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Zusammenfassung

Aufgrund ihrer hohen Steifigkeit und Festigkeit werden faserverstärkte
Polymere (FRP) vermehrt im Automobilleichtbau eingesetzt. Vorteile
von diskontinuierlich faserverstärkten Polymeren (DiCoFRP) sind
insbesondere die Designfreiheit und die sehr wirtschaftliche Groß-
serienfertigbarkeit. Kontinuierlich faserverstärkte Polymere (CoFRP)
hingegen zeichnen sich durch ihre herausragende Steifigkeit und
Festigkeit aus. Die hier beschriebenen Forschungsergebnisse entstanden
im Rahmen des deutsch-kanadischen DFG Graduiertenkollegs GRK
2078, welches sich mit einem ganzheitlichen Ansatz für diskontinu-
ierlich faserverstärkte Polymere mit kontinuierlichen Verstärkungen
(CoDiCoFRP) befasst. Das Ziel bei der Verwendung dieser neuen
Materialklasse besteht darin, DiCoFRP und CoFRP so zu kombinieren,
dass die Vorteile beider Materialien vereint werden.

In dieser Arbeit liegt der Fokus auf DiCoFRP, speziell auf Sheet Molding
Compounds (SMC) basierend auf ungesättigtem Polyurethan Polyester
Hybridharz (UPPH), auf Epoxy und auf Vinylester (VE) Harzsystemen.
Die inhomogene, anisotrope Faserorientierungsverteilung bestimmt die
mechanischen Eigenschaften von SMC. Ein Kernelement dieser Arbeit
ist die mikrostrukturabhängige Charakterisierung und Modellierung
von SMC.

Der heterogene Spannungs- und Dehnungszustand einer biaxial belas-
teten Kreuzprobe erlaubt es im Allgemeinen nicht, die Materialpara-
meter direkt über die Konstitutivgleichungen zu bestimmen. Deshalb
wird ein mikrostrukturbasiertes Schema zur Parameteridentifikation
von SMC mit inhomogener Faserorientierungsverteilung eingeführt.

i



Zusammenfassung

Vergleiche zwischen dem, auf inhomogenen Materialparametern basie-
renden, simulierten Dehnungsfeld und dem gemessenen Dehnungsfeld
werden im Detail diskutiert.

Eine große Herausforderung beim Design von biaxialen Kreuzproben
liegt darin, einen hohen Dehnungszustand in der Probenmitte zu erhal-
ten und gleichzeitig das Versagen in den eingespannten Probenarmen
zu vermeiden. Es werden unterschiedliche Designs von Kreuzproben
und zwei Konzepte zur Verstärkung der Probenarme vorgestellt. Die
Untersuchung beinhaltet die beiden Lastszenarien, uniaxialer Zug und
äquibiaxialer Zug. Bezüglich der eingeführten Optimalitätskriterien
erweist sich ein Probentyp als optimal, bei dem auf der Ober- und
Unterseite des SMC unidirektional verstärkte Schichten (CoFRP) aufge-
bracht wurden. Ein schonender Fräsprozess legte das reine SMC in der
Probenmitte frei.

Zudem wird ein mikromechanisches Schädigungsmodell eingeführt.
Das Modell bildet die dominierenden Schädigungsmechanismen –
Matrix-Schädigung und Faser-Matrix Interface-Ablösung – im Rah-
men eines Mori-Tanaka Homogenisierungsschemas ab. Die Matrix-
Schädigung wird als phasengemittelte, isotrope Steifigkeitsdegradation
modelliert. Die Interface-Schädigung wird durch eine äquivalente
Interface-Vergleichsspannung auf der Fasermantelfläche bestimmt.
Diese äquivalente Interfacespannung berücksichtigt die inhomogene
Spannungsverteilung am Faser-Matrix Interface. Die Simulationsergeb-
nisse geben Einblick in die Schädigungsentwicklung, sowie den daraus
resultierenden Anteilen lasttragender Fasern bei unterschiedlichen
Lastszenarien.
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Summary

Due to their high specific strength and stiffness, fiber-reinforced poly-
mers (FRP) are increasingly applied in lightweight components in the
automotive industry. Advantages of discontinuous fiber-reinforced
polymers (DiCoFRP) include good formability and economical mass
production. Continuous fiber-reinforced polymers (CoFRP) offer out-
standing stiffness and strength. This research was conducted within
the German-Canadian research training group DFG GRK 2078, which
focuses on integrated engineering of discontinuous fiber-reinforced
polymers with continuous fiber reinforcements (CoDiCoFRP). The goal
of this new material class is to combine CoFRP and CiCoFRP in such a
way that the advantages of both material classes are maintained.

The herein presented thesis considers DiCoFRP, specifically an unsatu-
rated polyester polyurethane hybrid resin (UPPH), vinylester (VE), and
an epoxy resin sheet molding compound (SMC). The inhomogeneous
and anisotropic fiber orientation distribution determines the mechanical
behavior of the SMC. This work aims to characterize and model the SMC
based on its microstructure.

For the heterogeneous stress and strain state under biaxial loadings of
cruciform specimen it is, in general, not possible to analytically identify
the material parameters of a constitutive equation. A microstructure-
based parameter identification scheme for the SMC with an inhomo-
geneous fiber orientation distribution is introduced. The strain field
simulated with the obtained inhomogeneous material parameters and
the measured strain field on the biaxial specimen are compared.
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Summary

A key challenge in the design of a cruciform biaxial tensile specimen
lies in the design of a cruciform specimen that achieves a high strain
level in the center region and prevents premature failure in the clamped
specimen arms. Different cruciform specimen designs, including two
concepts to reinforce the specimens’ arms are introduced. An experimen-
tal evaluation includes two different loading scenarios, uniaxial tension
and equi-biaxial tension. The best fit in terms of the defined optimality
criteria is a specimen manufactured in a layup with unidirectional
reinforcing outer layers. A gentle milling process exposed the pure
SMC in the center region of the specimen.

Additionally, a micromechanical mean-field damage model for the SMC
is introduced. The model captures the dominant damage mechanisms –
matrix damage and fiber-matrix interface debonding – within a Mori-
Tanaka homogenization framework. The matrix damage is modeled as
phase-averaged isotropic stiffness degradation. The interface damage
is governed by an equivalent interface stress on the lateral fiber surface.
The inhomogeneous stress distribution in the fiber-matrix interface is
taken into account in the definition of the equivalent stress governing
the fiber-matrix interface damage. The simulation results provide an
insight into the damage evolution for different loading scenarios.
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Chapter 1

Introduction

1.1 Motivation

The global drive to reduce carbon dioxide emissions constitutes a key
motivation for lowering fuel consumption in the automotive sector.
Here, lightweight design plays a significant role, since a 100kg weight
savings reduces fuel consumption by an average of 0.40l/100km for
cars, and 0.49l/100km for light trucks (Bandivadekar et al., 2008). In
the literature, the correlation between 100kg weight reduction and fuel
savings varies from 0.15l/100km to 0.7l/100km (Bandivadekar et al.,
2008). Economically, the automotive industry is willing to pay US$1.20
to US$13.70 per kilogram of weight savings (Bandivadekar et al., 2008).
Heuss et al. (2012) predicted that, by 2030, automotive OEMs will pay
up to e20 per kilogram of weight savings.

One weight-reduction strategy is to use lighter construction materials.
The outstanding mass-specific strength and stiffness of fiber-reinforced
polymers (FPR) have drawn considerable attention to this class of com-
posites. FRP are sub-divided into continuous fiber-reinforced polymers
and discontinuous fiber-reinforced polymers.

Continuous fiber-reinforced polymers (CoFRP), also known as endless
fiber-reinforced polymers, consist of a polymer matrix and aligned fibers
similar in length to the part dimensions. CoFRP permit fiber content
of up to 60vol.%. The high fiber content and fiber alignment result in
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1 Introduction

high stiffness and strength in the fiber direction(s). Moreover, the known
fiber direction(s) allow for straight-forward modeling and dimensioning
of CoFRP. Drawbacks include high cycle times, high scrap rates, and
extensive trimming.

Typical manufacturing processes for discontinuous fiber-reinforced poly-
mers (DiCoFRP) are injection and compression molding of a fiber-matrix
suspension. This moldfilling behavior limits the fiber volume fraction,
since the suspension requires a low viscosity, but it also allows for great
design freedom, including the use or ribs, for example. Injection and
compression molding permit low cycle times and thus promote eco-
nomic application in high-volume production. The stiffness and strength
of DiCoFRP are significantly lower than those in CoFRP. Although
DiCoFRP is already applied in non-structural automotive components
(Ernst et al., 2006), its use in structural components is hindered by a
lack of robust and efficient dimensioning and characterization meth-
ods. One main challenge in modeling DiCoFRP is the process-induced
heterogeneous fiber orientation distribution that is not known a priori.

A new hybrid class of materials is the so-called discontinuous fiber-
reinforced polymer with continuous fiber reinforcements (CoDiCoFRP).
The goal of this new material class is to combine CoFRP and DiCoFRP in
such a way that the advantages of both material classes are maintained:
high stiffness and strength along load paths, good formability, and
low cycle times. Figure 1.1 shows the classification of composites with
respect to fiber length. Even in the academic community, only prelim-
inary investigations of this material class exist. FRP is also classified
according to its matrix material. Fiber-reinforced thermosets (FRTS) have
a thermoset matrix, whereas fiber-reinforced thermoplastics (FRTP) have
a thermoplastic matrix material. The abbreviations CoFRTS, DiCoFRTS,
CoDiCoFRTS, CoFRTP, DiCoFRTP, and CoDiCoFRTP are used analo-
gously. Figure 1.2 shows an example of a CoDiCoFRTS component. The

2
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1.1 Motivation

CoFRP
continuous fiber-
reinforced polymer

DiCoFRP
discontinuous fiber-
reinforced polymer

CoDiCoFRP
discontinuous fiber-reinforced polymer
with continuous fiber reinforcement

Figure 1.1: Classification of different fiber-reinforced polymer classes with respect to the
fiber orientation

Figure 1.2: GRK 2078 reference structure made of discontinuous fiber-reinforced thermoset
with continuous fiber reinforcements (manufactured at Fraunhofer Institute of Chemical
Technology (ICT) Pfinztal)
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1 Introduction

Manufacturing technologies andmaterials for the introduced FRP classes
include (Henning and Moeller, 2011):

• CoFRTP: tape laying, pultrusion

• CoFRTS: most traditional lamination processes, handlamination,
resin transfer molding (RTM), pultrusion, filament winding

• DiCoFRTP: long-fiber-reinforced thermoplastic (LFT) compression
and injection molding, short-fiber thermoplastic injection molding
and foaming

• DiCoFRTS: sheet molding compound (SMC), bulk molding
compound (BMC), reactive injection molding, fiber spraying.

This thesis presents research results from project S2 in the international
research training group GRK 2078. The German-Canadian research
program GRK 2078 focuses on an integrated engineering approach for
CoDiCoFRP parts. The program’s goal is to enable use of CoDiCoFRP in
high-volume structural components by providing the necessary manu-
facturing technology, the methods for characterization and simulation,
and the optimization tools. GRK 2078 consists of four research areas:
characterization, simulation, technology, and design. The project S2
belongs to the simulation research area. The aim of research area simula-
tion is to meet a foreseeable industry demand for a precise and robust
virtual process chain that can shorten development cycles and reduce or
even eliminate costly prototyping.

One contribution of project S2 is a mean-field model for two-scale
structural finite element simulations within the virtual process chain.
This thesis focuses on DiCoFRTS by means of sheet molding compound
(SMC). A mechanism-based model of the damage behavior is presented.
A key challenge lies in the process-dependent, heterogeneous fiber
orientation distribution, which in turn, causes heterogeneous anisotropic
material behavior. The fiber orientation distribution – one input to
the microstructure-based mean-field model – was obtained by micro-
computed tomography or moldfilling simulations.

4



1.2 State of the art

A second goal of this thesis is to characterize DiCoFRTS under biax-
ial stress states. Here, first results on the parameter identification of
materials with inhomogeneous microstructures are presented and an
optimized specimen design is suggested. The anisotropic damage model
is validated with biaxial tensile tests. The characterization of DiCoFRTS
under biaxial stress states covers a wide range of application load cases
for typical shell-like SMC structures.

1.2 State of the art1

1.2.1 Biaxial characterization and parameter
identification of DiCoFRP

The biaxial characterization of DiCoFRP is still in the early stages of
research. In this section, first a literature overview of biaxial tensile
testing is provided, and then the state of research concerning two key
challenges in biaxial tensile testing: inverse parameter identification and
specimen design is reviewed.

Thom (1998) reviewed models to predict the biaxial strength of CoFRP,
pointing out the lack of experimental methods available at that time
to validate these models. Additionally, some possibilities for testing
CoFRP under biaxial stress states, including biaxial tensile testing, were
presented. Antoniou et al. (2010) modeled failure stress states in epoxy-
based CoFRTS and validated their results with biaxial tensile tests. Périé
et al. (2009) identified model parameters of an anisotropic damage law of
carbon/carbon composites with biaxial tensile tests. Markis et al. (2007)

1 This section contains parts of the papers "Biaxial tensile tests and microstructure-based
inverse parameter identification of inhomogeneous SMC" (Schemmann et al., 2018a),
"Anisotropic mean-field modeling of debonding andmatrix damage in SMC composites"
(Schemmann et al., 2018b), and "Cruciform specimen design for biaxial tensile testing of
SMC composites" (Schemmann et al., 2018c).
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1 Introduction

provided an overview of biaxial tensile testing devices and methods that
can be applied to FRP.

For the heterogeneous stress and strain state and multiaxial loading even
in cruciform specimenwith homogeneous properties, it is, in general, not
possible to analytically identify the material parameters of a constitutive
equation. Therefore, an inverse parameter identification method is
needed. Schnur and Zabaras (1992) introduced a coupled procedure that
links finite element simulations to an optimization method for inverse
parameter identification. Through the minimization of a goal function
that describes the deviation of a simulation and the experiment, the
unknown material parameters are identified.

