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The single scattering of P- and SV-waves by a cylindrical fiber with a partially imperfect bonding to the surrounding matrix is
investigated, which benefits the characterization of the behavior of elastic waves in composite materials. The imperfect interface is
modelled by the springmodel. To solve the corresponding single scattering problem, a collocation point (CP)method is introduced.
Based on this method, influence of various aspects of the imperfect interface on the scattering of P- and SV-waves is studied. Results
indicate that (i) the total scattering cross section (SCS) is almost symmetric about the axis 𝛼 = 𝜋/2 with respect to the location (𝛼)
of the imperfect interface, (ii) imperfect interfaces located at 𝛼 = 0 and 𝛼 = 𝜋 highly reduce the total SCS under a P-wave incidence
and imperfect interfaces located at 𝛼 = 𝜋/2 reduce the total SCS most significantly under SV-incidence, and (iii) under a P-wave
incidence the SCS has a high sensitivity to the bonding level of imperfect interfaces when 𝛼 is small, while it becomesmore sensitive
to the bonding level when 𝛼 is larger under SV-wave incidence.

1. Introduction

A large number of interfaces exist in composite materials and
play a very important role in the performance of composite
materials, for example, the transmission of the load between
thematrix and fibers. To simplify the analysis and calculation,
the fibers/particulates are generally assumed to be perfectly
bonded to the surrounding matrix [1–4]. However, this is
not always the case, which has consequently led to the
increased research effort to take the bonding conditions into
account [5–16]. Among them, the debonding case [9–13, 16–
18], which is assumed to be a crack with noncontacting faces,
has been well investigated. Specifically, Norris and Yang [11–
13] investigated the single scattering of antiplane shear and
P- and SV-waves by a partially debonded fiber through the
expansion of the crack opening displacement (COD) or the
stress at the neck in terms of Chebyshev polynomials. The

results indicated that a resonance happens at low frequencies
when the neck joining the fiber to the matrix is thin.
Recently, Fang et al. [16] extended this method to the case
of pipelines. Based on the same method, Kim [9] studied
the effects of interface debonding on the attenuation and
speed of antiplane shear wave propagating in fiber-reinforced
composites. The corresponding static effective mechanical
properties of fiber-reinforced composites were obtained from
the asymptotic solutions of dynamic harmonic analysis by Liu
and Kriz [10]. Besides the technique proposed by Norris and
Yang [11–13], Y. S. Wang and D. Wang [17, 18] proposed a
different method, where the dislocation density function was
introduced and the interface conditions were transformed to
standard Cauchy singular integral equations. Solving these
equations gives rise to the COD at each debonding/crack.
Compared with the method of Norris and Yang, the one
proposed by Y. S. Wang and D. Wang has a high convergence
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rate especially when the size of cracks is small. Besides these
theoretical investigations, numerical simulations using the
boundary element methods were also conducted, for exam-
ple, Biwa and Shibata [19, 20] and Sato and Shindo [21].

The perfect bonding and the debonding are the two
extreme cases of the bonding conditions of interfaces. Actu-
ally, there are other conditions which extensively exist be-
tween the perfect bonding and the debonding, that is, imper-
fect condition. For this reason, several theoretical models
were proposed during the past few years [22–24]. Among
them, the spring model [22] attracted the most attention.
In the spring model, the stresses are assumed to be con-
tinuous across the interface, while the displacements jump.
Furthermore, the displacement jump is assumed to be linearly
proportional to the stress at the interface. The stress to the
displacement jump ratio is defined as the stiffness of springs.
Thus, the stiffness of the spring reflects the bonding level of
the imperfect interface. It is clear that when the stiffness of the
spring tends towards infinity, the imperfect bonding becomes
the usual perfect bonding, while it approaches the debonding
when the stiffness approaches zero.

Using the above-introduced spring model, the effective
mechanical properties of composite materials, such as the
effective modulus [25, 26], thermal expansion coefficient
[27], phase velocity, and attenuation [5, 8, 28], have been
extensively investigated by taking the imperfect bonding into
account. The spring model has also been used to study the
influence of the imperfect bonding effect on the behaviors
of the underground tunnels under various dynamic loadings
[15, 24, 29, 30].

It is worthwhile to mention that, in most of the previous
studies, the whole interface between each fiber/particulate
and the matrix was usually assumed to simultaneously enter
the imperfect bonding condition. However, this is not real
case, assuming that the interface between each fiber and the
surrounding matrix deteriorates as a process would be more
reasonable. In this regard, less attention has been paid except
for the partial debonding case. The limited works include
those of Lopez-Realpozo et al. [31] and Guinovart-Dı́az et
al. [32], where the effect of the partially imperfect bonding
on the effective mechanical properties of fiber-reinforced
composites was investigated. To the best of our knowledge,
investigation on the influence of this partially imperfect
bonding of interfaces on the behavior of P- and SV-waves in
composites is still scarce. It is well known that the study of
the single scattering is crucial to understanding the overall
behavior of elastic waves in composites. Towards this end,
in this work, the single scattering of P- and SV-waves by a
cylindrical fiber with a partially imperfect bonding to the sur-
rounding matrix is studied. Compared with the single scat-
tering with a fully perfect or imperfect interface, solving the
single scattering with a partially imperfect bonding is much
more complicated, since the conditions at the interface be-
come discontinuous. In this work, the imperfect bonding is
characterized by the spring model and a CP method is intro-
duced to solve the corresponding single scattering problem.

