11] to describe the multiway merge sort.

The multiway merge sort consists of three steps which can all be split up into
k (respective k−1) workpackages:

1. Local sort. The elements to sort are split into k equal-sized packages. Each
of the packages is sorted sequentially.

2. Split. k− 1 splitters are computed which split each sorted sequence into k
parts.
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3. Merge. The k sub-sequences between two adjacent splitters are merged into
one sequence.

Figure 4.5 provides a graphical overview over the three steps. The reordering
of sub-sequences between step 2 and step 3 does not cost actual effort as we
are on a machine with common memory, and thus all cores can access each sub-
sequence with the same speed. The k (respective k−1) workpackages in each step
are independent of each other and can thus be done in parallel. Workpackages of
different steps are not done in parallel to each other.

Let us now look into the three steps in more detail. We use n as the number
of elements to sort, k as the number of blocks (workpackages in step 1 and step 3,
k−1 workpackages in step 2) and p as the number of used cores. We also assume
that k divides n and p divides k.

In step 1 a workpackage consists of sorting n/k elements by the usage of a
sequential sorting algorithm. Hence the running time of one workpackage is in
Θ(n

k log n
k ) which leads to a running time of Θ( n

p log n
k ) for the whole step.

A workpackage of step 2 is the computation of a splitter for all k sorted
sequences such that an amount of r · n

k elements is below the splitter (for r ∈
{1, . . . ,k− 1}). We developed a new splitting algorithm with a complexity of
Θ(k log2 n

k ) for the sequential finding of one splitter. The running time for step 2
is thus in Θ(k2

p log2 n
k ).

Each workpackage in step 3 merges all k sub-sequences between two adjacent
splitters. The complexity of this merge is in Θ(n

k logk), and thus the complexity
of the whole step is in Θ( n

p logk).
For STLMS k equals the number of used cores. Hence each core first does

one sequential sort, then computes one splitter and then merges k sequences. The
malleable merge sort (MALMS) does the same things, but k is no longer set to
the number of cores but is an optimization parameter instead (and usually much
larger than the number of used cores). At the beginning of each of the three steps a
single thread builds the k (k−1 for splitting) workpackages and inserts them into
the global queue. Each active worker thread takes workpackages from the queue
until it is empty and then waits until all workers have finished. When all workers
have finished the next step starts. For more details about the implementation of
the workpackages of the different steps see our article [45]. The code of MALMS
and some test-code can be found under https://github.com/patflick/malms.

Malleability One of the first questions that arises when talking about experi-
ments with malleable jobs is: how can this be done without an available system
for malleable jobs? A malleable job can adjust its degree of parallelism according
to external orders. Thus there has to be an external system that gives these orders.
In the plans of InvasIC and maybe in other future systems as well these orders
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come from the operating system. This has the additional benefits, that the operat-
ing system can also enforce the changes and that it can use its knowledge about
the global demand for parallelism for its decisions. As we do/did not have such an
operating system available for our tests we chose a different way to test the mal-
leability of MALMS and its possible benefits. Another job called Loadtask sends
the orders, to change the degree of parallelism, to MALMS. As Loadtask cannot
enforce these orders (especially not for the other sorting algorithms we compare
MALMS to), it has to do something different to produce some kind of penalty for
the sorting algorithms which use a core which should have been abandoned. After
it has sent an order to free a core to MALMS, Loadtask starts a computation on
the respective core. Also Loadtask stops its computation on a core when it tells
MALMS to (re-)use this core. Hence running on a core that should have been
abandoned leads to the penalty that the resources of this core must be shared with
the computation done by Loadtask. This sharing is controlled by the operating
system. Hence for the ’standard’ sorting algorithms like STLMS and TBB the
operating system is solely responsible to share the resources between them and
Loadtask. MALMS retreats from resources (cores) used by Loadtask in order to
supersede or simplify the decisions of the operating system.

As we run the experiments on Linux, we use Linux signals to transfer the or-
ders between Loadtask and MALMS. One signal is used to decrease the degree of
parallelism which contains the core number of the core to abandon as additional
value. Another signal to increase the degree of parallelism works in the same man-
ner. When we compare other sorting algorithms to MALMS, Loadtask does the
same things regarding its computations but does not send signals as the other sort-
ing algorithms have no interface to use them. The resulting system architecture
then looks like Figure 4.6.

The adaption of MALMS to the signals from Loadtask is organized by an
application-internal scheduler. For each core available on the whole system we
have a thread pinned to that core which works on the central queue when it is
active (sorting-threads). All sorting-threads work in the following manner: first
the thread checks if it is blocked by reading its status from an array managed
by the application-internal scheduler (scheduling-array). If it is blocked, then it
goes to sleep, otherwise it fetches a workpackage and starts working on it. After
finishing a workpackage, the thread restarts by checking if it is blocked. If the
application-internal scheduler of MALMS gets the signal to use a currently not
used core c, it wakes up the sorting-thread assigned to c. This thread immediately
takes a workpackage from the queue and starts working on it. If the application-
internal scheduler of MALMS is ordered to release a currently used core c, it
writes a block signal into the scheduling-array at the position assigned to the
sorting-thread pinned to c. This thread then goes to sleep after it has finished
its current workpackage. If the workpackages are small enough, MALMS can
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Figure 4.6. The structure and system integration of our malleable sorting application.

adapt to the orders of Loadtask with a fine granularity. The application-internal
scheduler is built as a thread that does nothing else except waiting for signals of
Loadtask, waking up threads and updating the scheduling-array.

Experiments and results We experimentally evaluated the approach on a ma-
chine with two quad-core Intel Xeon 5345 (Clovertown, 2.33 GHz) which is a
unified memory machine as both processors share a common memory controller.
Thus we do not have NUMA effects in our experiments. The machine is running
a Linux Kernel version 2.6.32-45-generic x86_64 (different kernel versions seem
to lead to slightly different results) and a GCC version 4.4.3. The TBB version is
4.1 Update 1. The Linux scheduler of the system has the standard parameters of
the Ubuntu 10.04. installation.

First the different sorting algorithms are compared on an otherwise empty ma-
chine. We also include the running times of the sequential GCC std::sort (STD-
SORT). Table 4.1 contains the running times when sorting different numbers of
uniformly distributed 32-bit integers on an empty machine. In order to have a
better comparison between different input sizes, the running time is given as t/n
where t is the total running time in nanoseconds and n the input size. All exper-
iments were run 100 times and table 4.1 contains the average and the standard
deviation (normalized by 99) of these measurements. For each test a new process
is created, which reads a randomly generated input file, and measures the run-
ning time for one of the algorithms. The measured time includes initialization and
starting of threads for MALMS. For TBB and STLMS the running time of the sort
routine is measured which includes all initialization times as well.

For 104 integers none of the parallel sorting algorithms is faster than the se-
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Input Size 104 105 106 107 108

STDSORT 66.5 79.9 94.9 111 126
std 0.36 0.082 0.080 0.0080 0.0023
TBB 151 37.7 31.0 28.1 25.1
std 50 7.3 3.3 1.3 0.96
STLMS 67.2 22.0 19.5 21.1 23.6
std 3.6 1.9 2.0 2.2 1.9
MALMS k = 8 111 26.5 19.1 20.4 22.6
std 3.8 2.1 1.7 1.6 1.7
MALMS k = 24 147 28.7 20.4 20.8 23.4
std 9.0 0.67 2.7 0.35 0.43
MALMS k = 48 212 33.2 20.9 21.1 23.5
std 16 1.1 0.32 0.26 0.18
MALMS k = 100 374 46.6 23.3 22.1 24.2
std 27 2.3 0.32 0.10 0.14
MALMS k = 200 731 88.3 29.8 23.2 23.5
std 44 3.0 0.29 0.11 0.14
MALMS k = 400 1760 237 52.0 28.8 25.4
std 68 5.4 0.30 0.18 0.057

Table 4.1. Running times and standard deviations (std) for STDSORT, STLMS, TBB and
MALMS for sorting 32-bit uniformly distributed integers. The running time is given as
t/n where t is the total running time in nanoseconds. The table is generated from the data
of the experiments done for our article (joint work with Patrick Flick and Peter Sanders
[45]).

quential sorting algorithm. Hence only input sizes larger than that are interest-
ing. TBB is usually slower than MALMS (at least for small k) or STLMS. Espe-
cially for 106 and 107 integers to sort and k = 8,24,48,100 MALMS and STLMS
are clearly faster than TBB. On the other hand STLMS has a similar speed as
MALMS for these values of k and input sizes. For smaller input sizes and larger
values of k STLMS has a clear advantage which shows the higher initialization
overhead of MALMS and the larger effort due to large numbers of workpackages.
Hence the choice of k for MALMS is a tradeoff between a good malleability and
a good performance.

Now we take a look at the intended use case of the malleable sorting algorithm
(MALMS), running with another job in parallel. The other job is Loadtask which
uses the available cores in special patterns (the three tested patterns are given
in Figure 4.7). We also use two different lengths for the time slots: 2 ms (for
106 elements) and 6 ms (for 107 elements). Loadtask computes some integer
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operations on each integer of an array of size 1000 during its activity. The threads
of Loadtask are set to the highest priority during the computation.
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(a) Loadtask Pattern 1.

1 2 3 4 5 6 7 8

1

2

3

4

(b) Loadtask pattern 2.
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(c) Loadtask pattern 3.

Figure 4.7. The three patterns used by Loadtask. The numbers below the pattern indicate
the used core, the numbers on the left the time slots. The black boxes show when Loadtask
is using which core. After 4 time slots the pattern is repeated.

All parallel scheduling algorithms (MALMS,TBB and STLMS) are tested in
parallel to the same Loadtask patterns (patterns 1,2 and 3). The pattern execution
is started directly before the invocation of the sorting algorithm in case of TBB
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and STLMS. In case of MALMS the pattern execution is started directly after
the malleable scheduler is initialized as the scheduler has to be set up to receive
the load information from Loadtask. In all cases (MALMS,TBB and STLMS)
the initialization is included in the measured running time. We also test how
valuable the information from Loadtask is for MALMS by running it without this
information (the algorithm is then called MALMS.noinfo). In all cases we run
MALMS with k = 100.

All test combinations of pattern and sorting algorithm were run 100 times.
The running times had a quite high variance, thus we used boxplots to display
the information in Figure 4.8. The input data for the sorting algorithms consisted
of random uniformly distributed 32-bit integer elements. Looking at the results
in Figure 4.8, one can see that MALMS is clearly faster than STLMS for pat-
tern 1 and 2 and in all cases not much slower than the fastest algorithm. The
most interesting thing related to this chapter is that MALMS is always faster than
MALMS.noinfo (at least slightly). Hence the additional information is a clear
advantage.

The original experiments used in the publication were done on an Ubuntu
10.04. installation. In order to check the reproducibility, we performed the ex-
periments on four different Ubuntu versions (10.04., 12.04., 14.04., 16.04.), all
installed on the same hardware used for the original experiments. The code and
test scripts are identical on all OS versions, but we use the compilers and libraries
(especially TBB and STLMS) that come along with these distributions for the
comparisons. Compared to the results on Ubuntu 10.04. (which are very similar
to the original results), STLMS is much faster on the newer distributions when
run in parallel to the patterns 1 and 2 of Loadtask. The resulting advantage of
MALMS compared to STLMS when run in parallel to these patterns becomes
small. Also the advantage of MALMS compared to TBB without a running Load-
task is reduced on the newer distributions but still existent (with k = 100). On the
other hand the advantage of MALMS compared to MALMS.noinfo especially for
pattern 1 and 2 with 6 ms time slots (and 107 elements) is very clear on all distri-
butions (for pattern 3 and 6 ms time slots (and 107 elements) we have a tie or a
small advantage of MALMS.noinfo). Altogether the differences between different
distributions (on the same hardware!) are larger than expected.

Altogether MALMS has an advantage compared to STLMS when running in
parallel to Loadtask with pattern 1 or 2 (more like a tie on Ubuntu 14.04.) and is
close to STLMS when running on an otherwise empty system. Compared to TBB
MALMS has an advantage on the otherwise empty system and is close to TBB
when running in parallel to Loadtask. The result varies depending on the used
Ubuntu version and is less strong on the newer versions. Hence a better under-
standing about what exactly leads to the advantages of MALMS is needed to get
a stable effect over different Linux versions. Also Loadtask is no useful program
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that might run in parallel to a sorting algorithm in a production environment. Thus
understanding the relevant characteristics of jobs which might be competing for
resources with the sorting algorithm is needed in order to build a Loadtask that re-
flects those characteristics. Even though MALMS retreats from cores that will be
used by Loadtask, it is not clear that the workpackages of MALMS can be finished
without interruption because it is possible that MALMS starts a workpackage on
a core immediately before Loadtask wants to use this core. As the workpackages
are always finished on the same core and the Linux scheduler cannot be informed,
it is possible that the work on this package is interrupted by work of Loadtask.

Malleable sorting in the context of flexible parallel systems MALMS is an
example for a malleable job and thus is a result of scheduling theory used as
guidance for application development. Also MALMS is an example for a flexible
job with a (very simple) malleable interface which makes adaption to the system
status possible.

MALMS is a basic example for some of the ideas described in Section 4.5.
Especially the decision about the degree of parallelism of the sorting algorithm is
moved from compile time to runtime. It is also an example of moving decisions
to the information. The number of threads MALMS should use is decided outside
of MALMS (within Loadtask) where the information about the work pattern of
Loadtask is available. At the same time the knowledge and the decisions about
the workpackages are kept internally. Thus MALMS can also be seen as an exam-
ple for the mission-type tactics (’Auftragstaktik’) as the available cores are given
but their usage is decided internally. On the other hand when we run Loadtask and
MALMS on top of a standard Linux operating system, we have two independent
uncoordinated decision makers for the distribution of the cores between the two
jobs: the coordination through the malleable interface and the scheduler in the
Linux kernel. This problem can be solved by using an operating system which
includes something similar to the malleable interface instead of establishing co-
ordination between the jobs directly. Such an operating system is developed by
the InvasIC project. Another view on malleable applications is the work of Buch-
wald et al. [20] which describes the programming language support for malleable
applications developed within the InvasIC project.

For the future development of malleable applications and systems for these
applications a better understanding of the main influences of application perfor-
mance is needed (caches, interrupts, ...). Such an understanding will also help to
guide the development of new malleable applications. Closely related to this is
the modelling of the speedups by assigning more resources (for example cores) to
a flexible application.
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(a) 106 elements, pattern 1, 2 ms time slots.
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(b) 107 elements, pattern 1, 6 ms time slots.
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(c) 106 elements, pattern 2, 2 ms time slots.
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(d) 107 elements, pattern 2, 6 ms time slots.
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(e) 106 elements, pattern 3, 2 ms time slots.
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(f) 107 elements, pattern 3, 6 ms time slots.

Figure 4.8. The running times of the different sorting algorithms for different input sizes
and different Loadtask patterns. Due to the variance we present boxplots. The images
are generated from the data measured for our article (joint work with Patrick Flick and
Peter Sanders [45]). MALMS is the malleable sorting algorithm, MALMS.noinfo is the
same algorithm but without notifications from Loadtask, TBB is the sorting algorithm
from Intel’s TBB and STLMS is the Multiway Merge Sort. (Big line in the middle of the
box: Median, Size of box: Two middle quartiles. The whiskers reach to the most extreme
value which is not farther than 1.5 times the box length away from the box. All values
farther away are marked as outliers.)
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5
Fast and Efficient Schedule Computation

This chapter is devoted to the core of scheduling in computer science, the effi-
cient decision making. Efficient scheduling algorithms not only produce a good
schedule according to the given goals but also keep the effort for finding such a
schedule low. The tradeoff between effort and schedule quality is depicted in Sec-
tion 5.1. Solutions for problems with malleable jobs are a major part of this work,
the core findings are presented in Section 5.2. Section 5.3 describes an application
of general optimization methods to scheduling.

Developing scheduling algorithms is often connected with developing systems
as a whole. Possible changes like making all jobs malleable instead of moldable
lead to easier scheduling algorithms and shorter schedules but also to some addi-
tional effort for the application programmers. Hence developing schedules for a
new system always involves some design decisions that are important for schedul-
ing and other parts of the system as well. Especially the distribution of scheduling
decisions is an important design decision in this respect (see Chapter 4). An im-
portant reason for the distribution of decisions is the possible overload of single
decision makers. Within this chapter we access this problem by taking a look into
the decision effort. We especially take the system design decisions and the de-
cision distribution between different system components as fixed and look at the
scheduling decision making itself.

5.1 Complexity and Justifiable Efforts

Imagine we have to develop a scheduling algorithm for some scheduling prob-
lem. Before we start with building a model or collecting the basic properties of
the scheduling problem (decision space, properties and constraints, goal and in-
formation see Section 1.2), we have to know the justifiable effort for the solution.
One effort is the time we are able to spend on the computation of the schedule, the
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other is the development effort for the scheduling algorithm.
The computation time is closely related to the computational complexity of

the scheduling algorithm. The possible computation time differs a lot between
different kinds of systems. Scheduling a computing center with jobs that have
running times measured in hours or the pre-computation of some schedule for an
embedded device that is never changed during runtime are examples where the
computation time of a schedule does not matter much. On the other hand we have
interactive devices like PCs or mobile phones or interactive embedded devices
where a fast schedule computation is important for the user satisfaction or even
the proper function of the device.

The possible development effort depends on the importance of good schedules
for the operation purpose of the computation device and the number of produced
units as a large number of units reduces the development cost per unit.

Altogether we have a tradeoff between three objectives: high schedule qual-
ity (regarding the optimization goals), low running time (low computational ef-
fort) of the scheduling algorithm and low development effort. Let us first look at
the tradeoff between running time and solution quality. Many scheduling prob-
lems are NP-hard and trading off running time and solution quality is usually
done in the development of approximation algorithms (see Section 3.1.3 and Sec-
tion 3.1.4). Approximation algorithms often lead to longer running times of the
computed schedules or a higher resource usage in order to have a lower running
time of the scheduling algorithm itself. Hence for finding a good tradeoff it is
important to compare the cost of running the scheduling algorithm to the benefits
of a good schedule for the rest of the system. The development of a scheduling al-
gorithm is usually based on a model of the machine and jobs. Upon this model the
different possible algorithms are developed: exact computations, approximation
algorithms and heuristics. In order to reduce the complexity of a scheduling prob-
lem, it is possible to ignore some less relevant parts of the used model or to use a
less complicated model instead. There are several reasons why the usage of a sub-
complex model might be justified. One example is to ignore caches in models. Of
course caches are important for the performance and efficiency of computers, but
they are usually not manageable by software-based scheduling algorithms. Thus
they are outside of their decision space and can be ignored (although the sched-
ule might influence their effectiveness). This is a common approach for many
publications on scheduling, but we are aware that this is not always justified (see
Chapter 6). Another example where sub-complex models are used is memory.
If several threads work at one problem with the input data coming from a hard
drive, the amount of memory used might be proportional to the number of used
threads. Hence scheduling memory and cores separately might be possible but
not useful. Thus it is easier to schedule resource units that consist of a core and
some memory. Hence the usage of simple models can be beneficial to get less
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complex scheduling problems. The question if the simplified model fits reality
good enough can then be tested by experiments. Modifying models and algo-
rithms based on experimental results in a repeated manner is the basic approach
of Algorithm Engineering (see Section 2.6.1).

The objective of low development effort is less important in a scientific work
like this. But of course also science has to be efficient somehow and thus re-
searchers also try to work on problems which offer the most insights for the least
effort. Hence researchers in scheduling theory usually start with simple mod-
els because they are easy to justify, easy to work with and the results are hope-
fully also useful for more complex models and reality. For example results from
scheduling theory often use the minimization of Cmax as goal even though in prac-
tice there are many other relevant objectives. Other things that are relevant in
practice like throughput, good resource usage and efficiency are often much more
difficult to formulate and justify than Cmax. In order to get a low Cmax, it is often
beneficial to have a good throughput, good resource usage and efficiency. Hence
the developed techniques are often also helpful for these goals. This is also a
source of differences between theory and practice as described in Section 3.3.

Similar to scheduling a low development effort is an objective for most hard
algorithmic problems. Hromkovič [67, Section 7.2] gives some guidance how
to approach hard algorithmic problems. He distinguishes between two methods
of developing algorithms for hard problems: use of general robust algorithmic
design techniques and the development of specialized algorithms for the prob-
lem. Usually the development effort for a solution based on general techniques is
lower than the development effort of a specialized algorithm. The decision which
approach to use is mainly based on the consideration if a possibly higher devel-
opment effort is justified by the possible gains of a specialized solution. We look
into both approaches: in Section 5.2 we describe our approach for specialized
scheduling algorithms and in Section 5.3 we present our results of applying gen-
eral techniques to scheduling. In the remainder of this section we motivate the
general approaches used in Section 5.2 and 5.3.

In Chapter 4 we give reasons why improved flexibility of jobs and their coordi-
nation through the operating system will be important for future efficient systems.
Especially adapting the resource usage of a job during its runtime is an important
part of this improved flexibility. The job class in scheduling theory that fits into
this requirement of additional flexibility is the class of malleable jobs. Hence one
of the main goals of this work is to improve the scheduling of malleable jobs and
to show how malleable job scheduling can be used to improve system efficiency.
This makes malleable job scheduling a central algorithmic problem of this work.
Malleable job scheduling was already successfully investigated in previous work
(see Section 3.1.3) as fast algorithms with optimal results already exist. Hence
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further improvements by the application of general algorithm design techniques
are unlikely. Also the nature of schedules for malleable jobs that allow preemp-
tions and migrations every time lead to a large decision space which is also an
argument for specialized algorithms instead of general algorithm designs. On the
other hand malleable jobs are definitely a sub-complex model. Migration and
parallelism degree change costs are ignored, only one kind of resource is consid-
ered and changes are possible in an extremely fine granularity. Nevertheless, the
model is widely accepted (see previous work in Section 3.1.3) and inspired our
work about a sorting algorithm as malleable job ([45], see Section 4.6 for a de-
scription). Thus the malleable job model (see Section 3.1.1) is sub-complex but
useful. General problems with malleable jobs are often NP-hard, we give an ex-
ample in [116] (joint work with Peter Sanders). If the problem has the additional
property of being a convex problem, it is often possible to find fast algorithms
that compute an optimal solution. Convexity is plausible for many problems from
reality for two reasons: First, the set of feasible resource distributions between
different jobs is often a convex set. Second, the contribution of a job to the overall
objective might improve for each added resource unit, but usually the improve-
ment becomes smaller for each additional unit. Hence the objective function is
often a convex function. Even if there are some local deviations from the convex-
ity, the global behavior is often very similar to a convex function. Hence we work
on convex scheduling problems for malleable jobs because they are interesting
themselves and can serve as a global estimation for many other problems. Our
approach to malleable job scheduling is described in Section 5.2 where we also
describe our results and some further possible applications.

We also take a look at the computation of schedules by general methods in
Section 5.3 and present some results there. The main advantage of a scheduling
approach with general algorithmic techniques is the lower development effort for
the scheduling algorithms. The general techniques make it also easier to work on
a more complex model and thus to reduce the modelling errors. On the other hand
the general techniques often come along with a high running time and a low effi-
ciency (solution quality divided by running time) as they are not optimized for the
particular problem. Hence their usage in practice is restricted to cases in which
it is important to have a low development effort or to cases for which specialized
algorithms are especially difficult to develop. The main problem of heuristics (for
example by the usage of general methods) is to evaluate their solution quality. In
most cases optimal solutions are not available, and also the selection of meaning-
ful test instances is often difficult. Hence the quality of heuristics is often eval-
uated by comparison with other heuristics on a widely accepted set of instances.
Another possibility is to compare heuristics in competitions.
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5.2 Solutions for Malleable Jobs
As already stated in Section 3.4.3 and Section 5.1 scheduling problems with mal-
leable jobs are one of our main research directions. Malleable jobs are able to use
the given resources more efficiently because of their adaptivity, and the arising
scheduling problems are often less complex.

P1 P2 P3 P1 P2 P3

non-malleable malleable

Figure 5.1. An example for a better schedule made possible by malleable jobs.

Example: better efficiency through malleable jobs Assume we are given two
identical jobs, a machine with three identical processors and an amount of work
for each job which will take three time units in case of sequential execution on
each processor. We also assume linear speedup and a maximal degree of par-
allelism of two. Then fixed-size and moldable parallel jobs lead to an optimal
running time of three time units (even with preemption). Only if both jobs are
malleable, the running time can be reduced to two time units.

This example shows that through the use of malleable jobs instead of moldable
or fixed-size jobs the optimal schedule can be improved. This is due to the higher
flexibility of malleable jobs which makes it possible to use otherwise wasted re-
sources.

Malleable jobs are not only helpful to improve the optimal schedule. For many
scheduling problems it is possible to find an optimal schedule with a reasonable
complexity for the case of malleable jobs (with somehow restricted speedup func-
tions) as opposed to other kinds of jobs for which finding the optimal schedule
for a similar problem is an NP-hard and often computationally infeasible problem
(see Section 3.1.3). Especially restrictions that lead to convex problems are an
important example which is investigated here.

In previous work ([116] and [117] both joint work with Peter Sanders, for the
individual contributions to the articles used in this work see Section 3.4.4) we in-
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vestigated scheduling algorithms for malleable jobs. In Efficient Parallel Schedul-
ing of Malleable Tasks ([116], joint work with Peter Sanders) we investigated the
minimization of the maximal finishing time of a set of malleable jobs with con-
cave speedup functions (P|var|Cmax). In this work we speed up and parallelize a
solution given in Błażewicz et al. [26] and Błażewicz et al. [24]. In Energy Ef-
ficient Frequency Scaling and Scheduling for Malleable Tasks ([117], joint work
with Peter Sanders) we investigated the minimization of the sum of used energy of
a set of malleable jobs with concave speedup functions (plus another more com-
plicated restriction). Although these two articles seem very different, they share a
common approach how to find the optimal solution very quickly. In this work we
take a different look at the approach: instead of analyzing the problem and then
form an algorithm on the basis of the analysis, we start here with the core algo-
rithm that depends on some general conditions and prove that the conditions hold
for some scheduling problems afterwards. This leads to a generalization of the al-
gorithmic approach and thus to a possible applicability to other problems and also
gives deeper insights into the relevant properties of malleable scheduling problems
that allow a fast optimal solution with this approach. The description of this part
is structured into four sections. We start by introducing some general properties
of convex problems which will be used later in Section 5.2.1. In Section 5.2.2 we
introduce an important basic idea for transforming continuous domain schedul-
ing solutions for malleable jobs into solutions for discrete problems which was
initially developed by Błażewicz et al. [24] for the problem P|var|Cmax (with con-
cave speedup functions). The main algorithm is described in Section 5.2.3. In
Section 5.2.4 we describe the parallelization of the main algorithm which was
initially developed by us ([116], joint work with Peter Sanders) for the problem
P|var|Cmax (with concave speedup functions). Application examples of the main
algorithm are given in Section 5.2.5. These examples include the scheduling prob-
lems from the two initial works ([116] and [117]), another new example and one
important example (P|var|∑ωiCi) for which the conditions of our approach are
violated and thus it cannot be applied (we prove the NP-hardness of the problem
instead).

The abstract problem that is investigated throughout most of this section is:
given n independent malleable jobs and m identical resource units, how should
these resources be distributed among the jobs in order to reach an optimal solu-
tion? We focus on problems in which the individual cost caused by a job is a
convex function of the assigned resources. Convex cost functions are somehow
natural as for example the running time of a job might decrease for each further
added core, but the running time improvement becomes smaller with each addi-
tional core.
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5.2.1 Continuous Convex Problems
Scheduling problems with malleable jobs (with convex individual objective func-
tions) often lead to continuous convex problems which are easy to solve. We
will describe such problems and how scheduling problems with malleable jobs fit
into this class. Convexity considerations are also an important part of the already
mentioned work of Błażewicz et al. [26].

There are many textbooks about convex optimization, one of those is by Boyd
and Vandenberghe [16], who define a convex problem as follows:

Convex problem

minimize f0(x)
subject to fi(x)≤ bi, i = 1, . . . ,k

where the functions f0, . . . , fk : Rn→R are convex, which means they satisfy

fi(αx+βy)≤ α fi(x)+β fi(y)

for all x,y ∈ Rn (or the domain of fi) and all α,β ∈ R with α +β = 1,α ≥
0,β ≥ 0. Functions that instead fulfill fi(αx+βy) ≥ α fi(x)+β fi(y) are called
concave. With < instead of ≤ and > instead of ≥ in case of x 6= y and α,β > 0
we call the functions strictly convex or strictly concave respectively.

In scheduling, the target function is usually something like Cmax, the maximum
of resource dependent functions Ci for each job (for example finishing time) or
∑Ei the sum of resource dependent functions Ei for each job (for example energy
consumption). If only one kind of resource is important, Ci or Ei usually only
depend on xi which is the i-th component of x. Problems with more than one
relevant resource are not covered in this section as we are working on a simple
model as described in Section 5.1. The constraints are usually the restrictions
given by the fact that the sum of the resources used by the jobs is bounded by
the available amount of these resources and that the shares of resources cannot
be negative. Hence the restrictions are usually linear for scheduling problems. In
order to show that these scheduling problems are often convex problems if the
resource dependent functions for each job are convex, we will prove two small
lemmata:

Lemma 5.2.1. Let fi(x) be convex for x ∈Rn and i ∈ {1, . . . ,n} then
F(x) = ∑

n
i=1 fi(x) is also convex for x ∈Rn.

Proof. We have to prove F(αx+βy) ≤ αF(x)+βF(y) for all x,y ∈ Rn and all
α,β ∈R with α +β = 1,α ≥ 0,β ≥ 0.
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F(αx+βy) =
n

∑
i=1

fi(αx+βy)

all fi are convex

F(αx+βy)≤
n

∑
i=1

(α fi(x)+β fi(y))

= α

n

∑
i=1

fi(x)+β

n

∑
i=1

fi(y)

= αF(x)+βF(y)

Lemma 5.2.2. Let fi(x) be convex for x ∈Rn and i ∈ {1, . . . ,n} then
F(x) = maxi∈1...n fi(x) is also convex for x ∈Rn (pointwise maximum).

Proof. We have to prove F(αx+βy) ≤ αF(x)+βF(y) for all x,y ∈ Rn and all
α,β ∈R with α +β = 1,α ≥ 0,β ≥ 0.

Let j be such that f j(αx+βy) = maxi fi(αx+βy), then

F(αx+βy) = f j(αx+βy)
f j is convex

F(αx+βy)≤ α f j(x)+β f j(y)
≤ αF(x)+βF(y)

With these lemmata we can see that typical scheduling problems are convex
problems if the relevant job properties are convex in the amount of assigned re-
sources.

There are some properties of convex functions which will be useful for the
remainder of this Section:

Lemma 5.2.3. We now restrict us to functions on R, (x ∈ R). For a convex
function g : x 7→ g(x) the functions x 7→ c1g(x) and x 7→ g(x)+ c2 with c1 ∈ R>0
and c2 ∈R are also convex.

For a concave function h : x 7→ h(x), the function r : x 7→ 1/h(x) is convex on
the domain D of h with h(x) > 0 ∀x ∈ D and D being a closed or open (possibly
unbounded) interval.

If h is strictly monotonic on D, then r is strictly convex.
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Proof. Only the (strict) convexity of r : x 7→ 1/h(x) needs to be proven.
In order to show the strict convexity, we just need h(x) 6= h(y) for all x,y ∈ D

with x 6= y. We show the strict convexity for this case and α,β > 0 with α+β = 1,
the proposition for the general convexity then only needs to be checked for the
case of h(x) = h(y). We have to show:

r(αx+βy)< αr(x)+β r(y) strict convexity of r

⇔ 1
h(αx+βy)

< α
1

h(x)
+β

1
h(y)

As h is concave, we have h(αx+βy)≥ αh(x)+βh(y) and it is thus sufficient
to show:

1
αh(x)+βh(y)

< α
1

h(x)
+β

1
h(y)

⇔ 1 < α
2 +αβ

h(y)
h(x)

+αβ
h(x)
h(y)

+β
2

with 1 = (α +β )2

⇔ 2αβ < αβ
h(y)
h(x)

+αβ
h(x)
h(y)

⇔ 2h(x)h(y)< h2(x)+h2(y)

⇐ 0 < (h(x)−h(y))2 as h(x) 6= h(y)

For the case of h(x) = h(y) we have to show:

1
h(αx+βy)

≤ α
1

h(x)
+β

1
h(y)

⇔ 1
h(αx+βy)

≤ 1
h(x)

⇔ h(αx+βy)≥ h(x)
⇔ h(αx+βy)≥ αh(x)+βh(y) concavity of h

It is worth to note that this proof does not work the other way round (convex
h and concave r) and not for h with a negative image.

In order to solve some convex scheduling problems, we also need to use the
derivatives of the occurring convex functions. Thus we present some lemmata
which connect convex functions with the properties of derivatives. First we take
a lemma from Walter [140, page 303] (the lemma is shortened and simplified for
our needs):
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Lemma 5.2.4. Let f be a convex function on the interval I and I0 an open interval
contained in I. Then f is continuous on I0. The left

−→
f and right

←−
f derivatives

exist in I0 and it holds:
−→
f (x)≤←−f (x)≤−→f (y)≤←−f (y) for x < y x,y ∈ I0

Especially,
−→
f and

←−
f are monotonically increasing in I0.

Lemma 5.2.5. For a strictly convex function f we even have

−→
f (x)≤←−f (x)<−→f (y)≤←−f (y) for x < y x,y ∈ I0

in Lemma 5.2.4.

Proof. The proof is done by contradiction. Assume a strictly convex function f
and x,y ∈ I0 with x < y and

←−
f (x) =

−→
f (y). Then we have for each z ∈ (x,y) that

f ′(z) exists and f ′(z) =
←−
f (x) =

−→
f (y). Hence f is differentiable and its derivative

is integrable on the interval [x,y]. We now set w = (x+ y)/2. Then we get by
the fundamental theorem of calculus (see for example Walter [140, page 260],
Zweiter Hauptsatz) that

∫ w

x
f ′(z)dz = f (w)− f (x) and

∫ y

w
f ′(z)dz = f (y)− f (w)

and thus f (w)− f (x) = f (y)− f (w) which leads to f (1/2 · x+ 1/2 · y) = 1/2 ·
f (x)+1/2 · f (y) which is a contradiction to the strict convexity of f .

For the examples it is often necessary to prove that a function is convex or
even strictly convex. Thus we give a lemma that is useful for this task.

Lemma 5.2.6. Given a continuous function f on the interval (0,m] which is
continuously differentiable on the whole interval except for a finite set of points
0 < b1 < · · ·< b` ≤m called bend points. For each of these bend points bi the left
and right derivatives exist and it holds

−→
f (bi) ≤

←−
f (bi). If the derivatives on the

intervals (0,b1),(b1,b2), . . . ,(b`,m) are (strictly) monotonic increasing, then f is
(strictly) convex.

Proof. In order to prove the (strict) convexity of f , we assume three arbitrary
points x,y,z ∈ (0,m] with x < y < z. Let be α,β ∈ (0,1) with αx+β z = y and
α +β = 1. We now have to show f (y)≤ α f (x)+β f (z) or f (y)< α f (x)+β f (z)
to prove that f is (strictly) convex.

From the fundamental theorem of calculus (see for example Walter [140, page
260], Zweiter Hauptsatz) we know that

∫ bi+1
bi

f ′(w)dw = f (bi+1)− f (bi). We
also know that for the appropriate i, j,k (x ≤ bi and no bend point in between,
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b j ≤ y ≤ b j+1 and bk ≤ z and no bend point in between) we have
∫ bi

x f ′(w)dw =

f (bi)− f (x) and
∫ y

b j
f ′(w)dw = f (y)− f (b j) and

∫ b j+1
y f ′(w)dw = f (b j+1)− f (y)

and
∫ z

bk
f ′(w)dw = f (z)− f (bk) if the respective bend points are not 0 or m.

Hence we can now compute f (y)− f (x) and f (z)− f (y). If x and y are in the
same interval, we have f (y)− f (x) =

∫ y
x f ′(w)dw otherwise we have

f (y)− f (x) =
∫ bi

x
f ′(w)dw+

j−1

∑
h=i

∫ bh+1

bh

f ′(w)dw+
∫ y

b j

f ′(w)dw

As a finite number of points are irrelevant for the integral, we can just write
f (y)− f (x) =

∫ y
x f ′(w)dw in both cases. Similarly f (z)− f (y) =

∫ z
y f ′(w)dw.

Let C = f ′(y) or C =
−→
f (y) if f ′(y) does not exist. Then we have f ′(w) < C

for all w ∈ (x,y) and f ′(w) > C for all w ∈ (y,z) in the strictly monotonic case
(in the monotonic case we have ≤ and ≥ instead) except for bend points where
f ′(w) does not have to exist. The finite number of bend points do not change the
integral. Thus we have f (z)− f (y)>C · (z− y) =C ·α(z− x) and f (y)− f (x)<
C · (y− x) =C ·β (z− x). Thus β ( f (z)− f (y))>C ·αβ (z− x)> α( f (y)− f (x)).
This leads to α f (x)+β f (z)> f (y) which was to prove. In the non-strict case we
only have to replace < by ≤ and > by ≥ and also get the desired result.

Lemma 5.2.7. A convex function f : (0,m] → R with f (x) −−→
x→0

∞ is strictly

monotonically decreasing on (0, x̂) where x̂ denotes the smallest value for which
f reaches its minimum.

Proof. Assume: f is not strictly monotonically decreasing on (0, x̂). Hence there
exist x,y with 0 < x < y < x̂ and f (x)≤ f (y) but f (x), f (y)> f (x̂). Let α,β > 0
with α +β = 1 and αx+β x̂ = y. Then α f (x)+β f (x̂)< f (y) which contradicts
the convexity. Due to the continuity of convex functions (see Lemma 5.2.4) and
f (x)−−→

x→0
∞ the minimum of f is realized for an x̂ ∈ (0,m].

5.2.2 Using Continuous Domain Solutions for Discrete Prob-
lems

An important difference of convex problems to typical scheduling problems is
that the variables x are continuous whereas the variables in scheduling problems
are often discrete (amount of cores a job gets for example). For large quantities
like the number of 4KB tiles of the 16GB main memory of a workstation that are
divided between different jobs (4 million units!) one can just round the optimal
solution to the next smaller integer value and assume that this does not change
the result much. In case of resources like cores where most machines have maybe



122 Chapter 5. Fast and Efficient Schedule Computation

tens or hundreds of units the rounding errors might be not that small any more. A
solution how to overcome this problem in case of malleable tasks (with one rele-
vant resource) is given by Błażewicz et al. [24]. The idea was used and simplified
by us in Efficient Parallel Scheduling of Malleable Tasks ([116], joint work with
Peter Sanders). We present a version of this idea adapted to our approach.

Let f : N → R be the function from resource usage to some scheduling-
relevant property of a job, for example the running time or the energy consumption
on x cores (x ∈ N). The domain of f can also be {k ∈ N | k ≤ `} for an ` ∈ N.
A function f defined on N is convex if f (αx + βy) ≤ α f (x) + β f (y) for all
x,y∈N and all α,β ∈ [0,1] such that αx+βy∈N. Such functions are typical for
scheduling problems with malleable jobs. An example of such a discrete convex
function can be seen in Figure 5.2. We now show what a natural extension on a
continuous domain looks like for such functions and that it is useful.

cores

running time

1

1

Figure 5.2. An example of a discrete convex function which maps the number of cores to
the running time (the red dashed lines indicate the convexity).

First we have to define what is meant if a job is given a resource amount of x
with x∈R>0\N for a time interval of length T in the case of indivisible resources
like cores or memory tiles.

Definition 5.2.8. Let f : N→ R be a discrete function from resource usage to
some scheduling-relevant property of a job. The job runs for some time interval
of length T (running time of the whole schedule) with an average amount of
resources x. Then we define the continuous domain extension f : R>0 → R by
the resulting value for the property if the job runs on bxc resource units for time
(1−x+bxc) ·T and on bxc+1 resource units for the remaining time ((x−bxc) ·T ).

There are several things to note about Definition 5.2.8:

• The definition leads to f (x) = f (x) for x ∈ N. Depending on the property
f (x) this might not be just the weighted average of f (bxc) and f (bxc+ 1).
Especially the definition does not define how the values of f can be computed
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as the value for running on bxc resource units for time (1−x+bxc) ·T and on
bxc+ 1 resource units for the remaining time ((x−bxc) ·T ) is dependent on
the scheduling problem.

• As we assume the jobs to be malleable, the scheduling-relevant property has
a value for each possible distribution of the times (during T ) the job runs on
bxc or bxc+1 resource units. For example a job which uses four cores for half
of the time and five cores for the other half of the time has a certain energy
consumption.

• For our main algorithm we will require that the value of the scheduling-
relevant property stays the same for all possible sequences of running on bxc
or bxc+1 resource units as long as the average resource usage stays the same
(condition 1 in Definition 5.2.10, see below). Thus the placement explained
below will never change the objective value of the schedule.

• The restriction to bxc or bxc+1 resource units to reach an average of x might
lead to suboptimal results for some scheduling problems. Condition 1 in Def-
inition 5.2.10 only allows scheduling problems which still allow an optimal
result with this restriction.

• Examples of scheduling problems (each with a problem-specific f ) can be
found in Section 5.2.5. Each of these problems results in a different (problem-
specific) computation for f .

The next step is to prove that such a resource allocation (x1, . . . ,xn) ∈ Rn
>0

during a time interval of length T with ∑
n
j=1 x j ≤m for a maximum of m available

resource units is possible for malleable jobs and indivisible resources. We will
show how to place all n malleable jobs within the time interval [0,T ] with each
job j using bx jc and bx jc+1 resource units for some fraction of the time interval
such that the average resource usage is x j.

Discretization of a solution for malleable jobs We are given a resource alloca-
tion (x1, . . . ,xn) ∈Rn

>0 during the time interval [0,T ]. With some simple instruc-
tions we can build a discrete resource allocation for malleable jobs. All we have
to do is to fit all jobs within the [0,T ]× [0,m] time resource rectangle. A more
formal version of this is given by Błażewicz et al. [24].

Job 1 gets bx1c+1 units of the resource for the time interval [0,(x1−bx1c)T ]
and bx1c units of the resource for the time interval [(x1−bx1c)T,T ] (a duration of
(1− x1 + bx1c)T which leads to an average resource usage of x1 for the full time
interval [0,T ]. After placing job 1 we have a step at time (x1−bx1c)T (possibly
time 0 for x1 = bx1c) where the number of used resources is reduced by one,
otherwise the resource usage remains constant.