In the past, many approaches were suggested for the optimization of
the goal function. A key benefit of gradient free procedures such as
neural network computation (Chamekh et al., 2009) and evolutionary
algorithms (Pan et al., 2010) is that no additional model information
is needed. These procedures, however, usually result in comparably
high computational cost. An overview of different gradient methods
for inverse parameter identification is given by Ponthot and Kleiner-
mann (2006). The required gradient can either be estimated by a finite
difference scheme (Schnur and Zabaras, 1992; Cooreman et al., 2007)
or calculated analytically (Mahnken and Stein, 1996a;b). The latter one
requires modifications in the finite element code. The development of
full-field measurement techniques allows for a parameter identification
with inhomogeneous displacement and strain fields. Lecompte et al.
(2007) identified the anisotropic elastic behavior of glass fiber-reinforced
epoxy. Through using a goal function that compares strain fields, the
needed gradient for the optimization method can be obtained analyti-
cally using the constitutive equations without making adjustments to
the finite element code.

In the past, many attempts have been made to find an appropriate
cruciform specimen design, demonstrating that the specimen design is

6



1.2 State of the art

one of the most challenging aspects of the biaxial testing. Several authors
have proposed specimen designs for specific applications and materials,
varying the cut shape, the type of the thickness-reduced area and the
type of slits in the specimen arms which serve to reduce undesired lateral
constraints on the strain in the center region of the specimen (Ohtake
et al., 1999). Deng et al. (2015), Kuwabara et al. (1998), and Makinde et al.
(1992) optimized specimens for metals. Andrusca et al. (2014) evaluated
different specimens with a circular thickness-reduced area in the center,
that contained smooth, spline-type thickness transition. Escárpita et al.
(2009) and Gutiérrez et al. (2016) evaluated an enhanced specimen
design with a thickness-reduced rectangular center area, whereas the
diagonals of the rectangle are alignedwith the cruciform specimen’s axes.
Demmerle and Boehler (1993) compared different proposed specimen
designs and chose the specimen of Kelly (1976) with slits and a thickness
reduced area to perform an optimization for isotropic materials. Boehler
et al. (1994) investigated anisotropic sheet metals with this specimen
type. Hoferlin et al. (2000) presented an alternative specimen design
with slits and reinforced arms. Hannon and Tiernan (2008) reviewed
planar biaxial tensile test systems for sheet metals. ISO 16842 (2014) is
the first standardization in this field but applies to sheet metals only.
Green et al. (2004) proposed a sandwich design for aluminum sheet
alloys in which the sample sheet is bonded by an adhesive between two
face sheets, while leaving the center region free on both sides.

Other authors conducted research to find a suitable specimen for com-
posites and polymers. Smits et al. (2006) and Van Hemelrijck et al. (2007)
investigated the influence of parameters like the radius of the corner fillet
and the thickness and the geometry of the biaxially loaded area by finite
element simulations and experiments. This investigation led to a suit-
able specimen for fiber-reinforced composite laminates with a reduced
thickness area in the center region of the specimen, in combination with a
fillet corner between arms. Makris et al. (2010) and Makinde et al. (1992)
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optimized the specimen shape by a numerical optimization technique
with a parametric finite element model. Lamkanfi et al. (2010) and
Gower and Shaw (2010) showed that geometrical discontinuities like the
transition zone to the tapered thickness area have a major influence on
the strain distribution leading to premature failure. Serna Moreno et al.
(2013) compared specimen with arms of different widths for chopped
glass-reinforced polyester. They presented a specimen that was suitable
to achieve failure in the center area in different loading cases but pointed
out that there are still problems such as stress concentrations outside the
center area. This glance in the literature shows that despite the promising
improvements already achieved, there are still many challenges ahead
in the search for suitable cruciform specimen designs for composites.

1.2.2 Homogenization of discontinuous
fiber-reinforced polymers

In this section, the current state of research in micromechanical homog-
enization of heterogeneous materials is discussed. Special attention is
given to DiCoFRP, whereas the majority of previous work has focused
on DiCoFRTP. Because the goals are two-scale finite element simulations,
the focus lies on the computationally efficient mean-field models. Many
mean-field homogenization schemes are based on the Eshelby (1957)
solution and can be classified in bounding and estimating methods
(Müller, 2016). The fundamentals of such approaches are extensively
addressed in textbooks by Mura (1987), Torquato (2002), and Nemat-
Nasser and Hori (1999).

Bounding homogenization methods describe the upper or lower bounds
of the effective material properties of a given microstructure. The
well-known Voigt and Reuss bounds, originally introduced by Voigt
(1889) and Reuss (1929), define the upper and lower bounds of effective
material properties solely on the basis of the constituent volume fraction.
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Voigt and Reuss bounds are therefore bounds of first order. The Hashin-
Shtrikman bounds, in contrast, are bounds of second order that are based
on a variational formulation (Hashin and Shtrikman, 1962; Willis, 1977;
Walpole, 1981). Willis (1977; 1981) applied the Hashin-Shtrikman bounds
to composites consisting of a matrix with ellipsoidal inclusions. Böhlke
and Lobos (2014) applied the Hashin-Shtrikman bounds to anisotropic
materials. In contrast to a homogeneous comparison material in the
traditional Hashin-Shtrikman approach, the consideration of a hetero-
geneous comparison material is called linear comparison composite
approach (Ponte Castañeda and Suquet, 1998; Ponte Castañeda and
Willis, 1999). This comparison composite adds an additional degree of
freedom, which can be exploited advantageously. Furthermore, Kröner
(1977) derived third order bounds, which are narrower than the second
order Hashin-Shtrikman bounds.

Estimating homogenization methods include estimation procedures
for the effective material behavior. The assumption of a "dilute dis-
tribution" leads to one of the simplest homogenization schemes. The
localization relation only considers inclusions in an infinite matrix, which
neglects interaction between the inclusions. Thus, the estimation quality
significantly drops with increasing inclusion volume fractions. For
high inclusion volume fractions, the assumption of dilute distributions
may violate Voigt or Reuss bounds, thus leading to unphysical results.
Maxwell (1873) and Einstein (1905) originally introduced the dilute dis-
triubtion assumption to estimate the effective conductivity and viscosity
of spheres dispersed in a viscous fluid. Benveniste et al. (1991) and
Tucker III and Liang (1999) approximated the stiffness of composites
with dilute distribution estimates.

The Mori-Tanaka homogenization estimate is introduced in more detail
in Section 3.3.2. Mori and Tanaka (1973) assumed that the inclusion strain
is estimated by the strain localization of the single inclusion problem
with the phase-averaged matrix strain instead of the macroscopic strain
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and followed the procedure to derive an expression for effective material
behavior. The advantages of the Mori-Tanaka homogenization scheme
include its simple derivation and implementation, its acceptance in
academia and industry, and the large number of published validations.
However, the violations of the main symmetry condition of the effective
stiffness for anisotropic phases and the lack of a derivation with a
variational formulation are significant drawbacks.

The basis of the self-consistent scheme is the dilute distribution scheme,
with the modification that the inclusion is embedded in an infinite
matrix consisting of the effective material (Hill, 1965a; Budiansky, 1965;
Kröner, 1977). With linear elasticity, the self-consistent scheme defines a
nonlinear implicit equation that defines the effective material behavior.
A linearized formulation of the self-consistent scheme allows one to
consider nonlinear material behavior (Hill, 1965b; Suquet, 1995).

A major drawback of the self-consistent scheme is the missing interac-
tion between the inclusion and the matrix material, since the inclusion
is directly embedded in the effective material. The generalized self-
consistent scheme is based on a three-phase model. Here, the inclusion
is embedded in a matrix cell, which is in turn embedded in the effective
material. Christensen and Lo (1979) and Hashin (1968) applied the
generalized self-consistent scheme to composite materials and, therefore,
drew significant attention to the it. Benveniste (2008) reviewed the
generalized self-consistent scheme in great detail and presented an
alternative formulation.

The interaction direct derivative method, presented by Zheng and Du
(2001) and Du and Zheng (2002), is based on an approximation of the gen-
eralized self-consistent estimate. One advantage of the interaction direct
derivative method lies in its explicit structure, it is valid for multi-phase
composites with different material symmetries and distributions. Müller
et al. (2015a) present an application of the interaction direct derivative
and self-consistent estimate to short-fiber-reinforced polypropylene.
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Schemmann et al. (2015b) present a validation of interaction direct
derivative estimate with long-fiber thermoplastics in biaxial tensile
tests. For the special case in which the matrix cell and the inclusion
have similar geometries and isotropic constituents, the interaction direct
derivative andMori-Tanaka schemes evaluate the same effectivematerial
behavior (Du and Zheng, 2002).

Pierard et al. (2004) and Doghri and Friebel (2005) homogenized com-
posites in a two-step scheme. In the first step, the microstructure domain
is divided into subdomains. For discontinuous fiber-reinforced compos-
ites, Ogierman and Kokot (2017) generated subdomains by discretizing
fiber directions, thus obtaining subdomains with unidirectional fiber
orientations. The subdomains or pseudo grains are then homogenized
separately. In the second step, these subdomains are homogenized to
yield an effective material behavior. In the literature the two-step scheme
is also known as the pseudo-grain method.

In contrast to mean-field homogenization schemes, the basis of full-
field homogenization schemes is a spatially-resolved heterogeneous mi-
crostructure. A representative volume element (RVE) is discretized and
subjected to external loads. The effective material behavior is obtained
by the RVE response of resulting boundary value problems. Typical
numerical full-field homogenization schemes are based on the finite
element method (FEM), fast Fourier transformation (FFT) approaches,
or the phase-field method (PFM).

Suquet (1987) and Moulinec and Suquet (1994) applied an FFT approach
to solve Lipmann-Schwinger-type equations. A main advantage of
full-field FFT over traditional FEM is the reduced memory demand.
The voxel-based formulation allows for direct application to segmented
microstructure images, such as μCT datasets. Müller et al. (2015b) com-
pared full-field FFT solutions with mean-field schemes (self-consistent
and interaction direct derivative estimate).
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1.2.3 Damage modeling

This section provides an overview of damage modeling and follows
with a detailed presentation of the current state of research in damage
characterization and mean-field damage modeling of CiDoFRTS.

Before the modeling of stiffness degradation, damage was seen as a
logical variable in terms of failed or sound material, as investigated,
for example, by Weibull (1951). Kachanov (1958) and Rabotnov (1968)
modeled progressive creep damage and developed the effective stress
concept. The two textbooks Lemaitre (1996) and Krajcinovic (1984)
served as the basis for much research in continuum damage mechanics.
The challenge of softening materials in finite element analysis was
reviewed in detail by Belytschko et al. (1986). Forest and Lorentz (2004)
reviewed localization issues and regularization methods.

Meraghni and Benzeggagh (1995) investigated damage propagation in
randomly-oriented, discontinuous, fiber-reinforced composites. Their ex-
perimental studies involving the amplitude analysis of acoustic emission
signals and microscopic observations revealed two dominant damage
mechanisms: matrix damage and interface damage. Several other
authors (e.g., Jendli et al. (2004); Ben Cheikh Larbi et al. (2006); Fitoussi
et al. (2013)) have confirmed that fiber-matrix interface debonding is the
primary and matrix cracking the secondary damage mechanism in SMC.

Experimental characterization of the interface strength is a challenging
field. Many authors (e.g., Favre and Jacques (1990); Desarmot and Favre
(1991); Tandon et al. (2002); Koyanagi et al. (2012)) have investigated
interface strength using pull-out, push-out, and micro-tensile techniques
or via fragmentation tests. Hour and Sehitoglu (1993) and Dano (2006),
e.g., performed experimental studies with focus on the development of
damage in glass fiber-reinforced composites and Fitoussi et al. (2005)
conducted experiments specifically on the mechanical behavior of SMC.
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Jendli et al. (2004) qualitatively analyzed the influence of the strain
rate on damage threshold and accumulation. Performing monotonic
and interrupted tensile tests at different strain rates, Jendli et al. (2005)
showed that both damage onset and kinetics are sensitive to the strain
rate, such that the interface failure strength increases with increasing
strain rate. Similar findings were obtained by Fitoussi et al. (2013) and
Shirinbayan et al. (2015).

