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1 Introduction

Vertex form factors with external fermions play a crucial role in a number of phenomeno-
logically interesting processes. Among them are the massive fermion production in electron
positron collisions, and in particular the forward-backward asymmetry, where form factor
contributions induced by vector and axial-vector currents are needed. Furthermore, build-
ing blocks to the decay rates of scalar and pseudo-scalar Higgs bosons are provided by the
corresponding form factors. Last but not least, form factors constitute important toys,
which help to investigate the structure of high-order quantum corrections.

In this work we consider vertex form factors where the external current is of vector,
axial-vector, scalar or pseudo-scalar type. They are given by

= b,

Ji = Py

J*=my,

gP = imPsi), (1.1)

where for convenience the heavy quark mass m has been introduced in the scalar and
pseudo-scalar currents such that no additional overall (ultraviolet) renormalization con-
stants have to be introduced (as for the vector and axial-vector! cases) [1]. If j* or j7 are
used to compute properties of the Higgs boson there is a one-to-one relation of m to the
corresponding Yukawa coupling.

'In this paper we do not consider Feynman diagrams which contribute to the axial anomaly.



We consider the three-point functions of the currents in eq. (1.1) and a quark-anti-quark
pair. The corresponding vertex functions can be decomposed into scalar form factors which
are defined as

i
I (g1, q2) = FY (@) — 5—F5 (¢*)owd”

2m
1
Th(a1,42) = FY(¢*) 55— F5 (0)aus
Fs(qla Q2) — mFs(qQ) )
IP(q1, q2) = imFP(¢*)ys , (1.2)

with incoming momentum ¢;, outgoing momentum ¢2 and ¢ = ¢; — g2 being the outgoing
momentum at j°. The external quarks are on-shell, i.e., q% = q% = m? and we have
o = i[y*,4"]/2. We note that in all cases the colour structure is a simple Kronecker delta
in the fundamental colour indices of the external quarks and not written out explicitly.

For later convenience we define the perturbative expansion of the scalar form factors as

F=Y F® (O‘Z(:))n , (1.3)

n>0

with FU© = o = pa0) = pr(0) =1 and F2© = 2@ =,

In the context of QED two-loop corrections to the form factor have been computed
in refs. [2, 3]. As far as QCD is concerned, two-loop corrections to the vector current
contributions F} and Fj have been computed for the first time in ref. [4] (see also ref. [5]
for the fermionic contributions) and have been cross checked by several groups [6-10]. In
some cases higher order terms in ¢ have been added. Furthermore, higher order terms
for the form factors in the high-energy limit have been predicted using evolution equa-
tions [6, 8, 11]. Two-loop axial-vector, scalar and pseudo-scalar contributions have been
computed in refs. [12-14] and recently been confirmed in ref. [9] where O(e) and O(e?)
terms have been added. Three-loop corrections are only known for well-defined subsets of
the vector form factor: the large-NN, limit has been computed in ref. [7] using the master
integrals of [15]. This involves only planar integrals. The complete (planar and non-planar)
light-fermion contributions to F} and Fj have been obtained in ref. [10]. In this reference
also the results of the relevant master integrals are given. Let us mention that all-order
corrections to massive form factors in the large-5y limit have been considered in ref. [16].

For the three-point functions one in general distinguishes singlet and non-singlet con-
tributions. The former includes a closed fermion loop which contains the coupling to the
external current. It is connected to the fermions in the final state via gluons as is shown
in figure 1(a). In case the external current contains 75 singlet contributions need special
attention since the anti-commuting definition for «5 can not be used. Instead prescriptions
like the one introduced in ref. [17] have to be applied.
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Figure 1. Sample diagrams contributing to the form factors. Solid and curly lines represent quarks
and gluons, respectively. The grey blob refers to one of the external currents given in eq. (1.1).
Singlet contributions, as shown in (a), are not considered in this paper.

If the external current does not contain s the singlet contributions can be treated
along the same lines as the non-singlet part. However, in contrast to the latter the singlet
contributions have massless cuts which requires modifications of the technique described
in [7, 10, 15] to compute the master integrals. Thus, in this paper we restrict ourselves
to non-singlet contributions (cf. figures 1(b)—(1)), i.e., the external current couples to the
fermions in the final state. At three loops we compute the complete light-fermion contri-
butions and consider the large-N. expansion of the remaining part. At one- and two-loop
order all colour factors are computed and agreement with the literature [9] is found.