Job 2 similarly runs on bx2c+1 resources for (x2−bx2c)T time units and on
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T

time

cores

job

T

time

cores

status

T

time
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time
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wrap → result

Figure 5.3. A malleable job which runs on 5 or 4 cores during its running time is placed
on an already partially loaded machine.

bx2c resources for (1−x2+bx2c)T time units leading to an average resource usage
of x2. We put job 2 into the time resource rectangle starting at the time of the step
(with bx2c+1 resources) and the remaining part of job 2 is wrapped around to start
from time 0. If job 2 uses two different amounts of resources during its running
time, the original step is removed, but a new one can be created if (x2−bx2c)T is
different from the time between the original step and T . If x2 = bx2c, the original
step is just shifted within the time resource rectangle. Hence job 2 can be placed
without holes and such that the border between the used part of the time resource
rectangle and the remaining part contains at most one step. Figure 5.3 gives an
example where the resource type is cores.

The remaining jobs can be placed like job 2 and thus after every placed job,
there is at most one step between the used and not used part of the time resource
rectangle. As every job j uses an area of x j ·T in the time resource rectangle and
there are no holes, all jobs can be placed within [0,T ]× [0,m] because ∑

n
j=1 x j ≤

m. Every job can be placed in time O(1). Hence we have proven the following
lemma which also fits Definition 5.2.8 for the continuous domain extension:

Lemma 5.2.9. A resource allocation (x1, . . . ,xn)∈Rn
>0 for malleable jobs during

the time interval [0,T ] with ∑
n
i=1 xi ≤ m can be satisfied within the [0,T ]× [0,m]

time resource rectangle with each job j running on bx jc or bx jc+1 resource units
throughout [0,T ]. The placement can be computed in time O(n).
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For the placement of a job we just need the position of the step after which it
is placed. Hence we can parallelize the placement by computing (as a collective
operation) the prefix sum of the resource usages of the jobs in the order of their
placement. More details on the parallelization are given in Section 5.2.4.

With this we have now shown how to transform a non-integer resource al-
location into an integer allocation for malleable jobs. This is the basis to form
continuous domain extension functions f j : R>0 → R from the given discrete
functions f j : N→ R. In order to get a convex problem, we have to show that
the resulting functions f j are convex (and thus continuous, see Lemma 5.2.3) for
the investigated problem. Some problems where this holds are described in Sec-
tion 5.2.5.

5.2.3 Core Algorithm
This section is a generalization of our work presented in [116] and [117] (both
joint work with Peter Sanders). In order to shorten the description, we will call
the case in which the objective is to minimize a common maximum the max-case
and the case with the objective of minimizing a sum the sum-case. The sum-case
was developed in [117] (joint work with Peter Sanders) for the special case of
energy minimization and to our knowledge was not used before. In both cases we
have a set of independent malleable jobs j and for each job a function f j :N→R

which is convex or even strictly convex and provides an objective value for each
amount of assigned resources. We do not assume that our algorithm has to read
all possible function values for each possible resource amount (n ·m values, see
discussion below). Hence running times sublinear in nm are useful. As the jobs
are malleable it is possible that a job runs on different resource amounts during
the duration of the schedule [0,T ].

In the beginning of this section we introduce some conditions that a scheduling
problem has to fulfill to be solvable with our approach. After the conditions we
state the main theorem and then we give a description of the core scheduling
algorithm. The core algorithm uses interval splitting as the basic technique to find
a D∗ = f1(x∗1) = · · · = fn(x∗n) (max-case) or D∗ = f1

′
(x∗1) = · · · = fn

′
(x∗n) (sum-

case). It is shown below that this leads to an optimal solution.

With Definition 5.2.8 on the f j :N→R we get continuous domain functions
f j :R>0→R which map the average resource usage throughout the running time
of the schedule to an objective value. The f j and their computation are problem-
specific. Thus without having a specific problem we can only define/require some
general properties. These continuous domain functions need to be well-defined
which means in our case that the function value is independent of the times when
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one resource amount is used or the other. All function values with the same av-
erage resource usage must be the same (as long as only two neighboring resource
amounts are used). Special care needs to be taken in case of problems in which
the function value depends on the finishing time of a job for jobs which get an av-
erage resource amount of less than 1. Also we need to make sure that an optimal
solution can be found within the set of solutions in which each job only uses two
neighboring resource amounts throughout the running time of the schedule. This
implicitly means that there is an optimal solution in which all jobs which get an
resource amount of 1 or more run thoughout the whole duration of the schedule.

Altogether we get the following condition 1: the continuous domain functions
built according to Definition 5.2.8 are well-defined. The set of schedules in which
a job uses only two neighboring resource amounts throughout the running time of
the schedule forms a dominant set for the problem and it does not matter for the
overall objective value when during [0,T ] a job uses the one amount or the other
(as long as the average is correct).

The last part of the condition comes from the problem that the translation from
continuous domain to discrete schedules given in Section 5.2.2 does not guarantee
the times during which a job will run on one resource amount or the other. That
the overall objective value (which is the sum or the maximum of the f j) cannot
change due to the times a job uses one resource amount or the other is already
given as the f j are well-defined and thus cannot change their objective value due
to a change of time when they use one resource amount or the other (as long as the
average stays the same). We keep the restriction in the condition to make things
better understandable. With that condition we now have a continuous domain
scheduling problem. The scheduling problem has the objective to find a resource
distribution (x1, . . . ,xn) ∈ Rn

>0 (with ∑
n
j=1 x j ≤ m) which minimizes the sum or

the maximum of the function values f j(x j) for each job j.

We now take a deeper look at the functions f j : R>0→ R built according to
Definition 5.2.8. The definition extends the function onN to a function onR>0 by
problem-specific interpolations on the intervals (k,k+ 1). The points where two
interpolations meet (usually a k ∈ N) are called bend points (their number is in
O(m)). We assume that the interpolations are done in a way that leads to a contin-
uously differentiable function on the intervals (k,k+ 1) between the integers for
k ∈ {0, . . . ,m−1}. A slightly generalized condition is that the f j are continuously
differentiable on (0,m] except for the set of bend points, in which the left and right
derivative might differ but the left derivative is continuous from the left and the
right derivative from the right. We also assume that the whole function on (0,m] is
continuous. We further assume that a job that gets no resources at all will produce
a very bad objective value. Thus we assume f j(x) −−→

x→0
∞. The main assump-
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tion is that the objective functions f j are convex. From Lemma 5.2.3 we know
that for example if the objective function is the running time of the job, a concave
speedup function guarantees the assumed convexity. Lemma 5.2.4 shows that con-
vex functions are continuous and thus continuousity is always fulfilled for convex
functions. Due to their convexity each function f j must be strictly monotonically
decreasing between 0 and its first minimum x̂ j and monotonically increasing for
all x≥ x̂ j (see Lemma 5.2.7). Also due to the convexity the derivatives are mono-
tonically increasing (see Lemma 5.2.4). In fact we do not really need the left and
right derivatives for the bend points. Throughout this work having limx→b f j

′
(x)

for bend points b would be sufficient as the proofs use the integrals over f j
′ which

are not affected by the change of a single value. On the other hand the presentation
becomes simpler by using the left and right derivatives.

As the objective is minimization and we do not have to assign all resources,
we can also assume that the functions are constant for x ≥ x̂ j as assigning more
than x̂ j resources brings no benefit. For the sum-case we additionally require strict
convexity on the interval (0, x̂ j). Altogether we assume the following condition 2
to be fulfilled for all continuous domain functions f j: all functions f j are convex,
defined on (0,m], fulfill f j(x)−−→

x→0
∞ and their number of bend points is in O(m).

In the sum-case we additionally require strict convexity between 0 and their first
minimum x̂ j and that the functions are continuously differentiable on (0,m] except
for the bend points, in which the left and right derivative might differ but the left
derivative is continuous from the left and the right derivative from the right.

In order to compute an optimal solution (find D∗ with D∗ = f1(x∗1) = · · · =
fn(x∗n) (max-case) or D∗= f1

′
(x∗1) = · · ·= fn

′
(x∗n) (sum-case)), we have to provide

a way to invert the functions f j (max-case) or their derivatives f j
′ (sum-case) on

the interval (0, x̂ j]. As we do not assume the algorithm to read all possible function
values of the f j (or even worse the f j) for input values x j ≤ x̂ j we have to define
how our algorithm can access these values and the effort for such an access.

The inversion is also the reason why the functions/derivatives cannot be only
monotonically decreasing/increasing but have to be strictly monotonically de-
creasing/increasing. If there is a difference between the left and right derivative of
f j at a bend point b, the inversion maps all values between the left and right deriva-
tive to b. We assume that the interpolations on the intervals (k,k+1) are given in
a closed algebraic form and that we can access the value of f j(k) in time O(1) for
each job j and each k ∈ {1, . . . ,m}. Thus the inverse can be computed in O(logm)
by finding the correct interval (k,k+1) (or more generally the appropriate interval
between neighboring bend points) through interval halving and then inverting the
function given on (k,k+1) in constant time. Similarly the minima x̂ j can be com-
puted in time O(logm). From Definition 5.2.8 we have f j(x) = f j(x) for x ∈N.
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By interval halving we can try to find a k ∈N with f j(k−1)> f j(k)≤ f j(k+1).
Due to the convexity of f j the smallest minimum x̂ j can be found in (k−1,k+1) if
such a k exists or in (m−1,m] in the other cases. Usually it is possible to compute
the number of bend points of a function between two points x,y ∈ (0, x̂ j] in time
O(1) because the number of bend points in (x,y) is just the number of integers
in that interval. This is condition 3: A computation is given for f j (max-case)
or f j

′ and f j (sum-case) and the respective inversion on the interval (0, x̂ j] which
runs in time O(logm). This includes computations for the left

−→
f j and right

←−
f j

derivatives for the sum-case. For all minimum points x̂ j < m we have
←−
f j (x̂ j)≥ 0

as the function cannot decrease after the minimum. For x̂ j = m the right derivative←−
f j (x̂ j) does not matter as it is outside of the usable definition space. To simplify
the exposition we set

←−
f j (m) = 0 in the max-case when x̂ j = m to avoid some un-

necessary distinctions of cases. For a bend point x we set ( f j
′
)−1(D) = x for any

D with
−→
f j (x)≤ D≤←−f j (x). We also assume that the x̂ j are given or can be easily

computed (in time O(logm)). For the bend points we assume that the number of
bend points within the interval (x,y) or [x,y] for 0 < x < y≤ x̂ j can be computed
in time O(1) and that we can find the k-th bend point of a job in time O(1) for
each k.

Because of the interval splitting approach, the general algorithm can also only
narrow down the optimal solution. For many scheduling problems with malleable
jobs, an exact solution can be computed very quickly if the optimal resource
assignments for each job are known to be contained in an interval between two
neighboring bend points or known to be the value of a single bend point. This is
usually the case if no f j(b) (max-case) or

−→
f j (b) or

←−
f j (b) (sum-case) for any bend

point b is contained within the upper D and lower D bound for D∗ (boundaries
not included). If such a computation exists for a problem we call it final solution.
Otherwise we can only compute an approximate solution. Hence there is one last
condition for finding the optimal solution for a scheduling problem, condition
4: a final solution can be computed in time O(n(logn + logm) log(nm)) if no
f j(b) (max-case) or

−→
f j (b) or

←−
f j (b) (sum-case) is contained within (D,D) for any

bend point b. The maximal running time stems from the running time of the core
algorithm which will not be slowed down by such a final solution computation
in the O-calculus. The general idea why such a final solution might exist is that
the functions/derivatives f j or f j

′ are often given as a closed formula between two
neighboring bend points which often enables the computation of a final solution
by using some algebra.

Altogether we have to provide four things (or proofs for them) to obtain an op-
timal schedule through the usage of the core algorithm for a scheduling problem:
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Definition 5.2.10. A scheduling problem is said to fulfill the basic conditions if
the following four conditions are met for this problem:

1. The continuous domain functions built according to Definition 5.2.8 are well-
defined. The set of schedules in which a job uses only two neighboring re-
source amounts throughout the running time of the schedule forms a domi-
nant set for the problem and within that set it does not matter for the overall
objective value for which part of [0,T ] a job uses one amount or the other (as
long as the average is correct).

2. All functions f j are convex, defined on (0,m], fulfill f j(x) −−→
x→0

∞ and their

number of bend points is in O(m). In the sum-case we additionally require
strict convexity between 0 and their first minimum x̂ j and that the functions
are continuously differentiable on (0,m] except for the bend points. In the
bend points the left and right derivative might differ, but the left derivative is
continuous from the left and the right derivative from the right.

3. A computation is given for f j (max-case) or f j
′ and f j (sum-case) and the

respective inversion on the interval (0, x̂ j] which runs in time O(logm). This
includes computations for the left

−→
f j and right

←−
f j derivatives for the sum-

case. To simplify the exposition we set
←−
f j (m)= 0 in the sum-case when x̂ j =m

and for a bend point x we set ( f j
′
)−1(D) = x if

−→
f j (x) ≤ D ≤←−f j (x). We also

assume that the x̂ j are given or can be easily computed (in time O(logm)).
For the bend points we assume that the number of bend points within the
interval (x,y) or [x,y] for 0 < x < y ≤ x̂ j can be computed in time O(1) and
that we can find the k-th bend point of a job in time O(1) for each k.

4. Assume we know a lower D and an upper D bound for D∗ and no f j(b) (max-
case) or

−→
f j (b) or

←−
f j (b) (sum-case) for any bend point b is contained within

(D,D). Then there exists a final solution computation for the problem which
can compute the final optimal solution in time O(n(logn+ logm) log(nm)).

With these conditions we get the following result:

Theorem 1. We consider a class of scheduling problems where an amount m
of one discrete resource has to be distributed among n different malleable jobs.
Every job j has a convex, discrete function f j which maps a given resource amount
x ∈ N to some value f j(x) ∈ R. By using the continuous domain extension f j
of f j as defined in Definition 5.2.8, the resource distribution between different
jobs can be defined as x = (x1, . . . ,xn) ∈Rn

>0 with x j being the average assigned
resource amount of job j during a time interval [0,T ]. This class of scheduling
problems is partitioned into two sub-classes. The first sub-class are scheduling
problems where the objective is to find a resource distribution which minimizes
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the maximum value max j f j(x j) of the functions. The second sub-class consists of
scheduling problems which have the goal to minimize the sum ∑

n
j=1 f j(x j) of these

functions.
In both cases Algorithm 5.1 computes the optimal schedule (and the optimal

resource distribution x∗ = (x∗1, . . . ,x
∗
n)) in time O(n(logn+ logm) log(nm)) if the

conditions from Definition 5.2.10 (henceforth called the conditions of the theorem)
are met.

If no fast final solution computation is given, an upper bound of the degra-
dation against the optimal solution can be halved in time O(n logm) per halving
step.

The proof of this theorem will be given following a description of the algo-
rithm and some preliminary lemmata.

Optimality conditions The basic idea of the general algorithm is that an
optimal solution x∗ = (x∗1, . . . ,x

∗
n) fulfills f1(x∗1) = · · · = fn(x∗n) in the max-case

and f1
′
(x∗1) = · · · = fn

′
(x∗n) in the sum-case (if f j

′ does not exist see details in
Lemma 5.2.14 below). First we have to prove two technical lemmata for the
max-case and the sum-case which then will be used to prove that such solutions
exist:

Lemma 5.2.11. Given an optimization problem where max j f j(x j) is minimized
under the condition ∑

n
j=1 x j ≤ m, x j ≥ 0 and all functions f j fulfill condition 2

for the max-case. We set D = max j f j(x̂ j) and D = max j: x̂ j≥m/n f j(m/n). If D is
defined (which means that we have at least one j with x̂ j ≥m/n) and D≤D, then

F−1 : [D,D]→R>0 D 7→
n

∑
j=1

( f j)
−1(D)

is well-defined, continuous, strictly monotonically decreasing (as well as the sin-
gle ( f j)

−1) and F−1(D)≤ m. If D is undefined or D > D then F−1(D)≤ m.

Proof. Each function f j is strictly monotonically decreasing and continuous on
(0, x̂ j].

Walter [140, page 124] contains a helpful theorem: The function f is contin-
uous and strictly monotonic on an interval I. Then the inverse function on the
interval J = f (I) is continuous and strictly monotonic in the same sense.

Hence ( f j)
−1 exists on the interval [ f j(x̂ j),∞) and is continuous and strictly

monotonically decreasing. As D = max j f j(x̂ j) and the sum of a finite number
of continuous and strictly monotonically decreasing functions is itself continuous
and strictly monotonically decreasing, we have that F−1 is well-defined, continu-
ous and strictly monotonically decreasing on [D,∞).
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The only things left to prove are F−1(D) ≤ m in case D is defined and D ≤
D, and F−1(D) ≤ m in the other cases. Let us first look at the functions with
x̂ j ≥ m/n. Here we have ( f j)

−1(D) ≤ m/n as D ≥ f j(m/n) and f j is strictly
monotonically decreasing. For the functions with x̂ j < m/n we have two cases:
1. D≥ f j(x̂ j), then we have ( f j)

−1(D)≤ x̂ j < m/n. 2. D < f j(x̂ j), then we have
D<D. Hence if D is defined and D≥D, we have F−1(D)≤m. If D is not defined,
we have x̂ j < m/n for all j. Thus ( f j)

−1(D) < m/n and F−1(D) ≤ m. If D > D
we have two cases: 1. For jobs with x̂ j < m/n it is clear that ( f j)

−1(D)< m/n. 2.
For jobs with x̂ j ≥ m/n we have ( f j)

−1(D) < ( f j)
−1(D) ≤ m/n due to the strict

monotonicity. And thus altogether F−1(D)≤ m.

Lemma 5.2.12. Given an optimization problem where ∑
n
j=1 f j(x j) is minimized

under the condition ∑
n
j=1 x j ≤ m and all functions f j fulfill condition 2 and 3 for

the sum-case. We set D = min j
−→
f j (m/n) and D = 0. If D≤ D we have that

F−1 : [D,D]→R>0 D 7→
n

∑
j=1

( f j
′
)−1(D)

is well-defined, continuous, monotonically increasing (as well as the single
( f j
′
)−1) and F−1(D)≤ m. If D > D we have F−1(D)≤ m.

Proof. As f j(x) −−→
x→0

∞ we also have that f j
′
(x) −−→

x→0
−∞. We know from

Lemma 5.2.5 that all
−→
f j are strictly monotonically increasing on (0, x̂ j]. With the

assumptions
←−
f j (m) = 0 when x̂ j = m (for other x̂ j we always have

←−
f j (x̂ j) ≥ 0)

and ( f j
′
)−1(D) = x if

−→
f j (x)≤ D≤←−f j (x) for a bend point x the inverse ( f j

′
)−1 is

well-defined on (−∞,0]. Hence F−1 is well-defined on (−∞,0].
Let us assume D≤ 0. We have that all

−→
f j are strictly monotonically increasing

(see Lemma 5.2.5) on (0, x̂ j]. Let D1,D2 be such that D1 < D2 ≤ 0. Then let
x1 ∈ (0, x̂ j] be the largest x with

−→
f j (x) ≤ D1 and let x2 ∈ (0, x̂ j] be the largest x

with
−→
f j (x) ≤ D2 (the left derivatives are continuous from the left). As D1 < D2,

we have that x1 ≤ x2. For all D we have that ( f j
′
)−1(D) = xD where xD is the

largest x with
−→
f j (x)≤D. Hence ( f j

′
)−1 is monotonically increasing. Thus F−1 is

monotonically increasing. As D≤−→f j (m/n), we have ( f j
′
)−1(D)≤ m/n and thus

F−1(D)≤ m.
If D > D, we have x̂ j < m/n as

−→
f j (x̂ j)≤ 0. Thus ∑ j x̂ j = F−1(D)≤ m.

The only thing left to prove is the continuity of F−1. As F−1 is the sum of a
finite number of functions, it is sufficient to prove the continuity of each of these
functions. Let ( f j

′
)−1 be an arbitrary one of these functions. So given an ε > 0
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and a D ∈ (−∞,0], we have to show that there exists a δ > 0 such that for all
D̃ ∈ (−∞,0] with |D− D̃| ≤ δ we have |( f j

′
)−1(D)− ( f j

′
)−1(D̃)| ≤ ε .

Walter [140, page 124] contains a helpful theorem: the function f is contin-
uous and strictly monotonic on an interval I. Then the inverse function on the
interval J = f (I) is continuous and strictly monotonic in the same sense.

f j
′ is continuous and strictly monotonic between 0 and the first bend point b1,

between two neighboring bend points bk,bk+1 and the last bend point b` and x̂ j (if
x̂ j itself is not the last bend point). Then for D ∈ (0,

−→
f j (b1))∪ (

←−
f j (b1),

−→
f j (b2))∪

·· ·∪ (←−f j (b`),
−→
f j (x̂ j)) the continuity is proven. For D ∈ [

−→
f j (bk),

←−
f j (bk)] the func-

tion ( f j
′
)−1 is constant and thus continuous. It remains to show the continu-

ity for D =
−→
f j (bk) and D =

←−
f j (bk) (we show it for the first case, the second is

analogous).
−→
f j is strictly monotonically increasing, hence

−→
f j (bk− ε) <

−→
f j (bk)

(we assume 0 < bk − ε , otherwise we use a fitting smaller ε). If we set δ =

min{−→f j (bk)−
−→
f j (bk− ε),

←−
f j (bk)−

−→
f j (bk)}, then this δ > 0 fulfills the continu-

ity condition. If
←−
f j (bk)−

−→
f j (bk) = 0, we use

←−
f j (bk + ε)−←−f j (bk) instead (for

bk + ε ≤ x̂ j).

With these rather technical lemmata we can now formulate the basic properties
for optimal solutions as two lemmata:

Lemma 5.2.13. Given an optimization problem where max j f j(x j) is minimized
under the condition ∑

n
j=1 x j ≤m, x j ≥ 0 and all functions f j fulfill condition 2 for

the max-case. For a solution x∗ = (x∗1, . . . ,x
∗
n) we define the solution-condition:

f1(x∗1) = · · ·= fn(x∗n) = D∗

Solutions which fulfill the solution-condition are optimal solutions if one of the
following two additional conditions are fulfilled: 1. There is at least one job
j with f j(x∗j) = f j(x̂ j) (one job has reached its minimum, solution-condition-1).
2. ∑

n
j=1 x∗j = m and x∗j ≤ x̂ j for all j (all resources are used, but no job has

more resources than needed to reach its minimum, solution-condition-2). We set
D = max j f j(x̂ j) and D = max j: x̂ j≥m/n f j(m/n). If D is defined (which means that
we have at least one j with x̂ j ≥ m/n) and D ≤ D, then there exists a solution
which fulfills the solution-condition and is optimal with D∗ ∈ [D,D] (solution-
condition-2 or solution-condition-1). In the other cases such a solution exists
for D∗ = D (solution-condition-1). Especially if D∗ = D produces a feasible
solution (∑n

j=1 x j ≤ m), this solution is always optimal. If an optimal solution
x∗ = (x∗1, . . . ,x

∗
n) fulfills the solution-condition and x∗j < x̂ j for all j, then the

solution uses all resources (∑n
i=1 x∗i = m) and is unique.
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Proof. Assume we have a solution x∗ = (x∗1, . . . ,x
∗
n) which fulfills f1(x∗1) = · · · =

fn(x∗n) = D∗. If there is a job j which has reached its minimum f j(x∗j) = f j(x̂ j)
for this solution, it is clear that no better solution can exist and thus the solution
is optimal (solution-condition-1). If all resources are used (∑n

i=1 x∗i = m), we have
two cases: either a job has already reached its minimum (then we have an optimal
solution, see above) or we have 0 < x∗i < x̂i for all jobs. Let y = (y1, . . . ,yn) be a
feasible solution different from x∗. Then there exists at least one j with y j < x∗j as
∑

n
i=1 yi ≤m. As f j is convex, we know that it is strictly monotonically decreasing

on the interval (0, x̂ j) (see Lemma 5.2.7). Thus it follows from y j < x∗j < x̂ j that
f j(y j) > f j(x∗j) = D∗ and thus that y has a worse global objective value than x∗

(solution-condition-2).
Assume we have an optimal solution y∗ = (y∗1, . . . ,y

∗
n) with ∑

n
j=1 y∗j < m and

y∗j < x̂ j for all j. As f j is strictly monotonically decreasing on the interval (0, x̂ j),
there exists an ε > 0 such that by adding δ with 0 < δ ≤ (m−∑

n
j=1 y∗j)/n to each

y∗j , we have f j(y∗j +δ )≤ f j(y∗j)− ε for all j which leads to an improved solution
(by ε). Thus an optimal solution uses all available resources if y∗j < x̂ j holds for
all j. As we have seen above that different solutions are always worse in this case,
the solution is even unique if y∗j < x̂ j holds for all j.

It remains to show that an optimal solution which fulfills the solution-
condition with D∗ ∈ [D,D] must always exist. If D is undefined or D > D, we
know from Lemma 5.2.11 that F−1(D)≤ m and thus that a feasible solution with
D∗ = D exists which fulfills the solution-condition. Feasible solutions for D∗ = D
always fulfill solution-condition-1 and thus are optimal solutions. If D is defined
and D ≤ D, we know from Lemma 5.2.11 that F−1(D) ≤ m. If F−1(D) ≤ m,
we have still a feasible optimal solution with D∗ = D (solution-condition-1).
If F−1(D) > m, we know from Lemma 5.2.11 that F−1 : [D,D] → R>0 is a
continuous strictly monotonically decreasing function with F−1(D) ≤ m and
F−1(D) > m. Hence there exists a D ∈ [D,D] with F−1(D) = m (interme-
diate value theorem, see Walter [140, page 123]). For D∗ = D we get an
optimal solution which fulfills the solution-condition and uses all resources
(solution-condition-2).

Lemma 5.2.14. Given an optimization problem where ∑
n
j=1 f j(x j) is minimized

under the condition ∑
n
j=1 x j ≤ m and all functions f j fulfill condition 2 and 3 for

the sum-case. For a solution x∗ = (x∗1, . . . ,x
∗
n) we define the solution-condition:

f1
′
(x∗1) = · · ·= fn

′
(x∗n) = D∗

As there can be different left (
−→
f j ) and right (

←−
f j ) derivatives for f j at x∗j , we define

the condition f1
′
(x∗1) = · · · = fn

′
(x∗n) as fulfilled if there exists a D∗ such that−→

f j (x∗j)≤ D∗ ≤←−f j (x∗j) ∀ j ∈ {1 . . .n}.
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A solution which fulfills f1
′
(x∗1) = · · · = fn

′
(x∗n) is an optimal solution if one

of the following two additional conditions are fulfilled: 1. We have f j(x∗j) =
f j(x̂ j) for all jobs (all jobs have reached their minimum, solution-condition-1).
2. ∑

n
j=1 x∗j = m and x∗j ≤ x̂ j for all j (all resources are used, but no job has

more resources than needed to reach its minimum, solution-condition-2). We set
D = min j

−→
f j (m/n) and D = 0. If D ≤ D, we have that there exists a solution

which fulfills solution-condition-1 or solution-condition-2 (and is thus optimal)
with D∗ ∈ [D,D]. In case of D > D such a solution exists for D∗ = D and fulfills
solution-condition-1. Especially if D∗=D produces a feasible solution (∑n

j=1 x j≤
m), this solution is always optimal. If the right derivative is negative at x∗j for
at least one f j for an optimal solution x∗, then the solution uses all resources
(∑n

j=1 x∗j = m) and is unique.

Proof. It is clear that a feasible resource distribution for which each job reaches
its minimum is optimal (solution-condition-1). For all solutions we can assume
x∗j ≤ x̂ j. As all

−→
f j (x)≤ 0 and are strictly monotonically increasing for x ∈ (0, x̂ j]

(which means that for D∗ = 0 all jobs have reached their minimum), we can also
restrict ourselves to D∗ ≤ 0. Let us now look at a solution x∗ = (x∗1, . . . ,x

∗
n) which

fulfills f1
′
(x∗1) = · · · = fn

′
(x∗n) = D∗ and ∑

n
j=1 x∗j = m and x∗j ≤ x̂ j for all j. Let

y= (y1, . . . ,yn) be a different feasible solution (∑ j y j ≤m). We can assume y j ≤ x̂ j
as reducing a larger y j to x̂ j cannot increase the objective value but frees resources.
Let us now compare the objective values of the solutions y and x∗ by comparing

the objective values of each job. We have f j(x∗j)− f j(y j) =
∫ x∗j

y j f j
′
(x)dx as the

values of the bend points can be ignored. Let us first look at the jobs j with x∗j > y j.
Here y produces a worse solution than x∗ as the f j are strictly monotonically
decreasing. f j

′ is strictly monotonically increasing on (0, x̂ j] and
−→
f j (x∗j) ≤ D∗,

thus we have

f j(x∗j)− f j(y j) =
∫ x∗j

y j

f1
′
(x)dx≤ D∗ · (x∗j − y j)

As f j
′ is strictly monotonically increasing on (0, x̂ j] and

←−
f j (x∗j) ≥ D∗, we have

analogously for the jobs j with x∗j < y j:

f j(y j)− f j(x∗j) =
∫ y j

x∗j
f1
′
(x)dx≥ D∗ · (y j− x∗j)

which is equivalent to f j(x∗j)− f j(y j)≤ D∗ · (x∗j − y j).
For x∗j = y j we have f j(x∗j)− f j(y j) = 0 as well as D∗ · (x∗j − y j) = 0. Hence

we have in all cases f j(x∗j)− f j(y j)≤ D∗ · (x∗j − y j) and we can now compare the
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objective values of y and x∗:

n

∑
j=1

f j(x∗j) −
n

∑
j=1

f j(y j) ≤ D∗ ·
(

n

∑
j=1

x∗j −
n

∑
j=1

y j

)
≤ 0

The last inequality follows from the fact that ∑
n
j=1 x∗j = m and ∑

n
j=1 y j ≤ m and

D∗ ≤ 0. Hence the objective value for y is at least as large as the objective value
for x∗. As y is a general feasible solution with no further restrictions, this shows
that x∗ is an optimal resource allocation (solution-condition-2).

For the existence of the optimal solutions let us first look at the case of D≥D.
f j
′ is strictly monotonically increasing on (0, x̂ j] and

−→
f j (x̂ j) ≤ 0. Hence for−→

f j (m/n) ≥ 0 we have m/n ≥ x̂ j. If this is the case for all jobs j, it is clear that
we can assign each job an amount of x̂ j resources and thus D∗ = D = 0 produces
an optimal solution. As long as ∑

n
j=1 x̂ j ≤ m, we have that D∗ = D = 0 pro-

duces an optimal solution because x̂ j = ( f j
′
)−1(0). Let us now look at the case

∑
n
j=1 x̂ j > m which implies D < D as the

−→
f j are strictly monotonically increasing.

Lemma 5.2.12 shows that F−1(D)≤ m, and thus that there exists a feasible solu-
tion which fulfills the solution-condition for D∗ = D (the solution does not need
to be optimal). We know from Lemma 5.2.12 that F−1 : [D,D]→ R>0 is a con-
tinuous, monotonically increasing function. With F−1(D) ≤ m and F−1(D) > m
it follows that there exists a D ∈ [D,D] with F−1(D) = m (intermediate value the-
orem, see Walter [140, page 123]). For D∗ = D we get an optimal solution which
fulfills the solution-condition and uses all resources (solution-condition-2).

If the right derivative
←−
f j of a function f j is negative at a point x j, we can

decrease the function value of f j further by adding more resources. Hence in
an optimal solution x∗ = (x∗1, . . . ,x

∗
n), there are no further resources available or

all right derivatives
←−
f j are non-negative at x∗j . We continue with the case of a

solution x∗= (x∗1, . . . ,x
∗
n) which has at least one j with

←−
f j (x∗j)< 0. Let us assume a

different optimal solution y∗= (y∗1, . . . ,y
∗
n) and that both solutions fulfill x∗i ,y

∗
i ≤ x̂i

for all i. As x∗ and y∗ are different and x∗ uses all available resources we have x∗i >
y∗i for at least one index i. All functions fi are strictly monotonically decreasing
between 0 and their minimum x̂i, thus fi(x∗i )< fi(y∗i ). As both solutions have the
same objective value, there has to be at least one index k with y∗k > x∗k and y∗k ≤ x̂k
(otherwise y∗ can be further improved). As the left derivatives and right derivatives
are strictly monotonically increasing on (0, x̂ j]/(0, x̂ j) and x∗ fulfills the solution-
condition, we have

←−
fi (y∗i ) < D∗ <

−→
fk (y∗k). The left derivatives are continuous

from the left and the right derivatives are continuous from the right. Hence there
exists a δ > 0 with δ ≤ x∗i − y∗i ,y

∗
j− x∗j for which fi

′ is continuous on (y∗i ,y
∗
i +δ )

and fk
′ is continuous on (y∗k − δ ,y∗k) and an ε > 0 with fi

′
(x)+ ε ≤ fk

′
(y) for all
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x∈ (y∗i ,y∗i +δ ) and y∈ (y∗k−δ ,y∗k). If an additional resource amount of δ is given

to job i, we have fi(y∗i + δ ) = fi(y∗i )+
∫ y∗i +δ

y∗i
fi
′
(x)dx. If we remove a resource

amount of δ from job k, we have fk(y∗k − δ ) = fk(y∗k)−
∫ y∗k

y∗k−δ
fk
′
(y)dy. Hence

moving a resource amount δ from job k to job i leads to an improvement of the
objective function of at least δ · ε . Thus y∗ is not optimal and an optimal solution
different from x∗ cannot exist.

Lemma 5.2.14 shows that the optimal solution in the sum-case is always
unique and uses all resources as long as not all functions have reached their
minimal values.

Basic idea of the core algorithm The pseudo-code of the main algorithm
is given in Algorithm 5.1. The basic idea is to use the properties proven in
Lemma 5.2.13 and Lemma 5.2.14 that there are optimal solutions for which there
exists a common value D∗ for all functions (max-case) or derivatives (sum-case).
As long as there is no final solution or the properties for the final solution
computation are not met, we test new values for D∗ (the tested values are denoted
as D̃). If the solution that fits the tested D̃ uses more resources than available, we
know that the optimal solution must use less resources than the tested solution
(monotonicity of the functions and their derivatives). The analogue holds if the
solution for the tested D̃ uses less resources than available and the respective
solution-condition-1 is not met. Especially we find new lower or upper bounds
for D∗ in each step. Also the bounds for the resource usage of a job are updated
in each step.

Detailed algorithm description The algorithm (Algorithm 5.1) begins with the
initialization of the intervals [D,D] and [xi,xi] (lines 1-7). First the lower D
(max-case) and upper D (sum-case) bounds for D∗ are computed according to
Lemma 5.2.13 or Lemma 5.2.14. These values are then used to compute the up-
per x j bounds for the x∗j . If the sum ∑

n
j=1 x j of these upper bounds is≤m, we have

found an optimal solution according to solution-condition-1 in Lemma 5.2.13
or Lemma 5.2.14. Otherwise it is clear that there is no solution which fulfills
solution-condition-1, and we have to search for a solution fulfilling solution-
condition-2. Hence we have to compute the other boundaries. The upper bound
D (max-case) is computed according to Lemma 5.2.13 which also guarantees that
D is defined and D≥D as there is no solution which fulfills solution-condition-1.
This also yields that an optimal solution can be found for D∗ ∈ (D,D] (max-case)
and that for the remaining algorithm F−1(D) ≤ m < F−1(D) holds. The lower
bound D (sum-case) is computed according to Lemma 5.2.14 which also guaran-
tees that D ≤ D as there is no solution which fulfills solution-condition-1. This
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Algorithm 5.1. Schedule Malleable Jobs, in case of a given final solution computa-
tion. (max-case): or (sum-case): in front of an instruction mean that this instruction
is only executed in the max-case or sum-case respectively. Comments are marked
in C-style.

Data: n,m, functions and inversions f j,( f j)
−1 (max-case) or additionally

derivatives and inversions fi
′
,( fi

′
)−1 (sum-case), the domains of the

inversions, a final solution computation when for each x∗j either the value or
the neighboring bend points are known.

Result: Continuous domain optimal solution x∗ = (x∗1, . . . ,x
∗
n) which can be placed

as in Lemma 5.2.9

/* Initialize xi,xi as lower and upper bounds for x∗i and D,D as bounds for D∗ */
1 get or compute the minimum x̂ j for each job
2 (max-case): D := max j f j(x̂ j), (sum-case): D := 0
3 for i ∈ {1 . . .n} do (max-case): xi := ( fi)

−1(D) , (sum-case): xi := ( fi
′
)−1(D)

4 if ∑
n
i=1 xi ≤ m then /* solution-condition-1 fulfilled */

5 optimal solution x return x∗ := (x1, . . . ,xn)

6 (max-case): D := max j:x̂ j≥m/n f j(m/n) , (sum-case): D := min j
−→
f j (m/n)

7 for i ∈ {1 . . .n} do (max-case): xi := ( fi)
−1(D) , (sum-case): xi := ( fi

′
)−1(D)

/* Initialization done */
8 if ∑

n
i=1 xi = m then /* solution-condition-2 fulfilled */

9 optimal solution x return x∗ := (x1, . . . ,xn)
10 while (D,D) contains D-values of bend points do
11 select D̃ ∈ (D,D)

12 for i ∈ {1 . . .n} do (max-case): x̃i := ( fi)
−1(D̃) , (sum-case): x̃i := ( fi

′
)−1(D̃)

13 if ∑
n
i=1 x̃i = m then /* solution-condition-2 fulfilled */

14 optimal solution x̃ return x∗ := (x̃1, . . . , x̃n)
15 if ∑

n
i=1 x̃i < m then /* new lower bounds for resource usage */

16 for i ∈ {1 . . .n} do xi := x̃i

17 (max-case): D := D̃ , (sum-case): D := D̃
18 else /* new upper bounds for resource usage */
19 for i ∈ {1 . . .n} do xi := x̃i for all i
20 (max-case): D := D̃ , (sum-case): D := D̃
21 end
22 final solution computation x∗ using xi,xi

23 return x∗
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also yields that an optimal solution can be found for D∗ ∈ [D,D) (sum-case) and
that for the remaining algorithm F−1(D)≤ m < F−1(D) holds.

The initialization in the max-case as well as in the sum-case already finds and
returns optimal solutions if solution-condition-1 holds. It remains to search for
optimal solutions which fulfill solution-condition-2 for a D∗ ∈ (D,D] (max-case)
or D∗ ∈ [D,D) (sum-case). In particular, we have x j ≤ x̂ j for all jobs. By testing
the solution x = (x1, . . . ,xn) on optimality, we make sure that afterwards there is
no optimal solution for D∗ = D or D∗ = D in either case. Hence optimal solutions
can only exist for D∗ ∈ (D,D). This property that no optimal solution can exist on
the boundaries of the interval (D,D) is maintained throughout the algorithm by
always testing new boundaries on optimality before using them (lines 13-14).

The optimal D∗ is then searched by a repeated selection of a new value D̃ ∈
(D,D) which works as an interval split of the interval (D,D) bounded by the
already known lower D and upper D limits for D∗. Similarly, throughout the
algorithm the lower xi and upper xi limits are maintained for the resource amount
given to each job i in an optimal solution. In order to update the limits for the
resource amounts, we have to compute for each i the amount x̃i of resources
needed for fi(x̃i) = D̃ (max-case) or fi

′
(x̃i) = D̃ (sum-case). The derivatives might

contain jumps (at the bend points), but then there is an x̃i with
−→
fi (x̃i)≤ D̃≤←−fi (x̃i)

which can be used as an inverse. Due to the initialization of D and D we have that
the respective inverse image of D̃ ∈ (D,D) is always contained in [xi,xi].

It remains to be explained how we select the next D̃ from the interval (D,D)
(line 11 in the Algorithm 5.1). Graphical examples are given in Figure 5.4. In
the standard case there is a fast final solution computation available. Hence it is
not important to select D̃ in a way that bounds the degradation against an optimal
solution as fast as possible. Instead it is important to fulfill the preconditions for
the fast final solution as fast as possible. A fast final solution can compute the
optimal resource distribution if no f j(b) (max-case) or

−→
f j (b) or

←−
f j (b) (sum-case)

for any bend point b is contained within (D,D). At least we only look at fast final
solutions with this property in this work (examples can be found in Section 5.2.5).
For the max-case we call the values f j(b) and for the sum-case

−→
f j (b) and

←−
f j (b)

D-values for the bend point b. Especially there are two D-values for each bend
point in the sum-case even if they have the same value.

The selection of D̃ should be done in a way that reduces the number of D-
values of bend points within the interval (D,D) as fast as possible (we call these
D-values active D-values). A simple way to do this is to just randomly pick a D-
value for a random bend point b for a random j from the interval (x j,x j) (if there
is still a bend point contained in the interval, otherwise a different j is selected).

In order to get a more predictable convergence, the D-value D̃ should be ran-
domly selected from all D-values within the interval (D,D) for all jobs (at most
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resources1

fi

fj

D

D

D̃

xj xjxi xi

max-case

1

fi
′

fj
′

D

D

D̃

xj xjxi xi

sum-case

resources

Figure 5.4. The selection of D̃ and its connection to the x j,x j for the max-case and the
sum-case and two different jobs for each case.

O(m · n) possibilities) with equal probability. The new D̃ either removes (by be-
coming the new D or D) all D-values ≥ D̃ or all D-values ≤ D̃ from the set of
active D-values. Due to the random selection of D̃ we only need a logarithmic
number (O(log(nm))) of interval splitting steps to meet the preconditions for the
final solution with high probability.

But it is even possible to do this deterministically in a logarithmic number of
steps. Within all jobs the function/derivative values of the bend points are already
sorted due to their monotonicity. We compute the median D-value D j of all D-
values of job j within (D,D) for each job j. Then we sort the D j according to
their values. Each D j is then weighted with the number of remaining D-values
of job j within (D,D). If we select the weighted median Di of the D j as the new
D̃, we remove at least a quarter of all active D-values when D̃ becomes either the
new D or D. With a deterministic time sorting algorithm this approach becomes
deterministic.

In case the problem does not provide a fast final solution, we have to change
the condition for the while-loop (line 10) and the final solution computation
(line 22). As the needed approximation guarantee of a solution is only known in
the real application, we restrict ourselves to explain a step how an upper bound of
the degradation against the optimal solution can be halved. This step then can be
repeated as many times as necessary. In both cases we select D̃ = (D+D)/2 and
execute the main loop once for each halving step. It only remains to show how
the final solution is computed in this case.

D̃ = (D+D)/2 is a good option for the max-case as D for a feasible solution
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equals the value of its global objective. So in the max-case without a fast final
solution we can do just some interval halving and then take D∗ = D and x =
(x1, . . . ,xn) as final solution (D∗= D uses more than the available resources). This
results in a maximal degradation of D−D against the optimal solution.