In the following sections, firstly, the single scattering
problem is formulated.Then, the CPmethod is introduced to
solve the single scattering problem. After that, the influence

of various aspects of the partially imperfect bonding on the
single scattering is extensively studied numerically. Finally, a
short conclusion is drawn.

2. Single Scattering of P/SV-Waves by
a Fiber with a Partially Imperfect Bonding

2.1. Governing Equations for P- and SV-Waves in 2D Problems.
Thegoverning equations for P- and SV-waves in 2D problems
with a homogeneous medium are decoupled based on the
Helmholtz decomposition. In harmonic analysis, the two
equations for P- and SV-waves can be expressed as

(∇2 + 𝑘2𝑙 ) 𝜙 = 0
(∇2 + 𝑘2𝑠) 𝜑 = 0, (1)

where 𝜙 and 𝜑 denote the displacement potentials for P- and
SV-waves, respectively; and ∇2 is the Laplace operator. The
symbols 𝑘𝑙 and 𝑘𝑠 are the wavenumbers of the P- and SV-
waves, and the subscripts 𝑙 and 𝑠 represent the longitudinal
and transversewave.Thewavenumbers are related tomaterial
properties as

𝑘𝑙 = 𝜔
√(𝜆 + 2𝜇) /𝜌 ;

𝑘𝑠 = 𝜔√𝜇/𝜌 ,
(2)

where 𝜔 is the circular frequency, 𝜆 is the Lame constant, 𝜇
is the shear modulus, and 𝜌 is the mass density. In the polar
coordinate system, the displacements and stresses are ex-
pressed as

𝑢𝑟 = 𝜕𝜙𝜕𝑟 + 1𝑟 𝜕𝜑𝜕𝜃
𝑢𝜃 = 1𝑟 𝜕𝜙𝜕𝜃 − 𝜕𝜑𝜕𝑟
𝜎𝑟𝑟 = (𝜆 + 2𝜇) 𝜕2𝜙𝜕𝑟2 + 𝜆( 1𝑟2 𝜕

2𝜙𝜕𝜃2 + 1𝑟 𝜕𝜙𝜕𝑟 )
+ 2𝜇(1𝑟 𝜕2𝜑𝜕𝑟𝜕𝜃 − 1𝑟2 𝜕𝜑𝜕𝜃)

𝜎𝑟𝜃 = 𝜇(− 2𝑟2 𝜕𝜙𝜕𝜃 + 2𝑟 𝜕2𝜙𝜕𝑟𝜕𝜃 + 1𝑟2 𝜕
2𝜑𝜕𝜃2 − 𝜕2𝜑𝜕𝑟2 + 1𝑟 𝜕𝜑𝜕𝑟 ) ,

(3)

where 𝑢𝑟 and 𝑢𝜃 represent the radial and circumferential
displacements, and 𝜎𝑟𝑟 and 𝜎𝑟𝜃 are the radial and tangential
stresses. The formula in ((1)–(3)) can be found in numerous
classic books, of which we mention the monograph by Mow
and Pao [33]. They are copied here to maintain the integrity
of this work.

2.2. Problem Formulation of the 2D Singe Scattering of P- and
SV-Waves. Figure 1 shows a schematic of the single scattering
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Figure 1: Scattering of a plane P- or SV-wave by a cylindrical fiber with a partially imperfect bonding to thematrix.The range of the imperfect
bonding is denoted by the red solid arc.

of a plane P- or SV-wave by a cylindrical fiber partially im-
perfectly bonded to the surroundingmatrix.The radius of the
fiber is 𝑎. The range of the imperfect interface is represented
by angle 𝛽, as indicated by the red solid curve shown in
Figure 1. The symmetric axis of the imperfect interface is at
angle 𝛼 with the horizontal axis. It is clear that when 𝛽 = 0,
the whole fiber is fully perfectly bonded to the matrix, and
the whole interface becomes a fully imperfect bonding as𝛽 = 2𝜋. In this work, the imperfect bonding is modelled
using the spring model introduced before, where it is char-
acterized using two springs distributed along the radial and
circumferential directions, with stiffness 𝐾𝑛 and stiffness 𝐾𝑡,
respectively. The incident wave is a plane P- or SV-wave
propagating in the horizontal direction. In the polar coordi-
nate system, general solutions to (1) are the products of Bessel
functions and trigonometric functions. Hence, for harmonic
analysis, the incident wave, the wave scattered by the fiber,
and the wave fields inside the fiber can be expressed as series
of cylindrical wave functions with the omission of 𝑒−i𝜔𝑡:

𝜙𝑖𝑛𝑐 (𝑟, 𝜃) = 𝑒i𝑘𝑚𝑙 𝑥 = ∞∑
𝑛=−∞

i𝑛𝐽𝑛 (𝑘𝑚𝑙 𝑟) 𝑒i𝑛𝜃

𝜙𝑚 (𝑟, 𝜃) = ∞∑
𝑛=−∞

𝐴𝑛𝐻(1)𝑛 (𝑘𝑚𝑙 𝑟) 𝑒i𝑛𝜃

𝜑𝑚 (𝑟, 𝜃) = ∞∑
𝑛=−∞

𝐵𝑛𝐻(1)𝑛 (𝑘𝑚𝑠 𝑟) 𝑒i𝑛𝜃

𝜙𝑓 (𝑟, 𝜃) = ∞∑
𝑛=−∞

𝐶𝑛𝐽𝑛 (𝑘𝑓𝑙 𝑟) 𝑒i𝑛𝜃

𝜑𝑓 (𝑟, 𝜃) = ∞∑
𝑛=−∞

𝐷𝑛𝐽𝑛 (𝑘𝑓𝑠 𝑟) 𝑒i𝑛𝜃,

(4)