In the next section we introduce the notation and briefly mention some techniques used
for the calculation. Afterwards analytical and numerical results are presented in sections 3

and 4. We close with a brief summary in section 5.

2 Technicalities

The techniques and the setup of the programs, which are used to obtain the results of this
paper, are straightforward extensions of the works [7, 10] and thus we refrain from repeating
in detail the technical descriptions. Note, however, that in contrast to ref. [7] we do not
define a “super family”, which includes the eight relevant planar families as sub-cases.
Rather, we generated the input files for FIRE [18] from scratch and computed separate
tables for each individual family. Let us mention that for the reduction to master integrals



Figure 2. Illustration of the variable transformation between ¢?/m? and z as given in eq. (2.1).
The left graph represents the ¢?/m? plane and on the right the complex x plane is shown. The
(coloured) wiggled and zigzag lines show the mapping of the various intervals, whereas the straight
lines indicate the mapping for special values of ¢?/m? and z.

and the minimization of the latter it is useful to combine FIRE [18] with LiteRed [19, 20],
which provides important symmetry information. In fact, for the most complicated integral
family the reduction took about a day of CPU time on a computer with 18 cores, even for
general gauge parameter.
For the form factors it is useful to introduce the following variable
2 2
I _d-af (2.1)
m x
which maps the complex ¢2/m? plane into the unit circle, as illustrated in figure 2. The
low-energy (¢? — 0), high-energy (¢ — 00) and threshold (¢?> — 4m?) limits correspond
tox — 1, 2 — 0 and & — —1, respectively. Furthermore, the interval ¢ < 0 is mapped to
z € (0,1) and ¢ € [0,4m?] to the upper semi-circle. Note that for x € (0,1) and z = €'
with ¢ € [0, 7] the form factors have to be real-valued since the corresponding Feynman
diagrams do not have cuts. This is different for the region ¢*> > 4m?, which corresponds
to z € (—1,0), where the form factors are complex-valued. Note that for negative = we
interpret log(z) as log(x + 10) = log(—x) + im.
For the threshold limit (¢?> — 4m?, x — —1) it is convenient to introduce the velocity
of the produced quarks

2
B =1/1-— ﬂ , (2_2)
s
which is related to x via
23
= —— —1. 2.3
T8 (23)



For the analytic three-loop expressions we furthermore define

iy =T = (1£iv3)/2,
rasy = e = (—1£iV3)/2. (2.4)

In the practical calculation it is convenient to apply projectors in order to extract
the scalar form factors. We refrain to provide them explicitly but refer to ref. [9] where
projectors for the four currents in eq. (1.1) can be found.

All one- and two-loop Feynman integrals can be expressed as a linear combination of
the 2 4+ 17 master integrals discussed in ref. [10]. Note that our two-loop basis is smaller
than the one of ref. [9] where 23 non-singlet master integrals are given. After inserting
the e-expanded results for the master integrals into the expressions for the form factors we
obtain the one- and two-loop expressions expanded up to order €* and €2, respectively. Our
two-loop results agree with [9]. Let us repeat that we do not consider singlet contributions
which occur for the first time at two loops. Note that they vanish for the vector current
but give non-vanishing contributions for the other three currents.

At three-loop order we have 89 planar master integrals entering the large-N. expres-
sions and 15 additional master integrals for the complete light-fermion n; and ”12 contribu-
tions, only two of the them are non-planar.

To obtain the renormalized form factors we use the MS scheme for the strong coupling
constant and the on-shell scheme for the heavy quark mass and wave function of the
external quarks. In all cases the counterterm contributions are simply obtained by re-
scaling the bare parameters with the corresponding renormalization constants, Z,,, Z,%S
and Z95. The latter is needed to three loops whereas two-loop corrections for Z,, and Z93
are required. For the scalar and pseudo-scalar form factors also the overall factor m has to
be renormalized (to three-loop order), which we choose to do in the MS scheme. Note that
this is the natural choice if F® or FP are used for Higgs boson production or decay since
then m takes over the role of the Yukawa coupling. The MS renormalization constants,
of course, only contain pole parts. However, for the on-shell quantities also higher order €
coefficients are needed since the one- and two-loop form factors develop 1/¢ and 1/€2 poles,
respectively. Note that in our case the overall renormalization constants of all currents in
eq. (1.1) are equal to unity.