For the sum-case without a fast final solution we have to do a little bit more.
We split the unused resources in x proportional to the differences x j− x j and add
them to x j, we get a feasible final solution ẋ = (ẋ1, . . . , ẋn) with ẋ j = x j +(x j−
x j) · (m−∑

n
j=1 x j)/∑

n
j=1(x j − x j) and ∑

n
j=1 ẋ j = m. This results in a maximal

degradation of (D−D) · (m−∑
n
j=1 x j) against the optimal solution.

Altogether Algorithm 5.1 produces an optimal solution as output when a
fast final solution computation exists. The optimal solution is then placed as in
Lemma 5.2.9. With the algorithm we can now prove Theorem 1:

Proof of Theorem 1. During the initialization (lines 1-7) Algorithm 5.1 checks if
there is a feasible solution which fulfills solution-condition-1 from Lemma 5.2.13
or Lemma 5.2.14. If such a solution is found, it is an optimal solution and
thus returned. The remaining part of the algorithm has to find a solution which
fulfills solution-condition-2 from Lemma 5.2.13 or Lemma 5.2.14. Due to
the lemmata such a solution must exist for D∗ ∈ [D,D] if there is no solution
which fulfills solution-condition-1. An optimal solution is found if we have
found a D∗ with F−1(D∗) = m for the F−1 defined in Lemma 5.2.11 (max-case)
or Lemma 5.2.12 (sum-case). Due to the monotonicity of F−1 as shown in
Lemma 5.2.11 or Lemma 5.2.12 it is clear that F−1(D̃) < m or F−1(D̃) > m
show that the respective D̃ is a new upper or lower limit for D∗ (depending on the
case). Hence the interval of possible D∗ can be reduced by interval splitting. Due
to the monotonicity of ( f j)

−1 and ( f j
′
)−1 the interval [x j,x j] of possibilities for

the optimal resource assignment x∗j for job j is also monotonically reduced. The
optimal solution is always contained in the respective intervals. If the conditions
for the final solution computation are met (see below that this will happen) the
algorithm computes the optimal solution for the continuous domain problem.

We also have to show that the discrete solution (corresponding to the op-
timal continuous domain solution) found by using the placement according to
Lemma 5.2.9 is an optimal one. Corresponding here means that the average used
resource amount for each job is the same in the discrete solution as in the contin-
uous domain solution. This is done by using the condition 1 of Definition 5.2.10.
As the set of schedules in which a job uses only two neighboring resource amounts
forms a dominant set of schedules, it is clear that an optimal solution can be found
within that set. Also for each feasible schedule in the dominant set there exists a
corresponding continuous domain solution. The last part of condition 1 requires
that all solutions from the dominant set that correspond to the same continuous



5.2. Solutions for Malleable Jobs 141

domain solution produce the same objective value. This objective value is also
the same for the continuous domain solution due to the definition of the f j (Defi-
nition 5.2.8). Hence no discrete solution can have a better objective value than an
optimal continuous domain solution. Thus all feasible solutions from the domi-
nant set which correspond to an optimal continuous domain solution produce the
same value and are optimal. In particular this holds for the discrete solution pro-
duced by the placement according to Lemma 5.2.9 from an optimal continuous
domain solution.

Now we consider the approximation steps if no final solution computation
is available. The running time O(n logm) of the halving steps comes from the
running time of the body of the main while-loop which is calculated below (with
D̃ selection in O(1)). It remains to show that the bounds for the degradation
against the optimal solution hold.

In the max-case we have D = f j(x j)≥ f j(x∗j) = D∗ ≥ f j(x j) = D for each job
j. As D−D∗ ≤ D−D, we have that D−D is an upper bound for the degradation
against the optimal result. By using D̃ = (D+D)/2 as selection for a new D̃ this
bound is halved for each iteration of the main loop.

In the sum-case we have to do a bit more to bound the degradation against the
optimal solution. We know that x j ≤ x∗j ≤ x j for all j. We also know the difference
between the global objective values of the two solutions x∗ and x = (x1, . . . ,xn):

n

∑
j=1

f j(x∗j)−
n

∑
j=1

f j(x j) =
n

∑
j=1

∫ x∗j

x j

f j
′
(x)dx

We also know that D ≤ f j
′
(x) ≤ D for x ∈ [x j,x j] ⊇ [x j,x∗j ]. If we use x as solu-

tion, an amount of m−∑
n
j=1 x j resources remains unused. If we split the unused

resources proportional to the differences x j−x j and add them to x j, we get a feasi-
ble solution ẋ = (ẋ1, . . . , ẋn) with ẋ j = x j +(x j−x j) ·(m−∑

n
j=1 x j)/∑

n
j=1(x j−x j)

and ∑
n
j=1 ẋ j = m. We have x j ≤ ẋ j ≤ x j for all j and:

n

∑
j=1

f j(ẋ j)−
n

∑
j=1

f j(x j) =
n

∑
j=1

∫ ẋ j

x j

f j
′
(x)dx
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And hence:
n

∑
j=1

f j(ẋ j)−
n

∑
j=1

f j(x∗j) =
n

∑
j=1

∫ ẋ j

x j

f j
′
(x)dx−

n

∑
j=1

∫ x∗j

x j

f j
′
(x)dx

≤
n

∑
j=1

D · (ẋ j− x j) −
n

∑
j=1

D · (x∗j − x j)

=(D−D) · (m−
n

∑
j=1

x j)

The value of m−∑
n
j=1 x j can only decrease by an interval halving step. By using

D̃ = (D+D)/2 as selection for a new D̃, this bound is at least halved for each
iteration of the main loop.

The only thing left to prove is the running time. We go through the algorithm
as given in the pseudo-code. The n minima x̂ j can each be computed in time
O(logm). The initialization of D and D can be done with n function/derivative
evaluations and computing the min or max of n elements. The initialization of
the xi and xi then needs another 2n inversions. The sum of n elements can also
be computed in time O(n). Altogether the initialization can be done in time
O(n logm). The body of the main while-loop (lines 10-21) contains a selection
of D̃ (which is analyzed below), n inversions, a sum of n summands and n+ 1
assignments. Excluding the selection of a new D̃ the body of the main loop can
be done in time O(n logm).

Let us now look at the time it takes to evaluate the condition of the while-loop
(line 10) in case that a final solution computation exists. Because of condition
3 we can find the first bend point b1 and compute the number of bend points in
(b1,x j) for each job j. Thus we can compute the number of bend points k j and
the numbers of the smallest b` and largest bu bend points within [x j,x j] in time
O(1). In the max-case we compute f j(b`) and f j(bu) in O(logm) and compare
these with D and D to check if these D-values are within (D,D). Due to the strict
monotonicity this is sufficient to compute the number of D-values of bend points
of job j within (D,D). In the sum-case it works analogously except that we have
to compute

−→
f j (b`),

←−
f j (b`),

−→
f j (bu) and

←−
f j (bu) to compare these with D and D. The

bend points between b` and bu are counted twice in the sum-case and once in the
max-case. Altogether the while-condition can be evaluated in time O(n logm).

If we use the deterministic selection of D̃ we have to compute the median
D-value D j for each job j, the number of D-values within (D,D) for each job
j, sort the D j and find the weighted median. Finding the number of D-values
within (D,D) for each job j can be done like in the check of the while-condition.
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After b` and bu are known and their respective D-values are compared to D and D,
the bend point with the median D-value is known (in the sum-case we also know
whether to use the left or right derivative) because of the strict monotonicity of
the functions/derivatives of the job objective functions. Thus D j can be computed
in O(logm). All D j and their respective weights thus can be computed in time
O(n logm). The sorting can then be done in O(n logn), and the weighted median
can be found in time O(n). For each job j at least half of its active D-values are
≥ D j, and at least half of its active D-values are ≤ D j. For the weighted median
D̃ of the D j thus at least one quarter of all D-values of all jobs are ≥ D̃, and at
least one quarter are ≤ D̃. Hence for the deterministic selection of D̃ the number
of executions of the while-loop (line 10) is in O(log(nm)) because each time a
constant fraction of the active D-values is eliminated. The selected D-value is
always eliminated from the active D-values as it lies outside of (D,D).

If an active D-value is randomly selected as D̃, the number of active D-values
is reduced at least by one. We can randomly select from all active D-values by
computing their number k and then randomly select ` ∈ {1, . . . ,k} (we assume a
rand-function which selects all possible elements with the same probability). Like
in the check of the while-condition we compute the number k j of active D-values
of job j within (D,D) in time O(logm). By computing the prefix sum s j =∑

j−1
i=1 k j

(can be done for all jobs together in time O(n)), it is easy to find the job j with
s j < ` ≤ s j+1, and thus the randomly selected `-th D-value. Thus the random
selection with equal probability for all D-values can be done in time O(n logm).

It remains to show that this kind of random selection of D̃ leads to a loga-
rithmic number of executions of the while-loop with high probability. Let us first
look at the set of active D-values X before the next D̃ is selected. If we imag-
ine the set of active D-values to be ordered with minimum D0 and maximum
D4, there exist D-values D1,D2,D3 within that set that split the set into quartiles.
Hence each of the sets X1 = {D ∈ X |D0 ≤D≤D1}, X2 = {D ∈ X |D1 ≤D≤D2},
X3 = {D ∈ X |D2 ≤ D ≤ D3} and X4 = {D ∈ X |D3 ≤ D ≤ D4} contains at least
one quarter of the active D-values (for example D-values which equal D1 are in X1
and X2). For a split of (D,D) by D̃ all active D-values in (D, D̃] are eliminated if
D∗ ∈ [D̃,D) and vice versa. We look at two different cases: case 1: D∗ ∈ (D1,D3)
or case 2: D∗ ∈ (D,D1]∪ [D3,D). In case 1 selecting a D̃ ∈ X2∪X3 leads to the
elimination of either all active D-values in X1 or X4 (depending on the relative
position of D̃ and D∗). In case 2 selecting a D̃ ∈ X2∪X3 leads to the elimination
of either all active D-values in X1 or X4 (depending on the location of D∗). Hence
we have in both cases with a probability of at least 1/2 that at least 1/4 of all
active D-values are eliminated in the next step. Let us ignore the improvements
due to steps which do not eliminate at least a quarter of active D-values and set r
as the worst-case number of steps which eliminate at least a quarter of the active
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D-values that are needed to eliminate all D-values. We know that r ∈O(log(nm)).
The total number t of steps needed to eliminate all D-values is at most the number
of steps needed to get r steps done which occur with a probability of 1/2. Hence t
is a negative binomial distributed random variable (see Hesse [66, page 185,186])
with an expected value of E(t) = 2r. We have

P(t = k) =
(

k−1
r−1

)
(1/2)r(1/2)k−r =

(
k−1
r−1

)
(1/2)k

and hence for k ≥ 4r we have:

P(t = k+1)
P(t = k)

=
k · (1/2)
k− r+1

≤ k
2 · (3/4) · k =

2
3

Thus the probabilities for higher values of k are exponentially shrinking, and we
have for k ≥ 4r that P(t ≥ k)≤ 3 ·P(t = k) and especially for ` ∈N:

P(t ≥ k+ `)≤ 3 ·
(

2
3

)`

·P(t = k)

Hence there exist c > 0 and n0 ∈ N such that for all nm ≥ n0 we have that
P(t ≥ c · log(nm)) ≤ (nm)−1. The final solution has at most the same running
time as the upper bound for the while-loop. Hence we have the given upper bound
for the running time.

In one of our articles [116] that use a specialized version of Algorithm 5.1
to the scheduling problem P|var|Cmax (with convex running time functions) we
present a speedup idea that can also be used in order to speed up Algorithm 5.1.
In the article we also use interval splitting to find the optimal Cmax, and for each
split we have to compute the inverse of the running time functions which leads to
two logarithmic factors in the running time of the scheduling algorithm (one for
the interval splitting and one for the inversions that have to be computed for each
split). The idea presented in our article [116] is to use only an approximation of
the inversion that can be computed in constant time and thus to get rid of one
logarithmic factor. Also weighted selection instead of sorting is used to find
the right job for the computation of D. A similar approach together with some
additional assumptions on the computation of the functions/derivatives and their
inverses would probably also work here and reduce the time complexity given in
Theorem 1 to O(n log(nm)).

The most important property the solution described in this section relies on is
that the solvable scheduling problems are convex problems. An important case
where we do not always have a convex problem is P|var|∑ω jC j. A non-convex
example for this problem is given in Section 5.2.5. In this case we cannot use the
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solution presented in this section because the first condition in Definition 5.2.10
is not met (and hence Theorem 1 is not applicable). In the max-case we only
use the inversions of the fi, it looks as if the convexity (as required in condition
2 in Definition 5.2.10) of these functions is not important as long as they are
monotonically decreasing. But also in this case the convexity (at least of the
fi) is important in order to fulfill the first condition in Definition 5.2.10. Using
the average amount of assigned resources as input for a function fi works with
Definition 5.2.8. But it is not well-defined in general as there is no need to only
use the integer resource amounts that are adjacent to the average. Condition 1
of Definition 5.2.10 at least makes sure that for different possibilities of reaching
the same average resource usage the one that only uses the two adjacent integer
resource amounts is among the optimal possibilities.

Another reason that justifies the restrictions of condition 2 in Definition 5.2.10
especially the convexity of f j/ f j is that the scheduling problem becomes NP-hard
for general functions f j. This is easy to see by using the observation by Du and
Leung [40] already mentioned in Section 3.1.3. They observed that for problems
with a variable degree of parallelism one can fix the degree of parallelism k for
a job by a speedup function that is s(p) = 0 for all p < k and s(p) = s(k) for
all p ≥ k. Together with the already mentioned result from Drozdowski [39]
that P|size j, pmtn|Cmax is NP-hard we can easily see that the max-case (which
includes P|var|Cmax) becomes NP-hard for general functions f j. We also show the
NP-hardness of the problem P|var|Cmax in one of our articles ([116], joint work
with Peter Sanders) without the observation of Du and Leung by using a method
similar to the one used by Drozdowski [39]. Here we present a short lemma based
on our NP-hardness proof from [116] which even works for the more restricted
case of strictly monotonically decreasing running time functions. If condition 1
in Definition 5.2.10 holds, each job with an average resource usage of at least
1 starts at the beginning of the schedule, and thus the running time equals the
finishing time C j.

Lemma 5.2.15. P|var|Cmax is NP-hard even for jobs with strictly monotonically
increasing speedup functions s j for resource amounts between 0 and their respec-
tive maximum x̂ j. The running time functions of the jobs in this case are strictly
monotonically decreasing between 0 and x̂ j.

Proof. We prove this by solving a given instance of PARTITION (a1, . . . ,an ∈N,
Question: Is there a g : {1, . . . ,n}→{0,1}with ∑ j:g( j)=1 a j =∑ j:g( j)=0 a j(= 1/2 ·
∑

n
j=1 a j =: B) ?, see Garey and Johnson [51, page 47] for the NP-completeness

of this problem). We call instances of the PARTITION problem which allow a
split into two sets with equal weight yes-instances, and the instances which do not
allow such a split are called no-instances.



146 Chapter 5. Fast and Efficient Schedule Computation

We now construct an instance of the scheduling problem with n jobs, each
with an amount w j = 2a j of work and a speedup function of s j(k) = k for k < a j
and s j(k) = 2a j for k ≥ a j. The discrete and the interpolated speedup function
(interpolation: s j(x) = (1− x + bxc)s j(bxc) + (x− bxc)s j(bxc+ 1)) are strictly
monotonically increasing on (0,a j]. Hence the running time function is strictly
monotonically decreasing on (0,a j] but not convex for a j > 1. The number of
cores is set to m = B. The question to decide is whether there is a schedule with
makespan 2.

If there is a yes-solution for the PARTITION instance, we get a yes-solution
for our scheduling problem by running first (between time 0 and 1) the jobs with
g(i) = 1 and then (between time 1 and 2) the jobs with g(i) = 0. Each job j is run
on a j cores in parallel, which leads to a running time of 1 for each job.

For a yes-solution of our scheduling problem it is required that each job always
runs with the maximal efficiency. Otherwise the sum of used core time for all jobs
would exceed 2B. Thus each job j has to use exactly a j cores in parallel during
its complete running time. Also there can’t be idle cores as ∑

n
j=1 a j = 2B. Hence

there must exist a yes-solution of PARTITION (g( j) = 1 for the jobs starting at
time 0, g( j) = 0 for the others).

It is remarkable that the scheduling problem built in this proof also violates
condition 1 in Definition 5.2.10 as the optimal solution does not use only two
neighboring resource amounts throughout the schedule for each job. Instead, each
job uses the two resource amounts 0 and a j which are no neighbors for a j > 1.

As mentioned during the introduction of the conditions for our solution ap-
proach (Definition 5.2.10), we now discuss our running time assumptions. For
large m the running time O(n(logn+ logm) log(nm)) of our core algorithm is far
below the n ·m possible objective function values of the n jobs. Hence we have
to justify why it makes sense that not all of these values are part of the input
of our algorithm. In our article [116] we gave two different reasons. The first
one is that scheduling decisions are made frequently based on objective functions
which change at most slightly (for example on a machine which frequently han-
dles the same type of jobs). In this case the n ·m values are loaded once and are
only accessed during each scheduling decision which makes a scheduling deci-
sion in time sublinear in nm useful. The second reason is that there might be more
compact representations of the objective function which can be evaluated in time
O(1). The most important reason from our perspective is that the most likely
application of the core algorithm is scheduling on the system level which means
distribution of resources between different applications. The objective functions
and their derivatives are then a part of the interface between application and op-
erating system (see Chapter 4 for a discussion about decision distribution and
Figure 4.4 for an example interface including such functions). In this case the
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evaluation of function, derivative and inverse are a call from the operating system
to the application which returns the appropriate results for its behavior. Thus the
operating system scheduler never gets all n ·m values. Altogether there are many
cases where the assumption of constant time access to each single value of the
objective function makes sense without having to access all possible values.

As we do not assume a special representation for the objective functions we
have to define how costly it is to access their properties. Although the running
time assumptions in the conditions 3 and 4 in Definition 5.2.10 look quite ar-
bitrary, there are some reasons why they might be fulfilled in many cases. In
Definition 5.2.8 we defined fi(x) as the result if job i runs on bxc and bxc+1 re-
sources for some time such that it runs on x resources on average. Hence if we
know bxc, we have to use the problem-specific interpolation which we assume to
be some closed formula which can be evaluated/inverted in constant time. Thus
the inversion of a function/derivative consists of finding bxc which can be done
by interval halving because of the monotonicity of the functions/derivatives and
some constant time computation. The evaluation can be assumed as constant time
computation in this case. Also computing the number of bend points and finding
a special bend point is easy if the bend points are just the integers. If the interpo-
lations are given as closed formula, it might be possible to use some algebra to get
a closed formula for D∗ once bx∗i c is known for each job i, and then each x∗i can
be computed in constant time. Hence it is plausible that a final solution fulfilling
the condition 4 in Definition 5.2.10 can be computed in O(n). We present some
applications with such inversions and final solutions in Section 5.2.5. In all exam-
ples the basic idea for the computation of the final solution is that for an optimal
solution x∗ = (x∗1, . . . ,x

∗
n) we have ∑

n
i=1 x∗i = m as long as there are not enough

resources to provide each job with its optimal resource amount x̂i.

In the sum-case, the result of this section has an interesting connection to
economic science. The common derivative D∗ = f1

′
(x∗1) = · · · = fn

′
(x∗n) ≤ 0 can

be considered as the price of the resource or as marginal profit (as D∗ is negative
the formulation might be more fitting for −D∗). The payment in this case is done
in objective function value. If a job i has already a resource amount of xi then
adding a small amount δ of additional resources changes its contribution to the
sum and thus to the objective function by an amount of ≈ δ · fi

′
(xi) (as long as

fi
′ does not change too much). This is an improvement as fi

′
(xi) ≤ 0 and we

want to minimize the sum. Hence if there is a possibility to get more resources in
exchange to a penalty to the objective function, we are willing to pay a price up to
−δ · fi

′
(xi) for an amount δ of the resource for job i. Thus the upper limit of the

per-unit price we are willing to spend for job i is − fi
′
(xi). Another formulation

of Lemma 5.2.14 is then: if the upper limit of the per-unit resource price we are
willing to spend is the same for all jobs, then we have an optimal allocation of the
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resources.
Let us now take a look at the four main properties of a scheduling problem as

defined at the beginning of Section 1.2. The decision space in this case is for each
resource unit when it is used and for which job. This is simplified by the fact that
all resource units are equal and by condition 1 of Theorem 1 to find a possibly
non-integer average distribution of the m resource units among the n jobs. The
most important properties of the problem are m and the job-specific functions
f j. The objectives are max j f j(x j) or ∑

n
j=1 f j(x j). For the information one can

assume that all information is given to the scheduler. Alternatively and probably
more realistically the functions f j are aggregations of more complex job-internal
properties.

The part f j(x) −−→
x→0

∞ in condition 2 of Theorem 1 can probably be omitted,

but this leads to a lot of special cases in the algorithm and in the proofs. The
dominant set in condition 1 of Theorem 1 can also be more restricted as long as
all solutions produced by the core algorithm and the subsequent placement are
still contained within that set.

An algorithm slightly related to our Algorithm 5.1 was given by Ludwig and
Tiwari [98] for an approximation of P|any|Cmax. Their algorithm only deals with
integer/discrete resource assignments and balances the core-time demand of all
jobs with the running time of the largest instead of optimizing the running time of
all jobs directly (in case we assume that the functions optimized in our max-case
are running times). The common thing is, that they also use interval splitting in
order to estimate a globally optimal scheduling property. In their case the algo-
rithm is only a pre-computation for an approximation algorithm for P|size j|Cmax,
and they optimize a lower bound for this approximation.

Even though Algorithm 5.1 is a fast algorithm, it can be further sped up by
parallelization. The parallelization is presented in Section 5.2.4.

5.2.4 Parallelization

The parallelization of our malleable scheduling approach was initially developed
in joint work with Peter Sanders [116] for a specialized version (P|var|Cmax). Here
we give a more detailed version that also fits our generalized approach. We use
the notation from the previous Section 5.2.3. Although computing a schedule for
parallel jobs in parallel itself seems to be quite natural, we have found little work
about parallel schedule computation (see Section 3.1.7), especially nothing about
scheduling malleable jobs in parallel.

In order to show that it is possible to get polylogarithmic time scheduling
algorithms for the kind of scheduling problems treated in Section 5.2.3, we will
first show how to parallelize the placement algorithm from Section 5.2.2 and then
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Algorithm 5.1. After that we discuss different possibilities for the selection of
D̃. Unlike in the other sections we use p as the number of processors/cores for
the schedule computation in this section as m already describes the amount of
available resources.

The parallelization will work with the PRAM (EREW) model as well as with
the network model when the connection graph is complete (see Section 2.6.2 for
details on these models). We assume that the job descriptions are distributed in a
way such that each core has to take care of the same number of jobs. Also each
core gets a consecutive set of jobs (when the jobs are numbered) such that the
numbers of these jobs are larger than all job numbers on cores with a smaller core
number (when the cores are numbered). When p ≥ n, we have polylogarithmic
execution time. In this case the algorithm only uses n cores, each handling one job.
We begin with the introduction of the collective operations used for the algorithm:
broadcast, reduction and prefix sum. These collective operations are commonly
known and are only introduced for completeness and notation purposes.

If we want to distribute a value initially known to only one core to all other
cores involved in the computation, we have to perform a broadcast. The first step
is always that the knowing core sends the value to another core (network model)
or stores it for another core (PRAM model). After that the set of participating
cores is halved, and we repeat the first step until all cores know the information.
The whole broadcast takes time in O(log p). If we only look at the connections
through which a core gets the broadcasted value, the cores form a tree with the
initially knowing core as root (an example is given in Figure 5.5). Here we only
have to deal with the case that a value known to core 0 must be broadcasted to the
other cores.

0 1 2 3 4 5 6 7

step 1

step 2

step 3 s0

s1

s2

s3

s0

s1

s0

s1

s2

s1

s0

Figure 5.5. A sketch of the broadcast and reduce tree for p = 8. The dashed lines are no
connections but indicate that the core keeps the value. The green values are the temporary
variables used for the computation of the prefix sum which uses the same tree structure.

If we want to compute a sum or another associative and commutative (simple)
operation (for example max or min) and each core has one input value, we have
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to perform a reduction. The idea here is to perform a broadcast backwards. If a
core gets a value from another core during a certain time step in a broadcast, it
sends its value to that core at the same time step in reversed order. The other core
then performs the operation on the received value and its own value and sends the
result whenever it is its turn. In the end we have a result for all input values of all
cores at core 0. As we communicate like the broadcast and have to perform one
operation per communication, the running time of the reduction is the same in the
O notation: O(log p).

If the cores are ordered and each core has one value and we want to compute
for each core the sum of the values of the cores ahead of itself in the ordering,
then we have to compute a prefix sum. Let for example each core have one value
xi for i ∈ {0, . . . , p−1}, then ∑

k−1
i=0 xi is the prefix sum for core k. We assume that

the ordering fits the tree construction as in Figure 5.5, and thus the cores ahead
of one core in the ordering are left of it in the tree construction. The computation
of the prefix sum is similar to performing a reduction followed by a broadcast.
During the reduction phase each core sends one value and receives between 0 and
log p values depending on the position in the tree. During the broadcast phase
each core receives one value and sends the same number of values which it has
received during the reduction phase. Each core stores its own value in s0. The
first received value r is added and the result is stored in s1 = r+ s0. The same is
done for the other received values which produces the stored values s2, . . . until
the core sends its final (largest) sum to its parent node in the reduction tree. The
needed storage amount is in O(log p) per core. Core 0 has no upper core in the
tree and thus does no upward communication and subsequently has a prefix sum
of 0. Let a and b be two cores connected by an edge in the broadcast/reduction
tree such that a is higher up in the tree than b. Let sk and sk+1 be the sums of a
before and after receiving the value from b and r be the value that a receives from
its parent node during the broadcast phase. r is the prefix sum of a. In order to
compute the prefix sum of b, one has to add the values of a and all cores between
a and b to r. This is exactly r+ sk which is sent to b during the broadcast phase.
Altogether the prefix sum operation can be done in time O(log p). More detailed
descriptions for reduction and prefix sum (formulated for bit strings) can be found
in the textbook of Leighton [91].

Parallel placement algorithm Let us now look at the parallelization of the
computation of discrete schedules for malleable jobs when a non-integer solution
for the resource distribution among these jobs is given. The sequential problem is
dealt with in Section 5.2.2 and its results are summarized in Lemma 5.2.9. Let us
assume we have given a non-integer solution x∗ = (x∗1, . . . ,x

∗
n) for our scheduling

problem. We then have to determine for each job when it starts and stops to
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T
time

m
resources

∑j−1
i=1 x∗
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∑j
i=1 x

∗
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#0 #d∑j−1
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i e − 1 #d∑j
i=1 x

∗
i e − 1

Figure 5.6. Parallel placement of malleable jobs. The three triangles are each placed
below one resource unit. Below these triangles the number of the respective resource unit
is denoted.

use which resource. We assume the discrete resources are numbered from 0 to
m− 1 and the time interval within which the jobs are executed is [0,T ]. If we
place the jobs one by one as in Section 5.2.2, job j starts at time 0 on resources
d∑ j−1

i=1 x∗i e, . . . ,d∑
j
i=1 x∗i e−1. If d∑ j

i=1 x∗i e−1 < d∑ j−1
i=1 x∗i e, job j gets no resources

at time 0 and x∗j < 1. At time T · (∑ j−1
i=1 x∗i − b∑

j−1
i=1 x∗i c) resource b∑ j−1

i=1 x∗i c is

given to job j (if ∑
j−1
i=1 x∗i − b∑

j−1
i=1 x∗i c = 0 nothing has to be done). At time

T · (∑ j
i=1 x∗i −b∑

j
i=1 x∗i c) resource b∑ j

i=1 x∗i c is removed from job j (if ∑
j
i=1 x∗i −

b∑ j
i=1 x∗i c = 0 nothing has to be done). The job then finishes at time T with

resources b∑ j−1
i=1 x∗i c, . . . ,b∑

j
i=1 x∗i c − 1. If b∑ j

i=1 x∗i c − 1 < b∑ j−1
i=1 x∗i c, then job

j has no resources left at time T and x∗j < 1. In order to compute all these
times and resource indices in O(1) on the core which takes care of the job, the
core only has to know ∑

j−1
i=1 x∗i and T and x∗j . The placement of a single job is

depicted in Figure 5.6. We will see below that each core knows T and the x∗j
for its jobs from the parallel computation of x∗. It remains to show how each
core can compute ∑

j−1
i=1 x∗i for its jobs j. Let j1 . . . jk be the jobs on a core c.

Then c computes s = ∑
k
i=1 x∗ji in time O(k) = O(n/p) as each core gets the same

amount of jobs (±1). c then takes part in the computation of the prefix sum with
s and receives its prefix sum r = ∑

j1−1
i=1 x∗i in time O(log p). Then c can compute

∑
j1−1
i=1 x∗i = r and ∑

j`−1
i=1 x∗i = x∗j`−1

+∑
j`−1−1
i=1 x∗i for all of its jobs j`, ` ∈ {1 . . .k} in

time O(k) =O(n/p). Hence the discretization of a non-integer solution x∗ can be
computed in time O(n/p+ log p) or even in time O(logn) for p≥ n.

Parallelization of the main algorithm First we take a look at the paralleliza-
tion of the initialization of Algorithm 5.1. Due to condition 3, the function values
of f j and ( f j)

−1 (max-case) or f j
′
,( f j

′
)−1 and

−→
f j ,
←−
f j (sum-case) can be computed

in time O(logm). First each core computes x̂ j for all of its jobs j. Then f j(x̂ j)
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and with one reduction D = max j f j(x̂ j) are computed in the max-case and D is
broadcasted. D= 0 in the sum-case. After that each core computes x j =( f j)

−1(D)

(max-case) or x j = ( f j
′
)−1(D) (sum-case) for each of its jobs j. With a further

reduction ∑
n
j=1 x j is computed on core 0 which decides if ∑

n
j=1 x j ≤ m. If yes,

then core 0 knows that solution-condition-1 is fulfilled and initiates the place-
ment algorithm and also computes and broadcasts T if needed (the computation
and broadcast of T is always assumed when a solution is computed and T is still
unknown). If no, then the computation of the other boundaries is initiated. If
x̂ j ≥ m/n, also f j(m/n) (max-case) or

−→
f j (m/n) (sum-case) are computed. After

that the core computes the local maximum (max-case) and minimum (sum-case)
for all of its jobs j. With these preparations all cores take part in one reduction
to compute D = max j:x̂ j≥m/n f j(m/n) (max-case) or D = min j

−→
f j (m/n). D (max-

case) and D (sum-case) are then broadcasted to all cores. Each core computes
x j = ( f j)

−1(D) (max-case) or xi = ( fi
′
)−1(D) (sum-case) for its jobs. After the

initialization we also check ∑
n
j=1 x j = m which can be computed with one reduc-

tion.
Hence the initialization/part before the main loop can be done with a constant

number of local computations with running time O(logm) for each job and three
or four reductions and one to three broadcasts. Thus the parallel running time
for the initialization is O(n/p · logm+ log p) or even O(logm+ logn) in case of
p≥ n.

D̃

x̃1 x̃2 x̃n

∑
i x̃i ≥ m ? New D or D

Select new D̃

Broadcast

Local computation

Reduction

Central decision

while-condition?

Figure 5.7. A sketch of the parallel execution of the while-loop from Algorithm 5.1.

The main part of the work within Algorithm 5.1 is done in the main while-
loop. The while-loop is parallelized by parallelizing the body of the loop. The
different possibilities to parallelize the selection of D̃ are described below, but we
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can assume that core 0 knows the current D̃, and it is distributed by a broadcast
to all other cores. The computation of the resource demands x̃ j = ( f j)

−1(D̃) or
x̃ j = ( f j

′
)−1(D̃) for D̃ is done like the initialization of the x j and x j by local

computations. Together with the broadcast of D̃ this can be done in time O(log p+
n/p · logm). Afterwards ∑

n
i=1 x̃i is computed by local summations and a reduction

afterwards which can be done in time O(log p+ n/p). With this result core 0
decides if there is a new D, D or a final solution (time in O(1)). Core 0 broadcasts
its result (in time O(log p)) such that the other cores can set x j or x j (in time
O(n/p)) or finish their computation and proceed with the placement.

The while-condition (line 10 in Algorithm 5.1) can be checked similarly as
in the proof of Theorem 1. We describe how to compute the number of active
D-values because we also need this number later. For the while-condition only
the information if this number is larger than zero is needed. We can compute
the number of bend points k j and the numbers of the smallest b` and largest bu
bend points within [x j,x j] in time O(1). In the max-case we compute f j(b`)
and f j(bu) (in O(logm)) and compare these with D and D. Due to the strict
monotonicity this is sufficient to compute the number of D-values of bend points
of job j within (D,D). In the sum-case it works analogously except that we have
to compute

−→
f j (b`),

←−
f j (b`),

−→
f j (bu) and

←−
f j (bu) to compare these with D and D. The

bend points between b` and bu are counted twice in the sum-case and once in the
max-case. Hence the number of active D-values of one job can be computed in
time O(logm) by its core. As each core has to do this computation for all of its
jobs and as we also have to perform a reduction afterwards to get the sum over all
jobs, the checking of the while-condition can be done in O(log p+n/p · logm) (or
O(log p+ logm) in case of p≥ n). Altogether one iteration of the while-loop can
be done in time O(log p+n/p · logm) plus the time used for the selection of a new
D. In case p≥ n the while-loop only takes time in O(log p+ logm) plus the time
used for the selection of a new D. A graphical illustration of the parallelization of
the while-loop is given in Figure 5.7.

The only part of the algorithm whose parallelization remains to be shown is
the selection of D̃.

When no final solution computation exists, we use interval halving. Core 0
knows D and D and thus can just compute D̃ = (D + D)/2 and broadcast the
result. The computation in this case only takes constant time and the broadcast of
the new D̃ is already included in our description of the while-loop above.

The first option in case of the existence of a final solution computation is the
selection of a random D-value with equal probability for all active D-values. We
do this by summing up the total number k of active D-values like in the check of
the while-condition; core 0 then picks a random number r between 1 and k with
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equal probability. As part of the computation of k we have computed the number
of active D-values k j for each job j. By computing the prefix sum s j = ∑

j−1
i=1 ki

(can be done in time O(log p+ n/p))and broadcasting r, each core can check if
it has the job j with s j < r ≤ s j+1 and thus the randomly selected r-th D-value.
The r− s j-th D-value of a job can be found by computing the number of active
D-values of bend point b`, and with this information one can compute in O(1)
the bend point of the r− s j-th D-value (and if the left or right derivative is needed
in the sum-case). Then the responsible core computes the D-value D̃ of the bend
point in O(logm). Core 0 gets D̃ either by a direct send or a special reduction and
can afterwards use it as normal. Thus the random selection with equal probability
for all D-values can be done in time O(log p+n/p · logm) (or O(log p+ logm) in
case of p≥ n). With this random selection we end up with a feasible input for the
fast final solution with high probability after O(log(nm)) iterations of the while-
loop (look into the proof of Theorem 1 for more details regarding the probability).

It is also possible to perform the deterministic selection of D̃ in parallel sim-
ilarly to the deterministic sequential selection. For the deterministic selection of
D̃ we restrict ourselves to the case of p ≥ n and an EREW PRAM. Each core c
(c = j) computes the median D-value D j for its job j. Then the values D j are
sorted by all cores using Cole’s merge sort [33]. Also each D j gets as weight
k j the number of active D-values of job j. Afterwards the sum s j of all weights
for all Di < D j (in the sorted order) is computed via a prefix sum for each D j.
Then each core checks if s j < k/2 ≤ s j + k j for its D j. The D j for which this is
the case (the weighted median of the D j) becomes D̃ and is sent directly or via
reduction to core 0. The parallel deterministic selection consists of a local com-
putation of the median for each job (O(logm)), Cole’s merge sort (O(logn)), a
prefix sum (O(logn)), a reduction and a broadcast (O(logn), computation of k), a
check on each core (O(1)) and possibly another reduction (O(logn)). Altogether
the deterministic selection can be done in time O(logn+ logm).

With the deterministic selection the number of steps of the while-loop is in
O(lognm), for the random selection of a D-value this is the case with high prob-
ability. Altogether we get this result:

Theorem 2. The scheduling algorithm for the class of scheduling problems de-
scribed in Theorem 1 can be parallelized on p cores on an EREW PRAM or
a machine fitting the fully connected network model. As an additional condi-
tion the final solution must also allow a parallel computation in time O((n/p ·
logm+ log p) · log(nm)). Then the running time of the parallel algorithm is in
O((n/p · logm+ log p) · log(nm)) with high probability. In case of p≥ n and when
running on an EREW PRAM, there is even a deterministic parallel algorithm with
running time in O((logm+ logn) · log(nm)).

The parallelization adds another parallel scheduling algorithm to the small
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set of existing parallel scheduling algorithms (see Section 3.1.7) and is, as far
as we know, the first parallel scheduling algorithm for parallel jobs. The paral-
lelization even falls into Nick’s Class as it has polylogarithmic running time (see
Section 1.2.2 for a short introduction into parallel complexity).

The parallelization is also a solution for the problem of overloaded decision
makers in scheduling (see Chapter 4). With a parallel schedule computation
scheduling decisions can be made much faster. In case of p = n and when running
on an EREW PRAM, we even have the optimal parallel speedup compared to the
sequential solution (disregarding constant factors).

The parallelized approach where one core takes care of one job makes the
already mentioned economic interpretation for the sum-case more fitting. The
actors (the cores each acting on behalf of its job) try to find a resource distribution
where the smallest marginal cost for losing resources for an actor is at least the
same as the biggest marginal gain of getting resources for all actors. If such a
distribution is found, this is an optimal solution.

5.2.5 Applications and Examples

In this Section we show how to use the core algorithm and its parallelization
for more concrete scheduling problems. The first three examples (minimize the
maximal running time, minimize the used energy and minimize the optimization
gap) are applications of the results from Section 5.2.2 and Section 5.2.3 (and also
Section 5.2.4). Together with the examples the necessary techniques are presented
to make them fit the approach. These techniques might also be helpful for other
problems.

We also present an example that looks similar but does not lead to a convex
problem and thus does not allow our core algorithm to be used.

Minimize the Maximal Running Time

In this example we are given n jobs which are malleable and have concave speedup
functions (see Section 2.4 for a definition and discussion of speedups). The goal
is to distribute m cores among these jobs such that the finishing time of the last
finishing job is minimized. The formal problem description is P|var|Cmax with
concave speedup functions. As the speedup functions are only defined for positive
integer numbers of cores we use a concavity definition similar to the convexity
definition from Section 5.2.2. The problem can easily be motivated. Having
different malleable jobs it is quite natural to ask which distribution of cores leads
to the minimal finishing time of the set of all jobs. It is also quite natural to assume
that the efficiency decreases as more cores are added to a job, thus the speedup



156 Chapter 5. Fast and Efficient Schedule Computation

increase for an additional core is monotonously decreasing for each additional
core. Hence concave speedup functions are quite natural.

The problem was investigated in the already mentioned article from Błażewicz
et al. [24] from which the here presented idea of the discretization of a continuous
domain result is taken. Together with a previous article by the same authors
(Błażewicz et al. [26]) they solved the problem in time O(nmax{m,n log2 m}). In
joint work with Peter Sanders [116] we were able to improve this result to O(n+
min{m,n} logm) if the schedule is computed on one core and to even O(n/m+
log2 m) if the schedule is computed on the m cores that are to be scheduled.
This example is clearly based on our article [116] although we show here that
the problem fulfills the conditions of our general solution instead of solving the
problem directly.

We will now show that this problem can also be solved by our approach sum-
marized in Theorem 1 and Theorem 2. In order to do this, we have to show that
the problem meets the four conditions in Theorem 1 and the additional one in
Theorem 2. The problem obviously fits the max-case with the finishing times C j
of the jobs.

The first thing we have to do in order to show that the problem fits our global
approach is to take a closer look at the properties of the finishing time functions
C j(k) for an integer amount of cores k and at C j(x) for an average possibly non-
integer amount of cores x.

cores

speedup

1

1

Figure 5.8. The original discrete speedup function (dots) is made continuous by linear
interpolation.

We start by making the speedup function s continuous. Let w be the amount of
work of the job that is done during time T on a single core. Then running on k ∈
N0 cores does w · s(k) work during time T (s(0) = 0) or an amount w of work can
be done in time T/s(k). If a job runs on k cores for a time αT and on k+1 cores
for a time βT with α +β = 1 and speedups s(k) and s(k+1), the speedup for this
configuration during the time T is αs(k)+β s(k+1). This is the case as the work
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done during time T is w · (αs(k)+β s(k+ 1)), and parallel work amount during
a time T divided by the sequential work amount is always the speedup. Hence if
running on x∈R>0 cores for time T means running on bxc cores for time (1−x+
bxc)T and on bxc+1 cores for time (x−bxc)T , then the speedup s for non-integer
core amounts is just the linear interpolation between its neighboring integers. An
example of a speedup function made continuous is drawn in Figure 5.8. If we
name the sequential running time/work of job j as w j, we get C j(k) = w j/s j(k)
and C j(x) = w j/s j(x) and also s j(1) = s j(1) = 1. As s j is the linear interpolation
of a discrete concave function, we know that it is concave itself. Hence we know
from Lemma 5.2.3 that C j is convex and continuous and even strictly convex
on the interval where s j is strictly monotonically increasing (the strictness is not
needed in the max-case). As s j(0) = 0 we have that C j(x)−−→

x→0
∞. The number of

bend points is m. Between k,k+ 1 ∈N the functions s j and C j are always given
through a closed algebraic form only dependent on s j(k),s j(k+1) and w j. With
this we have already fulfilled condition 2 from Theorem 1.