where (𝑟, 𝜃) are the polar coordinates with origins at the
center of the fiber. The wavenumbers 𝑘𝛼𝑙,𝑠 = 𝜔/𝑐𝛼𝑙,𝑠 (𝛼 =𝑚 and 𝑓), where 𝑐𝛼𝑙,𝑠 is the wave speed of longitudinal (𝑙)
wave or transverse (𝑠) wave. The superscripts 𝑚 and 𝑓
indicate quantities associated with the matrix and the fiber,
respectively. 𝐽𝑛(⋅) and 𝐻(1)𝑛 (⋅) are the Bessel and Hankel
functions of the first kind; i = √−1 is the imaginary unit;
and 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, and 𝐷𝑛 are the unknown coefficients, which
are to be determined by the conditions at the interface. In
the current case, the conditions of stresses at the interface are
listed as

𝜎𝑚𝑟𝑟󵄨󵄨󵄨󵄨𝑟=𝑎 = 𝜎𝑓𝑟𝑟󵄨󵄨󵄨󵄨󵄨𝑟=𝑎 ,
𝜎𝑚𝑟𝜃󵄨󵄨󵄨󵄨𝑟=𝑎 = 𝜎𝑓

𝑟𝜃

󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑎 ,
𝜃 ∈ [0, 2𝜋] .

(5)

And the conditions for the radial and circumferential dis-
placements at the interface can be expressed as

𝐾𝑛 [𝑢𝑚𝑟 󵄨󵄨󵄨󵄨𝑟=𝑎 − 𝑢𝑓𝑟 󵄨󵄨󵄨󵄨󵄨𝑟=𝑎] = {{{
𝜎𝑓𝑟𝑟󵄨󵄨󵄨󵄨󵄨𝑟=𝑎 , 𝜃 ∈ 𝛽
0, otherwise

𝐾𝑡 [𝑢𝑚𝜃 󵄨󵄨󵄨󵄨𝑟=𝑎 − 𝑢𝑓
𝜃

󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑎] = {{{
𝜎𝑓
𝑟𝜃

󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑎 , 𝜃 ∈ 𝛽
0, otherwise.

(6)

The total displacement potential in the matrix is the
summation of the incident wave and the scatteredwave, while
the quantities in the fiber are only of the refracted one. By
substituting the total displacement potentials in the matrix
and the fiber expressed in (4) into (3), the displacements
and stresses in the matrix and the fiber are obtained. Then,
the interface conditions in (5) and (6) can be expressed in
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terms of the expansion coefficients𝐴𝑛,𝐵𝑛,𝐶𝑛, and𝐷𝑛. Firstly,
based on (5), two equations are established for the expansion
coefficients as

[𝑀31 𝑀32 𝑀33 𝑀34𝑀41 𝑀42 𝑀43 𝑀44]
[[[[[
[

𝐴𝑛𝐵𝑛𝐶𝑛𝐷𝑛

]]]]]
]

= [𝑏3𝑏4] ,

𝑛 = −∞,∞.
(7)

The detailed expressions for 𝑀𝑖𝑗 and 𝑏𝑖 (𝑖 = 3, 4 and 𝑗 =1, 2, 3, 4) are listed in Appendix A. After a simple mathe-
matical operation on (7), the coefficients 𝐴𝑛 and 𝐵𝑛 can be
expressed in terms of 𝐶𝑛 and𝐷𝑛 as

[𝐴𝑛𝐵𝑛] = [𝛽1 (𝑛)𝛽2 (𝑛)] + [𝛼11 (𝑛) 𝛼12 (𝑛)𝛼21 (𝑛) 𝛼22 (𝑛)] [𝐶𝑛𝐷𝑛] ,
𝑛 = −∞,∞

(8)

with [ 𝛽1(𝑛)𝛽2(𝑛) ] = [𝑀31 𝑀32𝑀41 𝑀42
]−1 [ 𝑏3𝑏4 ] and [ 𝛼11(𝑛) 𝛼12(𝑛)𝛼21(𝑛) 𝛼22(𝑛)

] =
− [𝑀31 𝑀32𝑀41 𝑀42

]−1 [𝑀33 𝑀43𝑀43 𝑀44
], where the superscript “−1” means

the inverse operation on a squarematrix.Then, the remaining
conditions for the radial and circumferential displacements
in (6) can be expressed in terms of coefficients 𝐶𝑛 and𝐷𝑛:
∞∑
𝑛=−∞

𝑐𝑗1 (𝑛, 𝜃) 𝐶𝑛 + ∞∑
𝑛=−∞

𝑐𝑗2 (𝑛, 𝜃)𝐷𝑛 = ∞∑
𝑛=−∞

ℎ𝑗 (𝑛, 𝜃) ,
𝑗 = 1, 2, 3, 4.

(9)

The details for 𝑐𝑖𝑗 and ℎ𝑖 (𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2) are referred to
in Appendix B. Note that, in (9), 𝜃 is within the imperfectly
bonded interface as 𝑗 = 1 and 3 and is within the perfectly
bonded interface for 𝑗 = 2 and 4. Since 𝜃 does not vary from
0 to 2𝜋 in any equation of (9), the orthogonality for the sine
and cosine functions is not available. Therefore, analytical
solutions for 𝐶𝑛 and𝐷𝑛 are difficult to be obtained.