Along with their experimental findings, Fitoussi et al. (1996a) also
proposed a micromechanical model based on an equivalent, anisotropic
inhomogeneity approach for damaged fibers. Their fiber-matrix interface
debonding model is based on a criterion with linear coupling of
the local shear and normal stress on the interface (Fitoussi et al.,
1996b). This work was followed by an extension that considered local
fluctuations of strain and stress, and a probabilistic interface-strength
distribution (Fitoussi et al., 1998). Meraghni et al. (1996) developed
a similar model that combined a microcrack density parameter with
fiber-matrix decohesion in order to decrease the fiber strain localiza-
tion tensor. Derrien et al. (2000) further developed the probabilistic
interface-damage model introduced by Fitoussi et al. (1998). Here,
the approach of replacing fibers having damaged interfaces with an
equivalent, anisotropic, undamaged inhomogeneity or matrix material
were validated experimentally. Desrumaux et al. (2000) extended the
statistical representation of failure to each constituent (fibers, matrix,
and interface). Here, the interface damage was implemented in such a
way that the interface of each fiber is experiencing damage represented
by the introduction of directionally-dependent matrix cracks. Later,
Desrumaux et al. (2001) introduced a two-step homogenization damage
model for a randomly-oriented fiber composite based on a numerically
determined Eshelby tensor. A comparable two-step homogenization
framework was pursued by Jendli et al. (2009) and Kammoun et al.
(2015), who followed approaches for interfacial decohesion and pseudo-
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grain sub-regions. Meraghni et al. (2002) further developed the
probabilistic strength model. Analogously, Guo et al. (1997) introduced
a damageable-elastic law for randomly-reinforced composites based
on a two-scale approach. Nguyen and Khaleel (2004) developed
a matrix degradation model based on the experimental findings of
Meraghni and Benzeggagh (1995). Here, the macroscopic stiffness
of the randomly-oriented composite is calculated by an orientation
average over aligned fibers, and a thermodynamically consistent damage
evolution law predicts the stiffness reduction. Baptiste (2003) proposed
a model that captures the inelastic behavior of a composite due to
plasticity, viscosity, and damage. The damage to matrix, reinforcement,
and interface is considered utilizing the probabilistic approach for
interface-strength developed by Fitoussi et al. (1998). Lee and Simunovic
(2001) evolved a model to predict the elasto-plastic-damage behavior of
a ductile matrix composite containing aligned fibers. They combined an
associative flow rule and a hardening law with evolutionary interfacial
debonding. In their model, partially debonded fibers are replaced
by equivalent, perfectly-bonded fibers. Additionally, they extended
their model to treat random fiber orientations (Lee and Simunovic,
2000). A similar model was developed by Ju and Lee (2000) for a
three-phase composite. Here, completely debonded fibers are treated
as voids within the three-phase homogenization scheme. Using an
effective yield criterion, an associative plastic flow rule, and a hardening
law, the macroscopic mechanical behavior predicted by the model fits
the experimental observations. Zaïri et al. (2008) described interface
debonding as nucleation and the growth of voids. They combined a
critical void volume criterion with a vanishing element technique to
capture damage accumulation and failure. Ben Cheikh Larbi et al. (2006)
investigated the elastic behavior of SMC under cyclic loading. They
found appropriate parameters for the two-scale probabilistic damage
model by evaluating fatigue tests via scanning electronmicroscopy. Yang
et al. (2012) introduced a phenomenological damage model based on
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two coupled damage variables to capture matrix cracking and interface
debonding. A von Mises type criterion and a cohesive zone model are
applied to capture the two damage mechanisms. Notta-Cuvier et al.
(2014) developed a model to describe interface debonding at fiber head
surfaces in injection-molded, short-fiber-reinforced composites. The
model for interface debonding utilizes the accumulation of voids and
phenomenological parameters. Schulenberg et al. (2017) presented a
computationally efficient damage model for DiCoFRTP. Seelig (2008)
suggested a modeling approach for CoFRTP with a visco-plastic matrix
behavior. The cohesive surface formulation could be applied to
CoDiCoFRP.

Regarding full-field simulations, Spahn et al. (2014) obtained an FFT
solution for damage evolution in short-fiber-reinforced thermoplastics.
The simulation of crack propagation in multi-phase materials with the
phase field method is still in an early stage of research but first results
(Biner and Hu, 2009; Schneider et al., 2016) are promising.

1.3 Outline of the thesis

This thesis consists of two chapters that treat the fundamentals of the
subject, followed by three chapters that are based on published journal
publications. Additionally, the key achievements in terms of research
progress beyond the current state of the art are highlighted.

Chapter 2 introduces the SMC manufacturing process and the resulting
microstructure. In particular, it focuses on the introduction of the fiber
orientation distribution function and fiber orientation tensors.

Chapter 3 provides the continuum mechanical basis for the following
chapters. Here, the kinematics and relevant balance equations in the
context of small deformations are introduced. An introduction to
micromechanical modeling of heterogeneous materials covers effective
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properties, localization relations, and the fundamentals of the Mori-
Tanaka homogenization scheme.

Chapter 4 presents a parameter identification scheme in macroscopically
inhomogeneous linear elastic SMC. The assumption of linearity between
the fiber orientation and the stiffness reduces the degrees of freedom of
the parameter identification to five. Previous work applied the linearity
of the orientation tensor and effective stiffness in homogenization
schemes. The novelty lies in the application to DiCoFRP, as well as
an implementation of an inhomogeneous parameter identification.

Chapter 5 discusses different cruciform specimen designs for damage
characterization in SMC under biaxial loadings. Various (material-
specific) requirements for an optimal specimen design are defined. One
key challenge represents the achievement of a high strain level in the
center region of the cruciform specimen while preventing premature
failure in the clamped specimen arms. The added value of this chapter
lies in the consideration of DiCoFRP in biaxial tensile tests as well
as the unique manufacturing technology and strategy by combining
co-molding of CoDiCoFRTS and gentle milling.

Chapter 6 presents an anisotropic, micromechanical damage model
for SMC. The damage model captures the interface damage and matrix
damage in amechanism-basedmean-fieldmodel. Themodel is validated
under two stress states and with two different matrix systems. In
comparison to the extensive previous work in damage modeling of
DiCoFRTS, the added value of this model lies in the consideration of
inhomogeneous stress distribution on the fiber-matrix interfaces, the
general formulation of equivalent interface stress, the validatedmaterials
and stress states, and the extensive visualization of the anisotropic
damage evolution.
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1.4 Notation

1.4 Notation

A direct tensor notation is followed throughout the text. Tensor
components are expressed by latin indices, and Einstein’s summation
convention is applied. Components of vectors and tensors refer to
the orthonormal basis {e1, e2, e3}. Vectors and second-order tensors
are denoted by lower case and upper case bold letters, respectively
(e.g., a and A). Fourth-order tensors are denoted by, e.g., A,B.
Additionally, higher-order tensors are written as A〈α〉, where α in-
dicates the tensor rank. The composition of two second-order or
two fourth-order tensors is formulated by AB and AB. A linear
mapping of vectors by second-order tensors and second-order by a
fourth-order tensor is written as a = Cb and A = C[B]. The scalar
product is denoted by A · B. The dyadic product operator ⊗ is
defined as (A ⊗ B) [C] = (B · C) A, higher-order dyadic products
of the same tensor are indicated by n⊗α = n ⊗ · · · ⊗ n, where n⊗α

is a tensor with the rank α times the rank of n. The Rayleigh
product Q � A = Aijkl(Qei) ⊗ (Qej) ⊗ (Qek) ⊗ (Qel) describes, e.g.,
the rotation of a fourth order tensor with the orthogonal rotation
tensor Q. The identity on symmetric fourth-order tensors is denoted
by Is. Completely symmetric and traceless, i.e. irreducible tensors
are denoted with a prime, e.g., A′. Column vectors and matrices are
identified via underscores: e.g., p, A.
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Chapter 2

Microstructure of SMC

2.1 Manufacturing process

Since the SMC manufacturing process significantly influences the
microstructure and mechanical behavior of the final SMC parts, an
overview of this manufacturing process is given first. The focus of
this section lies on pre-impregnated fiber (prepreg) production in an
SMC line and the subsequent compression molding. Preliminary steps,
such as thermoset or glass fiber production and post-processing, such
as milling or water jet cutting, are not covered here. Nor is the
addition of filler particles addressed. For more details concerning SMC
manufacturing and composite manufacturing in general, the reader is
referred to the works of Henning and Moeller (2011), Advani and Hsiao
(2012), and Cherif (2016).

Figure 2.1 shows an SMC production line, in which the main production
direction is from right to left. One doctor box spreads resin, such as epoxy
or polyurethane, on the lower film. The chopper cuts the continuous fiber
rovings into 2.54cm long pieces. Typical SMC fiber materials include
carbon and glass. The chopped fibers fall onto the lower resin layer. The
initial orientation distribution of the chopped fibers is typically assumed
to be planar isotropic. A second film with resin is guided on top of the
lower resin and fibers. This material, now consisting of two resin and
one fiber layer covered with films on the top and bottom, is fed into the
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2 Microstructure of SMC

impregnation belt. The curved path applies relative motion between
the constituents, which improves impregnation. A roller winds up the
prepregs for better handling and storage. The storage of prepregs at a
specific temperature partly cures the thermoset matrix, a process also
known as pre-curing.

release film

release film

doctor box with matrix
rovings

chopper

fibers

impregnation belt

SMC

SMC take-up

doctor box with matrix

Figure 2.1: SMC prepreg manufacturing line (original image from Cherif (2016) modified
by Bücheler (2017))

After the pre-curing period, the SMC prepregs are cut and stacked so as
to yield the necessary size and thickness of the initial charge. Figure 2.2
shows the placement of this initial charge within the tempered (typically
120 − 160◦C) mold. The closing of the press fills the mold. In contrast
to thermoplastic compression molding, thermoset composites do not
exhibit fountain flow. The flow in the mold is more plug-like; the
center of the material experiences little shear and deforms primarily
in biaxial extension, since the outer (hot) layers have a significantly
lower viscosity (Davis et al., 2003). The mold-flow induces an evolution
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in the fiber orientation distribution, generally leading to a process-
dependent inhomogeneous fiber orientation distribution. Jeffery (1922)
laid the foundation for the modern modfilling analysis, as he described
the motion of a rigid ellipsoid in shear flow. Other authors (e.g.
Advani and Tucker III (1987); Zheng et al. (2011); Bertóti and Böhlke
(2017)) mathematically modeled the mold-filling process, including the
evolution of the fiber orientation distribution.

Initial charge Lower mold half Part

Heating/cooling channel
Upper mold half

Ejector pins

Figure 2.2: Compression molding of an SMC part

After the mold is completely filled, the thermoset matrix cures in the
closed mold, typically for two to four minutes. This assures low cycle
times and makes SMC suitable for mass production. When the mold is
opened, ejector pins remove the final SMC part from the mold.

2.2 Classification and general
model assumptions

A heterogeneous material is a material that is composed of domains of
different materials (phases). Heterogeneous materials include wood,
human tissue, reinforced concrete, polycrystalline metals, and fiber-
reinforced polymers.
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R N C O

H

O
n

10cm 30μm1cm

Figure 2.3: Scales of an SMC component, fiber roving and filament microstructure, and
molecular structure of polyurethane resin (GRK 2078 demonstrator manufactured by
David Bücheler (Fraunhofer ICT Pfinztal, Germany), μCT scan of SMC microstructure
captured and analyzed by Pascal Pinter (IAM-WK, KIT), REM image of fiber filaments in
matrix provided by Michael Schober (Fraunhofer IWM Freiburg, Germany))

Figure 2.3 illustrates SMC at different scales. Typical components
(left image) are shell-like structures with in-plane dimensions typically
ranging from a few centimeters to two meters. Thicknesses typically
range from two to four millimeters. There is no scale separation to
the adjacent image, which is a colored, micro-computed tomography
(μCT) scan of fiber bundles. The fibers are approximately 25.4mm
long. The next, grey scale image is a scanning electron microscope
capture that shows individual filaments of a mechanically-damaged
fiber-reinforced polymer. Most filament diameters are in the range of
several micrometers. The molecular scale provides insight into much
smaller scales, as defined by the polymer macromolecule and molecular
structure of the fibers and their sizing.

Drugan and Willis (1996) define a representative volume element (RVE)
by its constitutive behavior with respect to the macroscopic material
behavior. Another definition (Drugan and Willis, 1996) states that
the smallest RVE is the one that is sufficiently large to be statistically
representative of the composite, and therefore efficiently includes a
sampling of all possible microstructural configurations of the composite.
Amain part of this thesis focuses on themean-field homogenization from
the microscale (middle two images of Figure 2.3) to the component scale
or macroscale (left image in Figure 2.3). Such traditional homogenization
schemes are based on a separation of scales between a microstructure
RVE and the component dimensions or macroscale. Such an RVE and
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such a scale separation do not exist in SMC. The application ofmean-field
homogenization schemes in SMC is, however, state of the art and has
lead to satisfying results in many two-scale structural simulations. Here,
the applicability of mean-field homogenization schemes is assumed and
the missing scale separation is discussed in more detail in Section 3.3.1.
The remainder of this chapter introduces the mathematical fundamentals
needed to describe a fibrous microstructure.

The total volume of any heterogeneous microstructure v is given by the
sum of all phase volumes vα

v =
NP∑

α=1
vα. (2.1)

Here, NP denotes the number of discrete phases. The phase volume
fraction cα represents the share of the specific phase volume relative to
the total volume

cα = vα

v
. (2.2)

Torquato (2002) states that the realization of each sample is the result
of a stochastic process determining the microstructure. Therefore, the
mechanical quantity ξ also depends on the realization ω ∈ Ω, with Ω
representing the set of all possible realizations, also known as the
ensemble. The influence of a statistical process can be eliminated by the
ensemble average 〈·〉Ω

〈ξ (x, t)〉Ω = lim
N→∞

1
N

N∑
i=1

ξ (x, t, ωi) . (2.3)

The ergodic hypothesis implies that the ensemble average is equivalent
to the volume average 〈·〉ω0 in one realization ω0 in the infinite-volume
limit

〈ξ (x0, ω)〉Ω = 〈ξ (x, ω0)〉ω0 ω0 → ∞. (2.4)
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2 Microstructure of SMC

For a more detailed description of the microstructure, the indicator
function Iα (x, ω) is introduced. The indicator function equals one if the
position vector x points in phase α, and zero otherwise

Iα (x, ω) =

⎧⎨
⎩1 ∀x ∈ vα (ω)

0 otherwise
. (2.5)

The indicator functions are complete, idempotent and bi-orthogonal

N∑
α=1

Iα (x, ω) = 1 (completeness) (2.6)

(Iα (x, ω))2 = Iα (x, ω) (idempotence) (2.7)

Iα (x, ω) Iβ (x, ω) = 0 ∀α 	= β (bi-orthogonality). (2.8)

The n-point correlation function describes the probability that phase α is
found at points x1, · · · , xn

Sα
n (x1, . . . , xn) = 〈

n∏
k=1

Iα (xk, ω)〉. (2.9)

The one-point correlation function Sα
1 (x1) = 〈Iα (x1, ω)〉Ω describes the

probability of finding phase α at point x and can be interpreted as a
position-dependent fiber volume fraction (Jöchen, 2013).