Now we check if this problem fulfills condition 1 from Theorem 1. We as-
sume we have an optimal solution with maxiCi = T . Then we look at a single
job j. As C j ≤ T , there exist ki ∈ N0 and αi ∈ (0,1] for i ∈ {1, . . . , `} such that
j runs on ki cores for a time αiT during the time interval [0,T ] with ∑

`
i=1 αi = 1

and k1 < k2 < · · · < k`. If k` ≤ k1 + 1, then job j fits into condition 1. Hence
we assume k` > k1 + 1. Let k̂ j be the minimal amount of cores for which job j
reaches its highest speedup. Then we can also assume that k` ≤ k̂ j as otherwise
we can replace the running time on k` cores by an appropriate combination of
running time on 0 and k̂ j cores such that the amount of work done is kept the
same and the average number of used cores is decreased. Let ω1 = α1T s j(k1)
be the work done during running on k1 cores and ω` = α`T s j(k`) the work done
during running on k` cores. We have s j(k1) < (ω1 +ω`)/(T (α1 +α`)) < s j(k`)
as s j is strictly monotonically increasing between 0 and k̂ j. As s j is continuous
and strictly monotonically increasing, there exists an x ∈ R>0 with k1 < x < k`
and s j(x) = (ω1 +ω`)/(T (α1 +α`)). Due to the concavity of s j we also have
x ≤ (α1k1 +α`k`)/(α1 +α`). Altogether we have that running on bxc cores for
time (1− x+ bxc)T (α1 +α`) and on bxc+ 1 cores for time (x−bxc)T (α1 +α`)
does the same amount of work as running on k1 cores for a time α1T and on k`
cores for a time α`T . By this exchange the total work amount of the job and the
finishing time T of the schedule stay the same. The average core usage of the
job stays the same or is reduced, and the difference between the lowest number
of cores and the largest number of cores j runs on is decreased by at least one
through the replacement.

The above argument can be used repeatedly until k` ≤ k1 + 1. If we use
the argument given for j on all jobs, we get a solution with the same running
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time in which all jobs use the same or a smaller average amount of resources
and each job runs on only two adjacent core numbers. As the jobs with their
original average core usage fit into the [0,T ]× [0,m] time resource rectangle in
the original solution, Lemma 5.2.9 shows that the new solution in which each job
runs on only two adjacent core numbers can also be placed within that rectangle.
Hence for each optimal schedule there exists a schedule with the same running
time in which each job only uses two adjacent core amounts throughout the whole
running time of the schedule. Thus the schedules in which each job only uses two
adjacent core amounts throughout the whole running time form a dominant set for
the investigated problem.

Let us now look at the definition of C j(x) = w j/s j(x). The C j are well-defined
as they are only dependent on the average used core amount. In case of x≥ 1 the
definition coincides with the finishing time of job j (for a solution in the dominant
set, when only two adjacent core numbers are used throughout the schedule). For
x< 1 the job can finish earlier (for example starting it at time 0 on one core and let-
ting it run uninterruptedly). Let us now look at an optimal solution and a job j with
x j < 1 which finishes before T = Cmax. Setting the finishing time of j to T (for
example by moving the last instruction of j to the end of the schedule) does not
change the objective value of the schedule (Cmax = T ). Hence using C j(x) (with
x the average resource usage of j during [0,T ]) instead of the real finishing times
does not change the objective value of an optimal schedule. If an optimal discrete
schedule with Cmax = T belongs to the dominant set (each job uses only neighbor-
ing resource amounts), it is clear that a feasible continuous domain schedule with
the same objective value can be computed by using the C j (just compute the aver-
age resource usage x j of each job j during [0,T ], then C j(x j) = T for all jobs). An
optimal continuous domain schedule (length T ) can be transformed to a discrete
schedule by using the placement from Lemma 5.2.9 (all jobs are placed within
the [0,T ]× [0,m] time resource rectangle). As we know from Lemma 5.2.13, it
either holds solution-condition-1 (the minimal running time for at least one job
is T ) or solution-condition-2 (∑ j x j = m which means that the [0,T ]× [0,m] time
resource rectangle is fully occupied after the placement). This means that at least
one job has to run until time T . Thus the objective value has to stay the same after
the placement. Hence for each optimal continuous domain solution (computed
with the C j) there exists a corresponding discrete solution with the same objective
value and for each optimal discrete solution (in the dominant set) there exists a
corresponding continuous domain solution (computed with the C j) with the same
objective value. Altogether the usage of C j does not change anything regarding
the optimal solutions. Especially Algorithm 5.1 computes an optimal continuous
domain solution (computed with the C j) and thus an optimal discrete solution with
the placement.

Hence we have shown that for each solution there exists an at least equally
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good solution in which each job only uses two neighboring core numbers. Hence
such solutions form a dominant set, and it does not matter when a job uses the
one or the other core amount as required in condition 1 from Theorem 1. Also
the C j are well-defined by changing the finishing times in the discrete schedules
accordingly, and using them instead of C j does not change the objective value of
an optimal solution.

The fast computation for the function and its inverse (we are in the max-case
here) as required by condition 3 from Theorem 1 can be done as follows. We as-
sume that the speedups for each job j for each possible (0, . . . ,m) integer amount
of cores are given (s j(0) = 0,s j(1) = 1, . . . ) or can be computed in time O(1).
Also we assume the sequential running time C j(1) and the minimal core amount of
the maximal speedup k̂ j ≤m are given. Due to the concavity of s j it is also possi-
ble to compute k̂ j in O(logm). For a given (possibly non-integer) resource amount
x for a job j we can compute C j(x) by getting s j(bxc) and s j(bxc+1) (can be done
in O(1)) and then computing s j(x) = (x−bxc)s j(bxc+1)+ (1− x+ bxc)s j(bxc)
(linear interpolation) and finally C j(x)=C j(1)/s j(x). For the inversion we want to
compute the x which fits for a given D the equation D=C j(x). This can be done by
first computing the required average speedup s j(x) =C j(1)/D and then searching
a k with s j(k) ≤ s j(x) ≤ s j(k+1) by interval halving in time O(logm) (between
0 and k̂ j the speedup s j is strictly monotonically increasing due to the concavity).
With that k we can then compute x by x = k+(s j(x)− s j(k))/(s j(k+1)− s j(k))
(due to the linear interpolation) or we can return x = m+1 if s j(x) > s j(k̂ j). Al-
together C j and its inverse can be computed both in time O(logm). The bend
points for this problem are the integers in (0,m]. Thus it is clear that the `-th bend
point can be found in O(1) and the number of bend points within [x j,x j] is just
bx jc− dx je+ 1 (for the open interval one has to deduct the boundary points if
necessary).

The final condition we have to look for is condition 4 from Theorem 1 and
its parallelization if we want to use Theorem 2. We know that there are no D-
values of bend points left within (D,D) when the final solution computation starts.
As D∗ is not found yet we have bx jc+ 1 = dx je for all jobs j. Thus we know
k j = bx jc with k j ≤ x∗j < k j + 1 for each job j and a (still unknown) optimal
solution x∗ = (x∗1, . . . ,x

∗
j) with ∑

n
j=1 x∗j = m. Solutions with x∗i = k̂i (solution-

condition-1) are already found and cannot occur in this part of the algorithm.
For these solutions we can easily compute an optimal resource distribution by
assigning each job j an amount of C j

−1
(Ci(k̂i)) cores. Due to the concavity and

x∗j < k̂ j we have s j(k j +1)> s j(k j). We know s j(x∗j) =C j(1)/D∗ for all j in the
optimal solution. This can be rearranged by:
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s j(x∗j) =C j(1)/D∗

⇔ (1− x∗j + k j)s j(k j)+(x∗j − k j)s j(k j +1) =C j(1)/D∗ def. of s j

⇔ x∗j(s j(k j +1)− s j(k j))+(k j +1)s j(k j)

−k js j(k j +1) =C j(1)/D∗

⇔ D∗x∗j +D∗
(k j +1)s j(k j)− k js j(k j +1)

s j(k j +1)− s j(k j)
=

C j(1)
s j(k j +1)− s j(k j)

As this holds for each j

⇒ D∗
n

∑
j=1

x∗j +D∗
n

∑
j=1

(k j +1)s j(k j)− k js j(k j +1)
s j(k j +1)− s j(k j)

=
n

∑
j=1

C j(1)
s j(k j +1)− s j(k j)

⇔ D∗
(

m+
n

∑
j=1

(k j +1)s j(k j)− k js j(k j +1)
s j(k j +1)− s j(k j)

)
=

n

∑
j=1

C j(1)
s j(k j +1)− s j(k j)

Altogether we have:

⇒
∑

n
j=1

C j(1)
s j(k j+1)−s j(k j)

m+∑
n
j=1

(k j+1)s j(k j)−k js j(k j+1)
s j(k j+1)−s j(k j)

= D∗ (5.1)

⇒ C j(1)/D∗− (k j +1)s j(k j)+ k js j(k j +1)
s j(k j +1)− s j(k j)

= x∗j (5.2)

In Equation (5.1) the only thing still unknown is D∗. The sums can be com-
puted in time O(n) or in time O(n/p+ log p) if we compute the solution in par-
allel on p cores (for p ≥ n in O(logn)). After the sums have been computed, the
remainder can be computed in O(1) (on core 0 in the parallel solution). With a
known D∗ it is possible to compute x∗j (by Equation (5.2)) in time O(1). Thus we
can compute all x∗j in time O(n) in the sequential solution computation. For the
parallel computation it is necessary to broadcast D∗ first and then compute the x∗j
locally. This can be done in parallel on p cores in time O(n/p+ log p) and for
p≥ n in O(logn). Altogether this shows the following corollary:

Corollary 3. The scheduling problem P|var|Cmax (minimize the maximal run-
ning time of a set of malleable jobs) with concave speedup functions can be
optimally solved in time O(n(logn + logm) log(nm)). If the solution is com-
puted on p ≥ n cores of an EREW PRAM, it can be optimally solved in time
O((logn+ logm) log(nm)).
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In the joint work with Peter Sanders [116] there are some small
improvements of the running time (O(n + min{n,m} logm) instead of
O(n(logn + logm) log(nm))) as there exists an approximate constant time
inversion of the C j and a possibility to reduce the number of relevant jobs to m.

Minimize the Used Energy

Another problem we investigated in a joint work with Peter Sanders [117] was
the problem of the minimal possible energy consumption for a set of jobs. This
example is clearly based on our article [117] although we show here that the prob-
lem fulfills the conditions of our general solution instead of solving the problem
directly. We are given a set of malleable jobs with concave speedup functions s j
(with s j(0) = 0 and s j(1) = 1) which have a common release time 0 and deadline
T and a machine with identical parallel cores. For the speedup functions we can
alternatively assume that they are constant after reaching their maximum. The
cores have the additional capability of changing their operation frequency. Of
course higher frequency costs more energy. We use the following energy model:
If a job runs on p cores with frequency f for a time t the amount of used energy
is E = p · f α · t with α > 2 (the increase in used energy is clearly super-linear in
the operating frequency, see discussion at the beginning of Section 7.1 and the
example from Hennessy and Patterson [64, page 23]). The operating frequency of
all cores working on the same job at the same time is the same. Each job has to
do an amount w j of work. The work done during a time t is proportional to the
operating frequency and the parallel speedup. We use the formula w = s(p) · f · t.
Besides the concavity of the speedup function we also need a further technical re-
striction for the speedup function: A function h with h(0) = 0 and further defined
as h : p 7→ α−1

√
sα(p)/p must be strictly monotonically increasing for all p < p̄

(for a p̄∈N) and monotonically decreasing for all p > p̄ and additionally concave
on (0, p̄].

The restrictions for the speedup function are met for many classes of speedup
functions of parallelizable jobs:

• Linear speedup functions: s(p) = p

• Jobs which fulfill Amdahl’s Law: s(p) = p
sp+1−s with s ∈ (0,1) being the

sequential fraction.

• Jobs with linear speedup and parallelization overhead g for the following
overheads: p, log p, p log p,

√
p, p2, log2 p and speedup function s(p) =

w+g(1)
w/p+g(p)

For jobs with these restrictions in place it is now possible to define an energy
function E(x) for non-integer core numbers x. In order to do this, it needs to
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be shown that using the optimal energy consumption of a job for a fixed (possi-
bly non-integer) number of cores fixes the used frequencies of the job in a way
such that we do not need to consider them any more. From Theorem 7 (see Sec-
tion 7.1.1) we know that there exists an energy optimal schedule for an average
core usage of x ≤ p̄ (including frequency selection) in which the job runs on bxc
cores for a time (1−x+bxc)T and on bxc+1 cores for a time (x−bxc)T and uses
energy

E(x) =
wα

T α−1 · ((x−bxc) ·h(bxc+1)+(1− x+ bxc)h(bxc))−α+1

If more than p̄ cores are available for the job, then it uses p̄ cores throughout T .
It is also known from Theorem 7 that the function E(p+ τ) is strictly convex and
strictly decreasing on (0, p̄] and has its minimum at p̄ and E(0+ τ)−−→

τ→0
∞. Also

E(p+ τ) is continuously differentiable on R>0 \N and the left derivative
−→
E is

continuous from the left and the right derivative
←−
E is continuous from the right.

By defining the x∈N∩(0,m] as bend points this directly fulfills condition 2 from
Theorem 1.

Given an average core usage x j for job j we select the energy optimal way of
scheduling from Theorem 7 which means that the job runs on bx jc cores for a time
(1−x j +bx jc)T and on bx jc+1 cores for a time (x j−bx jc)T . For every solution
x=(x1, . . . ,xn) with ∑

n
i=1 xi≤m we can use Lemma 5.2.9 to show that the solution

also fits into the [0,T ]× [0,m] time resource rectangle. Hence a global schedule
consisting of these optimal schedules for each job is feasible. It is not important
for the energy usage of a single job and the global schedule objective when a job
runs on one core amount or the other during [0,T ] (this makes the energy function
well-defined for the average core usage). Thus the schedules in which a job only
uses two neighboring core numbers form a dominant set of schedules as required
by condition 1 from Theorem 1.

We assume that the values s j(p) for each job j and an integer p ∈ {0, . . . ,m}
are given in a way such that they can be looked up or computed in time O(1). Thus
we can also compute h j(p) = α−1

√
sα

j (p)/p in time O(1). We also assume that the
minimal core amount p̄ j is given for which the energy function E j reaches its
minimum for job j, otherwise we can compute p̄ j by computing the maximum for
h j by interval halving in O(logm) (condition h j(p+1)> h j(p) if yes p̄ j ≥ p+1,
if no p̄ j ≤ p). Given the energy function of a job j according to Theorem 7 we can
compute the derivative for an x with p < x < p+1≤ p̄ j for an integer p especially
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if we set p = bxc:

E j(x) =
wα

j

T α−1 ·((x− p) ·h j(p+1)+(1− x+ p)h j(p))−α+1

E j
′
(x) = −

wα
j

T α−1 ·(α−1)(h j(p+1)−h j(p))

· ((x− p) ·h j(p+1)+(p+1− x)h j(p))−α

For an integer p ∈ {1, . . . , p̄ j} the left and right derivatives of E j are:

←−
E j(p) = −

wα
j

T α−1 ·(α−1)(h j(p+1)−h j(p)) ·h−α

j (p)

−→
E j(p) = −

wα
j

T α−1 ·(α−1)(h j(p)−h j(p−1)) ·h−α

j (p)

Hence we can compute the derivative or the left and right derivative for integers
where the derivative does not exist in time O(1). Due to the strict convexity of
E j the derivatives E j

′ or
←−
E j and

−→
E j are strictly monotonically increasing on (0, p̄ j]

and due to the concavity of h j we have
←−
E j(p) ≥ −→E j(p) for all p ∈ {1, . . . , p̄ j}.

Hence we can compute the inversion of the derivative. Let D ≤ 0 be the given
value to be inverted. The first thing to do is to find an integer for which either
holds (1): p j ∈ {1, . . . , p̄ j} with

−→
E j(p j)≤D≤←−E j(p j) or (2): p j ∈ {0, . . . , p̄ j−1}

with
←−
E j(p j) < D <

−→
E j(p j + 1) (by using

←−
E j(0) as symbol for −∞). In this case

we have h j(p j +1)−h j(p j)> 0. In case (1) the inverse (E j
′
)−1(D) equals p j in
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the second case we have

D =E j
′
(x j)

=−
wα

j

T α−1 · (α−1)(h j(p j +1)−h j(p j))

· ((x j− p j) ·h j(p j +1)+(p j +1− x j)h j(p j))
−α

⇔
((x j− p j) ·h j(p j +1)+(p j +1− x j)h j(p j))

α

=(−D)−1 ·
wα

j

T α−1 · (α−1)(h j(p j +1)−h j(p j))

⇔
(x j− p j) · (h j(p j +1)−h j(p j))+h j(p j)

=(−D)
−1
α · α

√
wα

j

T α−1 · (α−1)(h j(p j +1)−h j(p j))

⇔

x j− p j =
(−D)

−1
α · α

√
wα

j
T α−1 · (α−1)(h j(p j +1)−h j(p j))−h j(p j)

h j(p j +1)−h j(p j)
(5.3)

There are at most 2m possibilities for D either being in one of the intervals
from case (1) or (2). Due to the strict convexity of E j the possibilities are ordered
and thus the correct interval can be found in time O(logm). In case (1) we then
already know (E j

′
)−1(D) = p j and in case (2) we can compute (E j

′
)−1(D) = x j

by using Equation (5.3). The bend points are the integers which makes addressing
them and counting their number within an interval possible in O(1). This fulfills
condition 3 from Theorem 1 as we can compute the inversion of the derivative
(and also the derivative itself) in time O(logm).

For the fast final solution as required by condition 4 from Theorem 1 we know
that solution-condition-2 from Lemma 5.2.14 holds (∑n

i=1 xi = m). Also there are
no D-values within (D,D) and we thus know for each job the p j = bx jc for which

either
−→
E j(p j)≤D∗ ≤←−E j(p j) (case 1) or

←−
E j(p j)< D∗ <

−→
E j(p j +1) (case 2) holds.
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We compute the sums

S2 =
n

∑
j=1

p j

S3 = ∑
j∈Case(2)

h j(p j)

h j(p j +1)−h j(p j)

S4 = ∑
j∈Case(2)

α

√
wα

j
T α−1 · (α−1)(h j(p j +1)−h j(p j))

h j(p j +1)−h j(p j)

For the still unknown optimal solution x∗ = (x∗1, . . . ,x
∗
n) and the already known

p j we also know the sum S1 = ∑ j∈Case(2)(x∗j − p j) because of S1 = m− S2. As

Equation (5.3) holds for all jobs j in case (2) we have S1 = (−D∗)
−1
α S4−S3 where

D∗ is the common derivative value of the optimal solution. Hence we can compute

−D∗ =
( S4

S3 +S1

)α

And with the known D∗ we can compute the x∗j by Equation (5.3). If we compute
the final solution sequentially, we compute the sums S2,S3,S4 in time O(n), then
D∗ is computed in time O(1), and after that Equation (5.3) is evaluated for all
jobs in time O(n). Altogether the sequential final solution can be computed in
time O(n). For the parallel solution on p cores the sums can be computed in time
O(n/p+ log p) by reductions, then D∗ is broadcasted (time O(log p)) after it is
computed in constant time on core 0. The local applications of Equation (5.3)
can be done in time O(n/p). This also fulfills the condition for the fast parallel
scheduling from Theorem 2.

Altogether this shows the following corollary:

Corollary 4. Given a set of malleable jobs with concave speedup functions (plus
the additional restriction) and a common release time and deadline and a ma-
chine whose cores can change their frequency (energy consumption E = f α · t),
we can compute the schedule for the minimal energy usage in time O(n(logn+
logm) log(nm)). If the solution is computed on p ≥ n cores of an EREW PRAM,
it can be optimally solved in time O((logn+ logm) log(nm)).

The proof for Theorem 7 can be found in Section 7.1.1 and some further
enhancements in Section 7.1.2. It is also important to note that cores not used by
any job are not considered in the energy usage (they are considered to be switched
off). Here we also have a nice example for the already mentioned resource price.
If a job gets more core time when it uses less than p̄ j ·T , then it can reduce its
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energy consumption. Hence each quantity of core time is worth an energy amount
depending on the job and the core time the job already has. This energy amount
is the price of the resource amount (core time) we are willing to pay for the job.
If that price is the same for all jobs when we have distributed all resources (m ·T ),
we have an optimal solution.

Minimize the Sum of Expected Optimization Values
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Figure 5.9. A graph taken from Constraint-Based Large Neighborhood Search for Ma-
chine Reassignment (joint work with Felix Brandt and Markus Völker [18]) which shows
the improvements of different strategies for a complex optimization problem. The work
is described in Section 5.3.

This example is about the problem of having n different jobs working on
optimizations running on the same machine with a common deadline and release
time. A possible real world example might be a robot which regularly optimizes
some parameters for different tasks in order to minimize the used energy for its
electric motors. Only the sum of the different optimizations matters, not the
result of a single optimization. For many such optimizations the optimal value
might be too difficult to compute because of NP-hardness and time limits, but
some approximated result might be enough. For many optimization problems
the heuristics behave like the ones in Figure 5.9: the more work is put into an
optimization the better the result gets, but the improvements are larger in the
beginning and diminish after some work has been done. Especially the objective
function looks like a strictly convex function of the used work/time. We want to
minimize the sum of these optimization values by distributing the available cores
between the different optimization jobs.

We assume that for each optimization j there is a function q j mapping the
invested work w j (assumed as continuous variable) to the expected value of the
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optimization and further that this function is strictly convex and strictly mono-
tonically decreasing and continuously differentiable on R>0. Also we assume
that the quality of the solution becomes very bad if almost no work is invested
(q j(w) −−−→

w→0
∞). The objective can then be described as: Minimize ∑

n
j=1 q j(w j).

Now we take a look at the definition of the amount of work w j invested into an
optimization j. The optimizations are assumed to be parallelizable (in a malleable
way) such that the equivalent amount of sequential work done can be computed
by w j = d j · s j(p) · t for an integer number of cores p used during a time t. The
speedup functions s j are assumed to first reach their maximum for p̄ and to be
concave on [0, p̄]. Also they are assumed to be strictly monotonically increasing
on [0, p̄]. As only the total invested amount of work counts for the expected value
of the optimization, it is not important at which time within the period the work is
done. All optimizers have the same deadline and release time and thus run within
the same time interval [0,T ].

Now we build a continuous domain function from the average amount of used
cores in [0,T ] to the expected solution quality for a single optimization job j.
We start by constructing a continuous speedup function similar to the example
of minimizing the maximal running time. If an optimizer j runs for a time t
on p1 cores and on p2 cores for the remaining time T − t it does the work w j =
d j ·(t ·s j(p1)+(T−t) ·s j(p2)). If we only use adjacent core amounts, the speedup
is just a linear interpolation like in Figure 5.8. Thus we have the continuous
concave speedup functions s j(x) = (1−x+bxc)s j(bxc)+(x−bxc)s j(bxc+1) for
each optimizer j with s j(0) = 0 and s j(1) = 1. The expected quality when using
an average core amount x in the time interval [0,T ] can then be computed by
q j(x) = q j(d j · s j(x) ·T ). For non-integer x we can compute the first and second
derivative of q j:

q j(x) = q j(d j · s j(x) ·T )
q j
′(x) = q′j(d j · s j(x) ·T ) ·d jT · s j

′(x)

q j
′′(x) = q′′j (d j · s j(x) ·T ) ·d2

j T
2 · (s j

′(x))2 +q′j(d j · s j(x) ·T ) ·d jT · s j
′′(x)

= q′′j (d j · s j(x) ·T ) ·d2
j T

2 · (s j
′(x))2

As s j is a piecewise linear function, s j
′′(x) = 0 for all non-integer x. For integer

x these derivatives do not need to exist as s j
′ does not necessarily exist for integer

x. For non-integer x we have s j
′(x) = s j(bxc+ 1)− s j(bxc). Let p̄ j be the core

amount at which the optimizer j reaches its highest speedup. Then we have for
all integer p ∈ {1, . . . , p̄ j− 1} that s j(p+ 1)− s j(p) ≤ s j(p)− s j(p− 1) due to
the concavity of s j. For integer p ∈ {1, . . . , p̄ j− 1} we also can compute the left
and right derivatives of q j by −→q j (p) = q′j(d j · s j(p) ·T ) ·d jT · (s j(p)− s j(p−1))
and ←−q j (p) = q′j(d j · s j(p) · T ) · d jT · (s j(p + 1)− s j(p)). The left derivative is



168 Chapter 5. Fast and Efficient Schedule Computation

continuous from the left and the right derivative from the right. As q j is strictly
monotonically decreasing (q′j(d j ·s j(p) ·T )< 0) and s j concave, we have−→q j (p)≤
←−q j (p). We have q j

′′(x) > 0 ∀x ∈ (0, p̄ j) as q′′j (d j · s j(x) ·T ) > 0 due to the strict
convexity and s j

′(x)> 0 ∀x∈ (0, p̄ j). Altogether this shows that the (left and right)
derivatives of q j are strictly monotonically increasing and that q j is strictly convex
between 0 and its minimum p̄ j. We also set q j(x)= q j(p̄) ∀x> p̄ as we can always
use less than the available cores. Also q j is continuously differentiable on (0,m]
except for the bend points which are the positive integers. With q j(x)−−→

x→0
∞ this

fulfills condition 2 from Theorem 1.

For the expected quality q j of the optimizer j it does not matter when or
how the work is done during [0,T ], only the total amount of work computed by
∑

k
i=1 tis j(pi) matters (assumed job j runs on k different amounts of cores, and ti

is the time it runs on pi cores). Hence only the speedup through the usage of
the average core amount x j matters. We can show that the solutions in which
each job j with the average core usage x j only uses the core amounts bx jc and
bx jc+ 1 form a dominant set of the solutions. This can be done analogously to
the example of minimizing the maximal running time due to the concavity of s j.
From Lemma 5.2.9 we know that solutions with only adjacent core amounts can be
placed within the [0,T ]× [0,m] time resource rectangle. For the value of q j it does
not matter when the work is done within [0,T ] (this makes q j well-defined). Thus
the overall solution value cannot be changed by reordering the times during which
the optimizer j uses bx jc or bx jc+ 1 cores. Hence we have fulfilled condition 1
from Theorem 1.

In order to investigate the validity of condition 3 and condition 4 from Theo-
rem 1, we have to look more closely at the functions q j. Up to now we have only
assumed that the functions are strictly convex and strictly monotonically decreas-
ing and continuously differentiable on R>0. Also we assumed q j(w) −−−→

w→0
∞.

If we start with the simple model that the expected improvements are somehow
proportional to the logarithm of the invested work (the needed work grows expo-
nentially with the improvement), we can give a function class for the q j. We use
the following function class for the q j for the rest of this example:

q j(w j) =−b j · ln(a jw j)+ c j

The functions of this class are strictly monotonically decreasing and strictly con-
vex for w > 0 if a j,b j > 0. By using w j = d j · s j(x) ·T we can compute q j and its
derivative:
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q j(x) =−b j · ln(a jd js j(x)T )+ c j

thus we have:

q j
′(x) =

−b j

s j(x)
· (s j(bxc+1)− s j(bxc))

for non-integer x ∈ (0, p̄ j)

←−q j (x) =
−b j

s j(x)
· (s j(x+1)− s j(x))

for integer x ∈ {1, . . . , p̄ j−1}
−→q j (x) =

−b j

s j(x)
· (s j(x)− s j(x−1))

for integer x ∈ {1, . . . , p̄ j}

The functions and derivatives can be computed in O(1). The derivatives can be
inverted by first finding an appropriate bxc with −→q j (bxc) ≤ D ≤←−q j (bxc) (case 1)
or←−q j (bxc)< D <−→q j (bxc+1) (case 2) and then returning bxc in the first case and
computing (q j

′)−1(D) in the second case by computing an x for q j
′(x) = D:

D =
−b j

s j(x)
· (s j(bxc+1)− s j(bxc))

⇔ s j(x) =
−b j

D
· (s j(bxc+1)− s j(bxc))

=(1− x+ bxc)s j(bxc)+(x−bxc)s j(bxc+1)

⇔ x−bxc=−b j

D
− s j(bxc)

s j(bxc+1)− s j(bxc)
(5.4)

As the left and right derivatives are strictly monotonically increasing, the fit-
ting bxc can be found in time O(logm), and if needed, x can be computed by
Equation (5.4) in time O(1). The bend points are the integers which makes ad-
dressing them and counting their number within an interval possible in O(1). This
fulfills condition 3 from Theorem 1.

Similarly to the example of minimizing the used energy we show the existence
of a fast final solution as required by condition 4 from Theorem 1. We know that
solution-condition-2 from Lemma 5.2.14 holds (∑n

i=1 xi = m). Also there are no
D-values within (D,D), and we thus know for each job the p j = bx jc for which
either−→q j (p j)≤D∗ ≤←−q j (p j) (case 1) or←−q j (p j)< D∗ <−→q j (p j +1) (case 2) holds.
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We compute the sums

S2 =
n

∑
j=1

p j

S3 = ∑
j∈Case(2)

−b j

S4 = ∑
j∈Case(2)

s j(p j)

s j(p j +1)− s j(p j)

For the still unknown optimal solution x∗ = (x∗1, . . . ,x
∗
n) and the already known

p j we also know the sum S1 = ∑ j∈Case(2)(x∗j − p j) because of S1 = m− S2. As
Equation (5.4) holds for all jobs j in case (2) we have S1 = S3/D∗−S4 where D∗

is the common derivative value of the optimal solution. Hence we can compute

D∗ =
S3

S4 +S1

And with the known D∗ we can compute the x∗j by Equation (5.4). If we compute
the final solution sequentially, we compute the sums S2,S3,S4 in time O(n), then
D∗ is computed in time O(1), and after that Equation (5.4) is evaluated for all
jobs in time O(n). Altogether the sequential final solution can be computed in
time O(n). For the parallel solution on p cores the sums can be computed in time
O(n/p+ log p) by reductions, then D∗ is broadcasted (time O(log p)) after it is
computed in constant time on core 0. The local applications of Equation (5.4)
can be done in time O(n/p). This also fulfills the condition for the fast parallel
scheduling from Theorem 2. This shows the following corollary:

Corollary 5. Given a set of malleable optimization jobs with concave speedup
functions and an expected optimization value q j(w j) = −b j · ln(a jw j) + c j de-
pending on the invested work w j, we want to minimize the sum ∑

n
j=1 q j(w j). The

work amount w j is defined by w j = d j · s j(p) · t with the speedup function s j,
the running time t and a job-specific constant d j and additivity for disjoint time
intervals. If all jobs have a common release time and deadline, we can com-
pute the optimal core distribution for the minimal expected sum of the optimiza-
tion values in time O(n(logn+ logm) log(nm)). If the solution is computed on
p ≥ n cores of an EREW PRAM, the problem can be optimally solved in time
O((logn+ logm) log(nm)).

Minimize the Weighted Sum of Running Times

This example considers the problem of scheduling malleable jobs on a machine
with parallel identical cores in order to minimize the weighted sum of the finishing
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times (P|var|∑ω jC j) with concave speedup functions for the jobs. As the speedup
functions are concave, the C j are convex functions for jobs starting at time 0, and
thus the problem looks similar to the three previous examples. But this problem is
different. We will show that it is no convex problem, and the presented techniques
do not work in this case. We will also give an illustrating example and show that
the problem is NP-hard.

Example: We have a parallel machine with 4 identical cores, two identical mal-
leable jobs each with work amount 6 (the sequential running time), weight ω j = 1
and the speedup function:

# cores 1 2 3 4
speedup 1 2 3 3

So the speedup is linear until 3 cores for each job and an additional 4th core
brings no benefit.

In all previous examples identical jobs got the same amount of resources in
the optimal solution. If we divide the resources evenly between the two jobs, each
job will get 2 cores in this case which leads to a running time of 3 for each job and
thus to a value of 6 for the objective function ∑ω jC j. But if we start with giving
a job the maximal useful amount of cores (3) and then hand over the cores to the
other job when the first is finished, we get a better solution. The first job finishes
after running for 2 time units and the second after 2+4/3 time units which leads
to ∑ω jC j = 4+4/3≈ 5.33 and thus to a better solution. The possible schedules
are depicted in Figure 5.10.

cores

time

1

1

cores

time

1

1

cores

time

1

1

Figure 5.10. Possible different schedules for P|var|∑ω jC j.

The running time of the whole schedule is a little bit longer in case of the better
solution 2+4/3≈ 3.33, and the average amount of used cores is 1.8 for both jobs.
Hence in this case the average amount of resources is not enough to compute
the optimal schedule/placement of a job (the jobs are scheduled differently even
though their average resource amount is the same). Also the problem is no convex
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problem any more. If we look at the initial distribution of the cores two extreme
cases (1 : 3 and 3 : 1) lead to better results than the even distribution.

For this example condition 1 from Theorem 1 is violated. Hence we cannot
use the developed fast algorithm for this problem.

NP-hardness We can even show that finding the optimal schedule for the prob-
lem P|var|∑ω jC j with concave speedup functions is NP-hard. We prove this
by solving a given instance of PARTITION (a1, . . . ,an ∈N, Question: Is there an
g : {1, . . . ,n}→ {0,1} with ∑i:g(i)=1 ai = ∑i:g(i)=0 ai(= 1/2 ·∑n

i=1 ai) ?, see Garey
and Johnson [51, page 47] for the NP-Completeness of this problem). We call
instances of the PARTITION problem which allow a split in two sets with equal
weight yes-instances, and the instances which do not allow such a split are called
no-instances.

Let us now construct a scheduling problem from the given PARTITION prob-
lem a1, . . . ,an ∈ N. For each ai we construct one malleable job with a concave
speedup function si(x) = x for x ≤ ai and s(x) = ai for x > ai. Concave speedup
functions lead to convex running time functions (see Lemma 5.2.3). Each job has
an amount of work ai to complete and has a weight ωi = ai. Hence the fastest way
to complete the job is to run it on ai cores which leads to a running time of 1. The
machine used in the constructed scheduling problem consists of p = 1/2 ·∑n

i=1 ai
identical cores. If p is non-integer, an g according to the question cannot exist and
thus the original PARTITION problem can be answered in time O(n). Hence we
assume this is not the case here.

In order to compare the objective function values of different schedules, we
introduce some additional notation. Let ti be the finishing time of job i and 0 be
the common release time of all jobs. As each job has a work amount of ai and a
maximum speedup (when running on ai or more cores) of ai, we have ti ≥ 1 for
all i. If we have a yes-instance, we can construct the basic schedule B for this
instance. For B all jobs with g(i) = 0 start at time 0 and run on ai cores, then all
jobs with g(i) = 1 start at time 1 and run on ai cores. The objective value for B is
then γ(B) =∑

n
i=1 ωiCi =∑

n
i=1 aiti =∑i: f (i)=0 ai+∑i: f (i)=1 ai ·2= 3/2 ·∑n

i=1 ai. We
set W = 1/2 ·∑n

i=1 ai. The basic schedule B is the same as in the yes-instance of
the NP-hardness proof of P|size j, pmtn|Cmax by Drozdowski [39], but the major
part of the following proof is entirely different.

Lemma 5.2.16. The basic schedule B is an optimal schedule for all problems
constructed from yes-instances of the original PARTITION problem and has an
objective value of γ(B) = 3/2 ·∑n

i=1 ai = 3 ·W. Any schedule S for a problem con-
structed from a no-instance of the original PARTITION problem has an objective
value of γ(S)> 3/2 ·∑n

i=1 ai.
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Proof. We start this proof by introducing a new way to describe feasible schedules
for the given problem. Given a feasible schedule S for a set of jobs j1, . . . , jn
with weights ω1, . . . ,ωn and finishing times t1, . . . , tn. We assume that the jobs
are ordered such that the sequence of finishing time is non-decreasing. The sum
of all weights of the jobs is 2W . We now define a function fS : [0,2W )→ R>0
depending on the schedule by fS(x) = ti for x ∈ [∑i−1

k=1 ωk,ωi +∑
i−1
k=1 ωk). Thus fS

is a monotonically increasing step function on [0,2W ). The area between function
and x-axis

∫ 2W
0 fS(x)dx = ∑

n
i=1 ti ·ωi = γ(S) is the objective value of the schedule.

An example for the description is given in Figure 5.11.
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time
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Figure 5.11. Representation of a schedule for the problem P|var|∑ω jC j. The area
between the graph and the axis is the value of the objective function.

For a yes-instance the basic schedule B leads to a quite simple function fB
with fB(x) = 1 for x ∈ [0,W ) and fB(x) = 2 for x ∈ [W,2W ) (see Figure 5.12 for
an example). γ(B) = 3 ·W as calculated above.
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Figure 5.12. Representation of the basic schedule B in case when a partition exists.
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Now we look at the differences between an arbitrary schedule S and the basic
schedule B and what these differences mean for the resulting objective value of
the schedule. From the definition of the speedup functions si we know that a job
i reaches its maximal speedup on ai cores and runs with the same speed for all
larger core amounts. Hence if a job i runs on more than ai cores during any time
interval, we can reduce the amount of used cores to ai during this time interval
without slowing the job (or any other job) down. Thus we can restrict ourselves
w. l. o. g. to the cases in which each job i runs at most on ai cores.

The speedup functions are linear for all x ≤ ai. Thus the efficiency stays the
same for all core amounts x≤ ai. Hence the amount of core-time (all time intervals
of the usage of all cores summed up) a job needs to finish is the same for all cases
we restrict ourselves to.

As si(x)≤ ai and a job i has an amount of work ai to do, it follows immediately
that no job can be finished before time 1, as the minimal execution time for all
jobs is 1. The work done by the whole machine between time 0 and 1 is at most
1 · p = W and the weight of each job equals its work amount. Thus the total
weight of jobs completed until time 1 is at most W . Now we take a look at the
jobs ji with finishing times 1 < ti < 2 and ∑

i
k=1 ωk > W . If there are no such

jobs in schedule S, then all jobs ji with ∑
i
k=1 ωk ≤W finish at time ti ≥ 1 and all

jobs ji with ∑
i
k=1 ωk > W finish at time ti ≥ 2, which leads to an objective value

γ(S)≥ 3W = γ(B). The equality γ(S) = γ(B) can in this case only be satisfied if
all jobs ji with ∑

i
k=1 ωk ≤W finish at time ti = 1 and all jobs ji with ∑

i
k=1 ωk >W

finish at time ti = 2 and if there exists an i with ∑
i
k=1 ωk = W (which is only

possible for a yes-instance).
We distinguish two cases (with respect to the ordered set of jobs):

• Case 1: There exists ` ∈ {1, . . . ,n} such that ∑
`
k=1 ωk =W (only possible for

yes-instances).

• Case 2: There exists ` ∈ {1, . . . ,n} such that ∑
`
k=1 ωk >W > ∑

`−1
k=1 ωk.

In case 1 we define the following three job sets: I1 is the set of jobs ji with
∑

i
k=1 ωk ≤W ; Ib is the set of jobs ji with finishing times 1 < ti < 2 and ∑

i
k=1 ωk >

W ; and I2 is the set of jobs ji with finishing times ti ≥ 2 and ∑
i
k=1 ωk > W . For

the basic schedule B the set Ib is empty. In a slight misuse of notation we will also
use the job sets I1, Ib and I2 to denote the respective sets of indices.

In case 2 we split the job j` into two jobs j`′, j`′′ with the same finishing
time but each with an appropriate share of the work and the weight (weight and
work is the same for all jobs) such that ∑

`−1
k=1 ak +a`′ =W . This is still a feasible

schedule due to the malleability and the properties of the speedup function, also
the objective function is not changed by that operation. The speedup functions are
irrelevant for the new jobs as we do the split only for the purpose of computing
the objective value and not for rescheduling. We also change the indices and n
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such that 1, . . . ,n are the indices for all jobs in the used order. Then we define the
same three sets as in case 1.

The jobs in Ib are the only ones that can contribute to the improvement of the
objective value of S compared to B. Figure 5.13 shows the improvement against
B in blue and the degradation against B (jobs of the sets I1 and I2) in red.
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Figure 5.13. Comparison of the basic schedule with a different schedule.

A job ji ∈ Ib can perform at most an amount of (ti− 1) · ai work after time
1. Thus it has to perform an amount of at least (2− ti) · ai work before time
1. Altogether the jobs in Ib have to perform an amount of ∑i∈Ib

(2− ti) · ai work
before time 1. Hence the jobs ji ∈ I1 cannot all finish at time 1 as they have
to perform at least an amount W of work. Thus the jobs ji ∈ I1 have to do an
amount of ∑i∈Ib

(2− ti) ·ai work after time 1. If a job jk ∈ I1 has to do an amount
of work w, it takes at least time w/ak as ak is the maximal speedup of job jk.
Job jk also has a weight of ak in the objective function. Hence we get a lower
bound of the contribution of the jobs in I1 as it does not matter which jobs have
remaining work after time 1. This leads to a lower bound of W +∑i∈Ib

(2− ti) ·ai
for the contribution of the jobs in I1 to the objective function (the W part comes
from ∑i∈I1 ai = W and the fact that no job in I1 can finish before time 1). The
contribution to the objective function of the jobs in Ib is ∑i∈Ib

ti ·ai = 2 ·∑i∈Ib
ai −

∑i∈Ib
(2− ti) ·ai.

Now we take a look at the situation when a job ji ∈ Ib finishes. Due to the
definition of Ib we have ∑

n
k=i+1 ak <W = p. As the maximal degree of parallelism

for a job jk is ak, there can be at most ∑
n
k=i+1 ak cores in use after job ji has finished

(all jobs of I1 have finished before ji due to the ordering of the jobs). Hence the
idle core time between the times 1 and 2 is at least ∑i∈Ib

(2− ti) · ai. As the total
amount of work of all jobs is 2W and the work that can be done before time 2 by
the whole machine is also 2W , an amount of ∑i∈Ib

(2− ti) ·ai work has to be done
after time 2 due to the idleness induced by the jobs in Ib. Similar to the argument
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above it holds that if a job jk ∈ I2 has to do an amount of work w it takes at least
time w/ak as ak is the maximal speedup of job jk. Job jk also has a weight of ak in
the objective function. Hence for the lower bound of the contribution of the jobs
in I2 it does not matter which jobs have remaining work after time 2. This leads
to a lower bound of 2 ·∑i∈I2 ai+∑i∈Ib

(2− ti) ·ai for the contribution of the jobs in
I2 to the objective function (the 2 ·∑i∈I2 ai part comes from the fact that no job in
I2 finishes before time 2 by definition).

Altogether we have for the objective function of schedule S:

γ(S) =
n

∑
i=1

ti ·ai = ∑
i∈I1

ti ·ai + ∑
i∈Ib

ti ·ai + ∑
i∈I2

ti ·ai

≥W + ∑
i∈Ib

(2− ti) ·ai + ∑
i∈Ib

ti ·ai +2 ·∑
i∈I2

ai + ∑
i∈Ib

(2− ti) ·ai

=W + ∑
i∈Ib

(2− ti) ·ai +2 · ∑
i∈Iq∪I2

ai

=W + ∑
i∈Ib

(2− ti) ·ai +2 ·W

=γ(B)+ ∑
i∈Ib

(2− ti) ·ai

Hence γ(S)> γ(B) when Ib 6= /0.
If the given scheduling problem stems from a yes-instance of the PARTITION

problem, an optimal solution must fulfill Ib = /0. The minimal finishing time for
jobs in I1 is 1 and 2 for jobs in I2. The total weight of jobs contained in set I1 can
be at most W . The basic schedule B reaches the optimum in every respect and is
thus an optimal schedule for the problems stemming from yes-instances.