3. Scattering Cross Section and
the Far-Field Scattering Magnitude

In order to characterize the overall behavior of coherent
waves in composites with randomly distributed fibers/parti-
culates, over the past several decades, extensive theoretical
models have been proposed including the 𝑇-matrix method
[34–36], the self-consistent method [37–40], and the phe-
nomenological model (also known as the independent scat-
teringmodel) [1, 2, 41, 42]. It is noted that all these theoretical
models necessitate the solution of the corresponding single
scattering problem to obtain the parameters, such as the
total SCS and the far-field scattering magnitude. Therefore,
the current study is indispensable, especially taking the
imperfection of interfaces into account. In the current case
(2D P- and SV-waves), the total SCS can be calculated by

𝜎𝑠 (𝛼, 𝛽) = 4𝑘𝑚
𝑙

∞∑
𝑛=−∞

(󵄨󵄨󵄨󵄨𝐴𝑛󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝐵𝑛󵄨󵄨󵄨󵄨2) . (10)

The far-field scattering magnitude (𝑟 → ∞) is defined as

󳨀⇀𝑢 𝑠 = 𝑢𝑠𝑟󳨀⇀𝑒 𝑟 + 𝑢𝑠𝜃󳨀⇀𝑒 𝜃
= i𝑘𝑚𝑙 √ 2𝜋𝑘𝑚

𝑙
𝑟𝑒i(𝑘

𝑚

𝑙
𝑟−𝜋/4)𝑓𝑙 (𝜃) 󳨀⇀𝑒 𝑟

+ i𝑘𝑚𝑠 √ 2𝜋𝑘𝑚𝑠 𝑟𝑒
i(𝑘𝑚
𝑠
𝑟−𝜋/4)𝑓𝑠 (𝜃) 󳨀⇀𝑒 𝜃.

(11)

Here a variable with an arrow represents a vector. The super-
script 𝑠 denotes quantities of the scattered wave. By substi-
tuting the expression of the scattered wave into the above
equation, the far-field scattering magnitudes for the scattered
P- and SV-waves can be expressed as [13]

𝑓𝑙 (𝜃) = ∞∑
𝑛=−∞

(−i)𝑛 𝐴𝑛𝑒i𝑛𝜃

𝑓𝑠 (𝜃) = ∞∑
𝑛=−∞

(−i)𝑛 𝐵𝑛𝑒i𝑛𝜃.
(12)

𝜎𝑠(𝜃), 𝑓𝑙(𝜃), and𝑓𝑠(𝜃) are evaluators of the scattering capabil-
ity of the fiber. Accurate calculation of these parameters plays
a critical role in these theoretical models.

4. The Collocation Point Method

In this study, the CP method is adopted to solve (9). First,
the infinite series in (4) are truncated with the maximum
order 𝑛max. Then, the number of the unknowns 𝐶𝑛 and 𝐷𝑛
in (9) becomes (2𝑛max +1). In order to solve these unknowns,
both the first (𝑗 = 1, 2) and second (𝑗 = 3, 4) group
equations in (9) are forced to be satisfied at (2𝑛max + 1) CPs.
In this work, these CPs are distributed symmetrically about
the partially imperfectly and perfectly bonded interfaces, as
shown in Figure 2. Additionally, these CPs are required to be
distributed as uniformly as possible on the whole interface.
Then, a linear system of size 2 × (2𝑛max + 1) is established
for 𝐶𝑛 and 𝐷𝑛. Solving this linear system yields 𝐶𝑛 and 𝐷𝑛
(𝑛 = −𝑛max, 𝑛max); the coefficients 𝐴𝑛 and 𝐵𝑛 can then
be calculated according to (8). Then the displacements and
stresses at each point inside the fiber and the matrix can be
calculated.

To check the convergence of this CP method, the total
SCS by a partially debonded fiber (𝛼 = 0 and 𝛽 = 2𝜋/3)
under different 𝑛max is calculated and plotted in Figure 3. In
this case, the materials for the fiber and the matrix are glass
and epoxy, whose detailed properties are listed in Table 1.The
results show that the calculated SCS converges to a constant
as 𝑛max increases. Based on this convergence analysis, in this
study, 𝑛max is set as 10.

Next, three examples are calculated to validate the appli-
cation of the CP method. Figure 4 shows the calculated SCS
by a partially imperfectly bonded fiber changing with the
stiffness at 𝑘𝑚𝑙 𝑎 = 3.0. The materials used are the same
as those in Figure 3. The dash lines represent values of the
debonding and the perfect bonding cases obtained in [13].
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Figure 3: Convergence study of the CP method using the debonding case considered in [13]. In the CP method, the stiffness 𝐾𝑛/𝐾∗𝑛 =𝐾𝑡/𝐾∗𝑡 = 10−6 represents the debonding. In this work,𝐾∗𝑛 and𝐾∗𝑡 are defined as 𝐾∗𝑛 = 0.5(𝜆𝑚 + 𝜆𝑓)/0.1𝑎 and𝐾∗𝑡 = 0.5(𝜇𝑚 + 𝜇𝑓)/0.1𝑎.

Table 1: Materials used in the current work [4, 13].

