Evidence of convective transport in tropical West Pacific region during SHIVA experiment

Gisèle Krysztofiak1 | Valéry Catoire1 | Paul D. Hamer2* | Virginie Marécal2 | Claude Robert1 | Andreas Engel3 | Harald Bönisch3† | Katja Grossmann4‡ | Birgit Quack5 | Elliot Atlas6 | Klaus Pfeilsticker4

1LPC2E, Université Orléans – CNRS (UMR 7328), Orléans Cedex 2, France
2CNRM, Météo-France – CNRS (UMR 3589), Toulouse Cedex, France
3Department of Experimental Atmospheric Research, Institute of Atmospheric and Environmental Science, J. W. Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
4Chemical Oceanography Department, Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, Germany
5GEO MAR Helmholtz Centre for Ocean Research Kiel, Germany
6Department of Atmospheric Sciences, Rosenstiel School for Marine and Atmospheric Sciences, Miami, Florida

Correspondence
G. Krysztofiak, Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans CNRS (UMR 7326), 3A Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France.
Email: gisele.krysztofiak@cnrs-orleans.fr

Air masses in the convective outflows of four large convective systems near Borneo Island in Malaysia were sampled in the height range 11–13 km within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) FP7 European project in November and December 2011. Correlated enhancements of CO, CH4 and the short-lived halogen species (CH3I and CHBr3) were detected when the aircraft crossed the anvils of the four systems. These enhancements were interpreted as the fingerprint of vertical transport from the boundary layer by the convective updraft and then horizontal advection in the outflow. For the four observations, the fraction f of air from the boundary layer ranged between 15 and 67%, showing the variability in transport efficiency depending on the dynamics of the convective system.

KEYWORDS
aircraft, convective transport, in situ measurements, VSLS transport

1 | INTRODUCTION

The composition of the tropical upper troposphere (UT) is affected by the efficiency of the convective transport of chemical species (Fueglistaler et al., 2009). Tropical deep convection can efficiently transport surface emitted compounds from the lower troposphere into the tropical tropopause layer (TTL) altitude range (Marécal, Rivière, Held, Cautenet, & Freitas, 2006). Since in tropical regions large emissions of halogenated very short-lived species (VSLS) coincide with deep convection, one may expect rapid transport of VSLS into the TTL. Indeed, an efficient transport of chemical tracers from polluted air masses (Bechara, Borbon, Jambert, Colomb, & Perros, 2010) or biogenic sources from the oceans such as halogenated VSLS (CHBr3, CH2Br2, CH3I, etc.: Sala et al., 2014; Tegtmeier et al., 2013) was observed and modelled (Navarro et al., 2015; Werner et al., 2017).

In the last decades, several field campaigns (such as SHIVA—Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere, Sala et al., 2014; Fuhlbrügge et al., 2016;...
TC4 [www.nasa.gov/mission_pages/TC4]; ATTREX, Jensen et al., 2015) and modelling studies (Hossaini et al., 2012) focused on determining the contribution of the VSLS to the bromine burden in the upper troposphere and lower stratosphere (UTLS). Observational campaigns can only address the transport into the UT on an event-like basis but they are of high interest because the convection parameterisation is a major source of uncertainty in chemistry transport models (Arteta, Marécal, & Rivièr, 2009; Hoyle et al., 2011). Previous observational studies of convective outflows at mid-latitudes (Bertram et al., 2007) and in the tropics (Ray et al., 2004) reported an effective transport of short-lived trace gases (Bechara et al., 2010; Cohan, Schultz, Jacob, Heikes, & Blake, 1999) by convection from the boundary layer (BL) into the UT. These studies showed that a fraction of 20–40% of BL air was present in individual convective plumes transported rapidly to the UT.

One of the objectives of the SHIVA FP7 European project was the investigation of the atmospheric transport of VSLS from the BL into the UTLS. The campaign took place in the tropical West Pacific during the boreal winter monsoon in November and December 2011 when strong convective transport is expected to occur (e.g., Aschmann, Sinnhuber, Atlas, & Schauf, 2009; Levine, Braesicke, Harris, Savage, & Pyle, 2007; Liang et al., 2014). Here, we present airborne measurements for four mesoscale convective events indicating enhanced UT CO and CH4 volume mixing ratios (vmr) that directly correlate with CHBr3 and CH3I enhancements when the aircraft passed the anvil of convective cumulus clouds. The fraction of air originating from the BL is calculated by analysis of the CO enhancements.