When the given scheduling problem stems from a no-instance, building a basic
schedule B with ∑i∈I1 ai = ∑i∈I2 ai = W and ti = 1 ∀i ∈ I1 and ti = 2 ∀i ∈ I2 is
impossible as such a partition does not exist without splitting a job, and the two
parts of the split job (one in I1, one in I2) have to have the same finishing time. If
a schedule S for a no-instance has a non-empty set Ib, we know that γ(S) > 3W .
As ∑i:ti=1 ai < W , we have in case of Ib = /0 that ∑i:ti≥2 ai > W and thus γ(S) ≥
1 ·∑i:ti=1 ai + 2 ·∑i:ti≥2 ai > 3W . Hence the resulting objective function value is
always larger than 3W in case of a no-instance.

Lemma 5.2.16 shows that if we can compute the optimal schedule for the
constructed scheduling problem, we can decide the partition problem which the
respective instance stems from. Thus we get the following theorem:

Theorem 6. The scheduling problem of minimizing the weighted sum of running
times of malleable jobs (P|var|∑ω jC j) with concave speedup functions is NP-
hard and thus unlikely to have a polynomial-time scheduling algorithm that al-
ways finds the optimal solution.
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The NP-hardness of the minimization of the weighted sum of running times
indicate that the conditions formulated in Theorem 1 are not only the result of
the selected solution approach. The minimization of the weighted sum of running
times is a problem which looks similar to problems that can be optimally solved in
polynomial time by our approach, but it violates the conditions that are necessary
for our approach. Thus the conditions somehow separate polynomially solvable
problems from NP-hard ones and are thus (at least partially) justified by properties
of the problem and not only properties of the solution approach.

The NP-hardness of the problem with sequential jobs (P||∑ω jC j) is already
known from the work of Bruno et al. [19]. They do not discuss preemption. Hence
their work does not directly imply the NP-hardness of P|var|∑ω jC j with concave
speedup functions (var implies pmtn). Also a proof with parallel jobs seems to be
more fitting for this work.

5.2.6 Techniques for Enhanced Problems
In this section we present some possibilities to extend the results from Sec-
tion 5.2.2 and Section 5.2.3 (and also Section 5.2.4) to different kinds of
scheduling problems.

Approximations for Problems with Moldable Jobs

In Section 3.1.3 we presented some fast approximation algorithms for the schedul-
ing problem of minimizing the maximum running time of a set of independent
moldable jobs (P|any|Cmax and P|any, pmtn|Cmax). Here we show how we can
use our scheduling results for malleable jobs (as presented in Section 5.2.3) to get
approximation solutions for scheduling problems with moldable jobs. We look
at the problems P|any|Cmax and P|any, pmtn|Cmax with concave speedup func-
tions for each job (speedup with si(0) = 0,si(1) = 1). For malleable jobs in-
stead of moldable jobs this problem can be solved optimally in time O(n(logn+
logm) log(nm)). If the solution is computed on p≥ n cores of an EREW PRAM, it
can even be solved optimally in time O((logn+ logm) log(nm)) (see Corollary 3
in Section 5.2.5). As each feasible schedule for moldable jobs is also a feasible
schedule for malleable jobs, the optimal solution for malleable jobs is at least as
good as the optimal solution for moldable jobs. Hence the comparison of any so-
lution for moldable jobs with the optimal solution for the analogous problem for
malleable jobs delivers an upper bound for the approximation ratio compared to
the optimal solution for moldable jobs.

Approximation algorithm:

1. Treat the moldable jobs as malleable jobs and compute the optimal solution
for that problem with Algorithm 5.1 (linear interpolation of the speedups) or
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its parallelization as described in Section 5.2.4. This leads to Cmax = Tvar and
an average core usage xi of job i.

2. Let B be the set of big jobs (jobs with an average core usage of xi > 1) and let
S be the set of small jobs (jobs with an average core usage of xi ≤ 1) in this
solution. Each job in B is set to a parallelism degree of bxic and gets its own
bxic cores. The big jobs can be placed in parallel by the usage of a prefix sum
(similarly to the method in Section 5.2.4). The jobs in S are scheduled on the
remaining (after the placement of B) cores in the next step.

3. The small jobs are running sequentially and each has a duration of at most
Tvar. At least d∑i∈S xie cores are available to work on the small jobs. The
total duration of all small jobs together is at most Tvar ·∑i∈S xi as our malleable
scheduling algorithm assigned them a total core time of Tvar ·∑i∈S xi. In order
to split the jobs among the available cores, we compute the starting time and
the finishing time of each job if they were computed on one core one after
another (no special ordering required). This can also be done in parallel by
using a prefix-sum. We assume that the cores participating in the work on
the small jobs are numbered from 1 to m′. We assign each core k to the
interval [Tvar(k−1),Tvar(k+1)] which overlaps the intervals assigned to the
cores k− 1 and k+ 1 if these exist. An example for 8 cores is presented in
Figure 5.14. If we split the jobs between the cores k and k+1 in the interval
[Tvark,Tvar(k+1)] (the overlap of the assigned intervals), then we get at most
m′ job groups (m′− 1 splits) all with a total length of at most 2Tvar. To find
a splitting point without splitting a job is always possible as the maximal job
length is bounded by Tvar. We always choose the smallest possible value in
the overlapping interval [Tvark,Tvar(k+1)] which coincides with the finishing
time of a job started at a time before kTvar. This job and the splitting time
can be easily determined by the prefix sum by detecting the job with starting
time < kTvar and finishing time ≥ kTvar. A solution (similar to the scheduling
of small jobs) for scheduling sequential jobs in parallel is also given in Peter
Sanders’s lecture "Parallele Algorithmen".

This approach does not use preemption and thus works for both problems
(P|any|Cmax and P|any, pmtn|Cmax with concave speedup functions for each job).
It has an approximation ratio of 2:

Lemma 5.2.17. The approach described above (computing the optimal malleable
solution and then round down the big jobs and schedule the small jobs by job split)
is a factor 2 approximation for the problems P|any|Cmax and P|any, pmtn|Cmax
with concave speedup functions (speedup with si(0) = 0,si(1) = 1).

Proof. As each feasible schedule for moldable jobs is also a feasible schedule for
malleable jobs, the optimal solution for malleable jobs is at least as good as the
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Figure 5.14. Example of the job split on 8 cores.

optimal solution for moldable jobs. Hence it is sufficient to prove that the running
time of the schedule produced in step 2 cannot be larger than 2 ·Tvar.

Let us first look at the big jobs B. The speedup functions are concave with
si(0) = 0 and si(1) = 1. Also the speedups are only defined for integer core
amounts. For core amounts in between we use linear interpolation, like in Corol-
lary 3. We can also assume that xi ≤ x̂i. Thus we have due to the concavity of the
speedup functions:

si(xi)

si(bxic)
≤ si(bxic+1)

si(bxic)
≤ bxic+1
bxic

The last inequality comes from the fact that the growth of a concave function
during an integer step can be at most the average growth between 0 and the starting
point of the step. Hence the duration of a big job can be at most doubled when
changing from xi to bxic cores. The total core usage of all big jobs is ∑i∈Bbxic ≤
b∑i∈B xic.

The small jobs S can be computed in time Tvar on an average core amount of
∑i∈S xi in the malleable solution. The splitting algorithm guarantees that no core
working on the small jobs has to work more than a time amount of 2Tvar and that
all small jobs are done.

In the O-notation the running times of step 2 and step 3 are smaller than the
running time of step 1 in the sequential case and in the parallel case with p ≥ n
cores working on the schedule in an EREW PRAM. Hence the running times
of Theorem 1 (O(n(logn+ logm) log(nm))) and Theorem 2 (O((logm+ logn) ·
log(nm))) are also the running times for the sequential and the parallel version
of the approximation algorithm. Thus we get a fast, easy and even parallelizable
factor-2 approximation algorithm for P|any|Cmax and P|any, pmtn|Cmax with con-
cave speedup functions for each job. The approximation can also be used for a
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mixture of moldable and malleable jobs. If all jobs are large (with a minimal
degree of parallelism of k in the malleable solution), then we even get an approx-
imation ratio of (k+1)/k.

Usage for Online Problems

Malleable job schedules enable easy adaptions to online problems, at least for
the ones where all job properties become known together with the job. Every
time a new job arrives we can just compute the new optimal solution (can be
done fast and even in parallel see Theorem 2) and adapt all running jobs to it.
Unfortunately the solutions computed in this way do not have to be optimal. If we
assume a very simple instance of the problem "Minimize the used Energy" from
Section 5.2.5, we already get a case with a suboptimal result which is described
now. We have m = 1 and two jobs with a common deadline T and work amount
w. The only difference between the jobs is that job 1 becomes known at time 0
and job 2 at time T/2. Thus the optimal solution at time 0 is to run job 1 with
frequency f =w/T . At time T/2 when job 2 arrives, the optimal solution changes
to running job 2 and the remaining part of job 1 with frequency f = 3w/T =
3/2 ·w/(T/2). This clearly consumes more energy than the optimal solution
which is running both jobs with frequency f = 2w/T (Eopt = T · (w/T )α · 2α

instead of E = T · (w/T )α · (1+ 3α)/2) because g : x 7→ xα is a strictly convex
function for x > 0. Hence online problems are not optimally solved in all cases by
the usage of malleable jobs.

5.3 General Optimization Methods in Scheduling

There are a lot of applications of general algorithmic design techniques in schedul-
ing. Many of these applications are heuristics. There are complete books which
are collections of such applications both within Xhafa and Abraham [145] and
outside Xhafa and Abraham [146] computer science. Dealing with heuristics is es-
pecially interesting when different methods are compared regarding their solution
quality for the same problems. Together with Felix Brandt and Markus Völker, the
author of this work took part in the ROADEF/EURO challenge 2012 which had
machine reassignment problems as topic (Afsar et al. [1] wrote an article about the
challenge, results and the used techniques). We used general heuristic methods in
order to solve the scheduling problems presented in the challenge. Hence this is
an example of the application of general optimization methods to scheduling.



5.3. General Optimization Methods in Scheduling 181

5.3.1 ROADEF/EURO Challenge 2012

We now take a deeper look into the problems to be solved for the challenge using
the challenge description [113]. Given a set of machines M (up to 5 000 for the
given problems) and a set of processes P (up to 50 000 for the given problems), a
machine assignment is a map M : P →M assigning each process to a machine.
An initial feasible assignment M0 was given for each problem. The goal was to
compute a new assignment regarding some hard constraints and some objectives.
The hard constraints were:

• Capacity constraints: For each problem a number of resources is given (rang-
ing from 3 to 12 for the given instances of the main round). For each kind
of resource each machine has a capacity and each process a demand. The
demand of all processes assigned to one machine can be at most the capacity
of this machine for each resource.

• Conflict constraints: The set of processes is partitioned into services. All
processes of a service must run on different machines.

• Spread constraints: The machines are distributed over several locations. For
each service there is a minimum number of locations where at least one pro-
cess of that service should run.

• Dependency constraints: A neighborhood is a set of machines, all neighbor-
hoods are disjoint. If a service a depends on a service b, then all processes of
a should run in a neighborhood in which also a process of b runs.

• Transient usage constraints: Some resources can be transient resources (de-
pending on the problem). The process uses this resource on its initial and its
new machine if it is moved.

The objective of the problem (cost function) is an (instance-specific) weighted
sum of five objectives:

• Load cost: For each machine there is a safety capacity for each resource. If
the assignment produces a usage of a resource which is higher than the safety
capacity, then there is a cost proportional to the usage amount above the safety
capacity. For each problem instance the different resources can be weighted
differently.

• Balance cost: For some 2-tuples of resources there can be a balance cost
defined as a 3-tuple (r1,r2,c). If u1 is the usage of r1 and u2 that of r2 on a
certain machine and c ·u1−u2 > 0, then the usage cost for the given tuple on
the machine is c ·u1−u2.

• Process move cost: The cost of moving a process (process-specific).

• Service move cost: The number of processes moved within a service. This
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cost is only payed for the service with the most moved processes.

• Machine move cost: The cost of moving a process from one machine to
another (specific to the two involved machines).

The challenge was organized in two rounds: a qualification round and the
main round. In the qualification round ten problems of smaller sizes (up to 1000
processes) had to be optimized. The description here is focused on the main
round, as we put the most effort into the program for the main round and as the
final ranking is only based on the results of the main round. In both rounds the
participating teams had to hand in a program that optimizes problems as described
above given in a defined data format. The program for the main round was tested
on 10 problem instances already known to the participants and 10 unknown new
instances with similar properties. For each instance an initial feasible solution
was given. All programs were run with a time limit of 5 minutes on each problem
instance on a core2duo E8500 3.16MHz with 4GB RAM on Debian 64 or Win7
64 bits (see the submission page [114]). All programs were evaluated through the
sum of Score() over all instances. Given an instance and computed solution I, the
best solution among competitors is B and the original reference solution R, the
score is Score(I) = 100 · (C(I)−C(B))/C(R) where C is the cost function.

5.3.2 Our Approach to the Challenge

The description given here is an adapted version (large parts are directly copied)
of the article to our solution approach [18] (joint work with Felix Brandt and
Markus Völker, for the individual contributions to the articles used in this work
see Section 3.4.4). Compared to the article, the focus here is more directed to
parts of the solution with contributions of the author of this work. Let us first take
a look at the basic properties of the given 10 instances (called b-instances in the
challenge) for the main round:

By looking at Table 5.1 we can see that there are 10 to 500 times more pro-
cesses than machines and that the set of processes is partitioned in a large num-
ber of disjoint subsets called services. These services are included in three hard
constraints: the conflict constraint, the spread constraint and the dependency con-
straint. For most instances the average number of dependencies between services
ranges between 0.3 and 3, but for instance 9 the average is 9.4, for instance 10
the average is 9.7 and for instance 4 the average is even 23.4. Altogether the con-
straints for a feasible solution are difficult to meet (at least for some instances).
Thus building a feasible solution from scratch seems to be difficult (especially
within a time limit of 5 minutes). Improving the given feasible solution step by
step looks much more promising and possible. Hence we decided to use an ap-
proach that improves the given initial solution instead of computing a new solution
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Processes Machines Services Resources Balance costs
(transient)

Instance 1 5000 100 2512 12 (4) 0
Instance 2 5000 100 2462 12 (0) 1
Instance 3 20000 100 15025 6 (2) 0
Instance 4 20000 500 1732 6 (0) 1
Instance 5 40000 100 35082 6 (2) 0
Instance 6 40000 200 14680 6 (0) 1
Instance 7 40000 4000 15050 6 (0) 1
Instance 8 50000 100 45030 3 (1) 0
Instance 9 50000 1000 4609 3 (0) 1
Instance 10 50000 5000 4896 3 (0) 1

Table 5.1. Overview of the given instances of the ROADEF/EURO Challenge 2012.
Giving the number of processes (jobs), machines, services and the number of resources
and the number of those which are transient. Additionally the number of tuples for balance
cost is given.

from scratch. As basic method we used a heuristic similar to the neighborhood
search (called local search by Hromkovič, [67, page 189]) or large neighborhood
search (Ahuja et al. [3]). The idea of neighborhood search is to compute for a
given feasible solution some feasible neighboring solutions and to choose an im-
proving solution among them. The improved neighboring solution is then the ba-
sis for the next step. The neighborhood search has the additional benefit that there
is always an available feasible solution which can be returned if the time limit
comes up. In order to find an improving solution within our neighborhoods and
given the complicated constraints, we decided to use a constraint programming
library (Gecode [130]) to search for an improving solution within the selected
neighborhood. Hence our general solution method is the repeated application of
the following three steps until the given time limit is reached:

1. Neighborhood selection. Choose a subset of all processes. Only these pro-
cesses are considered for reassignment in the current iteration.

2. Constraint search. Build a constraint program (CP), which contains only the
selected subset of processes and calculates their costs when reassigned to
other machines. Start a CP search for improving solutions and stop at the first
improving solution or when the time limit is reached.

3. Update solution. Take the found solution as the starting solution of the next
iteration. If no improving solution is found in the given search space or within
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the iteration’s time limit, the current solution is kept for the next iteration.

In preliminary experiments we observed that a high number of iterations is a key
to good results. This led to two design decisions: First, we keep the subsets
small (most of the time less than 10 processes are selected), because we can run
many iterations on small process subsets in the same time as one on a big subset.
Second, we stop each iteration on the first improving solution. This way the
number of iterations can be dramatically increased, compared to fully exploiting
the CP search space in each iteration. For the constraint search our model does
not contain the the full problem for performance reasons but rather represents the
difference to the current solution.

Data analysis The knowledge of the properties of the inputs is the basis for
developing good heuristics. Hence we took a deeper look into the given instances
in order to discover some maybe helpful properties. Of course we were careful
not to over-analyze the data and not to build assumptions that might be false for
the unknown data sets.

The first thing we observed was that the service move cost is not able to
contribute more than a tiny fraction of the total cost. For all given instances, the
weight assigned to the service move cost was 10. As the service move cost is
defined by the maximum number of processes moved in any service multiplied by
this weight, it is bounded by 10 times the number of processes. As the initial costs
for all instances were far more than 10000 times the number of processes, these
costs seemed negligible. After we had computed the first optimized solutions
with our search process, we could see that the service move cost was still limited
to about 1% of the solution cost (in most cases far less). Thus we considered the
service move cost as insignificant and ignored it during the optimization process.
With that we saved computing time and programming effort.

The second observation is that all instances have some large resource de-
manding processes. We order the processes for each b-instance and each resource
according to their need of this resource from processes that need little of that re-
source up to the processes that need much of this resource. If a process belongs
to the r% processes that use the least of a certain resource, we will say that this
process belongs to the lower r% process quantile of that resource. Analogously
for a process that belongs to the r% processes that use most of a certain resource,
we will say that this process belongs to the upper r% process quantile of that re-
source. If a process belongs to the lower r% quantile for ALL resources we will
say that it is in the lower r% set of all processes. If a process belongs to the upper
r% quantile for at least ONE resource we will say that it is in the upper r% set of
all processes.

Now we take a look at the very similar 3-resource instances 8, 9 and 10: For
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Processes Resources Processes Resources Resources
upper 5% upper 5% lower 60% lower 60%

Instance 1 30% 51-84% 11% 0.1-2.0% 12
Instance 2 30% 53-84% 11% 0.1-2.1% 12
Instance 3 19% 41-63% 26% 1.1-5.2% 6
Instance 4 18% 42-64% 26% 1.1-5.2% 6
Instance 5 19% 42-64% 26% 1.1-5.3% 6
Instance 6 19% 42-64% 26% 1.1-5.4% 6
Instance 7 19% 41-63% 26% 1.1-5.3% 6
Instance 8 10% 46-60% 51% 2.1-3.9% 3
Instance 9 10% 45-60% 51% 2.2-3.9% 3

Instance 10 10% 45-60% 51% 2.2-3.9% 3

Table 5.2. Fraction and resource demand fraction of the processes in the upper 5% set
(process belongs to the largest 5% for ONE resource) and the lower 60% set (process
belongs to the smallest 60% for ALL resources). The range in the resource demand is
between the resource with the smallest and the largest demand for the respective set. For
instances with the same number of resources the values are very similar which might be a
generation artifact.

these instances 51% of all processes are in the lower 60% set of all processes and
what is much more interesting the resource usage of all jobs in the lower 60% set
is between 2% and 4% of the total usage of the respective resource usage in the
respective instance. Hence we have a large number of processes which contribute
very little to the overall load. On the other side for all these three instances the
fraction of processes belonging to the upper 5% set is between 9% and 10% but
the resource usage of the upper 5% set is between 45% and 60% of the total
usage of the respective resource usage in the respective instance. Hence we have
a relatively small number of processes which contribute an important fraction to
the total load. More than 90% of the processes in the upper 5% set belong to
the upper 30% process quantile for all resources. Similar but weaker properties
like this also occur in the other instances. The properties of all instances are
shown in Table 5.2. Another interesting observation is that the instances with the
same number of resources seem to be very similar with respect to large and small
processes.

Hence there is a large fraction of processes that have little importance for the
total load or the excess load cost, but there are some very important processes
which might need a special handling. This is even more important as for 6 in-
stances there are machines with all safety capacities set to 0 which implies that all
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processes on these machines should be moved elsewhere. These findings inspired
the creation of the Target Move Search (see below), which works by enabling
the movement of large processes (for example from the upper 5% set) by making
room for them on another machine.

Demand Safety capacity
Instance 1 86-88% 83-85%
Instance 2 85-89% 87-88%
Instance 3 83-84% 83-84%
Instance 4 83-84% 87-88%
Instance 5 83-84% 83-85%
Instance 6 83-84% 87-88%
Instance 7 76-77% 83%
Instance 8 84% 83-84%
Instance 9 91% 87-88%

Instance 10 77% 84%

Table 5.3. Total demand (all processes) and safety capacity (of all machines) of the given
instances as a fraction of the total capacity (of all machines). The range is between the
resource with the smallest and the highest value.

We also took a look at the total load and the total safety capacity of the
given instances. We give the total resource demand of all processes and the total
safety capacity of all machines as fraction of the total capacity of all machines in
Table 5.3. The fractions are computed for each resource separately and give the
range of results. We can see from Table 5.3 that the values for the demand and the
safety capacity are usually close together and that there is little variance between
different resources.

Correlations between demands for different resources might also be inter-
esting. If there are a lot of processes with complementary resource demands, it
might be especially beneficial to optimize these processes by packing them to-
gether. In all instances we took the processes as observations and the different
resources as random variables. Then we computed the correlation coefficients be-
tween the different resources. In all instances we only found positive correlation
coefficients and coefficients close to zero. Especially for the three instances with
only three resources, where it might have been possible to find fitting complemen-
tary resource demands, all coefficients were at least 0.5. Thus we did not develop
a special treatment for processes which use some resources heavily and others
only lightly.
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Neighborhoods Given our general approach and the knowledge about the given
instances, we developed four different neighborhood types for the optimization.
The neighborhood selection is the heuristic part of our solution and thus crucial to
balance the quality improvement and the computation effort. In our case different
neighborhoods were used, but for all of them there is a small number of processes
working on different machines for two neighboring solutions. Different neighbor-
hoods can be beneficial for different situations of the optimization process, and
they can provide different optimization possibilities. An experimental result that
the mixture of different neighborhoods is better than each single neighborhood (in
this case for our neighborhoods) is presented in Section 5.3.3.

For our search we used these four kinds of neighborhoods:

• Random search neighborhood: k processes are selected randomly from the
set of all processes with equal probability or in the weighted case (weighted
random search WRSk) with a probability proportional to their contribution to
the cost function (the possible load cost improvement if this process is deleted
plus its move costs if the process was already moved). These processes then
can be moved to any other machine to find neighboring solutions. The idea of
the weighted random search is that neighborhoods with costly processes have
a higher potential to improve the overall cost function.

• Process neighborhood search neighborhood (PNS): The processes are sorted
with respect to their cost contribution (the possible load cost improvement
if this process is deleted plus its move costs). Starting with the processes
with the highest cost, we select 4 neighboring processes in the sorted order
plus three randomly chosen processes. These processes then can be moved to
any other machine to find neighboring solutions. The idea here is that heavy
processes can switch machines for improvement, for example through a better
fit for the demand of different resources.

• Target move search neighborhood (TMS): By looking at the given instances,
we learned that there are big and costly processes that are difficult to move
to other machines because these machines are already occupied with other
processes. Thus we select up to seven processes on a designated target ma-
chine of the big process. Neighboring solutions are the solutions in which
the large process is moved to the target machine, and the selected processes
of the target machine are placed on any machine. The control flow of the
TMS is illustrated in Figure 5.15. For the target move search neighborhood
we first compute the load cost for each process, which is the load cost im-
provement on its current machine if this process is moved away, and build a
process list (plist) according to this value. Starting with the process with the
highest cost, we perform the following operations for all processes in order of
decreasing load cost until we either find an overall solution improvement or
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the time assigned to the target move search is up. For each machine which has
enough resources for the big process (the list of these machines is computed
in (mlist)) we randomly select 7 processes on this machine (or all processes
if there are at most 7 on this machine) and put them into the neighborhood
together with the big process. We also make sure that only solutions are ac-
cepted where the big process is placed on the selected machine (the number
of fitting machines is usually small). Then we run the CP solver (cp). If no
improving solution is found for a process, we continue with the process with
the highest load cost among the remaining processes. If no improving solu-
tion is found for any process in plist and the time assigned to the target move
search is not up yet, the target move search is just restarted. As the neighbor-
hood selection contains some randomness (selection of the 7 processes) it is
still possible to find an improving solution in the second walk through plist.
The same holds for the process neighborhood search.

• Undo move search neighborhood (UMS): Especially in problem instances
with transient resources it can be beneficial to move processes back to their
initial machine. By doing this, it is possible to free transient resources and
save movement costs. We select one moved process and five random pro-
cesses that have been moved to its initial machine. These processes then can
be moved to any other machine to find neighboring solutions.

Solution setup The different search neighborhoods are combined by running
searches on each kind of neighborhood for some time. As the given machines have
two cores we use two threads that combine the different strategies in a different
way and exchange their best solutions from time to time. For our participation
we used the following neighborhood scheme: Thread 1: TMS 5 seconds at a
time, not started later than 45 seconds after program start; PNS 4 seconds at a
time; WRS7 4 seconds at a time, not started before 60 seconds after program start;
UMS 1 second at a time; Thread 2: PNS 5 seconds at a time; TMS 5 seconds
at a time, not started later than 60 seconds after program start; WRS9 4 seconds
at a time, not started before 60 seconds after program start; UMS 1 second at a
time. The threads work through their list until the time is over. Every time when
a new kind of search is started a thread compares its local solution with the best
global solution and uses the better one to continue. After running one kind of
search the local best solution is again compared with the global best solution and
the global best solution is updated if necessary. We intentionally used slightly
different strategy combinations and durations in order to gain benefits from the
parallel optimization.

For instances with transient resources we apply a special process fixing in
order to lower the burden on the transient resources. The fixing of the processes
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Figure 5.15. Control flow of the Target Move Search (TMS). The picture is taken from
our article (joint work with Felix Brandt and Markus Völker [18]).

is done in two steps. First, the processes are ordered decreasingly with respect to
their usage of the transient resource. If there is more than one transient resource,
the demands for the transient resources are weighted by the inverse initial total
free capacity of the respective resource. Second, starting from the beginning of
the ordered list processes are fixed to their initial machine if the resource demand
of fixed processes (including the process in question) is smaller than a fraction γ

of the safety capacity for all resources on the respective initial machine. We used
γ = 0.9 and released the fixed processes after 60 seconds from the beginning of
the optimization process.

5.3.3 Results of the Challenge

After the presentation of our approach to the ROADEF/EURO Challenge 2012 in
the previous section we now present some experimental results. First we present
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the results and descriptions of our own experiments which are mostly copied from
the article about our solution approach [18] (joint work with Felix Brandt and
Markus Völker). Compared to the article some experimental results are omitted.
Then we give a brief description of our results in the competition and a short
description of the approach of the solution of the competition winners.

Our experiments We implemented our CP-based solution approach in C++,
using Gecode [130] in version 3.7.1 as CP-solver (our code is published, see
https://github.com/fbrandt/ROADEF2012-J25). All experiments that are pre-
sented in the following have been performed on a computer with four 12-core
AMD Opteron(tm) 6172 processors with 2.1 GHz and 256 GB of RAM. The
underlying operating system was OpenSUSE 12.2 (64 bit). For each run of the
multi-threaded experiments we used two of the 48 cores. For the single-threaded
experiments only a single core was used.

For our experiments we used 20 test instances provided by the ROADEF/EURO
challenge 2012. The instances are grouped into 2 sets, the b-instances already
known during the development of our solver and the x-instances. The x-instances
share the same basic characteristics as the b-instances but only became public
after the contest had ended. Accordingly, our approach is not tuned towards the
x-instances.

The score of the solution of an instance is defined as follows: all approaches
were evaluated through the sum of Score() over all instances. Given an instance
and computed solution I, the best solution among competitors is B and the original
reference solution R, the score is Score(I) = 100 · (C(I)−C(B))/C(R) where C is
the cost function (also see above). All solution scores presented here are based on
the best solutions submitted by any contestant of the ROADEF/EURO challenge
2012. Our approach did not find the best solution for any given instance, but we
were often quite close.

Each experiment was repeated 30 times and all values presented in the fol-
lowing show the average of those 30 runs. In our evaluation, we mainly focus
on solution scores. In comparison to the underlying solution costs the solution
scores make it easier for the reader to see how our approach performs in compar-
ison to the approaches of other contestants. In order to give an impression of the
variance of the solutions, we look at the relative difference between the smallest
and the largest solution cost of the 30 solutions produced by our approach which
was handed in to the challenge. For most of the 20 instances the costliest solution
produces a less than 1% higher cost than the best solution of our 30 runs. For the
instances b_2, b_5, x_1, x_2 and x_7 our approach produces a difference of less
than 3% between the largest and smallest solution cost of the 30 runs. For the
instances b_1 and b_3 our solution produces a difference of about 6%. There are
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three instances which lead to a quite high relative difference between the best and
worst solution value: x_3: 168%, x_5: 188% and x_8: 28%, but in these cases
the cost of the reference solution is so much larger than the cost of our solution
that the score differences are very small (x_3: < 0.08, x_5: < 0.0041 and x_8:
< 0.00021). Altogether we computed an average solution score of 2.825. By us-
ing only the best solutions of our 30 runs, the score would have been 0.972, by
using only the worst, it would have been 7.280.

Figure 5.16 gives an impression how our different neighborhoods improve the
solution quality during the optimization time. Using only one neighborhood can
be beneficial in the beginning, but in the end (after 5 minutes) our chosen combi-
nation of neighborhoods finds the largest improvements. Table 5.4 compares the
different neighborhoods and our chosen mixture on all instances. The weighted
random search strategies are the best single strategies, but our combination is
clearly better than any used single strategy.
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Figure 5.16. Behavior of different search strategies (neighborhoods) over time. MIX is
our selected strategy combination. Graph taken from from our article (joint work with
Felix Brandt and Markus Völker [18]).

We also take a look at the improvements through parallelization in Table 5.5.
The results of thread 1 and thread 2 alone and their combination are given for a
running time of five minutes. The parallelization results in a small improvement
on nearly all instances.

Altogether our experiments show that strategy combination and parallelization
improved the solution.

Comparison to other teams 82 teams registered for the qualification round
(same restrictions and conditions but only some smaller problem instances). 48
teams handed in a program for the qualification round. 30 teams qualified for the
final round, 28 of them handed in a solution program. Our team finished second
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Instance Score after 5 min
PNS TMS WRS7 WRS9 WRS12 RS6 Mix

b_1 1.559 5.423 2.088 2.015 1.962 3.877 1.082
b_2 0.620 0.203 0.593 0.566 0.601 1.208 0.306
b_3 0.176 3.308 0.181 0.207 0.233 0.152 0.106
b_4 0.001 0.125 0.001 0.001 0.000 0.002 0.001
b_5 0.216 6.541 0.206 0.231 0.262 0.105 0.139
b_6 0.000 0.057 0.000 0.000 0.000 0.000 0.000
b_7 0.470 1.705 0.119 0.116 0.112 7.399 0.088
b_8 0.228 4.865 0.129 0.150 0.265 0.011 0.034
b_9 0.011 0.669 0.009 0.028 0.238 0.016 0.008

b_10 1.702 2.266 0.276 0.321 0.458 12.410 0.105
x_1 2.167 6.012 2.550 2.435 1.840 6.437 0.248
x_2 0.641 0.314 0.681 0.560 0.523 1.115 0.307
x_3 0.120 0.738 0.259 0.255 0.234 0.160 0.075
x_4 0.001 0.038 0.001 0.001 0.001 0.002 0.001
x_5 0.003 0.249 0.139 0.144 0.159 0.010 0.002
x_6 0.000 0.050 0.000 0.000 0.000 0.000 0.000
x_7 2.356 2.608 0.360 0.323 0.347 8.431 0.205
x_8 0.000 0.008 0.002 0.002 0.001 0.003 0.000
x_9 0.015 0.818 0.013 0.032 0.328 0.017 0.012

x_10 2.093 3.063 0.280 0.301 0.398 12.296 0.107
Sum 12.380 39.058 7.887 7.687 7.962 53.650 2.825

Table 5.4. Comparison of the achieved solution scores after 5 minutes of computation for
several neighborhood strategies. Table taken from from our article (joint work with Felix
Brandt and Markus Völker [18]).
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Instance Score after 5 min
Thread 1 Thread 2 Thr. 1+2

b_1 1.795 0.933 1.082
b_2 0.347 0.373 0.306
b_3 0.128 0.134 0.106
b_4 0.001 0.001 0.001
b_5 0.150 0.181 0.139
b_6 0.000 0.000 0.000
b_7 0.155 0.130 0.088
b_8 0.075 0.142 0.034
b_9 0.025 0.024 0.008

b_10 0.206 0.162 0.105
x_1 0.439 0.663 0.248
x_2 0.389 0.363 0.307
x_3 0.087 0.087 0.075
x_4 0.001 0.001 0.001
x_5 0.003 0.003 0.002
x_6 0.000 0.000 0.000
x_7 0.315 0.267 0.205
x_8 0.001 0.000 0.000
x_9 0.038 0.031 0.012

x_10 0.219 0.194 0.107
Sum 4.374 3.688 2.825

Table 5.5. Influence of the parallelization on the achieved scores after 5 minutes running-
time. Table taken from from our article (joint work with Felix Brandt and Markus Völker
[18]).
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in the final round among all teams in the junior category. 11 participating teams
in the final round were junior teams. Teams were placed in the junior category if
no team member had a Ph. D. yet. Our score of the challenge evaluation was 2.60,
the best junior team scored 1.72, the scores of the places 3, 4 and 5 were 4.66,
4.95 and 10.66 [1]. Among all teams our team won the fourth place [1].

We also take a brief look at the methods used by the winning team (the se-
nior team: Gavranović, Buljubašić and Demirović) as described by them [52].
They also took a neighborhood approach but used different neighborhoods (also
4). Two neighborhoods are pretty easy, the first is defined by just reassigning one
process and the second by switching two processes. The third neighborhood is
shifting a chain of processes such that each process is moved to the machine of
the next process in the chain and the last one to the machine of the first process
in the chain. The fourth neighborhood is very similar to our target move search.
The set of processes that are allowed to move is increased during the running time
starting with the largest process and adding smaller processes until all processes
are considered. In contrast to our approach they seem not to use constraint pro-
gramming or multithreading (at least nothing about this is described in their article
[52]).



6
Scheduling in the Memory Hierarchy

Every application needs some memory to store its working set and of course it
also needs to access this memory. As the computing cores became faster over
time, their speed increases (in latency and bandwidth) were higher than the speed
increases of memory (see Figure 2.1 in Section 2.2.1). Thus waiting for mem-
ory slowed down computation, and in order to mitigate this problem caches were
introduced. But caches could not solve all problems regarding slow memory.
The high latency (and low bandwidth) of memory was also a main reason for
the movement towards parallel computing systems as performance improvements
of sequential systems were hindered by the so called Memory-Wall (see Sec-
tion 2.2.1). Today we have computing systems with many parallel cores which
use a hierarchy of caches some shared, some exclusive. In case of multi-socket
machines we additionally have even different local memories (see Section 2.2.2).
As the reasons for parallelization and the complex memory hierarchy will remain
in the future, it is likely that we will also have to deal with such systems in the
future. The faster performance gain of computation units compared to the mem-
ory system will also lead to a higher importance of the latter regarding the overall
system performance.

A lot of effort is put into the cache/memory hierarchy in order to build it and
in order to use it efficiently. Borkar et al. [15] estimated in 2011 that 40% of
the die size of current chips is used for caches. Also in software development
there is much effort to use the memory hierarchy as efficiently as possible. There
is a whole field of cache-oblivious algorithms (introduced by Friego et al. [48])
which use a given cache hierarchy optimally without parameter tuning. But of
course scheduling is also important for the efficiency of the memory hierarchy.
Memory bandwidth and shared caches are common resources which are impor-
tant for a good schedule. Scheduling regarding those two common resources is
important for application-internal schedulers and system-wide schedulers as well.
Even applications like the LU-decomposition of dense matrices which are usually
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considered as computation-intensive can profit significantly from an application-
internal scheduler which optimizes the memory access patterns (see our joint work
with Peter Sanders and Tobias Maier [100] which is described in Section 6.2.2).
In order to present our work about scheduling in the memory hierarchy, we first
provide some basic measurements on recent machines in Section 6.1 to give an im-
pression of the relevant performance values. Then we describe some approaches
how to improve the efficiency of the memory system through scheduling in Sec-
tion 6.2.

6.1 Properties of Memory Hierarchies

In order to give an overview of the properties of the memory system of current
machines, we conduct experiments on the most recent server machines available
at the group of Peter Sanders:

• 32-Core-Sandy-Bridge: This four-socket machine uses 4 Intel Xeon CPU E5-
4640 (Sandy Bridge microarchitecture) each running with 2.40 GHz. On
each socket there are 8 cores which share 20 MB L3 cache. The 512 GB
RAM consists of 32 16 GB DDR3-1600 DIMMs which are evenly distributed
among the sockets (NUMA-architecture). The operating system is Ubuntu
14.04.4 LTS using the Linux kernel 3.13.0.

• 16-Core-Ivy-Bridge: This two-socket machine uses 2 Intel Xeon CPU E5-
2650 v2 (Ivy Bridge microarchitecture) each running with 2.60 GHz. On
each socket there are 8 cores which share 20 MB L3 cache. The 128 GB
RAM consists of 8 16 GB DDR3L-1600 DIMMs which are evenly distributed
among the sockets (NUMA-architecture). The operating system is Ubuntu
14.04.4 LTS using the Linux kernel 3.13.0.

• 24-Core-Haswell: This two-socket machine uses 2 Intel Xeon CPU E5-2670
v3 (Haswell microarchitecture) each running with 2.30 GHz. On each socket
there are 12 cores which share 30 MB L3 cache. The 128 GB RAM consists
of 8 16 GB DDR4-2133 DIMMs which are evenly distributed among the
sockets (NUMA-architecture). The operating system is Ubuntu 14.04.4 LTS
using the Linux kernel 3.13.0.

• 32-Core-Broadwell: This two-socket machine uses 2 Intel Xeon CPU E5-
2683 v4 (Broadwell microarchitecture) each running with 2.10 GHz. On
each socket there are 16 cores which share 40 MB L3 cache. The 512 GB
RAM consists of 16 32 GB DDR4-2400 DIMMs which are evenly distributed
among the sockets (NUMA-architecture). The operating system is Ubuntu
14.04.4 LTS using the Linux kernel 3.13.0.



6.1. Properties of Memory Hierarchies 197

These machines represent the latest 4 Intel microarchitectures for server ma-
chines. All machines operate with enabled Intel Turbo Boost (this feature is usu-
ally turned on) which might lead to the effect that single-core operations are a
little bit faster than multi-core operations as they run with a higher clock speed.
The L1 and L2 caches are not shared among the cores and are of the same size for
all cores of all machines (each core has an L2 cache of 256 KB and an L1 cache
consisting of a 32 KB data- and 32 KB instruction-cache). The L3 cache is always
shared among all cores on one socket and for each machine we have 2.5 MB L3
cache per core. These machines fit the description of typical parallel machines
given in Section 2.2.2.

When we describe the performance development of memory (for example in
Section 2.2.1), we look at two parameters: bandwidth (throughput) and latency.
Accordingly we use two tests for our experiments, one focused on throughput and
one on latency:

• linear-test (lin) This test reads through an array. In real applications this can
happen when an application sums up the elements of an array or scans an
array for a special element. The important thing is that the next element to
be read is adjacent to the current element and its address can be computed
without having to look at the content of previously read elements. This test
should be able to reach the possible memory bandwidth of the core/socket.

• chain-test (ket) This test follows an index chain in an array. A real application
can produce a similar access pattern if it iterates through a linked list or an
index chain or permutation within an array. The important point of this test is
that in order to compute the address of the next element to be read the value of
the current element is needed. Hence for each step the test has to wait for the
full latency of one memory access. This test should give a good impression
of the access latency of memory.

We restrict ourselves to reading tests as reading is a more common operation
than writing and we expect no major additional insights by writing tests as we
only test on independent memory locations for each core.

Each test consists of two parts: preparation and execution. The tests are
given two parameters, the size of the array to work on and the number of times
the array has to be read. For the linear-test the preparation is allocating an ar-
ray of the given size and writing a long integer (8 byte) at each cell. The ex-
ecution of the linear-test iterates over the array (the number of times is given)
and sums the integers up. The loop computes 8 additions per iteration. The
chain-test allocates an array of long integers (8 byte each) of the given size and
prepares a pseudo-random cyclic permutation within the array. Each cell con-
tains the index of the next cell in the permutation. The permutation is gener-
ated by Sattolo’s algorithm [118] and a linear congruential generator with xn+1 =
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xn ·6364136223846793005+1442695040888963407 mod 264 (the numbers are
often attributed to Donald Knuth). The chain-test then iterates over the array by
k = array[k] the number of times given. The loop contains 8 such steps. We de-
veloped the chain-test by using an idea (follow a closed permutation in an integer
array) of how to measure memory latency introduced by Timo Bingmann (another
Ph.D. student at the chair of Peter Sanders) in a discussion about that topic. The
threads that execute these tests are pinned to their respective cores and perform the
memory allocation after they have been pinned. This usually leads to a placement
of the allocated array on the same NUMA node where the core is located. In order
to ease synchronization, all participating threads are part of the same process. The
threads perform the reading tests in a synchronized way that makes sure that each
measured test always runs in parallel to the other tests given at the same time. This
is done by synchronization and eventually running some unmeasured tests before
and after the measured tests. The test procedure of a thread/core is done as fol-
lows: first the memory is allocated and prepared, and then an unmeasured test run
is started; after the unmeasured test run the thread checks if all other participating
cores have finished their preparation, and if this is the case, then the measured test
runs are started, and if not, unmeasured test runs are done until the condition is
fulfilled; after the measured test runs the core performs unmeasured test runs until
all participating cores have finished their measured test runs. The test program is
written in C++ and compiled by gcc 4.8.4 using the option -O3.

Timo Bingmann also built a parallel memory benchmark pmbw [10]. The
focus of his benchmark is application development rather than scheduling. He
provides a wide range of reading and writing benchmarks of memory and differ-
ent cache levels on different machines. There are also many different low level
optimizations compared to each other. One of the differences is the way how the
memory is allocated. This leads to some different results, but the differences are
too small to change the main implications of this section. Also pmbw offers no
possibility to run different kinds of memory access patterns in parallel. We also
do some measurements with the STREAM benchmark by McCalpin [103]. We
compare these measurements with our basic experiment below.