Material 𝜆 (GPa) 𝜇 (GPa) 𝜌 (kg/m3)
SiC 92.1 177.0 3200
Ti-alloy 103.0 44.8 5400
Glass 0.7367 1.43 2550
Epoxy 0.8895 1.28 1250

The results from this study approach the exact solutions
when the stiffness tends to zero and infinity. Moreover, the
calculated results under different 𝛽 tend to the same value
as the stiffness increases, which follows the fact that all the
imperfect bonding of different widths becomes the perfect
one as the stiffness is large enough. In the following two
calculations, the matrix is Ti-alloy and the fiber is made up of

SiC.The detailed properties of the twomaterials are tabulated
in Table 1. Figure 5 shows the calculated far-field scattering
magnitude patterns for the scattered P- and SV-waves under
a plane P-wave incidence with a normalized frequency 𝑘𝑚𝑙 𝑎 =1.0. The imperfect bonding is located at 𝛼 = 0 with a width𝛽 = 𝜋/2. As shown in Figure 5, patterns at several different
bonding levels are plotted and compared with that of the
fully perfect bonding case. Results show that the pattern
with a partially imperfect bonding approaches that of the
fully perfect bonding case as the stiffness 𝐾𝑛 and stiffness 𝐾𝑡
increase, which agrees with the theoretical expectation.

Figure 6 shows the calculated far-field scattering magni-
tude patterns of the scattered P- and SV-waves by a fiber with
a fully (𝛽 = 2𝜋) imperfect bonding under a P-wave incidence
at a normalized frequency 𝑘𝑚𝑙 𝑎 = 3.0. Results show that pat-
terns of both the scattered P- and SV-waves approach those
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Figure 5: The far-field scattering magnitude patterns of the scattered (a) P- and (b) SV-waves by a fiber with a partially imperfect bonding
to the matrix, under a plane P-wave incidence (dashed line: 𝐾𝑛/𝐾∗𝑛 = 𝐾𝑡/𝐾∗𝑡 = 10−1; dotted line: 𝐾𝑛/𝐾∗𝑛 = 𝐾𝑡/𝐾∗𝑡 = 100; dash dotted line:𝐾𝑛/𝐾∗𝑛 = 𝐾𝑡/𝐾∗𝑡 = 101; solid line: perfect bonding).

of the cavity one as the stiffness 𝐾𝑛 and stiffness 𝐾𝑡 decrease,
which is also in agreement with the theoretical expecta-
tion.

Figures 4, 5, and 6 indicate that the CP method performs
well to calculate the total SCS and the far-field scattering
magnitude for the single scattering problemof P- or SV-waves

by a fiber with a partially imperfect bonding to the matrix.
But, it should be reminded that the current CP method
is not a proper technique to calculate the corresponding
crack opening displacements and the stresses at the inter-
face, especially around the tips of the imperfect interface.
Moreover, the results show that the spring model with the
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Figure 6: Comparison of the calculated far-field scattering patterns of the scattered (a) P-wave and (b) SV-wave by a fiberwith a fully imperfect
bonding to the matrix under a P-wave incidence versus those of the debonding case (cavity).

setting of 𝐾𝑛/𝐾∗𝑛 = 𝐾𝑡/𝐾∗𝑡 = 101 and 𝐾𝑛/𝐾∗𝑛 = 𝐾𝑡/𝐾∗𝑡 =10−3 properly modelled the perfect bonding and debonding
situations, respectively.

5. Effects of the Partially Imperfect Bonding
on the Single Scattering

5.1. Effects of 𝛼 and 𝛽. In this section, the influence of 𝛼 and𝛽 on the single scattering of P- and SV-waves is investigated.
The stiffness of the imperfectly bonded interface is set as𝐾𝑛/𝐾∗𝑛 = 𝐾𝑡/𝐾∗𝑡 = 10−2, which represents a serious imper-
fection close to the debonding. Figure 7 shows the relative
divergence of the calculated 𝜎𝑠 under different 𝛼 and 𝛽 from
that of the fully perfect bonding, under a P-wave incidence.
Based on the results shown in this figure, several conclusions
are obtained. First, it is clear that𝜎𝑠 is almost symmetric about
the axis 𝛼 = 𝜋/2. Second, within the range of investigated𝛽, the partially imperfect bonding located at 𝛼 = 0 and𝜋 reduces 𝜎𝑠 the most. In contrast, the partially imperfect
bonding located at 𝛼 = 𝜋/2 has almost no effect on 𝜎𝑠
compared with the fully perfect bonding, especially as the
frequency is relatively high; all figures except Figure 7(a)
show this. Theoretically, this fact benefits the identification
of the specific location of the imperfection. Finally, as the
frequency increases to values larger than 𝑘𝑚𝑙 𝑎 = 2.0, the
partially imperfect bonding always reduces 𝜎𝑠 compared with
the fully perfect bonding, wherever the partially imperfect
bonding is located.

The corresponding results under the SV-wave incidence
are plotted in Figure 8. The frequencies of the incident wave
are the same for each pair of figures in Figures 7 and 8.
Similar to the results of the P-wave incidence, 𝜎𝑠 under the

SV-wave incidence is also symmetric about the axis 𝛼 = 𝜋/2.
Moreover, for each specific 𝛽, the partially imperfect bonding
located at 𝛼 = 𝜋/2 reduces 𝜎𝑠 the most. Similarly, this fact
is also beneficial to the identification of the location of the
imperfection. In addition, contrary to the P-wave incidence,
the partially imperfect bonding always reduces 𝜎𝑠 at relatively
lower frequencies rather than at higher frequencies.