3 Analytic results

The analytic results for the form factors are expressed in terms of Goncharov polyloga-
rithms (GPLs) [21] with letters —1,0,+1 and r;. They are quite long and we refrain from
presenting them in the paper. Rather we collect all relevant expressions in a computer-
readable format; the corresponding file can be downloaded from [22]. To fix the notation
we provide one-loop results for the six scalar form factors introduced in eq. (1.2) up to the



constant term in e. For p? = m? they are given by

v,(1) 1/(2 (1’2 + 1) G(0]z) (a:2 + 1) [G(O’x)]2
B =0Cr € ( (x—1)(z+1) _2> * (x—1)(z+1)
(322422 +3) G(0z) 4 (2*+1) G(-1,0[z)

(x —1)(x+1) (r—1)(x+1)

72 (m2—|—1) 4
3@ —-D(x+1) |

v,(1) 4:EG(0|1‘)
F NV
2 Fe-D@+1)’
a,(1) _ o) 42G(0]x)
Fel) — po) _ o TR
! ! e DE+ 1)
Fo) ¢, 4z (322 — 224 3) G(0|z) 8
2 (x —1)3(x+1) (x—1)2|"

o)) _ Flv,(l) O {6 (= +3)Bx + 1)G(O|x)} ’

(x —1)(x+1)
. (322 + 22 + 3) GgO]x)] | 51)

1
(x—1)(z+1

where the two GPLs can be written as
G(0]z) = log(z),
G(—1,0|z) = Lig(—x) + log(x) log(1 + z) . (3.2)

In eq. (3.1) we have the colour factor Cp = (N2 — 1)/(2N,). At two-loop order one has
C%, CpCy4, CpTen; and Cplrny, where C'y4 = N., n; counts the massless quark loops
and np = 1 the quark loops with mass m. At three-loop order there are the colour
factors C’FT%n%, C’%Tpnl, CpCaTpng, CFT%nhnl and Ng. The latter is obtained by the
replacements Cr — N./2 and C4 — N, in the non-n; terms and taking only the leading
contribution for large N.. This limit removes in particular all (pure) n; terms.

In the following three subsections we discuss the analytic structure of the form factors
in three important kinematical regions where the external momentum ¢? is either small,
large or close to the threshold for producing the heavy quarks on-shell. In these limits the
expressions are compact and analytic results can be reproduced in this paper. We obtain
the expansions of the full result by expanding the GPLs in the respective region. We restrict
ourselves to the choice y? = m? and refer to [22] for the general results. Subsection 3.4
contains a brief discussion on the infrared structure of the form factors and mentions several
checks on our calculation.

3.1 Static limit

After expanding the GPLs in the low-energy limit we obtain the expansion of the form
factor up to order (1 — z)%. In the following we present the results for the first two terms
for the axial-vector, scalar and pseudo-scalar cases. The results for the vector currents
can be found in refs. [10, 15] (see sections 4.2.1 and 5.2, respectively). Since the interval



q?/m? € [0, 4] is mapped to the upper semi-unit circle in the complex z plane we use z = €'
and parametrize our results as a function of ¢ which is real-valued. Our results read
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In all cases the limit ¢ — 0 exists (i.e., there are no logarithmic terms in ¢?) and all

form factors become infrared finite. The infrared divergences are present starting from the
¢? term. Note that for the vector case all quantum corrections vanish for ¢> = 0 and we
have? FY(0) = 1 whereas for all other form factors this is not the case. The static form
factors for the vector and axial-vector case have been discussed in ref. [25] up to two-loop
order and the physical interpretations have nicely been summarized. Once the complete
non-fermionic pieces and all singlet contributions are available the analysis of ref. [25] can
be extended to three loops. Three-loop corrections to F3 (0) and F{*(0) have been computed
in [26] (see [27] for the QED limit) and [28], respectively.

