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Abstract 

Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous 

system. It affects approximately 400.000 individuals in Europe and about 2.5 

million worldwide. Clinical symptoms of MS are highly variable and depend on 

the localization of lesions in the brain and spinal cord. Patients with chronic 

progressive neurological diseases such as MS typically show a decrease of 

physical activity as compared with healthy individuals. Approximately 75 to 80 

percent of patients with MS (PwMS) experience walking and physical activity 

impairment in early stages of the disease. Therefore, walking impairment is 

considered as a hallmark symptom as this may have a significant impact on 

different daily activities. Moreover, an indirect association between overall MS 

symptoms and physical activity was found. 

Several studies investigated the walking ability and physical activity under free-

living conditions in PwMS, as this may provide significant information to 

predict the patient’s health status. Different methods have been used for this 

purpose, including subjective approaches like self-report, questionnaires or diary 

methods. Although these methods are inexpensive and can easily be employed 

preferably in large scale studies, they are prone to error due to memory failure 

and other kind of misreporting. For many years, laboratory analysis systems 

have been considered to be the “gold standard” for physical activity and walking 

ability assessment. Nevertheless, these methods require extensive technical 

support and are unable to assess unconstrained physical activities in free-living 

situations. Thus, there is increasing interest in ambulatory assessment methods 

that provide objective measures of physical activity and gait parameters.  

Therefore, this thesis takes a different approach and investigate the usage of an 

objective monitoring system to early detect the slightly changes in disease-

related walking ability and gait abnormality using one accelerometer. Moreover, 

this work aims to classify the derived acceleration data regarding their response 

to a certain intervention and treatment. In doing so, first of all, different 

algorithms were developed to extract activity and gait parameters in time, 

frequency and time-frequency domain. Then a Home-based system was 

developed and provided to help doctors monitor the changes in the ambulatory 

physical activity of PwMS objectively. The developed system was applied in 

two different studies over long period of time (one year) to assess changes in 

physical activity and gait behavior of PwMS and to classify their response to 

medical treatment. 



 

 
 

The aim of the first study was to investigate the ability of the developed 

parameters to objectively capture the changes in motor and walking ability in 

PwMS. Moreover, the objective was to provide additional evidence from long-

term design study that support the association between changes in physical 

activity and walking ability and disease progression over time. 

The aim of the second study was to investigate the effectiveness of the 

medication treatment using the developed gait parameters and the assessment 

system developed in this work. The result of the study was compared to those 

assessed in the clinic. Comprehensive analysis of gait features in frequency and 

time-frequency domain can provide complementary information to understand 

gait patterns. Therefore, in this study, the parameters peak frequency and energy 

concentration were integrated along with time-domain parameters, such as step 

counts and walking speed. 

In case of chronic diseases, such as MS, medical benefit is the main factor to 

accept new technology. Thus, the developed system should be advantageous for 

diagnosis and therapy of MS. Moreover, it is important for the physician to be 

able to get better overview of the medical data about the disease course and 

health condition of their patients. Therefore, many critical factors regarding 

medical, technical and user specific aspects were considered in this work while 

developing the ambulatory assessment system. To assess the acceptance of the 

system a questionnaire was designed with main focus on two factors; usefulness 

and ease-of-use. The questionnaire was based on the Technology Acceptance 

Model (TAM). 

As a result, the design, validation and clinical application of Home-based 

monitoring system and algorithmic methods developed in this thesis offer the 

opportunity to comprehensively and objectively assess the pattern of behavioral 

change in physical activity and walking ability using one sensor across 

prolonged periods of time. The derived information may assist in the process of 

clinical decision making in the context of neurological rehabilitation and 

intervention (evaluation of medication or physiotherapy effects) and thus help to 

eventually improve the patients’ quality of life. 

In this work the focus was on patients with multiple sclerosis, however the 

developed and evaluated system can be adapted to other chronic diseases with 

physical activity disorders and impairment of gait. 

  



 

 
 

Zusammenfassung 
Multiple Sklerose (MS) ist eine chronisch entzündliche Erkrankung des 

zentralen Nervensystems. Sie betrifft schätzungsweise 400.000 Menschen in 

Europa und etwa 2,5 Millionen weltweit. Die klinischen Symptome der MS sind 

sehr unterschiedlich und hängen von der Lokalisation der Läsionen im Gehirn 

und Rückenmark ab. Patienten mit chronisch fortschreitenden neurologischen 

Erkrankungen wie MS zeigen üblicherweise einen Rückgang der körperlichen 

Aktivität im Vergleich zu gesunden Menschen. Circa 75 bis 80 Prozent der 

Patienten mit MS (PmMS) leiden in frühen Krankheitsstadien an Mobilitäts- und 

Geheinschränkungen, die erhebliche Auswirkungen auf die alltäglichen 

Aktivitäten haben können. Aus diesem Grund wird die Gehbeeinträchtigung als 

ein typisches Symptom der MS gesehen. Darüber hinaus weisen mehrere 

Studien einen indirekten Zusammenhang zwischen MS-Symptomen und 

körperlicher Leistungsfähigkeit auf. 

Mehrere Studien untersuchten die Gehfähigkeit und die körperliche Aktivität 

unter alltäglichen Bedingungen bei PmMS, da diese wichtige Informationen zur 

Vorhersage des Gesundheitszustandes des Patienten liefern können. Dazu 

wurden verschiedene Methoden eingesetzt, darunter subjektive Ansätze und 

Methoden wie Fragebögen oder Tagebücher. Diese Methoden eignen sich 

aufgrund der geringen Durchführungskosten bei gleichzeitig hoher Fallzahl, 

bergen aber ein Risiko für Verzerrungen der Einschätzungs- und 

Erinnerungsfähigkeit. 

Seit vielen Jahren gelten Laboranalysesysteme als „Goldstandard" für die 

Bewertung der körperlichen Aktivität und der Gehfähigkeit. Dennoch erfordern 

diese Methoden einen umfangreichen technischen Support und sind für die 

breite Anwendung im Alltag nicht geeignet. Daher besteht ein zunehmendes 

Interesse an ambulanten Bewertungsmethoden, die objektive Informationen über 

die alltägliche körperliche Aktivität und Gangparameter liefern. 

Die vorliegende Arbeit hat das Ziel, ein objektives Aktivitätsmonitoring und ein 

Mobilitätsanalysesystem zu entwickeln, das minimale Änderungen in der 

krankheitsspezifischen Gangfähigkeit und -anomalie mit einem 

Beschleunigungssensor frühzeitig erkennt. Ferner soll die Wirksamkeit einer 

bestimmten Intervention und Behandlungstherapie anhand der erfassten 

Beschleunigungsdaten nachgewiesen werden. Zunächst wurden verschiedene 

Algorithmen zur Extraktion von Aktivitäts- und Gangparametern im Zeit-, 

Frequenz- und Zeit-Frequenzbereich entwickelt. Darauf aufbauend wurde ein 



 

 
 

System zur Erfassung der Bewegungs- und Aktivitätsdaten im häuslichen 

Umfeld konzipiert und entwickelt. Das System ermöglicht den Ärzten die 

Veränderungen in dem alltäglichen Aktivitätsverhalten des Patienten objektiv zu 

erfassen und zu überwachen. Das entwickelte System wurde in zwei 

Langzeitstudien angewendet, um Veränderungen der physischen Aktivität und 

des Gangbildes bei PmMS zu messen und den Einfluss auf die medizinische 

Behandlung zu bestimmen. 

Ziel der ersten Studie war es, die entwickelten Parameter auf ihre Eignung zur 

objektiven Erfassung und Erkennung von Veränderungen der Aktivitäts- und 

Gangfähigkeiten bei PmMS zu prüfen. Es konnten evidenzbasierte Erkenntnisse 

einer Langzeitstudie gewonnen werden, die einen Zusammenhang zwischen 

Gangbild; Aktivitätsfähigkeiten und Krankheitsverschlechterung darstellten. 

Das Ziel der zweiten Studie war es, die Wirksamkeit der 

Medikamentenbehandlung unter Verwendung der entwickelten Parameter und 

des Assessment-Systems zu untersuchen. Die Studienergebnisse wurden mit 

denen aus der Klinik verglichen. Eine umfassende Analyse der 

Gangeigenschaften mithilfe der entwickelten Parameter im Zeit-, Frequenz-, und 

Zeit-Frequenzbereich bieten ergänzende Informationen zum Verständnis des 

Gangbildes. 

Bei chronischen Erkrankungen wie MS spielt der medizinische Nutzen der 

neuen Technologie eine große Rolle bei der Akzeptanz. Daher sollte das 

entwickelte System für die Diagnose und Therapie der MS von Vorteil sein und 

dafür dienen, dem Arzt einen besseren Überblick über den Krankheitsverlauf 

und den Gesundheitszustand des Patienten zu verschaffen. Aus diesem Grund 

wurden bei der Entwicklung des ambulanten Monitoringsystems Faktoren 

hinsichtlich medizinischer, technischer und anwenderspezifischer Aspekte 

berücksichtigt. Für die Akzeptanzanalyse wurde ein Fragebogen entwickelt, der 

sich auf zwei Faktoren konzentriert: Nützlichkeit und Benutzerfreundlichkeit. 

Der Fragebogen basiert auf dem „Technology Acceptance Model“ (TAM). 

In dieser Arbeit wurde ein Aktivitätsmonitoring System und Algorithmen 

entwickelt, die Möglichkeit bieten, Muster der Verhaltensänderung in der 

körperlichen Aktivität und Gehfähigkeit mit einem einzigen 

Beschleunigungssensor über längere Zeiträume objektiv zu erfassen. Die 

gewonnenen Informationen können bei der klinischen Entscheidungsfindung im 

Rahmen der neurologischen Rehabilitation und Intervention (Bewertung der 



 

 
 

Auswirkung der medikamentösen und physiologischen Therapien) helfen und so 

die Lebensqualität der Patienten verbessern. 

In dieser Arbeit lag der Fokus auf Patienten mit multipler Sklerose, jedoch 

können das entwickelte und evaluierte System und Parameter an andere 

chronische Erkrankungen mit Aktivitäts- und Geheinschränkungen angepasst 

werden. 
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1 Introduction 
Gait disorders and physical inactivity are common in patient with chronic 

diseases such as Multiple sclerosis (MS). Gait impairments are hallmark 

symptoms as they may have significant impact on patients’ quality of life. 

Assessment of physical intensity and gait parameters are of key importance for 

choosing the suitable intervention for the patients and help clinicians with just-

in-time treatment adjustment. Over the last decades, multiple systems were 

applied to measure physical activity and walking ability of patients with motor 

and gait disorders. For many years, laboratory and clinical measures of physical 

activity and gait parameters have been considered as a gold standard. 

Nevertheless, these methods require extensive technical support and unable to 

assess unconstrained motor and gait parameters in everyday life situation. 

Therefore, in clinical studies and for the aim of continuous monitoring of 

patient’s mobility situation, increased interest in ambulatory assessment 

methods has been expressed. These methods provide objective measures of 

activity and walking ability under free-living condition [1]. Portable devices and 

telemedicine systems can permit this assessment in free-living setting over 

prolonged periods without inducing an excessive interference with natural daily 

activity. 

Over the past several decades, telemedicine has constituted an important 

breakthrough in healthcare. The term telemedicine refers to the usage of medical 

information exchanges from one site to another via telecommunication 

technology for medical diagnosis, treatment and patient care. Over forty years 

ago, telemedicine grew rapidly and its use has been widely spread. That is 

because the usage of telemedicine system can improve not only the access to the 

patients’ information, but it also improves access in secondary care (i.e. access 

both between and within hospitals). Furthermore, telemedicine helped toward 

the transfer of healthcare from in-hospital to in-home healthcare. Different 

factors have contributed to the transform including the nature of the disease, 

demographic changes, increased healthcare complex equipment and amount of 

rehabilitation services, increased focus on quality of life and increased demand 

for healthcare cost containment, to name a few. 

Transferring the healthcare from clinic setting to patient’s home increases the 

need for remote monitoring and treatment. In the case of patients with chronic 

disease, such as MS, the information flow between patient and professional staff 

becomes complex and challenging. Telemedicine system and IT applications can 
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efficiently improve the information flow and the relationship between patients 

and healthcare professionals. 

Telemedicine can be useful when the system met the following conditions: easy 

to be used; involves the patients in the management of their disease; and has a 

direct impact on the fundamental aspects of patient management [2]. 

Furthermore, in the long-term monitoring, telemedicine could considerably 

reduce the cost of healthcare and increase efficiency through better management 

of chronic diseases. The usage of telemedicine systems to monitor patients under 

free-living conditions over longer period of time can help physicians to track 

disease progression. Early detection of disease state and health condition can 

help to earlier intervention and therapy adjustment [3]. Furthermore, 

telemedicine system can provide a tool to reduce medication and diagnostic 

errors and increase efficiency during decision making and physician can use 

these systems to monitor patient’s response to a certain treatment [4] 

This work illustrates the potential of using telemedicine system to objectively 

monitor comprehensive motor and gait parameters derived from one triaxial 

accelerometer in patient with multiple sclerosis (PwMS). The overall aim of the 

work was to apply IT for objectively data collections, processing and 

presentation of disease status, health condition and treatment response in PwMS. 

The main focus was on developing the methods and system for data processing 

and on the choice of useful motor and walking parameters. The data used for the 

development and evaluation of the methods consist of repeated measures, which 

were collected at different times over a long period of time to support the 

process of clinical decision making in the context of neurological rehabilitation 

and intervention. 

1.1 Physical Activity and Gait in PwMS – Background and 

Motivation 

MS is an inflammatory demyelinating and neurodegenerative disease of the 

central nervous system (CNS). MS affects approximately 2.5 million individuals 

worldwide, of which 400.000 are in Europe and most commonly young adults 

(20-40 years) [5]. The following figure (Figure 1-1) shows global prevalence of 

MS.  
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Figure 1-1. Global prevalence of Multiple Sclerosis [6]  

MS is resulting in demyelination of the axons which leads to a loss of 

conduction along certain neural pathways. The reported cortical lesions in 

frontal brain areas contribute to cognitive dysfunctions and in particular, to 

motor deficits in MS. Thus, it is not surprising that impaired walking and 

physical inactivity are one of the most commonly reported symptoms in MS; 

approximately 85% of PwMS experience walking disability and motor 

impairment [7]. A meta-analysis suggested that PwMS engage in less physical 

activity than healthy samples and typically only a small proportion of PwMS 

achieves the amount of daily moderate-to-vigorous physical activity intensity 

(MVPA) that has been recommended by health guidelines [8]. Degenerative 

processes may also result in gait impairment which is considered as key 

components of disability in PwMS. Thus, physical inactivity and gait disability 

are considered as a key problem in PwMS as they may incur a loss of personal 

independence, withdrawal from social life and finally decline on quality of life 

[9].  

The state of the art in the clinical setting is to use the clinical rating scales, such 

as Expanded Disability Status Scales (EDSS). It includes items that score the 

degree of neurological impairment in different functional systems yielding total 

scores that range from 0 to 10 [10]. However, the EDSS has been criticized due 

to methodological problems associated with predicting the clinical outcome in 
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MS, such as using an ordinal scale. Furthermore, EDSS is shown to be 

insensitive to the clinical change which could affect the accuracy of the 

diagnosis, since it is mainly based on the observations and judgments by 

physicians [11]. 

Effective symptom management of PwMS relies on timely diagnosis and 

classification of disease course. Therefore, early diagnose and in-time treatment 

optimizations are critical to prevent irreversible neurological deficits and reduce 

the rate of acute neurological relapses [3]. Moreover, observer-independent 

measures before and after treatment intervention can cover more aspects of the 

outcome than the established subjective clinical scales.  

Severity of the overall symptoms and the level of neurological impairment have 

been reported to be significantly correlated with physical activity behavior and 

walking ability [12]. Moreover, clinical scales that assess the health status of 

PwMS typically include items pertaining to motor activity. For example, 

walking ability is a central element of the EDSS [10]. Therefore, physical 

activity and gait analysis has become a widely used clinical tool to assess 

ongoing clinical status of the patients and enable accurate diagnosis. 

1.2 Objective of this work 

Physical activity behavioral and gait performance in PwMS have typically been 

assessed by questionnaires or diary methods. Although these methods are 

inexpensive and can easily be employed preferably in large scale studies, they 

rely on correct memory retrieval and an accurate estimation of physical activity. 

Clinical tests such as 6-Minute Walk Test and the Timed 25-Foot Walk Test, 

have frequently been employed to assess physical function. However, these 

movement probes are also limited to the clinical setting and have a poor 

ecological or real-life validity [13].  

Increased recognition has been given to the importance of physical and walking 

limitations in everyday life of PwMS. Therefore, a regular and objective 

assessment of physical and motor ability has been considered to be a very useful 

tool to monitor clinical disease activity and assess the efficacy of rehabilitation 

therapies.  

For many years, laboratory analysis systems have been considered to be the 

“gold standard” for physical activity and walking ability assessment. 

Nevertheless, these methods require extensive technical support and are unable 

to assess unconstrained physical activities in free-living situations. Therefore, 
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there is increasing interest in ambulatory assessment methods that provide 

objective measures of physical activity and gait parameters.  

Various types of wearable sensors and different positions have been used and 

described in the literature, where accelerometers showed to be the most 

preferable in term of accuracy, cost and comfortability. Nevertheless, studies 

applied accelerometer either used multiple sensors attached to different part of 

the body, or they used it in combination with other sensors. The studies used 

only one accelerometer, are usually expressed the data as “activity counts”. This 

value depends on one single regression model, which is not applicable on all 

typed of activities [14]. More importantly, most of the accelerometers only 

provide basics gait parameters, such as steps count, walking speed but not gait 

abnormality (e.g. asymmetry) unless in combination with other types of WS.  

Therefore, further research is needed in term of simplified procedures for 

supporting the diagnosis and assessment of health condition in PwMS under 

free-living conditions. There is a need for an objective monitoring system with 

reduced number of sensors that is able to early detect the disease-related changes 

of activity and gait. Furthermore, this system should be accepted by patients and 

physicians for everyday use. 

Based on the research needs previously raised, this work aims to realize and 

develop a method that allows a complex and reliable assessment of physical 

activity and gait disorder in PwMS under free-living conditions. Based on one 

accelerometer this method should be able to assess comprehensive number of 

activity and gait parameters to help physicians in monitoring changes in motor 

ability, thus allowing an early treatment adjustment and optimization. 

Furthermore, the developed method should provide a valuable tool to evaluate 

the effectiveness of treatment intervention. The focus of this work is the 

objectively detection of the slightly changes in disease-related walking ability 

and gait abnormality using daily acceleration data. Moreover, this work aims to 

classify the derived data regarding their response to a certain intervention and 

treatment using time-domain and frequency domain methods. 

In order to allow meaningful interpretation of the results and insure the 

reliability of the assessed data, physical activity and gait parameters should be 

observed across prolonged period of time.  Therefore, this work also objects to 

develop a prototypical Home-based assessment system, which should enable the 

possibility to integrate, manage and analyze the assessed data. This system 

should be user-friendly, easy to use and provide comprehensive overview of 
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patients on each clinical stage. Moreover, it should be; a) applied in free-living 

environment of the patients, b) integrated in the clinical setting to support 

clinicians by the medical decision. Therefore, different technical and usability 

aspects as well as patients and physicians’ requirements were considered for the 

development of the end-user’s software. 

The hypotheses of this work are: 

H1: It is possible to use one wearable sensor to analyze comprehensive physical 

activity and gait parameters in order to capture the slightly changes of these 

parameters in absence of clinical measures.  

H2: Accelerometer can be used to significantly differ between different 

impairment levels. 

H3: Accelerometer can provide objective useful tool to monitor and evaluate the 

intervention effects during rehabilitation process. 

H4: The developed system is adapted for long-term monitoring and qualitative 

and quantitative assessment of motor abnormalities in PwMS during their daily 

activities with high acceptance rate. 

The research approach of the developed methods is illustrated in Figure 1-2. At 

the lowest level the system should assess comprehensive number of gait 

parameters under free-living conditions to reach the capacity of the laboratory 

systems. In neurological healthcare environments, the extracted parameters 

should provide an insight into mobility and walking behavior of PwMS. The 

assessment should be done using one accelerometer and the measurements 

should be performed repeatedly in the patients’ homes.  This could enable the 

detection of gait abnormalities, which may indicate the onset of diseases 

progression and capturing the slightly changes in mobility behavior in absence 

of clinical disability.  In the next stage, the data-driven analysis methods should 

be applied to analysis the relationship between the extracted parameters as 

independent measures and the dependent outcome which is obtained by the 

clinical ratings. Finally, the extracted parameters should be evaluated for its 

reliability and sensitivity. Reliability refers to the extent to which the parameters 

are free from measurement. Moreover, the extracted parameters should be able 

to detect the changes over time, which result from treatment intervention as well 

as from natural disease progression. 
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Figure 1-2: Approaches to methods development and evaluation 

Gait acceleration is a powerful tool to assess human activity and capture 

deterioration in gait characteristics. Therefore, it can be a very important source 

of clinical relevant information and a helpful tool in decision making. Gait 

analysis system available nowadays usually includes kinematics and kinetics 

information. However, obtaining this information is complex, time demanding 

and intrusively. Other systems used several wearable sensors to extract spatio-

temporal parameters (e.g. swing and stance phases, steps).  

This work presents new methods to extract different gait parameters to reach the 

capacity of the laboratory systems with only one wearable sensor. In comparison 

to the However, not only time domain parameters were extracted, but the 

novelty of this work is its comprehensive analysis of multiple gait features in 

time, frequency and time-frequency domain in PwMS under free-living 

conditions. For the first time, it will be possible to objectively obtain the slightly 

changes in physical and gait parameters such system was applied over long 

period of time (one year) to assess changes in physical and gait behaviour of 

PwMS and to classify their response to medical treatment. 

1.3 Outline of this work 

This work is organized in 8 chapters. Chapter 0 (current chapter) introduces the 

topic of this thesis and outlines the rest of the work. Motivations of the research 

work are explained with the objectives of the thesis. Chapter 2 presents the basic 

concepts of the physiological of human physical activity and gait, as well as the 

general backgrounds of the disease multiple sclerosis. Chapter 3 covers the 

theoretical background of modern sensor technologies, as well as basic concepts 

of signal processing and analyzing. Chapter 4 presents the state of the art in the 
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field of physical activity and gait parameters assessment tools, including a short 

description of the common used clinical reference methods, overview about the 

various laboratory methods and a review of methods based on wearable 

technology. This chapter summarizes the advantages and disadvantages of the 

available methods regarding their usability for the purpose of this work. 

Chapter 5 covers the conception of the developed system, where the hardware 

and the software requirements are presented. This chapter presents the new 

algorithms developed to assess gait parameters using one accelerometer, 

throughout temporal and frequency parameters detection. Developing of these 

parameters is essential tasks for the realization of the system to assess 

comprehensive gait parameters in free-living environment. Furthermore, the 

chapter presents the development of the software components of the monitoring 

systems. Chapter 6 and Chapter 7 presents two different studies where the 

systems was applied and evaluated for assessing changes in physical activity and 

gait parameters, determination of the stability of the extracted parameters on 

free-living environments and finally to evaluate the systems as a clinical tool to 

measure and monitor the efficiency of the therapy. Chapter 8 summarizes the 

results finalizes the work with a conclusion and an outlook for future work. 
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2 Basic Concepts – Human physiology and Multiple 

sclerosis 
In this chapter, the most important concepts of physical activity, human gait and 

the disease of multiple sclerosis will be explained.  At first, the physiological 

background of human physical activity and gait will be described. Then, the 

basic theoretical understanding of the disease and the physical and gait 

impairment in patient with multiple sclerosis will be presented. 

2.1 Human Physical Activity 

Physical activity is defined as any movement or force produced by skeletal 

muscles and results an increase in energy expenditure above the rest [15]. 

Physical activity can be categorized in various ways. The simplest 

categorization includes the physical activity that occurs while resting, at work 

and at leisure [15]. However, leisure physical activity requires voluntary 

muscular work and can be divided into subcategories, such as sport, household, 

conditioning exercises (e.g. to improve fitness, enhance mental well-being, 

promote health). 

The description of physical activity is usually done by the following parameter 

[16]: 

- Type of the activity (walking, jogging…etc) 

- Duration of the activity in minutes or hours per day or movement unit. 

- Frequency of occurrence per day, week or months. 

- Intensity; normally classified into mild, moderate and vigorous. The 

intensity is often quantified in metabolic equivalent (MET). One MET is 

equivalent to the energy consumption at rest [17]. 

2.1.1 Anatomy of Human movement 

The purpose of this section is to present a brief overview of the anatomical 

principles that apply to movement in exercise and activity.  First of all, the 

planes and the axes of the movement will be presented. The anatomy and the 

function of the human skeleton are also discussed. Detailed information can be 

found in [18,19]. 

The movement of the human body joints takes place about a rotational line. This 

line is the rotation axis and is perpendicular to the plane in which the movement 

occurs. Figure 2-1 shows the three different planes of the human body, i.e. 
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sagittal, frontal and vertical. The Sagittal plane divides the body into left and 

right parts, whereas the frontal plane divided the body into anterior and posterior 

parts. The vertical plane divides the body into superior and inferior. The general 

movements of the body are described by defined terms. Most of these terms are 

treated in pairs. 

Flexion and extension describe movements that affect the angle between two 

parts of the body. Flexion is a bending movement, in which the angel is 

decreased, such as bending the elbow, sitting down, moving the trunk forward 

and backward.  When the angle between body parts increases the term 

“extension” is used. Thus, the extension describes the movement in the posterior 

direction. 

Abduction and adduction are sideways movements that refer to the motion in 

the frontal plane and describe the movement away from or toward the body 

center. The center of the body is defined as the mid-sagittal plane. Abduction is 

the motion that moves away from the midline of the body, whereas adduction 

refers to the movement toward the midline. 

 

Figure 2-1. Planes of the human body movement ([18] modified) 

Elevation and depression describe the movement above and below the 

horizontal. They refer to the motion in the superior and inferior direction, 

respectively. Other movement such as rotation refers to the rotation towards or 

away from the center of the body.  
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Human skeletal system: The human skeletal system consists of 206 bones, of 

which 177 involve in voluntary movement. It consists of bones, membranes that 

line the bones and cartilage. These bones include connective tissue, nervous 

tissue and muscle and epithelial tissues. The skeleton shown in Figure 2-2 is 

divided into axial and appendicular skeleton. The former is mainly protective, 

whereas the latter is involved in locomotion. Axial skeleton includes skull, 

vertebrae, ribs, lower jaw, sternum, sacrum and coccyx. The appendicular 

skeleton is comprised of pelvis gridle, shoulder gridle and upper and lower 

extremities.  

 

Figure 2-2. Human skeletal system ([19] modified) 

One of the most important functions of the skeletal system is to protect soft 

organs from injury, such as heart and lungs. Furthermore, it provides a 

supportive framework for the attachment of muscles and other tissues and 

enables body movements. Bones are considered to be minerals storage, such as 

calcium and phosphorus which are essential for different cellular activities. 

Moreover, the adipose cells of the yellow marrow store minerals and lipids 

(fats). Thus, the skeletal system serves as energy reservoir. 



Basic Concepts – Human physiology and Multiple sclerosis 

15 
 

The bones of the skeletal system [19] can be classified according to their shape, 

size, structure and functional requirements into: 

- Long bones: They are bones that are longer than they are wide. They exist 

mostly in the appendicular skeleton and are responsible for weight-

bearing and movement. They consist of a long shaft with two bulky ends 

or extremities. They are primarily compact bone but may have a large 

amount of spongy bone at the ends or extremities. Examples of long 

bones are the humerus, radius and femur.  

- Short bones: These bones are small, chunky and irregular in shape with 

vertical and horizontal dimensions approximately equal. They consist of 

thin layer of compact bone with relatively large amount of bone marrow. 

Bones of the hand, foot and tarsal are examples of short bones. 

- Flat bones: These bones are thin, strong, flattened and usually curved. 

Their main function is to protect the vital organs and provide a base for 

muscular attachment. Sternum, skull, ribs and hip bones are classified as 

flat bones. In adults, flat bones are also responsible for producing blood 

cells. 

- Irregular bones: Bones with non-uniform shape are classified as irregular 

bones. They are mainly spongy and covered with a thin layer of compact 

bone. These bones include vertebrae, sacrum and ilium. 

- Sesamoid bones: Patella is an important example of the bones from this 

category. They usually represent a point of attachment for tendons and 

ligaments. 

Human skeletal muscle: Muscles are considered to be the powerhouse of the 

body movements. They convert chemical energy into mechanical work and heat. 

Skeletal muscle makes up approximately 40-50% of an adult total body mass, 

enabling the body to control motor, maintain posture and store energy. Figure 

2-3 illustrates the main skeletal muscles. Each skeletal muscle may be made up 

of hundreds of fibers (or muscle cells) lying parallel to another and bundled 

together by connective tissue. There are three different layers of connective 

tissues. Epimysium separates the muscle from its neighbors and surrounding 

tissues. The surrounding tissue or perimysium surrounds the bundled fibers. The 

third layer of the connective tissue called endomysium. This layer surrounds 

each individual muscle cells. Skeletal muscles are voluntary muscles and they 

are supplied and controlled by blood vessels and nerves of the central nervous 

system, respectively. Each nerve impulse causes all the fibers to contract fully 
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and simultaneously. Each nerve is accompanied with an artery and at least one 

vein. These blood vessels are responsible for supplying the skeletal muscles with 

oxygen and nutrients and for carrying wastes out. 