5.2. The Stiffness Effect. In this section, influence of stiffness𝐾𝑛 and stiffness 𝐾𝑡 of the imperfect interface on the single
scattering is studied. Figure 9 shows the calculated 𝜎𝑠 chang-
ing with𝐾𝑛 and𝐾𝑡 at three different frequencies under the P-
and SV-wave incidence, respectively. The partially imperfect
bonding is located at 𝛼 = 0 with a width 𝛽 = 𝜋/4. It is
clear that 𝜎𝑠 is sensitive to 𝐾𝑛 and insensitive to 𝐾𝑡 under
the P-wave incidence. On the contrary, under the SV-wave
incidence, 𝜎𝑠 becomes sensitive to𝐾𝑡 rather than𝐾𝑛.

Definitely, the sensitivity of 𝜎𝑠 to 𝐾𝑛 and 𝐾𝑡 is affected
by the location of the partially imperfect bonding, based
on the results shown in Figures 7 and 8. In this work, this
sensitivity is defined using the slope 𝜅 of the solid line shown
in Figure 10, which is the linear fitting to the curve within(10−1, 100). A larger absolute value of 𝜅means 𝜎𝑠 has a higher
sensitivity to the stiffness of the imperfectly bonded interface.
Figure 11 shows values of |𝜅| under the P-wave incidence as
the imperfect bonding is located at different positions. In
this figure, 𝛽 = 𝜋/4. The results indicate that 𝜎𝑠 is more
sensitive to𝐾𝑛 than to𝐾𝑡. Moreover, 𝜎𝑠 changes significantly
in response to 𝐾𝑛 when 𝛼 is small, as Figure 11(a) shows. In
addition, the sensitivity of 𝜎𝑠 to 𝐾𝑡 reaches a maximum as 𝛼
equals approximately 𝜋/4. Figure 11(c) shows the sensitivity
of 𝜎𝑠 to both𝐾𝑛 and𝐾𝑡.
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Figure 7: Relative difference (%) of the calculated 𝜎𝑠 by a fiber with a partially imperfect bonding and with the fully perfect bonding, under
the P-wave incidence at several different normalized frequencies.
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Figure 9: The influence of stiffness 𝐾𝑛 and stiffness 𝐾𝑡 on 𝜎𝑠 under a P- and SV-wave incidence, respectively. (a) and (b) show results under
the P-wave incidence and (c) and (d) show results under the SV-wave incidence. In (a) and (c) 𝐾𝑡/𝐾∗𝑡 = 1, and in (b) and (d) 𝐾𝑛/𝐾∗𝑛 = 1.

The corresponding results under the SV-wave incidence
are plotted in Figure 12. Results show that 𝜎𝑠 is sensitive to𝐾𝑛
as 𝛼 is larger, as Figure 12(a) shows. In contrast, 𝜎𝑠 becomes
sensitive to 𝐾𝑡 for smaller 𝛼, as shown in Figure 12(b). Fig-
ure 12(c) shows the sensitivity of 𝜎𝑠 to both 𝐾𝑛 and 𝐾𝑡 under
the SV-wave incidence. Comparison of the results in Figures
11(c) and 12(c) indicates that when 𝛼 is small, the P-wave inci-
dence at higher frequencies is more applicable to evaluate the
changing of the stiffness of the imperfectly bonded interface.

In contrast, the SV-wave incidence at higher frequencies is
more applicable to evaluate the changing of the stiffness of
the imperfectly bonded interface as 𝛼 is large.

6. Conclusions

The single scattering of P- and SV-waves by a cylindrical
fiber with a partially imperfect bonding to the matrix is
investigated using the CP method. This study benefits the
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Figure 10: A schematic to define the sensitivity of 𝜎𝑠 to 𝐾𝑛 or 𝐾𝑡.
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Figure 11: The sensitivity of 𝜎𝑠 to (a)𝐾𝑛 and (b)𝐾𝑡 and (c) both𝐾𝑛 and𝐾𝑡, under the P-wave incidence.𝐾𝑡/𝐾∗𝑡 = 1 in (a),𝐾𝑛/𝐾∗𝑛 = 1 in (b),
and 𝐾𝑛/𝐾∗𝑛 = 𝐾𝑡/𝐾∗𝑡 in (c).

characterization of coherent waves in composites with ran-
domly distributed inclusions. In this study, the imperfect
interface is modelled using the spring model.Three examples
are calculated and the results show that this CP method per-
forms well. Also, the parametric analysis of location, width,
and bonding level of the imperfect bonding on the total SCS
is extensively studied. From this study, the following con-
clusions are obtained:

(a) The influence of the partially imperfect bonding on
the single scattering of P- and SV-waves is almost
symmetric about the axis 𝛼 = 𝜋/2.

(b) Under the P-wave incidence, the 𝜎𝑠 value reduced
by the partially imperfect bonding at the location of𝛼 = 0 and 𝜋 is greater than that at any other location,

compared with the fully perfect bonding. The par-
tially imperfect bonding located at 𝛼 = 𝜋/2 has
almost no effect on 𝜎𝑠. Under the SV-wave incidence,
the partially imperfect bonding located at 𝛼 = 𝜋/2
significantly reduces 𝜎𝑠.

(c) When 𝛼 is small, 𝜎𝑠 under the P-wave incidence has a
high sensitivity to the level of the imperfect bonding.
However, 𝜎𝑠 under the SV-wave incidence becomes
more sensitive to the level of the imperfect bonding
as 𝛼 is large.