A material with a translation-invariant n-point correlation function is
called statistically homogeneous

Sα
n (x1, . . . , xn) = Sα

n (x1 + Δx, . . . , xn + Δx) . (2.10)
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2.3 Fiber orientation distribution function

Here, Δx denotes an arbitrary vector that describes the translation. A
statistically isotropic material is characterized by a rotation invariant
n-point correlation function

Sα
n (x1, . . . , xn) = Sα

n (Qx1, . . . , Qxn) Q ∈ Orth. (2.11)

Here, Q denotes an arbitrary orthogonal rotation tensor.

Hereafter SMC is modeled as a two-phase microstructure that consists
of an isotropic thermoset matrix M and cylindrical reinforcing long glass
or carbon fibers F, whereas there is no scale separation due to the ratio
of fiber length to component thickness. Due to the process-induced
fiber orientation distribution, SMC is neither statistically homogeneous,
statistically isotropic, nor ergodic.

2.3 Fiber orientation distribution function

This section introduces the fiber orientation distribution function, which
describes the fiber orientation statistics in a one-point correlation func-
tion. Hereafter, the fibers are assumed to be straight. For investigations
into the effect of fiber curvature, the reader is referred to Kosker and
Akbarov (2003) and Bapanapalli and Nguyen (2008). First, the unit
vector n is defined as the orientation of a single fiber (Figure 6.3). The
fiber orientations n and −n are equivalent.

Figure 2.5 shows a micro-computed tomography scan of a typical SMC
microstructure. The wide range of colors in this image, which represent
different fiber orientations n, highlights the need to describe the
fiber orientation statistically. Here, ϕ = ∠ (e1, (n · e1) e1 + (n · e2) e2)
describes the angle between the e1 direction and the fiber projection on
the e1-e2-plane. The fiber orientation analysis was performed following
the procedure of Pinter et al. (2018).
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e2
n

e1

e3

Figure 2.4: A single straight fiber with orientation n

fiber orientation angle ϕ in e1-e2-plane

e2

90◦ 180◦0◦

e3

e1

Figure 2.5: A micro-computed tomography (μCT) scan of a SMC microstruc-
ture (UPPH resin, fiber volume fraction cF = 23%). The specimen dimensions
are 10mm × 10mm × 3mm (Pinter, 2017).
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2.3 Fiber orientation distribution function

The fiber orientation and length distribution function specifies the

volume fraction dv/v of fibers with orientation n and length l with

respect to all fibers

dv

v
(n, l) = f (n, l) dS. (2.12)

Here, dS is the surface element on the unit sphere which is defined

as S := {n ∈ R3 : ‖n‖ = 1}. A parametrization of dS in spherical

coordinates with the azimuth angle ϑ and the polar angle φ can yield

(Böhlke et al., 2010)

dS =
sin ϑ

4π
dϑdφ. (2.13)

The corresponding integral of a quantity ψ (n) = ψ̂ (ϑ, φ) on the unit

sphere surface is given by

∫
S

ψ (n) dS =

∫ 2π

φ=0

∫ π

ϑ=0
ψ̂ (ϑ, φ)

sin ϑ

4π
dϑdφ. (2.14)

The fiber orientation and length distribution are generally dependent

on each other. In case of SMC, with typically almost uniform length

distribution in the prepreg, Motaghi and Hrymak (2017) did not find

evidence for fiber break during the manufacturing process. DiCoFRTP is,

however, known to experience fiber break in the manufacturing process

and thus the fibers with different aspect ratios experience different re-

orientating forces. Integrating over all fiber lengths yields the fiber

orientation distribution function (FODF). The FODF specifies the volume

fraction dv/v of fibers with orientation n with respect to all fibers (see,

e.g. Zheng and Du (2001); Müller and Böhlke (2016))

dv

v
(n) = f (n) dS. (2.15)
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2 Microstructure of SMC

The FODF is symmetric, normalized, and non-negative:

f(n) = f(−n) (symmetric) (2.16)∫
S

f(n)dS = 1 (normalized) (2.17)

f(n) ≥ 0 (non-negative). (2.18)

The fiber distribution function (FDF) h (n) specifies the fraction of (intact)
fibers dN with orientation n with respect to all fibers:

dN(n) = h (n) dS. (2.19)

The FDF is symmetric and non-negative. Integrating over the unit
sphere S yields the total number of fibers N :

h(n) = h(−n), h(n) ≥ 0,

∫
S

h(n)dS = N. (2.20)

The relation between the FODF and the FDF is given by

f(n) = h(n)
N

. (2.21)

2.4 Fiber orientation tensors

2.4.1 Tensors of the first kind

Advani and Tucker III (1987) introduced the fiber orientation tensors of
second order N and fourth order N as follows:

N =
∫

S

f(n)n ⊗ ndS, N =
∫

S

f(n)n ⊗ n ⊗ n ⊗ ndS. (2.22)
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2.4 Fiber orientation tensors

Higher order fiber orientation tensors of nth-order N〈n〉 (where n is even
and larger than four) are defined analogously

N〈n〉 =
∫

S

f(n)n⊗ndS. (2.23)

Kanatani (1984) calls these orientation tensors of the first kind. Equa-
tion (2.16) implies that N is completely symmetric and normalized.
Higher order tensors of the same kind provide complete information
about lower orders. This yields the following relation for second and
fourth order orientation tensors of the first kind

N = NT, N = symF (N) , tr(N) = 1, N [I] = N . (2.24)

Here, the operator symF (·) describes a full symmetrization, that is,
invariance with respect to all possible permutations of all indices
(Ehrentraut and Muschik, 1998).

2.4.2 Tensors of the second kind

Kanatani (1984) introduced the fabric tensors of the second kind F ,
F, and F〈n>4〉. These are unique tensors that minimize the measure
of approximation E between the approximated and exact FODF. E is
defined as

E =
∫

S

(
F〈n〉 · n⊗n − f(n)

)2 dS → min. (2.25)

For a detailed derivation of the orientation tensors of the second kind, the
reader is referred to the work of Kanatani (1984) and Hotz and Schultz
(2015). The second and fourth order tensors that solve the minimization
can be expressed as functions of the orientation tensors of the first kind
as (see Kanatani (1984), p.152)

29



2 Microstructure of SMC

F = 15
2

(
N − 1

5I

)
(2.26)

and

F = 315
8

(
N − 2

3symF (I ⊗ N) + 1
21symF (I ⊗ I)

)
. (2.27)

Orientation tensors of the second kind are fully symmetric (Ehrentraut
and Muschik, 1998) and exhibit the following properties for the traces

tr(F ) = 3, F = F T, tr(F [I]) = 5, symF (F) = F. (2.28)

It is noted here that the FODF approximation given by Equation (2.25)
may yield a negative FODF, thereby violating Equation (2.16). The
approximation of a unidirectional fiber orientation distribution yields
a negative FODF, as does the approximation of a planar orientation
distribution. To approximate planar or near planar FODFs, planar fiber
orientation tensors might be helpful.

2.4.3 Tensors of the third kind1

Kanatani (1984) introduced fabric tensors of the third kind D〈n〉 as
follows. Orientation tensors of the third kind are deviatoric and fully
symmetric (Ehrentraut and Muschik, 1998). Therefore, the nth-order
orientation tensor of the third kind has 2n + 1 independent components.
These irreducible orientation tensors are traceless and fully symmetric:

tr(D′) = 0, D′ = D′T, D
′ [I] = 0, symF (D′) = D

′. (2.29)

1 This subsection is based on the subsection "Note on Fiber Orientation Tensors" of the
paper "Biaxial tensile tests and microstructure-based inverse parameter identification of
inhomogeneous SMC composites" (Schemmann et al., 2018a).
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2.4 Fiber orientation tensors

By using the orientation tensors of the first kind N〈n〉, the orientation
tensor of the third kind D′

〈n〉 can be obtained as follows (Müller, 2016;
Kanatani, 1984)

D
′
〈n〉 = 2n + 1

2n

(
2n

n

)
N

′
〈n〉, (2.30)

where
(

n
k

)
is the binomial coefficient. The index notation for the

deviatoric part of a nth-order symmetric tensors can be found in Kanatani
(1984). An explicit formulation of the fiber orientation tensors of the
third kind, for first, second, and fourth order is given by (see Kanatani
(1984), p.154)

D = 1 (2.31)

D′ = 15
2

(
N − 1

3I

)
(2.32)

D
′ = 315

8

(
N − 6

7symF (I ⊗ N) + 3
35symF (I ⊗ I)

)
. (2.33)

An approximation of the FODF by orientation tensors of the third kind
is given by

f(n) = D + D′ · n ⊗ n + D
′ · n ⊗ n ⊗ n ⊗ n + . . . . (2.34)

This formulation is equivalent to the approximation with fiber orienta-
tion tensors of the second kind in Equation (2.25).
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Chapter 3

Continuum mechanical
foundations

3.1 Kinematics

This chapter provides an overview of the continuum mechanical
foundations. First, the basics of kinematics are introduced. Then, the
required balance equations are discussed. Finally, an introduction to the
micromechanical modeling of composites, including the Mori-Tanaka
homogenization scheme, is provided. For further information and
detailed derivationswith regard to kinematics and balance equations, the
reader is referred the textbooks of Truesdell and Toupin (1960), Krawietz
(1986), Holzapfel (2000), Haupt (2002), Bertram (2005), andMüller (2011).

The current position of any material point P (see Figure 3.1) in the
three-dimensional space at time t is given by its position vector

x = χ (X, t) . (3.1)

Material points are identified by their position vector X in the reference
placement. The reference placement Ω0 is defined by the body placement
at t = t0. Analogously, the current placement of the body at time t ≥ t0

is denoted by Ωt. Point x lies in Ωt (Truesdell and Toupin, 1960). The
displacement u (X, t) is the difference between the current and reference
positions of a material point
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3 Continuum mechanical foundations

u (X, t) = χ (X, t) − X. (3.2)

Figure 3.1 shows the above-mentioned vectors for a specific material
point P .

e1

e2

e3

∂Ω0

∂Ωt

u (X, t)

x (X, t)X

PP

Ω0
Ωt

Figure 3.1: Reference placement Ω0 and current placement Ωt of point P

To highlight the separation towards large deformations, the Lagrangean
and Eulerian description of a field quantity are introduced. The
description of a field quantity ψ as a function of the reference position is
called the Lagrangean description ψL (X, t). The description of a field
quantity ψ as a function of the current position is called the Eulerian
description ψE (x, t). The conversion between these two descriptions is
performed with χ and χ−1

ψE (x, t) = ψL
(
χ−1 (x, t) , t

)
, (3.3)

ψL (X, t) = ψE (χ (X, t) , t) . (3.4)
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3.1 Kinematics

Hereafter, the indices (·)E and (·)L are dropped and the formulations are
differentiated solely by their arguments. The material time derivative is
in the Lagrangean description given as (Truesdell and Toupin, 1960)

ψ̇ (X, t) = ∂ψ (X, t)
∂t

. (3.5)

The material time derivative in the Eulerian description yields

ψ̇ (x, t) = ∂ψ (x, t)
∂t

+ ∂ψ (x, t)
∂x

· v (x, t) . (3.6)

Here, the velocity v (X, t) = ẋ (X, t) is the material time derivative of x.

The deformation gradient F is defined as the gradient of the current
position with respect to the reference position

F (X, t) = Grad (x (X, t)) = ∂χ (X, t)
∂X

= ∂χi (X, t)
∂Xj

ei ⊗ ej (3.7)

In general, the deformation gradient is non-zero for pure rigid body
rotations, even though the body does not deform. The displacement
gradient is defined as

H (X, t) = Grad (u (X, t)) = ∂u (X, t)
∂X

= F − I. (3.8)

In this work, only small deformations are considered. This limitation is
valid, if the following relation holds (Bertram, 2005)

‖H‖ =
√

tr(HHT) � 1. (3.9)

The infinitesimal strain tensor is defined as follows (Bertram, 2005)

ε (X, t) = sym (H (X, t)) = 1
2

(
H (X, t) + (H (X, t))T

)
. (3.10)
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3 Continuum mechanical foundations

A decomposition of the strain tensor ε into its spheric ε◦ and deviatoric
part ε′ is given by

ε = ε◦ + ε′. (3.11)

The spherical part describes the volume change (dilatation), and the
deviatoric part describes the change of shape (distortion). These
parts can be obtained with the two isotropic projectors P1 = (I ⊗ I) /3
and P2 = Is − P1

ε◦ = P1 [ε] = tr(ε)
3 I, ε′ = P2 [ε] = ε − tr(ε)

3 I. (3.12)

3.2 Balance equations

3.2.1 General formulation

Balance equations are crucial for predicting mechanical behavior.
Therefore, the balance equation in a general form is introduced. It is
postulated that the change of a volume integral of a field quantity ψ is
equal to the sum of (i) the production p of ψ in volume Ωt (ii) the supply s

of ψ in volume Ωt, and (iii) the flux q of ψ over the boundary ∂Ωt

(Truesdell and Toupin, 1960; Bertram, 2005)

d
dt

∫
Ωt

ψdv =
∫

Ωt

(p + s) dv +
∫

∂Ωt

q · da. (3.13)

Here, da is defined as da = nda, where da is a surface element of the
boundary ∂Ωt, and n is the outer surface normal unit vector. The
application of the divergence theorem and the Reynolds transport
theorem leads to the local formulation of the balance equation in regular
points (Bertram, 2005)

∂ψ

∂t
+ div (ψv) = p + s + div (q) . (3.14)
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3.2 Balance equations

Considering the field quantity ψ = �, the mass balance is obtained. Since
the production p, supply s, and flux q are zero, the mass balance yields

�̇ + �div (v) = 0. (3.15)

The change of mass can be calculated from tr(ε) = (dv − dv0) /dv0

or � = �0 (1 − tr(ε)). In the context of small deformations, the rela-
tion � ∼= �0 is an admissible approximation if ‖ε‖ � 1 and all displace-
ment fields fulfill the mass balance. Thus, the mass balance does not
provide additional information in a displacement-based setting, but
its validity is assumed later in the derivation of the linear momentum
(Section 3.2.2).