The SHIVA campaign and instruments are presented in Section 2. In Section 3, we discuss the meteorological conditions of the flights and the detection of convective transport and its influence on CO and CH4 concentrations. Implications for the vertical transport for VSLS are also addressed. Section 4 concludes the study.

2 | SHIVA FIELD CAMPAIGN AND MEASUREMENTS

2.1 | Measurement campaign

The SHIVA aircraft campaign took place in Malaysia between November 16 and December 11, 2011. Using the German Aerospace agency (DLR) Falcon-20 aircraft, 16 research flights were conducted from Miri (Malaysia) airport in northwestern Borneo. In the present study, the results of four flights performed on November 19 (F19NOV), December 9, 2011 (F09DEC) and two on December 11 (F11DECa and F11DECb) are described in Appendix S1 (Supporting Information). The RV Sonne cruise started on November 15 in Singapore, passed near the northern coast of Borneo and ended in Manila, Philippines on November 29. Measurements on Sonne are used to estimate the variability of halocarbons concentration in the BL.

2.2 | Experimental method

The airborne CO and CH4 measurements were performed with the SPIRIT instrument (Catoire et al., 2017), and CHBr3 and CH3I with the GHOST instrument (Sala et al., 2014). Additionally, whole air samples taken in the RV Sonne were analysed for halocarbons, CO and CH4. More detail about instrumentation is provided in Appendix S1. Relative humidity from the Falcon-20 instrument and webcam imagery from mini-DOAS instrument (Großmann, 2014) are used to study the convective condition.

3 | RESULTS AND DISCUSSION

3.1 | Meteorological situation of the flights

Figure 1 depicts the flight tracks together with the brightness temperatures measured by the 11-μm channel IR108 from on board the Japanese geostationary satellite MTSAT-2. Additionally, cloud height is determined based on Hamada and Nishi (2010) and Iwasaki et al. (2010) (not shown).

Figure 1(a) indicates the presence of a well-developed convective system around 6°N and 115.5°E during research flight F19NOV that reached a maximum height of \(16 \pm 0.5\) km in altitude with an extended anvil on its west side reaching \(14.5 \pm 0.5\) km. For F09DEC, a convective system with a smaller horizontal extent was detected at around 5.5°N and 118.5°E (Figure 1(b)). The convective part of the system reached \(15.5 \pm 1\) km altitude and was embedded in stratiform clouds with maximum height \(13.5 \pm 1.5\) km. In F11DECa (Figure 1(c)), a well-developed convective system was probed between 1°–2°N and 106°–107°E. The cloud top altitude for this system reached a maximum of \(17 \pm 0.5\) km. The convection cell lasted throughout the day and was again probed during the back flight from Singapore to Miri in the afternoon for F11DECb (Figure 1(d)), though with a weakened strength.

3.2 | Impact of deep convection on trace gases

3.2.1 | CO and CH4

Figures 2–4 show CO and CH4 measured by the SPIRIT instrument. In all cases when the aircraft crossed convective outflows (period determined by webcam data, relative humidity and brightness temperature, see Figure 2), the mixing ratios of the measured tracers are increased. In the next section, such measurements are defined as \([X]_{\text{UTconv}}\), and the lower tracer mixing ratios observed outside of the convective system are defined as \([X]_{\text{UT}}\). CO and CH4 are mainly emitted from anthropogenic sources in the BL. The sudden increases of \([X]_{\text{UTconv}}\), larger than the UT mixing ratios \([X]_{\text{UT}}\), i.e., between 15 and 60 ppbv for CO and
between 20 and 50 ppbv for CH$_4$, are thus indicative of transport of polluted air from the BL into the UT. Such enhancements of BL tracers due to convection and affecting the UT composition have also been previously reported by Bechara et al. (2010) and Borbon et al. (2012).

