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Abstract. A two-dimensional problem of wave propagation in an infinite 
multilayered structure containing an internal or interface crack is considered. To 
solve the problem, two approaches are applied, namely reducing of the problem to a 
system of boundary integral equations relative to unknown displacements of the 
crack surfaces or modeling of multilayered infinite media infinite using finite 
element Software ABAQUS by introducing a nonreflecting absorbing boundary. 
Alongside with the problem of wave propagation in the media with the given crack 
configuration, the work deals with the inverse problem of crack identification using 
surface displacements measured within given points. 

Introduction  

Today composite materials find ever-widening applications in many industrial sectors. Due 
to their high strength and lightness, they play a particularly important role in the aerospace 
industry. Thus, for instance, the share of composite materials in the construction of modern 
large-size airliners A380 and B787 is 25 and 50 percent [1], respectively. However, the 
complex manufacturing process of composite materials causes relatively frequent 
occurrence of damages both in the composite matrix and on the ply interfaces. The defect is 
called an internal crack in the first case and an interface crack, or delamination, in the 
second. Since the material is subjected to high loads in the process of operation, the 
presence of even small damage may lead to the crack growth and total destruction of the 
construction. 

Methods of nondestructive testing are used for monitoring of the structures health. 
Analysis of Lamb waves propagation in the investigated structure is one of the most 
widespread methods of nondestructive evaluation [1, 2]. The high practical potential of 
Lamb waves in the nondestructive testing problems has been known for a long time [1-7]. 
There exist many other methods, see review in [1, 2], however, the method of Lamb waves 
is considered to the most time-efficient one and can be more simply implemented for the 
online monitoring in the automatic operation mode [1]. 

The problem of crack parameters identification belongs to the kind of geometric 
inverse problems. Taking into account dispersion characteristics of a wave packet, the 
arrival time of the signal reflected from the crack to the sensor can be used as additional 
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information required for the solution of the inverse problem. Problems of investigation of 
dispersion characteristics of multilayered composites are studied in a large number of 
works [4, 6-8]. Based on the estimation of the propagation velocity of Lamb waves, 
influence maps are constructed with the use of a large number of actuators and sensors [9], 
as well as preliminary data filtration. This method makes it possible to locate cracks rather 
efficiently. The crack size, however, can be identificated only roughly. The advantage of 
this approach lies in the simplicity of the method and the fact that it is not necessary to 
model the defect itself, since the method can be used for defects of any type [9]. 

Another approach is based on the comparison of the measured surface 
displacements and displacements caused by the same surface load under different crack 
configurations [5, 10]. To apply this approach, it is necessary to solve the problem of wave 
propagation from a surface excitation source under the given parameters of the crack rather 
quickly, which is a very complicated problem by itself. 

The present paper considers a two-dimensional problem for a multilayered structure 
containing a through-thickness crack located parallel to the layers boundaries. A method 
based on a solution of boundary integral equations [11] as well as a method based on the 
finite-element method [12] is used for modeling of wave propagation within the structure 
with damage. Inverse problem of identification of the crack parameters is formulates an 
optimization problem. A genetic algorithm (see for example [5]) and a pattern search 
algorithm implemented in Software DIRECT 2.0 [13] are used to solve the related 
optimization problem. The authors discuss the convergence of the methods considered. In 
the course of a number of numerical experiments it was proved that both methods can be 
used to solve the identification problem. Suggested methods proved their availability in the 
application for structural health monitoring. 

1. Mathematical formulation  

1.1 Modelling in time and frequency domains 

In the nondestructive testing problems, cyclic loading during a finite time period is used 
most often, while excited surface displacements are measured starting from the moment of 
signal excitation to the moment of arrival of the waves reflected from the structure 
boundaries. In this case, the structure can be assumed to be infinite in horizontal directions. 
Moreover, the surface load distribution does not depend on time and the structure is loaded 
during a relatively short time interval according to the given law ( )f t , therefore, to analyze 
the measured displacements, it is possible to transform time-dependent data to the 
frequency domain 

 
0

1
Re ( ) i t( ,t)= ( ,ω)F e d 





u x u x , (1) 

where the function ( )F   is the Fourier transform of the function ( )f t , and displacements 
in the frequency domain ( ,ω)u x  do not depend on ( )f t  and describe harmonic vibrations 
of the infinite layered structure at a frequency   excited by the independent of the 
frequency surface load ( , )x yq . Due to the presence of the noise in the measured data, use 
of filtration algorithms before the transformation is required [8]. Hereinafter the problem of 
wave propagation is considered in the frequency domain.   
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1.2 Forward problem for a structure with given crack parameters 

The present work considers the through-thickness crack in the layered structure. The form 
of the crack and its location do not depend on the horizontal coordinate y . The structure is 
subjected to a line load that is independent of the y -axis. Hence, the problem is two-
dimensional and the field variables are independent of the y -axis. In this paper, it is 
offered to model the crack as an infinitely thin cut, the surfaces of which are stress-free and 
non-interacting. A possible account of the contact between crack surfaces leads to the 
nonlinearity of the problem and thus substantially complicates analysis. 

