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Abstract

Within the Collaborative Research Center ”humanoid robots” at KIT there is a strong interest in generating human-

like motion. On one hand large-scale experimental studies are performed to gather insight into the variety and com-

plexity of human motion on the other hand models for the kinematic and dynamic analysis as well as for the synthesis

of movement are developed in order to understand the principles of human motion. Here we present a computational

approach combining model-based kinematic and dynamic analysis of experimental data together with the synthesis of

motion related to cost functions to analyze motion generation in humans.
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1. Introduction

The fast growing field of humanoid robotics produces a large variety of different robotic solutions and the systems

get more and more complex and the simulation of the dynamics of the system becomes necessary not only for the

design of the robot, e.g. control design, actuation forces, stress in components and contact forces but also for the

understanding of human motion in order to transfer the motion and produce human-like robotic systems. Commercial

software tools allow for the fast and comfortable analysis of mechanical systems, but their functional range is limited

when it comes to the adoption of a custom solution, where source code manipulation is required, and particular

dynamical routines are implemented.

In the collaborative research center 588 in Karlsruhe, a mechanics simulation environment was required in order

to analyze existing humanoid robots and simulate new developments. Then, the environment was adopted to the

mapping process of kinematical measurement data of a human subject onto the humanoid robot. Meanwhile, the

software environment increased to a general mechanics simulation tool and, besides inverse and forward kinematical

and dynamical analysis of individually defined models, it provides optimization based procedures for the integration

of kinematical and dynamical measurement data into the model, e.g. data from motion capture systems. Control
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approaches have been implemented and the system allows for the design of model based controllers as well as for

testing simulations of existing controls. Another feature is the computation and analysis of optimal control problems,

which are studied in order to understand human motion and synthesize human-like motion for humanoid robots.

Firstly, the multibody approach and its implementation is presented following the basics and application examples

of individual joint kinematics. Then, the optimization based inverse kinematics approach and the related marker

based mapping is introduced following the optimization based inverse dynamics approach. Examples of control

implementation and ease of controller design is shown subsequently. The numerical solution of optimal control

problems and motion generation based on several optimization criteria is presented. It will be shown that in general

the motion due to minimal torque, minimal torque change and other optimization functions lead to motions which

ressemble the measured motion. However it can be expected that the real motion depends on each subject in such a

way that it is a combination of the above mentioned criteria. The contribution closes with discussion and future work.

2. Multibody approach

The general approach for kinematical and dynamical analysis of robotic and human-like systems is the multibody

approach [1, 2] and a large variety of formulations with different types of coordinate representation (e.g. natural

coordinates, relative coordinates) and derivation of the equations of motion are available. This approach aims on an

efficient numerical generation of the kinematics of the system and the equations of motion and it was designed for use

with the Matlab environment and its powerful ODE suite. Therefore, the equations of motion are generated in minimal

coordinate form with recursive computational procedures [3]. In the following the basic underlying formulation is

presented.

Considering two bodies i and j of a rigid body chain with local coordinate systems Ki and Kj, their absolute

position is described by Ri and R j in relation to the inertial system K0 and their relative position is defined by ri j. The

transformation matrices Ai, A j and Ai j describe absolute and relative orientation respectively (Figure 1). Therefore,

the recursion equations for position and orientation are given by

R j = Ri + Airi
i j, (1)

A j = AiAi j. (2)

Keep in mind that ri j and Ai j depend from defined (and independent) joint coordinates qi j of the jointGi j. This context

will be described below. The recursion equations of velocity and angular velocity are derived by the time derivatives

of equations (1) and (2) to

Ṙ j = Ṙi + ω̃iri j + Aiṙi
i j, (3)

ω j = ωi + Aiω
i
i j = ωi + ωi j, (4)

Fig. 1: Definition of absolute and relative kinematics
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where ωi and ω j are the absolute angular velocities of the respective body, ωi j is the relative angular velocity and ω̃
denotes the skew symmetric matrix. Still, the relative velocities ri j and ωi j depend on the defined general coordinates

of joint Gi j. Analogously, the acceleration and angular acceleration are obtained from the equations (3) and (4) to