 

 

Figure 2-3. Main skeletal muscles - front view (a) and back view (b)( 

[20]simplified) 

The body contains three types of muscle tissues. Their shape, location and 

responsibilities are summarized in the following table (Table 2-1). 

Table 2-1. Type of body muscles 

Type Description 

Cardiac 

muscles 

• Rectangular in shape 

• Involuntary, striated and rhythmical muscles 

• Found in the walls of heart 

• Under control of the autonomic nervous system 

• Propel blood into heart and through blood vessels 
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Skeletal 

muscles 

• Fibers are the basic unit 

• Voluntary, striated muscles 

• Usually attached to the skeleton 

• Controlled by peripheral parts of the central nervous system 

• Responsible for body movement 

Smooth 

muscles 

• Spindle-shaped 

• Involuntary, non-striated, slow and rhythmical muscles 

• Found in the walls of the hollow internal organs, e.g. veins 

and blood vessels 

• Under control of the autonomic nervous system 

 

The structural classification of the muscles and their attachment to the skeletal 

system and the movement they cause can be found in different physiology and 

anatomy books. For example [19,20]. 

2.1.1.1 Nervous System 

The nervous system is made up to three types of organs: the brain, the spinal 

cord and nerves. The brain and the spinal cord are along the midline of the body; 

therefore, they are referred to as a central nervous system (CNS). The peripheral 

portions of the nerves system extend from the central nervous system to the 

peripheral organs such as muscles and glands. These nerves are referred to as 

peripheral nerves system (PNS). The major division of the nervous system (i.e. 

CNS and PNS) and their subdivision are shown in the following Figure 2-4. 
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Figure 2-4. Major divisions of the nervous system and their subdivisions ([21] 

edited) 

The nervous system is responsible for communicate, control and regulate the 

action and reaction of the body in response to the environment stimulus. It 

controls directly the glands and the voluntary movements of the skeletal 

muscles. Moreover, the nervous system regulates indirectly the other parts of the 

body by adjusting, for example, the amounts of the hormones produced by some 

glands. 

Neurons are the core units of the nervous system. Each neuron consists of cell 

body (soma), one or more dendrite and a single axon (Figure 2-5). The neurons, 

or nerve cells, conducting the impulses sent by the brain to a certain part of the 

body (e.g. muscles, glands), and sending messages back to the brain. 

Functionally, neurons are divided into three categories according to the direction 

in which they transmit impulses: Sensory neurons, motor neurons and 

association neurons. Sensory neurons are the nerve cells that transmit impulses 

from body organ to the CNS, whereas motor neurons carry impulses in the 

opposite direction, i.e. from the CNS to the effector organs. The third type of 

neurons called interneuron or association neurons. They are located in the 

entirely within the CNS forming the connection between sensor and motor 

neurons. 
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Figure 2-5. Structure of a normal neuron [22] 

In relation to physical activity, the motor body functions are controlled by spinal 

cord and brain. The spinal cord harmonized muscle contractions, whereas the 

brain triggers action and reaction signals over the spinal cord. Understanding 

these circuits and the relation between movement and its central control (i.e. the 

nervous system) is important to be able to understand both normal behavior and 

the causes of abnormal activity behavior in various neurological diseases, such 

as multiple sclerosis and Parkinson’s disease. The lower motor neurons in the 

spinal cord and brainstem are considered as the primary motor neuron. They 

initiate all movements of the skeletal muscle by innervating the fibers within 

each single muscle. The neurons innervating the same muscle are grouped 

together and form a motor neuron pool. The electrophysiological properties of 

an individual motor neuron are appropriately matched to the contractile 

properties of the fibers it innervates. The assembly of the motor neuron and the 

fibers it innervates called motor unit. Figure 2-6 illustrates the distinct and 

overlapped neural subsystems responsible for the control of movements. 
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Figure 2-6. Interaction of neural structures involved in the control of the 

movement ([22] modified) 

Local circuit neurons and the lower motor neurons constitute the first 

subsystems. The neurons of the lower motor neurons are located in the spinal 

cord and brainstem. They extend their axons out of the spinal cord and 

brainstem to innervate the muscle fiber of the body and head, respectively. Both 

reflexive and voluntary movements are eventually transmitted to the muscles by 

the activation of the lower motor neurons. Lower motor neurons for both head 

and body are controlled by the upper motor neurons. The neurons of the upper 

motor neurons are located in the brainstem or cerebral cortex and their axons 

pass down directly to the synapse of the local circuit neurons or lower motor 

neurons. Basal ganglia and cerebellum subsystems are complex circuits which 

are responsible for controlling and regulating the activity of the upper motor 

neurons. 

Further information with more details about motor neurons types, the activity 

and responsibilities of the neural structures involved in the control of movement 

can be found in [21,22]. 

2.2 Human Gait 

Locomotion is the process by which the human move from one point to another. 

It consists of basic events; starting, stopping, changing direction and speed. 

Human locomotion is either voluntary or automated motion, and it is controlled 
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and regulated by feedforward and feedback [23]. Walking is considered as one 

of the most basic voluntary human movement. Its messages are initiated by the 

motor and premotor cortex and regulated by brainstem and cerebellum (section 

2.1.1.1). This complex coordination between different human systems and body 

parts results into rhythmic gait. 

The ability to stand and walk normally require multiple inputs from different 

systems, such as visual, vestibular, motor, sensory. Therefore, balance and gait 

require healthy brain, spinal cord and sensory system. Normal gait refers to the 

natural and general human walking parameters, whereas, pathological gait refers 

to abnormal gait affected by factors, such as age, pathology of skeletal muscle or 

neurological disease [24]. Understanding and analysis of gait has been 

considered to be an important aspect of assessment, diagnosis of walking 

disorder in neurological diseases, such as multiple sclerosis.  

Gait is a cyclical movement that possesses very rhythmical and periodical 

events. These repeatable events are referred to as gait cycle. Figure2-7 illustrates 

the gait cycle with the main two events or phases. As shown in this figure the 

movement begins and ends with ground contact (heel strike) of the same foot, 

i.e. reference foot. Thus, a gait cycle consists of two main phases; stance phase 

and swing phase. During the stance phase the reference foot is on the ground, 

whereas it is off the ground in the swing phase. 

 

Figure2-7. Phases of the human gait [24] 

The stance phase is responsible for stability and weight bearing, shock 

absorption. It makes up approximately 60% of the gait cycle and can be divided 

into sub phases or periods. It begins with the initial contact, which refers to the 

time instant when the foot touches the ground. The sub phase where the foot 

comes to full contact with the ground is referred to as loading response. The 

following sub phase called mid stance, it begins when the foot leaves the 

ground and ends with the trunk glides over the stance limb. Terminal stance or 
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heel off is the period in which the heel leaves the ground and the contra-lateral 

foot touches the ground. The pre-swing, also known as toe off, is the final 

period of the stance phase (from 50% to 60% of the gait cycle) and characterized 

by double support. The body’s weight in this period the will be loaded to the 

opposite side. The swing phase can also be divided in three periods, namely 

initial swing, mid-swing and late swing. Initial swing, called also early swing 

forms the first third of the swing phase and starts when the foot leaves the 

ground. The maximum flexion of the knee defines the end of the early swing 

and represents the start of the mid-swing period. This period extends till approx. 

85% of the gait cycle and terminates when the swing foot passes the opposite 

fixed foot. The third and ultimate period of the swing phase is the late swing. In 

this period the knee reaches its maximum extension preparing for ground 

contact. 

Kinematics is the motion, independent from the forces, which describes the 

movement in term of placement, speed and acceleration. Examine and analysis 

of velocity and acceleration data may provide important and valuable 

information about gait pathology.  

The repetition of the same event for the same foot referred to as stride. On 

contrary, a step is the movement of a single limb from heel strike of the first foot 

to the heel strike of the opposite one. A stride can be characterized by multiple 

temporal parameters stride time, stance and swing time, swing/stance ratio, 

double support and single support time. Walking speed is also considered as a 

temporal characteristic of the stride; it is a function of both cadence and step 

length. These parameters are defined in Table 2-2. Gait impairments lead to 

alteration in the temporal parameters, such as decreased walking speed, cadence, 

decreased single limb support. Different studies showed that, apparently from 

normal variability, these parameters can be used to distinguish between normal 

and pathological gait [24]. Therefore, temporal parameters of gait are helpful in 

assessing and tracking a progress of patient’s clinical and health status.  
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Table 2-2. Temporal parameters of stride 

Parameter Description 
Stride length The distance between heel strike of 

one foot and the subsequence heel 

strike of the same foot 

Step length The distance between heel strike of 

one foot and the subsequence heel 

strike of the contra-lateral foot 

Walking speed Distance over time, usually reported in 

m/sec 

Cadence Steps per minute 

Stance time Time in seconds where the reference 

foot is on the ground 

Swing time Time in seconds where the reference 

foot is off the ground 

Swing/stance 

ratio 

Ratio between stance and swing time 

 

2.3 Multiple Sclerosis 

Multiple sclerosis (MS) is a chronic neurological illness which is considered to 

be the most common inflammatory demyelinating disease of the central nerves 

system (CNS). The disease typically affects adults between the ages of 20 and 

40 with an onset peak age of 30 years [5]. Multiple sclerosis impacts 

approximately 2.5 million individual worldwide and about 400.000 individuals 

in Europe with rates go higher farther from equator and occurs in women more 

often than in men with a ratio of 3.2:1 [6].  

MS is considered as an autoimmune disease, that is a condition in which the 

immune system attacking the individual’s tissue. MS cannot be spread from 

person to person. As described in the previous section (section 2.1.1.1), the CNS 

consists of nerve cells known as neurons. These neurons are coated by a fatty 

membrane called myelin sheath, which covered the neurons of brain and spinal 

cord. This tissue protects the nerves and enables the conduction of the nerve 

electrical impulses that travel through the body. For unknown reason the 

immune system treats the myelin sheath as foreign substance and starts to react 

against it. Thus, MS occurs when the myelin sheath is destroyed. When myelin 

degrades, the conduction of electrical impulses through neurons is either 
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impaired or lost. Figure 2-8 illustrates the difference between a healthy neuron 

and MS affected one. 

 

Figure 2-8. Healthy nerve and Multiple Sclerosis affected nerve [5] 

2.3.1 Causes, diagnose and classification 

Normally, the immune system protects the body against foreign substance 

except in autoimmune diseases such as MS, where the immune system starts to 

attack its own tissue. Scientists do not considered MS as an inherited disorder 

but still aren’t certain about the causes of this phenomenon. However, one 

theory believes that a combination of genetic predisposition and environmental 

or vital factor, such as infections, diet, country of birth and residence, might 

increase the risk of developing MS. First of all, it is essential to understand that 

the disease course varies from one patient to another. Typically, patient 

experiences clinical onset of an acute and sub-acute neurological disturbances, 

which is known as clinically isolated syndromes. The diagnosis of MS is 

complex and needs to demonstrate dissemination of lesions over time and space 

and to exclude alternative diagnoses. There are different valuable investigations 

of MS; magnetic resonance imaging (MRI), evoked potentials and cerebrospinal 

fluid (CSF) examination [25]. However, the most recently diagnostic method 

called McDonald’s Criteria is known with its high degree of sensitivity and 

specificity in early diagnosis of MS, thus allowing of better consulting and 

effective earlier treatment [26]. 

MS is generally described as a disease with several clinical types, namely four 

types, which their names describe the course of the disease and the way it acts 
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on the body over time. However, a clear classification of MS is difficult to be 

made [5]. These four types are:  

• Relapsing-remitting MS (RRMS): This is the most common type. 

Approximately 85-90% of patients are diagnosed with RRMS at onset. It 

is characterized by its relapses period in which symptoms worsen lasts for 

weeks or months. Relapses are followed by periods of remission. 

• Secondary-progressive MS (SPMS): It is characterized by its steadily 

worsening of the disease symptoms. About 50% of the RRMS patients 

transition this type of the disease within a decade of the onset. 

• Primary-progressive MS (PPMS): It is not a very common type. 

Approximately 10% of the patients of MS are diagnosed with PPMS. This 

type is characterized by its slow and steady worsening of the symptoms 

from the time of onset with no relapses or remission. 

• Progressive-relapsing MS (PRMS): This type is relatively rare with 

about 5% of the MS cases.  It is characterized by the steady progression 

from the initial time of the diagnosis with occasional relapses. 

The types of the disease and their frequencies are displayed in Figure 2-9. 
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Figure 2-9. a) Different clinical types of the disease MS, b) Frequency of MS 

types [27]  

2.3.2  Symptoms and assessment tools 

MS has been characterized as an immune-mediated disorder that leads to 

multifocal demyelinating lesions in the white mater (WM) of the CNS [28]. 

Clinical symptoms of MS are highly variable and depend on the localization of 

lesions in the brain and spinal cord. Approximately 45% of patients diagnosed 

with MS don’t have severe symptoms at onset. Given that, the affected places in 

brain and spinal cord vary from one patient to another; MS patients can 

experience different symptoms. However, there are common symptoms which 

are reported by most of the patients. Fatigue, walking and mobility, balance and 

coordination problems are considered as the most common symptoms with a 

rate of 80% of patients. Further common symptoms are pain (normally chronic 
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pain) and cognitive dysfunction, where approximately 50% - 55% of MS 

patients report these symptoms. Problem in speaking and swallowing, hearing, 

seizures are the less common symptoms. 

The traditional concept of MS as a white matter disease has been revised over 

the past years due to increasing evidence for grey matter lesions. In addition to 

intracortical lesions in PwMS, a predominant location of plaques was found in 

the frontal cortex including cortical motor regions. In particular, greater 

activation was found during motor tasks in the ipsilateral premotor and inferior 

frontal gyrus of patients with clinically isolated syndromes (CIS), which may be 

indicative of MS, compared to healthy controls. These changes also imply a 

previous impairment of the brain motor network of PwMS [28]. 

Recently, a number of instruments have been developed to measure the clinical 

severity and functional impairments. These instruments are used as clinical 

endpoint to assess the effectiveness of therapeutic interventions. The most 

commonly used disability endpoint is the so called Expended Disability Status 

Scale (EDSS) [29]. EDSS is developed by the neurologist, John Kurtzke, and 

considered as a gold standard for evaluating the degree of neurological deficit 

and disease progress. The EDSS quantifies neurological impairments of eight 

functional systems (FS): Pyramidal (ability to walk); Cerebellar (coordination); 

Brain stem (speech and swallowing); Sensory (touch and pain); Bowel and 

bladder function; Visual; Mental and other. In addition to the isolated syndrome 

in PwMS, an association of intracortical lesion load with clinical disability 

scores (EDSS) and the clinical course of MS has been found [28]. 

The EDSS is an ordinal scale that ranges from 0 to 10 in 0.5 unit increments 

(when reaching EDSS 1), where 0 described the normal neurological condition 

and 10 described the mortality due to MS. EDSS scores are summarized in 

Table 2-3.  
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Table 2-3. Expanded Disability Status Scale EDSS 

Sco

re 

Description 

0 Normal neurological exam 

1 No disability, minimal sings in one FS* 

1.5 No disability, minimal signs in more than one FS* 

2 Minimal disability in one FS 

2.5 Minimal disability in two FS 

3 Moderate disability in one FS, or mild disability in three or four FS 

though fully ambulatory 

3.5 Fully ambulatory but with moderate disability in one FS and one or two 

FS 

4 Fully ambulatory without aid up to 12 hours a day despite relatively 

severe disability. Able to walk without aid or rest up to 500 meters. 

4.5 Fully ambulatory without aid up to most of the day. However, may have 

some limitation or require minimal assistance. Able to walk without aid 

or rest up to 300 meters 

5 Ambulatory without aid or rest for about 200 meters. The disability is 

severe enough to impair full daily activities 

5.5 Ambulatory without aid for about 100 meters. The disability is severe 

enough to preclude full daily activities 

6 Assistance (cane, crutch, brace) is required to walk about 100 meters 

with or without resting 

6.5 Constant bilateral assistance is required to walk up to 20 meters without 

resting 

7 Unable to walk beyond approximately 5 meters even with aid 

7.5 Restricted to wheelchair. Unable to walk more than a few steps 

8 Restricted to bed or chair but may be out of bed much of the day. 

However, perambulated wheelchair is required  

8.5 Essentially restricted to bed much of the time, has some effective use of 

the arm 

9 Helpless, restricted to bed, can communicate and eat 

9.5 Totally helpless bed patient, unable to communicate or eat 

10 Death due to MS 

 

Instruments that assess the neurological condition of the PwMS typically include 

items pertaining to motor activity. This also holds for EDSS, where walking 

ability constitutes the central aspect of this instrument. Despite being the most 

commonly used scale to assess disease severity, it has been criticized due to 

methodological problems in predicting the clinical outcomes [30]. The EDSS 
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basically depends on the rates, therefore, it has high variability, i.e. two 

assessors seldom get the same score when assessing the same patient. It is 

subjective and does not reflect the walking ability in the customary 

environments, thus EDSS score can vary depending on the time of the 

assessment day resulting in poor reliability [31]. EDSS has also been criticized 

for its usage of an ordinal scale to evaluate symptoms. As a result of this ordinal 

non-linear scale, patients will progress faster from step one to five than from 

steps five to seven. Moreover, problems with applying the scale to a patient 

without ambulation problems as well as insensitivity to clinical change are also 

considered as weaknesses of the EDSS [32]. Finally, as EDSS assessed by a 

neurologist, it is cost effective instrument to be used in clinical and research 

settings.  

2.3.3 Physical activity and gait impairment in multiple sclerosis 

Physical activity has generally been acknowledged to be a health-promoting 

factor. It may occur in any behavioral setting and can be categorized on the basis 

of the type or purpose of the gross motor activities (e.g. in the context of 

occupational or leisure activities) [33]. Over the last decade, many evidences 

have been gained of the importance of physical activity as a method to improve 

quality of life. In this section physical activity and gait impairment in PwMS as 

well as their relation to other MS symptoms will be discussed. 

Brain lesions and degenerative processes can elicit motor and gait impairment. 

Thus, physical activity and motor disorders are among the major problems of 

PwMS, as they may incur a loss of personal independence, and finally 

withdrawal from social life. Over the course of their disease, many patients 

experience a significant decline of mobility and daily life activity [9]. Gait 

parameters are the hallmark symptoms, and they are particularly reported by 

approximately up to 90% of PwMS [34]. Although, mobility and gait 

impairment are more common in patients with further disease level, they are 

also observed in the early stages of MS. Different studies reported decline in 

waling speed, distance and stride length in PwMS with mild disability (EDSS ≤ 

2.5) compared with healthy control [35]. Studies lasted over long period of time 

(e.g. one year, 2.5 years) documented a significant reduction in physical activity 

and gait parameters [14,36]. Hence, approximately 50% of PwMS will require 

mobility aid within 15 years after onset [37]. However, regardless of disease 

duration or severity, the functions of lower limb were considered to be at high 

priority of 13 different bodily functions (Figure 2-10) 
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Figure 2-10. Rank of most important bodily functions in early and late MS [37] 

Because MS is incurable disease, researchers and clinicians focused on 

treatments for symptoms management. Clinical symptoms or MS are highly 

variable and depend on the localization of lesions in the brain and spinal cord. 

Therefore, they are perceived indicators for the severity of the deficiency in 

different functional neurological system (e.g. muscle weakness, sensory and 

vision impairment, degree of instability). However, a significant correlation 

between the frequency or intensity of the overall symptom and the physical 

activity has been reported. The study of Molt et al. showed that the worsening of 

overall symptoms is associated directly or indirectly with lower physical activity 

[38]. For example, motor symptoms (e.g. arm weakness, balance, coordination 

impairment) are moderately and inversely associated with activities of daily 

living (ADL) of PwMS. Secondary analysis of data obtained from 686 PwMS 

reported that emotional symptoms have moderate and inverse correlation with 

ADL [39]. Other studies (cf. [12,40]) have also documented a correlation 

between symptoms of fatigue, depression and pain with physical activity. 

Moreover, Givon et al. reported significant correlations between different 

spatio-temporal gait parameter and the level of neurological impairment due to 

MS [41]. Therefore, researchers have started to consider physical activity and 

gait impairment as a behavioral correlate of disability progression in PwMS. 
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These observations highlight the importance of the assessment of the physical 

activity and walking ability in order to understand the relation between these 

measures and the symptoms and the progression of the disease. This could 

enable the early diagnosis of symptoms worsening and thus help with just-in-

time treatment adjustment. 
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3 Sensor Technologies and signal analysis 
This chapter gives an overview about sensor technology and signal analysis. 

First of all, basic theoretical knowledge of sensors, which are commonly used to 

capture physical activity and gait parameters, will be presented. In addition, the 

concepts of signal analysis methods used in this work will be described. 

3.1 Microsystem Technologies 

Microsystem technology (MST) is the technology used to fabricate 

microsystem. Microsystems deal with integrated microstructures and signal 

processing to generate the desire output. MST includes microelectronics, 

micromechanics and micro-optics components which are fabricated on the same 

substrate. 

This leads to the term Micro-Electro-Mechanical Systems (MEMS), which was 

generally coined to refer to miniature sensors and actuators operating between 

electrical and mechanical domains. The first MEMS device appeared in the USA 

in 1980’s. However, the development of MEMS technology was relatively slow 

due to the complexity of the manufacturing process. Figure 3-1 illustrates some 

fundamental techniques required to develop MEMS device [42]. Physical 

dimensions of MEMS devices can range from below one micron to sever 

millimeters. As well as, the types of MEMS devices can vary from relatively 

simple structures to extremely complex systems. Some advantages of MEMS 

are; small size, light weight, on-chip integration of electromechanical systems 

and their controlling electronic circuitry, high functionality, lower power 

consumption to name some. These allowed applications to be developed which 

would otherwise be impossible. 
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Figure 3-1. Some of the many fundamental techniques required to develop 

MEMS [42] 

3.1.1 Applications 

There are plenty of applications for MEMS, essentially, where miniaturization is 

beneficial. The concepts and feasibility of more complex MEMS devices offered 

a comprehensive penetration in various fields of application such as; 

microfluidics, aerospace, biomedical, chemical, physical, data storage, wireless 

communications, etc.[43]. Figure 3-2 illustrates the different functional domains 

of MEMS applications.  
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Figure 3-2. Various application domains of MEMS ([43] modified) 

Basically, sensors are a major application of MEMS technology in different 

fields; such as industry (airbag systems, medical blood pressure sensor). The 

combination between MEMS sensors and other sensors can be implemented in 

the field of multi-sensing applications. There are three primary types of MEMS 

sensor; pressure sensors, chemical sensors and inertial sensors (accelerometers, 

gyroscopes). 

3.2 Sensor 

As definition, sensor is a device that receives and responds to signal stimulus. 

Generally, they are energy converter which transfers the input signal (stimulus) 

into an electrical signal. Therefore, the term “sensor” should be distinguished 

from “transducer”. The former converts the energy from a certain type into an 

electrical energy, whereas the latter converts any type of energy into another. A 

sensor is always a part of a larger system (data acquisition system) that may 

incorporate other detectors, signal conditioners, signal processors, memory 

devices, data recorders and actuator [44]. Transducer may be part of a complex 

sensor Figure 3-3. As shown in this figure, the last part of a complex sensor is a 

direct sensor that produces electrical output. Thus, there are two types of 

sensors; direct and complex. A direct sensor uses a certain physical effect to 

directly convert a stimulus into an electrical signal, whereas a complex sensor 

Figure 3-3 in addition needs one or more transducers of energy before a direct 

sensor can be employed to generate an electrical output. 
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Figure 3-3. Transducer as a part of complex sensor ([44] modified) 

Depending on the classification purpose, the sensor classification schemes could 

range from very simple to complex. Generally, all sensors can be categorized 

under two categories, either passive or active. Passive sensor can directly 

generate an electrical output with no need for any additional energy source, e.g. 

photodiode, piezoelectric sensor. On contrary, the active sensors need external 

power for their operation, e.g. thermistor, which does not generate electrical 

signal, but its resistance can be measured by detecting the variations in the 

output current and/or voltage.  

Furthermore, based on the selected criteria, sensors can be classified into 

absolute and relative. Absolute sensors measure stimulus with respect to their 

absolute scales, whereas relative sensors generate a signal that relates to a 

known baseline. Considering their properties, such as sensitivity, accuracy, 

detection means, material and field of application, sensors can also be further 

classified into multiple categories. 

3.2.1 Acceleration Sensor 

Accelerometers are one of the most commonly used and commercially 

successful MEMS sensors. In general, accelerometers are used to measure 

dynamic force subjected to a moving object, where the former is related to the 

velocity and the acceleration of the object. They are widely demanded due to 

their applications in automotive industry, where the acceleration sensors are 

used in safety systems such as airbags activation. However, due to the small size 

and low cost of the accelerometers, their applications cover broader spectrum. 

For example, mobile electronics, hardware protection, biomedical applications, 

to name a few. 

Figure 3-4 illustrates the principle operation of an acceleration sensor. The 

simplest form of an accelerometer consists of a proof mass suspended by springs 

attached to fixed frame. The principle operation behind the accelerometer is the 

Newton’s second law of motion which defined the acceleration by relating it to 
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the mass and force (𝐹 = 𝑎 .𝑚). In other words, a net force (𝐹) subjected on an 

object of mass (𝑚) causes the latter to accelerate along its sensitive axis. This 

acceleration (𝑎) is directly proportional to the magnitude of the force and 

inversely proportional to the mass (𝑚) of the object [45].  

 F = a .m = m . f + m . g  Eq.3-1 

 

As a result of an external acceleration, the support frame will be displaced 

relatively to the proof mass, which in turn changes the internal stress of the 

suspension spring. Based on the relative displacement the extension can be used 

to measure the external acceleration. The accelerometer is insensitive to the 

gravitational acceleration (𝑔) and thus provides an output proportional to the 

non-gravitational force per unit mass (𝑓) to which the sensor s subjected along 

its sensitive axis. 

 

Figure 3-4. A simple acceleration [45] 

The total force 𝐹 is described by the gravitational force and other external forces 

which cause the mass 𝑚 to accelerate. Considering the case where an 

accelerometer falls freely within a gravitational field, the output remains at zero. 

This because, in the “falling-freely” situation, the accelerometer will fall with 

acceleration equal to the gravity field (𝑎 = 𝑔), and hence according to the 

equation above the 𝑓 will be zero (𝑓 = 0). Conversely, in the situation where the 

accelerometer is held stationary (𝑎 = 0) the accelerometer will measure the 

force acting to stop it from falling. Following from (Eq.3-1), this force ( 𝑚 . 𝑓 =

 −𝑚 . 𝑔) is the specific force required to offset the effect of gravitational 

attraction. Therefore, having the knowledge about the gravitational field enables 

the measure of the accelerometer output. Commonly the earth’s gravitational 

pull is the reference value from which all other accelerations are measured. It is 



Sensor Technologies and signal analysis 

38 
 

known as 𝑔 and is approx. equal to 9.8m/s2. MEMS accelerometers are 

described in more detailed in [45]. 

Typically, accelerometers are specified by their sensitivity, output range, 

Dynamic range, Amplitude stability, frequency response, resolution, full-scale 

nonlinearity, offset, number of axes shock survival and bandwidth [45]. 

Therefore, the definition of the required specifications is application depended. 

Furthermore, acceleration sensors are divided in different types according to the 

way the displacement of the proof mass is sensed. Examples of the device types 

are capacitive, piezoelectric, piezoresistive, optic, electromagnetic. In the 

following sections the most common types will be presented. 

3.2.1.1 Capacitive 

Capacitive accelerometers measure a change in capacitance across a bridge 

circuit. They essentially contain at least two components, the first is the fixed 

plate and the other is a plate attached to the proof mass (Figure 3-5). These 

plates form a capacitor whose value is a function of a distance 𝑑 between the 

plates. Hence, changing the distance between the plates will change the capacity 

of the system, which can be measured as a voltage output. When an external 

acceleration is applied the proof mass moves away from or toward a plate, hence 

the capacitive will decrease or increase, respectively. The change in capacitance 

is given by the following equation [44]: 

 
∆𝐶 =  𝜀𝐴 (

1

𝑑0 − 𝑥
−

1

𝑑0 + 𝑥
)
𝑥2≪𝑑0

2

→     2𝜀𝐴
𝑥

𝑑0
2 

 

Eq.3-2 

Where; 𝐴 is the area of the plate and 𝑑0is the nominal gap between the plate and 

the proof mass. 

 

Figure 3-5. Capacitive acceleration sensor [46] 
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Capacitive accelerometers have several advantages; high sensitivity, high 

precision, low cost, good noise performance, less prone to variation with 

temperature, less power dissipation and simple structure. Therefore, they have 

been applied in a wide range of applications such as; automotive (crash 

detection and stability control), biomedical (activity monitoring), consumer 

electronics (portable computers, cellular phones), robotics (control and 

stability), structural health monitoring and military application. 