3.2.2 Fraction of BL air detected in the UT

CO has proven to be a particularly good tracer to study convection due to its source at the surface and tropospheric lifetime of 1–3 months (Dessler, 2002). Following Bertram et al. (2007), the measured tracer’s mixing ratio $[X]$ is used to quantify the air fraction f originating from the BL and transported by convection, using the following equation:

$$[X]_{\text{UTconv}} = f [X]_{\text{BL}} + (1-f) [X]_{\text{UT}}$$

where $[X]_{\text{BL}}$ represents the vmr of the tracer in the BL. For the air masses affected by convection, $[X]_{\text{UTconv}}$ is determined from the calculated means for CH$_4$ and CO. For F19NOV, $[X]_{\text{BL}}$ is determined from the air directly probed below the convective system during the take-off and landing since the convective system was located near Miri. For F09DEC, the surface air was directly sampled during a dive under the convective system down to 1 km altitude and for F11DECa and F11DECb, the BL measurements from RV Sonne are used. All relevant parameters are summarised in Table 1. In all, 18–50% of air present in the outflow of convective systems was recently transported from the BL, based on measured CO and CH$_4$.

3.2.3 Impact of deep convection on upper tropospheric CH$_3$I and CHBr$_3$

For the four studied flights, Figures 2–4 (upper panel) show GHOST-MS measurements of CHBr$_3$ and CH$_3$I for air affected by deep convection. As for CH$_4$ and CO, flight-dependent enhancements ranging from 0.3 to 0.5 pptv for CH$_3$I and 0.6–1.0 pptv for CHBr$_3$ are observed in the air of convective outflow.

Three areas are defined in order to calculate the BL mean concentration depending on the location of the flight by using a combination of GHOST and RV Sonne measurements. For F19NOV, $[X]_{\text{BL}}$ only takes into account measurements in the region northeast of Miri, for F09DEC the region on the eastern side of Borneo and for F11DEC the region east of Singapore. Averaging over the designated areas separately removes the...
variability in oceanic emission sources between each region. For CHBr₃, it results in averaged concentrations in the range 1.8–2.7 pptv and for CH₃I in the range 0.3–0.5. The UT concentrations are calculated individually for each flight and give concentrations in the range 0.39–0.52 pptv for CHBr₃ and 0.21–0.25 pptv for CH₃I. According to Sala et al. (2014), the mean concentration of CHBr₃ in the UT is 0.61 ± 0.2 pptv and the mean concentration in the BL is 1.43 ± 0.53 pptv, considering data from all SHIVA flights in the tropics. However, the reported mean concentration for UT also contains the measurements affected by convection. For F19NOV, F09DEC and F11DEC, the resulting fractions f using CHBr₃ and CH₃I
are in the range between 15 and 67%. Table 1 summarises measured and averaged mixing ratios of all gases and fractions f for CHBr$_3$ and CH$_3$I. Note, the calculated fractions f depend on the actual source strength at the marine boundary surface, which for CHBr$_3$ are known to strongly vary in space and time. Furthermore, since the time resolution of the CHBr$_3$ and CH$_3$I measurements is longer than for CO and CH$_4$ measurements, the different averaging time may also affect the inferred fractions f by probably biasing them low relative to f calculated from other trace gases.

3.2.4 Comparison with previous studies

Considering all species from all flights, a mean fraction of 29 ± 25% is obtained (mean of the fractions f with standard deviations $\sigma < 0.4$). Table 1 compares our inferred fractions f with those found in the literature. The inferred mean fraction f derived from CO and CH$_4$ (18–50%) is in reasonable agreement with the fraction f inferred by Bertram et al. (2007), Ray et al. (2004), Lopez et al. (2006) and Bechara et al. (2010) given the range uncertainties. Like in our study, these authors used CO and CH$_4$ measurements among other tracers to calculate the fractions f. The fractions of Cohan et al. (1999) and Barth et al. (2016) using VSLS CH$_3$I, CH$_3$O$_2$H, CHBr$_3$ and VOCs are in agreement with our results (15–67%) derived from CHBr$_3$ and CH$_3$I.

Also, from the previous studies related to SHIVA project, Großmann (2014) inferred a fraction of 19% for the short-lived species HCHO measured during F19NOV using a mini-DOAS instrument (Stutz et al., 2017) and Fuhlbrügge et al. (2016) calculated similar contributions of marine BL air to the free troposphere (30–50%) up to 13 km height for the whole SHIVA-campaign with a trajectory model, again in agreement with the results of the present study.

4 CONCLUSIONS

Within the frame of the SHIVA project, air of the anvil from mesoscale large convective systems was sampled at altitudes...
TABLE 1 SPIRIT measured mean mixing ratios of CO, CH₄, CHBr₃ and CH₃I for the boundary layer ([X]BL), upper troposphere ([X]UT) and convective air masses ([X]UTconv) during the flights on November 19, 2011, December 9, 2011 and December 11, 2011.