R̈ j = R̈i − r̃i jω̇i + ω̃iω̃iri j + 2ω̃iAiṙi
i j + Air̈i

i j, (5)

ω̇ j = ω̇i + ω̃iωi j + Aiω̇
i
i j. (6)

and can be rearranged to

[
R̈ j

ω̇ j

]
︸�︷︷�︸
α̈ j

=

[
I −r̃i j

0 I

]
︸��������︷︷��������︸

Φi j

[
R̈i

ω̇i

]
︸�︷︷�︸
α̈i

+

[
AiJr

i j
AiJωi j

]
︸�����︷︷�����︸

Ji j

q̈i j

+

[
ω̃iω̃iri j + 2ω̃iAiṙi

i j + AiΓ
r
i j

ω̃iωi j + AiΓ
ω
i j

]
︸�����������������������������������︷︷�����������������������������������︸

Θi j

(7)

and to the following short formulation respectively.

α̈ j = Φi jα̈i + Ji jq̈i j +Θi j (8)

From the recursion formulation over n bodies j = 1, ..., n the constraint equations are obtained in explicit matrix form

α̈ = J(q)q̈ + Γ(q, q̇), (9)

where J is the Jacobian of the system and Γ are quadratic terms in joint coordinates q and derivatives q̇.
The equations of motion are derived with the principle of virtual work. The mass matrix of body i is defined by

Mi =

[
miE −mir̃S

mir̃S Ii

]
, (10)

where E is the identity matrix and I is the inertial tensor of i. The vector of coriolis and centrifugal forces is defined
by

QZ
i =

[
miω̃iω̃irS

ω̃iIiωi

]
. (11)

External forces and torques on body i are defined as coordinate vector in absolute space

QE
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
nF∑
n

Fi,n

nF∑
n

r̃i,nFi,n +
nM∑
m

Ti,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

where Fi is the force component and Ti is the torque component in absolute coordinates respectively.

Linear and nonlinear spring and damper forces as well as muscle forces act between two arbitrary bodies Ki and

Kj of the multibody system (Figure 2). The coordinates of vector ri j, which relates the force application points Pi and

Pj are obtained by

ri j = R j + A jr j
j − Ri − Airi

i. (13)

and the action of a viscoelastic system is formulated by a scalar function

Fve = F
(
�, �̇, t
)

(14)

and the viscoelastic forces and moments on body i and j are given by the product of action and coordinate vector to

QF
i =

Fve

�

[
ri j

r̃iri j

]
and QF

j = −
Fve

�

[
ri j

r̃ jri j

]
. (15)
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Fig. 2: Spring, damper and actuator forces

Rotational spring and damper torques between two bodies i and j can be obtained respectively and they are represented
in absolute coordinates as

QM
i =

[
0

Tveu

]
und QM

j =

[
0
−Tveu

]
, (16)

where Tve is the respective viscoelastic torque around the shared relative axis u of body i and j. Further, a vector QA
i

is defined containing actuation forces and torques as well as joint limitations.

Then the equations of motion are derived with the principle of virtual work

nK∑
i

δαT
i

[
Miα̈i +QZ

i −QE
i −QF

i −QM
i −QA

i

]
= 0. (17)

to

JT MJq̈ = JT Q − JT MΓ. (18)

Equation (18) can be rewritten into the compact minimal coordinate form

Mqq̈ −Qq = T, (19)

where Mq is the mass matrix of the system, Qq = JT
(
QZ +QE +QF +QM

)
and T = JT QA are the generalized forces

acting on the generalized coordinates q. Equation (19) is valid for multibody systems with tree structure. For systems
with closed kinematic loops, the coordinates q are not independent any more. Therefore, the closing conditions are

formulated in explicit form and dependent coordinates are eliminated, which results again in a system of ordinary

differential equations. An analytical solution is possible only in a few certain cases and a numerical solution is usually

desired. For the closed loop condition

c
(
Ri,Ai,R j,A j

)
= 0 (20)

the constraint equation on acceleration level

Cqq̈ + Ċqq̇ = 0

is derived with dependent coordinates q and a DAE-System

[
Mq CT

q
Cq 0

] [
q̈
λ

]
=

[
Qq
−Ċqq̇

]
.

is obtained. The transition to ordinary differential equations is then performed by explicit closing conditions.