In summary, besides its significance in the understanding
of the single scattering, the present study also benefits for
the application of the theoretical models to evaluate phase
velocity and attenuation coefficient of coherent elastic waves
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Figure 12: The sensitivity of 𝜎𝑠 to (a) 𝐾𝑛 and (b) 𝐾𝑡 and (c) both 𝐾𝑛 and 𝐾𝑡, under the SV-wave incidence. 𝐾𝑡/𝐾∗𝑡 = 1 in (a), 𝐾𝑛/𝐾∗𝑛 = 1 in
(b), and 𝐾𝑛/𝐾∗𝑛 = 𝐾𝑡/𝐾∗𝑡 in (c).

in composites with randomly distributed inclusions and the
nondestructive evaluation of composites using the ultrasonic
techniques.

Appendix

A. Expressions for 𝑀𝑖𝑗 and 𝑏𝑖 in (7)

𝑀31 = 𝜆𝑚 + 2𝜇𝑚𝜆𝑚 𝑞2𝑙𝑚 ⋅ 𝐻(1)󸀠󸀠𝑛 (𝑞𝑙𝑚) + (i𝑛)2𝐻(1)𝑛 (𝑞𝑙𝑚)
+ 𝑞𝑙𝑚 ⋅ 𝐻(1)󸀠𝑛 (𝑞𝑙𝑚)

𝑀32 = 2𝜇𝑚𝜆𝑚 i𝑛 ⋅ [𝑞𝑠𝑚 ⋅ 𝐻(1)󸀠𝑛 (𝑞𝑠𝑚) − 𝐻(1)𝑛 (𝑞𝑠𝑚)]

𝑀33 = −[𝜆𝑓 + 2𝜇𝑓𝜆𝑚 𝑞2𝑙𝑓 ⋅ 𝐽󸀠󸀠𝑛 (𝑞𝑙𝑓) + 𝜆𝑓𝜆𝑚 (i𝑛)2 𝐽𝑛 (𝑞𝑙𝑓)

+ 𝜆𝑓𝜆𝑚 𝑞𝑙𝑓 ⋅ 𝐽󸀠𝑛 (𝑞𝑙𝑓)]
𝑀34 = −2𝜇𝑓𝜆𝑚 ⋅ i𝑛 ⋅ [𝑞𝑠𝑓 ⋅ 𝐽󸀠𝑛 (𝑞𝑠𝑓) − 𝐽𝑛 (𝑞𝑠𝑓)]
𝑏3 = −i𝑛 [𝜆𝑚 + 2𝜇𝑚𝜆𝑚 𝑞2𝑙𝑚 ⋅ 𝐽󸀠󸀠𝑛 (𝑞𝑙𝑚) + (i𝑛)2 ⋅ 𝐽𝑛 (𝑞𝑙𝑚)

+ 𝑞𝑙𝑚 ⋅ 𝐽󸀠𝑛 (𝑞𝑙𝑚)]
𝑀41 = 2i𝑛𝜇𝑚𝜇𝑓 [−𝐻(1)𝑛 (𝑞𝑙𝑚) + 𝑞𝑙𝑚 ⋅ 𝐻(1)󸀠𝑛 (𝑞𝑙𝑚)]

𝑀42 = 𝜇𝑚𝜇𝑓 [(i𝑛)2 ⋅ 𝐻(1)𝑛 (𝑞𝑠𝑚) − 𝑞2𝑠𝑚 ⋅ 𝐻(1)󸀠󸀠𝑛 (𝑞𝑠𝑚)
+ 𝑞𝑠𝑚 ⋅ 𝐻(1)󸀠𝑛 (𝑞𝑠𝑚)]

𝑀43 = 2i𝑛 [𝐽𝑛 (𝑞𝑙𝑓) − 𝑞𝑙𝑓 ⋅ 𝐽󸀠𝑛 (𝑞𝑙𝑓)]
𝑀44 = − [(i𝑛)2 ⋅ 𝐽𝑛 (𝑞𝑠𝑓) − 𝑞2𝑠𝑓 ⋅ 𝐽󸀠󸀠𝑛 (𝑞𝑠𝑓) + 𝑞𝑠𝑓

⋅ 𝐽󸀠𝑛 (𝑞𝑠𝑓)]
𝑏4 = 2i𝑛 ⋅ i𝑛𝜇𝑚𝜇𝑓 [𝐽𝑛 (𝑞𝑙𝑚) − 𝑞𝑙𝑚 ⋅ 𝐽󸀠𝑛 (𝑞𝑙𝑚)]

(A.1)

with 𝑞𝑙𝑚 = 𝑘𝑚𝑙 𝑎, 𝑞𝑠𝑚 = 𝑘𝑚𝑠 𝑎, 𝑞𝑙𝑓 = 𝑘𝑓
𝑙
𝑎, and 𝑞𝑠𝑓 = 𝑘𝑓𝑠 𝑎.

B. Expressions for 𝑐𝑖𝑗 and ℎ𝑖 in (9)

𝑐11 = {(𝜆𝑓 + 2𝜇𝑓)
𝜆𝑓 𝑞2𝑙𝑓 ⋅ 𝐽󸀠󸀠𝑛 (𝑞𝑙𝑓) + (i𝑛)2 𝐽𝑛 (𝑞𝑙𝑓) + 𝑞𝑙𝑓

⋅ 𝐽󸀠𝑛 (𝑞𝑙𝑓) − 𝐾𝑛𝑎𝜆𝑓 [𝛼11𝐻(1)󸀠𝑛 (𝑞𝑙𝑚) ⋅ 𝑞𝑙𝑚
+ 𝛼21𝐻(1)𝑛 (𝑞𝑠𝑚) i𝑛 − 𝑞𝑙𝑓 ⋅ 𝐽󸀠𝑛 (𝑞𝑙𝑓)]} 𝑒i𝑛𝜃