3.2 High-energy limit

In the high-energy limit, i.e. for x — 0 it is convenient to introduce

F§,(n) _ Z fli,r(n,k)wk 7 (37)
k>0

where we have computed seven expansion terms, i.e., up to O(x°), for all six scalar form
factors. Note that the leading terms are identical both for F} and F}' and for F*° and
FP since in this limit the quark masses in the numerator can be neglected and ~s is anti-
commuted through an even number of « matrices to one end of the fermion string. As a

a,(n,0) 0)

consequence we also have that f, = 0 since f, (0 _ (). We illustrate the structure of

the analytic expressions by showing the terms of order z° and x! which are given by
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2This provides an implicit check of the three-loop corrections to Z9° computed in refs. [23, 24].
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Results for f vlgzk)

i can be found in eq. (13) of ref. [10] and eq. (16) of ref. [15].

In general one has two powers of [, for each loop-order. At one and two loops we
indeed observe (2 and [% terms, respectively. However, for the shown colour structures we
have at three-loop order at most [2 terms in the above expressions. Note that for the vector
form factor one has IS terms in the N3 term of fi’l(i’o) [29, 30]. For a dedicated analysis
of the leading logarithmically enhanced terms in power-suppressed contributions we refer

to [31-33].
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3.3 Threshold expansion

In the threshold region we can use our expressions for the form factors to obtain physical
results for decay rates and productions cross sections since the corresponding real radiation
is suppressed by a relative order 2. In the expressions we present in this subsection, the
factor m in the definition of the scalar and pseudo-scalar currents, see eq. (1.1), has been
transformed from the MS to the on-shell scheme which allows for a more straightforward
comparison with results present in the literature.

In refs. [7, 10] the vector form factors F} and Fj have been used to obtain results
for the cross section o(ete™ — QQ) in the limit of small quark velocities. In principle
these results can be extended in order to incorporate the Z-boson contribution with vector
and axial-vector couplings. We prefer to represent the results in a slightly different way,
namely as the decay rate of a (hypotetical) boson with either vector, axial-vector, scalar
or pseudo-scalar couplings which is related to the form factors via

(1 —B%)FY + Fé’\2>

R’ =p (ny + F3)* +

2(1-p%)
R* = 3|,
RS = B3|F52,
RP = B|FP|?, (3.12)

RY are defined such that the exact result at tree level reads

RO _ 38 <1 _ 52) ’

2 3

RO — g3

RO — 3

ROP =3, (3.13)

Note that the R% enter physical quantities as building blocks. For example, we have

olete”™ = QQ) =ooR" + ...,

_ 3G My M?
_ 3GpMM?2
T(A—QQ) = 127 CQpp (3.14)

4V/2m o

where H and A are scalar and pseudo-scalar Higgs bosons with masses My and M4,
respectively, and the ellipses indicate quantum corrections from real radiation. In eq. (3.14)
Gr is Fermi’s constant, Mg is the heavy quark on-shell mass, o9 = 47ra2Q2Q/(33), « is
the fine structure constant and )¢ is the electric charge of the quark ). The decay rates
in (3.14) can be obtained from an effective Lagrangian of the form

1
Lo =~ ("H +7A) (3.15)

where v = 1/1/v/2GF is the vacuum expectation value.
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We cast R® in the form

‘ 4
i>1

with K, =3/2, K, = Ky = K, =1, n, = n, = 1 and nq = ny = 3. Then the threshold
expansion of A9 starts at 1/3° and the leading term of the real radiation contribution to
A9 g of order 3%, For the three-loop fermionic results we can provide results including

3. In the following we only show results for § = a, s and p since the expressions for the vec-

tor current can be found in refs. [7, 10]. The one- and two-loop results for A9 are given by

AL = o 2;—8+27r2/3]
AW = o 2; —4+27r2/3]
AP = Cp 22—12+27r25] (3.17)
[ 1 Art\ 1672 40 gt An?
A@a — o2 ap? 4+ 22| = — 1210g(2B) — 54C(3) + — +
140 76 19472 44 2
2 C4C log(2
—|—3+37T 2) + AFﬁ< 9 3 Og(ﬁ))
16 , 17872 404 56 ,
— —72log(2B) — 36¢(3) + —— — — — 72
+< 37 0g(28) ¢(3) + 9 5 57 2)]
1/({16 ]88 72 112 640 6472
CrT = =x%1og(2 | +CpT —
+FFnlB<37r 0g(2p8) — ) 5 +FFnh<9 9>7
47t 872 64 87t 6272
AP — 2, Ap 4 ) - = — —72log(28) — 88¢(3
6 +3 ﬁ+ 37rog(6) ¢(3) 5 3
—|—14—|—167T212> + CyCr (1947T 44 2log(2ﬂ)>
s\ 9 3
2
- (— 16 log(28) — 40¢(3) + sem 98 167r212>]
3 3 9
1/(16 8872 40 968 3272
T [ =7%1og(2 T
+Cr Fnlﬁ<37T 0g(28) — ) 9 + CF Fnh<9 3 >>
NG 4” EC Ny (PSR (28) — 144¢(3) st lnt
B2 3 08 3 3