3. Joint kinematics

In this section, the relative context of ri j, Ai j and the generalized coordinates qi j of a joint Gi j between the bodies

Ki and Kj is explained and examples are given. A joint can be individually defined and it is not limited to standard
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Fig. 3: Example: Individual kinematic definition of 1 dof knee joint, (a) four bar mechanism, (b) ellipsoid, (c) spline coupling

Fig. 4: Example: Different positions of the 1 dof knee joint modeled by cubic spline approximation

joints, e.g. rotational or spherical joints. The relative position and the relative orientation can be defined by a generally

nonlinear functional context

ri
i j = fr

(
qi j

)
(21)

wi j = fw
(
qi j

)
(22)

This context allows one to define standard joints such as revolute, translational or spherical joints as well as any other

desired joint behavior, e.g. coupling of coordinates ri j = [rx
i j(q), r

y
i j(q), r

z
i j(q)]

T of joint Gi j within one independent

coordinate q or even coupling of variables between joints Gi j and G jk with ri j(q) and r jk(q) with one common inde-
pendent coordinate q. The maximum number of defined generalized coordinates is six per joint, which is related to

the six independent directions and orientations in space.

3.1. Example: coupling in one joint
Figure 3 illustrates three kinematic models of a human knee joint based on biomedical data [4], where one inde-

pendent joint coordinate q1 couples the three dependent position coordinates ri j(q) = [rx
i j(q), r

y
i j(q), r

z
i j(q)]

T . In a) a

four bar mechanism is modeled with the formulation, in b) points fo the femur and the tibia body move relative on an

elliptic surface and in c) the independent movement of femur and tibia have been first captured by a motion capture

system and therefore, the six trajectories in ri j(t) and Ai j(t) are known. Then, the independent joint coordinate q was

introduced and the trajectories of ri j(t) and Ai j(t) have been modeled by cubic spline approximation dependent on q
(Figure 4).

3.2. Example: coupling of several joints
On the development of a humanoid spine, torso motion was studied with different kinds of kinematical models in

order to find a suitable kinematical context (Figure 5) for human-like torso motion [5]. Therefore, a detailed spinal

model with 24 vertebrae and 72 joint variables based on biomechanical data [6] was established and the variables

where coupled to six independent joint coordinates qi, i = 1..6 (Figure 6 a)). Further models (Figure 6 b)-e) )have
been investigated and a kinematical context for ri j(t) and Ai j(t) was found which is able to reproduce human-like torso
motion with only three independent joint coordinates [q1, q2, q3].

4. Optimization-based inverse kinematics

Inverse kinematic problems are commonly formulated as a system of nonlinear equations of the form

RE (q) − RZ = 0, (23)

AE (q) − AZ = 0,
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Fig. 5: Example: Mapping of torso motion

Fig. 6: Example: Different kinds of spinal models

where Rz and Az are the desired end-effector position and orientation, RE(q) and AE(q) describes the absolute position
and orientation of a coordinate system KE . The solution of (23) are the generalized joint coordinates.

Robotic and human motion can be recorded by motion capture systems. A well known method is the infrared

marker based approach, which captures the markers on the subject with several cameras and reconstructs the three-

dimensional position of any marker in a defined absolute coordinate reference frame. The issue is now to transfer

the captured motion on a defined multibody model. Among other methods the optimization based inverse kinematics

approach is a method, which fits the model into the captured data while minimizing the residuals between model

markers Rm and the corresponding measured marker position R̄m(t) (Figure 7). The marker Mm is defined by its

relative position rb
m with respect to the body-fixed reference frame of body Kb and its absolute position is obtained by

Rm = Rb + Abrb
m. (24)

From the time derivative of equation (24) the Jacobian of markerMm can be obtained, which is useful for gradient

based optimization algorithms. The optimization problem can then be formulated by

min
q

1
2
‖F (q)‖22 (25)

with the nM × 1 vector function

F (q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f1 (q)
...

fnM (q)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (26)

where nM is the number of markers. The single vector functions fm (q) = R̄m − Rm (q) form the residual between

the measured markers R̄m and the absolute position Rm (q) of the model marker Mm. The coordinates q are then

calculated by a nonlinear least-squares algorithm.