Basic experiment: The first check tests the behavior of the machines when only
one core is used (seq) or when all cores are used. We test different array sizes:
1 MiB, 2 MiB, 10 MiB, 20 MiB, 100 MiB, 200 MiB, 1000 MiB in order to get a
feeling of the influence of different sizes especially regarding the cache. We read
the same data amount from each array size by adjusting the number of times the
array is read. For the chain-test we read 1000 MiB for each measurement and
for the linear-test we read 100 000 MiB per measurement as it is much faster.
When the measurement program is started, three measurements are performed on
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the same array. Additionally we start the program 5 times with the same mea-
surement which leads eventually to different memory allocations. Hence we have
15 measurements for each participating core for each experiment. Between the
termination of an instance of the measurement program and the next start we let
60 seconds pass to allow the machine to cool down. For the sequential experi-
ments we always use core 0. For the parallel experiments we use all cores, but
we also look at the running times/bandwidth of core 0. All of our own tests only
use one thread per core, ignoring the available virtual HT-cores (Hyper-Threading
Technology). We compute the bandwidth by dividing the amount of read data
in MiB (1 000 or 100 000) through the measured running time of the experiment
and 1 024 (in order to get GiB/s). The Table 6.1 reports the reached bandwidth
of core 0 computed with the average running time (15 measurements). All tests
are done on otherwise idle machines. The test abbreviations are ket seq for the
chain-test only running on core 0, lin seq for the linear-test only running on core
0, and ket all and lin all for the respective tests running on all cores. The col-
umn headers are the array sizes in MiB. We omit to report the measurement errors
because the difference between the largest and smallest measurement are quite
low. On all 4 machines, the relative difference between the smallest and largest of
the 15 measurements (for core 0) is less than 2% except for three experiments on
the 24-Core-Haswell where the relative difference is bounded by 4%. In case of
the experiments on all cores (all-experiments) we also look at the variance of the
averages (of the 15 measurements) between different cores. On 32-Core-Sandy-
Bridge and 16-Core-Ivy-Bridge we can bound the relative difference between the
averages of different cores by 3.5%. On 24-Core-Haswell and 32-Core-Broadwell
the cores seem to vary more, only 9 of 28 experiments have relative differences
between the cores of less than 3.5%. In 15 of 28 all-experiments on these ma-
chines the variance between the cores was more than 4% but less than 9%. On the
32-Core-Broadwell we even have four experiments (lin all and ket all on 1 MiB
and 2 MiB) which produce relative differences between 13% and 16% between
the different cores. Hence we observe larger differences between the cores on
the newer machines, and the differences between different cores are usually larger
than the differences between different measurements on the same core.

First we take a look at the results of the sequential chain-test (ket seq) in
Table 6.1. On all machines we can see a performance drop of about a factor
of 4 between the test on the 20 MiB array and the 100 MiB array and only smaller
changes between the other array sizes. This is very likely an effect of the cache,
as the L3 cache sizes per socket are between 20 MB and 40 MB for all tested
machines. Hence in case of the 20 MiB array the major part will fit into the cache
as opposed to the 100 MiB array where only a minor part fits into the cache. If we
assume that the running time of the chain-test completely comes from the memory
latency (the time between giving a load command and receiving the value), we can
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1 2 10 20 100 200 1 000
ket seq 0.542 0.573 0.536 0.493 0.098 0.088 0.082
ket all 0.479 0.506 0.098 0.088 0.079 0.077 0.075
lin seq 22.2 22.5 22.5 16.4 13.0 13.0 13.0
lin all 19.3 19.5 3.68 3.68 3.68 3.68 3.68

(a) 32-Core-Sandy-Bridge

1 2 10 20 100 200 1 000
ket seq 0.650 0.686 0.641 0.556 0.113 0.102 0.095
ket all 0.571 0.602 0.113 0.102 0.092 0.090 0.088
lin seq 28.5 28.9 28.9 23.0 15.7 15.7 15.7
lin all 24.7 25.1 5.62 5.61 5.61 5.61 5.61

(b) 16-Core-Ivy-Bridge

1 2 10 20 100 200 1 000
ket seq 0.489 0.505 0.469 0.465 0.117 0.102 0.093
ket all 0.444 0.466 0.109 0.099 0.090 0.089 0.087
lin seq 28.4 28.6 28.7 28.7 12.4 12.5 12.4
lin all 24.4 24.4 4.69 4.68 4.67 4.67 4.67

(c) 24-Core-Haswell

1 2 10 20 100 200 1 000
ket seq 0.420 0.425 0.394 0.390 0.119 0.098 0.087
ket all 0.393 0.404 0.101 0.091 0.084 0.082 0.080
lin seq 29.2 29.3 29.4 29.4 11.9 11.9 11.8
lin all 23.6 23.7 3.69 3.70 3.69 3.70 3.70

(d) 32-Core-Broadwell

Table 6.1. The chain-test on a single core or all cores (ket seq, ket all) and the linear-test
on a single core or all cores (lin seq, lin all). The reported values are bandwidths in GiB/s.
The column headers are the array sizes in MiB.
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compute the latency. For a bandwidth of 0.5 GiB/s in the chain test (similar to the
measured values when reading from the cache), the latency is ≈ 14.9 ns as we
load 8-byte values. For a bandwidth of 0.1 GiB/s (similar to the values when
reading from arrays which do not fit into the cache), the latency is ≈ 74.5 ns.
This corresponds to about 30 or 150 clock cycles on a 2 GHz core. In case of all
cores performing the chain-test the situation changes a bit. The bandwidths for
the small array sizes are a bit reduced, in parts probably due to an automatically
reduced clock speed as all cores are working. We also see the sharp drop of
bandwidths now between the 2 MiB and the 10 MiB column. This is plausible as
all machines have 2.5 MB of L3-cache per core. Hence all the 2 MiB arrays fit
into the last level cache, but the 10 MiB arrays do not.

Now we look at the results of the linear-test. In the sequential case we also
(like in the chain-test) have a performance drop between the 20 MiB array and
the 100 MiB array. The performance drop is probably also due to the fact that
the 20 MiB array fits into the L3-cache and the 100 MiB array does not. The
penalty of reading data from outside of the cache is smaller than in the chain-test,
we see only about a factor of 2. The bandwidths of the linear-test are high, the
common value of 28 GiB/s means that ≈ 3.8 billion (3.8 · 109) 8-byte elements
are read per second which is significantly more than one element per clock cycle
of the used cores. Even when reading from RAM, a core on average gets more
than one array element every two clock cycles. This shows how well optimized
the cache prefetching and other systems are in case that a program reads linearly
through an array. In the parallel case the cache is only sufficient for the 1 MiB and
2 MiB arrays for the same reasons as described with the chain-test. The linear-test
is also a little bit slower when running on all cores than when running on only
one core even when all accesses can be satisfied from the cache. This is probably
also due to the clock speed reduction when all cores work at the same time. A
rather sharp performance drop occurs between the 2 MiB and the 10 MiB column
for the linear-test on all cores. The measured bandwidth for the array sizes of
10 MiB and above drops to about one fifth of the bandwidth for the 2 MiB array
size on all machines. The drop is much more severe than in case of the sequential
linear-test. Hence the reason cannot only come from the fact that the data is not
read from the cache any more, but there must be something within the connection
to the memory that reaches its maximal capacity. Thus it is likely that the linear-
test on all cores reaches the maximal memory bandwidth (at least for the kind of
accesses used in our tests). The slowdown experiment (see below) looks at the
behavior of memory accesses when the memory bandwidth is pushed towards its
maximum. Another interesting observation of the basic experiment described in
Table 6.1 is that there is no major improvement of neither memory bandwidth (per
core) nor memory latency over the last four generations of server processors from
Intel, although the total memory bandwidth of a socket is increased as the newer
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machines use more cores per socket. This even holds for the sequential tests. Of
course this observation is only rough as the four machines included in this test set
are different when regarding clock speed, cores per socket, and even the number
of sockets differs.

In order to support our measurements, we also look at other benchmarks which
test similar things at least in parts. One often used memory benchmark is the
STREAM benchmark by McCalpin [103]. In contrast to our tests STREAM
uses more complicated operations (copy, scale, add, triad) that include writing
to memory, reads an array only once per measurement, does not use loop un-
rolling and is parallelized via OpenMP. The OpenMP overhead is part of the
time measured section opposed to our tests where parallelization and synchro-
nization are always done outside of the time measurement. We run STREAM
with OMP_NUM_THREADS=1 and a number of threads which is the number
of cores including the virtual HT-cores as otherwise some cores remain unused.
On 32-Core-Sandy-Bridge STREAM copy on one core measures a bandwidth of
10.6 GiB/s, and on all cores the copy bandwidth is measured as 76,1 GiB/s. Es-
pecially for the parallel case it is likely that the measurement includes memory
accesses across different NUMA nodes. Our measurements on this machine are
13.0 GiB/s in the sequential case and 3.68 GiB/s on core 0 in the parallel case
(3.68 · 32 = 117.67). Hence we see some differences of our measurements com-
pared to STREAM, but these differences seem to be explainable by the differ-
ences of the tests. The other tested machines show similar differences, STREAM
is about 20% slower in the sequential case and about 40% slower in the parallel
case.

Slowdown experiment: As we can see in Table 6.1, the memory accesses are
slowed down when other cores also run bandwidth-demanding tests. In this ex-
periment we take a closer look at this phenomenon. As we know that each socket
has its own memory connection on all tested machines, we can restrict ourselves
to tests on one socket (this assumption is also documented by experiments, see be-
low). Figure 6.1 shows the running times of a test running on core 0 (linear-test or
chain-test) when different numbers of other tests are run on the same socket at the
same time. All the tests in this experiment are run with an array size of 100 MiB
as this size is sufficient to force the usage of main memory because the caches
are always smaller. Hence this experiment is a measurement of the behavior of
the connection between the processor and the memory. In the legend we always
denote first which test runs on core 0 (first test) and second which tests run on
the other cores in order to slow down the test on core 0 (second tests). The data
amount read per core is the same as in the basic experiment, 1 000 MiB for the
chain-test and 100 000 MiB for the linear test. Like in the basic experiment we



6.1. Properties of Memory Hierarchies 203

0 2 4 6

10

20

30

additional readers

ru
nn

in
g

tim
e

(s
)

(a) 32-Core-Sandy-Bridge

0 2 4 6

10

20

30

additional readers

(b) 16-Core-Ivy-Bridge

0 2 4 6 8 10 12

10

20

30

additional readers

ru
nn

in
g

tim
e

(s
)

ket-ket
ket-lin
lin-lin
lin-ket

(c) 24-Core-Haswell

0 2 4 6 8 10 12 14 16

10

20

30

additional readers

ru
nn

in
g

tim
e

(s
)

(d) 32-Core-Broadwell

Figure 6.1. Running time of the tests on 100 MiB arrays depending on the number of
parallel tests on the same socket. The first abbreviation in the legend denotes the measured
test, the second abbreviation denotes the kind of tests on the other cores.
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perform three measurements per one program run (and one array allocation). The
program is started five times with the same combination of tests. This results in
15 measurements of the running time of the test on core 0 for each combination of
tests. The plots in Figure 6.1 report the average of these 15 measurements. Also
like in the basic experiment we let 60 seconds pass between two program runs.

The numbers used for Figure 6.1 are produced by test combinations which
leave all but the first socket (NUMA-node 0) of the machine idle. The different
numbers of other tests come from the fact that the different machines have differ-
ent numbers of cores on their sockets. We also investigated the slowdown when
all cores on all other sockets run the second test. This means that we did every
reported test twice: 15 measurements with the respective number of second tests
on the same socket and 15 measurements with the respective number of second
tests on the same socket plus all cores on other sockets also running the second
test. The difference between these two kinds of test combinations is low, less than
3% in nearly all tests. Only two test combinations on 24-Core-Haswell produced
a bigger difference: for lin-lin and lin-ket with 11 second tests on the first socket
the first test (lin in this case) is 5.1% or respectively 5.7% slower if all 12 cores
on the second socket perform the second test instead of being idle. Altogether this
shows that the work on other sockets has little influence on the memory perfor-
mance of the first socket as long as each core works on locally allocated memory.
Hence we omit the test results with tests on other sockets.

Let us now take a look at the measurement errors of this test. Like in the basic
experiment we look at the relative difference between the largest and smallest
measurement of the reported test combinations. On 32-Core-Sandy-Bridge and
16-Core-Ivy-Bridge all relative differences of the running times of the test on
core 0 are below 3%. On 24-Core-Haswell and 32-Core-Broadwell all but three
test combinations on 32-Core-Broadwell produce relative errors below 5%. The
three test combinations and their errors are: ket-ket with 3 second tests (7.1%),
lin-lin with 0 second tests (5.4%) and lin-ket with 14 second tests (5.1%).

The main result of this experiment is that the heavy memory bandwidth us-
age of the linear-tests slows down other memory accesses of cores on the same
socket. Except for the 32-Core-Sandy-Bridge, the chain-test has larger perfor-
mance losses than the linear-test. But in all cases the slowdown is severe. If we
look at the test combinations in which all cores except 0 run the linear-test com-
pared to the combinations in which core 0 is the only running core on the first
socket, we get the following factors for the running time: 32-Core-Sandy-Bridge
ket-lin: 2.46, lin-lin: 3.55, 16-Core-Ivy-Bridge: ket-lin: 2.87, lin-lin: 2.80, 24-
Core-Haswell: ket-lin: 2.98, lin-lin: 2.52, 32-Core-Broadwell: ket-lin: 4.13, lin-
lin: 3.21. The performance losses due to the chain-test as second test are much
smaller (between 1.14 and 1.41 on all machines). Hence both available band-
width and latency are heavily affected by a high memory bandwidth usage. The
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chain-test uses far less bandwidth and thus produces much smaller slowdowns.
The slowdown of the chain-test by linear-tests on the same core is also not

affected by the condition if both tests run within the same process or not. Running
some of the tests by hand synchronizing in parallel but within different processes
produced no differences larger than the reported measurement errors on all ma-
chines. By testing with 3 and 7 linear-tests on the machines with 8 cores per socket
we found differences of less than 2% to the average of the measurements within
one process. On 24-Core-Haswell the test with 5 and 11 slowdown tests and on
32-Core-Broadwell the test with 7 and 15 slowdown tests showed no differences
larger than 2% to the average results of the tests within one process.

Speedup experiment: This experiment uses the same kind of measurements
as the slowdown experiment, chain-test slowed down by chain-tests and linear-
test slowed down by linear-tests but on two different array sizes. This time we
do not look at the slowdown of the test running on core 0. Instead we look
at the possible performance gains by using additional cores even if they reside
on the same socket. In order to do this, we compare the bandwidth reached
by a single core with the sum of the bandwidths of several cores. The sum of
bandwidths divided by the bandwidth of the single core 0 will be called speedup
in this experiment. As we measure running times we compute in fact the average
running time of core 0 (while running alone) divided by the average running time
of a participating core and sum these values over all participating cores. We test
on the array sizes of 1 MiB and 100 MiB in order to have tests which can be served
by the cache and others which have to use the RAM. The resulting speedups on
different numbers of cores are depicted in Figure 6.2 for our different machines.
We restrict our tests to one socket as we have seen in the previous experiment that
the different sockets do not influence each other much in our setting.

The test setting regarding measurements, loaded data and waiting times is the
same as in the previous experiment. We look at the relative errors of the tests
on each participating core. On 32-Core-Sandy-Bridge and 16-Core-Ivy-Bridge
the relative difference between different measurements on the same core with the
same test combination are below 1%. On 24-Core-Haswell the maximal relative
error for all reported tests is 4.6%, on 32-Core-Broadwell the maximal error is
7.1%. The errors in this experiment can be higher than in the previous experiment
as we look at the measurement errors of all participating cores instead of only
those of core 0. We also take a look at the variance of the averages of different
cores. The maximal relative differences on the tested machines are: 32-Core-
Sandy-Bridge: 3.3%, 16-Core-Ivy-Bridge: 2.2%, 24-Core-Haswell: 6.4%, 32-
Core-Broadwell: 13.2%. The variance between the different cores cannot be
regarded as measurement errors of our measurements as we sum the bandwidths
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Figure 6.2. Speedup of memory operations by using different amounts of cores.
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of the different cores, and thus different cores just contribute different bandwidths.
When we look at the results of this experiment (see Figure 6.2) we can see

that the test combinations that can be done within the cache show a nearly optimal
linear speedup. The speedup of the chain-test on 100 MiB arrays is also nearly
linear but below the speedup of the tests on 1 MiB. The only test behaving totally
different is the linear-test on the 100 MiB arrays. On all machines we can observe
some kind of limit that can be reached by using a relatively small number of cores,
but it cannot be increased by adding further cores. This indicates that the common
resource of memory bandwidth is fully utilized at some point at which adding
further cores brings no performance improvement. The speedup experiment is
also an example for concave speedup functions.

node 0 node 1
ket seq 0.098 0.027
ket all 0.080 0.021
lin seq 13.1 2.45
lin all 3.66 0.36

(a) 32-Core-Sandy-Bridge

node 0 node 1
ket seq 0.113 0.050
ket all 0.092 0.044
lin seq 15.8 7.21
lin all 5.63 2.94

(b) 16-Core-Ivy-Bridge

node 0 node 1
ket seq 0.117 0.072
ket all 0.090 0.054
lin seq 12.4 8.96
lin all 4.91 1.49

(c) 24-Core-Haswell

node 0 node 1
ket seq 0.119 0.071
ket all 0.084 0.049
lin seq 11.8 7.79
lin all 3.72 1.77

(d) 32-Core-Broadwell

Table 6.2. Bandwidth of core 0 (residing on node 0) in GiB/s for the four different
measurements of the basic experiment on 100 MiB. The first column reports the results if
all participating cores allocate their array on node 0, the second if all arrays are allocated
on node 1.

NUMA experiment: Another important question is what happens if the mem-
ory accesses are not happening locally but on another NUMA-node. For all other
experiments each thread is pinned on its own core and allocates the array for its
experiment by calling new what usually results in a memory allocation on its own
NUMA-node (the NUMA-node of its own core). For this experiment we simply
change the memory allocation. Instead of new we use numa_alloc_onnode. The
only participating cores in this experiment are the cores on NUMA-node 0 (or
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on the first socket). For these cores we run the test combinations of the basic
experiment for an array size of 100 MiB in order to prevent major cache effects.
Each test combination (single core linear-test and chain-test and all cores linear-
test and chain-test) is run twice, first with the arrays allocated on NUMA-node 0
and second with the arrays allocated on NUMA-node 1.

Once again each test combination is tested in five program runs and during
each program run three measurements are taken. We report the average bandwidth
of these 15 measurements for core 0 in Table 6.2. The relative difference between
the smallest and the largest bandwidth is below 3% for all test combinations.

As expected the results are very similar to the basic experiment when the
arrays are allocated on NUMA-node 0. If the arrays are allocated on NUMA-node
1, we observe a bandwidth drop of about one half on all two-socket machines (16-
Core-Ivy-Bridge, 24-Core-Haswell and 32-Core-Broadwell). On the four-socket
machine (32-Core-Sandy-Bridge) the performance drops are much more severe
when the allocation is done on NUMA-node 1.

Main implications The main implications of these experiments can be summa-
rized by:

1. Especially for latency-dependent jobs or in case of an already highly utilized
memory connection using cache instead of main memory brings high perfor-
mance benefits.

2. Bandwidth consuming jobs induce a severe performance penalty for other
jobs on the same socket if these are latency-dependent or have high bandwidth
needs themselves.

3. If several jobs are using the same last level cache, the sharing of the cache
space can lead to severe slowdowns if the working set of a job no longer fits
into cache.

4. If memory bandwidth is the bottleneck, adding more cores does not improve
the performance.

5. Memory accesses on different sockets are independent from each other if
socket-local data is accessed.

6. Accessing data from RAM of another NUMA node is slower than using the
RAM of the own node.

In the context of this work not only the performance of the memory system is
interesting but also the energy consumption. We provide some energy measure-
ments for cache and memory access in Section 7.2.
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6.2 Memory Scheduling

With the results of Section 6.1 we can now look at the possibilities of improving
the memory efficiency by scheduling. First of all the main implications from Sec-
tion 6.1 show that jobs using the same memory connection or last level cache can
slow each other down severely. Hence there are relevant interdependencies be-
tween different application-internal schedulers and the OS scheduler. The mem-
ory bandwidth and last level cache can be seen as common resources of all jobs
running on one socket. As the usage of these common resources is highly rele-
vant for performance and efficiency, the scheduling system should coordinate the
usage of them.

Of course scheduling cannot change the number of memory accesses, the lo-
cality (in address and time) or the general memory access pattern of a thread or
an application. This falls in the responsibility of the algorithm or application
development. Additionally, on most current machines it is not possible to man-
age the cache and bandwidth usage directly. A notable development to overcome
this problem is Intel’s Cache Allocation Technology (as described in a white pa-
per from 2015 [71]). As long as there are no measures to distribute cache space
and memory bandwidth directly, the memory-aware scheduling on the OS level
has to rely on the placement of threads (regarding core and time), especially re-
garding the NUMA node and the common usage of L3 caches and memory con-
nections. The application-internal schedulers can also change the allocation of
workpackages (or other internal computing tasks) to threads in order to improve
the memory efficiency. But there is usually no knowledge about future memory
accesses of the application, especially for the OS scheduler. Also the potential
benefits or losses regarding the goal function (if applications can use more or
less memory bandwidth or cache space) and their dependency on memory latency
are usually unknown. Hence memory scheduling in real cases is currently lim-
ited to application-internal schedulers and rather simple heuristics for the system
scheduler. For example a simple heuristic for the system scheduler is to prefer to
schedule a thread always to the same core in order to reuse already loaded cache
items. The lack of information of the system scheduler might be overcome by
enhanced interfaces as described in Chapter 4 or by observation techniques that
can predict the future memory usage of threads.

Altogether the decision space in memory scheduling is limited by a lack of
control mechanisms and decisions already made during application development
which fix access patterns. In case of the system scheduler the available informa-
tion is even more limited. On the other hand the measurements from Section 6.1
indicate a high performance/efficiency relevance of the memory system at least
for some kinds of jobs. Hence information and decision space still have to grow
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for an efficient memory scheduling (at least for the system-level scheduler).

In contrast to scheduling practice where some publications about schedul-
ing (especially regarding memory properties and performance) exist (see Sec-
tion 3.2.2), memory and cache behavior are usually not included in the algorithms
and models of scheduling theory. Something in scheduling theory that can be seen
as related to scheduling in the memory hierarchy is the scheduling of communica-
tion between tasks. An often used model which is also used by Kwok and Ahmad
in one of their DAG-scheduling overview articles [89] is described now:
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Figure 6.3. A task-DAG fitting the model from Kwok and Ahmad. The ni denote the
node IDs, the number below the weight of the node and the numbers next to the edges the
edge weights.

Each node and edge in the task-DAG has a weight. The node weight is the
computation cost of the corresponding job. The edge weight of an edge is called
the communication cost which is only incurred when the incident nodes are sched-
uled on different processors. If we call the cores themselves or all cores sharing
the same last level cache a processor, a DAG-scheduling algorithm which min-
imizes the communication cost can also be used as a heuristic in order to get
a high reusage of cache items. If processors are NUMA nodes and the infor-
mation transmission is realized through newly allocated memory parts, such a
communication-efficient DAG-schedule reduces the non-local memory accesses.
In both cases the DAG-scheduling model with communication cost is no perfect
fit. Things are ignored that are important in real applications like inputs that are
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no outputs of other tasks or cores belonging to the same NUMA node or sharing
the same cache. Especially for cache-efficient scheduling, the space limitations
are not regarded in this DAG-scheduling model.

Own approach: As there is no widely accepted theoretical model for memory
scheduling, we concentrated our research to memory scheduling for some prob-
lems relevant in practice similar to most of the publications from Section 3.2.2.
We hope that the findings and used strategies for these easy problems might serve
as components for a useful model for memory scheduling in the future. As de-
scribed in Section 3.4.2 experiments on the full abstraction hierarchy are very
difficult and expensive. Hence we restrict ourselves to problems of application-
internal schedulers which are easier to evaluate and where experimental evalua-
tion is not too costly. With application-internal schedulers, we circumvent prob-
lems with information-blocking interfaces and get additional decision space. Also
working with only one application keeps the programming effort low and eases
adaptions of the applications to the used scheduling strategies. The two most
important common resources regarding the memory system are cache space and
memory bandwidth. Both are distributed between the different threads of the ap-
plications which run on the same socket. We take a look at a problem for each
resource, depicted in Section 6.2.1 and Section 6.2.2. For both problems we also
improved the NUMA-locality of the memory requests.

6.2.1 Memory Bandwidth Distribution
In this section we take a look at problems in which the memory bandwidth is the
resource which limits the overall performance or is at least a resource which has
a big influence on the performance. If memory bandwidth is the bottleneck of
our application or our set of applications, it is an obvious approach that in order
to get the best performance the bandwidth should be used fully at all times so
that nothing is left unused. More often there are situations where two resources
play an important role: memory bandwidth and computation. A model for such
situations (especially for the case of floating-point-intensive program kernels) is
the Roofline-model introduced by Williams et al. [141]. In this model, programs
(or important kernels) are characterized by their operational intensity which is the
number of floating-point operations these kernels perform on average per loaded
byte from memory. A machine has two main properties in this model: the band-
width to the main memory and its peak floating-point performance. For our ex-
ample graph (Figure 6.4) we assume a machine with a memory bandwidth of
100 GB/s and a peak floating-point performance of 800 GFlop/s. The blue line is
entirely machine-dependent. The maximal performance of a job is then the height
of the intersection between the vertical line through its operational intensity and
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the line characterizing the machine. In this example, job 2 has such a high oper-
ational intensity that it can reach the machine’s peak floating-point performance
whereas the operational intensity of job 1 is lower such that it is bandwidth-bound.
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Figure 6.4. An example graph for the Roofline-model. The position of the peak memory
bandwidth and peak floating-point performance lines is machine-specific. Job 1 is an
example of a bandwidth-bound job, job 2 an example of a compute-bound job.

In their paper [141] Williams et al. also look at optimizations which are
not important for our scheduling perspective. Although the Roofline-model is
designed with floating-point-intensive kernels in mind, it might also be a good
fit for other applications that use for example integer computations. If we have
different jobs which have different characteristics regarding their relation between
bandwidth usage and the usage of computation units, it is quite natural to ask how
to schedule such jobs efficiently. Slow memory (latencies) is even a main reason
for parallelization (see Section 2.2.1 Memory-Wall).

Basic idea: A job put into the Roofline-model is implicitly meant to use all
available cores, otherwise no such job could reach the peak floating-point perfor-
mance of the machine. If there are different jobs, some of them compute-bound,
some of them (memory) bandwidth-bound, the idea is not to run the jobs one af-
ter another at the full parallelism of the machine, but to run jobs in parallel by
running each job with a smaller degree of parallelism. This might help to use the
computation and memory access capabilities of the machine better. For example
if we have a job 1 which is bandwidth-bound and a job 2 which is compute-bound,
we might run both jobs on half of the cores on each socket. We ignore paralleliza-
tion overheads for this example. If this combination does not use the full memory
bandwidth, then job 2 runs with half of its speed on all cores, but job 1 runs
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with more than half of its speed on all cores because it is not bandwidth-bound
any more. In this case the combination uses the full computing capability of the
machine and a higher bandwidth than job 2. If the combination uses all of the
memory bandwidth, then job 2 might get slower than one half of its speed on all
cores, but job 1 still is faster than one half because it gets more than half of the to-
tal bandwidth. In this case the combination uses all of the available bandwidth and
more of the computation capabilities than job 1 alone. In both cases the resource
which is in higher demand is always used fully in contrast to running both jobs
one after another where both resources are not used fully for one job. It is also
clear that the operational intensity of the combination is between the intensities
of job 1 and job 2. Altogether the machine usage is improved and the efficiency
increased. Of course the distribution of the available cores on the sockets has to fit
the workloads of the participating jobs, but it is clear that job combinations have
a potential to increase efficiency in the Roofline-model. For other works about
memory bandwidth scheduling see Section 3.2.2.

Problem example The basic idea was experimentally investigated as part of the
diploma thesis of Jochen Seidel [119]. Jochen Seidel did an external work at SAP
which was concerned with the implementation and scheduling of queries in an
in-memory database. The goal was to make queries faster and more efficient by
a better utilization of the memory connection and by running different queries
in parallel (the queries themselves are also parallelized). The main guidance
for the diploma thesis was done by Jonathan Dees at SAP (database part) and
the author of this work at the chair of Peter Sanders (NUMA-advice, memory
modelling-advice and scheduling). The diploma thesis of Jochen Seidel contains
two main parts: improving the NUMA-locality of the queries and combining
different queries according to the basic idea described above. This paragraph is a
description of the results of the diploma thesis of Jochen Seidel. Database queries
looked like an easy to model type of memory bandwidth dependent tasks, as their
main operation is to read through the database contents stored in memory.

In order to improve the NUMA-locality, Jochen Seidel developed a partition-
ing scheme for the distribution of the database contents over the different NUMA-
sockets. Each query runs threads on each socket to work on the data stored on this
socket by accessing the distribution scheme. For some queries a performance
gain of up to 67% was observed for certain numbers of cores compared to a non-
NUMA-aware, already existing solution. This NUMA-aware partitioning of the
queries and the data also makes it sufficient to look at only one socket for the
further modelling as all sockets run the same job combination. Especially if two
queries run in parallel each query uses the same number of cores on all sockets.

Our goal for the query combination was to build a simple model which then
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should be used to combine queries in a way which leads to a significantly im-
proved efficiency. As already noted, we planned to characterize the queries by two
parameters: the computational effort and the needed memory bandwidth. Then
query combinations similar to the combination described in the basic idea would
lead to an increased efficiency. The experiments described here were all done at
SAP on an Intel Xeon X7560 4-socket machine with 8 cores per socket (Hyper-
threading was not used). In order to build a model which then could be used by
a query scheduler, we had to model the memory bandwidth behavior of the ma-
chine and the running time behavior of the queries. The basic assumption of the
model is that the running times of the queries can be reasonably well estimated
by knowing the number of used cores per socket and the amount of competing
memory bandwidth usage.

The machine model was built by running between 1 and 8 jobs (per socket)
similar to the linear-test from Section 6.1 and computing the sum of the reached
memory bandwidths similar to the speedup experiment from Section 6.1 (the
speedup is then computed by dividing these bandwidths by the bandwidth reached
by a single linear-test). The resulting speedup curves are very similar to the re-
spective speedup curves of linear-test for 32-Core-Sandy-Bridge and 16-Core-
Ivy-Bridge as shown in Figure 6.2. Especially the speedup grows fast for small
numbers of cores until it reaches a limit and is a nearly constant function after-
wards. Given a total request of x times the memory bandwidth of linear-test on
a single core, we wanted to model the resulting memory bandwidth of each job
(as we cannot use more than the bandwidth limit). We assumed that the available
bandwidth is shared between different cores proportional to their bandwidth re-
quests. Let s(x) be a spline interpolation of the speedup function. We then used
f (x) = s(x)/x as the proportional factor which is used to reduce the bandwidth
assigned to the competing requests. Hence the memory accesses of each job were
slowed down by a factor of 1/ f (x) in our model (note that f (1) = 1).

For the queries we used a very simple model by assuming that a query (when
run sequentially) spends a fraction q of its running time for memory operations
and the remaining part (1−q) for computation. The parameter q is query-specific.
The memory operations are assumed to be slowed down by the function f . Then
we get the modelled execution time of a query with a running time t with one core
per socket (on an otherwise empty system), when running on p cores per socket,
with a fraction q of memory access time and a competing bandwidth requirement
of k as:

time(p,q,k, t) =
t
p
·
(

q
f (p ·q+ k)

+(1−q)
)

For each query the parameter q was estimated by running all possible combi-
nations of the query with different degrees of parallelism and different numbers of
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Query 1 Query 2 ρmodel (%) ρ (%) ρ−ρmodel

1 1 0.00 2.11 2.11
5 1 0.80 3.23 2.44
5 5 0.00 9.98 9.98
6 1 0.00 3.70 3.70
6 5 0.76 5.30 4.54
6 6 0.00 4.20 4.20
7 1 1.17 -0.96 -2.13
7 5 0.04 0.36 0.32
7 6 1.13 0.30 -0.83
7 7 0.00 3.92 3.92
8 1 0.60 2.97 2.37
8 5 0.01 3.06 3.04
8 6 0.57 4.01 3.44
8 7 0.09 -4.55 -4.65
8 8 0.00 10.06 10.06
9 1 0.81 39.29 38.48
9 5 0.00 40.23 40.23
9 6 0.77 39.66 38.89
9 7 0.03 37.80 37.77
9 8 0.02 40.76 40.74
9 9 0.00 56.95 56.95

Table 6.3. Comparison of modelled and measured efficiency gains (in %). Table is an
excerpt of a table in [119]. The first two columns are the IDs of the queries run in parallel.

linear-test threads on the remaining cores. Also this test only looked at the cores
of one socket. For each combination the running time of the query was measured.
q was then chosen such that the sum of squared errors between the modelled and
the measured running times was minimized.

After the model building was done and all parameters were fixed, we could
start with checking the predictive power of the model. In order to do this, dif-
ferent combinations consisting of two queries were run, each query getting half
of the available cores per socket. By using unmeasured test runs of queries, it
was made sure that all measured runs of queries run in parallel to their expected
partner. Unfortunately many query combinations could not be measured due to
some problems with the testing infrastructure. But the successfully completed ex-
periments were already enough to show that the modelling error is far too large
to make the model useful for scheduling decisions. Table 6.3 shows the measured
and the modelled efficiency gains (and their difference) when running the two
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query types in parallel (each on half of the cores of each socket) instead of one
after another (each on all cores). When running two identical queries in parallel,
our model predicts an efficiency improvement of 0% as both queries are either
memory- or compute-bound. In the real measurements (especially for query 9)
we can see that the improvements can be quite large which indicates that the par-
allelization overhead is much more relevant than expected. On the other hand
some combinations even lead to losses which indicates that there are other impor-
tant parts missing in the model (maybe cache-related issues). These problems and
several more are discussed in the thesis of Jochen Seidel.

In the context of this work the results of the modelling approach described
above indicated that even simple-looking problems can be difficult to model. We
took these problems as motivation to take a further step back and to explore the
properties of memory hierarchies by simple synthetic jobs (like the ones in Sec-
tion 6.1) instead of more complicated real problems. In our opinion a good under-
standing of the behavior of different synthetic jobs running in parallel is the basis
for an understanding/useful modelling of real-world problems. An example of an
insight from the measurements of Section 6.1 that might also contribute to the
modelling problems described above comes from the slowdown experiment. Our
model for the database query jobs implies some kind of symmetry, we measured
the needed memory bandwidth of a query through the slowdown of the query by
competing memory accesses. This needed memory bandwidth was then included
in the computation of the slowdown of other queries running in parallel to the
measured query. Especially we assumed that a query which is severely slowed
down by competing memory accesses uses a high bandwidth itself, and thus it is
also a large slowdown for other memory-dependent jobs. A look at the slowdown
experiment shows that this symmetry does not hold for all kinds of memory ac-
cess patterns. For example our chain-test is severely slowed down by linear-tests
running in parallel, but it slows down other memory operations only slightly (see
Figure 6.1).

6.2.2 Improvement of Cache Usage
As we have seen in Section 6.1, using cache instead of memory for the items to
load and to store is beneficial for both latency and bandwidth. The main problem
of cache memory is its limited size and that the cache cannot be managed directly
on current machines.

Basic idea: The idea here is to run threads in parallel on cores which share a
common cache in order to enable the common usage of items loaded into the
cache. This is beneficial in two ways: shared items use cache space only once,
and shared items have to be loaded only once from main memory.
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Figure 6.5. An example of cache co-usage in a DAG. If nodes n3 and n6 share some
common input, scheduling them at the same time at the same processor with common
L3-cache leads to a common usage of this input.

Cache sharing between tasks can thus be also a beneficial objective for the
scheduling of tasks in task-DAGs. In order to enable cache co-usage, it is not only
important to look at the inputs of tasks that are outputs of other tasks but also at
common inputs that even might never be written by another task. Because of such
common inputs it might be useful to schedule tasks together that are completely
unrelated within the task-DAG. Figure 6.5 shows an example of this. Cache co-
usage is more dedicated to application-internal schedulers as different applications
usually do not share data. But cache sharing can also be influenced by system
schedulers which place some threads of the same application on different cores
which might share a common cache. The basic idea was first proposed by Blelloch
and Gibbons [12] who together with others tested it on LU-decomposition (Chen
et al. [31]) but found no improvement.

Problem example In order to test the basic idea, we need a task-DAG with a
regular structure to keep the scheduling decisions simple. Thus, using a problem
from numerical linear algebra, where very regular task-DAGs occur, is an obvious
choice. The test case is the LU-decomposition of matrices, a very common and
important problem for which already highly optimized solvers exist. A signifi-
cant improvement of the performance of these solvers shows the usefulness of the
basic idea. This goal was reached in a joint work [100] with Tobias Maier and
Peter Sanders (for the individual contributions to the articles used in this work
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see Section 3.4.4). The research done for this article is the base for the remain-
der of this section. The measurements are new but based on software developed
for our article. In the original article we were able to demonstrate a performance
gain of 15% on large matrices over the highly optimized PLASMA-solver [21].
The experiments of Chen et al. [31] are part of a larger series of experiments in
which they compare a Parallel Depth First scheduler with a scheduler based on
Work Stealing. For most applications the Parallel Depth First scheduler leads to
an improved constructive cache sharing and thus improved running times, but in
case of the LU-decomposition their experiments show no improvement in running
time. Our approach is more specialized to numerical linear algebra, and we de-
veloped two new methods: first, meta-tasks/meta-tiles to improve the constructive
cache sharing between different cores and second, a (meta-tile-)column-wise dis-
tribution of the matrix among sockets to improve the NUMA-locality of memory
accesses.

In order to explain the application of the basic idea, we first give a short in-
troduction into the LU-decomposition. An LU-decomposition of a square nonsin-
gular matrix A consists of two triangular matrices L (lower triangular matrix, all
elements on the diagonal are ones and all elements above the diagonal are zero)
and U (upper triangular matrix, all elements below the diagonal are zero) such that
A = L ·U . As all entries of L on the diagonal and above and all entries of U below
the diagonal are already defined, L and U can be stored within the same memory
as A (the LU-decomposition can even be done in-place). The LU-decomposition
is often used to solve systems of linear equations of the form Ax = b by solving
Ly = b and Ux = y which is easy for triangular matrices. For the description of
the basic LU-decomposition we follow Trefethen and Bau [134, pages 147-162]
where also a more detailed description can be found. The matrix U is computed
from A by a sequence of Gaussian elimination steps which can be represented as
lower triangular matrices. For example for a 3×3 matrix the first elimination step
would be (we assume a11 6= 0):

A=




a11 a12 a13
a21 a22 a23
a31 a32 a33


→L1A=




a11 a12 a13
0 a′22 a′23
0 a′32 a′33


 with L1 =




1 0 0
−a21/a11 1 0
−a31/a11 0 1




Hence for a n× n matrix A the product Ln−1 · · · · ·L1A is an upper triangular
matrix. With L = L−1

1 · · · · · L−1
n−1 we get the desired result. The computation is

easy because the Li are easy to invert (just negate the entries below the diagonal)
and easy to multiply by combining their nonzero entries below the diagonal. It
remains to be explained how we avoid to have an element aii = 0 at the beginning
of a Gaussian elimination step. In general we want to have aii to have a large
absolute value for numerical stability reasons. Hence we select the largest ele-
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ment of aii, . . . ,ani as new aii by interchanging its row with the i-th row before
performing the i-th elimination step (one of the mentioned elements must be dif-
ferent from zero as A is nonsingular). The row interchanges must also be done for
the already computed part of L (which is L−1

1 · · · · ·L−1
i−1). This method to increase

the numerical stability is called partial pivoting and is the most commonly used
method (Trefethen and Bau [134, pages 147-162] discuss this matter in more de-
tail). The resulting decomposition with the partial pivoting is then PA = LU with
a permutation matrix P. The system of linear equations has then to be changed to
LUx = Pb but can be solved in the same manner.

Figure 6.6. A schematic illustration of the LU-decomposition algorithm for tiled matri-
ces.

Modern linear algebra algorithms usually work on tiled matrices which means
that usually small quadratic sub-matrices are handled together. One advantage
of tiled matrices is that the approach improves the operational intensity (see Sec-
tion 6.2.1) as such tiles are loaded into cache and then each matrix entry within
the tile is used for several arithmetical operations. The LU-decomposition of a
tiled matrix consisting of m×m tiles of size b× b (with mb = n) is computed
in steps similar to the Gaussian elimination steps but now performed on the tiles
instead of the elements. Each step works on a matrix consisting of k× k tiles
(beginning with k = m) and leaves an LU-decomposition of a (k− 1)× (k− 1)
tiled matrix to the next step. Figure 6.6 illustrates such a step from a 5× 5 to
a 4× 4 LU-decomposition. The first part of the step (called panel-task) is to
compute the element-wise Gaussian elimination on the first tile column (the red
part in Figure 6.6). Here the necessary row interchanges are determined, the up-
permost, leftmost tile is LU-decomposed and the corresponding parts of L are
computed. For each remaining tile of the first tile row (top-tiles, the blue parts
in Figure 6.6) there is a task (called top-task) which applies the row interchanges
(from the panel-task) to its tile column and applies the updates (given through the
computed part of L) from the panel-task to its own tile. The remaining work to
finish the step is to update the remaining part of the matrix (orange parts in Fig-
ure 6.6). For each tile of the remaining matrix there is an update-task. In our 3×3
example a′22 is computed by a′22 = a22− (a21/a11) · a12 with `21 = −a21/a11 as
the (second row, first column) entry of L and u12 = a12 as the (first row, second
column) entry of U we get a′22 = a22− l21 · u12. In the general case we have for
the k-th Gaussian elimination step that the k-th row of U has to be multiplied with
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`ik (the `ik currently at this position, disregarding future row interchanges) and
subtracted from the i-th row for all k < i ≤ n. Hence for all i, j ∈ {k+ 1, . . . ,n}
we have a′i j = ai j − `ik · uk j. For the tiled version we have analogously that an
update-task has to compute A′i j = Ai j−Lik ·Uk j with Ai j,A′i j being the tile before
and after the update and Lik the tile in the i-th row computed by the panel-task
and Uk j the tile computed by the respective top-task. As we do partial pivoting,
we also perform row interchanges during the panel-task. The resulting row in-
terchanges on tile columns left of the column the panel task works on are done
by exchange-tasks. The exchange-tasks have little effort and are omitted for the
remainder of this description.