3.2.1.2 Piezoresistive 

Piezoresistive accelerometers (also known as Strain gauge accelerometers) are 

one of the first commercialized microaccelerometer (Figure 3-6). These sensors 

include piezoresistive material that changes its resistance when mechanical 

stress is applied. These devices can sense accelerations within a broad frequency 

range (from near DC up to 13 kHz) and can withstand overshock up to 10.000 g, 

therefore, they are preferred in high shock applications. 

 

Figure 3-6. Piezoresistors accelerometer [46] 

Piezoresistive accelerometer based on piezoresistive effect, which describes the 

changing in electrical resistive of a semiconductor due to mechanical strain. 

Hence, when a force is applied to the proof mass, the latter will be displaced and 

causes stress in the piezoresistive material. This strain extracted from the proof 

mass change the resistance of this material. Therefore, the strain can be directly 

correlated with the magnitude and rate of the mass displacement and, 

subsequently, with an acceleration. 

The main advantage of piezoresistive accelerometers is the simplicity of their 

structure and fabrication process, as well as their readout circuitry, since the 

resistive bridge generates a low output-impedance voltage. However, they 

exhibit larger temperature sensitivity, thus an additional temperature 

compensation circuitry is required. Moreover, they have smaller overall 
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sensitivity compared to capacitive devices, and hence a larger proof mass is 

preferred for them. 

3.2.2 Gyroscope 

Gyroscopes are devices able to measure the angular rotation rate of a body with 

respect to the reference frame (gyroscope frame). They consist, generally, of a 

mass with a free axis or rotation supported by a gimbal, and the latter is 

supported by a gyroscope frame Figure 3-7. The main concept of the operation 

is based on the basic principle of the angular momentum conservation. 

Extensive information can be found in [44].   

 

Figure 3-7. A Gyroscope [47] 

MEMS gyroscope are gyroscopes miniaturized and packaged with electrical 

transducers. There are three types of MEMS gyroscopes: rotational, optical and 

vibrating. Rotational microgyroscopes are similar in design to the traditional 

gyroscopes. A high-speed rotational component is involved in the design; thus 

this type is costly in fabrication. Optical gyroscopes are the most accurate type; 

however, because of the size and the cost of the manufacturing, they are not 

widely used in industrial applications. The most commonly used type is the 

vibration microgyroscopes (Figure 3-8 a), which based on the transfer of energy 

between two vibration modes caused by Coriolis acceleration (Coriolis Effect). 

Inducing a vibration on the solid mass causes the mass to proceed along its 

reference axis (𝑥) with a velocity (𝑣). This, in turn, induces and angular rotation 

of the mass (Ω) along a direction perpendicular to the velocity’s plane, which 

produces Coriolis acceleration 𝑎𝑐 (Figure 3-8 b). This acceleration can be 

expressed by: 

 𝑎𝑐 = 2𝑣 ×  Ω Eq.3-3 
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Figure 3-8. Vibration Microgyroscopes (a) [48], Coriolis Effect (b) [49] 

Recently, these devices have gained a lot of attention for several applications. 

For example, using MEMS gyroscopes have been used in companion with 

MEMS accelerometers to detect heading information for inertial navigation 

purposes. Furthermore, they are widely used in airplanes, spacecrafts, 

automobiles consumer electronics (e.g. video-camera stabilization, inertial 

computer mouse), robotics applications, and wide spectrum of military 

applications. 

3.2.3 Pressure Sensor 

By definition, the pressure is a force exerted on a surface per unit area. The SI 

unit of pressure is the pascal (𝑃𝑎): (1𝑃𝑎 = 1
𝑁

𝑚2
). That is, one pascal is equal to 

one Newton per meter squared. Pressure sensor is a device that is capable of 

generating signal related to the pressure. They are complex sensors, that is more 

than one step of energy conversion is required till an electrical signal is 

generated. Different measures can be acquired from the pressure, such as speed 

and altitude.  

Two essential elements are required to make a pressure sensor; the membrane 

(plate) with a known area 𝐴 and a detector that responds to the applied stress 𝐹, 

thus (𝑝 =  
𝑑𝐹

𝑑𝐴
). Therefore, in most cases the pressure sensors contain 

deformable elements whose deformations are measured and converted by the 

displacement into electrical signals related to the pressure value. In pressure 

sensors, this deformable or sensing element is a mechanical device that 

undergoes structural changes under strain resulting from applied stress. 

Generally, the main problems in pressure sensors are in the system packaging 

and protection of the diaphragm from the contacting pressurized media, which 

are often corrosive, erosive and at high temperatures. 
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Pressure sensor can be categorized in different classes depending on the type of 

pressure the device measures [44]  (Figure 3-9): 

1. Absolute pressure: These sensors measure the pressure relative to the 

perfect vacuum pressure. Measurement assessed in absolute pressure use 

the absolute zero as their reference point. The vacuum has to be negligible 

compared to the pressure to be measured. Such sensors are used to gas 

analysis, altimeters, engine air intake performance, to name few. 

2. Gauge pressure: This pressure is measured relative to the ambient 

atmospheric pressure. Thus, the output of the gauge pressure is directly 

influenced by the changes in weather conditions or altitude. Positive 

pressure is referred to the pressure higher than the ambient pressure, 

whereas negative pressure is referred to the pressure lower than the 

atmospheric pressure. Typical example of the usage of gauge pressure 

sensor is the measure of tire pressure. These sensors are also used for 

surgery of emergency applications. 

3. Differential pressure: This kind of sensors has two pressure ports, that is, 

they measure the difference between two pressures applied to the sensing 

unit.  

 

Figure 3-9. Absolute (right) and differential (left) pressure sensor [44] 

3.2.3.1 MEMS Pressure sensors 

MEMS pressure sensors are among the first MEMS devices developed and 

produced for real world applications. The sensing element in these sensors is 

made of thin silicon diaphragm with a size that varies from few micrometers to a 

few millimeters square. MEMS pressure sensor used the principle of mechanical 

bending of thin silicon diaphragm by the contact medium (liquid or gas) [48]. 

There are two common types of MEMS pressure sensors that will be presented 

in this section: piezoresistive and capacitive pressure sensors.  
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3.2.3.1.1 Piezoresistive Pressure Sensor 

At the moment, piezoresistive pressure sensors are still the most commonly 

used. They consist of thin silicon diaphragm and a tiny piezoresistors diffused 

into the diaphragm (Figure 3-10). Usually, the resistor is connected to the 

Wheatstone bridge [48]. 

 

Figure 3-10. Piezoresistors in the silicon diaphragm [44] 

When stress applied to a resistor, the latter changes its resistance due to the 

piezoresistive effect. This change in the resistivity is proportional to the applied 

stress and thus to the applied pressure. The maximum output of such devices is 

on the order of several hundred millivolts. Therefore, a conditioner is required in 

order to have the output in an acceptable format. However, piezoresistive 

sensors have high temperature sensitivity, thus the conditioner should not 

include temperature compensations. Further disadvantage of this type of sensors 

is the low sensitivity of the piezoresistors; therefore, they are not suitable to be 

used in low pressure measurement application. However, piezoresistive pressure 

sensors have small size, are simple to be fabricated and have a high linearity 

between the applied pressure and the output voltage [48]. 

3.2.3.1.2 Capacitive Pressure Sensor 

The other way of converting pressure into electrical output is to use the 

capacitance change measuring principle (Figure 3-11). 
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Figure 3-11. Capacitive pressure sensor [48] 

In the capacitive-pressure sensor the diaphragm displacement changes the 

capacitance with respect to the reference plate. This kind of measure is 

especially suitable for the low-pressure sensors. The diaphragm can be designed 

to obtain up to 30% capacitance change. Furthermore, these sensors have low 

power consumption and low temperature sensitivity, which makes them 

candidates for elevate temperature application. However, they suffer from the 

non-linearity relation between the input pressure and the measured output. 
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3.3 Signal Processing and Analysis 

The following section gives an overview about the basic concepts of the signal 

processing, classification and statistical analysis methods used in this work. 

3.3.1 Time, Frequency and Time-Frequency Domain Signal Processing 

A signal is a function of an independent variable such as time, distance, position, 

etc. The signal can be classified into: continuous-time, discrete-time; analog, 

digital; periodic, aperiodic; causal, anticausal, noncausal; deterministic, random; 

finite, infinite length signal [50].  

The primarily goal of signal processing is to extract features out of the signal, 

which can be provide underlying information on a specific problem for decision 

making. Signal processing can be done either in time, frequency or time-

frequency domain. 

3.3.1.1 Time Domain Representation 

Time domain analysis is the investigation of the physical phenomenon or signal 

in respect to time, i.e. to record of what happened to the system parameters 

versus time.  

In the time domain, a signal is represented as sequences of numbers, called 

samples, which denoted as 𝑥[𝑛] with 𝑛 being an integer in the range −∞ ≤ 𝑛 ≤

∞. Discrete-time signal is represented by {𝑥[𝑛]}. This sequence may be also 

generated by periodically sampling continuous-time signal 𝑥𝑎(𝑡) at uniform 

intervals of time. The 𝑛-th sample is given by: 

 𝑥[𝑛] = 𝑥𝑎(𝑡)|𝑡=𝑛𝑇 = 𝑥𝑎(𝑛𝑇), 𝑛 = ⋯ ,−2,−1,0, 1, … Eq.3-4 
 

Where, 𝑇 is the sampling interval or sampling period. 

3.3.1.2 Frequency Domain Representation 

Signals are often represented in frequency domain by their spectrum, frequency, 

amplitude and phase. Frequency domain representation can be effectively used 

in measurement of signal parameters, signal transmission, system design, etc. 

The most important principle in the frequency domain analysis is the 

transformation, which is the conversion of the function from time domain to 

frequency domain and vice versa. Fourier transform allows the characterization 

of systems in a simple algebraic form instead of differential equations connected 

to time domain representation. 
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3.3.1.2.1 Fourier series and Fourier transform 

A periodic signal can be decomposed into linear combination of sine and cosine 

functions. This series is referred to as Fourier series of signals, and it has the 

following form: 

 
𝑢(𝑡) = 𝑈0 +∑(𝑈𝑘

𝐴 cos 𝑘𝜔𝑡 + 𝑈𝑘
𝐵 sin 𝑘𝜔𝑡)

∞

𝑘−1

 
Eq. 

3-5 

where 𝜔 = 
2𝜋

𝑇
 (𝑇 stands for the period). The coefficients can be calculated using 

the following equations: 

 𝑈0 = 
1

𝑇
∫ 𝑢(𝑡)𝑑𝑡,
𝑇

0
𝑈𝑘
𝐴 = 

2

𝑇
∫ 𝑢(𝑡)cos(𝑘𝜔𝑡)𝑑𝑡
𝑇

0
, 𝑈𝑘

𝐵 =
2

𝑇
∫ 𝑢(𝑡) sin(𝑘𝜔𝑡)𝑑𝑡
𝑇

0
 

 

Eq. 

3-6 

These operations are based on the orthogonality of trigonometric functions on 

the interval [0… 𝑇]. 

Fourier transform is the extension of Fourier series to periodic and nonperiodic 

signals. The spectrum of the signal 𝑥(𝑡) is defined as: 

 
𝑋(𝑗𝜔) = ∫ 𝑥(𝑡)

+∞

−∞

𝑒−𝑗𝜔𝑡𝑑𝑡 

 

Eq. 

3-7 

The signal can be reconstructed from the spectrum 𝑋(𝑗𝜔) as follows: 

 
𝑥(𝑡) =

1

2𝜋
∫ 𝑋(𝑗𝜔)
+∞

−∞

𝑒𝑗𝜔𝑡𝑑𝜔 

 

Eq. 

3-8 

More details about frequency domain representation and Fourier transformation 

can be found in [50]. 

3.3.1.3 Time-Frequency Domain Representation 

Many signals and systems are generally described by their frequency 

components, which have infinite duration and change as a function of time. For 

these certain case of signal, time-frequency analysis is of great interest. That is, 

because it offers simultaneous interpretation of the signal in both time and 

frequency domain. The time-frequency representations (TFR) can be classified 

according to the analysis method. In the first category, the signal is represented 

by time-frequency function derived a basis function having a definite time and 

frequency localization. For a signal x(t), the TFR is given by: 
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𝑇𝐹𝑥(𝑡, 𝜔) =  ∫ 𝑥(𝜏)

+∞

−∞

𝜙𝑡,𝜔
∗ (𝜏)𝑑𝜏 = (𝑥, 𝜙𝑡,𝜔) 

Eq. 

3-9 

where 𝜙𝑡,𝜔 represents the basis functions and (∗) represents the complex 

conjugate. Short time Fourier transformation, wavelets and matching pursuit 

algorithms are typical examples in this category. 

The second category of TFR based on the time-frequency distributions idea 

presented in [51], in which the TFR described by a kernel function as follow:  

 
𝑇𝐹𝑥(𝑡, 𝜔) =

1

4𝜋2
 ∫ ∫ ∫ 𝑥 (𝑢 +

1

2
𝜏)

+∞

−∞

𝑥∗ (𝑢
+∞

−∞

+∞

−∞

−
1

2
𝜏)𝜙(𝜃, 𝜏)𝑒−𝑗𝜃𝑡−𝑗𝜏𝜔+𝑗𝜃𝑢𝑑𝑢 𝑑𝜏 𝑑𝜃 

 

Eq. 

3-10 

 

where 𝜙(𝜃, 𝜏) is the two dimensional kernel function, determining the specific 

representation in this category, and hence the properties of the representation. 

Nowadays, different time-frequency approaches are available for high-resolution 

decomposition in time-frequency plane, including Short-Time Fourier 

transformation (STFT), Wigner-Ville transformation, Choi-Williams 

distribution (CWD), and the continuous wavelet transformation (CWT). In the 

following section, the most favored tool will be presented, namely CWT. 

3.3.1.3.1 Wavelet Transform- Continuous Wavelet Transformation 

Within the last two decades, the wavelet transform (WT) has become widely 

considered as an alternative to the Short-Time Fourier transformation (STFT). 

The main principle of the CWT based on the convolution of the signal with a set 

of functions, which are a translated and dilated version of a main function. The 

main function is a continuous function in time and frequency domain and called 

mother function, whereas the translated and dilated functions are called wavelet. 

Mathematically, the CWT of the signal 𝑥(𝑡) is given as follow: 

 
𝑊(𝑎, 𝑏) =  

1

√𝑎
∫𝑥(𝑡)𝜓̅ (

t − b

a
) dt 

 

Eq. 

3-11 

 

Where, 𝑏, 𝑎 are the location and the dilation parameter, respectively. ψ(t) is the 

mother function. On contrary to STFT, CWT allows high localization in time of 

high frequency signal features. Furthermore, CWT is not limited to using 

sinusoidal function. 
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Wavelet transformation is commonly used in image compression application, 

acoustics processing, pattern recognition, filter design, electrocardiogram 

analysis. Furthermore, due to its ability of capturing sudden changes in signals 

like the one measured by an accelerometer, wavelet transformation technique 

has been often applied in activity recognition and gait analysis methods [52]. 

3.3.2 Statistical Tools for Data Analysis  

3.3.2.1 Reliability and Intraclass Correlation 

Reliability: is the degree to which an assessment tool produces stable and 

consistent results. There are two types of reliability: relative reliability and 

absolute reliability. Relative reliability indicates the consistency of an 

individual’s rank position in respect to the other over repeated measurements. 

Absolute reliability indicates the degree of which repeated measurement vary for 

the individual, i.e. the absolute difference in the group’s mean over identically 

repeated measurement (e.g. stability) [53]. The reliability is formally given by: 

 
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑒𝑟𝑟𝑜𝑟
 

 

Eq. 

3-12 

 

Reliability is usually calculated to assess: the reliability of the measurement 

device, the reliability of the observer and the stability of the variable being 

measured. 

Intraclass correlation (ICC): is a relative measurement of reliability, which 

has become common choice in reliability studies [54]. ICC is an attempt to 

overcome some of the limitations of the classic correlation coefficients. 

Similarly, to other reliability indices, ICC does not have standard acceptable 

level of reliability. Theoretically, it can vary between 0 and 1.0, where 0 

indicates no reliability and 1.0 indicates perfect reliability. As it can be seen in 

the (Eq. 3-12), if the variability between subjects is sufficiently high, the 

reliability will obviously be high. Thus, if individuals differ from each other a 

lot, the ICC magnitude can be large, and if they differ little from each other the 

value will be small. There are plentiful versions of the ICC with each being 

suitable for specific situation. 

3.3.2.2 Standard Error of Measurement and Minimal Detectable Change 

Standard error of measurement (SEM): is defined as “the standard deviation 

of errors of measurement that is associated with the test scores for a specified 

group of test takers” [55]. If any test were to be applied to individual numerous 
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numbers of times, it would be expected that the responses would vary a little 

from trial to trial. Therefore, the standard deviation of measurement errors 

indicates how reliable the measurement test is. Unlike, ICC which is a relative 

measure of reliability, SEM indicates the absolute reliability and is expressed in 

the actual units of the measurement, making it easy to be interpreted. SEM can 

be calculated by multiplying the baseline standard deviation of the values of the 

measurement response by the square root of one minus the ICC: 

 𝑆𝐸𝑀 = 𝑆𝐷𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ √1 − 𝐼𝐶𝐶 

 

Eq. 

3-13 

 

Since that SEM is measure of the precision of an instrument, it is related to the 

concept of minimal detectable change. 

Minimal detectable change (MDC): is the smallest alteration in a given 

measure that indicates a true change. In other words, MDC provides the absolute 

amount of change necessary to exceed the measurement error of repeated 

measures at a certain confidence interval (CI). It is a useful tool to operationally 

determine whether a magnitude of change in the parameter of interest is greater 

than the amount of change attributable to measurement error [56]. Minimal 

detectable change can be calculated using the following formula: 

 𝑀𝐷𝐶 = 𝑆𝐸𝑀 ∗ 𝑧 ∗ √2 

 

Eq. 

3-14 

 

where (𝑧 = 1.64) or (𝑧 = 1.96) reflects the 90% or 95% confidence interval 

(CI), respectively. 

3.3.3 Classification and Regression Model 

This section presents the methods and techniques used in this work for the aim 

of regression model development and classification. 

3.3.3.1 Decision Tree 

Decision tree is a learning algorithm that is widely used in solving 

classifications problems [57]. Decision trees have increasingly become 

important classification techniques due to their simplicity and computational 

efficiency. Their simple structure provides an easily understanding and 

interpretation of the information, thus easy to be translated into rules. However, 

the complexity of the tree increases with the amount of data. A decision tree 

partitions the feature space into a set of disjoint regions and assigns a specific 
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value to each corresponding region. A general graphical representation of a 

decision tree is shown in Fehler! Verweisquelle konnte nicht gefunden werden.. 

 

Figure 3-12. General graphical representation of a decision tree 

A decision tree consists of nodes connected by branches. There are three types 

of node: 

Root node: The first node in the tree that contains all the data. It has no 

incoming branches and many outgoing branches. 

Internal node: also called “test node”. Each internal node tests an attribute. 

External node/leaf node: also called “decision node”. These nodes present the 

results of the classification. It has one incoming branch and no outgoing branch. 

The basic concept of the decision tree is to partition the input data set (feature 

space) into smaller segment called terminal nodes. Each terminal node is 

assigned to a class label. The partitioning process terminates when the resulted 

subsets cannot be partitioned any further. 

The decision tree is called binary tree when each internal node can be 

partitioned into exact two child node only, such as classification and regression 

tree (CART). If the internal node can have two or more child node, then the 

decision tree is called multi-child tree, such as iterative dichotomier 3 (ID3). The 

CART decision tree is the methods was used in this work and will be briefly 

presented in the following section. 
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3.3.3.1.1 Classification and regression tree (CART) 

The CART decision tree (Figure 3-13) is a binary recursive partitioning 

procedure capable of processing and continuous and nominal attributes as 

predictors [58]. The basic idea of tree building is to choose the split criteria 

among all possible split criteria at a certain node. In CART algorithm the split 

criteria depend on the value of only one predictor variable (or feature). 

 

Figure 3-13. Binary decision tree (CART) 

The algorithm builds the tree starting from the root node repeatedly using the 

following step: 

1. Find the best split point for each feature that maximizes the splitting 

criteria when the node is split according to it. The definition of the 

splitting criteria will be explained later. 

2. Find the node’s best split. Among the best split points found in the 

previous step, choose the one that maximizes the splitting criteria. 

3. Split the node using its best split found in the step 2 if the stopping rules 

are not satisfied, restart at step 1. 

Splitting criteria and impurity measurement: 

Impurity:  Let 𝑖(𝑁) denote the impurity of the node then: 

𝑖(𝑁) is 0 if the data at this node all belong to the same class. 

𝑖(𝑁) is maximum if the classes are equally represented. 

There are many different mathematical measures of the node‘s impurity: 
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• Entropy: it is calculated as following: 

 𝑖(𝑁) =  ∑𝑝(𝐶𝑗)𝑙𝑜𝑔2
𝑗

𝑝(𝐶𝑗) 

 

Eq. 

3-15 

 

where 𝑝(𝐶𝑗) is the fraction of the data set at node 𝑁 that belong to the 𝐶𝑗 

• GINI diversity index: it s given by: 

 𝑖(𝑁) =  1 −∑[𝑃(𝑐𝑗|𝑛𝑜𝑑𝑒)]
2

𝑗

 

 

Eq. 

3-16 

 

where 𝑃(𝑐𝑗|𝑛𝑜𝑑𝑒) presents the frequency of the class 𝑗 in the current node 𝑁. 

Splitting criteria: at a certain node 𝑁 the splitting criteria ∆𝑖(𝑠, 𝑁) corresponds 

to the decrease in impurity and is given by:  

 ∆𝑖(𝑠, 𝑁) =  𝑖(𝑁) − 𝑝𝐿𝑖(𝑁𝐿) − 𝑝𝑅𝑖(𝑁𝑅) 
 

Eq. 

3-17 

 

Where 𝑠 is the split condition; 𝑖(𝑁𝐿) and 𝑖(𝑁𝑅) are the impurities of the left and 

the right child nodes; and  𝑝𝐿, 𝑝𝑅 are the percentages of the cases in the node 𝑁 

that branch left and right, respectively. 

CART decision tree uses GINI diversity index as split criteria. To choose the 

best split s condition the following calculation takes place for each possible 

splitting value: 

 
𝐺𝐼𝑁𝐼𝑠𝑝𝑙𝑖𝑡 =∑

𝑛𝑖
𝑛

𝑚

𝑖=1

𝑖(𝑁) 

 

Eq. 

3-18 

 

Where, 𝑛𝑖 , 𝑛 are the number of cases in the child node 𝑖 and the parent node, 

respectively. 

After doing the calculation in equation (GINI split), the CART algorithm will 

choose the split value that has the least GINI impurity. Depending on this value 

the node will be split into left and right node. More detailed survey can be found 

in [58]. 
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3.3.3.2 Support Vector Machine 

Support Vector Machines (SVMs) are a popular type of binary pattern 

classification methods which have gained increasing attention since they are first 

presented by Vapnik [59]. Figure 3-14 illustrates the basic principle of the linear 

SVM.  

 

Figure 3-14. Linear Support Vector Machine 

Considering the training set D{(𝑋𝑖 , 𝑦𝑖)}𝑖
𝑙 ; where 𝑋 = {𝑥1, … . 𝑥𝑛} ∈ ℜ

𝑛 denotes 

the input vectors and 𝑦𝑖 ∈ {−1,1} is the indicator. With the nonlinear data set 

the input vector 𝑋 will be mapped into high-dimensional space in which a linear 

decision surface can be constructed. This transformation is realized by kernel 

function: 

 𝐾(𝑥𝑖 , 𝑥𝑗) = Φ(xi).Φ(xj) 

 

Eq. 

3-19 

 

where, Φ is a nonlinear function. 

The commonly used kernel functions are: Fisher kernel, Graph kernel, 

Polynomial kernel, RBF kernel and string kernels. 

The optimal classifier is obtained by solving the following quadratic problem: 

 

min
𝜔.𝑏.𝜉

{
1

2
𝜔𝑇𝜔 + 𝐶∑𝜉𝑖

𝐿

𝑖=1

} 

 

Eq. 

3-20 

Subject to: 
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 𝑦𝑖 (𝜔
𝑇Φ(𝑥𝑖)

𝑇 + 𝑏Φ(𝑥𝑗)) ≥ 1 − 𝜉𝑖 

 

Eq. 

3-21 

 

where, 𝐶 is a regularization coefficient and 𝜉𝑖 called slack variable and they are 

introduced to deal with nonlinear feature vectors. 

3.3.3.2.1 Support vector regression (SVR) 

SVM can be applied also to the case of regression. The main idea of the SVR is 

to map the input vector 𝑋 into high-dimensional feature space and then to 

perform linear regression in the feature space [60]. Same as in SVM this 

transformation can be realized by the kernel function 𝐾(𝑥𝑖 , 𝑥𝑗). The correlation 

between input and output can be written as following: 

 𝑦 = 𝑓(𝑥) = 𝜔.Φ(𝑥) + 𝑏 

 

Eq. 

3-22 

 

where, 𝑋 ∈ ℜ𝑛 is the dimensional input space and 𝑦 ∈ ℜ is the corresponding 

output. Φ(𝑥)  is the features of the input variables, and the coefficients 𝜔, 𝑏 can 

be estimated by minimizing: 

 

𝐸(𝜔) = 𝐶
1

𝑁
∑|𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜔)|𝜖

𝑁

𝑖=1

+
1

2
‖𝜔‖2 

 

Eq. 

3-23 

 

where, 𝐶 ∈ ℜ+ determines the trade-off between the empirical risk and the 

regularization term 
1

2
‖𝜔‖2. The empirical risk can be given by the insensitive 

loss function (𝜖): 

 
|𝑥|𝜖: = {

0                    𝑖𝑓 |𝑥| − 𝜖
|𝑥| − 𝜖                   𝑒𝑙𝑠𝑒

 

 

Eq. 

3-24 

 

To reduce the complexity by minimizing ‖𝜔‖2 the non-negative slack variables 

𝜉𝑖 , 𝜉𝑖
∗ can be introduced to measure the deviation of training sample outside 𝜖-

insensitive zone. Thus SVR is formulated as following: 

 

𝐸(𝜔) = 𝐶
1

𝑁
∑( 𝜉𝑖 + 𝜉𝑖

∗)

𝑁

𝑖=1

+
1

2
‖𝜔‖2 

 

Eq. 

3-25 

 

Subject to: 
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{

𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜔) ≤ 𝜖 + 𝜉𝑖
𝑓(𝑥𝑖 , 𝜔) − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖

∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

 

 

Eq. 

3-26 

 

After transforming the optimization problem into the dual problem, the output 

model can be given as following: 

 

𝑓(𝑥, 𝑎) =  ∑(𝑎𝑖
∗ − 𝑎𝑖)

𝑁

𝑖=1

𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏           ;  0 ≤ 𝑎𝑖
∗, 𝑎𝑖  ≤ 𝐶 

 

Eq. 

3-27 

 

where, 𝑎𝑖
∗, 𝑎𝑖 are the Lagrange multipliers. 
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4 Assessment of Physical Activity and Gait Impairment - 

State of the Art 

Physical activity is a complex behavior that can be subdivided into a number of 

dimensions, such as frequency, duration intensity and type of activity. It has 

generally been acknowledged to be a health-promoting factor [33]. Hence, an 

increased effort has been placed in the area of development of population-based 

interventions. However, patients with chronic progressive neurological disease, 

such as multiple sclerosis, typically show a decrease of physical activity as 

compared with healthy individuals [61]. Over the course of their disease, many 

patients experience a significant decline of mobility and daily life activity [9]. 

Mobility and gait impairments in PwMS, such as reduced walking, stride length 

and distance,  are associated with increased activity limitations and thus with 

decreased quality of life [62]. A clearer understanding and assessing of physical 

activity impairment and gait ability in PwMS is essential for the development of 

effective interventions to alter the progressive disease course. 

As for healthy population, several methods have been used to assess physical 

activity (activity count, MET level) and walking ability (e.g. velocity, step 

length, swing time, cadence, symmetry) in PwMS [14,36]. Generally, these 

methods could be categorized as subjective (e.g. questionnaires, self-reports) 

and objective (e.g. laboratory system, wearable system). This chapter briefly 

presents these methods and discusses their advantages and disadvantages. 

4.1 Questionnaires and Self-Report Assessment Methods 

In individuals with physical activity disabilities, physical activity in daily life 

have typically been assessed by questionnaires or diary methods [63,64]. With 

self-report methods, individuals are asked to report on their activities, sometimes 

even from a previous day, week or months. Information such as activity type, 

frequency, duration and intensity can be also gathered using self-report and 

questionnaires. Global self-reports are usually used to gather information about 

the individual’s activity pattern over a long period of time (e.g. one year). Recall 

questionnaires ask individuals to report on their activity from the previous day 

or week; they are short and designed to classify activities into groups [65]. Self-

report and questionnaires methods have been widely used to assess physical 

activity in PwMS. 
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Self-reports and questionnaires methods are well-known for their cost 

efficiency, user friendliness and suitability to be employed preferably in large 

scale studies [66]. They also are able to distinguish between physical activity 

domains, such as occupation, household, leisure time or sport [67,68]. However, 

the major disadvantage of the questionnaires and self-report methods is that the 

collected information is subjective and relies on correct memory retrieval 

[67,69]. Furthermore, these methods rely on accurate estimations of physical 

activity. Biased responding may result in an under- or overestimation of the 

actual activity [70]. Most available self-report measures are not sufficiently 

sensitive to register low levels of activity resulting in floor effect [71]. 