An optimization based approach is robust against poor marker placement and it is further useful for mapping on

models with different kinematical structures, e.g. the same measured marker set can be used to map the motion on a

human-like model with 106 dof as well as on a humanoid model with 24 dof. Figure 8 shows mapping results for a

human-like and a humanoid system.
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Fig. 7: Definition of marker and residuals

Fig. 8: Mapping the same measurement data on models with different number of dof

5. Optimization-based inverse dynamics

The inverse dynamics can be calculated if the kinematics of the system is determined, for example, the generalized

forces of the system can be determined from motion capture data. But in case of additional available dynamical

data such as force plate measurements or data of grip force sensors the inverse dynamical problem becomes over-

determined. In the opposite case of several contact points to the environment, where the affecting contact forces are of

interest, the inverse problem becomes even under-determined. Both problems appear in research of human and robotic

systems. Considering the first case one may want to integrate both, kinematical and dynamical measurements into the

system in order to keep the modeling error small [7] while avoiding possible appearing residual forces and moments

on one body. The second case appears if one may want to know the applied forces and torques on several contact

points with present kinematical measurements and only few or not sufficient dynamical measurements. Further, there

is always a certain error in measurement, which might be considered, too.

The solution of the inverse dynamic problem in this approach is performed with control-based forward dynamics

integration of an optimization based inverse dynamics solution based on weighted least squares similar to [7, 8, 9].

In the equation

Mqq̈ −Qq = T =
[

0
τ

]
+

nb∑
i=1

JT
i Ir

i F
6
i (27)

nq is the number of dof in the system, the vector of generalized forces T is of size nq × 1 and it is equal to the

vector of actuator forces and torques [0T, τT]T plus the sum of nb external applied forces and torques, where Ji is the

Jacobian of body i and Ir
i transforms the vector of measurements or applied forces F6

i = [Mx,My,Mz, Fx, FyFz]
T on

the system. The skew matrix r̃i contains the elements of the relative vector ri between local coordinate system Ki and
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force application point on body i in absolute coordinates and E is the 3 × 3 identity matrix.

Ir
i =

[
E r̃i

0 E

]
, F6

i =

[
Mi

Fi

]
(28)

The first six equations from the matrix equation (27) show a direct context between generalized coordinates and the

applied forces which is expressed by

IcT = Ic

nb∑
i=1

JT
i Ir

i F
6
i (29)

with Ic = [E6×6, 0]T. Rewriting equation (27) to

q̈ −M−1
q Qq =M−1

q T (30)

the optimization problem can be formulated with equations (29) and (30) to

[
Ic

M−1
q

]
︸����︷︷����︸

A

T︸︷︷︸
x

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣ Ic

nb∑
i=1

JT
i Ir

i F
6
i

q̈ −M−1
q Qq

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸��������������︷︷��������������︸

b

(31)

Equation (31) has the basic form Ax = b of a least squares problem for static optimization, where A is the in general

non-quadratic pseudoinverse matrix and it can be solved for x. The problem can be converted in a weighted least

squares problem of the form

x =
(
ATW−1A

)−1
ATW−1b (32)

with the time dependent covariance matrix W, which may consist of the quality factors of the measurements and

the optimal generalized forces of the system can be estimated for present kinematical measurements q, q̇ and q̈ and

dynamical measurements F6 and even for imperfect or missing measurements.

The problem is now transferred to a dynamical optimization problem by introducing the control law

q̈ = q̈m +Kv(q̇ − q̇m) +Kp(q − qm), (33)

where the index m denotes data from kinematical measurements and Kv,Kp are critically damped diagonal matri-

ces. Then, the problem is solved by the integration of the controlled static optimization problem and the optimal

kinematical and dynamical data are obtained.