3.2.2 Linear and angular momentum

The Cauchy stress tensor σ is a second order tensor describing the local
stress state in a material point. The stress vector t on a surface with
normal vector n can be obtained by Cauchy’s Lemma

t = σn. (3.16)

Similar to the strain tensor, the stress tensor can also be decomposed
into a spherical part σ◦ and a deviatoric part σ′

σ = σ◦ + σ′, σ◦ = P1 [σ] , σ′ = P2 [σ] . (3.17)

For hyperelastic materials, the fourth order stiffness tensor Cmaps the
stress-inducing strain ε − εE, that is the difference of the total strain ε

and stress-free strain εE, linearly onto the stress σ

σ = C [ε − εE] . (3.18)
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3 Continuum mechanical foundations

The existence of an elastic energy and the symmetry of second deriva-
tives imply the main symmetry of the stiffness tensor C = CTM . The
main transposition of a fourth order tensor describes the exchange of
the left and right index pair (CTM

ijkl = Cklij). The symmetry of the strain
tensor implies a right sub-symmetry of the stiffness tensor C = CTR . The
right transposition of a fourth order tensor describes the exchange of
the left and two indices (CTR

ijkl = Cjikl). As a result, the stiffness tensor
also has the left sub-symmetry C = CTL . The left transposition is defined
analogously (CTL

ijkl = Cijlk).

To derive the linear momentum balance, the momentum density �v, a
first order tensor, is balanced. The general form of a balance equation of
tensorial quantities is analogous to the scalar form (Equation (3.14)). The
production is zero 0, the supply is �b, and the flux linear momentum
is σ. The local formulation of the balance of linear momentum under
consideration of the mass balance (Equation (3.15)) yields the following
(Truesdell and Toupin, 1960)

�v̇ = �b + div (σ) . (3.19)

The formulation simplifies in the quasi-static case to

0 = �b + div (σ) . (3.20)

If moments densities are absent and a Boltzmann continuum is con-
sidered, the quasi-static balance of angular momentum results in the
symmetry of the stress tensor (Truesdell and Toupin, 1960)

σ = σT. (3.21)
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3.2 Balance equations

3.2.3 Energy and entropy

Because the kinetic energy balance is obtained by multiplying the
impulse balance (Equation (3.19)) with the velocity v, it does not
represent an independent equation (Truesdell and Toupin, 1960)

1
2� (v · v)· = �b · v + div

(
σTv

)
− σ · ε̇. (3.22)

Here, the power of external forces div
(
σTv

)
= div (σv) is the flux of

kinetic energy over the body surface, �b · v is the supply of kinetic energy,
and −σ · ε̇ is the production of kinetic energy given by the stress power.

The total volume-specific energy equals the sum of the volume-specific
internal energy �e and volume-specific kinetic energy �v · v/2. The
local form of the balance of total energy in regular points is therefore
(Truesdell and Toupin, 1960)

�ė + 1
2� (v · v)· = �w − div (q) + �b · v + div (σv) . (3.23)

The subtraction of the mechanical energy from the balance of total energy
yields the balance of the internal or non-mechanical energy

�ė = �w + σ · ε̇ − div (q) (3.24)

where σ · ε + �w represents the source term. Vector q describes the
non-convective heat flux, that is, the flux of internal energy through the
material.

The entropy balance can be stated as (Coleman and Noll, 1963)

�η̇ = �w

θ
− div

(q

θ

)
+ �pη. (3.25)

Here, η is the mass-specific entropy, �w/θ is the supply of entropy, pη is
the entropy production, and q/θ is the entropy flux. The second law of
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3 Continuum mechanical foundations

thermodynamics states that, in all thermo-kinetic processes, the entropy
production is non-negative

pη ≥ 0. (3.26)

3.3 Composite micromechanics

3.3.1 Fundamentals

As you recall, Figure 2.3 presented both the component scale and some
microstructure scales. A separation of the microstructure and component
scales is not admissible, however, and so an representative volume
element (RVE) does not exist. Traditional homogenization schemes
are based on the assumption of a scale separation and the existence
of an RVE. The application of mean-field homogenization schemes in
SMC is state of the art and leads to satisfying results in many two-scale
structural simulations (see Section 1.2). Nevertheless, the author regards
the missing scale separation as a questionable assumption. One modern
homogenization framework that does not require scale separation is the
theory of computational continua introduced by Fish and Kuznetsov
(2010) and Fish et al. (2015). Ostoja-Starzewski (2002; 2006) discussed
in detail the missing separation between the microscale and macroscale
with the statistical volume element and apparent properties.

For a more detailed introduction to microstructural mechanics, the
reader is referred to the textbooks of Nemat-Nasser and Hori (1999),
Torquato (2002), and Gross and Seelig (2011).

In a heterogeneous microstructure, stress and strain fields are also
generally microheterogeneous. They are given by ε (x) and σ (x).
If cracks and pores are absent the effective macroscopic properties,
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ε̄ = 〈ε (x)〉, σ̄ = 〈σ (x)〉. (3.27)

In case of linear elasticity, the relation between the effective stress σ̄

and effective strain ε̄ is given by the thus implicitly defined effective
stiffness C̄

σ̄ = C̄ [ε̄] . (3.28)

If linear elasticity in each phase is assumed and absence of stress-free
strains, the strain localization tensorA (x) describes the relation between
the local and the effective strain

ε (x) = A (x) [ε̄] . (3.29)

Analogously, the stress localization tensor B (x) describes the relation
between the local and the effective stress, if eigenstresses are absent

σ (x) = B (x) [σ̄] . (3.30)

The effective stiffness can thus be obtained as follows

C̄ = 〈C (x)A (x)〉 = 〈(C (x))−1
B (x)〉−1. (3.31)

Hill (1963) stated that the macroscopic stress power density and the
phase average of the microscopic stress power density are equivalent if
at least one of the following conditions is fulfilled:

• any volume subjected to homogeneous Dirichlet
boundary conditions

• any volume subjected to homogeneous Neumann
boundary conditions

• any volume subjected to periodic boundary conditions
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The Hill condition for a divergence free stress field σ and a compatible
strain rate field ε̇ yields

〈σ (x) · ε̇ (x)〉 = 〈σ (x)〉 · 〈ε̇ (x)〉 = σ̄ · ˙̄ε. (3.32)

The strain rate and stress fields can be split into an average (̄·) part and
a fluctuating (̂·) part

σ (x) = σ̄ + σ̂ (x) , (3.33)

ε̇ (x) = ˙̄ε + ˙̂ε (x) . (3.34)

The Hill condition implies that the stress and strain rate fluctuations are
orthogonal, on average

〈σ̂ (x) · ˙̂ε (x)〉 = 0. (3.35)

In the special case of elasticity, the Hill condition can be rewritten in
terms of the elastic energy ε (x) · σ (x)

〈σ (x) · ε (x)〉 = 〈σ (x)〉 · 〈ε (x)〉 = σ̄ · ε̄. (3.36)

3.3.2 Mori-Tanaka homogenization scheme

As discussed in Section 1.2, in contrast to bounding homogenization
schemes, the Mori-Tanaka homogenization scheme is an estimating
mean-field homogenization procedure. Originally introduced by Mori
and Tanaka (1973), their method has been applied in homogenization
procedures for a wide range of heterogeneous materials. In this Section,
an expression for the effective stiffness is derived briefly followed by
a discussion of the advantages and, especially, the drawbacks of this
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representations of Ponte Castañeda and Willis (1995), Torquato (2002),
and Brylka (2017).

The key assumption of the Mori-Tanaka homogenization scheme is that
the inclusion strain is estimated by the strain localization of the single
inclusion problem (SIP) and the average matrix strain

εF = 〈ASIP
F0 〉F [εM] = 〈ASIP

F0 〉FAMT
M [ε̄] = A

MT
F [ε̄] . (3.37)

The operator 〈·〉F is defined as the volume average in the fiber volume.
Analogously, the operator 〈·〉M is defined as the volume average in the
matrix volume. Eshelby (1957; 1959) described the elastic solution of
an ellipsoidal inclusion in an infinite matrix (SIP), which allows one
to explicitly express the SIP strain localization tensor in a reference
orientation 〈·〉0

ASIP
F0 = (Is + P0 (CF − CM))−1

. (3.38)

An expression for the symmetric, transversely-isotropic polarization
tensor P0 = E0C

−1
M can be found in Ponte Castañeda and Suquet (1998)

or Torquato (2002). Here, E0 is the Eshelby tensor. In order to maintain a
compact scope of this work, an extensive discussion of the eigenstrain
concept and the Eshelby solution is avoided. The average over the
total fiber volume 〈·〉F is equivalent to a fiber orientation average. For a
computationally efficient orientation average of symmetric, transversely-
isotropic tensors, the reader is referred to the work of Advani and Tucker
III (1987).

The relation Is = cFA
MT
F + cMA

MT
M yields the phase-averaged strain

localization tensors in the matrix and the fiber phase

A
MT
M =

(
cF〈ASIP

F0 〉F + cMI
s)−1

, (3.39)

A
MT
F = 1

cF

(
I
s − cM

(
cF〈ASIP

F0 〉F + cMI
s)−1)

. (3.40)

43



3 Continuum mechanical foundations

Since AMT
M and AMT

F are known, the calculation of the macroscopic
stiffness CMT is straight-forward

C̄
MT = 〈CA〉 (3.41)

= CM + cF〈(CF − CM)ASIP
F0 〉FAMT

M (3.42)

= CM + cM〈(CF − CM)ASIP
F0 〉F

(
cF〈ASIP

F0 〉F + cMI
s)−1

. (3.43)

In this widespread formulation (Benveniste, 1987; Norris, 1989; Ben-
veniste et al., 1991), the main symmetry of the effective stiffness ten-
sor C̄MT cannot be ensured. Therefore, in the following, isotropy of the
fiber stiffness CF and the matrix stiffness CM is assumed. Equation (3.38)
and further simplifications thus lead to

C̄
MT = CM + cF

(
cM

〈(
P0 + (CF − CM)−1

)−1 〉−1

F
+ cF (CF − CM)

)−1
.

(3.44)

Since the inversion and the orientation average maintain the symmetry
of a tensor, Equation (3.44) represents a proof of the symmetry of the
effective stiffness tensor, in the case of inclusions of the same type and
elastically isotropic phases.

The advantages of the Mori-Tanaka scheme are the short and clear
derivation. Its application has been extensively validated and is
widely accepted. A numerical implementation is compact, with low
computational effort.

There is no variational formulation of the Mori-Tanaka estimate
including a valid elastic energy which would, for example, ensure
the symmetry of the stiffness tensor. This is a deficit of the Mori-
Tanaka estimate (Ponte Castañeda and Willis, 1995). Benveniste et al.
(1991) showed that, in general, the Mori-Tanaka estimate leads to an
asymmetric stiffness with more than one inclusion phase of non-similar
geometry. However, they also showed that, for the case of special coated
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fibers in a matrix, the symmetry can be ensured (Benveniste et al.,
1989). Ponte Castañeda and Willis (1995) stated that, for anisotropic
constituents, the symmetry of the stiffness tensor is only ensured if
the inclusion shape is isotropic (spheroidal). Ponte Castañeda and
Willis (1995) provide an example of spherical inclusions distributed
anisotropically, assuming isotropy of the matrix and inclusion phases,
which leads to an isotropic macroscopic stiffness. The Mori-Tanaka
stiffness may violate bounds of the Hashin-Shtrikman type, for example,
withmaterials having isotropic distributions of randomly oriented cracks
and disks (Ponte Castañeda and Willis, 1995), or with three phase
materials having randomly oriented ellipsoids (Norris, 1989). Ferrari
(1991) showed that, for high inclusion volume fractions, the Mori-Tanka
estimate may lead to unphysical results, such as a dependence of
the effective stiffness on the matrix stiffness at the vanishing matrix
volume limit.
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Chapter 4

Biaxial tensile tests
and microstructure-based
inverse parameter identification
of macroscopically
inhomogeneous SMC1

4.1 Introduction

Due to their good formability, economical mass-production and high
specific strength and stiffness, discontinuous fiber-reinforced polymers
are increasingly applied in components in the automotive industry
and the mobility sector in general. The application of this class of
materials is, however, hindered by a lack of a detailed understanding of
its mechanical behavior.

The material class under consideration is the discontinuous fiber-
reinforced thermoset, sheet molding compound (SMC). Specifically,
glass fiber-reinforced vinylester (VE) resin is under consideration. The
fibers have a length of 25mm. Typically, parts of SMC such as structural
automotive components are manufactured by compression molding of

1 This chapter is based on the paper "Biaxial tensile tests and microstructure-based inverse
parameter identification of inhomogeneous SMC composites" (Schemmann et al., 2018a).
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prepregs. This forming process leads to a macroscopically heterogeneous
fiber orientation distribution. As a result, the material behavior is
spatially heterogeneous and anisotropic in a process sensitive way
(Katayama et al., 2001).

e1

e2

A B

DC

Figure 4.1: μCT scan of a macro-heterogeneous SMCmicrostructure that shows to different
flow regions: almost straight fibers on the left side and curly fibers on the right third of
the image, specimen dimensions: 73mm × 73mm × 3mm (Pinter, 2017), fourth order fiber
orientation tensors in the marked points are listed in Appendix A
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4.2 Experimental procedure

In this study, we aimed for samples that showed a significant macro-
heterogeneity on the scale of the cruciform specimen. The here
considered samples were molded by Hohberg et al. (2017b) with an
approximate initial mold coverage of 20%. An example for such a
heterogeneous microstructure is shown in a slice of a micro-computed
tomography (μCT) scan in Figure 4.1. The here shown heterogeneities
are more pronounced than typically observed in SMC. A typical SMC
microstructure is depicted in Figure 2.5 and Figure 6.1.