+94 + 3277212)

+ CaCr

6272 44 2
5( o ~ 3" log(2ﬁ)>
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3
1/16 4072 8

For the C% /3% and the {C4Cp, CrTrn;}/B terms of A0 we find agreement with ref. [34].
At three-loop order we have

+ (— 1672 log(26) — 96 (3) + ur’ 33—4 - 327r2l2>]

344 3272
+ CplTrny + CrTrny (3 - ;) . (3.18)

2 4
A = N; [ﬁ3 52 < o™ log(20) 3 log(2p) 3 + o
35672 484 4 4088 14572¢(3)
+ 9 ) + ﬁ( 5 log?(28) — 67 log(2) — T log(28) — —

+ C%TFTL[

4 27 162

6 4 2
65374 16181
T LI T —37r412>

/;2 (%4#4 log(25)

64 , 12872¢(3)  3527w* 64072 1 80 ,
—7?log(2 — — —| = =7 log(2
+ 37 og(2p) + 3 o 9 +B 37 0g(2p)

45472 8000 320 28
+3202¢(3) + 9” ) + ( 5 o 5 log?(26) + —-mtlog(26)
6704 , 256m2¢(3)  10780¢(3)  96837* 1210071'2 1912
—— 7% log(2 — —
T les(20) + =3 9 405 T
1000l 112 o 2296
27 27 2 a7 © 7
1 704 7696 11272¢(3) 3527t
Trng | = | — ——72log?(2 ——n?log(2B) — —

+ CACrTEmy ﬁ( 9 " log®(28) + T 0g(28) 3 o7
2034872 6016a, 128 5. 2576 1204¢(3)
— — — —n?log?(2 7% log(2 —
g1 >+< 9 7 log™(28) + 277rog(/3’)+ 9

12747% 891272 35792 75215 416 2
+ - + - + l2
81 81 81 27 27
3128 , 5 o 128 1408 647
— ) CpT2n?| = ——n%log?(28) — ——n*log(2
+277T2>+FF7115<97T (5) 27” g(28) + o7

N 387272 L[ _ 4160 25672 B
81 81 27 81 81

2 2 9
. Cﬂ%nm( 5607 6560)7

. A 44 44 8872((3
A(S)’ o N3 [ﬁg + @ < o 67‘-4 10g(2,3) — §7T2 10g(26) — 3()
17671'4 37471'2 484 2 4484
+ o + 5 ) + 5( 9 log?(283) — 87t log(28) — o7 T ?log(28)

3 4 54 81

10472¢(3 6 13757% 1143472
_LC() m + 4 _|_ m —47T4l2
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+ C%Tpny

;(694#‘1 (26) + S log(29)

12872¢(3)  352w*  640m2 1
+ - - 5 9

16 , 5 20272
5 o 9 + ( 37 log(23) + 327°¢(3) )

4 19 12 4
" (6 00@4 . 577_‘_2 10g2(2/8) + ?87-‘-4 10g(25) + %7’[‘2 10g(2ﬂ)

9
25672¢(3)  3308¢(3) 687* 2490472 1820  800I3
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3 3 405 81 9 27
64 55 , 152 , 1 04 ,
—m?l 7l CACrTrny | = log?(2
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7696 2 11272¢(3)  3527% 2034872 5888a4
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+ 57 7 108(20) 3 27 TR 9
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788 23072¢(3) 7% 14837*  1942r2
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- ?7‘(2 log?(26) + 295279 log(25) + 668??(3) + 182§7T4 - 39257%2 + 8322

- 163%1 - %w%; + 12;67r212>1

+ CpTEn} ;(1;879 log(283) — %Wz log(28) + 6;17;4

+ 80;):2) + (— % - 122ﬂ2> + CpT2nmy (8926:2 - 9;§8> . (3.19)