The inverse problem of the optimal inverse dynamics solution is now solved for the distribution of the applied

forces and torques for the contact points. Therefore, another pseudoinverse problem is solved which determines the

optimal applied forces and torques with the minimum variance between calculated and measured dynamical data in

presence of the covariance matrix W. The optimal actuator forces and torques can be calculated from equation (31)

with given optimal T and F6. Subsequently to the rigid reconstruction a compensation for residuals in highly dynamic

movements using wobbling masses can be performed, as described in [10].

5.1. Example: tap-dancing

Time synchronous kinematical and dynamical data were recorded for tap-dancing motion with a Vicon motion

capture system and two AMTI force plates and integrated into the model with the optimization based inverse dynamics

approach. Figure 9 shows the assembly of a trial in the simulation. The left and the right force plate can be seen with a

reference point at their center as well as the labeled model-based and measured markers. The turquoise vector starting

at the left foot denotes the measured force vector at the time instance.
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Fig. 9: Tap-dancing, recorded with motion capture and force plates

6. Control

The defined models allow for ease of control development and simulation implementation. They can be used as

plant models in the testing simulation of an existing control or the model matrices can be extracted and used in model

based controllers.

The problem statement in robotics is often to control a system of ordinary differential equations of the form

M(q, t)q̈ −Q(q, q̇, t) + d(t) = T(t), (34)

where M is the mass matrix of the system and Q contains gravitational, centrifugal and Coriolis terms as well as

friction and other nonlinear terms and d is the external disturbance of the system, e.g. impact or system change.

Besides a linear PID controller, two model based controllers have been implemented, yet and they are explained in

the following examples

6.1. Example: Computed torque controller
The computed-torque controller generates the control torque on a model based approach [11]. Therefore, the

position control error is defined as e = qd − q, where qd denotes the desired value of the joint coordinate and q is the

actual value. The error dynamics can then be obtained by

q̈(t) = q̈d(t) +Kvė(t) +Kpė(t) (35)

with critically damped gains Kv = I · 2c, Kp = I · c2, c = const. and the equations of the computed torque controller
are given by

T(t) = M̂(q, t)
[
q̈d(t) +Kvq̇(t) +Kpq̇(t)

]
+ Q̂(q, q̇, t) (36)

where M̂ and Q̂ are some (more or less accurate) models of the plant.

6.2. Example: Recursive controller
Recursive control laws often show fast performance and robustness against disturbance [12, 13], e.g. receiving

additional mass during a manipulation task, which might not be included in the model matrices. The recursive control

law of a discrete time based controller is given by

T(k + 1) = T(k) − σ(k)/∂σ(k)
∂T(k)

(37)
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Fig. 10: Performance of a Newton-Controller

where torque T(k + 1) at discrete time k + 1 is calculated by a Newton-Raphson method, σ(k) is some desired error
dynamics σ(k) = ë(k) + Kvė(k) + Kpė(k) and actuator torque is limited to T(k + 1) ∈ [Tmin, Tmax]. For model based

σ the control law is obtained by

T(k + 1) = T(k) + M̂(k)(ë +Kvė +Kpe) (38)

and closed loop stability is given for the spectral radius ρ(J( f )) < 1 with J( f ) = I − M̂M−1, where M̂ is the estimated

or model based mass matrix and M is the mass matrix of the plant [14]. Such a controller can be easily designed and

simulated with the presented multibody approach. As an example, the Newton-controller was applied to a seven dof

robotic arm. A defined human-like trajectory was selected as the desired trajectory and the controller had to position

the robotic arm with different payload mass. The additional mass has not been purposefully considered in the mass

matrix. Figure 10 shows the desired trajectory and the resulting well performing controller trajectories as well as the

generated torque for the robotic arm with no mass and with a mass of 2kg for the elbow flexion joint.

7. Optimal motion

The analysis of dynamical systems may lead to optimal control problems, especially in robotics research, where

dynamical properties of the system (e.g. force, kinetic energy) have to be minimized and a control law is desired such

that a given criterion is optimized by a cost function [15]. Human motion is investigated for certain optimality criteria

in order to understand human motion [16] and, in humanoid robotics, transfer human motion to the robotic system.