Moreover, automatic activities with a moderate intensity such as walking are 

poorly encoded in episodic memory and are thus likely to be underestimated 

[72]. It has been reported that self-report and questionnaires may also be 

affected by the “social desirability” theory [73]. 

4.2 Clinical Assessment Methods 

In addition to self-report and questionnaires methods, there exists a wired range 

of clinical assessment instruments that address different walking ability and 

clinical status. The importance of walking ability lies in the fact that gait 

disorders affect a high percentage of the population with neurodegenerative 

diseases such as multiple sclerosis. Usually, clinical assessment methods, also 

called semi-subjective methods, are carried out under clinical conditions by a 

specialist. The various gait-related parameters are assessed and evaluated while 

the patients perform predefined tasks. The following section comprises the most 

common clinical assessment methods that used to measure the walking ability. 

4.2.1 Timed 25-Foot Walk test (T25FW) 

This method is the first part of Multiple Sclerosis Functional Composite 

(MSFC). T25FW is one of the most widely standardized measures of gait 

velocity. The test consists of three parts for use in clinical, and its component 

can display variable results, especially in patients with slow walking speed [74]. 

The T25FW measures the time the patient needed to walk the 25 feet (7 and a 

half meter) distance with self-selected walking speed or fastest safe walking 

speed. Time may be recorded either manually with a stop watch or via 

mechanized equipment such as photocells. The output measure of this test is 

used to differentiate between PwMS with mild disability and those with 

moderate disability. The T25FW  showed high reliability of (ICC = 0.9) [74]. 
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However, the test is not useful for patients with severe disability and cannot 

walk the 25 feet. 

4.2.2 Six-Minute Walking test (6-MW) 

The 6MW was first validated in 1982  and in the last decade as been 

increasingly used in neurological populations, such as stroke, Parkinson’s 

disease and multiple sclerosis [75–77]. The outcome measure is the total 

distance covered for 6 min.  Patients are asked to walk for 6 min at maximal 

speed back and forth in a hallway. Patients may use an assistive device, but rest 

is not allowed within this 6 min. The 6MW has been validated as a measure for 

walking ability. The results indicated that the measured distance travelled within 

6 min has differed between PwMS and healthy individuals. The test has high 

intra-rater and inter-rater reliability (ICC = 0.9). Furthermore, it is robust and 

has improved precision compared with T25FW test [35]. Moreover, it has a 

sensitivity to change of (MDC = ±92.1m) in patients with mild to moderate 

disability. 

4.2.3 12-Item Multiple Sclerosis Walking Scale (MSWS-12) 

The 12-Item multiple sclerosis walking scale (MSWS-12) is a self-report 

measure that assesses 12 parameters, which describe the impact of multiple 

sclerosis on walking ability in the past 2 weeks [78]. Each item consists of 5 

scales, with 1 meaning no limitation and 5 meaning extreme limitation. This 

instrument has been included in the gait outcome measures recommended by the 

consensus conference of the Consortium of Multiple Sclerosis Center [79]. 

4.2.4 Timed Up and Go (TUG) 

Timed up and go (TUG) is a timed test of dynamic balance. The patients are 

instructed to stand up from a chair and walk a 3m distance then turn around, 

walk back to the chair. The output of the test is the time from the moment the 

pelvis lifts off chair till the moment it reaches the chair again. The time is 

measured by a stop watch. The TUG has an excellent reliability (ICC = 0.94) 

and its sensitivity to change is reported to be about; MDC = 4.09 sec, 11 sec for 

patient with Alzheimer disease and Parkinson’s disease, respectively. 

Generally, these clinical methods and functional tests have been reported to be 

useful for discriminating pathology population. However, they prone to error 

due to specialist’s manual measurement and subjectivity. Basically, there are 

two main sources of subjectivity; clinical subjectivity and patient subjectivity. 

On the clinical side, the assessment may differ between raters, due to rater’s 
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interpretation of the patient’s status. Patient subjectivity may occur due to the 

intra-variability, i.e. the performance of the patient in a certain test might vary 

from time to time depending on the patient’s mood, fatigue, etc. Moreover, in 

some tests the outcome measure might be unable to assess the little changes 

within and between patients or between normal and abnormal condition. Finally, 

these clinical methods usually require a specialist who’s able to carry out the test 

and manual data analysis to obtain the results. A comprehensive description of 

these and further clinical assessment methods can be found in potter [80]. 

The complexity and high variability of physical activity and gait makes them 

difficult to be measured. Nevertheless, it remains of intense public health 

interest to accurately and reliably assess them. Therefore, several researchers 

have intended to develop and use different objective systems and devices for 

measuring and evaluating physical activity and gait parameters. In the following 

sections an overview about some known and commonly used objective devices 

will be given. 

4.3 Objective Assessment Methods – Laboratory Systems 

Gait laboratories typically use a system, such as marker-based motion capture 

and force plates. These systems are considered as gold standard for motion and 

gait analysis and are known for their ability to provide very accurate description 

and reliable measurements of the gait pattern. Furthermore, they allow getting 

quantitative and objective figures of the clinical gait. In the following, some of 

these systems will be presented. 

Optical motion analysis system consists of markers attached to specific locations 

on the individuals using a set of cameras. Applications of these systems can be 

classified into gait parameter analysis and gait classification to distinguish 

between different types of activities [81]. Currently, optical motion systems are 

the most well-known and precise gait analysis systems. However, they are 

expensive (60.000-150.000€) and their complexity for preparation and analysis 

makes them unsuitable to be integrated in the daily routine assessment of gait 

parameters in patients with severe walking impairment.  

Alternative systems to camera-based systems are force plates. These systems 

measure the ground reaction forces generated by a body standing or moving 

across them. Force plates systems are used to quantify balance and assess gait 

kinetic parameters. The platform is about 60 x 60 cm and they can provide 

accurate temporal parameters such as heel strike and toe off contact signals [82]. 
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Some commercial force plates are: Force plate AMTI series OR6-7 Figure 4-1, 

Kistler force plates. 

 

Figure 4-1. Force Platform AMIT force plat [82] 

Major disadvantage of the force plates systems is that they can measure the 

parameter only within one stride. Therefore, for longer distance where several 

steps are involved, the computerized walking mat GAITRite© Analysis System 

(CIR System Inc, Clifton, NJ) is used [83]. It is an electronic walkway system 

that can be connected via serial port to a personal computer. GAITRite© is a 

carpet of 89 cm wide and 9.75 m long, where the active area is about 61 cm 

wide and 7.32 m long and contains 16.128 pressure sensors. This system should 

be differentiated from the force plates, the latter quantifies horizontal and shear 

components of the applied force, whereas the former can quantify the pressure 

patterns. Pressure sensors integrated in the walkway system are activated at 

footfall and deactivated at toe-off, thus they enable a continuous capturing 

spatio-temporal gait data sampled at 8 Hz. GAITRite© system has been reported 

to have high reliability (ICC ≥ 0.85) and high validity when compared with 

video-based motion analysis (ICC ≥ 0.93) [84]. However, GAITRite© is an 

expensive system and need to be installed in appropriate rooms. Furthermore, 

the data capture is restricted to a few steps at a time; therefore, the patient needs 

to walk many times on the mat in order to obtain statistically valid data. 

Recently, instructed treadmill gait analysis system has been proposed as an 

alternative gait assessment and analysis system. This device enables the 

capturing of gait parameters over long distance and long period of time under 

consistent conditions; distance, belt speed and inclination. Most gait parameter 

captured by this system showed high reliability [85]. The usage of instructed 

treadmill has several advantages compared to over ground assessment system. 

First of all, they are not limited to the number of steps per trial as with 
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GAITRite©. Furthermore, these systems allow the analysis of gait characteristics 

at different speed including jogging, because while walking on treadmill patients 

are able to control their speed.  

Finally, instructed treadmill enables gait assessment while walking on an 

inclined surface [86]. However, energy costs have been reported to be higher 

during walking on treadmill than over ground. Moreover, walking on treadmill 

may impede individual’s natural gait pattern [87]. Other several non-traditional 

methods, such as laser technology [88], ultrasound system [89] and magnetic 

tracking system for gait analysis have been developed. Figure 4-2 illustrates the 

most widely used gait analysis systems under laboratory condition. 

 

Figure 4-2. Most frequently used gait analysis technologies and systems [82] 

However, these systems are expensive, complex and can only be operated by 

specialist trained person. Moreover, laboratory conditions may influence the 

natural behavior of the patients. Most importantly, the usage of these systems is 

time-costly, thus its integration in clinical routine is limited. Therefore, there is 

an increasingly need for an inexpensive, unobtrusive system, which allows 

monitoring and evaluating of physical activity and gait parameters continuously 

outside the lab (i.e. under free-living condition). 

4.4 Objective Assessment Methods- Wearable Sensors 

Recent advances in technology have promoted the development of objective 

methods based on wearable sensors (WS) to allow continuous monitoring of 

daily physical activity of multiple populations with gait disorder, such as stroke 
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survivors, Parkinson’s disease (PD) and PwMS [90]. Such systems allow 

capturing and monitoring of gait and physical parameter under customary 

environments, thus they overcome the limitations of laboratory and clinical 

subjective methods. WS-based systems use sensors attached to the body to 

assess and evaluate the different aspects of human activity and gait during the 

patient’s everyday activities under free-living conditions. There are different 

types of WS have been used in the field of gait and physical activity assessment 

(Table 4-1). A review of the most common used WS and their application is 

presented in the following. 

Table 4-1. Commonly used wearable sensor to assess physical activity and gait 

parameter 

Sensor Usage 

Accelerometer Walking speed, displacement of the 

body segment 

Gyroscope Angular velocity and rotation 

Pedometer Steps count 

Magnetometer directional vectors of spatial orientation 

Electromyography Time and amount of muscles activation 

Goniometr Joint angular range of motion 

Pressure sensing Stance phase detection 

4.4.1 Pedometers 

Pedometers are compact, battery operated devices that measure number of step 

taken by the individual in continuous manner [91]. Some pedometers available 

nowadays use the number of steps to estimate the travelled distance and energy 

expenditure (EE). Pedometers have been applied in several applications: to 

distinguish between individuals based on steps/day, to measure the effect of the 

intervention on physical activity, to assess and compare time trends in physical 

activity. These sensors have three principles of mechanism; Spring-levered arm, 

piezoelectric and magnetic [92] . Spring-levered pedometers (Figure 4-3) use a 

spring-suspended horizontal arm that moves up and down in response to hip 

movement while walking or running. The arm opens and closes an electrical 

circuit with each step and the number of steps is then counted. 
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Figure 4-3. Spring-level pedometer 

Magnetic reed proximity type also consists of spring-suspended horizontal lever 

arm and a magnet attached to it. In this mechanism the magnetic field causes the 

electrical contact of two overlapping metal pieces (magnetic reed proximity) 

enclosed in a glass cylinder. 

Piezoelectric pedometer (Figure 4-4) has an accelerometer with a horizontal 

beam that compresses a piezoelectric crystal when subjected to movement (e.g. 

walking). This generates a voltage proportional to the movement. The voltage 

oscillation is used to record steps [93]. 

 

Figure 4-4. Piezoelectric pedometer 

Over the last decade a quite variety of pedometers has been introduced; 

conventional stand-alone pedometers and personal digital devices (Table 4-2). 
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Table 4-2. Pedometers - Commercial types ([94], modified) 

Device Model measurement assessment 

time 

placement 

Omron HJ-

720 

 

Steps, aerobic, 

activity time, 

distance, 

calories 

7 days 

displayed 

42 days in 

memory 

Pocket, bag or 

clip to belt 

Yamax CW 

series 

 

Steps, distance, 

calories 

7 days 

2weeks total 

Clip to belt 

Sport line 

955 

 

Steps, speed, 

activity time, 

distance, 

calorie 

10 days Wrist 

Fitbit one 

 

Steps, distance, 

calories, stair 

climbed, 

quality of sleep 

5-7days Clip to 

pocket, in 

pocket 

Nike 

 

Step, distance, 

time, calories 

- iPod OS 

iPhone 

 

Steps - iPhone OS X 

 

Although pedometers only capture steps and limited type of activities [92], they 

have been used in different healthcare studies and clinical researchers. For 

example, these devices have been used to detect differences in physical activity 

between PwMS and healthy individuals, to evaluate their accuracy and 

reliability, under free-living environment and controlled conditions [95,96]. 

Pedometers showed high reliability of ICC = 0.93 and ICC = 0.80 for 7-days 

and 3-days of monitoring, respectively. However, difficulties may arise, 

especially in populations with neurological disease whereby the gait pattern may 

be abnormal and asymmetrical [97]. Therefore, the validity of such systems for 

individuals with gait disorder is questionable. 

Although pedometers are inexpensive, simple to use and unobtrusive devices, 

they have a major drawback: they are unable to reflect the intensity of the 

patient’s movements, like increases in moderate or vigorous physical activity or 



Assessment of Physical Activity and Gait Impairment - State of the Art 

65 
 

reduction in sedentary time [98]. Furthermore, they may suffer from inaccuracy 

during self-selected and slow walking speed[99]. Moreover, pedometers cannot 

provide important clinical information about gait quality, such as gait 

asymmetry. 

4.4.2 Gyroscopes 

Micromachined gyroscopes are based on another working principle, which 

implies that all body revolves around an axis develops rotational inertia. 

Typically, a gyroscope can be used to measure the motion and posture of the 

human body (angular orientation) by measuring the angular rate (i.e. the output 

of the angular rate sensors) [100]. Gyroscopes must always face the same 

direction, being used as a reference to detect changes in direction. The 

advantage of using gyroscopes is that gyroscopes allow angular velocity 

measurement and short-time estimate of total orientating. The reliability of the 

gyroscope in detecting gait event (i.e. initial contact and toe of) has been 

reported to be high (ICC = 0.98) [101]. However, the usage of gyroscope in 

measuring daily-living activities, where the temperature fluctuation is larger 

than in the laboratory, results in an offset error affects the gyroscopes signal. A 

relatively small offset error will introduce large integration errors. Therefore, 

several studies have used a combination of gyroscope and accelerometer or 

magnetometer. The gravitational acceleration component could provide 

inclination information that is useful to correct the drifted orientation estimate 

from the gyroscopes, whereas the sensitivity of the magnetometer to the earth’s 

magnetic field helps in correcting the drift of the gyroscope about the vertical 

axis. Furthermore, using gyroscopes will decrease the autonomy of the 

monitoring system due to their high power consumption [102]. 

4.4.3 Electromyography 

Electromyography (EMG) is performed using an electromyograph. EMG 

measures the electrical activity of the muscles at rest and during contraction. It 

could be either voluntary or involuntary muscle contraction. The EMG signal 

can be captured either by surface electrode (Figure 4-5), or with wire or needle 

electrodes. The outcome signal should be then amplified to yield a suitable 

format that can be used for further analysis. 
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Figure 4-5. Brainquiry Wireless EMG/EEG/ECG system (right [82]), Simplified 

scheme of the surface electrodes (left [103]) 

EMG has been widely used in the field of gait analysis as a tool to distinguish 

between normal and pathological gait in both adults and children. Surface 

electromyography (SEMG) is a useful tool for the assessment of motor disorder 

in medical researchers, such as neurology, neurophysiology, orthopedics and 

rehabilitation. Figure 4-6 illustrates a schematic view of SEMG application 

within a gait analysis laboratory. Furthermore, EMG signals can be used to 

assess different gait characteristics which are mainly related to functional and 

pathophysiological characterization of gait disturbance [104]. For example, 

EMG signal amplitude increases with increased walking speed, whereas the 

EMG activity is minimized during comfortable speed. 



Assessment of Physical Activity and Gait Impairment - State of the Art 

67 
 

 

Figure 4-6. Schematic of SEMG System [105] 

EMG can be very useful analysis instrument if applied under proper conditions. 

Basically, SEMG are used when only general information on muscle activity is 

required. On contrary, wire electrodes will be used if specific information on a 

particular muscle is needed. In this case, the wire electrode must be integrated 

into the muscle using a hypodermic needle. However, despite their poor 

usability and their intrusively, EMG sensors are not suitable for ambulatory 

application because of the sensitivity to the poor electrode site preparation and 

placement [106]. 

4.4.4 Accelerometer 

Accelerometers are devices that measure the acceleration of person’s body while 

moving. Due to the advances in sensor technology over the past decades, 

accelerometers become smaller, lighter, cheaper with high user acceptability. 

Moreover, the new developed accelerometers are able to collect data at high 

frequency and store it over many days or weeks, have high battery performance 

and memory capacity [107]. Therefore, they now are the most commonly used 

objective devices to assess physical activity and gait under free-living conditions 

in large-scale observational studies. It was also shown that accelerometers have 

advantages over other devices in assessing human activities, estimating EE and 

gait velocity as well as detecting gait abnormality. 
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Accelerometer can measure movement either uniaxial or triaxial. The uniaxial 

accelerometer measures the acceleration in one plane, usually the vertical plane, 

whereas triaxial accelerometers measure the acceleration in the vertical, sagittal 

and lateral planes. However, triaxial have shown to be more sensitive in 

detecting the variability of the activity in population with gait and movement 

disorders. Accelerometers can be worn on various body parts, such as waist, 

chest, ankle, pocket, wrist and shoe. During assessment of physical activity, 

desire information about intensity, frequency and duration can be captured by 

applying a suitable time sampling interval. In order to capture the full range of 

human motions, sampling frequency should fulfill Nyquist criterion “the 

sampling frequency should be at least twice the highest frequency contained in 

the signal”. Typically, the frequency of normal physical activity is below 8 Hz 

(during running), although the upper limit could reach 25 Hz for some arm 

movements. Therefore, the commercially available accelerometers have a 

sample frequency between 1 Hz to 64 Hz [108]. 

There are several devices currently available on the market. In the following the 

most common devices will be briefly presented. A technical specification and 

detailed survey are summarized in Table 4-3. 

activPAL: The activPAL is a uniaxial accelerometer, which can be worn on the 

thigh. The sensor has been used to classify different free-living activities. In 

comparison with two pedometers, activPAL revealed an accurate steps-counting 

and cadence estimation. Moreover, the sensor has been shown to be valid and 

reliable tool in measuring cadence and steps (ICC > 0.99 and absolute 

percentage error < 1.11 %) [109]. 

SenseWear: The SenseWear is an activity monitor device worn on the upper 

limbs. Consists of combines multiple sensors; triaxial accelerometer, skin 

temperature, heat flux and galvanic skin response. The output measures of 

SenseWear are: total EE, METs, total number of steps and sleep duration. The 

SenseWear revealed an accurate performance in estimating EE during slow and 

normal walking, but showed underestimation of EE during increased walking 

speed [110]. 

ActiGraph: There are two different models available on the market, namely 

GT1M and GT3X. The GT1M is a uniaxial accelerometer and measures 

acceleration at 30 Hz. It can be worn on the waist to measure activity counts, 

step counts and EE. It can be used for sleep monitoring purpose. Multiple 
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studies have reported its reliability and validity [111].The new model of 

ActiGraph is the GT3X. It is a tri-axial sensor and can be worn on a belt on the 

right hip. Several clinical studies have mainly used GT3X to assess physical 

activity and activity count. The sensor has been evaluated in many studies and 

the results that GT3X accurately measures physical activity when compare to 

oxygen consumption, whereas the estimation of EE depends strongly on the 

sample population and the type and intensity of physical activity [112]. 

StepWatch: The StepWatch is an ankle-worn sensor for gait measurement. It 

records steps and cadence in different gait speed and styles. The accuracy of 

StepWatch in counting steps has been investigated in several studies under 

different conditions. The sensor showed overestimated step counting during a 24 

hour monitoring [113]. The validity of the sensor was also reported in 

population of widely varying impairment levels, such as PD and MS [114]. 
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Table 4-3. Summarizes of different accelerometer types ( [115], modified) 

Sensor ActiGraph 

GT1M 

ActiGraph  

GT3X 

ActiGraph 

ActiTrainer 

actibelt 

Trium 

Analysis  

Biotel 

3DNX 

TracmorD 

Philips 

RT3 

Stayhealthy 

MoveII 

Movisens 

Step 

Watch 

activPAL SenseWear IDEEA 

Size (mm) 53x51x22 38x37x17 50x40x15 91x43x17 54x54x18 32x32x5 71x56x28 50x36x17 75x50x20 53x35x7 88x56x24 70x54x

17 

Weight (g) 27 27 45 53 70 12.5 65 17 38 15 45.4 59 

Number of 

axis 

1 3 1 3 3 3 3 3 2 1 3 2 

Sampling 

rate (Hz) 

30 30-100 30 100 20 - 1 64-128 32 10 32 32 

Sensitivity 

range 

0.05-2.5 0.05-2.5 0.05-2.5 0.01 0.2-20 - 2-10 0.04 - 2g 2g 5g 

Battery life 20 days 20 days 20 days 20 days 21 days 3 weeks 30 days 7 days - 10 days 7 days 60 h 

Output 

measures 

Activity 

counts, 

steps, 

MET, 

intensity 

level 

Activity 

counts, 

steps, 

MET, 

intensity 

level 

Activity 

counts, 

steps, 

MET, 

intensity 

level, 

heart rate 

Activity 

counts, 

steps, 

MET, gait 

speed, 

distance 

travelled, 

changes 

in altitude 

EE EE Activity 

intensity, 

EE, MET 

 EE, 

Activity 

type, 

steps, 

body 

position 

Gait 

characteristics 

Sedentary 

and 

upright 

time, 

steps, 

cadence, 

MET, EE 

 

EE, activity 

duration, 

sleep 

duration 

Activity 

type, gait 

type, EE 
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4.5 Commercialized Systems for Physical Activity and Gait 

Analysis 

There are several commercial systems for physical activity and gait analysis on 

the market. These systems are either wearable or non-wearable and usually use a 

combination of different aforementioned sensors and technologies. Some 

examples of these systems will be presented in this section. BTS GAITLAB 

system provides quantitative and objective information about possible gait, 

postural dysfunction and muscular insufficiency. The system was used in the 

study of Bello et al. [116] to measure the effects of intervention training 

program on gait in PD. Tempol clinical gait analysis is also used for multiple 

clinical purposes, such intervention control, rehabilitation, pre- and post-

comparison [117]. One of the widely used WS systems for gait analysis is Xsens 

MVN [118]. It consists of 17 inertial sensors placed on chest, upper and lower 

limb. The data are captured via wireless communicated suit (Figure 4-7). 

  

Figure 4-7. Xsens-Motion tracking system [119] 

Another commercial system is the wireless M3D gait analysis system. The 

system uses motion sensors on the lower leg, the thigh, the waist and the back 

and wearable force plates on the toes and the heels. M3D includes an 

accelerometer, a triaxial gyroscope sensor and a triaxial geomagnetic sensor 

[120]. 

Commercial wearable systems with in-shoe integrated pressure (Figure 4-8), 

such as in-shoe based foot plantar pressure sensor F-Scan® System by Tekscan 

[121], have also been commonly used in clinical studies to assess and analyze 

gait disorder. 
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Figure 4-8. In-shoe plantar pressure analysis system [121] 

A comprehensive review about commercial systems for physical activity and 

gait assessment can be found in [82]. 

4.6 Summary 

The previous sections highlighted the most commonly used methods and 

systems for capturing physical activity and gait in both healthy individuals and 

patients with gait disorder (such as PD and PwMS). These methods are 

categorized as subjective (self-report, clinical instruments) and objective 

(Laboratory system and WS). A comprehensive review of clinical research 

literatures revealed that self-report and clinical instruments are widely used in 

population with gait disorders. Although these subjective methods have been 

reported to be valid and less expensive, they rely on recall and can only offers 

biased evaluation taken over short period of time, as previously discussed in 

section 4.1 and section 4.2. To overcome these disadvantages, several 

researchers tended to apply objective method to assess physical activity and gait 

parameters. Laboratory systems enable a simultaneous analysis of multiple gait 

parameters captured from different approaches, are highly accurate and allow 

more precision measurement when complex systems are applied. Therefore, 

they have been widely applied for physical activity and gait assessment, 

especially in patients with gait disorders. However, they are very complex, 

expensive, and cannot monitor free-living gait outside the controlled 

environment. Particularly, in the field of neurological diseases, there is 

increasingly need for constant observation of patients’ mobility and walking 

ability in their free-living conditions over a long period of time. Considering the 

advantages of WS systems in measuring and evaluating physical activity and 

human gait, several researchers applied these systems for clinical gait and 

mobility observations. Table 4-4 summarizes different clinical studies that used 

wearable sensors to assess physical and gait parameters. Among all WS 
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accelerometers are considered to be the most suitable sensor for measuring 

physical activity and gait under free-living conditions. They provide more 

precise information regarding physical activity and their battery life is assured 

for several days. Moreover, they are unobtrusive so that individuals are 

unrestricted during their daily-living activities. Therefore, accelerometer was 

used in this work. 

Table 4-4. Summary of clinical studies that used wearable sensor to assess 

physical activity and gait 

Study Population Type of WS Placement Experimental 

setup 

Outcome 

measure 

[61] MS Triaxial 

accelerometer 

Trunks 

and legs 

Free-living (24 

hours) 

Daily activity 

(walking, 

sitting, standing 

and lying) 

[36] MS Triaxial 

accelerometer 

Waist Free-living (6 

occasions of 7 

days each 

separated by 6 

months) 

Activity count 

[122] MS Pedometer, 

triaxial 

accelerometer 

Waist, leg Free-living (7 

days) 

Activity count, 

activity 

temperature, 

steps count 

[123] MS Triaxial 

accelerometer 

Waist Free-living (7 

days) 

Steps count 

[124] MS Uniaxial 

accelerometer 

Waist Free-living (7 

days) 

Activity count 

[125] Stroke Force-

sensitive 

resistors and 3 

accelerometers 

Shoe-

based WS 

Laboratory 

environment 

Spatio-temporal 

parameters 

[126] PD Accelerometer Waist Predefined 

walkway 

Temporal 

parameters 

[127] Vestibular 

disorder 

Pressure Foot Laboratory 

environment 

Temporal 

parameters 

[128] Stoke Triaxial 

accelerometer 

Both 

ankles 

Indoor/outdoor 

predefined 

walkways 

Speed, bouts of 

walking, 

Activity type 

[129] PD Two uniaxial 

gyroscopes, 3 

Shanks, 

wrist, 

Predefined 

walkways at 

Stride length, 

stride velocity, 
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biaxial 

gyroscopes, 

triaxial 

accelerometer 

chest laboratory and 

at home 

cadence, arm 

angular velocity 

and turning 

velocity 

[130] Stroke Two triaxial 

accelerometer 

Both 

ankles 

Free-living (8 

hours) 

Walking bouts, 

total walking 

time, speed, 

steps count, gait 

asymmetry, 

cadence 

[131] MS Uniaxial 

accelerometer 

Waist Free-living (7 

days at 

baseline and 6 

months later) 

Activity count 

[132] PD Triaxial 

accelerometer, 

biaxial 

gyroscope 

thigh and 

shank 

Predefined 

walkway 

Freezing of gait 

(FOG) 

[133] PD IMU Both 

ankles 

Laboratory 

environment 

Gait asymmetry 

[134] MS Uniaxial 

accelerometer 

Waist Free-living (7 

days) 

Activity count 

[135] MS Triaxial 

accelerometer 

Waist Free-living (4 

days) 

Activity count 

[136] Vertigo 

and 

vestibular 

disorder  

Pressure Foot Laboratory 

environment 

Temporal 

parameters 

[137] PD Triaxial 

accelerometer 

left and 

right ankle 

Laboratory Gait events 

(initial and end 

contact) 

[138] Stroke Five biaxial 

accelerometer 

Chest, 

thighs, 

each 

forefoot 

Timed short-

distance walk 

Gait cycle 

events, cycle 

duration, step 

and stride 

length, speed 

[139] PD Gyroscope Forearms, 

thighs and 

shanks 

Laboratory Gait cycle, 

spatio-temporal 

parameters 
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5 Conception and Implementation of a home-based 

system to objectively assess comprehensive gait 

parameter for PwMS 
The main aim of a clinical motor and gait analysis system is the identification of 

health status and altering pathological movement pattern. In neurological 

diseases such as MS, motor and gait analysis may help in diagnose and 

treatment determination. However, neurological disorders generally involve a 

variety of symptoms that lead to considerable functional impairments in daily 

life. Therefore, the assessment of physical activity and gait parameters should 

include a reference of daily life, as such be a more effective way to monitor the 

actual physical activity and walking behavior. Consequently, this daily 

monitoring may be a sensitive tool to influence clinical decision-making in 

intervention and rehabilitation. However, the quantitative assessment of daily 

physical activity and gait parameters requires an objective, comprehensive, 

reliable and easy to use technique to be applied in free-living situation. This 

chapter presents the procedure and workflow conception and the algorithms 

developed and applied to achieve the above mentioned goals. In the first part the 

hardware and software requirements are presented and discussed. In the second 

part of this chapter the developed algorithms are presented. 