At one- and two-loop order the leading terms are proportional to Cr/f and (Cr/3)?, re-
spectively. At three-loop order we observe 1/3% terms only in the axial-vector and scalar
case but not for the vector and pseudo-scalar currents. Our findings are in agreement with
considerations in the non-relativistic limit which can be used to predict the leading terms of
order (as/B)". In fact, in this limit A° can be written as a combination of the Sommerfeld
factor and a factor taking into account P-wave scattering [35-37] (see also [34]):

2
A= Y 1+P L) 4 .
1—e—y<+ 472 +
@ 272 ag\2 C% [ 4xt as\3 C3

After the second equality sign y = Cpasm/3 has been used and P° is zero for S-wave and
unity for P-wave processes, i.e., we have PV = PP = 0 and P® = P® = 1. The ellipses in
the above equations represent subleading terms.

3.4 TI'cusp and checks

An interesting feature of the (renormalized) form factors is the presence of infrared poles
that can be described by a universal function, the cusp anomalous dimension I'ygp [38-40],
which is independent of the external current. This means that we can write

F=ZF, (3.21)

where F is any of our (six) scalar form factors and Ff is the corresponding (ultraviolet and
intrared) finite version. The factor Z, which is defined in the MS scheme and thus only
contains poles in €, absorbs the infrared divergences and F/ is finite. The single € pole of
the n-loop corrections of Z contains the n-loop expression of I'cysp. Using the notation

' aﬁ"l) ‘
FCUSP = Z Fgzu)sp T ’

i>1

() \ ¢
N Zi’j Qg
Z_1+Z€j< - > : (3.22)

1<j<i
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where agnl) is the strong coupling constant with decoupled heavy quark, we have

1

z1,1 = _§F81)sp7
1
Z21 = _EF((:?l)sp7
1
23,1 = —6F£i)sp (323)

We have used eq. (3.21) for the four form factors FY, F{', F* and FP, and have deter-
mined the corresponding Z factor to three loops. This requires to use decoupling relations
for a5 up to two loops (including higher order € terms [26]) since the calculation of the form
factors described above has been peformed in the full theory with as = aé”f ), Afterwards,
one-, two- and three-loop corrections to I'cys, are extracted with the help of eq. (3.23)
where at three loops we have to restrict ourselves to the complete n; and the Nc?’ terms of
the remainder. For all four currents we have obtained the same result for ngu)sp (i=1,2,3)
which constitutes a strong cross check of our calculations. Furthermore, our results agree
with refs. [38, 40-42] where dedicated calculations of I'cusp have been performed.

Besides the correct infrared structure there are several other checks which our analytic

expressions fulfill:

e As mentioned in section 3.2 we observe that the results for the vector (scalar) and
axial-vector (pseudo-scalar) form factors agree in the high-energy limit.

e We have furthermore performed the calculation for general gauge parameter which
drops out for the renormalized form factors. Note that the cancellation is non-trivial
and only occurs in the proper interplay between bare three-loop expression and wave
function and quark mass counterterm contributions.

e We have also numerically cross checked all three-loop master integrals up to the finite
term in € using the program FIESTA [43].

e As a further check, our results fulfill the axial Ward identity which is given by

¢"T% = 2iT?. (3.24)
Using eq. (1.2) this leads to
¢
Fi 4 5P = F, (3.25)

which is satisfied by our explicit results up to three loops after transforming the mass
parameter m in eq. (1.1) into the on-shell scheme.
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4 Numerical results

In this section we evaluate both the exact result and the approximations in the various
limits numerically. For illustration we plot for each of the six form factors the € term both
as a function of x € [~1,1] and ¢ € [0,7]. This means we cover the whole real ¢* axis.
In the plots we restrict ourselves to the real part of the form factors. Using the results
from [22] it is straightforward to obtain plots for the imaginary parts, as well.

At one- and two-loop order we plot the complete (non-singlet) results and set N, = 3,
n; = 5 and np = 1. These values are also used at three loops where the sum of the
complete n; and the N2 terms are shown. For the numerical evaluation of the GPLs we
use the program ginac [44, 45] which is straightforward for real values of x. GPLs with
complex arguments (in our case for x = €!® with ¢ € [0, 7]) are evaluated with the help of
transformation rules given in ref. [45]. Some of the GPLs involving r; require extraordinary
long run times. In some cases the results are even unstable. For this reason we generate in
a first step for each GPL, which is present in our anayltic result, a data base for ¢ € [0, 7]
and construct an interpolation function. Afterwards the numerical evaluation of the form
factors is fast and stable.