Pinter et al. (2018) applied fiber orientation analysis to estimate the fiber
orientation distributions in this images. Figure 4.2 depicts the spatial
distribution of the first (highest) eigenvalue of the second order fiber
orientation tensor of the first kind N . Arrows indicate the in-plane
projection of the corresponding eigenvector. Figure 4.3 and Figure 4.4
visualize the second and third eigenvectors accordingly.

Within the virtual process chain, this heterogeneity has been taken
into account in moldfilling analysis (Advani and Tucker III, 1987;
Osswald and Tucker, 1989) and homogenization approaches (Buck
et al., 2015; Müller et al., 2015b) for discontinuous fiber-reinforced
polymers. The mechanical characterization of heterogeneous composites
has been considered in great detail in the literature by the assumption of
homogeneously distributed material properties within the specimen (e.g.
by Zhou et al. (2017); Trauth et al. (2018)). However, the consideration of
heterogeneous specimens is in an early stage of research.

4.2 Experimental procedure

The specimens are tested in an electro-mechanical biaxial tensile testing
machine from Zwick. Four independent axes allow for a maximum load
of 150kN. Figure 5.1a (left) shows the setup of the machine. Five markers
for integrated strain measurements are located on the lower side of the
specimen.
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4.2 Experimental procedure

These markers are traced by the integrated strain measurement system
Video XTens. The distances between opposing points d1 and d2 (see
Figure 5.1a (right)) are used for the load control. Additionally, the
marker positions are used for the active midpoint control of the system
which allows for load application without bending in specimen’s arms,
even for highly heterogeneous specimen. On the upper side of the
specimen, a speckle pattern is applied which is used for full-field strain
measurements with the GOM ARAMIS 4M grayscale image correlation
system.
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Figure 4.6: Experimental procedure: strain path

Figure 4.6 shows the prescribed strain path, and Figure 4.7 the force
path over the three loading steps of the experiments. Firstly (i), the
specimen is loaded with a relative marker distance or average technical
strain ε1. The perpendicular axes are in the e2-direction and controlled
in such a way that the force remains at a low contact force. This strain is
maintained whereas the viscosity of the material leads to a decrease of
the tension forces. Secondly (ii), after a relaxation time, the e2-direction
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4 Inverse parameter identification of macroscopically inhomogeneous SMC

is tested equivalently. Thirdly (iii), an equibiaxial load is applied to the
specimen. The clearly visible scattering in Figure 4.6 is likely to derive
from the high measuring rate and vibrations of the sensor mounting.
The relative marker distance is not considered in the experimental
evaluation.
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Figure 4.7: Experimental procedure: force path

4.3 Inverse parameter identification

In biaxial tensile experiments, the stress and strain fields in the specimen
are heterogeneous. Due to this heterogeneity, the material parameters
cannot be identified directly, but may be obtained by the solution
of an inverse problem. The direct problem is defined by the strain
displacement relation, the balance of linear momentum, the boundary
conditions and Hooke’s law for the constitutive relation between the
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stress tensor σ (with σ = σT) and strain tensor ε with a position-
dependent stiffness C(x)



4.3 Inverse parameter identification

σ = C (x) [ε] . (4.1)

The quasi-static boundary value problem - using these relations - is
solved with the FE software ABAQUS/Standard.

Furthermore, if the numerically calculated strain field is εsim ∈ U sim,
whereas C is the space of stiffness tensors and U sim the solution space of
the FEM for strains, the inverse problem can be defined by:

find C(x) ∈ C, that resolves εsim (C(x)) = εexp. (4.2)

In general, the equality of the strain fields εexp and εsim(C(x)) cannot
be assured. This discrepancy derives from measurement uncertainties
or modeling errors (Mahnken and Stein, 1996b). A solution of the
inverse problem is, however, obtained by minimizing the correlation
function f(C(x)) that describes the difference of the experimental and
simulated strains. The vector r(C(x)) quantifies the deviation of the
strain fields. In f(C(x)) and r(C(x)), only the measurable in-plane
strains are considered

r(C(x)) =

⎛
⎜⎜⎜⎜⎝

εsim11,i,j(C(x)) − ε
exp
11,i,j

εsim22,i,j(C(x)) − ε
exp
22,i,j

γsim
12,i,j(C(x)) − γ

exp
12,i,j

...

⎞
⎟⎟⎟⎟⎠

i=1...K,j=1...N

. (4.3)

Since the meshes of the experimentally measured strain field is dis-
cretized much finer than the FEM simulation solution, both strain fields
are compared in a comparison mesh. A mapping algorithm interpolates
the strain fields on a comparison mesh with the spatial coordinates
xi ∈ Ω, i = 1...K and discrete times tj ∈ T , j = 1...N .
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4 Inverse parameter identification of macroscopically inhomogeneous SMC

Using the strain vector ε = (ε11, ε22, γ12)T, the error function f(C(x))
and the strain deviation r(C(x)), the inverse problem can be rewritten
as follows

f(C(x)) = ||r(C(x))||22 = r(C(x))T
r(C(x)) → min

C(x)∈C
. (4.4)

The results of experiments with the identification of a homogeneous
anisotropic stiffness and consideration of viscous effects in SMC and
long fiber-reinforced thermoplastics can be found in Schemmann et al.
(2015a). These results are compared with homogenized material over
the whole specimen with the interaction direct derivative (IDD) estimate
(Schemmann et al., 2015b).

4.3.1 Implications by the assumption of linearity between
the stiffness tensor and the fiber orientation tensor

The harmonic decomposition of the fully anisotropic stiffness tensor
(Schouten, 1924; Forte and Vianello, 1996; Rychlewski, 2000; Böhlke et al.,
2010) yields

C︸︷︷︸
21

=
Ciso︷ ︸︸ ︷

k1P1 + k2P2︸ ︷︷ ︸
2

+
CH21︷ ︸︸ ︷

I ⊗ H ′
1 + H ′

1 ⊗ I︸ ︷︷ ︸
5

+
CH22︷ ︸︸ ︷

4J(H ′
2)︸ ︷︷ ︸

5

+
CH4︷︸︸︷
H

′︸︷︷︸
9︸ ︷︷ ︸

21

, (4.5)

where the operator J is defined as

4J[A] = (Aimδjn + Ainδjm + Ajnδim + Ajmδin) ei ⊗ ej ⊗ em ⊗ en.

(4.6)

The two isotropic projectors are P1 = (I ⊗ I)/3 and P2 = IS − P1, IS

denotes the fourth-order identity on symmetric second-order tensors.
The tensors H ′

1, H ′
2 and H′ are completely symmetric and traceless. The
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4.3 Inverse parameter identification

coefficients h1 and h2 assemble the isotropic part Ciso, CH21 and CH22

are first and second deviatoric parts, CH4 is the harmonic part. The

numbers below the quantities, i.e. in Equation (4.5), indicate the number

of independent components of each tensor. The assumption of linearity

between C and the fiber orientation tensors of the third kind D
′,D′ (see

Section 2.4.3) lead to the following relationship:

C = k1P1 + k2P2︸ ︷︷ ︸
2

+ α(I ⊗ D
′ + D

′ ⊗ I)︸ ︷︷ ︸
1

+ βJ(D′)︸ ︷︷ ︸
1

+ γD′︸︷︷︸
1

.

(4.7)

If D′ and D
′ are known, this assumption reduces the number

of unknown parameters from 21 (anisotropic elasticity) to five,

namely k1, k2, α, β and γ. These parameters depend on the matrix and

the fiber properties, the volume fraction, the fiber geometry, but not the

fiber orientation distribution, since this is explicitly taken into account

by the orientation tensors. Therefore, we assume these parameters as

constant within the specimen. The material inhomogeneity derives only

from an inhomogeneous fiber orientation distribution which can be

obtained, i.e. by μCT analysis or moldfilling simulations.

4.3.2 Numerical treatment of the optimization

The parameter k1 describes the relation between the stress and the

volume change or trace of the strain tr(ε) = ε11 + ε22 + ε33 and ε33.

Since the out of plane strain is not measurable (Equation (4.3)), k1 is

indifferent of the objective function. If all the other parameters are

combined into the parameter vector p = (k2, α, β, γ) the stiffness can be

written as

C(x) = C(p, k1, D
′(x),D′(x)) = C(p). (4.8)
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4 Inverse parameter identification of macroscopically inhomogeneous SMC

A reformulation of the optimization problem leads to

f(p) = r(p)T
r(p) → min

p∈P
. (4.9)

The given problem is nonlinear and solved numerically. To identify
the unknown parameters p, a Gauss-Newton optimization procedure
is used Lecompte et al. (2007). This procedure is based on the classical
Newton’s optimization method

pk+1 = pk −
[
H(pk)

]−1 ∇f(pk). (4.10)

The gradient of Equation (4.9) can be written as

∇f(p) = 2J(p)T
r(p), with the Jacobian Jij(p) = ∂ri(p)

∂pj
. (4.11)

The Gauss-Newton-Approximation of the Hessian can than be expressed
as follows

H(p) = 2J(p)T
J(p) + 2G(p), with Gij(p) =

N ·K∑
k=1

∂2rk(p)
∂pi∂pj

rk(p). (4.12)

Negligence of G(p) yields the Gauss-Newton optimization method

pk+1 = pk −
[
J(pk)T

J(pk)
]−1

J(pk)T
r(pk). (4.13)

The Jacobian required for the Gauss-Newton optimization method is
assembled by partial derivatives of the strain field with respect to the
parameter vector p. These entries are estimated by the constitutive
equation σ = C (x) [ε] while assuming the stress field is independent
of p

∂ε

∂pi
= −C

−1 ∂C

∂pi
C

−1 [σ] = −C
−1 ∂C

∂pi
[ε] . (4.14)
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4.3 Inverse parameter identification

This assumption was successfully used in the identifications of ho-
mogeneous parameters and showed significant increase performance
(Lecompte et al., 2007). In the context of this work, the comparison to a
finite difference scheme of ∂ε/∂pi showed a difference in the converged
material properties of up to 10%. Therefore, the solution with the
analytic derivative (Equation (4.14)) was used as a starting value for the
optimization with the finite difference scheme, which had a significant
higher computational cost because in each iteration, solutions for small
fluctuations of pi had to be calculated.
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Figure 4.8: Reduction of error in the optimization process (left) and evolution of coefficients
(right), iterations 1-8 obtained by Gauss-Newton procedure with analytic Jacobian
(Equation (4.14)), iterations 9-10 obtained by finite difference scheme
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4 Inverse parameter identification of macroscopically inhomogeneous SMC

parameter k1 is not identifiable. Its value is obtained through a Mori-
Tanaka (Mori and Tanaka, 1973) homogenization in the following way
k1 = 1

3P1 · CMT.

Gradient based optimization algorithms are, generally, highly sensitive
to a deviation of start values. Hartmann and Gilbert (2017) showed
that for the case of homogeneous isotropic elasticity (surface strain
and force measurement including some measuring uncertainties), the
material parameters can be identified at sufficient precision. However,
to minimize the risk of convergence problems, the start values to the
Gauss-Newton method are obtained in the following way.

An inverse parameter identification is used to identify the homogeneous
stiffness of the specimen. In the following step, the heterogeneous stiff-
ness tensor (Section 4.3.1) is fitted to the homogeneous stiffness tensor
using a least-square approach and a genetic optimization algorithm. The
obtained values for k2, α, β, γ are now used as starting values.

Figure 4.8 (left) shows the convergence behavior of the described
optimization procedure. On average, the Gauss-Newton algorithm
converges in less than 10 iterations, whereas convergence is achieved
when the relative change of every parameter is below 1%. The plot
in Figure 4.8 left shows the reduction of the error function f(p) over
the Gauss-Newton iterations i. An error reduction of about 25%
was obtained. Figure 4.8 (right) shows the evolution of the four
parameters k2, α, β and γ normed to its converged values.

4.4 Results and discussion

Figure 4.9 and Figure 4.10 depict a comparison between measured and
simulated strain fields for two different biaxial tensile specimens for
the load case of equibiaxial tension. For Figure 4.9, the fiber volume
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As mentioned in above, due to the lack of reliable measurement
techniques to measure the out of plane strain of the specimen, the



4.4 Results and discussion

correlation. The middle column shows the strain fields obtained by
finite element simulations with the consideration of a heterogeneous
material behavior, see Section 4.3.1 and 4.3.2. The right column shows
finite element results for a homogeneous stiffness. This stiffness was
identified in a state-of-the-art standard procedure (Schemmann et al.,
2015b), that is similar to the heterogeneous one mentioned above.
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Figure 4.9: Comparisons of the strain fields for the load case of equibiaxial tension. The
fiber volume fraction of the specimen is 22%. Left column: measured strain field by digital
image correlation. Middle column: fitted under the assumption of linearity between the
fiber orientation tensor and stiffness tensor. Right: fitted with a homogeneous stiffness
over the specimen
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fraction of the specimen is 22%, and for Figure 4.10 it is 29%. The left
columns of both figures show the measured strain field by digital image
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fiber volume fraction of the specimen is 29%. Left column: measured strain field by digital
image correlation. Middle column: fitted under the assumption of linearity between the
fiber orientation tensor and stiffness tensor. Right: fitted with a homogeneous stiffness
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4.5 Conclusions

Measurement errors at low strains such as 0.2-0.5%, and the evaluation
of only five specimens (two are only shown within this chapter) requires
to exercise caution to avoid over-interpretation of the results. Some to
the authors reliable findings are, however, collected in the following.