An optimal control problem can be formulated on the basis of Pontryagin’s minimum principle. It is used for the

optimal control law taking the system from an initial state to a final state, especially in the presence of constraints,

e.g. joint and actuator limits. The formulation is obtained from the Hamiltionian of the system

H(x(t), u(t), λ(t), t) = λ̇(t)f(x(t), u(t), t) +C(x(t), u(t)), (39)

where x(t) are the state variables of the system, u(t) is the control, λ(t) are the Lagrange-multipliers, f (x(t), u(t), t)
is the dynamical system in state space form and C(x(t), u(t)) forms some optimality principles [17] for a scalar cost
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function

J =
∫ t f

0

C(x(t), u(t))dt. (40)

The equations result in a system with a large number of variables for even few state variables. Different methods and

algorithms are available, e.g. collocation methods [18], multiple shooting methods [19, 20] or temporal finite element

methods [21, 22] to solve the problem and these methods are poor in computational performance.

The optimal control approach for problems with initial and target time conditions was also implemented in this

project to study human and humanoid optimal motion for comparison with motion measurements of a human subject.

The main focus lies on computational performance and ease of implementation.

Basically, human motion trajectories are smooth that is they are at least twice continuous differentiable. Given

an initial time tI and a target time tF the initial and the final states of the system are given and therefore, the joint

coordinates
[
qI

i j, q
F
i j

]
,
[
q̇I

i j, q̇
F
i j

] [
q̈I

i j, q̈
F
i j

]
of any joint Gi j are known and the absolute position and orientation of each

body i respectively. The solution in the time interval [tI , tF] can then be discretized and piecewise interpolated be-

tween the supporting points with polynomials of order three or higher. Therefore, piecewise cubic Hermite spline

interpolation is useful [23]. It is composed of two supporting points qtk
i j, qtk+1

i j and their slopes q̇tk
i j, q̇tk+1

i j at discrete time

instances tk, tk+1 so that the trajectory qi j(t) is obtained by the sum of the single cubic polynomials on the interval

t = [t0, t1, .., tk, .., tn] with t0 = t(k=0) = tI , tn = t(k=n) = tF and Δtk = tk+1 − tk

qi j(t) =
n−1∑
k=0

S k(q
tk
i j, q̇

tk
i j, t) (41)

where S k contains the time dependent piecewise cubic Hermite spline with its polynomial coefficients based on qtk
i j,

qtk+1
i j , q̇tk

i j and q̇tk+1
i j The obtained trajectory qi j(t) isC1 continuous over element boarders and its differentials are obtained

by

q̇i j(t) =
n−1∑
k=0

Ṡ k(q
tk
i j, q̇

tk
i j, t) (42)

q̈i j(t) =
n−1∑
k=0

S̈ k(q
tk
i j, q̇

tk
i j, t) (43)

For a system with N dof, equations (41), (42) and (43) can be rewritten to matrix form

q(t) = S (qtk , q̇tk , t)

q̇(t) = Ṡ (qtk , q̇tk , t)

q̈(t) = S̈ (qtk , q̇tk , t) (44)

The differential equations of a dynamical system are further discretized on the time interval [tI , tF] with a mesh

Δtl = tl+1 − tl smaller than Δtk to
Ttl =M(qtl )q̈tl −Q(qtl , q̇tl ). (45)

and equations (41), (42) and (43) inserted into (45) result to

Ttl =M
(
S(qtk , q̇tk , tl)

)
· S̈(qtk , q̇tk , tl)

−Q
(
S(qtk , q̇tk , tl), Ṡ(qtk , q̇tk , tl)

)
. (46)

The optimal control problem can then be reduced to a parameter optimization problem of the form

min
n∑

l=0

FT
(
tl, qtk , q̇tk

)
F
(
tl, qtk , q̇tk

)
, k = 0, .., n (47)



286  Christian Simonidis et al. / Procedia IUTAM 2 (2011) 275–289

Fig. 11: Comparison of measured motion and motion due to minimum torque criterion

where F depends on the discrete time tl, the supporting points qtk and the slopes q̇tk . Further, F is formulated as one or

more optimality principles, e.g. for minimum torque, F = T(tl). Optimality principles of higher order are computed
from equations (48) for kinematical dependent principles, e.g. minimum jerk