We denote the panel-tasks by P, the tasks on the top-tiles by T and the update-
tasks by U, we get the the task-DAG depicted in Figure 6.7 for our step on the 5×5
tiled matrix. The dashed lines denote that the task-DAG is embedded into a whole
LU-decomposition. The depicted update-tasks are on the same level regarding
the task-DAG but are arranged in a way that reflects the position of the tiles they
update in the matrix. This ends the description of the usual approach of current
algorithms for LU-decomposition which is especially followed by the PLASMA-
solver and our approach which is based on PLASMA.
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Figure 6.7. A schematic illustration of the LU-decomposition task-DAG for tiled matri-
ces.

Throughout the whole LU-decomposition most of the work and running time
is spent by the update-tasks. In terms of complexity the update-tasks are the only
kind of jobs with a total computation effort cubic in the matrix size (the other
kinds of jobs have a computation effort which is at most quadratic in the matrix
size). Hence we focus on improving the execution time of these tasks. If we take
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a closer look at the inputs needed by an update-task, we find as relevant inputs:
the tile to be updated (Ai j), the tile in the same row computed by the panel-task
(Lik) and the top-tile as computed by the top-task on the same column (Uk j). All
three inputs have the same size (one tile) and are used to compute the updated tile
by A′i j = Ai j−Lik ·Uk j. All update-tasks that work on tiles of the same row use
the same tile Lik computed by the the panel-task (indicated by the green ellipse
in Figure 6.7). Also all update-tasks that work on tiles of the same column use
the same top-tile Uk j (indicated by the blue ellipse in Figure 6.7). The idea of
how to gain more constructive cache sharing within this problem is now to group
the update-tasks into groups called meta-tasks (indicated by the red squares in
Figure 6.7) that share common inputs. Accordingly, the tiles of the matrix which
are updated by these tasks are grouped into meta-tiles. We use M = h or Mh to
denote the usage of meta-tiles consisting of h× h tiles (Figure 6.7 depicts a case
of M2). These meta-tasks are then assigned as a group to a group of cores sharing
a common cache (usually a NUMA-node). The split into the original tasks for
the individual cores is then done locally (on the NUMA-node, this is illustrated
in Figure 6.8). This leads to shared cache items which reduce the occupied cache
space and the needed memory operations. Each Lik and Uk j is used h times during
a meta-task. As the input matrices do not always have dimensions which are
multiples of h tiles and each step reduces the number of tile rows and columns by
one, some meta-tiles are smaller. The boundaries between different meta tiles are
kept the same for each step.

We also changed the LU-decomposition to make more memory-accesses
NUMA-local. For each column of meta-tiles we store all meta-tiles on the same
NUMA-node (the columns are assigned in a round-robin fashion). The assign-
ment of update-tasks on meta-tiles is then done in a way such that a NUMA-node
works on locally stored meta-tiles if possible. This has the additional benefit
that the needed results from the top-tasks are already in cache when the tasks
on the meta-tile are started. This is realized by using different queues for each
NUMA-node and one additional queue for the panel-tasks. When a core on
a NUMA-node becomes idle and there are no more tasks locally available, it
fetches a new meta-task from the global queues. To do this it first looks into the
queue with the panel tasks and then into the queue with the update-tasks with
meta-tiles stored on that NUMA-node. Only if both queues do not contain a ready
task, the NUMA-node might be assigned with an update-task on a meta-tile stored
on a different NUMA-node. The queues are implemented as priority queues and
the priorities are assigned to the meta-tasks in a way such that panel tasks and
update-tasks of left parts of the matrix are prioritized against update-tasks of right
matrix parts. The idea here is to work a bit faster on the critical path (the path
with all panel tasks) in order to always have a large number of update-tasks ready.

Several other small improvements are also included in our approach to the LU-
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Figure 6.8. An illustration of the scheduling of meta-tasks.

decomposition. The central scheduling of meta-tasks and their local split reduces
the contention on the global work distribution queue (or more precisely the mutex
protecting it) which might reduce the waiting times. The task-DAG generation is
done by only one core, but in parallel the other cores work on already generated
tasks. We also restrict the panel computation to cores which use the same last-level
cache in order to speed up the data exchange between the participating cores.

Experiments In order to show the advantage of our new scheduling approach,
we compare our implementation (called META) with the PLASMA-routine for
LU-decomposition (called PLASMA) which is also the basis on which META is
developed. In our joint work [100] with Tobias Maier and Peter Sanders we ran
most of our experiments on the 32-Core-Sandy-Bridge and some further experi-
ments on the 16-Core-Ivy-Bridge (as introduced at the beginning of Section 6.1,
but with Ubuntu 12.04. instead of Ubuntu 14.04. on the 32-Core-Sandy-Bridge).
We broaden the perspective of the experiments by performing some new experi-
ments on all four machines introduced at the beginning of Section 6.1.

In the experiments for our paper [100] we used PLASMA version 2.6.0 and
linked with Intel’s Math Kernel Library version 11.0. For the new experiments
done for this work we use the most recent available software. The compilers and
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the MKL are part of the Intel Parallel Studio XE 2017, all machines run Ubuntu
16.04.2 LTS (Linux kernel 4.4.0) as operating system, and we compare with
PLASMA [88] version 2.8.0 (released in November 2015). PLASMA 2.8.0 is the
newest available version as PLASMA is currently undergoing substantial changes,
as explained in the following quote from the PLASMA main page ([111]):

PLASMA is in the process of porting form QUARK to OpenMP.
At the same time, it is moving from its ICL SVN repository to this
Bitbucket Mercurial repository. The content of this repository reflects
the progress of the transition. Before the transition is complete, the
last release of the old PLASMA is available here:
https://bitbucket.org/icl/plasma/downloads/plasma-2.8.tar.gz

In our paper [100] we did all our measurements with Intel SpeedStep turned off
(which also disabled Intel Turbo Boost). As there seems to be no possibility to
switch off SpeedStep and Turbo Boost on the newer machines (24-Core-Haswell
and 32-Core-Broadwell) and it seems to be more likely that these features are
turned on during normal operation, these features are switched on for our new
experiments. This results in an increased performance, and thus the absolute
performance values are not comparable to the values measured in our paper. For
META we use the code written by Tobias Maier for the experiments for our paper
which is also publicly available (https://algo2.iti.kit.edu/2464.php).

The main value for comparisons is the performance in GFlop/s reached during
the computation of the LU-decomposition. META as well as PLASMA use 2

3n3−
1
2n2 + 5

6n as the number of floating-point operations needed to compute an LU-
decomposition of a matrix of size n× n. As META does the same computations
as PLASMA only in a different order and on different cores, it is clear that the
number of floating-point operations is the same. As noted above we denote META
with a meta tile size of h×h as Mh and add col for the NUMA-optimized version
and rand for the non-NUMA-optimized version. We always use the tiled version
of PLASMA, and as the performance of PLASMA is very dependent on the tile
size, we perform every experiment for different tile sizes for PLASMA. In our new
experiments the tested tile sizes are b = 256,448,480,512 which are denoted by
PLASMA b. For META the tile size is always 256×256. META and PLASMA
are always run with a number of threads that equals the number of cores of the
used machine.

The matrix generator in META is implemented in a way such that the same
matrices are generated as in the matrix generator of PLASMA. The generator
does not include randomness which means that all matrices of the same size are
identical. Hence META and PLASMA always decompose the same matrix in
all runs for matrices of the same size. Warmups which means running some nu-
merical computations before the measured test seem to be important to reduce
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the variance of the measurements. PLASMA does one unmeasured test run of
an LU-decomposition of a matrix of the given size before running the measured
LU-decompositions. META uses three LU-decompositions for a matrix size of
16384× 16384 as warmup. Another notable implementation difference between
PLASMA and META is the way the matrix is stored in memory. PLASMA al-
locates the matrix as one large array, META instead uses an array pointing to
each tile and allocates each tile individually. This more complicated allocation
of META is used for the NUMA-aware storage of the matrix tiles. Each tile is
allocated during the matrix generation by the core that is responsible for gener-
ating the respective tile. As far as we know (see also the NUMA experiment in
Section 6.1), memory allocations are usually done on the NUMA-node the respec-
tive core resides on. The generation tasks are bundled in meta-tasks (of the used
meta-tile size in the respective experiment) and are assigned to the NUMA-nodes.
Hence all tiles of one meta-tile are allocated and generated on the same NUMA-
node. In case of the NUMA-optimized META (col) the generation is done in a
way such that each column of meta-tiles is generated on the same NUMA-node
(this column is then stored on this node). If META is run without the NUMA-
optimization (rand), then all generation meta-tasks are inserted into the same
queue which is then used to distribute these tasks among all NUMA-nodes. Hence
the NUMA-nodes where a meta-tile is stored can vary depending on the execution
of the generation.

We evaluate the performance of META and PLASMA for four different ma-
trix sizes on each machine: 8192, 16384, 32768 and 65536 (all matrices are
quadratic). For each configuration (matrix size, machine parameters) we run each
program three times and each time five LU-decompositions are computed. Be-
tween two program runs we let the machine cool down for five minutes. The
programs report the average running times of the five computations and a devia-
tion. In the Table 6.4, Table 6.5 and Table 6.6 we report the average of the three
measured averages in the upper left of each cell. In the lower left we report the dif-
ference between the largest and smallest average measured by the three program
runs. PLASMA computes the deviation as the standard deviation normalized by
the number of computations (here always 5). META computes a different kind of
deviation, but the reported values are recomputed to match the deviation defini-
tion of PLASMA. The largest standard deviation of the three runs is reported in the
lower right of each cell. Preliminary experiments showed that PLASMA some-
times profits from running with NUMA-interleaved memory (done by prefixing
the call with numactl - -interleave=all). Each PLASMA experiment is run
twice, with and without NUMA-interleaved memory. If the average performance
of the experiment with the NUMA-interleaved memory is higher, we report the
results for that experiment, otherwise we report the results of the non-interleaved
experiment. Whether the respective cell reports the performance of an interleaved



6.2. Memory Scheduling 225

computation or a non-interleaved computation is indicated by an i or an n in the
upper right of the cell.

By looking at the results written down in Table 6.4, we see that META M3
col is at least 10% faster than the fastest PLASMA configuration for each ma-
trix size on 32-Core-Sandy-Bridge and that the improvements on this machine
are even larger for smaller matrix sizes. Contrary to this, the advantages of META
against PLASMA with the best b on the 16-Core-Ivy-Bridge are very small except
for the smallest matrix size. The advantages of META on 24-Core-Haswell and
32-Core-Broadwell (Table 6.5 and Table 6.6) are a bit larger than the advantage
on 16-Core-Ivy-Bridge but much smaller than the advantage on 32-Core-Sandy-
Bridge. Comparing the different configurations of META, we observe that META
profits the most from the meta-tile and NUMA-optimizations on 32-Core-Sandy-
Bridge. On all machines the meta-tile optimization brings relevant improvement
compared to M1, but the additional NUMA optimization seems to be less relevant
on the machines with two NUMA-nodes (they even look like a disadvantage on
16-Core-Ivy-Bridge). Also there is a clear advantage of META (M3 col/M5 col)
against PLASMA 256 on all machines. By looking at the results of the NUMA
experiment in Section 6.1, it is clear that the performance penalty for memory
accesses on other NUMA-nodes instead of local accesses is the highest for 32-
Core-Sandy-Bridge. Hence optimizations to avoid such accesses bring the most
benefit there. As 32-Core-Sandy-Bridge is the only machine in this experiment
with four NUMA-nodes (four sockets), it looks as if META has bigger advan-
tages on four socket machines. On 24-Core-Haswell and 32-Core-Broadwell the
advantage of PLASMA 480 compared to PLASMA 256 for the two larger ma-
trix sizes is between 8% and 10%. The size of the 480 and 512 tiles are 1.76
MiB and 2 MiB. Hence if each core on one socket (common L3 cache) uses three
different tiles for its current computation, no L3 cache of the machines in this ex-
periment is large enough to keep all these tiles. Hence we assume that some clever
cache-prefetching mechanism is responsible for the performance improvements of
PLASMA with the larger tile sizes.

In Figure 6.9 we take a look at the running times of the single update-tasks. In
META the running time of each update-task is logged. For each machine we take
one log for each configuration of META (always for matrix size 16384) and plot
the histogram for these running times. The x-axis denotes the running time of an
update-task in milliseconds, and the curves show how many thousand update-tasks
were run with a running time in the same bin (all histograms use 100 bins). We can
clearly see the improvements of the M3/M5 configurations compared to the M1
configurations and that the relative differences between the peaks are smaller for
the two-socket machines. We can also see that the NUMA-optimization makes
little difference for the two-socket machines. On the other hand the sharing of
cache contents seems to work as expected.
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8192 16384 32768 65536
META M3col 417.5 494.4 512.1 519.8

0.8 4.6 0.8 1.9 0.6 1.9 1.1 0.4
META M3rand 400.5 462.8 480.3 490.4

2.0 2.1 2.4 1.1 1.2 1.2 0.8 1.8
META M1col 396.0 439.6 447.9 456.1

0.7 1.0 1.4 0.6 1.1 1.3 0.4 1.5
META M1rand 386.9 433.4 451.9 466.8

0.8 2.3 3.2 2.2 0.4 3.6 0.8 2.6
PLASMA 256 339.7 i 405.9 i 429.3 i 448.6 i

4.1 6.4 1.3 1.2 0.2 1.4 0.3 0.4
PLASMA 448 238.4 n 417.2 n 452.0 n 465.0 n

2.6 3.5 5.5 4.4 8.2 2.8 3.7 2.3
PLASMA 480 220.6 n 413.6 n 457.2 n 467.2 n

1.8 3.5 2.4 3.9 3.7 1.6 2.3 3.0
PLASMA 512 196.7 n 403.9 i 458.8 n 471.9 n

4.8 2.2 3.6 3.2 1.2 1.7 3.2 0.9

(a) 32-Core-Sandy-Bridge

8192 16384 32768 65536
META M3col 287.1 306.7 317.8 323.3

0.6 0.4 0.5 0.2 0.7 0.2 0.3 0.2
META M3rand 288.8 307.7 318.6 322.9

1.0 0.8 3.6 3.5 0.5 0.7 0.7 1.0
META M1col 279.4 297.0 306.9 313.3

0.8 0.3 0.2 0.3 0.2 0.2 0.0 0.2
META M1rand 283.7 298.9 308.1 313.7

0.4 0.8 1.5 0.4 0.5 1.1 0.2 0.5
PLASMA 256 271.4 i 290.4 i 300.7 i 306.2 n

0.9 0.9 0.2 0.7 0.1 0.4 0.8 0.5
PLASMA 448 235.2 i 301.8 n 312.4 i 318.9 n

2.3 8.0 0.2 1.1 0.6 0.3 0.4 0.5
PLASMA 480 230.6 i 304.6 i 316.5 n 322.0 n

4.3 4.1 0.5 0.5 0.5 0.3 0.5 0.3
PLASMA 512 213.2 i 300.9 i 315.7 i 321.8 i

2.7 3.1 0.7 1.1 0.5 0.3 0.7 0.3

(b) 16-Core-Ivy-Bridge

Table 6.4. Performance measurements of the LU-decomposition (32-Core-Sandy-Bridge
and 16-Core-Ivy-Bridge).
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8192 16384 32768 65536
META M3col 557.1 616.6 641.3 657.1

2.6 3.6 2.8 1.5 1.8 0.8 1.0 0.4
META M3rand 546.3 604.3 632.0 646.9

7.2 4.4 3.8 8.6 2.0 2.2 4.0 2.7
META M5col 551.6 619.4 646.4 661.3

5.8 4.8 1.6 1.4 1.6 0.7 1.3 0.4
META M5rand 541.3 610.2 634.1 652.0

4.4 6.9 2.6 8.4 2.9 6.9 2.1 3.3
META M1col 546.5 594.9 615.0 631.6

5.2 3.5 0.9 1.2 0.9 0.8 1.3 0.8
META M1rand 537.7 580.5 603.6 621.3

3.7 5.5 9.6 7.8 3.0 2.8 1.8 1.9
PLASMA 256 511.3 n 566.7 n 584.9 n 599.7 n

4.6 9.3 2.8 3.6 0.8 1.4 1.0 0.4
PLASMA 448 400.4 n 587.1 n 620.3 n 637.9 n

5.8 4.3 6.0 7.4 0.6 1.6 1.2 0.6
PLASMA 480 387.6 n 596.4 n 635.6 n 652.8 n

12.3 6.7 3.2 3.3 0.4 1.3 1.2 0.5
PLASMA 512 338.4 n 570.2 n 615.4 n 631.0 n

3.1 5.5 2.2 3.9 0.5 0.9 1.3 0.7

Table 6.5. Performance measurements of the LU-decomposition (24-Core-Haswell).
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8192 16384 32768 65536
META M3col 658.0 758.4 800.3 826.0

3.6 4.2 1.2 1.9 1.7 0.5 1.6 0.3
META M3rand 648.6 759.9 796.8 823.0

2.4 4.6 6.6 9.2 2.4 9.4 5.6 4.7
META M5col 643.8 761.9 809.9 834.8

3.3 5.1 3.0 5.0 1.0 1.9 0.6 0.3
META M5rand 642.0 767.6 802.2 827.8

5.7 4.5 0.3 1.2 18.1 9.1 10.6 9.8
META M1col 643.6 727.1 762.1 784.7

3.6 3.9 1.8 2.4 2.0 1.6 4.7 1.5
META M1rand 637.0 727.6 759.6 785.8

4.7 2.6 3.8 2.5 3.2 1.8 2.7 4.6
PLASMA 256 577.4 i 700.9 i 732.4 n 751.4 n

7.1 8.3 1.5 2.0 2.0 2.5 1.9 2.0
PLASMA 448 400.5 i 717.7 i 789.8 n 813.0 n

14.3 13.1 1.9 3.5 0.9 2.3 3.1 1.1
PLASMA 480 376.1 n 714.4 i 801.0 n 825.3 n

2.4 8.3 2.7 5.2 3.4 4.5 2.3 0.8
PLASMA 512 313.5 i 665.8 i 763.9 i 789.3 i

1.6 3.9 11.3 7.8 1.2 1.2 2.0 0.7

Table 6.6. Performance measurements of the LU-decomposition (32-Core-Broadwell).
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Figure 6.9. Histograms of the running times of the update-tasks for one run of matrix size
16384.

We also take a quick look at the power consumption in Figure 6.10. We use a
a "watts up? PRO" from ThinkTank Energy Products Inc. to measure the power
consumption of the whole machine while it computes an LU-decomposition. All
tests are done with a matrix size of 65536, and both programs only perform one
measured run per invocation. Between two program runs we let the machine cool
down for 5 minutes. In order to show that the measurements are not disturbed
by heat effects, we run one run of META followed by two runs of PLASMA and
finish with one run of META. On 32-Core-Sandy-Bridge and 16-Core-Ivy-Bridge
we run META in the configuration M3 col and on 24-Core-Haswell and 32-Core-
Broadwell in the configuration M5 col. For PLASMA we always select the fastest
tile size (512 on 32-Core-Sandy-Bridge and 480 on the other machines) and run
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Figure 6.10. Power consumption of the LU-decomposition for one run of matrix size
65536. The sequence on all machines consists of one run of META, two runs of PLASMA
and one last run of META. The much wider peak of PLASMA is due to the different
warmup.

without interleaving. In each of the four images of Figure 6.10 we can clearly
recognize the four peaks separated by the five minute breaks (the PLASMA peaks
are wider because of the different warmup). We also have to zoom into the mea-
surements in order to recognize the differences in the power consumption. For
32-Core-Sandy-Bridge we ignore the peaks at the beginning of the computations
which are probably artifacts of the fan regulation. By approximation of the images
we estimate that the power consumption of META is 2-3% less than the power
consumption of PLASMA although META has the higher performance (and thus
computes more floating-point instructions per second).

Altogether the experiments show clear advantages of meta-tiles and meta-
tasks on all machines compared to the scheduling of single tiles. The additional
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comparisons with PLASMA show that these improvements have the potential
to improve even already well-optimized numerical linear algebra libraries. The
NUMA-optimizations are most beneficial on the four-socket machine (32-Core-
Sandy-Bridge) on which the difference between NUMA-local and non-NUMA-
local memory accesses is larger than on the other machines. These results indicate
that including the usage of the memory-hierarchy into scheduling approaches is
beneficial (at least in some cases).

Cache-optimized LU-decomposition in the context of this work META con-
tains a very simple example of the mission-type tactics (Auftragstaktik) as de-
scribed in Section 4.2. We have two layers of task distribution (meta-tasks among
the sockets and tasks among the cores), and the upper layer (central priority
queues) does not need to know which task is executed on which core as long
as all tasks of a meta-task are done. Hence a meta-task can be seen as an order to
a NUMA-node which leaves some freedom about the decision which core on that
node runs which contained task.

Even though META is developed as part of finding an approach for a memory
model for scheduling, META does not use such a model. In case of META we
do not trade off cache and memory access improvements of scheduling decisions
with possible negative effects. Tiles are aggregated to meta-tiles without regarding
negative effects. For example it is possible that update-tasks assigned to one
socket as part of a meta-task are waiting to be executed while there are idle cores
on other sockets (in case of meta-tile sizes larger than 1). A possible compromise
between the cache optimization and the efficient usage of cores could be that in
case of a small number of remaining meta-tasks these are split up and the single
tasks are distributed directly among the cores (without regarding the sockets any
more). Here one would need a model to decide (at runtime) when this behavior
change should be done.

Also the results of our study of the LU-decomposition are not directly trans-
ferable to the scheduling of independent applications as these can typically not
share cache contents because of running in different address spaces. On the other
hand it shows that different threads of one application that share cache contents
should probably run on the same socket at the same time.
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7
Power and Energy

Energy consumption is a major cost factor of computing and is especially impor-
tant in computing centers (see Section 2.1). For mobile devices the endurance of
the battery is a very important decision factor for purchase decisions between dif-
ferent mobile phones, laptops and other devices. Also this endurance is not only
influenced by the battery size (which can often not easily be increased due to size
and weight restrictions) but also by the power consumption of the device. A high
power consumption is not only problematic on the supply side but also on the out-
put side. If energy is used for computing, the inevitable output is heat. This heat
has to be dissipated as too high temperatures will destroy the computing device.
Appropriate cooling devices are costly, require space and weight and often pro-
duce noise. All this can be reduced if less heat is produced. The heat problem and
power consumption is also an important problem that fueled parallelization efforts
in order to overcome this problem (see Section 2.2.1). A typical feature of current
processors to deal with high temperature is to reduce clock speed (for example
Intel Turbo Boost), hence energy consumption is not only important for the cost
of energy and heat dissipation but also influences the working speed. Thus energy
consumption is an important topic for computing devices and the scheduling of
these devices.

The energy usage and heat production of a computing system is not only
influenced by components directly related to the computation like processors,
memory, hard disks and others but also by cooling fans or air conditioning systems
in data centers. One might think that fans are of little importance for the system
as a whole, but during our experiments we made a different observation. On one
of our used machines, 32-Core-Sandy-Bridge (see Section 6.1 for details), which
uses ∼ 180W in idle mode with fan speed regulated by its temperature and up to
820W during experiments on all cores, the power usage in idle mode increases to
∼ 380W if the fans are set to full speed. Even if such things are important for the
energy usage we restrict ourselves in this work to things that can be influenced by
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scheduling decisions.
There are many different properties that can be influenced by scheduling deci-

sions and can relevantly influence the power consumption of a computing system:

• The clock frequency/speed of computing cores.

• The efficient usage of the memory system by efficiently using caches (reduc-
tion of energetically expensive memory accesses).

• The usage of special devices capable of reducing energy consumption like
special function units that can compute a result energetically cheaper than
others.

• Sleep states of the computing device in times without work.

• Quality parameters of results which influence the computing effort.

In this work we focus on two of these properties: the clock speed (see Sec-
tion 7.1) and the usage of the memory system (see Section 7.2). In case of the
clock frequency we especially focus on energy-optimal clock speed settings for
malleable jobs which are in the main focus of this work. The efficient memory us-
age of parallel systems as described in Chapter 6 is another topic of this work. In
this chapter we focus on the energy usage effects of memory operations. Besides
the obvious realization that each work has to make a cut between things to include
and not to include the other properties mentioned above are less connected to this
work. The sleep states (or switching the machine on and off) is not especially
interesting in connection with parallel jobs. The quality parameters and the usage
of special computing devices have not developed widely accepted models for par-
allel jobs yet and are difficult to evaluate experimentally. This might change in
the future and then the energy-efficient scheduling for such problems will become
a more important topic.

7.1 Clock Speed

As inevitable basis for scheduling of clock speeds we need a model of the energy
consumption and the resulting work progress for different clock speeds. As there
are different models in use for frequency schedules, we introduce the model from
our article about frequency scheduling [117] (joint work with Peter Sanders). We
start with modelling the energy consumption of a single core. If the power con-
sumption P stays the same for a time interval of length T , the energy consumption
is just E = P ·T . In order to estimate the power consumption, we take a look at the
basic element of modern processors: the field-effect transistor. The gate of such a
transistor behaves similar to a capacitor, the electric charge is proportional to the
(supply) voltage. The energy used to load a capacitor is proportional to the prod-



7.1. Clock Speed 235

uct of charge and voltage. The number of times such load operations take place
per second is proportional to the clock frequency. The speed to load or unload
the gate of a transistor is proportional to the voltage (or maybe the voltage above
a threshold). Hence the voltage (voltage above threshold) is usually proportional
to the clock frequency. Altogether we can summarize that the power consump-
tion of a transistor is proportional to the cubic operating frequency. Hennessy
and Patterson ([64], example on page 23) get the same result by using a similar
argumentation. Thus one can assume E = f 3 · T for a single core with operat-
ing frequency f and a fitting energy unit size that removes the need for a further
constant factor. In order to broaden the applicability of our results, we assume
E = f α ·T with α > 2 for the energy usage of a single core running for a time
T with frequency f . If p cores run in parallel, we just add a factor of p for the
energy usage:

E = p · f α ·T
Now we look a the work done while running with a clock speed of f . In the
sequential case we just assume that the work done is just proportional to the
running time and the clock speed. If we use a fitting unit for the work w, we get:
w = f ·T . When running in parallel, jobs often have no optimal linear speedup
due to overheads. In order to make this part of the model, we use a (job-specific)
speedup function s j(p). We thus use

w = s j(p) · f ·T

for the work done in a job j when running for a time T on p cores with a frequency
f . We further assume that the frequencies can be selected from R>0 and that
the frequencies are the same for all cores working on the same job but can be
individually adjusted instantly for each core. Also the energy consumption of
unused cores and the energy consumption independent of the clock speed are
ignored in our model. Enhancements of our model to be more realistic and the
resulting adaptions of the scheduling algorithms are discussed in Section 7.1.2.

An important realization for energy scheduling (and especially regarding this
model) is that we need to bound the running time or include it into the objective
function. If our objective is just energy minimization, then running all jobs se-
quentially with the minimal possible operating frequency is the optimal solution.
This cuts down the parallelization overheads, and with higher clock speeds the
energy consumption always grows faster than the working speed (as long as the
basic energy consumption of the machine is not regarded). In most real cases
there is probably a tradeoff between running time and the energy consumption
which is influenced by many factors and is also situation-dependent. In order to
get general, abstract problems, one has to bound either energy usage or running
time. Most works mentioned in Section 3.1.5 (where we take a look at other work
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in energy scheduling) assume deadlines. Some of these works use more general
or more complicated (and probably more realistic) energy models.

7.1.1 Clock Speed for Malleable Jobs
Here we take a deeper look into the problem Minimize the Used Energy already
described in Section 5.2.5 (Corollary 4) and in a joint work with Peter Sanders
[117]. The paper [117] does not contain all necessary proofs, especially these
proofs will be given here as well as the other relevant parts to make this work
self-contained. This section is hence mainly a copied part of the article [117] with
added proofs and some smaller changes. We recapitulate the relevant properties
of the problem for this section: The energy consumption and work dependence
fit the model described at the beginning of Section 7.1, we only have to take a
closer look at the speedup functions. The speedup functions s j (with s j(0) = 0
and s j(1) = 1) of the jobs are concave and further fulfil this property: A function
h with h(0) = 0 and further defined as h : p 7→ α−1

√
sα(p)/p with α > 2 must be

strictly monotonically increasing for all p < p̄ (for a p̄ ∈ N) and monotonically
decreasing for all p > p̄ and additionally concave on (0, p̄]. As already described
in Section 5.2.5 for the problem Minimize the Used Energy, a lot of commonly
assumed speedup functions fulfil these properties. All jobs have a common release
time and deadline and must be scheduled on a machine with parallel identical
cores such that the used energy is minimized. Each job has to do an amount w j of
work. The goal of this section is to provide a function E j for the energy usage of
each job given the average (possibly non-integer) amount of used cores between
the release time and deadline. It is also shown that it is optimal for a job with a
given average amount of used cores only to use the two adjacent (integer) core
amounts of the average amount. Within this section we focus on one job with a
given average core usage during a time interval [0,T ] which has release time 0 and
deadline T . Hence we can omit the job-related indices for formulas, constants and
variables.

A malleable job can run on different numbers of cores during its execution
time. The main problem in order to reach the goal of this section is that depending
on the speedup function the most energy-efficient schedule for the job can require
different clock speeds when running on different amounts of cores.

Lemma 7.1.1. In an optimal solution for any number of cores p used during the
computation of the job the processing frequency is always the same if p cores are
used.

Proof. Let us assume there are two intervals I1, I2 and the job runs with frequency
f1 in I1 and a different frequency f2 in I2 (w.l.o.g. f1 < f2) and in both intervals the
job uses the same amount of p cores. W.o.l.g. we can assume that both intervals
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have the same length/duration t. The sum of work done and the sum of energy
used in these two intervals is then:

w12 = s(p) · f1 · t + s(p) · f2 · t
E12 = p · f α

1 · t + p · f α
2 · t

In order to prove the lemma, we have to show that we can do the same amount
of work with the same amount of cores and less energy in these intervals, and
hence that a solution where one job combines different frequencies with the same
amount of cores cannot be optimal.

If we set fnew = 1/2 · ( f1 + f2) for both intervals then the work done wnew in
both intervals with the new frequency is the same as w12. For the energy we get
Enew = p · f α

new ·2t. The function E( f ) = 2t · p · f α is strictly convex regarding the
variable f . Hence

Enew = E(
1
2

f1 +
1
2

f2) <
1
2

E( f1)+
1
2

E( f2) = E12

As we could reduce the energy usage, the solution with different frequencies
cannot be optimal.

With this lemma we can now compute the energy usage of a job if it uses p
cores during the whole interval [0,T ]: the work done is w = s(p) · f ·T , thus we
can compute the needed clock speed as f = w

T · 1
s(p) . Hence the used energy is:

E(p) = p · f α ·T =
wα

T α−1 ·
p

sα(p)
=

wα

T α−1 ·h
−α+1(p)

Hence the smallest energy usage is reached for p̄ as h reaches its maximum
there. That the smallest energy usage is reached for p̄ cores of course also holds
for any subinterval.

As the goal of this section is to find an optimal schedule for a single job with
a possible non-integer average core usage, we need to handle non-integer core
numbers. For a non-integer core number we introduce the notation p + τ for
the rest of the section where p is the integer part and τ ∈ [0,1). The main goal
of this Section is to compute the minimal energy consumption (and according
optimal schedule) of a job with work w to be done in time T when the job can
use an average number of p+ τ cores. A job runs on an average core number
p+ τ = T−1

∑
m
p=0 tp p during time T = ∑

m
p=0 tp if it runs on p cores for time tp

(m is the total number of cores of the machine like in Chapter 5 and thus the
maximal degree of parallelism). All core numbers in this section are not bigger
than p̄, otherwise you could shrink all larger core numbers to p̄ without using
more energy (see above). Hence we use as general assumption that the number
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of cores used in any time interval is bounded above by p̄. Most lemmata in this
section state that there is an optimal solution in which some property holds. The
proofs are mostly done by assuming this property does not hold for a solution and
then showing that an at least as good solution with this property exists (the energy
usage is not higher).

Lemma 7.1.2. If the average number of cores is τ , then it is optimal to run on 1
core for time τT and not to run for time (1− τ)T .

Proof. We consider the case of a job which runs on p cores for a time interval I1
of length t1 and runs on 0 cores (or does not run) for a time interval I2 of length
t2. Let w be the total work done in I1 (and I2) and Eold =

wα

tα−1
1
· p

sα (p) be the energy

used. Set ν := t1·p
t1+t2

. As the average core usage is less than 1 we know that ν < 1.
We will now use 1 core for time ν(t1 + t2) and 0 cores for time (1− ν)(t1 + t2)
and show that this does the same work with no more energy. The energy used to
do work w with 0 and 1 core is

Enew =
wα

(ν · (t1 + t2))α−1 ·
1

sα(1)
=

wα

tα−1
1
· 1

pα−1 =
sα(p)

pα
·Eold ≤ Eold

If s(p) is strictly concave we even have Enew < Eold as s(p)< p in this case.
The repeated use of this argument for all intervals where the job runs on more

than one core shows that if the average number of cores used during time T is
τ ≤ 1, then it is optimal to use one core during time τ ·T and 0 cores during time
(1− τ) ·T .

Lemma 7.1.3. If the average number of cores is p+ τ ≥ 1, then it is optimal to
run on at least 1 core throughout [0,T ].

Proof. Let us assume there is an interval I1 where the job does not run. As the
average number of used cores during [0,T ] is at least 1 there must be an interval
I2 where the job runs on at least 2 cores. Let the number of cores used during I2
be p and w.l.o.g. let I1 and I2 have the same length t. If the amount of work done
in I2 is w, we run on frequency fold = w/(s(p) · t) during I2 and the energy usage
is:

Eold =
wα

tα−1 ·h
−α+1(p)

We want to show now that if we run on one core in I1 and on p− 1 cores in
I2, we can do the same amount of work as before with no more energy usage.
The interesting question is how to split the work between the two intervals. The
amount of work done in interval I1 will be βw (with β ∈ (0,1)), and thus the
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amount of work done in I2 will be (1−β )w. If we set 1−β = s(p−1)/s(p), we
get for the energy usage:

Enew =
β αwα

tα−1 ·h
−α+1(1)+

(1−β )αwα

tα−1 ·h−α+1(p−1)

=
wα

tα−1

((
1− s(p−1)

s(p)

)α

· 1
sα(1)

+
p−1
sα(p)

)

=
wα

tα−1 · s
−α(p)(p−1+(s(p)− s(p−1))α)

= Eold +
wα

tα−1 · s
−α(p)(−1+(s(p)− s(p−1))α)

As the speedup can grow at most by one if you add one core −1+(s(p)− s(p−
1))α ≤ 0 and thus the lemma is proven. For strictly concave s(p) even −1+
(s(p)− s(p− 1))α < 0 holds which makes not running for some time interval a
suboptimal solution.

Lemma 7.1.4. Assume a job that runs on p1 cores for a time interval I1 of length
t1 and runs on p2 cores for a time interval I2 of length t2 and has to do the amount
w of work while running on these two intervals.

If we distribute the amount of work between these two intervals such that the
energy consumption is minimized, the energy usage during these two intervals is:

E = wα · (t1h(p1)+ t2h(p2))
−α+1

Proof. If we do βw work during I1 and (1− β )w work during I2, we get the
following energy as a function of β ∈ (0,1):

E(β ) =
β αwα

tα−1
1

· p1

sα(p1)
+

(1−β )αwα

tα−1
2

· p2

sα(p2)

=
β αwα

tα−1
1

·h−α+1(p1)+
(1−β )αwα

tα−1
2

·h−α+1(p2)

We now have to find the minimum of E(β ). We do this by computing the β

with E ′(β ) = 0. This β is a minimum because E ′′(β ) > 0 for all β ∈ (0,1). For
A = t−α+1

1 ·h−α+1(p1) and B = t−α+1
2 ·h−α+1(p2) the minimizing β is

β =
α−1
√

B
α−1
√

A+ α−1
√

B
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Thus with the optimal β for E we get the value:

E =wα · ((β αA+(1−β )αB)

=wα · ( α−1√A+
α−1
√

B)−α · (B α

α−1 A+A
α

α−1 B)

=wα · ( α−1√A+
α−1
√

B)−α ·AB · (B 1
α−1 +A

1
α−1 )

=wα · ( α−1√A+
α−1
√

B)−α+1 ·AB

=wα · (A −1
α−1 +B

−1
α−1 )−α+1

=wα · (t1h(p1)+ t2h(p2))
−α+1

Lemma 7.1.4 is a central result of this section, because it enables us to define
a minimal energy usage even when the work must be split between two intervals
where different numbers of cores are used.

Lemma 7.1.5. If the average number of cores is p+ τ ≥ 1, then it is optimal to
run on p+1 cores for time τT and to run on p cores for time (1− τ)T . General
assumption: p+ τ ≤ p̄

Proof. We consider the case of a job which runs on p1 cores for a time interval
I1 of length t1 and runs on p2 cores for a time interval I2 of length t2 (because
of Lemma 7.1.3 p1, p2 > 0) w.l.o.g. 0 < p1 < p2 ≤ p̄. Let w be the total work
done in both intervals. From Lemma 7.1.4 we know how the work w is optimally
distributed between I1 and I2 and what the energy usage is if the work is optimally
distributed: E = wα · (t1h(p1)+ t2h(p2))

−α+1

We set p := b t1 p1+t2 p2
t1+t2

c and τ := t1 p1+t2 p2
t1+t2

− p then p+τ is the average number
of cores used during I1 and I2 and p1≤ p < p+1≤ p2. We now want to show that
using p cores during time (1− τ)(t1 + t2) and p+1 cores during time τ · (t1 + t2)
is an optimal solution to do the work w during I1 ∪ I2. In order to do this, it
is sufficient to show that t1h(p1)+ t2h(p2) ≤ τ · (t1 + t2)h(p+ 1)+ (1− τ)(t1 +
t2)h(p).

If we set r := τ
t1+t2

t1
· p2−(p+1)

p2−p1
, then 1− r = (1− τ) t1+t2

t1
· p2−p

p2−p1
, and with

s := τ
t1+t2

t2
· p+1−p1

p2−p1
we get 1− s = (1− τ) t1+t2

t2
· p−p1

p2−p1
. With this we have:

t1h(p1) + t2h(p2) = rt1h(p1)+ st2h(p2)+(1− r)t1h(p1)+(1− s)t2h(p2)

= τ · (t1 + t2) ·
(

p2− (p+1)
p2− p1

h(p1)+
p+1− p1

p2− p1
h(p2)

)

+ (1− τ)(t1 + t2) ·
(

p2− p
p2− p1

h(p1)+
p− p1

p2− p1
h(p2)

)

≤ τ · (t1 + t2)h(p+1) + (1− τ)(t1 + t2)h(p)



7.1. Clock Speed 241

because h is concave for p1, p,(p+1), p2 ∈ (0, p̄].
The repeated use of this argument for all intervals with different numbers of

cores shows that if the average number of cores used during time T is p+ τ with
p ≥ 1, then it is optimal to use p+ 1 cores during time τ ·T and p cores during
time (1− τ) ·T .

With Lemma 7.1.2 and Lemma 7.1.5 we can define the energy usage for an
average number of cores p+ τ as the optimal energy usage of this case:

Definition 7.1.6. A job which does work w during time T on an average number
of cores p+ τ with p ∈N0, p+ τ ≤ p̄ uses energy

E(p+ τ) := E(p,τ) :=
wα

T α−1 · (τ ·h(p+1)+(1− τ)h(p))−α+1

It is immediately clear that E is a continuous function on (0,m] and has the
same values as the function E on integer p (see above).

Lemma 7.1.7. The function E(p + τ) as defined in Definition 7.1.6 is strictly
convex and strictly decreasing on (0, p̄] and has its minimum at p̄.

Proof. Let Eτ(p,τ) := δ

δτ
E(p,τ), then we have:

Eτ(p,τ) = − wα

T α−1 · (α−1)(h(p+1)−h(p))

· (τ ·h(p+1)+(1− τ)h(p))−α

As Eτ(p,τ) < 0 as long as p + 1 ≤ p̄ ⇔ h(p + 1)− h(p) > 0, it is clear that
E(p + τ) is strictly decreasing on (0, p̄]. Also for 1 ≤ p ≤ p̄ it is clear that
Eτ(p,0) and Eτ(p−1,1) exist as one-sided derivatives, and are computable with
the formula above.

The thing left to show is that E(p+ τ) is strictly convex on (0, p̄) and has the
minimum at p̄. We will first show that ∂ 2E(p,τ)

∂τ2 = Eττ(p,τ)> 0 for all p+1≤ p̄.

Eττ(p,τ) =
wα

T α−1 ·α(α−1)(h(p+1)−h(p))2

· (τ ·h(p+1)+(1− τ)h(p))−α−1

Thus Eττ(p,τ)> 0⇔ h(p+1)−h(p)> 0⇔ p+1≤ p̄. It remains to check that

Eτ(p,1) ≤ Eτ(p+1,0)
⇔ h(p+1)−h(p) ≥ h(p+2)−h(p+1)
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The last inequality is true for p+2≤ p̄ because h is concave and true for p+1= p̄
because h(p+1)≥ h(p),h(p+2). Thus we have shown that E is strictly convex
for p+1≤ p̄ and Eτ is strictly increasing for p+1≤ p̄.

The fact that E has its minimum at p̄ directly comes from the fact that h has
its maximum at p̄.

Definition 7.1.8. For 1≤ p≤ p̄ we define the left
−→
E (p) := Eτ(p−1,1) and right←−

E (p) := Eτ(p,0) derivative of E. For non-integer 0 < p+ τ < p̄ the left and
right derivative are the same and we define

−→
E (p+τ) :=

←−
E (p+τ) := Eτ(p,τ) =:

E ′(p+ τ). For p+ τ > p̄ we also set E(p+ τ) = E(p̄) as E(p̄) is the minimal
energy the job can use. This also leads to

←−
E (p̄) = 0.

With this definitions of the derivative and the left and right derivatives we can
directly see that E(p+ τ) is continuously differentiable on R>0 \N. Also the left
derivative

−→
E is continuous from the left and the right derivative

←−
E is continuous

from the right.

Lemma 7.1.9. We have that E(0+τ)−−→
τ→0

∞ and E ′(0+τ)−−→
τ→0

−∞ and
−→
E (p+

τ)≤←−E (p+τ) ∀p+τ ∈ (0, p̄] and
−→
E (p+τ),

←−
E (p+τ) are strictly increasing on

(0, p̄].

Proof.