𝑐12 = {2𝜇𝑓𝜆𝑓 [i𝑛 ⋅ 𝑞𝑠𝑓 ⋅ 𝐽󸀠𝑛 (𝑞𝑠𝑓) − i𝑛𝐽𝑛 (𝑞𝑠𝑓)]
− 𝐾𝑛𝑎𝜆𝑓 [𝛼12𝐻(1)󸀠𝑛 (𝑞𝑙𝑚) ⋅ 𝑞𝑙𝑚 + 𝛼22𝐻(1)𝑛 (𝑞𝑠𝑚) i𝑛
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− i𝑛𝐽𝑛 (𝑞𝑠𝑓)]} 𝑒i𝑛𝜃

ℎ1 = 𝐾𝑛𝑎𝜆𝑓 {[i𝑛𝐽󸀠𝑛 (𝑞𝑙𝑚) + 𝛽1𝐻(1)󸀠𝑛 (𝑞𝑙𝑚)] 𝑞𝑙𝑚
+ 𝛽2𝐻(1)𝑛 (𝑞𝑠𝑚) i𝑛} 𝑒i𝑛𝜃

𝑐21 = [𝛼11𝐻(1)󸀠𝑛 (𝑞𝑙𝑚) ⋅ 𝑞𝑙𝑚 + 𝛼21𝐻(1)𝑛 (𝑞𝑠𝑚) i𝑛 − 𝑞𝑙𝑓
⋅ 𝐽󸀠𝑛 (𝑞𝑙𝑓)] 𝑒i𝑛𝜃

𝑐22 = [𝛼12𝐻(1)󸀠𝑛 (𝑞𝑙𝑚) ⋅ 𝑞𝑙𝑚 + 𝛼22𝐻(1)𝑛 (𝑞𝑠𝑚) i𝑛
− i𝑛𝐽𝑛 (𝑞𝑠𝑓)] 𝑒i𝑛𝜃

ℎ2 = − [i𝑛𝐽󸀠𝑛 (𝑞𝑙𝑚) ⋅ 𝑞𝑙𝑚 + 𝛽1𝐻(1)󸀠𝑛 (𝑞𝑙𝑚) 𝑞𝑙𝑚
+ 𝛽2𝐻(1)𝑛 (𝑞𝑠𝑚) i𝑛] 𝑒i𝑛𝜃

𝑐31 = { 𝜇𝑓𝐾𝑡𝑎 [−2i𝑛𝐽𝑛 (𝑞𝑙𝑓) + 2i𝑛𝑞𝑙𝑓𝐽󸀠𝑛 (𝑞𝑙𝑓)]
− 𝛼11𝐻(1)𝑛 (𝑞𝑙𝑚) i𝑛 + 𝛼21𝑞𝑠𝑚 ⋅ 𝐻(1)󸀠𝑛 (𝑞𝑠𝑚)
+ i𝑛𝐽𝑛 (𝑞𝑙𝑓)} 𝑒i𝑛𝜃

𝑐32 = { 𝜇𝑓𝐾𝑡𝑎 [(i𝑛)2 𝐽𝑛 (𝑞𝑠𝑓) − 𝑞2𝑠𝑓 ⋅ 𝐽󸀠󸀠𝑛 (𝑞𝑠𝑓) + 𝑞𝑠𝑓
⋅ 𝐽󸀠𝑛 (𝑞𝑠𝑓)] − 𝛼12𝐻(1)𝑛 (𝑞𝑙𝑚) i𝑛 + 𝛼22𝑞𝑠𝑚𝐻(1)󸀠𝑛 (𝑞𝑠𝑚)
− 𝑞𝑠𝑓 ⋅ 𝐽󸀠𝑛 (𝑞𝑠𝑓)} 𝑒i𝑛𝜃

ℎ3 = {[i𝑛𝐽𝑛 (𝑞𝑙𝑚) + 𝛽1𝐻(1)𝑛 (𝑞𝑙𝑚)] i𝑛 − 𝛽2𝑞𝑠𝑚
⋅ 𝐻(1)󸀠𝑛 (𝑞𝑠𝑚)} 𝑒i𝑛𝜃

𝑐41 = [𝛼11𝐻(1)𝑛 (𝑞𝑙𝑚) i𝑛 − 𝛼21𝑞𝑠𝑚 ⋅ 𝐻(1)󸀠𝑛 (𝑞𝑠𝑚)
− i𝑛𝐽𝑛 (𝑞𝑙𝑓)] 𝑒i𝑛𝜃

𝑐42 = [𝛼12𝐻(1)𝑛 (𝑞𝑙𝑚) i𝑛 − 𝛼22𝑞𝑠𝑚 ⋅ 𝐻(1)󸀠𝑛 (𝑞𝑠𝑚) + 𝑞𝑠𝑓
⋅ 𝐽󸀠𝑛 (𝑞𝑠𝑓)] 𝑒i𝑛𝜃

ℎ4 = − {[i𝑛𝐽𝑛 (𝑞𝑙𝑚) + 𝛽1𝐻(1)𝑛 (𝑞𝑙𝑚)] i𝑛 − 𝛽2𝑞𝑠𝑚
⋅ 𝐻(1)󸀠𝑛 (𝑞𝑠𝑚)} 𝑒i𝑛𝜃.

(B.1)

It is noted that AppendicesA andB only list the expressions of
the parameters under the P-wave incidence. Expressions for
the SV-incidence can be obtained without essential difficul-
ties.
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