<table>
<thead>
<tr>
<th></th>
<th>[X]BL</th>
<th>[X]UT</th>
<th>[X]UTconv</th>
<th>fraction</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ppm]</td>
<td>[ppm]</td>
<td>[ppm]</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>F19NOVb</td>
<td></td>
<td></td>
<td></td>
<td>0.26 ± 0.21</td>
<td>Borneo region (6°N–117°E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95 ± 12</td>
<td>76 ± 2</td>
<td>81 ± 1</td>
<td>0.26 ± 0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.17 ± 0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.62 ± 0.86</td>
<td>0.51 ± 0.04</td>
<td>0.73 ± 0.12</td>
<td>0.17 ± 0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.43 ± 0.17</td>
<td>0.24 ± 0.06</td>
<td>0.35 ± 0.05</td>
<td>0.59 ± 0.70</td>
<td></td>
</tr>
<tr>
<td>F09DECb</td>
<td>129 ± 9</td>
<td>73 ± 3</td>
<td>83 ± 3</td>
<td>0.18 ± 0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1801 ± 25</td>
<td>1771 ± 11</td>
<td>1782 ± 10</td>
<td>0.37 ± 0.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.32 ± 1.66</td>
<td>0.39 ± 0.12</td>
<td>0.69 ± 0.03</td>
<td>0.16 ± 0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.52 ± 0.54</td>
<td>0.22 ± 0.06</td>
<td>0.28 ± 0.03</td>
<td>0.20 ± 0.43</td>
<td></td>
</tr>
<tr>
<td>F11DECa</td>
<td>179 ± 3</td>
<td>81 ± 3</td>
<td>109 ± 15</td>
<td>0.29 ± 0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1868 ± 26</td>
<td>1794 ± 6</td>
<td>1817 ± 13</td>
<td>0.31 ± 0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.71 ± 0.89</td>
<td>0.50 ± 0.1</td>
<td>0.84 ± 0.13</td>
<td>0.15 ± 0.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.32 ± 0.02</td>
<td>0.23 ± 0.04</td>
<td>0.29 ± 0.07</td>
<td>0.67 ± 0.96</td>
<td></td>
</tr>
<tr>
<td>F11DECb</td>
<td>179 ± 2</td>
<td>83 ± 2</td>
<td>131 ± 20</td>
<td>0.50 ± 0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1868 ± 16</td>
<td>1776 ± 8</td>
<td>1822 ± 16</td>
<td>0.50 ± 0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.71 ± 0.89</td>
<td>0.51 ± 0.16</td>
<td>0.84 ± 0.12</td>
<td>0.15 ± 0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.32 ± 0.02</td>
<td>0.21 ± 0.03</td>
<td>0.27 ± 0.06</td>
<td>0.55 ± 0.35</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.29 ± 0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These inferred vmr are used in the calculation of the fraction f of air coming from the boundary layer detected in the convective air mass. The mean fraction f found is compared with other studies.

a Uncertainties are 1σ on the mean.

b Uncertainties include propagation error of the standard deviation of individual values.

c Volume mixing ratio in ppbv.

d Volume mixing ratio in pptv.

These inferred vmr are used in the calculation of the fraction f of air coming from the boundary layer detected in the convective air mass. The mean fraction f found is compared with other studies.

ACKNOWLEDGEMENTS
The contributions of S. Chevrier, L. Pomathiod, G. Chalumeau and K. Le Letty for engineering and construction of the SPIRIT instrument and for operations during the campaign are gratefully acknowledged. For GhOST-MS, the contributions of T. Keber and S. Sala to the successful measurements are gratefully acknowledged. This study has been possible thanks to funding provided by the EU project SHIVA (FP7-ENV-2007-1-226224), from the Deutsche Forschungsgemeinschaft (DFG) through grants PF384/9-1, 9-2, EN367/5-1 and EN367/5-2, the Federal Ministry of Education and Research (BMBF) grants 03G0218A and 03F0611A, the NASA grant NNX12AH02G and the Labex Voltaire program (ANR-10-LABX-100-01). The CTOP data were collected and distributed by Research Institute for Sustainable Humanosphere, Kyoto University, Japan.

REFERENCES