 
Fig. 1. Multilayered structure with a crack 

 
We consider harmonic vibrations at a frequency   of the multilayered structure. 

The layered structure is assumed to be infinite over the horizontal coordinate x . The 
thickness of a medium is H  (Fig. 1). The load ( )xq is given on the surface. At a depth h , 
the structure contains a crack with the length 2a . The distance along the x -axis between 
the middle of the crack and the center of the domain with a given load is assumed to be 0x . 

The displacement field on the crack has a discontinuity with an unknown jump 
     2 1, , , ,x x h x h    v u u  for x a , where the indices 2 and 1 correspond to the 

displacements of the structure above and below the crack respectively. The condition of the 
stress-free crack surfaces yields the system of boundary integral equations (BIEs) for 
unknown  xv  [11] 

  0 ,
a

a

(x - , - h) ( )d x h  


   l  v  ,  x a , (2) 

where  0 x, h  describes the crack depth stresses within the structure without a damage, 

while the integral on the left side describes stresses caused by the displacement jump on the 
crack. The kernel of the integral equation (x - , - h)l  is a hypersingular operator and its 

representation  α,-hL  in the Fourier domain can be calculated numerically, and in some 

cases analytically as well [14] 

   -i x(x, - h)= α,-h e d 

l L ,   (3) 

where   is the integration contour chosen according to the principle of a limiting 
absorption [14]. The right side of integral equation (2) can be calculated using the methods 
of Green's functions developed for layered structures [8, 14]. Let us consider the methods 
used to solve the problem of elastic waves propagation from a source within the layered 
infinite structure with a crack of the given configuration. 

3



1.3 Galerkin method for solving BIEs 

The technique for the solution of the system of BIEs (2), offered in [11], is used for the 
computation of the displacements on the surface of the structure with given damage 
parameters. It is assumed that the unknown jump (vector-function) of displacements on the 
crack can be approximately represented as a sum of a finite number of basis functions with 
coefficients-vectors 

 
0

( ) ( ).
pN

k k
k

x p x


 v c    (4) 

Due to the known properties of behavior of a displacement jump function on the crack 
edges [11], we choose Jacobi polynomials with weight functions as basis functions in the 
form 

  
1 2

1 2,( ) 1 1 .k k

x x x
p x P

a a a

 
            

    
   (5) 

In the general case, the indices 1 2,   must be calculated numerically, but in the case of the 

internal crack in the isotropic homogeneous material they are equal to 1 2
1

2   . 

According to the standard Galerkin's scheme, the left and right sides of system (2) are 
subsequently multiplied scalarwise in 2L  by the basis functions  lp x  1pN   times, and 

the problem is then reduced to the solution of a system of linear equations 
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where the system coefficients can be calculated, using the Parseval’s identity, as scalar 
products in the Fourier domain after the transformation over the coordinate x is performed 

  
2

, ,lk k l L
a L P P   

2
, ,l l L

f F P   (7) 

where the functions, written in capital letters, correspond to the respective functions from 
equations (2, 5) in the Fourier domain. The scalar products in (7) are calculated numerically 
in Fourier domain. When solution of (6) is found, the displacements at each point can be 
computed using the known methods of Green’s functions [8, 11, 14]. 
 The number of basis functions pN  is chosen according to the crack length and wave 

propagation frequency - the larger the values, the larger the number of basis functions that 
are needed to achieve the required accuracy of the Galerkin method [11].     

1.4 FEM for a structure with an absorbing non-reflecting boundary  

For calculating surface displacements in the medium with a crack of the known 
configuration is also used an algorithm, offered in [12]. This algorithm is based on the 
finite-element method, where an absorbing non-reflecting boundary for modeling of the 
boundary conditions at infinity is introduced. This algorithm is an alternative to the above 
method and does not require solution of integral equations (2). 
 When the problem of wave propagation in the medium infinite along the horizontal 
coordinate is considered using finite element method (FEM,) boundary conditions must be 
chosen specially, in order to prevent wave reflection. Note, that infinite elements, which are 
suggested in the commercial software ABAQUS are not suitable for the modeling of Lamb  
wave propagation in infinite layered media [12]. According to the algorithm from [12], it is 
necessary to supplement the area required for modeling by a damping area with internal 
friction increasing while moving away from the coordinate center. The friction must 
increase slowly to minimize wave reflection into the undamped area, but should be enough 
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to avoid the reflections from the boundaries of the damping area. The damping parameters 
are selected numerically depending on the modeled medium properties, crack parameters, 
as well as frequency and the amplitudes of displacements. It is important to mention that 
the solution calculated in this way is approximate, firstly, due to the application of FEM 
and, secondly, due to imperfectness of modeling of a nonreflecting boundary.  