The approximations shown in the plots contain terms up to order % and (1 — z)% in
the high- and low-energy expansion, respectively. At threshold we only include terms
up to order 3% although higher order terms are available [22]. However, for the N3
term we observe a bad convegence behaviour which is the reason that we drop A* and

higher terms.

In the high-energy limit the form factors exhibit logarithmic singularities. Thus, for the
plots in the range = € [—1, 1] we subtract the leading high-energy behaviour, i.e., all terms
which are not power-suppressed by z, in order to ensure a smooth behaviour for z — 0.
Furthermore, we multiply by (1+z)* to ensure that at threshold (i.e. for = —1) the one-,
two- and three-loop expressions become zero. This leads to a numerical enhancement for
x = 1, however, also in this limit finite results are obtained. Thus, the function we use for
the plots reads

F() = (11 2)* [F<q2> ~P(@)

qQ%J . (4.1)

Our results for the six scalar form factors are shown in figures 3 and 4. The exact result
is shown as solid (black) curve and the approximations are plotted as dashed lines. Note
that in all cases the whole range = € [—1, 1] can be covered by the approximations, i.e., for
each z-value there is at least one dashed curve on top of the (black) solid line.

It is interesting to mention that some of the plots show a peculiar bump-like structure
at or close to x = 0. This is not a numerical artifact but probably related to the way the
high-energy limit is subtracted. Note that the exact results and the high-energy expansions
(red dashed curve), which is simple to evaluate numerically, perfectly agree with each other.
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Figure 3. Real part of the € term of the vector and axial-vector form factors as a function of
x. Exact results and approximations are shown as solid and dashed lines, respectively. At three-
loop order we add the complete light-fermion part for n, = 5 and the N2 contribution. Short-
(blue), medium- (red) and long- (green) dashed lines correspond to the low-energy, high-energy and
threshold approximation, respectively.

Figures 5 and 6 show the results for the one-, two- and three-loop form factors for
¢ € [0, 7] where x = €!®. For these values of x the form factors have to be real which we
checked numerically. To suppress the threshold singularities we plot (7 — ¢)*F and thus
ensure that also at three loops the plotted functions are zero at threshold, i.e. for z = 1.
One observes that the approximations agree with the exact result for ¢ < 0.5 and ¢ = 2.0
which corresponds to ¢?/m? < 0.25 and ¢*/m? > 2.8, respectively.
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Figure 4. Same as figure 3 but for the scalar and pseudo-scalar currents.

5 Conclusions

We have considered the vertex form factors induced by vector, axial-vector, scalar and
pseudo-scalar heavy quark currents, which play an important role both in the Standard
Model but also in extensions. The form factors are parametrized by six scalar functions,
which we have computed up to three-loop order. Our results are expressed in terms of GPLs
with letters {—1,0,1,71 = ¢™/3} and the argument x defined via the relation ¢?/m? =
—(1 — z)?/x. After expanding the GPLs for small and large ¢> and around the threshold
given by ¢? = 4m? we obtain compact and easy to evaluate expansions in the corresponding
kinematical regions. We have discussed the convergence properties by comparing to the
exact expressions. On the way to our three-loop result we have obtained the two-loop
form factors including order € terms. This work extends the considerations of refs. [7]
and [10] to axial-vector, scalar and pseudo-scalar currents. Obvious next steps towards the
full result are singlet contributions and the subset of Feynman diagrams containing closed
massive fermion loops. However, it can be expected that even these sub-classes show a
more involved mathematical structure and it is likely that not all pieces of the final result
can be expressed in terms of GPLs.
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Figure 5. € term of the vector and axial-vector form factors as a function of ¢. Exact results
and approximations are shown as solid and dashed lines, respectively. At three-loop order we add
the complete light-fermion part for n; = 5 and the N2 contribution. Note that for ¢ € [0, 7] the
form factors are real. Short- (blue) and long- (green) dashed lines correspond to the low-energy
and threshold approximation, respectively.

Note added. While finishing the write-up of the paper we became aware of ref. [48]
where the same form factors have been computed as in this paper. Complete agreement
has been found. We would like to thank the authors of ref. [48] for the comparison of the
results prior to publication.
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