5.1 Is-Process and To-be-Process 

As it was mentioned in section 2.3, MS is an incurable autoimmune disease of 

the CNS with unpredictable symptoms that can vary in every individual 

depending on the location of the affected nerve fibers. Therefore, the treatment 

of MS should be individually determined and strongly based on the symptoms. 

Furthermore, the adjustment of the therapy depends on the disease progression 

and patient’s health status. Particularly, regular check-ups and physician visits 

are carried on in order to monitor the condition of the patients and their response 

to the treatment (determination of EDSS and MSFC). During the basic 

examinations in the clinic, patients go through several clinical re-tests (e.g. 

T25FWT, standing with eyes closed). Besides these tests, physicians perform 

interviews with the patients in order to find out more detailed information about 

their daily routine, difficulties by mobility and other functional areas. However, 

this approach suffers from the following problems: 

- The intervals between the tests are large (each 6 months), so that an exact 

determination of the health status and disease course is not possible. 
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Moreover, because of the long intervals the deterioration could be too late 

noticed and treated. 

- The clinical tests are prone to error due to the subjective assessment of the 

disease-related information, and due to the poor evaluation of everyday 

situation based on momentary estimation and impression of the disease 

course. 

- The physicians do not have sufficient feedback on the effect of the 

treatment on the health situation (e.g. mobility). 

- The observations are very time consuming and affected by patients and 

physicians’ intra-variability. 

Nowadays, the determination of an adequate therapy and medication basically 

depends on the aforementioned assessed information. Thus, it is desirable to 

improve and objectify the assessment methods, so that the physicians learn more 

about everyday occurrences in the time between two successive clinical visits. 

Hence the disease progression and health state of the patient can be evaluated 

more precisely. This might help in the early detection of disease deterioration, 

which in turn may intend to reduce the stationary stay and the error rate in the 

determination of the therapy and medication. Therefore, it is of great importance 

and need to develop a technical monitoring system that enables objective, 

ambulatory and continuous assessment of the health status over a long period of 

time. Figure 5-1 illustrates the steps that should be considered while developing 

such a system: 

1. Define the factor parameters that are important and relevant to measure 

disease progression and clinical state: In the developing of such a system, 

the main focused should be on could this system provide a great support 

for both physicians and PwMS. The first step is then to determine what 

parameters play an important role in disease progression. Furthermore, the 

effects of these parameters on patient’s health condition and quality of life 

should be considered.  

2. The distribution of the disorder of the specific parameters should be 

considered, that there will be more sense to consider the symptoms that 

occur in a big proportion of patients. 

3. If the considered parameters are measurable, the next step will be to 

define which technology should be chose or developed to assess them 

objectively under everyday life condition. 
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4. Once the parameters and the technology were defined, data collection and 

analysis should be considered. Mainly, the focus here is on the 

comprehensively analyze of the parameters to extract clinically important 

and relevant information. 

 

Figure 5-1: Main steps of an objective monitoring system of health condition of 

PwMS 
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For the selection of the parameters relating to MS, it is crucial to understand 

which symptoms are particularly common in MS and mostly influence the 

quality of life of PwMS. According to the World Health Organization, 

impairment is defined as an abnormality of body or organ structure of function 

whereas disability is defined as a global health picture related to a reduction of a 

person’s ability to perform a basic task [140]. In MS, approx. 80 % of the 

patients suffer from fatigue and muscle weakness and spasticity at the early 

stage of the disease. These symptoms have been considered to be the underlying 

causes of patient’s disability to perform their normal daily activity and to tend to 

be less active than people without MS. This inactivity considered to be an 

important factor that negatively affects the patient’s quality of life. Multiple 

studies showed that the patient’s quality of life is hardly affected by motor and 

coordination disturbance and reported a high correlation between activity and 

gait parameters and EDSS score. Hence, physical activity and walking ability 

can be considered as an important source of clinical relevant information. 

Therefore, the observation and quantifying of these parameters might provide an 

important tool to draw conclusions on patient’s health condition and support in 

clinical decision making. Thus, the monitoring system should be able to derive 

and analyze the daily activity and gait data.  

In addition to data acquisition and processing, which is essential for extracting 

the important information, an adequate visualization of the information to the 

end-users is highly required in order to reveal insight and knowledge about the 

overall fluctuation and progression of the disease. Therefore, the daily collected 

data must be transmitted to a platform where the analysis is automatically 

performed and a report about the daily activity and gait information is generated. 

Using this report the physician should be able to obtain a comprehensive picture 

about patient’s health condition and disease course. Consequently, deterioration 

can be early detected and signaled to the physicians, who in turn can adjust and 

optimize the therapy. Most people diagnosed with MS known very well about 

their disease and are interested in their current health condition and disease 

progression. Therefore, besides physicians, patients are also interested in having 

feedback about their daily activity and walking behavior. Taking all the above 

mentioned points into account, the following principle system component were 

determined (Figure 5-2) 
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Figure 5-2: Principle system component 

The system components illustrated in the figure are: 

• Motion sensor: To assess data related to activity and walking behavior of 

the patients in their free-living environment. 

• Data processing: The daily data collected should be daily transferred into 

PCs and saved. Comprehensive algorithms for feature and parameter 

extraction should be implemented.  

• Visualization: The extracted parameters should be presented and 

visualized to the physician to provide them with an insight into mobility 

and walking behavior of the patients. They should enable recovery 

process assessment, detection of gait abnormalities that may indicate the 

onset of diseases progression and capturing of the slightly changes in 

mobility behavior in absence of clinical disability. This could help to 

develop an appropriate treatment intervention.  

• Feedback: Patients should be able to receive feedback on their current 

measurements. This feedback should give them an overview on their daily 

activity and motivate them to contribute in the management of their MS 

by staying active or become more active.  

5.2 Requirements of the Measurement System 

The system is to be used for the aim of daily assessment of physical activity and 

gait parameters in PwMS who are able to walk without assistance (EDSS 1-5). 

In the medical field not only medical and technical requirements should be taken 

into account, but also ease of use and efficiency aspects have to be considered. 
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The two main end-users of this system are: a) patients with restricted mobility 

and walking ability, b) physicians who aim to objectively monitor and support 

the patients in their free-living environment and response, when necessary, in a 

timely manner. Therefore, the requirements of the patients and the physicians 

had to be analyzed.  Workshops and interviews were conducted with patients 

and professional staff in the neurological clinic of Bad Neustadt, Germany. 

Feedback from patients and physicians was captured and analyzed. The 

following requirements were then determined: 

- The motion sensor must not interfere or disturb users while carrying out 

their free-living activities. Furthermore, the usage of the sensor should be 

possible without much effort. 

- For the diagnosis, no immediate data analysis is required and thus no 

immediate data transfer is needed. Therefore, the trade-off between online 

data transmitting and battery life of the sensor reveals that the battery life 

should be considered as an essential requirement. The battery life should 

be adequate for the ambulatory assessment scenario. That means, the 

motion sensor should be able to capture data as long as possible with no 

need to be recharged, which ensure the comfortable usage of the sensor. 

- In order to get reliable activity and gait information, data from at least 4 

days have to be collected. However, in ambulatory scenarios it is 

important to assess data from weekdays as well as weekends; therefore, 

the sensor should be able to capture data for long period of time (> 1 

week). 

-  For offline analysis a flash (non-voltage) memory, i.e. SD cards allow 

stand-alone operation and thus there will be no need for a host system or 

online data transmission. This is very important in term of battery life 

increment.  

- The data should be comprehensive analysed and detailed information 

about activity intensity, walking ability and abnormalities must be 

provided. Furthermore, the relationship between the extracted parameters 

and the health score should be analyzed. 

- Even if the sensor is able to capture data over long time, the system 

should allow daily data storage to ensure the availability of these data. 

Sensor management charging should be taken into account while 

developing a long term monitoring system. The physicians should be able 

to monitor and manage all patients’ measurements with less time 

consumption and technical effort. Therefore, for the aim of data 
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collecting, managing and analyzing two different end-user software 

should be developed. 

Motion sensor: Several motion sensors were analyzed. Different technologies 

can be used in health care scenarios to capture activity and gait parameters. 

However, the choice of the adequate device should take several factors into 

account. First of all, the device should be able assess information about overall 

human activity, deterioration in gait characteristics and to detect gait 

abnormality. Additionally, it must be possible for the patient to use the device 

easily by oneself at home, thus the device should have high usability. Power 

consumption is an important factor while considering the fact that the system 

should realize long term observation. The system should be used in an 

ambulatory home care scenario and should be able to collect information about 

free-living activities of the patients. Therefore, the motion sensor needs to be 

wearable without disturbing patient during their everyday activities. Table 5-1 

summarize the different main technologies for ambulatory gait analysis.  

Table 5-1. Comparison of main technologies for ambulatory gait analysis 

Device Activity 

Score 

Usability Power 

consumption 

Wearability 

Pressure sensor + - + + 

Gyroscopes + + - + 

Electorgoniometers - - + - 

Accelerometers + + + + 

 

According to this analysis, accelerometer appears to be the best choice for 

objectively movement assessment and analysis of PwMS.  

End-user software: Regarding the developed software, the interviews with 

physicians and patients revealed how the data from new patients as well as the 

ongoing measurement should be processed. Which type of information should 

be delivered to and/or assessed in the clinic. Thus, the following requirements 

were derived from the professional staff: 

- Provide clear overviews on the patients are monitored, with clear 

indication about how long he/she has been monitored. 

-  Provide a visual representation of where each patient is in the 

measurement process, determine which tests are ordered and when. 
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- Recode which measurement is reported, and which contains critical 

results. 

- Ability to provide reports about each day of each measurement. 

Furthermore, a complete report about the whole measurement of each 

patients. 

Questionnaires and Feedback from patients were analyzed and the following 

system requirements were revealed: 

- Provide overview about the process and information about their 

measurement. 

- System should provide them with feedback about their daily activity. This 

feedback was considered as a motivation factor. 

- The system should be robust and easy to use without any special technical 

experiences. Furthermore, problem with the motion sensor should be 

clearly signaled. 

By choosing an adequate accelerometer, develop comprehensive activity and 

gait analysis algorithms and design an appropriate assessment system it will be 

possible to realize the aimed home-based measurement system that fulfill the 

above mentioned requirements.  

5.3 Concept and Implementation 

This section presents the conception of the developed Home-based monitoring 

system. This system provides to clinical staff a powerful decision support tool 

and to patients a robust health evaluation and monitoring system, which 

feedback them with their medical and health information. The main 

contributions of the systems are: 

1. A comprehensive activity and gait monitoring system to recognize disease 

progression and detect changes in health status. 

2. Robust and simple mechanism, which inform patients about their actions 

and motivate them to active contribute in the management of their 

disease.  

3. An objective monitoring and health care tool, which assist physicians to 

design patient-specific treatment and to optimize this treatment when 

needed. 

The system consists of three subsystems: the motion sensor, Patient-Unit and 

Physician-Unit. 
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The motion sensor attached to the patient’s body. It enables the gathering of 

patient’s daily physical activity and gait parameters through the continuous 

recording of the acceleration signals. The selection of the adequate 

accelerometer is discussed in section 5.3.1. The Patient-Unit consists of an 

EeePC on which the Patient-Software is installed. This software is mainly 

responsible for the raw data storage, sensor recharging and feedback daily 

reports generating. The Physician-Unit is located at the Physician’s office or the 

clinic. It consists of personal computer Physician-PC, on which the Physician-

Software is installed. This Unit is responsible for all patients’ data processing 

and assisting the physicians in capturing the slightly changes in the health status 

and classifying the responses of the patients to the intervention. Patients’ data 

are restored on the Physician-PC and further knowledge and parameters are 

generated so that the physicians are informed about abnormal situation and 

patient’s health condition. Thus, in case of abnormalities the physicians will be 

able to modify the treatment or trigger alarm situation. The main components of 

this unit are:  

a) Patients’ record management. 

b) Measurement management. 

c) Comprehensive data analysis and reports generating. 

5.3.1 Accelerometer Selection 

There are different types of accelerometer on the market section 4.4.4. These 

devices differentiate from each other in term of their technical specifications. 

One of the important specifications is the number of the axes. The sensor should 

be able to sense the components of the body movement in the all three 

directions. Therefore, a triaxial acceleration sensor was chosen. 

One of the key points to measure human acceleration is to understand the 

motion of the human body and to define which physical property is wished to be 

measured. This is necessary to choose the right accelerometer placement. The 

signal of an acceleration sensor attached to the human body consists of three 

base components: the static acceleration of gravitational field, the acceleration 

component due to bodily motion and spurious accelerations; such as artifacts 

due to vibration caused by other sources. However, the first two components are 

connected directly to the physical activity and gait, whereas the third component 

presents noise in the signal and can be minimized by using the right signal 
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filtering and through carefully chosen sensor placement. Various sensor 

placements have been used to assess gait over the years (e.g., [12], [13]).  

The position at which an accelerometer is placed in the body is an important 

consideration in the measurement of body movement. The placement position 

has large variety including and not limited to chest, fore head, ankle, hip, thigh, 

wrist. Normally the sensors will be attached to the part of the body whose 

movement is being studied. For example, to investigate the movement of the leg 

during walking the sensor is attached to the ankle and shin. The sensor in this 

work was used to assess the patient’s physical activity and gait data in their free-

living environment, and thus the placement of the sensor should not interfere 

with the patients’ everyday activity. Measures of trunk acceleration have shown 

to be sensitive to age- and disease-related gait changes [141]. Therefore, the 

trunk sensor position has been considered as an indicator of the motor control of 

walking. Hip placement showed in different studies higher accuracy and user 

acceptance in ambulatory activity monitoring and best performance predicting 

speed in Comparison with wrist, thigh and ankle placement [142]. Therefore, the 

placement position on the hip was chosen. 

To measure the human everyday activity and gait, the measurement system 

employed must be able to measures up to the desired frequency. Generally, 

acceleration signals were found to increase in magnitude from the head to the 

ankle. The frequencies of the human free-living activities, such as; walking, 

running, climbing stairs range between 0.25 Hz and 20 Hz [143]. Similar as for 

the frequency, the amplitudes of the signal involved in locomotion are lower at 

the head in comparison with the signal measured at the low back. The amplitude 

of the acceleration signal assessed at the ankle has the highest value. For 

example, during jumping the absolute vertical peak accelerations measured at 

the head ranges between 3.0-5.6 g, whereas it varies between 3.9-6 g at the low 

back and between 3.0-7.0 g at the ankle. This leads to the conclusion that, if the 

sensor is to place on the hip the measurement range of ±6g should be sufficient. 

However, experimental data suggest safe amplitude limits for the sensor 

hardware that is used to capture acceleration data during running and similar 

type of application. For a sensor attached at the torso or hip a range of ±8g is 

recommended. 

Move II was the only acceleration sensor on the market which fulfills the 

previous mentioned requirements (e.g. number of acceleration axes, battery life, 

data transfer and storage). The measurement unit consists of a tri-axial 
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acceleration sensor (adxl345, Analog Device) with a measurement range of 

±8 g, a sample rate up to 128 Hz and a resolution of 12 bit, and an air pressure 

sensor (BMP085, Bosch GmbH) with a sample rate of 8 Hz and a resolution of 

0.03 hPa. The sensor weights 32 g has the dimensions of 3 cm × 5 cm × 2 cm, 

and can be carried at different body positions (hip, wrist or chest). The 

acceleration signal can be recorded up to 30 days and saved on a 2 GB micro SD 

card. The recorded raw data can be transferred to a computer by USB 2.0 

interface. Figure 5-3 shows the block diagram of the measurement unit. 

 

Figure 5-3. Block diagram of the triaxial acceleration sensor (move II) 

(modified) 

The acceleration raw data assessed by the measurement unit (acceleration 

sensor) were transmitted via the USB interface to a local laptop or computer. As 

illustrated in Figure 5-4 Matlab was used for the aim of data pre-processing, 

analysis and development and evaluation of the algorithms. 

 

Figure 5-4. Data collection and processing 
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5.3.2 System Architecture and End-User Software 

To realize the daily data assessment and analyzing over a long period of time a 

corresponding software platform was developed for Physician-Unit and Patient-

Unit. This section introduces the system architecture and the software 

framework. The requirement according easy use with no especial technical skills 

was highly considered during the development. 

System activity diagram shown in Figure 5-5, gives an overview about the usage 

process of the system. A measurement carried out with this system consists of 

three phases; Begin Phase, Measurement Phase and End Phase. In the Begin 

Phase, measurement’s parameters will be determined (e.g. measurement time) 

and the measurement will be started. Based on the measurement time, the life 

cycle (measurement begin and measurement end) of each measurement will be 

defined. Measurement Phase is the core phase in the daily acceleration data are 

generated and collected. These data are collected over a period of time that is 

defined in the Begin Phase (measurement time). The End Phase is the last phase 

of the measurement cycle in which the system is returned, data are transferred to 

the physicians PC, comprehensive analysis of the data is performed and a report 

about the activity behavior is visualized. 

 

Figure 5-5. System activity diagram 

Measurement Configuration and Process: Configuration process started by 

the physician, where the Sensor-ID and Patient-ID are interred and connected to 

each other (Figure xx). Sensor will be configured, in which the start and end 

time of the measurement are defined. Furthermore, sensor will be attached to the 
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EeePC so that the latter will be assigned to this specific sensor along the 

measurement time, i.e. the sensor is assigned to the EeePC. Based on this 

assignment system will control the sensor attached to the EeePC, and in case of 

differences, no data transfer will be possible. This information (i.e. Sensor-ID, 

EeePC-ID and Patient-ID) are saved in the measurement configuration. EDSS-

value of the patient will be captured and stored for the analysis.  

Measurement data: Is the event where the Sensor-ID, Patient-ID and EeePC-ID 

are given and saved in the system. Furthermore, the measurement time is 

defined. 

Sensor attached to the EeePC: Is the event where the measurement time and 

Sensor-ID are automatically configured on the EeePC. 

Measurement start: After having measurement time and Sensor-ID configured 

on the EeePC, the daily measurement can be started. During this event, the 

Patient-Software transfers the data to the EeePC and generates a daily report. 

When achieving the end time, the measurement will be ended and the 

configuration of the EeePC are automatically reset and wait for the new 

measurement configuration. 

Data collected using the above-described system were analyzed, filtered and 

processed to derive clinically related information associated with activity and 

gait characteristics of PwMS.  

System Architecture: As it was aforementioned, there are two different end-

user software; Patient-Software (Figure 5-6) and Physician-Software (Figure 

5-8) 

Patient-Software is installed on the EeePC and consists of three components 

Patient Interface, Patient Controller and Patient Model. 

Patient Interface: This component is responsible for the display of measurement 

information (i.e. checking measurement schedule, how long did the 

measurement last) as well as sensor-related information (e.g. sensor data will be 

copied, senor will be recharged). This information will be passed to this 

component from Patient Controller component. Furthermore, this interface is 

dedicated to display the daily activity report. The analyzed data will be also 

passed from the Patient Controller component. 



Conception and Implementation of a home-based system to objectively assess comprehensive gait 
parameter for PwMS 

88 
 

Patient Controller: This component is dedicated for the measurement and sensor 

control. It is the intermediate between the motion sensor and the Patient-

Software. A Subcomponent of the Patient Controller is the Sensor Manager, 

which enables the access to the sensor device. For the very first time when the 

sensor attached to the EeePC Sensor Manager reads the main measurement 

configuration, i.e. sensor-ID and measurement duration. This information will 

be automatically passed to the Patient Controller. Hence, in the successive times 

when the sensor is attached, this information will be checked by the Sensor 

Manager. This ensures that the right patient’s activity data are saved on the right 

EeePC.  Furthermore, the Sensor Manger reads sensor data and passes it to the 

Storage Manager to be saved on the SD card. Another subcomponent is the 

Config Manager, which is dedicated to store sensor and measurement 

configuration data. The third subcomponent is the Analysis Manager. This 

component accesses the raw data and performs the analysis. Patient Controller 

component passes the analyzed data to the Patient Interface. Furthermore, it 

informs the Patient Interface component about the loading state of the sensor as 

well as the measurement state. 

Storage Manager: As it was mentioned before, the sensor is able to capture data 

for 1 week, however, the sensor might be defect or the memory could be full. 

Therefore, the data should be daily stored on the EeePC and deleted from the 

sensor. The component Storage Manager is responsible for the raw data save on 

the SD card of the EeePC. When the data are saved, this component deletes it 

from the sensor. As soon as the data have been transferred to the SD card 

Storage Manager informs the Analysis Manager component, so that the latter 

can perform the analysis. 
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Figure 5-6. System architecture- Patient-Software 

The Patient Graphical User interface is developed to be simple without 

interaction of the patient. The designed interface starts automatically when the 

EeePC is turned on. As soon as the EeePC is turned, the Patient-Software will 

automatically start. After having the sensor attached, data will be automatically 

transferred and saved on the SD card, and the sensor will be recharged. Patients 

can use this interface to get their feedback about their daily activities. The main 

functionalities of the patient interface are:  

a) Display the measurement’s information and measurement’s schedule. 

b) Illustrate information about sensor and data storage status. 

c) Display the analysis results. 
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The EeePC is automatically shut down as soon as the data are saved, analysed 

and the sensor is fully recharged. 

 

 

Figure 5-7. User Interface - Patient-Software 
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For the physician a Physician-Software was developed and installed on the 

Physician-PC. This software is dedicated to assess the physician in monitoring 

patient’s activity and walking behavior in their free-living environment. 

Similarly, to Patient-Software, Physician-Software consists of three main 

components:  

Physician Interface: This component gives the information about patients, 

measurements and sensors (in use and available). Furthermore, Physician 

Interface is responsible for the analysis display of the completed measurements. 

Patient-related information (e.g. name and EDSS) as well as measurement-

related information (begin and end) will be passed from this component to the 

Physician Controller. 

Physician Controller: It can be considered as a core component of the Physician-

Software. Physician Controller is responsible for measurement configuration. 

This can be done via the subcomponent Sensor Manager, which allows the 

access to the sensor, where the measurement duration and configuration will be 

saved. Sensor Manager Component passes the sensor-ID to the Physician 

Controller and the latter assign this ID and the measurement configuration to the 

patient-ID. Physician Interface component can then request this information 

from the Physician Controller. Moreover, Physician Controller component 

checks if the correct sensor is attached, then it transfers the data from the SD 

card and passes it to the Storage Manager. Otherwise, the transfer will not be 

possible, and an error message will be displayed. After having the data saved, 

the access to the Analysis component will be allowed, and analysed data will be 

passed to the Physician Interface to be displayed as well as to the Storage 

Manager to be saved. 

Storage Manager: All captured data will be saved on the Physician-PC in order 

to have more detailed analysis and better assessment of the patient’s motor and 

health status. Storage Manager is responsible for data storage on Physician-PC. 

This component gets the assignment information from the Physician Controller 

so that the right sensor data will be saved and assigned to the right patient. 

Furthermore, this component is responsible for store all patient-related, 

measurements and analysis information. 
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Figure 5-8. System architecture- Physician-Software 

The physician user interface was developed to help physicians for manage and 

monitor patients’ daily measurements. The key functionalities of this interface 

are:  

- Patients Overview: This view displays all running measurements and the 

sensors (the one in use and the available one) (a) 

- Adding new patient: Before the new measurement can be started, a new 

patient record should be generated. This functionality allows the 

physicians to inter patient-related information, define measurement 

configuration and assign a certain sensor to the specific patient. If the 

patient already exist, then the patient record can be opened and a new 

measurement can be started. (b) 
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- Starting new measurement: In this step the Patient-ID, Sensor-ID will be 

defined. Measurement configurations will be determined and the EDSS 

Scale of the patients will be captured and saved. (c).  

- Open and requesting information from a certain patient: This functionality 

allows the physicians to search for a certain patient in the patient database 

and e.g. measurement process and/or analysis information of a specific 

measurement day. Furthermore, the ongoing measurement can be stopped 

or canceled. The 10-meter test shown in the figure was especially 

developed to collect reference data for developing the algorithms of 

activity and gait parameter (e.g. asymmetry) 

- End measurement: to terminate the ambulatory measurement.  

- Extracting sensor data and Analysis: After terminating the measurement, 

sensor data will be transferred to the Physician-PC, and then the analysis 

will be performed. Physician can display information and report about 

each measurement day as well as a complete report about the whole 

measurement. (d). Example of the extracted report is shown in (e) 

 

 

 
a) b) 
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c) d) 
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Figure 5-9. User Interface- Physician-Software 

 

e) 
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5.4 Development of gait parameters in time, frequency and time-

frequency domain 

As previously discussed in section 2.3, activity and gait disturbance are the most 

common symptoms in patients with multiple sclerosis. In this work, features in 

time, frequency and time frequency domains were explored.  

Walking speed and cadence are widely considered in healthcare researches as a 

predictor of e.g. disability and falls. Daily steps count has been shown to be 

related to different clinical measures; such as balance, fatigue. Therefore, gait 

parameters such as walking speed and steps count were investigated in this work 

to capture the changes in health status of the PwMS.  Furthermore, Increasing 

disability and symptoms may prevent PwMS from participating in physical 

activity  and different studies include patients with mild, moderate and sever 

disability showed that increased level of disability is associated with decreased 

level of physical activity performance (metabolic equivalent [MET]) [144]. 

Typically, the symptoms of MS are likely to be dominant on one side. Thus, gait 

asymmetry can be a direct consequence of abnormality and could be increased 

as result of degeneration of health status.  

Moreover, comprehensive analysis of gait feature in frequency and time-

frequency domain can provide complementary information to understand gait 

patterns and can possibly be used to identify changes in gait parameters. 

Therefore, additional parameters such as; peak frequency and energy 

concentration were investigated in this thesis. Figure 5-10 illustrates the 

approaches along with the gait features were extracted and analyzed.  
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Figure 5-10. Approaches for gait features extraction and analysis 
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The assessed parameters were used to objectively capture the slightly changes in 

gait characteristics and classify the response to medical therapy. In the following 

the algorithms developed to extract different signal features in time, frequency 

and time-frequency domain will presented. 

5.4.1 Walking speed 

Walking speed is widely reported measures in clinical setting. It is a reliable, 

valid measure and considered to be a good indicator of gait performance. 

Therefore, it is often included in clinical research studies. The objective here is 

to develop a system to capture walking speed of PwMS in their everyday life 

using one tri-axial accelerometer placed on the hip. In this work a support vector 

machine (SVM) was implemented. Unlike other methods (e.g. activity count, 

neural network) SVMs can deal large-scale training data without a large amount 

of learning time, they are less prone to over fitting and needs less memory to 

store the predictive model. Furthermore, they are less sensitive to between-

subject biomechanical. Based on the developed algorithm the changes in daily 

walking speed of multiple sclerosis patients were assessed. 

Different studies used accelerometer to extract walking speed in free-living 

environments. Some of those systems used multiple accelerometer devices 

attached to chest, thigh and forefoot to capture walking speed [145]. However, 

such systems have low user’s acceptance and therefore are not suitable for long-

term monitoring. The most common method to estimate walking speed from 

accelerometers is the measure of activity counts (ACs). Due to its sensitivity to 

between-subjects biomechanical this method suffers from poor accuracy. 

Machine learning methods, such as artificial neural network (ANN), have been 

also applied to detect walking speed. The main drawback of the ANN-based 

methods is their dependency on large amounts of training time and data and the 

complexity. Other researchers decided to use predefined human gait model. This 

method does not require subject-specific training phase. Nevertheless, the 

accuracy in such methods depends on the validity of the model. Furthermore, 

subject-specific anthropometry must be measured in order to build the model, 

which requires additional efforts. 

5.4.1.1 Dataset 

Data from two different studies were used to train and evaluate the gait speed 

estimation model (Indoor and Outdoor studies) [145]. In the indoor scenario 17 

individuals were asked to carry out different activities (sitting, standing, 

walking, etc.). During all the activities an accelerometer (section 5.3.1) was 
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attached to the hip. The raw data captured with sample rate of 128 Hz. For the 

development of walking speed estimation algorithms, activities as walking and 

jogging were considered. Individuals walked along a predefined walkway in a 

circular indoor track at three different walking speed; normal (NWS), fast 

(FWS) and Jogging (JOG) (approx. 1.33 m/s, 1.55 m/s and 2.22 m/s), 

respectively. They walked 3 minutes for each speed. The speed was controlled 

using an audible signal to set up the walking speed rhythm. Furthermore, 

participants walked on treadmill where the speed was defined for each activity. 

In the outdoor study twenty individuals have participated. In order to simulate 

situations similar to those in the free-living environments participants were 

constructed to walk an outdoor predefined distance at three self-selected walking 

speed (NWS, FWS and JOG). The distance in the case of NWS and FWS was 

415 m and for JOG was 830 m and the time needed for the individual to cover 

the distance was noted. The acceleration signal in were also captured via 

accelerometer (section 5.3.1) attached to the hip and with sample rate of 64 Hz. 

Individuals’ characteristics are shown in the table below (Table 5-2). 