E(p,τ) =
wα

T α−1 · (τ ·h(p+1)+(1− τ)h(p))−α+1

Eτ(p,τ) = − wα

T α−1 · (α−1)(h(p+1)−h(p))

· (τ ·h(p+1)+(1− τ)h(p))−α

As h(1) = 1 and h(0) = 0, we have:

E(0+ τ) =
wα

T α−1 · τα−1 −−→τ→0
∞

←−
E (0+ τ) = −wα(α−1)

T α−1 · τα
−−→
τ→0

−∞

As h(p̄)≥ h(p̄+1), we have
←−
E (p̄)≥ 0

The rest of the lemma was proven in the proof of Lemma 7.1.7.
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With Lemma 7.1.9 we can define the inversion of the derivative of the energy
function:

Definition 7.1.10. We have E as in Definition 7.1.6 and the left and right deriva-
tives as in Definition 7.1.8. Then for any c ∈ (−∞,0] we define (E ′)−1(c) := p+τ

for p+ τ ∈ (0, p̄] with
−→
E (p+ τ)≤ c≤←−E (p+ τ).

Lemma 7.1.11. (E ′)−1 as defined in Definition 7.1.10 is a well-defined, continu-
ous and monotonically increasing function on (−∞,0].

Proof. First we have to show that there exists only one p∗+ τ∗ for each c which
fulfills (E ′)−1(c) = p∗+ τ∗.−→

E (p + τ) and
←−
E (p + τ) are strictly increasing on (0, p̄] and

−→
E (p + τ) =←−

E (p+ τ) = E ′(p+ τ) for τ 6= 0. Hence we have the following sequence:

. . .
←−
E (p)≤ E ′(p+ τ)≤−→E (p+1)≤←−E (p+1) . . .

For all τ ∈ (0,1) and p ∈ {0, . . . , p̄−1}. Thus there are two possibilities for c:

1.
−→
E (p)≤ c≤←−E (p) for a certain p, then we have as inverse: (E ′)−1(c) = p+0

2.
←−
E (p) < c <

−→
E (p + 1) for a certain p, in this case there exists a unique

τ ∈ (0,1) with E ′(p+ τ) = c and the inverse is (E ′)−1(c) = p+ τ

As only one case with only one p can occur, there exists only one inverse.
From the sequence above and the strict increase of E ′(p+ τ) it is also clear

that (E ′)−1(c) is monotonically increasing.
As E ′(p + τ) is a strictly increasing continuous function, it is clear that

(E ′)−1(c) is continuous on (
←−
E (p),

−→
E (p+ 1)). From the construction of

←−
E (p)

and
−→
E (p+ 1) and the fact that (E ′)−1(c) = p for all c ∈ [

−→
E (p),

←−
E (p)] we have

continuity on (−∞,0].

We now summarize the findings of this section in one theorem:

Theorem 7. We have a malleable job with a concave speedup function s, an
amount of work w and an additional function h : p 7→ α−1

√
sα(p)/p which is

strictly monotonically increasing for all p < p̄ (for a p̄ ∈ N) and monotonically
decreasing for all p > p̄ and additionally concave on (0, p̄]. This job has to run
in the time interval [0,T ] on a parallel machine with identical cores which can
change their operating frequency. While running on p cores for a time t, the job
needs the energy amount E = p · f α · t with α > 2. If this job gets an average
amount x = p+τ (p = bxc) of cores during [0,T ], the minimal possible amount of
needed energy is E(p+τ) = wα

T α−1 ·(τ ·h(p+1)+(1−τ)h(p))−α+1 for p+τ ≤ p̄,
otherwise it is wα

T α−1 ·h−α+1(p̄). The minimum energy amount is used if the job runs
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on p cores for a time (1− τ)T and on p+1 cores for a time τT or on p̄ cores all
the time. The function E(p+ τ) is strictly convex and strictly decreasing on (0, p̄]
and has its minimum at p̄ and E(0+ τ) −−→

τ→0
∞. Also E(p+ τ) is continuously

differentiable on R>0 \N, and the left derivative
−→
E is continuous from the left

and the right derivative
←−
E is continuous from the right.

7.1.2 Enhancements
In this section we look at different modelling enhancements and how they can be
included into our model and frequency scheduling algorithm. General enhance-
ments are described in Section 5.2.6. This section considers only energy-specific
enhancements.

Energy Consumption of Frequency-Independent Parts

The easiest thing to include in our model is the energy consumption of frequency-
independent core parts by E = p · f α ·T +c · p ·T (for integer core amounts p). In
this case we need a constant factor as the "correct" unit sizes of E might be dif-
ferent for p · f α ·T and p ·T . Such frequency-independent core parts might be the
memory controllers or power supply units which always consume the same power
as long as the core is working. Our article [117] (joint work with Peter Sanders)
also looks briefly into this kind of enhancement, but here we use a slightly differ-
ent approach.

In order to find out what we have to change in our scheduling, we look through
the properties of the schedule. Let us first take a look at a single job with work
amount w, speedup function s and with p̄ as core amount of the minimal energy
consumption in the basic model. The energy consumption is E(p+ τ) = wα

T α−1 ·
(τ ·h(p+1)+(1−τ)h(p))−α+1 in the basic model. If we add the term c(p+τ)T
(possibly non-integer core amounts are used) to the energy function, the new core
amount p̄new with the minimal energy consumption can be smaller. Enew(p+τ) =

wα

T α−1 · (τ · h(p+ 1) + (1− τ)h(p))−α+1 + c(p+ τ)T remains strictly convex on
(0, p̄] as the second derivative does not change and thus p̄new can be computed by
simply finding the p+ τ with 0 = E ′new(p+ τ) = E ′(p+ τ)+ c ·T . If the sum of
the p̄new of all jobs is less than or equals m, then we get the easy solution of giving
each job an amount of p̄new cores. If the sum of the p̄new for all jobs is larger than
the available amount of m cores, then an optimal schedule uses all of the available
cores as Enew is strictly decreasing on (0, p̄new]. In this case we already know the
additional energy usage by the newly modelled parts which is c ·m · T . All the
derivatives of the energy functions get the same additive term compared to the
basic model. Hence we can just use the optimal solution computed with the basic
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model.

Discrete Frequency Steps

On real machines it is unfortunately often not possible to run on every clock speed
in R>0 but only on a discrete set of clock speeds. We assume that an ordered set
of usable frequencies is given by v1 < · · ·< vk. Ishihara and Yasuura [72] showed
that in case of discrete available frequencies and voltages an optimal solution for
one job on one core only uses the two adjacent discrete frequencies of the optimal
continuous frequency. In our more complex case with several parallel, malleable
jobs on a parallel machine we will not be able to show optimality but only an
approximation. We assume that we have an optimal schedule computed for con-
tinuous frequencies. This schedule will now be adapted to the case of discrete
frequencies. It is clear that the optimal schedule for continuous frequencies uses
at most as much energy as the optimal schedule for discrete frequencies as the
schedule for the discrete case is a feasible solution for the continuous case.

We assume that we have a given time interval of length T in which a job runs
on p cores with a frequency f . The optimal schedule of a job (in the continuous
case) only consists of such time intervals (the T here does usually not coincide
with the T used for the whole schedule). We compute the approximation for each
such interval. Let vi and vi+1 be the discrete frequencies such that vi < f < vi+1
(we assume that such frequencies exist). If we run the job for a time f−vi

vi+1−vi
T on

frequency vi+1 and for a time (1− f−vi
vi+1−vi

)T on frequency vi, the same amount
of work is done as if the job is run for a time T on frequency f . The only thing
that remains to be checked is the relative additional amount of used energy. Let
Ec be the energy usage of the continuous solution and Ed the energy usage of the
discrete solution for our considered interval, then we have: Ec = p · f α · T and
Ed = p f−vi

vi+1−vi
vα

i+1 ·T + p(1− f−vi
vi+1−vi

)vα
i ·T . We now give an upper bound for the

relative energy usage of the discrete solution Ed/Ec:

Ed

Ec
=

( f − vi

vi+1− vi
vα

i+1 +(1− f − vi

vi+1− vi
)vα

i

)
· f−α

=
(vα

i+1− vα
i

vi+1− vi
( f − vi)+ vα

i

)
· f−α

Let us take a look at the function g : f 7→ f α for α > 2. The gradient g′( f ) =

α f α−1 is strictly monotonically increasing for f ∈ (vi,vi+1).
vα

i+1−vα
i

vi+1−vi
is the "aver-
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age" gradient of g on (vi,vi+1). Hence we have:

f α ≥vα
i +αvα−1

i ( f − vi)

vα
i+1− vα

i

vi+1− vi
≤αvα−1

i+1

With this we get:

Ed

Ec
≤αvα−1

i+1 ( f − vi)+ vα
i

αvα−1
i ( f − vi)+ vα

i

by setting vi+1 = δvi we get:

Ed

Ec
≤αδ α−1vα−1

i ( f − vi)+ vα
i

αvα−1
i ( f − vi)+ vα

i

=
αδ α−1( f − vi)+ vi

α( f − vi)+ vi

As δ α−1 > 1 and α,vi,( f −vi)> 0 the value of αδ α−1( f−vi)+vi
α( f−vi)+vi

is increasing for
an increasing value of f − vi. Hence we can replace f − vi by the larger (δ −1)vi
(as f < vi+1) and we get:

Ed

Ec
≤ αδ α−1(δ −1)+1

α(δ −1)+1

The approximation quality increases for a decreasing α . We assume α =
3 for the remainder of this section. δ is the factor between different discrete
frequency steps. If we know an upper bound for δ , then we can compute the
ratio Ed/Ec which is also an upper bound for the approximation ratio. If each
discrete frequency is at most 10% larger than the previous one (10 such steps are
equivalent to a factor of 2.59), we get Ed/Ec ≤ 1.05. Even for δ = 1.3 we still
have Ed/Ec ≤ 1.33.

7.2 Memory Hierarchies
In Chapter 6 we look at the memory hierarchy as the efficient usage (e. g. through
optimized scheduling) becomes more and more important for the overall perfor-
mance and efficiency. In this section we take a closer look at the energy con-
sumption of memory operations. Also in case of energy consumption the memory
hierarchy has a considerable impact which is too large compared to the energy
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usage of the computation units to be ignored. There might be possibilities to mea-
sure the power consumption of processors and memory modules by specialized
methods, but the electricity bill and air conditioning efforts due to the machine
usage are determined by the power consumption of the whole machine. Hence we
measure the power consumption of the whole machine while performing different
operations.

We measure the power consumption of the machines by a "watts up? PRO"
from ThinkTank Energy Products Inc.. The measured machines are the four ma-
chines used for the experiments in Section 6.1. The measurements take place on
otherwise idle machines. The test operations/programs are the linear-test and the
chain-test on all cores which are introduced in Section 6.1. These tests perform
mainly memory operations and only a low amount of computations and almost
no floating-point computations. In order to have a comparison with a floating-
point-intensive workload, we also run the LINPACK benchmark from Intel’s Math
Kernel Library 11.2 for Linux (xlinpack_xeon64). On all machines the LIN-
PACK benchmark is run twice for a number of equations and a leading array
size of 10 000 and then once for a number of equations and a leading array size
of 25 000, 30 000 and 40 000. On all machines the run for a size of 40 000 takes
more time than all other runs together. The reached GFlop/s are (numbers for the
test with size 40 000): 32-Core-Sandy-Bridge: 447 GFlop/s, 16-Core-Ivy-Bridge:
336 GFlop/s, 24-Core-Haswell: 734 GFlop/s, 32-Core-Broadwell: 959 GFlop/s.
For the linear-test and the chain-test we select a number of iterations over the ar-
ray such that a measured test run roughly takes 10 seconds. The tests are run in
one program run per array size during which 6 measured test runs are performed.
The reached bandwidths (of core 0) of these tests differ less than 2% from those
reported in the "all" rows in Table 6.1 (basic experiment). Between the different
tests (LINPACK or memory tests) we allow the machine to cool down for 180
seconds (the longer cool down time compared to the experiments in Section 6.1
is in order to produce larger gaps in the power consumption graphs). For each
machine we measure one run starting with the LINPACK test continuing with the
linear-tests for the different array sizes (in that order: 1 MiB, 2 MiB, 10 MiB,
20 MiB, 100 MiB, 200 MiB, 1000 MiB) and finishing with the chain-tests for
the different array sizes (in the same order as the linear-tests). The graphs of the
measured power consumptions for each machine are presented in Figure 7.1.

In Figure 7.1 the base lines are set to the lowest power consumption during the
test run which is just the idle power consumption of the respective machine. In all
test runs the LINPACK benchmark has the highest power consumption (at least the
peaks). For all machines the additional power usage (additional to the idle power)
of the chain-tests is about half of the additional power usage of the LINPACK
benchmarks. The chain-tests that can run within the cache (1 MiB, 2 MiB) use less
power than those which have to use the main memory. The power consumption
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(a) 32-Core-Sandy-Bridge (b) 16-Core-Ivy-Bridge

(c) 24-Core-Haswell (d) 32-Core-Broadwell

Figure 7.1. The power consumption of the memory experiments. All tests are started with
some LINPACK benchmark runs from Intel’s Math Kernel Library 11.2 for Linux, then
all cores perform the linear-test on 1 MiB, 2 MiB, 10 MiB, 20 MiB, 100 MiB, 200 MiB,
1000 MiB, then the cores perform the chain-test for the same sequence of array sizes.
Between the 15 different tests the power consumption always drops near the baseline (due
to the 180 second breaks). In all pictures above we have on the left side a wide peak above
the baseline which is the power consumption of the LINPACK benchmark. To the right
the peak is followed by the 14 peaks for the memory experiments.
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of the linear-tests is for all machines in the middle between the chain-tests and the
LINPACK benchmarks. Also for the linear-tests the power consumption of those
tests which can run within the cache is at most the power usage of those which
have to use the main memory. On the four-socket machine 32-Core-Sandy-Bridge
the differences between the tests within the cache and those with larger arrays are
especially large.

Compared to the floating-point-intensive benchmarks from Intel’s MKL which
probably are near the peak performance of the machine the power consumption
of the memory tests is quite high. This shows that memory operations have the
potential to use a significant amount of the machine’s total power consumption.
The tests on arrays of size 1 MiB and 2 MiB which fit into L3-cache produce a 4
to 5 times higher bandwidth (see Table 6.1) and use at most as much power as the
tests on larger array sizes. This indicates that the high energy usage of the memory
tests cannot come from the computation effort of the tests (which is proportional
to the bandwidth) but from the memory accesses themselves. The bandwidth of
the linear-tests is between 37 and 64 times as high as the bandwidth of the chain-
tests, but the linear-tests’ additional energy usage is only between 1.3 and 1.6
times the energy usage of the chain-tests. This indicates that a random access is
energetically much more costly than reading a single element of a linearly read
array.

In Section 6.2.2 we present a cache- and NUMA-optimized scheduling for the
LU-decomposition. We also measure the power consumption of our optimized
algorithm and the competitor. Our algorithm saves around 2-3% power compared
to our competitor even though it is faster (up to more than 10% on one machine).
This fits the findings of this section that memory operations are power-intensive
and further indicates that applications can be made more energy-efficient by opti-
mizing their cache- and NUMA-locality.
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8
Conclusion

8.1 Summary

This work provides results in all four major research directions identified in Sec-
tion 3.4.3: the interplay and distribution of decision makers (Chapter 4), the effi-
cient schedule computation (Chapter 5), efficient scheduling regarding the mem-
ory hierarchy (Chapter 6) and energy-efficiency (Chapter 7).

The main result is the fast and efficient scheduling algorithm for malleable
jobs, which can be used for the objective of minimizing the maximum as well as
for the objective of minimizing the sum (see Section 5.2.3). The objectives are
the sum or maximum of some resource-dependent functions for each job. Our
scheduling algorithm finds the optimal resource distribution between these jobs.
We provide a range of exemplary problems which can be solved by our schedul-
ing algorithm including energy minimization and running-time minimization (see
Section 5.2.5). Four conditions are identified which need to be fulfilled by the
problem in order to use our scheduling algorithm. The first two of these con-
ditions are restrictions of the problem class, whereas the second two require the
existence and maximal running time of some supplementary algorithms. In case
that one of the first two conditions is not met, we also present examples which
result in NP-hard problems (in the end of Section 5.2.3 and Section 5.2.5). Hence
these conditions seem to be justified in the sense that without them finding an op-
timal solution in polynomial time would not be possible (unless P = NP). We also
show how our scheduling algorithm can be parallelized and thus present the first
parallelized scheduling algorithm for parallel job scheduling (see Section 5.2.4).

A topic closely related to the scheduling of malleable jobs is the realization
of malleable jobs. In this work we are able to present one of the first implemen-
tations of a malleable job: malleable sorting (see Section 4.6). An interesting
part of malleable jobs is the interface to the operating system scheduler. We see
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this interface as part of the communication between different system components
responsible for efficiency-related decisions. In Chapter 4 we take a look at the
interplay of these decision makers and the role of malleable jobs. Our interest in
this system-wide topic was fueled by our participation in InvasIC (see Section 4.4
and Section 2.7).

The main scheduling result is also used by us to solve a problem for
the energy-efficient scheduling of malleable jobs (one of the examples in
Section 5.2.5, using results from Section 7.1.1 and further enhancements in
Section 7.1.2). For a set of jobs with common release time and deadline and
speedup functions with some restrictions it is possible to compute a distribution
of the available cores such that the energy consumption is minimized. This is one
of the first results for energy-efficient scheduling of parallel jobs which computes
the optimal solution to the given problem.

Memory operations become more and more relevant compared to compu-
tations regarding efficiency and speed as the increase of computing throughput
and speed is faster than the increase of memory throughput and speed (see Sec-
tion 2.2.1). Our measurements described in Section 7.2 also indicate that memory
operations are highly relevant for power consumption. Hence future schedul-
ing algorithms have to consider the properties of memory operations in order
to produce good results. We present some measurements in this work that pro-
vide a basic understanding of the properties of current memory hierarchies (see
Section 6.1). As an example of the relevance of memory operations we also
demonstrate how a good memory scheduling can improve the performance of the
LU-decomposition of dense matrices (see Section 6.2.2) even though the LU-
decomposition is typically assumed to be a compute-bound application.

We also take a look into heuristic scheduling algorithms (see Section 5.3).
Together with Felix Brandt and Markus Völker, the author of this work took part in
the ROADEF/EURO challenge 2012 [1] which dealt with machine reassignment
problems. Our team finished second in the final round among all teams in the
junior category (11 teams in that category). Teams were placed in the junior
category if no team member had a Ph. D. yet. Among all teams our team won
the fourth place (28 participating teams in the final round) [1].

8.2 Outlook

In the future computing devices will spread into many more areas than today.
Many of these computing devices will execute different applications while only
using cheap chips and little energy. On the other side of the computing spec-
trum super-computers will become even more powerful. In both cases the perfor-
mance and efficiency have to increase dramatically compared to today’s devices
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of comparable cost and size. Also the physical limits for further performance
improvements are coming closer (for example the Power-Wall as described in
Section 2.2.1). These problems ask for an increased system efficiency, and an
improved scheduling might contribute a reasonable share to that efficiency gain.
On the other hand improvements through scheduling are often hindered by in-
terfaces introduced a long time ago which hinder the coordination of scheduling
decisions across system components (see Section 4.1). This is an example of path
dependence as described in Section 2.3.

The number of produced and used computing devices with many parallel cores
which work on parallel applications is likely to increase in the future. Such devices
will include smart-phones, personal computers and servers which all already have
parallel cores today. This will change the relative importance of development cost
and the cost dependent on the usage of a single unit. User satisfaction (influenced
for example through waiting times) and the energy usage of a single device are be-
coming more important, the development effort for improved scheduling solutions
to improve these things is becoming less important. Hence there might be enough
need and money to overcome the path dependence and to build new scheduling
systems and adapt other system components according to them (this might also
justify more complex models and scheduling algorithms, see Section 5.1).

As many new systems act in embedded applications, the users expect them to
act reproducibly and thus to fulfill some performance guarantees. Hence schedul-
ing algorithms with provable guarantees will become more important. This de-
mands a further theory research in order to develop such scheduling algorithms.
Especially the boundary between polynomially (efficiently) solvable problems
and NP-hard problems has to be further investigated to decide which problems
allow optimal solutions.

Memory operations become more and more important regarding performance
as well as energy consumption, thus there is a need to include the memory/cache
behavior into the models used for the development of scheduling algorithms. A
long-term goal of this would be scheduling algorithms which consider the memory
properties and provide performance guarantees for the system behavior.

Also many devices will be battery-powered and the general cost of electric-
ity might also increase. Hence the importance of power consumption will also
increase. This calls for scheduling algorithms which minimize the energy con-
sumption. Regarding the power demand of memory operations, scheduling algo-
rithms with power objectives should also include the management of memory and
cache.

Even today different decision makers take part in the scheduling of a comput-
ing system (application-internal schedulers, OS scheduler, see also Section 4.3).
In the future the number of these decision makers might increase and, what is even
more important, the coordination between these decision makers will be much
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more relevant for the efficiency of the system (for example because of the usage
of common resources like memory bandwidth or caches). Hence ways to coor-
dinate different parts of the scheduling system have to be developed. Also the
flexibility of applications to react to the system load or other system properties
will be important for performance and efficiency. It might be too difficult for
many programmers to write programs that can adapt flexibly to changing condi-
tions and coordinate with the system scheduler, but already today many libraries
for parallelization (OpenMP) or the efficient solution of expensive sub-problems
(MCSTL) exist. We expect such libraries to be made flexible and to be used by
most applications for expensive (in terms of power usage or computing effort)
sub-problems.

8.3 Open Problems/Future Work
The outlook indicates that there are some areas which need future work. In each
of these areas there is a lot of research necessary.

The importance of memory hierarchies both in terms of performance as well
as power consumption shows that they should be included into the models used
for scheduling and into scheduling algorithms.

Besides the inclusion of memory aspects, the theory of malleable jobs (or
related flexible applications) also leaves many open problems for development.
This ranges from various online problems, scheduling of a mixture between mal-
leable, moldable and fixed-size jobs, approximation algorithms and the handling
of a larger class of objective functions for the jobs, for example job functions that
are not convex any more but nearly convex.

In order to implement the new scheduling results in practice, new flexible
applications and appropriate operating systems are needed (maybe even special
hardware support). The increased flexibility of the applications might be put
into practice by flexible libraries for computation-intensive basic algorithms.
These basic algorithms with resource flexibility mostly still have to be developed.
Also new interfaces and the coordination between different performance- and
efficiency-relevant decision makers need more development. Two important
sub-problems are the prevention of overloaded decision makers by splitting
up scheduling decisions and the handling of shared memory resources by new
control mechanisms.

These new structures then might be introduced into an algorithm engineering
cycle (see Section 2.6.1) of repeated modelling, analysis, (re-)implementation and
experiments.
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Multiprocessor Tasks to Minimize Schedule Length. IEEE Transactions
on Computers, C-35(5):389–393, 1986.
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[67] Juraj Hromkovič. Algorithmics for Hard Problems: Introduction to Com-
binatorial Optimization, Randomization, Approximation and Heuristics.
Springer, 2004.

[68] Te C. Hu. Parallel Sequencing and Assembly Line Problems. Operations
Research, 9(6):841–848, 1961.

[69] Jonathan F. Hutchings. Project Scheduling Handbook. Dekker, 2004.

[70] Intel Corporation - 2014 Annual Report.

[71] Improving Real-Time Performance by Utilizing Cache Allocation Technol-
ogy, 2015. Intel Corporation.

[72] Tohru Ishihara and Hiroto Yasuura. Voltage Scheduling Problem for Dy-
namically Variable Voltage Processors. In International Symposium on Low
Power Electronics and Design (ISLEPED), pages 197–202. ACM, 1998.

[73] Klaus Jansen. Scheduling Malleable Parallel Tasks: An Asymptotic Fully
Polynomial Time Approximation Scheme. Algorithmica, 39(1):59–81,
2004.

[74] Klaus Jansen. A (3/2+ε) Approximation Algorithm for Scheduling Mold-
able and Non-Moldable Parallel Tasks. In Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 224–235. ACM, 2012.

[75] Klaus Jansen and Felix Land. Scheduling Monotone Moldable Jobs in
Linear Time. arXiv:1711.00103 [cs], 2017. to appear at IPDPS 2018.

[76] Klaus Jansen and Lorant Porkolab. Linear-Time Approximation Schemes
for Scheduling Malleable Parallel Tasks. Algorithmica, 32(3):507–520,
2002.

[77] Klaus Jansen and Lorant Porkolab. Computing optimal preemptive sched-
ules for parallel tasks: linear programming approaches. Mathematical Pro-
gramming, 95(3):617–630, 2003.



262 Bibliography

[78] Klaus Jansen and Malin Rau. Closing the gap for pseudo-polynomial strip
packing. arXiv:1712.04922 [cs], 2017.

[79] Klaus Jansen and Ralf Thöle. Approximation Algorithms for Scheduling
Parallel Jobs. SIAM Journal on Computing, 39(8):3571–3615, 2010.

[80] Klaus Jansen and Hu Zhang. Scheduling malleable tasks with precedence
constraints. Journal of Computer and System Sciences, 78(1):245–259,
2012.

[81] Berit Johannes. Scheduling parallel jobs to minimize the makespan. Jour-
nal of Scheduling, 9(5):433–452, 2006.

[82] Selmer Martin Johnson. Optimal two- and three-stage production schedules
with setup times included. Naval Research Logistics Quarterly, 1(1):61–
68, 1954.

[83] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley,
1992.

[84] Christoph W. Kessler, Nicolas Melot, Patrick Eitschberger, and Jörg Keller.
Crown Scheduling: Energy-Efficient Resource Allocation, Mapping and
Discrete Frequency Scaling for Collections of Malleable Streaming Tasks.
In International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS), pages 215–222. IEEE, 2013.

[85] Sebastian Kobbe, Lars Bauer, Daniel Lohmann, Wolfgang Schröder-
Preikschat, and Jörg Henkel. DistRM: Distributed Resource Management
for On-Chip Many-Core Systems. In International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), pages 119–
128. ACM, 2011.

[86] Peter Kogge, Keren Bergman, Shekhar Borkar, Dan Campbell, William
Carlson, William Dally, Monty Denneau, Paul Franzon, William Harrod,
Kerry Hill, Jon Hiller, Sherman Karp, Stephen Keckler, Dean Klein, Robert
Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan Snavely, Thomas
Sterling, R. Stanley Williams, and Katherine Yelick. Exascale Computing
Study: Technology Challenges in Achieving Exascale Systems. Technical
Report CSE 2008-13, University of Notre Dame, 2008.

[87] Fanxin Kong, Nan Guan, Qingxu Deng, and Wang Yi. Energy-efficient
Scheduling for Parallel Real-Time Tasks Based on Level-Packing. In Sym-
posium on Applied Computing (SAC), pages 635–640. ACM, 2011.



Bibliography 263

[88] Jakub Kurzak, Hatem Ltaief, Jack Dongarra, and Rosa M. Badia. Schedul-
ing dense linear algebra operations on multicore processors. Concurrency
and Computation: Practice and Experience, 22(1):15–44, 2010.

[89] Yu-Kwong Kwok and Ishfaq Ahmad. Benchmarking and Comparison of
the Task Graph Scheduling Algorithms. Journal of Parallel and Distributed
Computing, 59(3):381–422, 1999.

[90] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors. ACM Computing
Surveys, 31(4):406–471, 1999.

[91] Frank Thomson Leighton. Introduction to Parallel Algorithms and Archi-
tectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[92] Jan Karel Lenstra, AHG Rinnooy Kan, and Peter Brucker. Complexity of
Machine Scheduling Problems. Annals of Discrete Mathematics, 1:343–
362, 1977.

[93] Joseph Y.-T. Leung, editor. Handbook of Scheduling : Algorithms, Models,
and Performance Analysis. Chapmann & Hall/CRC, 2004.

[94] Minming Li and Frances F. Yao. An Efficient Algorithm for Comput-
ing Optimal Discrete Voltage Schedules. SIAM Journal on Computing,
35(3):658–671, 2005.

[95] Giuseppe Lipari and Enrico Bini. A methodology for designing hierarchi-
cal scheduling systems. Journal of Embedded Computing, 1(2):257–269,
2005.

[96] Robert Love. Linux Kernel Development : [A thorough guide to the design
and implementation of the Linux kernel]. Addison-Wesley, 2010.

[97] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien
Quéma, and Alexandra Fedorova. The Linux Scheduler: a Decade of
Wasted Cores. In European Conference on Computer Systems (EuroSys),
pages 1:1–1:16. ACM, 2016.

[98] Walter Ludwig and Prasoon Tiwari. Scheduling Malleable and Nonmal-
leable Parallel Tasks. In Symposium on Discrete Algorithms (SODA), pages
167–176. SIAM, 1994.

[99] Chris A. Mack. Fifty Years of Moore’s Law. IEEE Transactions on Semi-
conductor Manufacturing, 24(2):202–207, 2011.



264 Bibliography

[100] Tobias Maier, Peter Sanders, and Jochen Speck. Locality Aware DAG-
Scheduling for LU-Decomposition. In International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 82–92. IEEE, 2015.

[101] Loris Marchal, Bertrand Simon, Oliver Sinnen, and Frédéric Vivien. Mal-
leable task-graph scheduling with a practical speed-up model. Research
Report RR-8856, ENS de Lyon, 2016. <hal-01274099>.

[102] Wolfgang Mauerer. Professional Linux Kernel Architecture. Wiley Pub-
lishing, 2008.

[103] John D. McCalpin. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Commit-
tee on Computer Architecture (TCCA) Newsletter, pages 19–25, 1995.

[104] Robert McNaughton. Scheduling with Deadlines and Loss Functions. Man-
agement Science, 6(1):1–12, 1959.

[105] Gordon E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8):114–117, 1965.

[106] Gregory Mounie, Christophe Rapine, and Denis Trystram. A 3/2-
Approximation Algorithm for Scheduling Independent Monotonic Mal-
leable Tasks. SIAM Journal on Computing, 37(2):401–412, 2007.

[107] Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, Predictability,
Workloads, and User Runtime Estimates in Scheduling the IBM SP2
with Backfilling. IEEE Transactions on Parallel and Distributed Systems,
12(6):529–543, 2001.

[108] Dirk W. Oetting. Auftragstaktik : Geschichte und Gegenwart einer
Führungskonzeption. Report Verlag, 1993.

[109] David A. Padua, editor. Encyclopedia of Parallel Computing. Springer,
2011.

[110] Simon Peter, Adrian Schüpbach, Paul Barham, Andrew Baumann, Rebecca
Isaacs, Tim Harris, and Timothy Roscoe. Design Principles for End-to-End
Multicore Schedulers. In Workshop on Hot Topics in Parallelism (HotPar).
USENIX, 2010.

[111] PLASMA: Main Page. https://icl.bitbucket.io/plasma/ (accessed:
05.07.2017).



Bibliography 265

[112] James Reinders. Intel Threading Building Blocks: Outfitting C++ for
Multi-core Processor Parallelism. O’Reilly, 2007.

[113] ROADEF/EURO Challenge 2012: Machine Reassignment.
http://challenge.roadef.org/2012/files/problem_definition_v1.pdf (Problem
Definition).

[114] ROADEF/EURO Challenge 2012: Machine Reassignment.
http://challenge.roadef.org/2012/en/reponse.php (Submission Page,
accessed: 30.09.2016).

[115] Peter Sanders. Algorithm Engineering – An Attempt at a Definition. In
Efficient Algorithms, pages 321–340. Springer, 2009.

[116] Peter Sanders and Jochen Speck. Efficient Parallel Scheduling of Malleable
Tasks. In International Parallel and Distributed Processing Symposium
(IPDPS), pages 1156–1166. IEEE, 2011.

[117] Peter Sanders and Jochen Speck. Energy Efficient Frequency Scaling and
Scheduling for Malleable Tasks. In International European Conference on
Parallel and Distributed Computing (Euro-Par), pages 167–178. Springer,
2012.

[118] Sandra Sattolo. An Algorithm to Generate a Random Cyclic Permutation.
Information Processing Letters, 22(6):315–317, 1986.

[119] Jochen Seidel. Job-Scheduling in Main-Memory Based Parallel Database
Systems. Diplomarbeit, KIT, 2011.

[120] Johannes Singler. Algorithm Libraries for Multi-Core Processors. PhD
thesis, KIT, 2010.

[121] Johannes Singler, Peter Sanders, and Felix Putze. MCSTL: The Multi-
core Standard Template Library. In International European Conference on
Parallel and Distributed Computing (Euro-Par), pages 682–694. Springer,
2007.

[122] Oliver Sinnen. Task Scheduling for Parallel Systems. John Wiley & Sons,
2007.

[123] Ian Sommerville. Software Engineering. Pearson Education, 2007.

[124] Hans Stadtherr. Work Efficient Parallel Scheduling Algorithms. PhD thesis,
Technische Universität München, 1998.



266 Bibliography

[125] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
2009.

[126] Sivaprakasam Sunder and Xin He. Scheduling Interval Ordered Tasks
in Parallel. In Symposium on Theoretical Aspects of Computer Science
(STACS), pages 100–109. Springer, 1993.

[127] David Tam, Reza Azimi, and Michael Stumm. Thread Clustering: Sharing-
Aware Scheduling on SMP-CMP-SMT Multiprocessors. In European Con-
ference on Computer Systems (EuroSys), pages 47–58. ACM, 2007.

[128] Andrew S. Tanenbaum and Todd Austin. Rechnerarchitektur : von der
digitalen Logik zum Parallelrechner. Pearson, 2014.

[129] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. Pear-
son Education, 2015.

[130] Gecode Team. Gecode: Generic Constraint Development Environment,
2011. Available from http://www.gecode.org.

[131] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-
Landsiedel, Wolfgang Schröder-Preikschat, and Gregor Snelting. Invasive
Computing: An Overview. In Multiprocessor System-on-Chip, pages 241–
268. Springer, 2011.

[132] Jürgen Teich, Jürgen Kleinöder, and Katja Lohmann, editors. In-
vasive Computing Annual Report 2011. DFG Transregional
Collaborative Research Centre 89. https://invasic.informatik.uni-
erlangen.de/publications/annual_report_2011.pdf.

[133] Jürgen Teich, Jürgen Kleinöder, and Katja Lohmann, editors. In-
vasive Computing Annual Report 2012. DFG Transregional
Collaborative Research Centre 89. https://invasic.informatik.uni-
erlangen.de/publications/annual_report_2012.pdf.

[134] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM,
1997.

[135] John Turek, Joel L. Wolf, and Philip S. Yu. Approximate Algorithms for
Scheduling Parallelizable Tasks. In Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 323–332. ACM, 1992.

[136] Jeffrey D. Ullman. NP-complete scheduling problems. Journal of Com-
puter and System Sciences, 10(3):384–393, 1975.



Bibliography 267

[137] Martin L. Van Creveld. Command in war. Harvard University Press, 1985.

[138] Ward Van Heddeghem, Sofie Lambert, Bart Lannoo, Didier Colle, Mario
Pickavet, and Piet Demeester. Trends in worldwide ICT electricity con-
sumption from 2007 to 2012. Computer Communications, 50:64–76, 2014.

[139] David W. Wall. Limits of Instruction-Level Parallelism. In International
Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 176–188. ACM, 1991.

[140] Wolfgang Walter. Analysis 1. Springer, 2004.

[141] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Com-
munications of the ACM, 52(4):65–76, 2009.

[142] James M. Wilson. Gantt charts: A centenary appreciation. European
Journal of Operational Research, 149(2):430–437, 2003.

[143] Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implica-
tions of the Obvious. SIGARCH Computer Architecture News, 23(1):20–
24, 1995.
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L
Deutsche Zusammenfassung

Lastverteilung/Scheduling in der Informatik bezeichnet das Finden eines Plans
(Schedule) zur effizienten Ausführung eines Programms (wenn die Ausführung
interner Teilaufgaben geplant wird) oder einer Gruppe von Programmen auf ei-
nem Computersystem. Dies beinhaltet das Zuweisen von benötigten Ressourcen
zum Beispiel von Kernen oder Speicher/Cache genauso wie die Bestimmung an-
derer Parameter wie das Setzen der Taktrate. Natürlich muss der gefundene Plan
umsetzbar und zulässig sein. Gute Pläne/Schedules sind wichtig für einen effizi-
enten Betrieb des Computersystems im Hinblick auf Ziele wie hohen Durchsatz,
geringen Energieverbrauch oder schnelle Fertigstellung aller Aufgaben. Genauso
ist es wichtig, dass die Berechnung des Schedules nicht zu viel Zeit oder andere
Ressourcen benötigt.

Heutige Computer sind üblicherweise Parallelrechner mit mehreren parallel
arbeitenden Kernen. Auch werden die verwendeten Anwendungen (insbesondere
jene mit hohem Rechenbedarf) heute immer öfter parallelisiert. Deshalb wird das
Scheduling paralleler Anwendungen zu einem wichtigen Faktor der Effizienz und
Leistungsfähigkeit heutiger Computersysteme.

Scheduling ist ein großes Gebiet, das in vielen verschiedenen Zusammenhän-
gen und vielen verschiedenen Ansätzen untersucht wird. Zum Beispiel enthält
das "Handbook of Scheduling"(zusammengestellt von Joseph Y-T. Leung) 1224
Seiten und zitiert etwa 2000 andere wissenschaftliche Arbeiten aus diesem Ge-
biet. Sogar das Scheduling von parallelen Anwendungen ist ein umfangreiches
Gebiet. Trotz des hohen Forschungseinsatzes gibt es eine große Lücke zwischen
der Forschung im Bereich der Schedulingtheorie und den in der Praxis oder in
experimentellen Arbeiten verwendeten Lösungen.

Unser Ansatz ist es, die Lösungen aus Theorie und Praxis zu studieren, und das
dabei gewonnene Wissen zu nutzen, um Resultate zu produzieren, die die Lücke
verkleinern. Ein Grund für die Lücke zwischen Theorie und Praxis ist, dass die
Modelle der Theorie mehr Wissen über die Anwendungen annehmen als in der
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Praxis zur Verfügung steht. Zudem nehmen einige Modelle der Schedulingtheorie
noch an, dass der System-Scheduler eine Möglichkeit hat, das Verhalten der An-
wendungen zu ändern, welche in der Praxis noch nicht existiert. Aber es gibt An-
sätze, die Anwendungen anpassbar an den Systemzustand zu machen und mehr
Informationen für das Betriebssystem bereitzustellen. Ein Beispiel für die Ent-
wicklungen mit dem Ziel, den Informationsaustausch zwischen Anwendungen
und Betriebssystem und die Anpassbarkeit der Anwendungen zu verbessern, ist
das InvasIC-Projekt. Der Autor dieser Arbeit war vier Jahre für das Projekt tätig
und arbeitete in dieser Zeit mit Experten für viele verschiedene Bereiche mo-
derner Computersysteme zusammen. Der verbesserte Informationsaustausch und
die Anpassbarkeit von Anwendungen sind Systemdesign-Entscheidungen, die das
System so verändern, dass die Ergebnisse der Schedulingtheorie besser anwend-
bar sind. Insbesondere das Modell der malleablen Jobs, welche ihre Ressourcen-
nutzung während der Laufzeit ändern können, scheint ein passendes Gegenstück
zu den InvasIC-Entwicklungen auf der Theorieseite zu sein.

Während unserer Arbeit am InvasIC-Projekt war es uns möglich vier Haupt-
forschungsrichtungen für das Scheduling von Parallelrechnern zu identifizieren
(jede dieser Richtungen wird in einem eigenen Kapitel behandelt):

• Die Verteilung der Informationen und Entscheidungen zwischen den verschie-
denen Entscheidungsträgern im System. In modernen Systemen gibt es ver-
schiedene Entscheidungsträger wie zum Beispiel den Betriebssystemschedu-
ler oder die anwendungsinternen Scheduler. Um gute Resultate zu erzielen,
müssen diese Scheduler koordiniert werden.

• Schnelles und effizientes Finden von guten Entscheidungen (das klassische
Problem der Forschung im Bereich der Schedulingtheorie). Die effiziente
Lösung der oftmals komplizierten Schedulingprobleme bleibt der Kern je-
des Schedulingsystems. Eine umfassende Basis dafür kann in der Schedu-
lingtheorie gefunden werden.

• Die effiziente Nutzung von Speicher und Caches. Die effiziente Nutzung des
Speichersystems ist eine zentrale Anforderung, um hohe Leistung und Effizi-
enz zu erreichen.

• Die Verringerung von Leistungsbedarf und Energieverbrauch. Energiever-
brauch und Hitzeentwicklung blockieren einfache Leistungsgewinne durch
die Steigerung der Taktrate. Zudem wird dieser Bereich auch durch die Zu-
nahme batteriebetriebener Geräte immer wichtiger.

Diese Arbeit stellt Resultate aus allen vier Bereichen dar. Das Hauptergeb-
nis dieser Arbeit ist ein schneller Scheduling-Algorithmus für malleable Jobs,
der optimale Schedules berechnet, falls das gegebene Problem einige Bedingun-
gen erfüllt. Die Zielfunktionen, die durch unseren Hauptalgorithmus minimiert
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werden, sind entweder Maxima oder Summen von Jobeigenschaften. Wir zeigen
auch, dass unser Hauptalgorithmus parallelisiert werden kann und dass die par-
allele Version einen optimalen Schedule in polylogarithmischer Zeit findet, falls
die Anzahl verwendeter Kerne mindestens so groß ist wie die Anzahl der Jobs.
Das macht diesen Algorithmus zum ersten parallelen Schedulingalgorithmus für
parallele Jobs (soweit wir wissen). Einige Anwendungen des Hauptalgorithmus
werden dargestellt, darunter auch die Minimierung des Energieverbrauchs einer
Menge von malleablen Jobs. Soweit wir wissen ist die Anwendung auf die Ener-
gieminimierung der erste Algorithmus, der das Energieminimierungsproblem für
malleable Jobs optimal löst. Neben dem Hauptergebnis beschreiben wir auch eine
Heuristik für das schnelle und effiziente Scheduling, welche in einem Wettbewerb
erfolgreich war.

Bezüglich der Koordination und des Informationsaustauschs zwischen ver-
schiedenen Schedulern enthält diese Arbeit einige generelle Überlegungen aus
anderen Bereichen und ein Beispiel für eine malleable Anwendung und dem ent-
sprechenden Interface.

Das Speicher- und Cache-Verhalten moderner Computersysteme wird durch
umfangreiche Experimente in dieser Arbeit untersucht. Zwei Fallstudien von
Speicheroptimierungen für reale Anwendungen wurden mit unserer Beteiligung
durchgeführt. Ihre Ergebnisse werden nach den Basisexperimenten zum Cache-
und Speicherverhalten beschrieben. Wir betrachten auch den Leistungsbedarf von
Speicheroperationen.