 
Fig. 2. Amplitudes of vertical displacements on the surface of a steel isotropic layer (the Poisson ratio 

1
3  ) containing a crack under the excitation by a vertical point source: (a) 0.97  , 1.49a  , 0.4h  , 

40x  ; (b) 1.57  , 1a  , 0.4h  , 20x  . 

Fig. 2 shows calculation results of surface displacements based on the Galerkin 
method (dashed line) and using ABAQUS (solid line). Crack parameters and frequency are 
given in dimensionless form, where the spatial variables and frequency variable are 
normalized with respect to the thickness of the layer H  and to the shear waves velocity in a 

steel H
cs

  . As is seen in the figures, the results are in good agreement. For the 

ABAQUS calculations, 16000 elements are used, while for the calculations using the 
Galerkin method, 20 basis functions are used. Increasing of the number of basis functions 
and elements did not lead to considerable changes in the solution. The calculation time in 
case of the Galerkin method (less than 5 seconds on a standard PC) is from two to four 
times less than that of the ABAQUS method. 

2. Inverse problem of the identification of crack parameters  

2.1 Optimization problem  

It is known [10] that the inverse problem of the identification of the damage with arbitrary 
configuration using the measurement data of surface displacements has a unique solution 
when measurements are performed on the stress-free part of the surface of the medium and 
measurement data are known for the frequency range  1 2,   that does not contain 

resonance frequencies. If the measuring area does not intersect an area located directly 
above the crack, the problem is ill-posed and, therefore, is unstable relative to small 
perturbations of input data. In this case, to find the stable approximation of the solution of 
the inverse problem, it is required to use regularization algorithms. At the first stage, the 
method aimed at finding the crack configuration is based on the procedure of regularization 
over compact sets, specifically on preliminary parameterization of the crack through the 
values of its half-width a , location of the load application zone relative to the crack center 

0x  and its occurrence depth h . 
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The displacements ( )j jx u g  specified in the measurement points jx  on the 

medium’s surface are used in the paper as known inputs for the inverse problem. The goal 
of the identification is to find such crack parameters, for which the displacements at the 
same points jx  are nearly the same as measured values jg . This inverse problem is 

formulated using non-linear least squares method as the optimization problem [5, 10]   

    0 0min , ,0, , 0j j
j

a x x a x    u g ,   (4) 

 0 ,Ma a a   0, 0 0,L Rx x x  ,   (5) 

where the objective function describes the differences between the displacement values 
calculated for some "trial" parameters of the cracks 0,a x  and the known measurement data 

( )j jx u g  in the points jx . It is assumed that the depth of the crack h  is known (this 

algorithm can be also extended for the case of the unknown crack depth), while properties 
of the material under study and frequency are the desired parameters. 
 The statement of  the problem (4-5) does not satisfy the uniqueness theorem [10]. 
Using of the finite set of points for measuring displacements, as well as using only one 
frequency   instead of the frequency range  1 2,   can lead to non-uniqueness of the 

solution of the inverse problem. On the other hand, the presence of a priori information 
about the solution, namely the crack depth h , as well as limitations on the unknown 
parameters (5) restricts the searching area and can make it possible to uniquely identify the 
unknown parameters of the crack. The question of the uniqueness of the inverse problem 
solution in the statement (4-5) requires additional investigations. In case of the non-
uniqueness of problem solution (4-5), it is offered to use additional information about the 
solution, i.e. the larger number of displacement measurement points [5, 10] or the data 
about the displacement field during frequency variation [10] to get the over-posed problem.
   

2.2 Some aspects of numerical solution of the inverse problem  

To solve the optimization problem, it is required to solve the forward problem of 
computing surface displacements many times for different crack parameters. Both 
algorithms described above are quick and stable and can be used as a forward solver. Local 
optimization methods are not effective in solving the optimization problem (4-5), since the 
objective function can have a large number of local maxima and minima and initial 
approximations of crack parameters are unknown. Genetic algorithms (GAs) and pattern 
search algorithms have proved their efficiency in problems of global optimization. Pattern 
search methods, also known as direct-search methods, do not require the gradient of the 
problem to be optimized and can hence be used on functions that are not continuous or 
differentiable. The global minimization software DIRECT 2.0 [13], based on the pattern 
search, is used to the optimization problem (4-5). The DIRECT 2.0 switches to the local 
search algorithm after a good approximation to the solution is obtained. Genetic Algorithms 
are derived on the principles of natural evolution and are widely used in many optimization 
problems, computational search algorithms and machine learning. The Matlab function 
“ga” with standard settings is also applied for searching the minimum. 