Table 5-2. Individuals' characteristics 

 Males 

(N=24) 

Females 

(N=13) 

All subjects 

(N=37) 

Age (yrs.) 31.63 ± 9.67 31.00 ± 8.51 31.41 ± 9.29 

Height (m) 1.79 ± 0.07 1.67 ± 0.04 1.75 ± 0.08 

Weight (kg) 82.70 ± 12.06 65.09 ± 9.00 76.51 ± 13.91 

BMI (kg.m-2) 25.83 ± 3.04 23.36 ± 2.99 24.96 ± 3.24 

 

5.4.1.2 Development of the SVR estimation model 

The only input of the algorithm is the acceleration signal captured from the 

sensor attached to the hip. Walking speed cannot be simply estimated by 

integrating the acceleration signals. First of all, the acceleration signal consists 

of not only from body acceleration but also of static acceleration of gravitational 

field and artifacts acceleration. Secondly, the accelerometer drift grows 

proportional to the square of the time resulting in large inaccuracies in the 

estimation. Therefore, both gravity acceleration and noise were eliminated with 

a Butterworth high-pass filter (cut-off 0.2 Hz) and Butterworth low-pass filter 

(10 Hz), receptively. For the analysis the vertical axis was extracted. Then the 

overlapping sliding windows, each of 3 seconds interval, was performed. 

(Figure 5-11).  
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Figure 5-11. SVR estimation model 

Each segment was then presented as a vector of different features. These 

features were used to train and evaluate the SVR regression model. First of all, 

the feature signal energy (𝑒) was calculated. This feature contributes 

significantly and has a good correlation with walking speed. Therefore, this 

work considers this feature as the main feature and combined it with other 

features to increase the accuracy. After that, the variance (𝑣𝑎𝑟) of the vertical 

axis and the difference between the minimum and the maximum acceleration 

(𝐴𝑚𝑝) of the vertical axis were calculated for each segment. In time domain 

features extraction, the variance is a good measure of the spread of the signal 

around its mean. However, this feature could be affected by the number of steps 

were taken, therefore, for the 3 seconds segment the variance for each 0.1s was 

derived and the mean value was calculated. The feature 𝐴𝑚𝑝 of the vertical axis 

is known to be strong correlated with the walking speed (Figure 5-12) and also 

is independent from the number of steps within the considered segment. 

Furthermore, Fast-Fourier-Transformation was applied to determine the 

maximum signal frequency and its corresponding position in time domain. Due 

to small windows interval of 3 seconds (Figure 5-13), zero-padding was 

performed so that more precise frequency localization will be possible. 

 

Figure 5-12. Correlation between acceleration gap and walking speed 
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The following features have been extracted: 

Energy (𝑒): Is the signal energy for all three axes; where (𝑥𝑖 , 𝑦𝑖  𝑎𝑛𝑑 𝑧𝑖) are the 

three axes of the 𝑖𝑡ℎ  segment: 

 

𝑒 =  
1

𝑁
∑√𝑥𝑖

2 + 𝑦𝑖
2 + 𝑧𝑖

2

𝑁

𝑖=1

 

Eq.5-1 

 

Variance (𝑣𝑎𝑟): The variance of the vertical axis (𝑦) 

 

𝑣𝑎𝑟 =  
1

𝑁
∑(𝑦𝑖 −𝑚𝑒𝑎𝑛 (𝑦⃗))

2
𝑁

𝑖=1

  

 

Eq.5-2 

Frequency (𝑓𝑟𝑒𝑞): The maximum frequency component of the vertical axis 

(𝑦); where 𝑓𝑓𝑡(𝑦) is the Fourier transform of the vertical axis and 𝑓𝑠 is the 

sample rate. 

 𝑓𝑟𝑒𝑞 = 𝑓𝑓𝑡(𝑦⃗); 𝑓𝑠 ≔ |𝑌(𝑓𝑠) = max (𝑌⃗⃗)| 

  
 

Eq.5-3 

MinMaxDiff (𝐴𝑚𝑝): The amplitude of the vertical axis 

 

 𝐴𝑚𝑝 = 𝑚𝑎𝑥(𝑦⃗) − 𝑚𝑖𝑛(𝑦⃗) 
  

 

Eq.5-4 

SteplengthTimesFreq (𝑣): step length multiplied by step frequency 

 

 𝑣 = 𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑠𝑡𝑒𝑝𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 

 

Eq.5-5 
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Figure 5-13. Example of feature extraction (energy) for 3 seconds acceleration 

signals 

RBF-Kernel function will be used and this function is spherically symmetric, the 

extracted featured were normalized as follow: 

 
𝑣𝑓𝑛𝑜𝑟𝑚 = 

𝑓 − min (𝑓)

max(𝑓) − min (𝑓)
 

 

 

 

Eq.5-6 

where, 𝑓 is the features vector 

Three model parameters (𝐶, 𝛾, 𝜖) are determined so that the test error is minimal. 

In this work these parameters are optimized by greedy search and cross 

validation procedures. From the three parameters 27 different combinations of 

(𝐶, 𝛾, 𝜖) determine possible solutions to be tested. Figure 5-14 illustrates the 

entire process to select the best feature and model parameters were determined. 

For each feature combination value of the (𝐶, 𝛾, 𝜖) parameters were found. 

Greedy search approach was used to optimize the model parameters. Greedy 

search method works in stages. At each step one input value of (𝐶, 𝛾, 𝜖) 

parameters is considered. This particular input will be evaluated and decided 

whether it gives the optimal solution or not. The optimal solution is the one with 
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minimum square error. After that, the estimation model was build and trained 

with this set of feature combination and characteristic parameters. Then the 

model was tested using leave-one-subject out approach.  

 

Figure 5-14. Entire process to select features and model parameters 

The dataset used in this work includes treadmill walking activity and ground 

walking activity. Since the walking on treadmill differs from walking on ground 

the SVR model was trained for the dataset with and without treadmill. 
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Moreover, two separate SVR models (one for slow and fast walking and one for 

jogging/running) were trained. The results showed that when using the general 

estimation model, the mean square error is lower when the complete dataset was 

included; i.e. dataset with treadmill (RMSE (m/s) = 0.0432) and without 

treadmill (RMSE (m/s) = 0.0467). Therefore, the complete dataset was used for 

the evaluation of the speed prediction models (Table 5-3). 

Table 5-3. Estimation error of different datasets 

Dataset RMSE 

m/s 

Complete 0.0432 

Complete without 

treadmill 

0.0467 

Jog 0.0884 

Jog without treadmill 0.0975 

Walking 0.0092 

Walking without 

treadmill 

0.0116 

 

Using different estimation models (i.e. general, Jog/running and walking 

slow/fast models) several features’ combinations were tested to determine the 

best combination with minimum mean square error. The results showed that the 

feature energy can provide lower mean square error with acceptable svRatio (the 

number of support vectors divided by the number or training samples) in 

comparison with all other features combinations (energy: RMSE = 0.043 m/s; 

svRatio 0.11) (Table 5-4). Therefore, in the forthcoming analysis the feature 

energy was used. 

Table 5-4. Mean square error and svRatio of different feature combinations 

(General model, Jogging Model and Walking model) 

Feature RMSE 

m/s 

svRatio 

General Model   

𝑒 0.043 0.15 

𝑒 𝑣𝑎𝑟 0.045 0.13 

𝑒 𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ 0.046 0.14 

𝑒 𝐴𝑚𝑝 0.049 0.13 

𝑒 𝑓𝑟𝑒𝑞 

𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑎𝑟 
0.05 0.11 
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𝑒 𝑓𝑟𝑒𝑞 0.053 0.09 

𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ 0.055 0.08 

𝑒 𝑓𝑟𝑒𝑞 𝑣𝑎𝑟 0.06 0.11 

Jogging Model 

𝑒 0.08 0.15 

𝑒 𝑣𝑎𝑟 0.11 0.22 

𝑒 𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ 0.116 0.21 

𝑒 𝐴𝑚𝑝 0.108 0.22 

𝑒 𝑓𝑟𝑒𝑞 

𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑎𝑟 
0.11 0.21 

𝑒 𝑓𝑟𝑒𝑞 0.12 0.21 

𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ 0.21 0.19 

𝑒 𝑓𝑟𝑒𝑞 𝑣𝑎𝑟 0.12 0.28 

Walking Model 

𝑒 0.009 0.07 

𝑒 𝑣𝑎𝑟 0.010 0.09 

𝑒 𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ 0.011 0.03 

𝑒 𝐴𝑚𝑝 0.012 0.06 

𝑒 𝑓𝑟𝑒𝑞 

𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ𝑣𝑎𝑟 
0.012 0.08 

𝑒 𝑓𝑟𝑒𝑞 0.013 0.03 

𝑠𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ 0.022 0.05 

𝑒 𝑓𝑟𝑒𝑞 𝑣𝑎𝑟 0.014 0.04 

 

5.4.1.2.1 Validation 

Cross validation technique was used to validate the developed SVR model. 

Leave-one-subject out approach was applied, which is a particular case of leave-

p-out subject where p=1. This method involves one observation out of the 

dataset as validation set and the remaining observations as training set. To 

quantify the accuracy of the method, the RMSE was calculated as well as the 

RMSE %. Table 5-5 summarizes the results of the three models (general, 

jogging and walking) for both indoor and outdoor studies. Both walking and 

jogging data from both studies were used as input for the general SVR model. 

Best results was seen when estimating fast walking speed for both indoor and 

outdoor studies (RMSE = 0.07m/s, RMSE% = 4.66 and RMSE = 20.04m, 

RMSE% = 4.82%, respectively) in comparison to jogging (RMSE = 0.22m/s, 

RMSE% = 10.2; p < 0.01 and RMSE = 90 m, RMSE% = 10.8%; p < 0.01) and 

slow walking (RMSE = 0.16m/s, RMSE% = 12.3; p < 0.01 and RMSE = 48.4 
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m, RMSE% = 10.2%; p < 0.01) activities. However, using slow/fast model 

showed higher RMSE and RMSE% values in estimation fast walking speed 

when compared with the general methods, whereas the results observed for slow 

walking was better in the outdoor study. The general model showed better 

results for jogging activity in comparison with jogging SVR estimation model 

for outdoor study; where as the result for indoor study was better when using the 

jogging model. 

The values of RMSE in the outdoor study using jogging and slow/fast walking 

model were 78.57m and 23.96m, respectively. In the comparison of speed, the 

average speed error was 0.16 m/s when using the general model and 0.27 m/s 

and 0.07 m/s when using the jogging model and slow/fast walking speed model, 

respectively. The jogging model showed larger absolute and percentage error in 

comparison to the general and slow/fast walking speed model. 

Table 5-5. Mean square error and percentage mean square error of the 

estimation models 

Dataset Error 

General model Jogging  

model 

Slow/fast model 

jog slow fast  slow fast 

Outdoor 

study 

RMSE 

(m) 

90 

(7.31) 

48.42 

(8.7) 

20.04 

(3.67) 

78.57 

(3.22) ** 

23.95 

(0.53)** 

26.95 

(0.9)* 

RMSE 

% 

10.85 

(0.88) 

10.18 

(2.1) 

4.82 

(0.88) 

9.47 

(0.38) 

5.77 

(0.12) 

6.49 

(0.2) 

Indoor 

study 

RMSE 

(m/s) 

0.22 

(0.07) 

0.16 

(0.12) 

0.07 

(0.01) 

0.27 

(0,02) ** 

0.07 

(0.01)** 

0.07 

(0.02) 

RMSE 

% 

10.22 

(0.4) 

12.3 

(9.3) 

4.66 

(0.5) 

12.36 

(0.79) 

5.5 

(0.09) 

4.55 

(0.03) 
Note: Mean and SD were given. Jog = jogging, slow = slow walking speed, fast = fast 

walking speed 
* = p < 0.05, **= p < 0.01 

Validation with Data from PwMS: This algorithm was developed to be used for 

walking speed estimation in PwMS. However, gait pattern and parameters may 

differ in PwMS from those of healthy individuals. Therefore, the estimation 

accuracy of the algorithm was evaluated using dataset collected from PwMS. 

The data was collected from 11 PwMS during the 10-meter walking test where 

the patient walked along a 10 meter flat walkway forth and back one time at 

their comfortable speed and the other time at fastest (as fast as possible) but safe 

walking speed (section 6.1.1.2). Number of steps and the step length were 
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assessed by the clinical staff and the actual distance the patient walked was 

calculated. Using the walking speed developed algorithm these walking 

distances were estimated and both RMSE (m) and RMSE% were calculated 

(0.24 and 0.02%), respectively (Figure 5-15) 

 

Figure 5-15. Walking speed estimation in PwMS - Clinical test 
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5.4.2 Steps count  

5.4.2.1 Related work 

There are different methods for step detections used in the previous studies such 

as; peak detection, flat zone. Step detection typically used peak detection 

method, which is sensitive to noise and greatly affected by individual walking 

speed, producing a high rate of false positive. Flat zone detection using 

acceleration differential is not suitable if only one sensor will be used and the 

flat zone of the signal will not be detected if the sensor is attached to the waist or 

hip. 

Neural network has been also used for the aim of step detection. This method is 

accurate especially when it used to differentiate between walking activity and 

other similar activities. However, it is hardly affected by walking speed, thus in 

order to get high detection accuracy a big training data for each possible walking 

speed is needed. Step detection using pressure sensor is considered to be very 

accurate. Nevertheless, such methods are not appropriate for purpose of 

ambulatory assessment because a separate sensor integrated in the shoe sole is 

required. Detection methods based on smart phone have also been proposed, 

however with limited accuracy of step detection. 

Other studies used frequency-based methods such as Fast Fourier 

Transformation or Lomb-Scargle periodogram.  However, in contrast to time-

based methods the frequency-based methods are highly affected by different 

speed and therefore show low accuracy at low walking speed [146]. 

5.4.2.2 Development 

In this work a step detection algorithm using zero-crossing was used. Using 

these algorithm steps taken by individuals in their everyday life was detected 

and the cadence was extracted. Furthermore, using the detected steps the step 

length were assessed and gait asymmetry was investigated (section 5.4.3). 

Figure 5-16 illustrates the developed algorithm. 
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Figure 5-16. Step detection algorithm- Flowchart 

First of all, the vertical axis was considered for the analysis. The noise was 

filtered, and the offset was removed using Butterworth high-pass (0.2 Hz) and 

low-pass filters (3.5 Hz), respectively. The filter process was performed twice 

with inverse direction for the second time. This ensures that the detected zero 

crossing points will not be shifted in time by the effect of the filter’s phase 

response. This is an important step especially in the analysis of gait asymmetry 

(section 5.4.3). After having signal filtered and the time delay compensated 

(Figure 5-17 a ,b), a threshold of -0.02g was determined and every oscillation 

around zero bigger than -0.02g was excluded from the analysis, otherwise, it 

was considered as zero-crossing and included in the further analysis as 

corresponding peaks. The zero crossing points in the positive direction 

correspond to a positive peak.  Furthermore, since the frequency of walking 

activity range between 0.5-4Hz, the frequency of two consecutive points is 

examined if it is in the acceptable range (2 seconds). In this case a potential step 

between the first and third zero crossing points was defined. Within this 

potential step the minimum, whose amplitude exceeds a certain threshold was 

searched, after that the time different between this potential steps and the 

previous was investigate. If the time difference was in the interval of ±2 second 

then the step was recognized as such, otherwise no step was detected (Figure 

5-17 c).  
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Figure 5-17. a) Raw acceleration signal, b) Filtered signal, c) Detected steps 

To evaluate the step detection algorithm, dataset form the previous mentioned 

study was used (section 5.4.1.1). Sensitivity and positive predictive value were 

calculated (Table 5-6). Results showed high sensitivity (99.97 %) for both 

walking and jogging activity. The detected steps were then used to investigate 

gait asymmetry in PwMS (section 5.4.3). 

 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Eq.5-7 
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Table 5-6. Sensitivity and positive predictive value of step detection - walking 

and jogging activities 

Activity step FP FN TP SE PPV 

Slow and fast 22291 5 11 22280 99.95% 99.97% 

Jogging 16981 6 12 16969 99.92% 99.96% 
Note: slow and fast = slow and fast walking speed 

5.4.3 Gait Asymmetry 

5.4.3.1 Related work 

Gait symmetry has been defined as the prefect function agreement between left 

and right limb. Movement asymmetry is associated with motor and gait 

dysfunctions and it is commonly observed in related with decline in health 

status.  Patients with chronic diseases, such as Multiple sclerosis, may exhibit 

very asymmetrical gait [147]. Therefore, the reduction of asymmetry is 

clinically addressed by rehabilitation therapists and considered to be important 

parameter in gait evaluation and clinical decisions especially in patients with 

residual stroke or neurological chronic disease such as multiple sclerosis.  

The term “gait symmetry” can be applied when the right and the left sides of the 

body behave identically. Therefore, the typical symmetry measures aimed to 

compute this similarity using either discrete or continuous methods. 

Discrete methods: are the most common. They require simple temporal of 

spatial gait measurements or featured extracted from the movement signal. 

Usually, the simple symmetry index is used. 

 
𝑆𝐼𝑠𝑖𝑚𝑝𝑙𝑒 =

𝑋𝐿
𝑋𝑅

 

 

Eq.5-8 

However, the symmetry index requires the choice of a reference value. This is 

the major disadvantage of this method because the reference value is not always 

clear and can lead to inconsistent results. Other studies used the symmetry angel 

to investigate gait asymmetry. This method is not affected by the choice of 

reference value. However, the system needed to capture angel symmetry 

consists of different markers attached to the upper and lower limbs and 6-camera 

systems [148]. Gyroscopes and pressure sensors have been also used to define 

the swing phase of each gait cycle and to calculate the asymmetry. As it 

mentioned before (chapter 4), the main limitation of such systems is their high 

power consumption or low user acceptance, respectively. 



Conception and Implementation of a home-based system to objectively assess comprehensive gait 
parameter for PwMS 

112 
 

Continuous methods: based on the similarity comparison between two 

continuous signals, such as EMG or angular displacement. Continuous methods 

might be considered to be more informative in compare to discrete method. 

However, in order to get high accurate results multiple sensors should be 

attached to different body position (e.g. both legs, arms and legs).  

The unique opportunity to use only one accelerometer to capture gait asymmetry 

under controlled and free-living condition is presented in this work. 

5.4.3.2 Development of gait asymmetry 

Data from PwMS was collected during the 10-meter walking test (age = 41±9.3; 

height = 170±8.1; weight = 72±16.7; EDSS = 3.6±1.66). Patients were asked to 

walk forth and back at different walking speed. Detailed information is in 

(chapter 6).  

Acceleration signals were assessed using 3 acceleration sensor attached to the 

right side hip. Gait symmetry/asymmetry index (𝑆𝐼) was defined using two 

different parameters; step time and swing phase ratio. 

Step time (𝑇): is the time between the two consecutive ground contacts (heel 

strike) of the same foot. This time was calculated for the right and the left 

foot, 𝑇𝑅𝑎𝑛𝑑 𝑇𝐿, respectively (Figure 5-18). 

 

Figure 5-18. Step time for left (blue) and right (red) foot 

Heel strike is one of the clearest points in the signal. Therefore, the time 

between two consecutive heel strikes was calculated to determine the step time 

(𝑇). This time is defined as: 

 𝑇𝑛 = 𝑇𝐻𝑆𝑛+1 − 𝑇𝐻𝑆𝑛  

 

Eq.5-9 
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where, 𝑇𝐻𝑆𝑛 is the step time of the 𝑛th ground heel strike.  

Step time 𝑇  for each foot was defined and the value of the difference between 

both times, i.e. 𝑇𝐿and 𝑇𝑅 , determines the 𝑆𝐼. 

Different phases compose the gait cycle (section 2.2). That means each step time 

of each foot consists of different phases, namely swing phase and stand phase 

(Figure 5-19).  

 

Figure 5-19. Gait phases in acceleration signal [149] 

Therefore, in order to determine the ratio of the swing phase to the total step 

time, two main distinctive time stamps should be defined. Those are; the 

beginning of the swing phase (Toe off) and the end of this phase (heel strike). 

Swing phase ratio can be then defined as: 

 
∅𝑠𝑤𝑖𝑛𝑔 =

𝑇𝑠𝑤𝑖𝑛𝑔
𝑇𝑛

 

𝑇𝑠𝑤𝑖𝑛𝑔 = 𝑇𝐻𝑆𝑛 − 𝑇𝑇𝑂𝑛 

 

Eq.5-10 

where; 𝑇𝑠𝑤𝑖𝑛𝑔 is the time between the toe off time 𝑇𝑇𝑂𝑛 (foot leaves the ground) 

and the consecutive heel strike of the same foot 𝑇𝐻𝑆𝑛 (Figure 5-20). 
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Figure 5-20. Swing and Stand time - right foot 

The following figure (Figure 5-21) shows the process of the gait asymmetry 

algorithm. 

 

Figure 5-21. Calculation of the gait asymmetry indices 

The vertical axis was separated and filtered using Butterworth high-pass and 

low-pass filter. Then step detection algorithm (section 0) was applied and the 

timestamp of each step were determined.  In order to calculate the above 

mentioned parameter, the steps taken by the right foot had to be separated from 

the ones taken by left foot. Therefore, the major peak had to be determined. The 

major maximum represents the step of the right foot, whereas the smaller 

maximum represents the step of the left feet. This assumption is due to the fact 

that the senor is attached to the right side hip. Thus, the forces that actually act 

on the left foot will be attenuated due to the biomechanical differences. After 

having the major peak determined, it can be assumed that this is a step of the 

right foot. Since the steps are alternating occurred thus they can be easily 

separated and assigned to their corresponding foot (Figure 5-22).  
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Figure 5-22. Identification of left and right steps 

Having the step separated the calculation of step time and swing ration and the 

corresponding 𝑆𝐼 index can be determined. 𝑆𝐼𝑇 is the defined as (Figure 5-23): 

 
𝑆𝐼𝑇 =  100%.

|𝑇̅𝐿 − 𝑇̅𝑅|

max(𝑇̅𝐿, 𝑇̅𝑅)
 

 

Eq.5-11 
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Figure 5-23. Determination of step time asymmetry index 

The calculation of the swing ratio depends basically on the determination of the 

toe off/heel off time stamp. However, in the acceleration signal of the sensor 

attached to the hip, this determination is not quite possible, due to the 

attenuation of the signal. Therefore, the ratio of the double support time to the 

total step duration (5%-10%) was considered.  Based on this consideration the 

time stamp of the left foot toe off (𝑇𝑇𝑂𝐿) was defined and the swing phase ratio 

was calculated (Figure 5-24). The 𝑆𝐼∅ was defined as: 

 
𝑆𝐼∅ =  100%.

|∅̅𝑠𝑤𝑖𝑛𝑔𝐿 − ∅̅𝑠𝑤𝑖𝑛𝑔𝑅|

max(∅̅𝑠𝑤𝑖𝑛𝑔𝐿 , ∅̅𝑠𝑤𝑖𝑛𝑔𝑅)
 

 

Eq.5-12 

where, ∅̅𝑠𝑤𝑖𝑛𝑔𝐿 and ∅̅𝑠𝑤𝑖𝑛𝑔𝑅, are the swing phase ratio of left and right foot, 

respectively. 
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Figure 5-24.Determination of swing phase ratio asymmetry index 

5.4.3.3 Evaluation 

Differences between right and left foot were investigated in PwMS for step time 

and swing ratio. Step time showed no significant difference between both feet 

(1030 ±165 ms, 1027±168 ms, p = 0.5), whereas swing time illustrates 

significant difference (54.24±1.8%, 43.61±1.9%; p<0.05), respectively. 

Furthermore, asymmetry indices 𝑆𝐼𝑇 , 𝑆𝐼∅  of PwMS were compared with those 

of healthy control groups (Table 5-7) 

Table 5-7. Characteristics of patient and healthy control groups 

 PwMS Control 

Age 41 (±9.3) 28.2 (±3.35) 

Height 170 (±8.1) 171.8 (± 9.65) 

Weight 72 (± 16.7) 63.2 (±15.8) 

EDSS 3.6 (± 1.66) - 

 

Student t-test was used to investigate the differences between PwMS and 

healthy control. The results showed that in general, PwMS have less symmetry 
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gait in comparison with healthy control group (Figure 5-25 and Figure 5-26). 

Both asymmetry indices 𝑆𝐼𝑇 , 𝑆𝐼∅  were significantly higher in PwMS (p < 0.01). 

This indicates that PwMS have low similarity between body sides compared to 

healthy control ( 

Table 5-8).  
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Table 5-8. Gait asymmetry differences between PwMS and healthy control 

 PwMS Control p-value 

Step time 

asymmetry (𝑆𝐼𝑇) 

2.61 ± 3.4 0.9 ± 0.5 < 0.01 

Swing phase 

asymmetry (𝑆𝐼∅) 

12.11 ± 7.6 7.6 ± 6.1 < 0.01 

 

 

 

Figure 5-25. Step time asymmetry index in PwMS and healthy control 
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Figure 5-26. Swing time ratio asymmetry index in PwMS and healthy control 
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5.4.4 Peak Frequency and Energy Concentration 

5.4.4.1 Related work 

The acceleration data are considered to be a most useful tool for gait analysis 

when features are not interpreted in isolation but together. The gait features 

discussed above are time-domain features. Since walking is periodic activity, the 

frequency transformation of feature time series is worth investigated. Therefore, 

in this work additionally to the time-domain feature presented before, features in 

frequency and time-frequency domain were developed and analysed. This may 

provide a comprehensive picture into the motor control of walking activity.   

Frequency domain analysis has been previously used to assess normal and 

disordered gait. This analysis has been considered to be a powerful tool to 

identify changes in gait due to age- and disease-related impairments especially 

when such changes are not obvious in time domain. The main objective of using 

time-frequency analysis is to determine the energy concentration along the 

frequency axis at a certain time instant. Furthermore, the use of wavelet as 

analysis and feature extraction tool in gait analysis has gained considerable 

attention.  

Multiple studies have investigated gait features in frequency and time-frequency 

domain. Some of these studies extracted the gait features using smart mat 

(GAITRite) or force platform. These systems provide rich information, on the 

other hand are restricted to laboratory and clinical environment. Other studies 

used either gyroscope in combination with accelerometer or multiple 

accelerometers attached to different body position. Such systems are not feasible 

to be used in medical researchers. 

5.4.4.2 Development of peak frequency und energy concentration  

Peak Frequency: First of all, the segments of the signal that are corresponding 

to movement activity were separated and included in the processing, whereas, 

signals corresponding to sitting, standing and lying activities were excluded. 

Peak frequency and energy concentration features were extracted from the 

medial-lateral axis of the acceleration signal from the sensor attached to the 

right-side hip.  

Fourier transformation is an important tool for analyzing signals with periodic 

repetition. Gait signals can be considered as quasi periodic; thus, it is possible to 
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perform a spectral analysis on this signal. The qualitative analysis of the signal 

in the frequency domain allows identifying different spectrums that could be 

associated to gait impairment. One main parameter associated with a spectrum is 

the peak frequency (𝑃𝐹). Peak frequency (𝑃𝐹) denotes the frequency at which 

the maximum spectral power occurred. In other words, it presents the highest 

peak in the frequency space to which the acceleration signal was converted.  

 𝑓𝑝 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑓𝜖|0,𝑓𝑚𝑎𝑥 | |𝐹𝑥(𝑓)|
2 

 

Eq.5-13 

𝑃𝐹 𝑓𝑝 was detected in the frequency space and had the highest peak around the 

𝑃𝐹 candidate. 𝐹𝑥(𝑓) is the Fourier transform of the signal and 𝑓𝑚𝑎𝑥 is the 

sampling frequency. 

Figure 5-27 illustrates the extracted process. First of all, the offset in the signal 

was eliminated by subtracting the mean and then the signal was smoothened 

using a Butterworth low-pass filter (cut-off 3.5 Hz) in order to decrease the 

effect of the high-frequency noise that accompanies 𝑃𝐹 detection. Then the 

hamming window was applied.  The size of the window is dynamically adapted 

to the signal length. Gait signal can be considered as a quasi-periodic, i.e. the 

start and the end of the signal might not match with each other. This could result 

in the so called leakage effect.  Therefore, windowing the data ensures that the 

ends of the signal match up, which remarkably reduces the spectral leakage and 

leads to better and reliable 𝑃𝐹 analysis .The next step is to transfer the signal 

into frequency space where finally the frequency with the highest power 

spectrum can be extracted. 



Conception and Implementation of a home-based system to objectively assess comprehensive gait 
parameter for PwMS 

123 
 

 

Figure 5-27. Peak frequency extraction algorithm 
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Energy Concentration: Wavelet transformation was utilized to extract the 

relative energy concentration 𝐸𝑛𝐶 of the signal in a specific frequency band. 

The idea behind Wavelet methods is to analyze the behavior of the energy 

distribution at a certain time instance or frequency band. In this work it was 

particularly used to analyze the distribution of the energy concentration in 

different frequency bands of the time-frequency domain. The analysis of energy 

concentration can provide a useful tool to reveal more information from gait 

signal for diagnostic purposes. Figure 5-28 illustrates the extraction process.  

 

Figure 5-28. Energy concentration extraction algorithm 

The input signal was filtered using the same cut off frequencies as for 𝑃𝐹. Then 

the filtered signal was multiplied with a hamming window equally. After the 

preprocessing, a multi-resolution analysis (MRA) until the 10th level was 

performed using Meyer wavelet filter-banks. The multi-resolution analysis is a 

common tool to perform wavelet decomposition on time-discrete signals. Each 

step of the MRA develops a set of detail coefficients dk and a set of 

approximation coefficients ak according to the model in Figure 5-29. As it 

shown in this figure the signal goes through a high-pass and a low-pass filter. 
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The output signals of both filters are down sampled to avoid redundancy in the 

data. The result signal is detail and approximation coefficients. The complete 

10-level Meyer wavelet decomposition procedure by using MRA is illustrated in  

Figure 5-30. 