First, the measured and homogeneously simulated strain fields show
significant fluctuations which additionally motivates an identification of
inhomogeneous material properties.

The new approach (middle column) covers tendencies of these fluctu-
ations. The normal strains in Figure 4.9 and 4.10 seem to reproduce
the measured strain field not only qualitatively but also quantitatively.
A slice of the μCT scan of the specimen in Figure 4.10 is depicted in
Figure 4.1. The μCT scan shows a typical SMC fiber orientation on
the left two third of the specimen, whereas on the right side of the
specimen, the mold-flow induced an increased amount of fiber bending.
The consideration of the measured strains in the e1-direction shows an
increase on the right side. This suggests a lower stiffness in this area
which may derive from the microstructure described above. Similarly,
on the lower left side of the image, the fibers seem to be orientated
dominantly horizontal, therefore reduction of the stiffness in the vertical
direction could explain the higher strains.

4.5 Conclusions

In contrast to common testing procedures, we introduced a method
to characterize the microstructure based heterogeneity of SMC in
biaxial tensile tests. The micromechanically-motivated assumption of
linearity between stiffness and fiber orientation distribution reduced the
problem dimension to four identifiable parameters, even for a highly
heterogeneous fiber orientation distribution. Volumetric compression is
not measurable. However, all other components of the stiffness tensor
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4 Inverse parameter identification of macroscopically inhomogeneous SMC

were obtained in a single biaxial tensile specimen (plane stress) in one
single experiment.

Compared to traditional homogenization schemes, the introduced
approach requires onemeasurement per fiber volume fraction and aspect
ratio to predict the stiffness for any fiber orientation distribution. New
measurements are required for a different fiber volume fraction or fiber
aspect ratio. Homogenization approaches on the other hand do not
require tests of the composite, however the elastic properties of the
phases are needed as an input.
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Chapter 5

Cruciform specimen design for
biaxial tensile testing of SMC1

5.1 Introduction

5.1.1 Motivation

With their high mass-specific strength and stiffness, fiber reinforced
polymers receive considerable attention in mass-reduction strategies
in the automotive and aerospace sector. The stiffest and strongest
class of composites are continuous fiber reinforced composites. This
work, however, focuses on discontinuous fiber reinforced composites
in the form of of sheet molding compounds (SMC). SMC offer a
large freedom of design and the low cycle times allow for mass
production. Characteristics of SMC include brittleness, process-induced
inhomogeneity and anisotropy, and comparably large microstructure
dimensions.

The application of SMC is hindered by the lack of a precise under-
standing of its mechanical behavior. The focus of the present work
lies on biaxial tensile testing of SMC which is driven by two main
factors. Firstly, the characterization under biaxial stress states covers

1 This chapter is based on the paper "Cruciform specimen design for biaxial tensile testing
of SMC" (Schemmann et al., 2018c).
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a wide range of application loads on typical shell-like SMC structures.
Secondly, as the implementation of virtual process chains and, especially,
damage modeling increase in popularity, a detailed characterization of
the damage behavior is essential to understand the complex damage
phenomena and calibrate corresponding constitutive models. For
instance, biaxial tensile testing allows for a validation and parameter
identification of anisotropic damage models.

The cruciform specimen design significantly influences the characteriza-
tion range of stress states as well as the precision of the characterized
material properties. Optimization of specimen design is a multi-
objective task that depends on the considered material, e.g., by means
of mechanical behavior such as ductility or anisotropy, manufacturing
restrictions, and microstructure length scales.

5.1.2 Chapter structure

This work presents an investigation of different specimen designs for
biaxial tensile testing of SMC. We aim for an optimal geometry for the
characterization of damage evolution under a wide range of biaxial
planar stress states. The outline is as follows: Section 5.2.2 presents the
background of biaxial tensile testing and introduces the two loading
scenarios we apply for the experimental evaluation of the specimen
design. Section 5.3 begins with a definition of our specific specimen
optimality criteria. In the following, we introduce four specimen
designs and evaluate them experimentally and partly with finite element
simulations. Section 5.4 discusses and compares the results in terms of
the introduced optimality criteria.
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5.2 Materials and experiment

5.2.1 Materials and manufacturing process

The SMC considered here consists, specifically, of an unsaturated
polyester polyurethane hybrid (UPPH) matrix system, reinforced
with 23vol.% glass fibers. The SMC was manufactured at the Fraunhofer
Institute of Chemical Technology (ICT) at Pfinztal, Germany. The
detailed composition of the matrix system is listed in Table 5.2. The
length of the fibers is 25.4mm.

component trade name weight
fraction

UPPH resin Daron ZW 14142 77%
adherent and flow aids BYK 9085 1.5%
impregnation aid BYK 9076 2.3%
deaeration aid BYK A-530 0.38%
inhibitor pBQ 0.0023%
peroxide Trigonox 117 0.77%
isocyanate Lupranat M20R 18%

Table 5.1: Composition of the UPPH resin (Hohberg et al., 2017a)

The SMC pre-impregnated fibers were manufactured on a belt conveyor
system. The initial charge had 60% mold coverage (with exception
of the specimens presented in Section 5.3.4) in a square mold with
the dimensions 455 × 455mm and consisted of three layers of pre-
impregnated fibers. With regard to more details of the manufacturing
process, we refer to Hohberg et al. (2017a). All specimens were cut with
a water jet cutter from the center region of the plate to minimize the
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5.2.2 Biaxial tensile experiments

Fundamentals of biaxial tensile testing

In this section, we briefly introduce our biaxial tensile testing device at
the Institute of Engineering Mechanics (KIT) and some fundamentals
on biaxial tensile testing. The biaxial tensile testing device shown in
Figure 5.1a consists of four horizontally positioned elctro-mechanical
actuators that are arranged perpendicular to each other. Each axis
allows for a maximum load of 150kN and is equipped with a load cell.
The deformation of the specimen is measured by an integrated optical
strain measurement system, via the displacement of five points on the
bottom of the specimen. The movement of these points is the input for
the measurement of the strain load and midpoint control. The active
midpoint control allows for bending-free load application, even in the
case of heterogeneous specimens. On the upper side of the specimen,
a speckle pattern allows for full-field strain measurements via digital
image correlation. Due to the, in general, inhomogeneous stress and
strain fields in the cruciform specimens the parameter identification is
typically not as straight forward as, e.g., in uniaxial tensile tests. More
details concerning inverse parameter identification are, e.g., covered in
Mahnken and Stein (1996a;b); Cooreman et al. (2007); Lecompte et al.
(2007); Schemmann et al. (2015b; 2018a).

Figure 5.1b depicts an exemplary cruciform specimen. If we assume
the specimen as homogeneous, the opposing forces on the specimen
are equal and given by F1 in positive and negative e1-direction and F2
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in positive and negative e2-direction. The ratio of these two forces is
known as the loading ratio

Γ = F2
F1

. (5.1)



5.2 Materials and experiment

The loading ratio of Γ = 0 defines uniaxial tension or compression in
the e1-direction, whereas the loading ratio Γ = 1 defines equi-biaxial
tension or compression.
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cameras for digital
image correlation

integrated strain
measurement system

hydraulic
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(a) Biaxial tensile testing device

e1

e2

F2

F2

F1F1

area of

specimen
arms

interest AI

(b) Cruciform specimen

Figure 5.1: Biaxial tensile testing setup and an exemplary cruciform specimen

We define the area of interest AI as the measuring region which later
can serve as input for the parameter identification. In all following
contour plots, the area of interest is highlighted by a purple frame. For
the cruciform specimen design, the area-averaged strain over the area of
interest

ε̄Iij = 1
AI

∫
AI

εij (x) dA, (5.2)
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is a key quantity in the evaluation of the specimen geometries, with
εij = (∂ui/∂xj + ∂uj/∂xi) /2 being the components of the infinitesimal
strain tensor defined from the displacement vector ui.
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Experimental procedures

For the experimental and simulative evaluation of the specimen designs,
we focus on two loading scenarios. We avoid compressive loads as
they may lead to buckling issues. The distinction of the mechanical
phenomena like, for instance, elasticity, stiffness degradation (damage),
plasticity, and viscoelasticity is simplified by a stepwise load application
and waiting times between the load application steps.

The first procedure PΓ=0 is based on cyclic uniaxial tension in e1-
direction with a stepwise load increase. Between these loading steps, we
apply a constant uniaxial tension in the e2-direction. This allows for an
observation of stiffness degradation in and perpendicular to the main
loading direction. Figure 5.2 shows a schematic stress and strain path for
the loading procedure PΓ=0. The tensile load is applied strain-controlled.
Perpendicular to the respective loading direction, a force control ensures
a low contact force.

The second procedure PΓ=1 (see Figure 5.3) is designed such that the
damage inducing load is equi-biaxial tension. Between the biaxial
tension steps of increasing amplitude, uniaxial tension steps of small and
constant amplitude are applied in the e1-direction and subsequently in
the e2-direction in order to estimate the stiffness evolution in these
directions. The strain and force control is analogous to the first
procedure.
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Figure 5.3: Schematic force and strain paths for experimental procedure PΓ=1

We chose these two procedures, because we assume that the specimens
which perform well – in the sense of allowing to detect an anisotropic
damage evolution – at the extreme loading ratios Γ = 0 and Γ = 1, also
perform well at the loading ratios in between.
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5.3 Specimen designs and experimental results

5.3.1 Specimen requirements

Our goal for biaxial tensile tests is the robust measurement of the
anisotropic evolution of damage and material strength of SMC under
various planar stress states. Smits et al. (2006) listed criteria for optimal
cruciform specimens of unidirectional composites. We modified and
extended this list by taking the specific properties of SMC into consid-
eration. We believe, that the optimality of a specimen is qualitatively
determined by the following criteria:

1. Wide range of achievable stress states. An optimal specimen geometry
allows for all biaxial tension stress states, i.e. ratios between normal
stresses. By coordinate transformation then all planar stress states
(not in magnitude, but in relation to each other) are covered. The
measurement of all stress states with the same geometry does not
only ensure a good comparability in contrast to multiple specimen
geometries, but also allows for a straight forward application of
non-monotonic loading paths.

2. Damage dominantly in the area of interest. Since it is our goal to
inspect damage in the area of interest, we would like to avoid
premature specimen failure in the arms, and thus analyze the
material behavior at highest possible strains in the area of interest.

3. Homogeneity of stress state in the area of interest. For the analysis
of damage, it is desirable to reach a homogeneous stress state
in the area of interest. This implies the demand to avoid stress
concentrations.

4. Robust parameter identification. The parameter identificationmust be
a well-posed problem and robust with respect to noise of measured
quantities (forces and strain field) (Hartmann and Gilbert, 2017).
A robust parameter identification is essential for reproducibility.
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The robustness of the parameter identification is, however, not
considered in this thesis.

5. Large area of interest. The microstructural dimensions are in case of
SMC, compared to other discontinuous fiber reinforced polymers,
relatively large. The typical fiber roving length is 25.4mm, whereas
one roving is assembled of thousands of filaments. As the
specimen size is limited, it is our goal to achieve a considerably
large area of interest.

6. Low production effort. In contrast to uniaxial tensile specimens,
the load ratio is an additional parameter to be considered in
the design of experiments. SMC is known to show significant
scatter in experimental results. Additionally, the anisotropy and
inhomogeneity must be considered in the design of experiments.
The resulting high number of required experiments can better be
coped with, if the economical effort for the specimen production is
low.

5.3.2 Unreinforced specimen arms

Specimen design

We introduce the first specimen design in line with the ISO 16842 (2014)
norm for biaxial tensile testing of sheet metals. Typical metals analyzed
in biaxial tensile testing are aluminum and deep-drawing steels. These
materials show, in contrast to SMC, large strain in the nonlinear (plastic)
regime as well as work hardening. Figure 5.4 shows the corresponding
design of a subsequently tested SMC specimen. The main advantages
of water jet cutting include excellent heat removal and a minimum slit
width of 1.2mm. Aiming at a maximum surface area in the arms, we
decided to introduce only 3 slits which lead to a reduction of the arm
surface area of 7.2%. In contrast to the normed design, we chose the
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slits to extend along the entire arms, in order to avoid a damaged area
enforced by the starting points of water jet cutting.