In this work the measured data is simulated using calculation of displacements 
based on the Galerkin method or based on the application of the above described algorithm 
using FEM-Software ABAQUS for the given crack parameters. Random errors that are 
unavoidable during experimental measurement of surface displacements are modeled by 
adding the uniformly distributed random values to the displacements computed at the 
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measuring points. The maximal relative error between the true and identified crack 
parameters is used in order to analyze the accuracy of the solution of inverse problem. 

The regularization effect is achieved in this paper due to parameterization, i.e. the 
selection of the finite elements dimension in the FEM-based solution and the number of 
basis functions in the Galerkin method. The choice of these parameters can have a 
significant effect on the accuracy of the inverse problem solution and requires additional 
investigation. Presence of a large relative error in the measured data requires increasing the 
size of finite elements or decreasing the number of basis functions in the Galerkin method. 
More detailed information about the regularization effect due to the choice of parameters of 
a forward solver can be found in [5].    

3. Numerical examples and discussion 

Numerical calculations are carried out using the data about surface displacements in 16 
points distributed on the surface of the structure. Furthermore, reaching the value of the 
specified objective function (   4

0, 10a x   ) or reaching the specified number of 

evaluations of the forward solver is used as a stopping criteria for the global search 
algorithms. The numerical experiments carried out in this paper are aimed to investigate 
how the number of basis functions in the Galerkin method and finite elements size 
influence the solution accuracy of the forward problem, to work out the methods for 
solving the inverse problem of crack identification based on the concept of the crack 
configuration parameterization, and to study the effect of the solution accuracy of the 
forward problem on the accuracy of the solution of the inverse problem.         

Numerical calculations carried out for different locations of cracks in an isotropic 
layer and different locations of delaminations in a composite showed a high accuracy of the 
identification of the desired parameters of the damage. In the majority of simulations 
performed so far, the identification error, even in case of noisy measurement data with a 
relative error of 10 %, did not exceed 7.5 % when ABAQUS is used as a forward solver 
(Table 1) and 6% when Galerkin method is used (Table 2). Genetic algorithm applied to the 
optimization problem can quickly give a good approximation of the solution (10-15%), but 
in the vicinity of the minimum converges slowly. After 1000 evaluations of the forward 
solver the accuracy from 0.5% to 7.5% is reached. On the other side, the DIRECT 2.0 
Software due to a switch between global and local optimization algorithms allows to find 
more accurate (from 0.1% to 5%) solution as the GA. The computational time of DIRECT 
2.0 Software is about half of time, needed for the GA. It should be noted that, the accuracy 
of the crack position identification comparing to the accuracy of the crack length 
identification was in all simulations significantly higher (about 2-3 times). The results of 
numerical experiments for identification of delaminations in anisotropic composites also 
revealed that the error in the detection of damage parameters does not exceed the noise 
level introduced into the displacements at measuring points. 

Table 1. Results of crack identification for isotropic layer of steel using ABAQUS as a forward solver,  

1.88  , 0.3h  , 4.00x  , 1.5a   

Relative error 
in measured 
data  

Relative error of 
identification 
(GA) 

Relative error of 
identification 
(DIRECT 2.0)

Number of 
forward solver 
evaluations (GA) 

Number of forward 
solver evaluations 
(DIRECT 2.0) 

0.5% 1.5% 1.3% 452 180 

2.5% 3.9% 1.7% 567 245 

10%  7.4%  4.9% 1000 789 
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Table 2. Results of crack identification for isotropic layer of steel using Galerkin method as a forward solver,  

0.97  , 0.5h  , 2.00x  , 0.82a    

Relative error 
in measured 
data  

Relative error of 
identification  
(GA) 

Relative error of 
identification 
(DIRECT 2.0)

Number of 
forward solver 
evaluations (GA) 

Number of forward 
solver evaluations 
(DIRECT 2.0) 

0.05% 1.0% 0.1% 327 133 

5% 2.3% 0.3% 658 292 

10%  6%  0.7% 1000 456 

 
Based on the performed numerical experiments, it is possible to conclude that 

cracks and delaminations in the elastic medium can be successfully identified using the 
known measurement data of surface displacements and methods described in the present 
paper. The algorithms used to solve the forward problem have proved their effectiveness 
when applied to the real problems of elastic wave propagation in the media with defects [5, 
11, 12], and the methods offered to solve damage identification problems make it possible 
to identify defects in case when the noise level in input data exceeds the noise level of real 
measurements. Therefore, the results obtained in the paper indicate the possibility of 
application of the above methods in the nondestructive testing. 
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