 

Figure 5-29. One step wavelet decomposition - d is details and a is 

approximations 

To develop the relative energy concentration 𝐸𝑛𝐶(𝑘) in one of the 10 frequency 

bands, each set of detail coefficients have to be calculated and its energy using 

the formula:  

 

 Ed,k = ‖dk‖
2, k ϵ {1, 2, … , 10} 

 

Eq.5-14 

The energy of the approximation coefficients set at the 10th level is equally 

needed to extract the relative energy 𝐸𝑛𝐶(𝑘). 

 

 Ea10 = ‖a10‖
2 

 

Eq.5-15 

where, ‖. ‖is the Euclidean norm and a10 represents a vector  

Therefore, the relative energy 𝐸𝑛𝐶 is calculated by the quotient "detail energy at 

k" to the energy of the complete signal "approximation energy at 10" plus the 

sum of the detail energy from 1 to 10. 

 

 
𝐸𝑛𝐶𝑘 = 

Edk

Ea10 + ∑ Edk
10
k=1

 ; k ∈ {1,2, …10} 

 

Eq.5-16 
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Figure 5-30. Ten level wavelet decomposition tree 
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Energy concentration was tested at different level (from 1 to 10). However, as it 

can be seen in Figure 5-31, energy concentration at level 6 showed significant 

difference between patient groups with mild and moderate disability, whereas 

other level showed no significant differences between both groups. 
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Figure 5-31. Comparison of different decomposition level 
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 𝐸𝑛𝐶 feature showed significant differences between both PwMS subgroups 

(PwMS-L: EDSS = 1-2.5; PwMS-H: EDSS = 3- 5) (Figure 5-31).  Patients with 

mild disability showed significantly higher energy concentration (35.63 ± 20.19) 

at level 6 (𝐸𝑛𝐶 6) in comparison to patients with moderate disability (31.67± 

18.41). Student t-test was used to compare both subgroups (p < 0.05). Figure 

5-32 illustrates the differences between both subgroups regarding peak 

frequency.  Peak frequency showed marginal significant difference between 

both subgroups (p = 0.08). Peak frequency can be hardly affected by signal 

fluctuation, which could be a possible explanation of the results. However, these 

features were tested and evaluated by using bigger sample size (Chapter 7). 

Table 5-9 summarizes the differences between both subgroups. 

Table 5-9. Comparison between both patients' subgroups regarding energy 

concentration and peak frequency (mean, SD and p-value) 

 PwMS-L PwMS-H p-value 

Energy 

concentration (%) 

35.63 ± 20.19 31.67 ± 18.41 < 0.05 

Peak frequency 

(Hz) 

1.54 ± 0.61 1.39 ± 0.68 0.08 

 

 

Figure 5-32. Peak frequency comparison between mild and moderate subgroups
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6 Ambulatory assessment of neurobehavioral alteration 

and gait impairments in PwMS 
As it was mentioned in section 2.3walking impairment is one of the most 

ubiquitous features of MS. It can have impactful effect on the independence and 

activities of daily life. Assessment of motor and gait disability in PwMS requires 

continuous evaluation. This continuously is essential to monitor the course of 

the disease, to understand the development of the health status which may help 

in early treatment optimization. Moreover, the assessment of the variability of 

motor and gait parameters in free-living environment may provide significant 

information to predict the health status of the PwMS. Repeated measurements of 

this variation might also provide useful indicators of activity and walking ability 

change that is unlikely to be due to error in measurement. 

6.1 Study Design and Data Fusion 

The following study was carried out as a part of the project MS Nurse and in 

contribution with the hospital of neurologic acute and rehabilitation medicine in 

a rural area in Northem Bavaria, Germany.  

Study design, measurement system and participants characteristics will be 

presented in the following. 

6.1.1 Study Design 

The aim of this study was to determine the ability of the developed parameters 

to objectively capture the slightly changes in motor and walking ability in 

PwMS. Moreover, the objective was to provide additional evidence from long-

term design study that support the association between changes in physical 

activity and walking ability and disease progression over time. This can be 

accomplished by collecting observations or data at more than one point of time. 

This could also allow investigating the correlation between the changes and the 

disease severity. Variations and differences between patients with mild and 

moderate disease severity and within a patient should be captured in order to 

assess the disease dynamic. Furthermore, the stability and sensitivity of these 

parameters were measured, and the amount of the clinically meaningful change 

was determined. 

These measures were collected four times (four phases), each lasting 10 days 

with an interval of three months between each phase. Person-specific data were 

collected at the beginning of the study. Move II accelerometer is the only 
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sensors on the market that fulfill the hardware requirements discussed in 

Chapter 5. The study was divided into clinical measures and ambulatory 

measures. The developed system presented in Chapter 5 was applied for the 

assessments. 

6.1.1.1 Participants 

Over a period of one year, 11 PwMS (females = 7, males = 4; age: 41 ± 9.3 year; 

height: 170 ± 8.12 cm; weight: 72 ± 16.77 kg; disease duration: 12.18 ± 10.67) 

were recruited in the hospital for neurologic acute and rehabilitation medicine in 

a rural area in Northern Bavaria, Germany. Participants had to meet the 

following inclusion and exclusion criteria:  

a) definite diagnosis of MS [26]. 

b) EDSS score below 5 (3.6 ± 1.66), which indicates the ability to walk at 

least 200 m without assistive devices [29]. 

c) a completed and signed an informed consent. Eight patients had relapsing-

remitting multiple sclerosis, one patient had primary progressive multiple 

sclerosis and two patients had secondary progressive multiple sclerosis.  

The procedure of this study was approved by the ethics committee of the 

Bavarian Medical Association, Germany. The study lasted one year and 

consisted of clinical measures and ambulatory activity measures. 

6.1.1.2 Clinical measures and pre-test assessment 

The clinical measurement took place in the clinic at the beginning of each phase. 

These measures were:  

1. 10-meter walking test was used for initial calibration, in which patients 

were instructed to wear the move II (one on the right side hip and two 

sensors on the right and left ankle) and to walk along a 10 meter flat 

walkway. Since gait pattern of PwMS differ in various walking speed 

patients were asked to walk back and forth once at their comfortable 

walking speed and once again at fastest walking speed. Information about 

stride length, time and number of steps were recorded by the physician 

and as raw acceleration data from the move II (Figure 6-1). This 

information was used to develop gait asymmetry algorithm (chapter 

5.4.3). 

 

2. Expanded Disability Status Scale EDSS (Chapter 2.x.x) patients who 

score at or less than 5.5 are considered to be able to walk at least 100 m 
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without aid or rest. Patients with score between 6.0 and 8.0 are considered 

to be ambulatory with limitations. Patients with EDSS score more than 

8.0 considered to be totally dependent. Patients’ disease severity and 

clinical symptoms were assessed using EDSS by an experienced 

neurologist. EDSS score was evaluated quarterly and at the beginning of 

each measurement. 

 

Figure 6-1. 10-meter clinical walking test 

6.1.1.3 Ambulatory measures 

Based on the challenges of PwMS previously described (section 2.3), the 

scenario for applying activity and gait analysis in MS treatment can be drawn up 

as follows. Typically, PwMS who lives at home on their own, live and work as 

usual and consult their physician once every three months for their basic 

physical examinations (EDSS). In the three months between the check-ups they 

wear a device, which continuously monitors their movement during daily-life 

activities. At the next regular physician’s visit, the sensor data will be 

transferred and analysed using the Physician-Software described in section 5.3. 

In contrast to the usual check-up, the analysis results not only provide 

information about the momentary health status, but also about the development 

over the last months.  

The activity monitoring system (move II and the pre-configured EeePC) was 

given to the patient at the time of the clinical measurements. Participants were 

asked to carry the move II sensor on the right side hip (see Figure 6-2) up to ten 

days while carrying out their usual daily activities. They were asked to start 

carrying the sensor early morning as soon as they get up until they go to bed 

again (except while swimming, showering and bathing). Furthermore, they were 

asked to attach it to the notebook via USB before going to sleep. The raw sensor 
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data were transferred automatically and stored on the SD card and the patients 

got feedback about their activity pattern. This feedback should encourage them 

to maintain their activity level. The developed software for sensor management 

and physical activity report was presented previously (Patient-Software). After 

ten days, the participants returned the system to the clinic, the data were 

downloaded to the computer and the participants received a report of their 

physical activity of the past ten days. Figure 6-3 illustrates the measurement’s 

process. 

 

 

Figure 6-2. Sensor position 
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Figure 6-3. Measurement process 
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6.2 Activity and Gait parameters 

To understand the changes in physical activity characteristics in PwMS, the 

following parameters were examined: a) number of steps calculated over the day 

(number of awake hours), b) mean and maximum walking speed, c) physical 

activity level in terms of MET level (light and moderate to vigorous MVPA 

MET level) which is the ratio of the associated metabolic rate for the specific 

activity divided by the resting metabolic rate (RMR). These values can be 

obtained from published tables [17]. To assess the impact of the disability on 

ambulatory activity behavior, the participants were separated according to their 

disease severity into two subgroups; mild ambulatory limitation (PwMS-L: 

EDSS = 1–2.5) and moderate ambulatory limitation (PwMS-H: EDSS = 3–5). 

Subgroups were determined based on the categorization published in [35] (Table 

6-1). 

Table 6-1. Patients' characteristics 

 PwMS PwMS-L 

(EDSS 1-2.5) 

PwMS-H 

(EDSS 3-5) 

    

Age 41 (±9.3) 36.14 (±10.53) 46.64 (± 1.68) 

Height 170 (±8.1) 165.83 (±6.08) 176 (±6.96) 

Weight 72 (± 16.7) 65.33 (±14.04) 79.72 (±17.76) 

EDSS 3.6 (± 1.66) 1,75 (±0,82) 4,40 (±0,89) 

Men 4 1 3 

Women 7 5 2 

Total 11 6 5 

Note: mean ± SD was calculated 

6.3 Data Reduction and Data Analysis 

As the devices were handed out to the patients at different hours of the first day, 

this day was excluded from the analysis. All participants accepted to wear the 

sensor for 9 days and at least 10 h per day. The number of steps per 

measurement as well as the mean walking speed was calculated as an overall 

average of all days in each measurement. For the activity depended MET level 

estimation, the activity of the patients was classified and each activity was 

categorized as light or MVPA according to [17]. Based on the detected activity 

class, the energy expenditure was estimated, and the MET level value was 

calculated with the following formula (MET = EE / BMR). Having both 
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information (activity class and its corresponding calculated MET value) the 

MET categories of our patients’ group were defined. 

Mean value and standard deviation for MVPA and gait parameters were 

calculated. Differences in all these parameters between two consecutive phases 

were calculated for each patient. In addition, the differences between the first 

phase and the follow-up fourth phase for each parameter were assessed non-

parametrically by using the Wilcoxon test. To analyze the differences between 

both subgroups the nonparametric Mann–Whitney U test was used. Wilcoxon 

test and Mann-Witney U tests were used due to the small sample size. 

Differences with p ≤ 0.05 were noted as significant. Moreover, bivariate 

correlation between EDSS and gait parameters (number of steps, mean walking 

speed, max walking speed and MET level) was analyzed. Values between 0.00 

and 0.25 was considered as no correlation, values between 0.70 and 0.89 as high 

correlation and values between 0.90 and 1.00 as very high correlation [150]. 

Spearman Rho was used for this analysis. 

Repeated measurement of the variations in MVPA and gait parameters might 

provide useful indicators of activity change that is unlikely due to error in 

measurement. The standard error of measurement (SEM) which is closely 

related to minimal detectable change (MDC), has been used to quantify the 

within-subject variability. The MDC is a useful tool to operationally determine 

whether a magnitude of change in the parameter of interest is greater than the 

amount of change attributable to measurement error. This determination may 

support the process of clinical treatment evaluation and decision making. In 

order to calculate MDC the stability of the parameter should be calculated. 

Therefore, the response reliability was investigated by calculating the intra-class 

correlation coefficient (ICC; two-way mixed, single measures) for all patients 

across all days (day1 to day9) within the first measurement of the whole sample 

size. The ICC value represents the consistency and ranges from 0 to 1. An ICC 

below 0.04 indicates poor stability, ICCs from 0.60 to 0.74 suggest good 

stability and ICCs from 0.75 to 1.00 suggest excellent stability [54]. 

Moreover, standard errors of measurement (SEM) were calculated as follows: in 

a first step, ICCs for between-session reliability were computed between data 

from the first measurement (M1, baseline) and each of the follow-up 

measurements (M2, M3 and M4) separately (two way mixed, single measures). 

Again, the model testing for consistency was used. The SEM, which estimates 
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the measurement error across repeated measurement, was calculated by 

multiplying the baseline standard deviation of the samples for each parameter by 

the square root of one minus the ICC 

(𝑆𝐸𝑀 = 𝑆𝐷𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∗ √1 − 𝐼𝐶𝐶). This value indicated the amount of error that 

must be considered when interpreting individual test results. 

As it was discussed in (chapter 3.3.2.2) MDC provides the absolute amount of 

change necessary to exceed the measurement error of repeated measures at a 

certain confidence interval (CI). This information may be used to distinguish 

between true performance change and an observed change due to measurement 

error. In this work the MDC was calculated at 95% CI  

(𝑀𝐷𝐶 = 𝑆𝐸𝑀 ∗ 1.96 ∗ √2). Furthermore, to investigate MDC independently 

from the unit of the parameter, the MDC% was calculated: 

 
𝑀𝐷𝐶% = (

𝑀𝐷𝐶

𝑋̅
) ∗ 100 

 

Eq.6-1 

 where, 𝑋̅ is the mean value of the parameter for all measurements. 

6.4 Results 

While EDSS score did not change throughout the study’s phases in all patients, 

the physical activity parameters showed differences between each two 

consecutive phase in both subgroups. 

6.4.1 Decline of MVPA and gait parameters in PwMS-L and PwMS-H 

In this section the descriptive and statistical analysis of the changes in PwMS 

will be presented. PwMS-L showed a slightly increases in steps/day between the 

first phase and the follow-up second phase. Remarkably, these changes in 

steps/day were combined with slightly increases in mean and maximum walking 

speed (1.8% and 1.13%), respectively. Only one patient showed decline between 

these two phases (~292) (Figure 6-4).  
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Figure 6-4. Changes in steps /day in PwMS (exemplified for one patient) 

In average, PwMS-L showed a decline in all parameters between the second the 

third phase as well as between the third and the fourth phase. However, in 

comparison to baseline, they showed decline in steps/day (~1683), mean 

walking speed and maximum walking speed (-0.12 Km/h, -0.16 Km/h), 

respectively (Figure 6-5 and Figure 6-6). MVPA did not show significant 

change between the first and the follow-up measurement. Patients of the group 

PwMS-H showed a decline in all parameters between each two consecutive 

phases. In comparison to the baseline, PwMS-H showed decline in steps/day 

(~1673), a slightly decline in mean and maximum walking speed (8.7%, 2.6%), 

respectively and in MVPA (-1.4%) between first and the follow-up fourth 

measurement.  
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Figure 6-5. Changes in mean walking speed in PwMS (exemplified for one 

patient) 

 

Figure 6-6. Changes in maximum walking speed in PwMS (exemplified for one 

patient) 

Furthermore, the differences in MVPA and gait parameters were investigated in 

all patients combined. In comparison to baseline, 81% of the patient showed a 

significant decline in the steps/day (p = 0.008) as well as in MVPA (p = 0.03), 

63% showed significant reduction in maximum walking speed (p = 0.02) 

between first phase and the follow-up fourth phase. Mean walking speed did not 

demonstrate a significant decline (p = 0.75) (Table 6-6). 
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6.4.2 Between groups differences 

To understand the impact of MS disease on mobility and walking ability the 

differences between PwMS-L and PwMS-H were investigated. on average of 

overall measurements, mild affected MS accumulated significantly more steps, 

and had faster mean walking speed compared to moderated affected MS 

(9287.33 ± 1976.25 vs. 5043 ± 2849.75, p < 0.005; 1.49 ± 0.2 vs. 1.13 ± 0.44, p 

= 0.03), respectively. Furthermore, a marginal difference between the subgroups 

in maximum walking speed was noticed (5.09 ± 0.6 vs. 3.84 ± 1.03, p = 0.08). 

On contrary, MVPA demonstrated non-significant differences between both MS 

groups (11.6 ± 4.37 vs. 7.79 ± 5.19; p = 0.1) (Table 6-2, Figure 6-7). As 

discussed in section 5.4 significant differences was also noticed in energy 

concentration (p < 0.05) whereas marginal differences was shown in peak 

frequency (p = 0.08). 

Table 6-2. Differences between disability subgroups 

 PwMS-L 

(EDSS: 1-2.5) 

PwMS-H 

(EDSS: 3-5) 
p-value 

Steps  

per day 

9287.33 ± 

1976.25 
5043 ± 2849.75 0.005* 

Maximum 

walking speed 
5.09 ± 0.6 3.84 ± 1.03 0.08§ 

Mean walking 

 speed 
1.49 ± 0.2 1.13 ± 0.44 0.03* 

Energy 

concentration 

(%) 

35.63 ± 20.19 31.67 ± 18.41 < 0.05 

Peak frequency 

(Hz) 

1.54 ± 0.61 1.39 ± 0.68 0.08 

MET Level % 

(MVPA) 
11.6 ± 4.37 7.79 ± 5.19 0.1 

Note: * Statistically significant (p < 0.05), § Statistically marginal significant 
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Figure 6-7. Difference between PwMS-L and PwMS-H 
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Correlation between Relatively weak correlation was found between the total 

number of steps and the EDSS score (r = -0.54, p = 0.08). High inverse 

correlation was notices between Walking speed and EDSS score (r = -0.71, p = 

0.01), whereas maximum walking speed did not show a maximum correlation 

with EDSS score (r = -0.37, p = 0.2). Gait asymmetry also showed marginal 

significant correlation with the EDSS score (r = -0.522, p < 0.05). Both energy 

concentration and peak frequency showed significant correlation with EDSS 

score (r = - 0.63, p < 0.05; r = - 0.751, p < 0.01), respectively Table 6-3 

illustrates the correlation coefficient between gait parameters and EDSS. 

Table 6-3. Bivariate relationships between ambulatory parameters and EDSS 

 Steps/day Walking  

speed 

Gait 

asymmetry 

Peak 

frequency 

Energy 

concentration 

EDSS 

Steps 

per day 

1 0.758* 0.727* 0.636* 0.55* -0.541§ 

 

Walking 

speed 

 1 0.782* 0.327 0.376 -0.706** 

Gait 

asymmetry 

  1 0.325 0.265 -0.522§ 

Peak 

frequency 

    0.357 -0.63* 

 

Energy 

concentration 

     -751* 

 

EDSS      1 
Note : * Statistically significant (p < 0.05), § Statistically marginal significant 

It was also of interest to compare the physical activity and gait parameters 

between PwMS and healthy individuals. Therefore, the data from a healthy 

population study [151] was used. To investigate the differences regarding 

activity and gait parameters between the healthy population and the MS 

subgroups, Cohen’s d and effect sizes r was calculated for the parameters 

MVPA and steps per day during baseline and the first follow-up measurement 

(after three months). The effect sizes ranged from 0.4 to 0.9.At baseline, the 

difference between PwMS-L and PwMS-H in MVPA showed medium to large 

effect sizes (d = 5.5; r = 0.6), similar to the differences between PwMS-L and 

healthy group (d = 2.9; r = 0.8). The difference between PwMS-H and the 

healthy group was small (d = 1; r = 0.4). For the second follow-up measurement, 

the differences between PwMS-L and PwMS-H in MVPA showed medium 

effects sizes (d = 1.54; r = 0.61) as was the case for the difference between 
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PwMS-Hand healthy group (d = 1.17; r = 0.5).The difference between PwMS-L 

and healthy group had a large effect size (d = 4.2; r = 0.9). 

6.4.3 Precision and minimal detectable change 

As it is aforementioned in the section of data analysis, the first step before 

investigating SEM and MDC is to calculate the stability (ICC) of the measure. 

The calculated ICC values for MVPA and gait parameters revealed a fair 

stability for mean walking speed (0.49 (0.27, 0.76)), steps/day (0.5 (0.35, 0.75)), 

and MVPA (0.47 (0.25, 0.75)). The ICC value of maximum walking speed 

indicated high intra-individual stability of this parameter (0.84 (0.69, 0.94)). 

Patients with MS: Table 6-4 shows the values of ICC calculated between the 

first (baseline) measurement and the second (M1,2), third (M1,3) and fourth (M1,4) 

follow-up measurements. The SEM and clinically important change index 

(MDC) for the overall sample are also given. The range of ICC values for all 

parameters across three months was 0.86 to 0.96, across six months 0.8 to 0.95 

and across nine months 0.67 to 0.96. The ICC value across all measurements 

was calculated. Based on this ICC value we determined the overall SEM. 

The SEM provides an indicator of measurement precision and should be 

considered together with overall mean values. The maximum walking speed 

showed the best precision estimates. The overall SEM for maximum walking 

speed was 0.23 m/s, where the mean value was 4.54 m/s, indicating that the 

change of 0.23 m/s may be due to measurement error. Mean walking speed 

showed a lower precision (SEM= 0.19 m/s, mean = 1.38 m/s). In comparison, 

the SEM for steps per day was 1588 steps per day (where the mean value was 

7358 steps per day) indicating that a change of up to 1588 steps per day may be 

due to measurement error. The MVPA MET level showed the lowest precision 

(SEM = 2.59, mean = 9.88). The maximum walking speed showed the lowest 

MDC and MDC% values between baseline and follow-up measurements, 

whereas mean walking speed showed a greater MDC. MVPA and steps per day 

had the largest estimate of MDC and MDC% values. 
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Table 6-4. ICC, SEM, MDC and MDC % for ambulatory parameters of overall 

patients' group 

Parameter 

ICC SEM MDC MDC% 

M1,2        M1,3 M1,4 M1,2 M1,3 M1,4 M1,2        M1,3 M1,4 M1,2        M1,3 M1,4 

max WS 

(m/s) 

0.96 0.95 0.96 0.06 0.07 0.06 0.18 0.2 0.17 3.9 4.7 3.9 

mean WS 

(m/s) 

0.87 0.82 0.71 0.09 0.11 0.14 0.26 0.31 0.4 19.5 23.3 30.31 

Steps  

(per day) 

0.9 0.81 0.87 824 1150 937 2285 3189 2597 28.3 42.55 36.03 

MVPA 

(%) 

0.86 0.81 0.67 1.3 1.5 2.1 3.73 4.43 8.82 35.34 46.13 59.51 

Note: max WS = maximum walking speed; mean WS = mean walking speed; MVPA = 

moderate to vigorous MET level 

Disability subgroups: ICC, SEM and MDC% for PwMS disability subgroups 

are given in   
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Table 6-5. The ICC estimation indicated that maximum walking speed and steps 

per day were stable across all measurements for both groups (ICC > 0.8). 

Considering steps per day in the group of moderate disability, the stability 

between baseline and third measurement (M1,3) (ICC = 0.6) was lower than the 

one noticed in the other two follow-up measurements (ICC > 0.8). Furthermore, 

the ICC values were greater for mean walking speed and MVPA MET level in 

the moderate disability group between baseline and the second and third follow-

up measurement (ICC range = 0.9– 0.98).However, the ICCs for these 

parameters in the moderate disability groups were lower but still acceptable for 

the fourth follow-up measurement. The ICC values for maximum walking speed 

as well as for steps per day showed greater reliabilities between baseline (M1) 

and all follow-up measurements (M2, M3, M4) in the group of mild disability. 

ICC value for mean walking speed indicated acceptable reliabilities for all 

follow-up measurements (ICC range = 0.6– 0.7). MVPA MET level showed 

high reliabilities between baseline M1 and M2 and M3. However, the ICC value 

was lower in M4. Maximum walking speed showed the best precision estimates 

across time, whereas mean walking speed and steps per day showed a poorer, 

but still acceptable precision. The MDC% values for maximum and mean 

walking speed were lower in both groups than for steps per day and MVPA 

MET level. However, the MDC% values for physical activity and gait 

parameters were greater in PwMS-L than in PwMS-H. This result indicates that 

the variability of the measurements might be sensitive to the level of disease 

severity. 

6.5 User Acceptance 

For successful integration of new technologies in healthcare scenarios issues of 

acceptability and acceptance should be taken into account. In the development 

of an ambulatory assessment system, many critical factors regarding medical, 

technical and user specific aspects should be considered. The present system 

was developed for an ambulatory environment to collect information about 

ADLs of PwMS. Therefore, it had to be easy to use and wearable without 

disturbing patients in their daily routine. Furthermore, it must be possible for the 

patients to use the system easily by themselves at home. To assess the 

acceptance of the system a questionnaire was designed with main focus on two 

factors; usefulness and ease-of-use of the system. The questionnaire was based 

on the Technology Acceptance Model (TAM). The TAM is a technology 

adoption model that considers user acceptance of information system.  
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In medical studies usefulness is the most important factor of user acceptance for 

all involved parties. For chronic patients, such as PwMS, the crucial condition to 

accept new technology is to have medical benefit, i.e., the developed methods 

should be advantageous for diagnosis and therapy of MS. Furthermore, it is 

important for the patient that the physician and healthcare staff will be able to 

get better overview of the medical data about their disease course and health 

condition. Thus, the usefulness factor mainly considers the question; whether the 

patient believes that the technology could enhance the access and improve the 

understanding of his/her health condition. Furthermore, the delivered daily 

report and feedback about individual’s activity information could influence the 

activity level of the patients and integrate them in the management of their 

disease. Therefore, the designed questionnaire also considered the importance 

and usefulness of the daily feedback provided to the patient was investigated. 

Usability and ease-to-use factors certainly influence user acceptance. Usability 

is the extent to which a product can be used by specified users to achieve 

specified goals with effectiveness, efficiency and satisfaction in a specified 

context of use (ISO 9241).Therefore, it should be hardly considered because a 

problem with the usability could influence the medical usefulness and thus the 

user acceptance and attitudes towards the system. During the development of the 

system the adoption of patient’s abilities and life condition was considered. 

Therefore, the difficulty for the patient to operate and interact with the system 

and to handle the sensor presents an important factor of the usability and ease-

to-use.  

In order to better predict, explain and increase the usage of IT, it is importance 

to understand the antecedents of patients’ technology adoption and their IT-

background. This background can affect the acceptance of the system. Appendix 

xx illustrates the questionnaires was used in this work.  

To evaluate the acceptance of the system and whether it was sufficiently easy to 

handle, patients who were monitored by the system (n = 11) completed a 

separate acceptance questionnaire at the end of the first ambulatory 

measurement phase. The aim was to investigate how acceptable is the developed 

system in term of completion by the participants, does it represent a burden and 

is it easy to administer and process. The questionnaires contain questions 

regarding: 
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a) The usage of technical equipment in general and especially the overall 

acceptance of IT-technology as a treatment and therapy support tool, e.g. “I 

always willing to test new intervention forms” 

b) Patient’s health condition and to which level they are interested in having 

detailed information about the disease and to use new technology to manage 

their MS, e.g. “I always search for new information about MS” 

c)  Patients’ expectation from the developed system and its usefulness, e.g. 

“The system gives my doctor objective information about my health status” 

d) System operation and feedback, e.g. “The operation of the system is 

complex”, “The daily feedback motivates me”. 

6.5.1 Results: 

The questionnaires were rated on five-point Likert scale, which is the commonly 

used scale in survey research. It measures the individuals’ attitudes by asking 

the extent to which they agree or disagree. The typical scale is (1 = strongly 

agree, 2 = agree, 3 = neutral, 4 = disagree, 5 = strongly disagree). 

In general, most of the patients are well informed about the disease (mean = 1.6; 

SD = 0.5) and always looking forward get more detailed information. “I always 

try to keep my knowledge to my illness up to date” (mean = 2.1; SD = 1.1). The 

results showed that PwMS are interested in testing new treatment and 

intervention methods. “I always looking for a new treatment methods” (mean = 

1.9; SD =1.2), “I am ready to test new treatments” (mean = 1.9; SD = 0.8). Only 

two patients reported fewer tendencies towered new interventions. Figure 6-8 

illustrates the results regarding patients’ tendency towards new treatment’s form 

(Set 1). 
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Figure 6-8. Mean values of the questionnaires' results - Set 1 

Moreover, patients in general showed an open-minded attitude towards the 

integration of the technology (sensor and software) in the treatment and 

monitoring process. The results reported (mean = 2.1; SD = 1.2) as a response to 

the questions “I have positive attitude towards modern technology”. Regarding 

the usage the systems, the results showed that the patients in general have 

positive perceptions and do not have problems using new technology (sensor). 