...q(t) =
...
S (qtk , q̇tk , t), (48)

dynamical principles are computed by spline approximation, e.g. the differential of torque for the minimum torque

change criterion

Ṫ(t) = Sp(Ttl , t). (49)

Finally, the problem is numerically solved for the n supporting points and the n slopes for N degrees of freedom qi j,

thus, the number of variables to solve for the optimization problem is 2 · n · N.
Another approximation of the displacement dependent trajectories was realized with a polynomial of 9th order

withC9 continuity, where the second order initial and final conditions are even fulfilled. Therefore, the ten coefficients

[a0, a1, a2, ..., a9] of the polynomial can be determined by a system of ten equations, where six equations are obtained

by the initial and final conditions
[
qI

i j, q̇
I
i j, q̈

I
i j, q

F
i j, q̇

F
i j, q̈

F
i j

]
. Four more equations are obtained on an equally spaced

discrete time interval tk = [t0 = tI , t1, t2, t3 = tF] with supporting points qi j(t1), qi j(t2) and the slopes q̇i j(t1), q̇i j(t2). This
leads to a number of only 4·N variables to solve for the optimization problem and continuous differentiable trajectories

are obtained for displacement, velocity acceleration and jerk coordinates as well as for torque. The continuous shape

of the trajectories is similarly compared to human ones and results compared to other approaches are plausible for

small time intervals Δt < 2s.
Figure 11 shows some results for minimum torque simulation of pointing gestures. Data has been recorded on the

human subject (red trajectories) and initial and final conditions have been extracted. The optimal motion was then

calculated on the defined time interval (green trajectory). Results are plausible compared to other studies in literature

[18, 16, 21] and computation time is small within seconds up to half an hour on actual CPUs.
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The results due to Minimum Torque Change (MTC), Minimum Constrained Hand Jerk (MCHJ) and Minimum

Angle Jerk (MAJ) are presented in Figure 12 [24]. The optimality criterion of MAJ seems to fit best, however the

diagrams show that the simulated and measured trajectories still do have differences. Due to this fact it can be assumed

that the real motion is generated using a combination of the different criteria using several weighting factors. However,

this is subject of ongoing research and results will be shown in the future.

Another criterion, the metabolic cost function is not used here as it requires to model the muscle actuation and

performance. This is beyond this research as the generation of motion for a humanoid robot is achieved by a limited

number of discrete actuators and therefore optimization criteria like the ones shown above are estimated to be more

suitable.
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Fig. 12: Measured and synthesised trajectories with 5 degrees of freedom

8. Visualization

Matlab provides powerful visualization techniques and animation routines, which are used in the environment.

Arbitrary geometries can be defined for any rigid body based on a mesh or a polygon surface and the rendering and

representation in plots is taken by Matlab routines. This simplifies the animation of three dimensional elements, e.g.

bones, which are available as polygons in the environment or CAD-geometries (Figure 13).

Coordinate systems, joint axes and paths can be plotted on demand. By the way, all skeleton and robot animation

plots in this paper were generated directly with models from this approach. Further, the environment provides an

interface to the open source Matlab-Toolbox Gait-CAD [25], which provides data visualization routines and methods

for the analysis of time series and data mining problems.
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Fig. 13: Visualization of the robot from CAD-geometries

9. Conclusions and future works

The mechanics simulation environment presented in this contribution allows for customization of individual

mechatronic problems and it is used within the collaborative research center 588 ”Humanoid Robots” at the University

of Karlsruhe. The presented kinematical and dynamical techniques allow for simulation support in the development

of the humanoid robots in the project and the analysis of human motion. Present applications are the analysis of

manipulation tasks with data acquisition form motion capture and grip force sensors at each finger tip for the dynamic

analysis of grasping. Figure 14 presents the visualization of recorded pouring motion with a bottle and a cup. In return

motion generation due to different optimality criterion can be tested by a comparison of measured and simulated data.

This is important to generate a human like motion of the humanoid.

Further implementations will be done with contact dynamics, e.g. soft-finger contact [26], in order to entirely

simulate manipulation tasks with contact dynamics.

Fig. 14: Manipulation task: Pouring with bottle and cup
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