This has been confirmed by the responses to the question “I have no problem 

with using the telemedicine technology” (mean = 1.35; SD = 0.6), and to the 

question “I will not feel overstrained using the new technology” (mean = 1.2; 

SD = 0.4). Moreover, PwMS did not expect to need extra effort in order to deal 

with the system, as the results to the question “I won’t need to put out extra 

effort and I will accept the system” showed (mean = 1.2; SD = 0.4). Figure 6-9 

illustrates the results regarding patients’ attitudes towards telemedicine 

technology (Set 2) 
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Figure 6-9. Mean values of the questionnaires' results - Set 2 

Long-term objective data of patient’s daily physical activity and gait parameters 

are considered to be essential to objectify the assessment of their motor and 

walking ability. Therefore, patients hoped that the developed technology will 

provide more up to dated and detailed information about their conditions and 

also hope that such a system will improve the documentations of their medical 

history. The acceptance analysis showed that most PwMS believe that the 

employed system was a positive technical development that could be useful for 

patients with chronic illness and improve medical care. Moreover, patients 

showed positive expectation (mean = 1.2; SD = 0.4) as response to the question 

“The system will provide my physician with objective overview”, as well as to 

the question “The objective documentation will help to improve my health 

status” (mean = 1.6; SD = 1.2). However, the acceptance of most patients is 

linked to their satisfaction with information and support given by their 

physicians. This was confirmed by the question “The acceptance of my 

physician is important” (mean = 1.3; SD = 0.4), and the question “I would like 

to be indicated to me from my physician” (mean = 1.3; SD = 0.5).  Figure 6-10 

illustrates the results regarding the usefulness system (Set 3).  
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Figure 6-10. Mean values of the questionnaires' results - Set 3 

The system was generally well accepted by the patients. “I got along with the 

sensor well” (mean = 1.2; SD = 0.4).  Furthermore, the sensor data were read out 

automatically via the developed end-user software and IT skills were not 

required and the patients reported high satisfaction with the easy-to-use and 

efficiency of the system. This was confirmed by the responses to the questions: 

“was the system easy to handle?”(mean = 1.4; SD = 0.4), “There is no need for 

me to get more interaction with the software” (mean = 2.9; SD = 1.3). Figure 

6-11 illustrate the general user acceptance analysis of the system and ease-of-use 

(Set 4).  

 

Figure 6-11. Mean values of the questionnaires' results - Set 4 

An important aspect of perceived usefulness was the experience of individual 

feedback and the patients express that, without getting any information about 
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their daily situation is the usefulness and the personal benefit of the system 

doubtful. Patients also reported positive results regarding to be informed about 

their condition at home and not only at physician visit “I would prefer to receive 

the analysis also at home and only at the physician’s office” (mean = 2.5; SD = 

1.5). Furthermore, the daily feedback about their physical activity has motivated 

the patients to patients to stay active: “The daily feedback motivates me” (mean 

= 2.1; SD = 1.2). Additionally, they were interested in having more detailed and 

comprehensive information about their activity analysis during the 

measurement: “I want to get more information about the data during the 

measurement” (mean = 2.1; SD = 1.5). Figure 6-12 illustrates the results 

regarding the daily feedback (Set 5). 

 

Figure 6-12. Mean values of the questionnaires' results - Set 5 

6.6 Summary 

A simple triaxial accelerometer was applied to assessed slightly changes in 

physical and gait behavioral in PwMS over a long period of time.  Results 

showed that the ambulatory captured parameters are more sensitive and 

responsible to slight disability changes than the clinical measures. Acceptable to 

excellent reliabilities were observed for all activity and gait parameters. 

Differences were found for precision and minimal delectable change between 

baseline and follow-up measurements. The MDCs values are clinically useful 

because they might help to determine necessary amount a repeated measurement 

would need to differ from the initial value in order to be considered as a true 

change. Therefore, MDCs value reported in this study may also be incorporated 

into clinical decision making. In general, all parameters showed lower MDCs in 

first than in the follow-up measurements. This information could be useful for 
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the interpretation of activity and gait measures in PwMS within three months, 

six months to one year. Long-term activity and gait monitoring of activity and 

gait parameters thus offers the opportunity to comprehensively assess the pattern 

of behavioral change across prolonged periods of time. This information may 

assist in the process of clinical decision making in the context of neurological 

rehabilitation and intervention and thus help to eventually improve the patients’ 

quality of life.  

The results of the acceptance analysis indicated that the acceptance of the 

developed method and system was high and the compliance to use the system 

was acceptable.  Moreover, the results showed that most of the patients have an 

open-minded attitude towards the sensor and the developed software. Almost all 

the queried patients believe that technologies are positive technical development 

and they appreciated the daily feedback pertaining to their activity pattern and 

reported that this was a factor that encouraged them to maintain their activity 

level. 
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Table 6-5. ICC, SEM, MDC and MDC % for ambulatory parameters of patients’ 

subgroups. Comparison of changes from baseline (M1) to follow-up 

measurements. 

Parameter Group 

ICC SEM MDC MDC% 

M1,2        M1,3 M1,4 M1,2        M1,3 M1,4 M1,2        M1,3 M1,4 M1,2        M1,3 M1,4 

max WS 

(m/s) 

PWMS-L 0.84 0.86 0.9 0.15 0.15 0.11 0.41 0.43 0.32 8.09 8.51 6.3 

PWMS-H 0.94 0.92 0.94 0.06 0.07 0.06 0.18 0.22 0.17 4.6 5.1 4.6 

mean WS 

(m/s) 

PWMS-L 0.7 0.6 0.63 0.17 0.2 0.2 0.48 0.56 0.53 32.1 37.2 37.1 

PWMS-H 0.9 0.9 0.75 0.06 0.06 0.1 0.17 0.17 0.27 15.1 15.1 24 

Steps 

(/day) 

PWMS-L 0.86 0.85 0.81 1224 1263 1445 3394 3501 4005 33.4 37.5 46.3 

PWMS-H 0.95 0.6 0.8 413 1218 844 1145 3378 2340 20.4 63 43.7 

MVPA 

(%) 

PWMS-L 0.88 0.61 0.31 1.56 2.77 3.71 4.31 7.68 10.28 34.6 68.5 90.1 

PWMS-H 0.96 0.91 0.53 0.51 0.81 1.87 1.43 2.22 5.19 17.3 27.7 64.6 

Note: PwMS-L = group of mild disability, PwMS-H = group of moderate disability  
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Table 6-6. Gait parameters and MVPA MET level in patients with MS and disability subgroups 

Notes: Means and SD are given. Max WS = maximum walking speed; mean WS = mean walking speed; MVPA = moderate to vigorous MET level;  

*: significant p-value; §: marginal p-value 
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7 Ambulatory assessment system to evaluate the effect of 

pharmacological intervention 

Usually, the investigation of the motor and gait ability in response to physical or 

medical treatment bases on stationary assessed parameters. However, this 

method is time costly and unable to reflect patients’ activities in real conditions. 

Therefore, the aim of this study was to objectively investigate the effectiveness 

of the medication treatment (Fampridine) using the gait parameter assessment 

system developed in this work and to compare the results with those assessed in 

the clinic. Comprehensive analysis of gait features in frequency and time-

frequency domain can provide complementary information to understand gait 

patterns. Therefore, in the following study, the parameters peak frequency and 

energy concentration were integrated along with the previous discussed 

parameters (time-domain parameters) (chapter 6). 

7.1 Study Design, Data Fusion and Reduction 

The following study was carried out in contribution with MS Center, Dresden 

University of Technology, Germany. In this study the activity and gait 

parameters were assessed using the accelerometer for evaluating the changes of 

these parameters under fampridine-therapy. 26 patients (mean age: 49.6 years, 

mean EDSS score: 5.6) were recruited in the study. Initial investigation (phase1) 

was followed by fampridine therapy for 14 days (phase2). Quantitative and 

qualitative gait parameters (T25FW, 2-MWT, MSWS-12) were assessed in both 

phases to investigate fampridine response on walking impairment of PwMS. 

Based on the clinical tests patients were classified as responder and non-

responder. Patients of responder group (R) (mean age = 48,1,  mean EDSS = 

5,8) showed an improvement in gait performance during phase 2 (after 

Fampridine intake), whereas the patients of the non-responder group (NR) 

(mean age = 56 year, mean EDSS = 4) did not show any improvement or had a 

decline during phase 2.  

The system used for the ambulatory assessment was the one described in chapter 

5. Patients were asked to carry move II during their normal daily activities. As 

Detailed information about the system usage can be found in chapter 6. In phase 

1 patient carried the sensor for 8 days on average and in phase 2 for 10.7 days on 

average. The sensor was carried for 13.3h on average per day.  
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The patient was excluded from the analysis if she/he did not wear the sensor for 

at least 5 days a’ 8h or 10 days a’ 8h, before and after fampridine intake, 

respectively. Furthermore, if the data from phase 1 or phase 2 are missing the 

patient was excluded. The total number of patients included in the analysis was 

22 patients. 

7.2 Data Analysis and Classification 

The first step before developing the classification method is to extract gait 

parameters. The input signals were assessed during every day activities, thus in 

contains different types of physical activity including sitting, standing and lying. 

However, the parameters of interest are those that occur during move activities, 

such as walking and jogging. Therefore, the physical activity algorithms 

developed in [152] was firstly applied. The segments of signal correspond to the 

move activities were then separated for the analysis. After that the segments 

were transformed in a parameter vector. For walking speed estimation 3s signal 

overlapping was used, whereas for all the other parameters the extraction was 

done over 1s segment (Figure 7-1). Detailed information about parameter 

extraction and developing were presented and discussed in chapter 5. 
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Figure 7-1. Process of gait parameters extraction (a); Example of signal segment 

with activity classification (b) 

7.2.1 Parameter Selection 

The hypothesis was that the developed system and parameters should be able to 

determine whether the patients show an improvement in gait parameters in 

phase2 in comparison to phase1 or not. Therefore, before starting with the 

classification the parameters were tested using box plot method. The 

investigation based on the clinical determination of R and NR. Patients in R 

group showed improvement in phase2 in comparison to phase1 (Figure 7-2). 

The paired sample t-test was used to investigate the improvement statistically. 

Significant improvements were shown in steps/day: p = 0.001, asymmetry: p < 

0.05, step length: p < 0.05, walking speed: p = 0.01, energy concentration: p < 

0.05 and peak frequency < 0.05. However, they showed marginal significant 

improvement in cadence p = 0.08. On contrary, patients in NR groups did not 

show any positive response to the fampridine treatment (Figure 7-3). 
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Figure 7-2. Gait parameters in response to the treatment (Responder) 
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Figure 7-3. Gait parameters in response to the treatment (Non-Responder) 

7.2.2 Classification 

As it was mentioned above, the purpose of the analysis is to investigate the 

possibility to discriminate between two output response of fampridine-treatment, 

namely R or NR. The classification is based on the aforementioned gait 

parameters, which were assessed objectivity under free-living condition. 

Therefore, the main aim here was to use machine learning method for 

developing models to predict patients’ response to treatment. After having the 

parameters of phase 1 and phase 2 extracted the classifier is to be constructed. 



Ambulatory assessment system to evaluate the effect of pharmacological intervention 

161 
 

Using gait parameters as input data the classifier should give one output which 

is corresponding to the treatment response (i.e. responder or non-responder) 

In this work, two different classification methods were used and investigated; 

decision tree and Support Vector Machine (SVM). Decision tree requires 

relatively little effort from users for data preparation especially when there are 

few decisions and outcomes included in the tree. Furthermore, decision tree 

need no assumptions of linearity in the data. SVM is considered to be stable 

method. It showed better accuracy over neural network methods in classifying 

individuals based on their gait pattern. Furthermore, SVM is able to model 

complex nonlinear decision boundaries and are much less prone to over fitting 

than other algorithms such as k-Nearest Neighbor and Naïve Bayes [153]. 

The Classification and Regression Tree (CART) was used in this work to 

generate the classification tree. Classification tree is built through the binary 

recursive partitioning process. SVM classifier with Gaussian Radial Basis kernel 

function (GRB) was used to build the classifier to identify responders and non-

responders for fampridine-treatment. The classifier was evaluated using repeated 

random sub-sampling (RRS) with the ratio of 50%/50% of training/testing sub-

dataset. This procedure was repeated several times with different sub-sets, which 

were randomly split based on RRS methods. (Figure 7-4) illustrates the whole 

process of the classification approach. The evaluation of the classifier includes 

the three performance measure: 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃𝐶) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹𝐹𝑎𝑐𝑡𝑜𝑟 = 
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Eq.7-1 

Sensitivity, also called true positive rate or recall rate, is a statistical measure of 

how well a classification method correctly identifies a condition. Specificity, 

also called true negative rate, is a statistical measure of how well a classification 

method correctly identifies the negative cases.  Accuracy is defined as a number 

or correct classification to the number of all cases. Positive predictive value, also 

called precision, is a statistical measure of the test performance. F_Factor is a 
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statistical measure of performance on the test; it is a harmonic mean of precision 

and recall. 

 

Figure 7-4. Process of the classification approach 

Based on the results in section 7.2.1, whole parameters were included in the 

classification. However, different parameters combinations were investigated to 

determine the best combination that contains large amount of information 

regarding changes in walking ability in response to the treatment. Table 7-1 and 

Table 7-2 summarize the 5 best combinations of SVM and CART methods, 

respectively. Based on RRS validation, the best classification performance was 

achieved by applying SVM on a set of 2 parameters with sensitivity rate ranges 

from 71.2% to 78.2% and specificity rate ranges from 62.7% to 77.3%. Figure 

7-5 illustrates the accuracy of the SVM classifier with different parameter 

combination. 

 

Figure 7-5. Classification of responder and non-responder patients using SVM 

classifier 
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CART classifier showed better sensitivity (82.7% - 85%) on set of 4 parameters. 

However, the specificity of CART classifier varies from 29.2% to 32%. Figure 

7-6 illustrates the accuracy of the SVM classifier with different parameter 

combination. 

 

Figure 7-6. Classification of responder and non-responder patients using CART 

classifier 

However, both classifiers showed high positive predictive value (PPV). For 

Decision tree the values of PPV range from 84.9% to 85.5% and for SVM the 

PPVs range from 91.1% to 93.7%. Based on these results, SVM with GRB 

kernel function can be used to objectively predict the responders to the 

treatment. 

The results indicate that an intelligent classifier built by SVM and with an 

averaged sensitivity of 74% and average specificity of 72% can be applied to 

provide objective suggestion for patient’s responses to therapy. 

Table 7-1. Classification results using SVM with different parameters’ 

combinations 

Parameters 

combination 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

F_Factor 

(%) 

[5 7] 75% 77.3% 93.7% 77.8 % 

[3 7] 71.2% 76.8% 93.5% 75.5 % 

[2 3 7] 73.8% 70.3% 91.6% 72.7 % 

[2 7] 72.5% 72.9% 91.1% 71.5 % 

[1 7] 78.2% 62.7% 91.1% 71.2% 
Note: 1 = steps, 2 = asymmetry, 3 = cadence, 4 = step length, 5 = velocity, 6 = energy concentration, 7 

= peak frequency 
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Table 7-2. Classification results using CART with different parameters' 

combinations 

Parameters 

combination 

Sensitivity 

(%) 

Specificity 

(%) 

PPV 

(%) 

F_Factor 

(%) 

[2 4 5 7] 85% 32% 85.5% 50% 

[4 5 6 7] 84.2% 30.5% 85.1% 50% 

[1 2 4 7] 82.7% 29.7% 85.1% 49.7% 

[2 5 6 7] 84.2% 29.2% 85.3% 48.7% 

[1 4 5 7] 83% 29.2% 84.9% 48.3% 
Note: 1 = steps, 2 = asymmetry, 3 = cadence, 4 = step length, 5 = velocity, 6 = energy concentration, 7 

= peak frequency 

7.3 Summary 

In this chapter, the usage of machine learning algorithm to objectively assess the 

response of the medication treatment was discussed. From the result it can be 

concluded that the presented methods provide safe, unobtrusive, inexpensive 

and objective possible to classify the patients according to their response to the 

treatment with high sensitivity and specificity. Moreover, the WS-based 

technique used in this work will help to overcome the disadvantages of the 

single or multiple snapshot assessments in current clinical practice. 



Discussion and Outlook 

165 
 

8 Discussion and Outlook 

8.1 General Discussion 

As highlighted in chapter 2, impairments of physical activity and gait are 

important neurobehavioral consequences of MS that may affect the patients’ 

quality of life. Several tools have been employed to assess activity and walking 

ability in PwMS [36]. As discussed in chapter 4, contemporary methods to 

assess activity and gait impairment are regular clinical observations and 

laboratory assessment systems. These methods were found to be subject to a 

range of limitations, potentially limiting the capacity of assessing these 

impairments under free-living condition. Other researchers used wearable 

sensors to capture motor and walking disability. However, the assessment was 

either in clinical environment with short discrete motor tasks or over short 

period of time (e.g. 7 days). As such, the primary objective of this thesis was to 

design and develop a Home-based system capable to extract comprehensive gait 

parameters to help doctors monitor the changes of activity and walking ability 

objectively in customer environment. This system can be used in applications 

involving the monitoring of degenerative or improved health conditions. The 

common goal and consideration of the assessment system was to make the 

system as simple to use as possible. For example, the pre-subject calibrations 

were avoided in the development of the gait parameters’ algorithms. 

Furthermore, especial software for data gathering and analyzing were designed 

to be completely automatic in push-button style interface (chapter 5). Moreover, 

the algorithms had to be developed using only one measurement device, i.e. 

wearable sensor, which is suitable for free-living data assessment. There are 

many types of sensors that can be used for the aim of this thesis. Due to 

methodological problems of assessment devices, such as gyroscopes, 

pedometers and pressure sensors, accelerometers have increasingly been 

considered as the “new gold standard” to measure free-living activities. Triaxial 

accelerometers have been proven to be more sensitive to detect differences of 

physical activity in patients with mobility and walking impairments such as 

PwMS. Therefore, in this work triaxial accelerometer was applied. The 

contribution of this work was the development of comprehensive gait 

parameters using one triaxial accelerometer. 

The most challenging part of the thesis was to develop several new methods and 

algorithms to detect and quantify various motor and gait abnormalities while the 
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patients were performing their daily activity. The methods developed in this 

thesis were able to assess several gait parameters in time, frequency and time-

frequency domain using one triaxial accelerometer attached to the hip. Recent 

studies on MS have increasingly assessed gait parameters, such as walking 

speed and number of steps as it is believed to be an indicator of disability and 

progression of neurological disease. Therefore, this work aimed to develop 

algorithms for walking speed estimation and step detection. Walking speed 

estimation algorithm was realized using SVR regression methods. Different 

models were developed; model for jogging activity, model for walking slow and 

fast and the third model was a general model for jogging and walking activities. 

The accuracy of the algorithm was investigated using the data from healthy 

control as well as data from PwMS. The average speed error using data from 

healthy control was 0.16m/s when using the general model and 0.29m/s and 

0.07m/s when using the jogging and slow/fast model, respectively. Using the 

data collected from PwMS during 10-meter walking test, the accuracy of the 

algorithm was reported to be 0.24m (0.02%). Step detection algorithm was 

based on zero-crossing method was developed and the sensitivity (SE) and 

positive predictive value (PPV) were calculated. On average, the algorithm has 

high SE and PPV of 99.93% and 99.95%, respectively for slow/fast walking, 

jogging and walking up-downhill. 

Asymmetric gait is commonly observed in conjunction with a decline in walking 

ability. Therefore, it is considered to be one of the important gait characteristic 

that is increasingly reported by PwMS. The main research gap related to gait 

asymmetry analysis in PwMS were investigated from two perspectives; 

objectivity of the analysis system in general, the ability of applying the system 

in every-day life for a long time (chapter 5). Therefore, one of the key aims of 

this work was to develop an algorithm able to capture gait asymmetry in PwMS 

in their free-living environment using one triaxial acceleration sensor. Two 

different parameters were used to build 𝑆𝐼, namely step length and swing time. 

PwMS showed differences between both foot (p<0.05). Furthermore, in 

comparison with healthy control PwMS showed less gait symmetry in both 

indices (p<0.01). 

Frequency and time-frequency domain gait parameters have been considered as 

a powerful tool to identify and analyze gait changes. Several researches have 

investigated gait parameters in frequency and time-frequency domain, however, 

either with complex, costly demand laboratory-based system or with WS-based 
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system with multiple sensors attached to the body. The contribution of this work 

was the development of an algorithm to extract parameters such as, peak 

frequency and energy concentration using an accelerometer attached to the hip. 

Patients with moderate disability showed significantly low energy concentration 

in compare to patient of mild disability group (p<0.05), whereas, peak frequency 

showed significantly marginal differences between both groups (p=0.08). 

Using the Home-based measurement system and the algorithms developed in 

this work, many daily activity measurements of PwMS have been performed. As 

a result, rich 902 days with daily-activities of PwMS were collected in two 

different studies. First of all, the system was employed in a long-term study of 

one year period of time. In this study, motor and gait parameters were collected 

to objectively investigate the ability of the developed system in capturing the 

minimal change in activity behavior of PwMS even in absence of clinical signs. 

Therefore, the parameters were assessed in four follow-up measurements phases 

with three months intervals. This frequency is important to be able to capture the 

early slightly changes and hence help in just-in-time treatment adjustment and 

optimization. The results showed that motor and gait parameters of PwMS 

assessed during their daily-activities are more responsive to the slight disability 

changes than the clinical measures. The PwMS demonstrated significant decline 

in ambulatory parameters at follow-up measurements. This was, for example, 

revealed by lower number of steps and slower walking speed, -23.20%, -5.3%, 

respectively. Furthermore, the results showed that there is correlation between 

EDSS score and gait parameters (number of steps: r=-0.54; walking speed: r=-

0.71; asymmetry: r= -0.53; energy concentration: r=-0.71; Peak frequency: r=-

0.63). These correlations provide evidence that physical and gait parameters 

measured by the Home-base system can be used to monitor the patient’s clinical 

status. 

After the usage of the developed parameters was investigated for its ability to 

capture the changes of motor and gait behavioral under free-living condition, the 

stability and precision of these parameters had to be studied. This leaded to 

determine the amount of change necessary to infer a clinically meaningful 

change in follow-up assessments. Reliability represents the stability of a 

measure in the absence of changes. Intra-class correlations of the baseline data 

with subsequent measurements were calculated across a period of nine days. 

Number of steps, MVPA and walking speed showed high stability with ICC > 

0.8. The SEMs showed slightly increased over time from baseline to the follow-
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up measurements in the total MS group as well as in each disability subgroups. 

PwMS-L showed larger SEM than the PwMS-H subgroup, which could be 

associated with the greater variability of activity performance in patients with 

mild disability compared to the patients with moderate disability. The SEM-

based precision estimates showed in general acceptable to great precision. 

MCDs and MCD% of physical and gait parameters showed that maximum 

walking speed required the smallest change in comparison to mean walking 

speed, number of steps and MVPA. Between-phases MDCs for walking speed 

was 0.2m/s for overall sample, and 0.5m/s, 0.3m/s for PwMS-L and PwMS-H, 

respectively. Moreover, MCD% showed that a change between 32% and 37% 

represents a meaningful change in PwMS-L, whereas, the meaningful change in 

PwMS-H ranges from 15% to 24%. These results suggest the consideration of 

walking speed to measure responsiveness to change over time because of useful 

MDC scores in PwMS. Greater changes were found in number of steps and 

MVPA. Between-phases MDC% ranged from 28% to 42% (number of steps) 

and from 35% to 46% (MVPA) when considering all patients. Similar to 

walking speed, MDC% of number of steps were greater in PwMS-L compared 

to PwMS-H. The MDCs values are clinically useful because they might help to 

determine necessary amount of change a repeated measurement would need to 

differ from initial value in order to be considered as a true change. Therefore, 

the MDCs value reported in this work may also be incorporated into clinical 

decision making.  Long-term monitoring of motor and gait parameters offers the 

opportunity to comprehensively assess the pattern of behavioral change across 

prolongs periods of time. This information may assist in the process of clinical 

decision making in the context of neurological rehabilitation and intervention 

and thus help to eventually improve the patient’s quality of life. 

Observations and findings from the first study shed a light on using the 

accelerometer as a tool to determine the benefit of medical treatments and 

interventions. While currently no other objective ambulatory system exists to 

detect the response to treatment, the home-based system and algorithms 

developed in this work were employed to classify PwMS as responder (R) or 

non-responder (NR) according to the changes in their gait pattern and physical 

behavior in response to fampridine treatment. Parameters were collected in two 

phases; pre-treatment and post-treatment. Pre-treatment phase lasted for one 

week, whereas, post-treatment phase lased for 2 weeks. In total, data of 21 days 

of free-living activities of 22 PwMS were gathered. First of all, the developed 

algorithms were applied on the data of the pre- and post-treatment phase (phase1 
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and phase2, respectively) and the resulted parameters were analyzed. Then, the 

effect of the treatment on each parameter was investigated. In this work, two 

different machine learning algorithms were applied to investigate the response to 

the treatment. Differences in gait parameters between phase1 and phase2 in both 

R and NR groups were tested. Significant improvement in all gait parameters 

was observed in R group; p<0.05 for asymmetry, step length, energy 

concentration and peak frequency, whereas walking speed and number of steps 

had significant value of p≤0.01. In comparison to R group, gait parameters in 

NR group did not report any significant differences between phase1 and phase2. 

Decision tree and SVM classifiers were then applied to classify the patients 

based on the changes in their gait parameters. The results showed that it is 

possible to reach a high sensitivity (80%) and specificity (75%) using 

ambulatory assessment of changes in motor and gait parameters.  

User acceptance analysis showed that there is a possibility to apply telemedicine 

technologies in real world. Telemedicine technology can also have a positive 

impact on the patient’s behavior (e.g. stay active) when it is feasible, reliable 

and easy to use. Therefore, factors like usefulness and easy-to-use do influence 

the acceptance of the new technology. 

The general result of this dissertation can be concluded as: The design, 

validation and clinical application of Home-based monitoring system and 

algorithmic methods for objectively monitoring and quantifying changes in 

motor and walking ability with wearable sensors. Walking ability was quantified 

and analyzed by extracting relevant gait parameters in individuals who suffer 

from activity and gait disorder while performing their daily activities. In this 

work the focus was on patients with multiple sclerosis. 

8.2 Outlook and Future Work 

The measurement system developed in this work can be used as a tool capable to 

record, assessed and analysed the main and important changes in walking ability 

due to disease progress or even as response to a certain treatment. The next 

logical step is to perform the analysis online, to collect high number of data in 

order to improve the accurate of the detection of treatment effect.  

8.2.1 Adherence 

One main challenging problem in PwMS is the long-term adherence to therapy. 

As emphasized by the World Health Organization (WHO), “Increasing the 

effectiveness of adherence interventions may have a far greater impact on the 



Discussion and Outlook 

170 
 

health of population than any improvement in specific medical treatments”. 

Multiple benefits are associated with treatment adherence that extend beyond a 

lower risk of relapses and reduced disability progression. Adherence reduces the 

hospitalization and absences from work. These factors can significantly affect 

patient’s quality of life.  

To promote adherence, healthcare provider should assess patients’ needs and 

lifestyles in order to choose the appropriate therapy for each individual patient. 

Moreover, an individualized treatment increased patient’s adherence as they will 

be motivated by the positive effect of the treatment.   

Basically, medication treatment improves patient’s mobility. Additionally, by 

staying active patients will be able to strengthen the immune system so that their 

body can better handle the disease. Therefore, the combination between 

medication and physical therapy can increase patient’s quality of life.  Based on 

the proposed algorithms and methods developed in this work an adherence index 

can be developed.  The functionality of the system can be described as follow: 

Based on the current situation and needs, and the aimed to-be situation of the 

patient, physicians can determine an individual treatment program. Beside 

medication treatment an activity program can be also determined and agreed 

(e.g. certain number of steps per week). Based on the ambulatory and online 

continuously monitoring of the daily motor and walking data the adherence of 

the patient can be assessed and analysed, with the aim to keep the patient in the 

green zone (Figure 8-1) and to offer him/her the best possible treatment and 

hence improve his/her quality of life. 
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Figure 8-1. Adherence monitoring system 

8.2.2 Fall Detection 

Fall is a common health concern in multiple sclerosis. While it is not a symptom 

of MS per se, it has been found to be associated with disease progress and 

quality of life.  Because of its frequently in PwMS and the injury it may cause, 

fall detection should be included in the ambulatory monitoring system. During 

this work, an algorithm for fall detection using one accelerometer attached to the 

hip was developed. Data from 16 healthy individuals were collected. Different 

types of daily activity were performed, and fall was manipulated. Certain 

thresholds for both acceleration and angel were determined. The signal event 

was defined as fall when a high acceleration within 0.5 sec as well as changes in 

body posture was detected. The developed algorithm showed a SE of 93.75% 

and PPV of 83.33%.  

Evaluation of the patient’s risk of falling is required to provide adapted 

assistance and prevention methods. Normally, this risk is evaluated by using 

questionnaires, which have drawbacks such as subjectivity and prone to recall. 

Risk can be also evaluated by clinical tests. However, an objective method for 

measuring the risk through the monitoring of motor and walking ability is of 

great importance. Moreover, the number of fall occurrence has been considered 

to be an important indicator for disease degeneration. Therefore, a development 

of a reliable system that is capable to automatically report the fall events and to 

send automatic alarm when help is needed is very important in clinical research. 

Therefore, based on gait parameters and fall detection algorithms developed in 

this work risk of fall can be investigated and applied in application for fall 

prevention in PwMS.   
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