50mm

Figure 5.4: Image of the unreinforced cruciform specimen, thickness of the area of interest:
2mm

Results

For both, the testing procedure PΓ=0 and the testing procedure PΓ=1,
the specimens failed in the arms before a sufficiently high strain in
the area of interest could be reached. Figure 5.5a shows the force
over the strain in the e1-direction for testing procedure PΓ=0. The
corresponding contour plot (see Figure 5.5b) shows that the strain in the
arms is approximately equal to the strain in the area of interest, which
violates optimality criterion 2. Figure 5.6a shows the mean values of the
forces and the strains in the e1-direction and the e2-direction for testing
procedure PΓ=1. The contour plot (Figure 5.6b) shows that the normal
strain ε11 is significantly higher in the arms than in the area of interest.
The plot only shows the areas of positive strains. The asymmetry of the
image section is due to the recording area of the cameras. A contour
plot of the area of interest at the instant shortly before failure and an
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image of the failed specimen for all specimen designs can be found in
Appendix B.
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Figure 5.5: Unreinforced specimen arms with loading scenario PΓ=0
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Figure 5.6: Unreinforced specimen arms with loading scenario PΓ=1

5.3.3 Bonded reinforcements on the arms

Specimen design

To avoid premature failure in the arms, we reinforced the specimen
by bonding strips on the arms as shown in Figure 5.7. The upper part
of the picture shows the fixation of the reinforcing strips during the
manufacturing process. The strips are cut from the same SMC plate
as the specimen. We glued with epoxy adhesive which has similar
material properties as the resin material (UPPH). The preparation of the
specimens requires many hours of manual work and, therefore, violates
optimality criterion 6.
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50mm

Figure 5.7: Image of the cruciform specimen with bonded reinforcements on the arms,
thickness of the area of interest: 2mm

Results

The bonded reinforcements significantly increase the maximum achiev-
able strain. Here, the specimens also failed in the arms, however,
a higher strain in AI can be reached compared to the unreinforced
specimen. One reason for the premature failure in the arms was a
partial detachment of the bonded reinforcing strips. The force strain
diagram (see Figure 5.8a) demonstrates the increase of the maximum
reachable strain for testing procedure PΓ=0. Besides that, a stiffness
degradation is already visible from the decrease of the slope of the
force strain curve after each cycle. However, the contour plot (5.8b)
shows that the strain in the arms is still approximately equal to the
strain in the area of interest. Figure 5.9a shows the mean values of the
forces and the strains in the e1-direction and the e2-direction for the
testing procedure PΓ=1. Here too, the maximum strain is slightly higher
compared to the unreinforced specimen. The contour plot (Figure 5.9b)
shows that the normal strain in the arms is still significantly higher than
the normal strain in the area of interest.
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Figure 5.8: Bonded reinforcements on the arms with loading scenario PΓ=0
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Figure 5.9: Bonded reinforcements on the arms with loading scenario PΓ=1
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5.3.4 Continuous fiber reinforced arms

Particularities in specimen manufacturing

To overcome the disadvantages of bonded reinforcements on the arms,
we considered the manufacturing process of SMC with unidirectional
tapes (Bücheler et al., 2017). The unidirectional tapes’ constituents are
UPPH resin (also in SMC) and 60vol.% carbon fibers. The plates were
manufactured with 100% mold coverage to avoid in-mold slip of the
layers during the compression molding. More details regarding the
co-molding process can be found in Bücheler (2017). Figure 5.10 shows
the symmetric layup, where the middle layer consists of SMC and the
outer layers are tapes with fiber orientations perpendicular to each other.

Figure 5.10 and Figure 5.11 depict the pockets machined into the
continuous layers of the specimen. The milling process of these pockets
is described in the following.

CoFRP DiCoFRP

AI

Milled out pocket
0.5mm

0.5mm

0.5mm

0.5mm

1.7mm

Figure 5.10: Cross section of continuous fiber reinforced SMC, with milled pockets in the
area of interest
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For this process, a diamond coated end mill with 8 cutting edges and a
multi-cut geometry by Hufschmied GmbH (Bobingen, Germany) was
used. The specimens were clamped into position with a line clamping on
two sides of the pocket as to minimize the distance of the pocket center
to either side of the clamping. This clamping strategy also allowed for
a continuous process, i.e., no reclamping was necessary. We generated
the tool path from a CAD model of the specimens with the Siemens NX
manufacturing CAM system. The values of the cutting speed vc and the
feed per tooth fPT were experimentally qualified during preliminary
tests with a similar material and the same tool. These parameters
were set at vc = 66m/min and fPT = 0.07mm, respectively. The main
challenges in machining of the pockets were to prevent any kind of
delamination which is critical in plunging into the material, and to
obtain a smooth, even surface without heat-induced damages or altered
material properties. After the first cut with a depth of 1mm, in some
areas of the pocket, remnants of the continuous fibers were found. These
remnants likely originate from a movement of the unidirectional tapes
in e3-direction during the compression molding process. Nevertheless,
further machining steps were performed in 0.1mm steps to ensure a pure
SMC sector in the area of interest.

Specimen design

The novel manufacturing technique significantly increases the arms’
stiffness and strength in the loading directions and, therefore, defines
new constraints in the search for the optimal geometry. Here, we
introduce two geometries which we consider to be a good compromise
between the optimality criteria presented in Section 5.3.1. As there are
difficulties in parametric shape optimization (Bauer et al., 2016), we
decided to perform a high number (thousands) of FE simulations and
thoroughly selected suitable solutions manually.
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The first geometry, in the following called geometry 1, follows the design
of the unreinforced specimen. Figure 5.11a shows an image of the design.
The significant increase of arm strength allowed to incorporate six slits
in each arm to reduce the peak stress at the slit’s ends and reduce load
transition in the slits perpendicular to the normal stress direction. The
slits end slightly before the beginning of the milled out pockets.

70mm

(a) Geometry 1

70mm

50mm

(b) Geometry 2

Figure 5.11: Images of specimens with continuous fiber reinforced arms, thickness of the
area of interest: 1.7mm

Figure 5.12 depicts strain fields computed from finite element simula-
tions on geometry 1. We took advantage of the specimen’s symmetry
and only simulated one fourth of the geometry with a fine discretization
of shell elements. As we were only interested in trends of different
geometry modifications and not precise strain fields, we assumed linear
elastic isotropic material behavior with a different stiffness and element
thickness in the pocket and the reinforced area. We would like to remark
here, that a precise quantitative comparison of designs should include
the prediction of macroscopic cracks leading to macroscopic failure,
and an evaluation of the observability of the damage stage. This was
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not achievable within the scope of the presented research. The upper
images show the strain distributions for a uniaxial loading scenario PΓ=0

in the horizontal e1-direction. The strain distribution in the area of
interest shows only small fluctuations. The outer arms contribute more
to the load transition into the specimen, as part of the outer load is
transmitted into the tape-reinforced regions. The lower images visualize
the strain distribution for an equi-biaxial tensile loading scenario PΓ=1.
The distribution of the normal strain ε11 (Figure 5.12c) shows peaks
at the end of the horizontal slits. Figure 5.12d depicts the distribution
of the maximal principal strain ε1. Due to the reduced stiffness in the
area of interest, here, the strain is significantly higher than in the earlier
discussed designs.
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Geometry 2 is different from geometry 1 in such a way that the milled
out area has curved edges (see Figure 5.11b). In analogy to uniaxial
tapered bone specimens, our aim was to achieve an elevated stress level
in the area of interest. Figure 5.13 shows the strain fields for uniaxial and
biaxial load. For the uniaxial loading case, the stress distribution is more
homogeneous, however, in front of the second outer slit end, there is a
significant strain concentration. For the case of equi-biaxial loading, the
strain concentrations, especially the principal strain ε1 (see Figure 5.13d),
shows significant peaks towards the end of the slits.
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Figure 5.12: FE results for geometry 1 specimen at a macroscopic strain of ε̄I11 = 0.27%.
The strain fields show the normal strain ε11 and the largest principal strain ε1.
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Figure 5.13: FE results for geometry 2 specimen at a macroscopic strain of ε̄I11 = 0.27%.
The strain fields show the normal strain ε11 and the largest principal strain ε1
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Results

The contour plots in Figure 5.14 through Figure 5.17 show that the
experimental strain distributions are similar to those predicted from
the simulations. Figure 5.14b confirms the relatively homogeneous
strain field of Figure 5.12a for geometry 1 and testing procedure PΓ=0.
For testing procedure PΓ=1, the small strain peaks at the end of the
slits mentioned in conjunction with Figure 5.12c are visible again (see
Figure 5.15b). For both testing procedures, the strain in the area of
interest is significantly higher than the strain in the arms. Failure
occurs in the area of interest when a sufficiently high strain is reached.
Figure 5.14a shows the force over the strain in the e1-direction for the
testing procedure PΓ=0. This figure demonstrates that the continuous
fiber reinforced layers significantly increase the maximum achievable
strain. A stiffness degradation is clearly visible. Figure 5.15a shows
that the reinforcement increases the maximum achievable strain also for
testing procedure PΓ=1.
Figure 5.16b and Figure 5.17b show the contour plots of geometry 2. Here
too, the strain in the area of interest is significantly higher than in the
arms. The strain peaks at the end of the slits, as mentioned for Figure 5.13,
are visible, particularly pronounced for testing procedure PΓ=1. Failure
occcurs in the area of interest, but is initiated at the end of the slits.
The force strain diagrams (Figures 5.16a and 5.17a) show that also
geometry 2 increases the maximum achievable strain, but slightly less
than geometry 1.
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Figure 5.14: Geometry 1 with continuous fiber reinforced arms with loading scenario PΓ=0
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Figure 5.15: Geometry 1 with continuous fiber reinforced arms with loading scenario PΓ=1
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Figure 5.16: Geometry 2 with continuous fiber reinforced arms with loading scenario PΓ=0
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Figure 5.17: Geometry 2 with continuous fiber reinforced arms with loading scenario PΓ=1
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5.4 Discussion

Table 5.2 summarizes the maximum attained normal strains aver-
aged over the area of interest max

(
ε̄I11
)
in loading scenario PΓ=0

and max
(
ε̄I11 + ε̄I22

)
/2 in loading scenario PΓ=1 accordingly. These

strains especially quantify the level of achievable strain in the area
of interest and thus allow to evaluate the specimen with regard to
criterion 2, since damage only occurs if sufficiently high strains are
achieved (criterion 2 of the previously defined specimen requirements
(Section 5.3.1)). The ranking of the specimens is equal for both loading
scenarios. The unreinforced specimen fails at the lowest strains, bonded
reinforcements on the arms lead to a significant improvement, the
continuous fiber reinforced specimens perform better, whereas geometry
1 performs slightly better than geometry 2. In loading scenario PΓ=0,
the continuous reinforced geometry 1 reaches 87% of the failure strain
measured in a uniaxial tensile bone specimen tested on the samemachine.
In parallel to the maximum strain reached in the area of interest, a steady
reduction of the slope in the force-strain plots indicates the evolution of
damage. A visual comparison of these plots indicates a good agreement
with Table 5.2, such that, the specimens which allow for the observation
of higher strains also show a higher slope reduction in the force-strain
plot. The interpretation of the results requires great caution, since only
one experiment per specimen geometry and load case was performed.

reinforcement type none bonded
SMC

cont.
geom. 1

cont.
geom. 2

uniax.
bone

max
(
ε̄I11
)

PΓ=0 0.57% 1.00% 1.37% 1.26% 1.57%

max ε̄I
11+ε̄I

22
2 PΓ=1 0.63% 0.65% 0.85% 0.76% -

Table 5.2: Maximum attained strain within one experiment for the different biaxial
specimen designs and, for reference, the failure strain of a uniaxial bone specimen. Here,
the operator max (·) denotes the maximum value in the course of the experiment
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Discussion

Geometry 1 also performs equal or superior to the other specimens
considering optimality criteria 1 and 3. Force F1 is almost ideally
transferred via a homogeneous normal stress in the e1-direction, force F2

governs the normal stress in the e2-direction accordingly. Therefore, by
a variation of the loading ratio Γ, we can achieve any planar tensile
stress ratio. The strain state in the area of interest is rather homogeneous
because of the high number of slits, that reduce the strain, as shown by
DIC and FE simulations. Consequently, we may assume that (due to the
slits) the disturbing effect of the arms on the stress distribution is weak
and the stress field is likewise approximately homogeneous so that the
stress state can be estimated from the forces divided by the material cross
section in the area of interest. The thus obtained material parameters
provide an estimate of the material behavior and can serve as a starting
value for an inverse parameter identification (partly criterion 4).

When comparing geometry 1 and geometry 2 of the continuous fiber
reinforced specimen, geometry 1 also shows advantages concerning
the larger size of the area of interest (criterion 5). The manufacturing
effort (criterion 6) is the lowest in the unreinforced specimen. The
bonded specimen requires a large amount of manual work. The
continuous fiber reinforced specimen preparation requires additional
manufacturing techniques (co-molding and milling), but is more time-
efficient compared to the bonded specimen.

One experiment per design and load scenario is, of course, not
statistically representative. We admit that our experimental investigation
with only one specimen may not provide a precise quantitative design
estimate, however, the experiments are (i) plausible within each experi-
ment and in comparison of all experiments, (ii) show a good agreement
with the FE simulations (continuous fiber reinforced specimen). The
experiments in this work, hence, provide a preliminary estimation of the
specimens’ suitability.
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5.5 Conclusions

This work provided experimental as well as numerical results to support
the selection of a suitable specimen design for the characterization of
the damage behavior of SMC. The authors, however, did not aim to
characterize the anisotropic damage behavior of SMC, as the number of
experiments was significantly too low and the differentiation of damage,
viscoelasticity, and plasticity in discontinuous fiber reinforced polymers
(Brylka et al., 2018) along with their parameter identification are still
not fully understood. One result could be an understanding of the
anisotropic stress-strain behavior of SMC. Geometry 1 of the continuous
fiber reinforced specimen performed superior for our application, i.e.
the optimality criteria and their prioritization we aimed for. The main
advantages are the highest achievable strain in the area of interest among
all specimen, the homogeneity of the strain in the area of interest, the
large area of interest, and a moderate manufacturing effort.
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Chapter 6

Anisotropic mean-field
modeling of debonding and
matrix damage in SMC1

6.1 Introduction

6.1.1 Motivation and materials

With their high mass-specific strength and stiffness, fiber-reinforced

polymers receive considerable attention in mass-reduction strategies

in the automotive and aerospace sector. The strongest and stiffest

composites are continuous fiber-reinforced composites. Discontinuous

fiber-reinforced polymers, however, are more amenable to high-volume

automotive applications because of their geometric freedom and sig-

nificantly reduced cycle times in manufacturing processes. In this

chapter, we focus on a specific discontinuous fiber-reinforced polymer:

sheet molding compound (SMC). SMC consist of a thermoset matrix

– in our case, epoxy or unsaturated polyester polyurethane hybrid

(UPPH) resin – reinforced with long (≈ 25mm) glass fibers. Parts are

typically manufactured by compression molding of pre-impregnated

1 This chapter is based on the paper "Anisotropic mean-field modeling of debonding and
matrix damage in SMC composites" (Schemmann et al., 2018b).
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fibers, also known as prepregs. The orientation evolution of fibers
during the compression molding manufacturing process leads to a
mold-flow-induced microstructure.

The demand for a precise and efficient prediction of the resulting
inhomogeneous, anisotropic, process-dependent mechanical properties
arises from industry’s interest in shortening development cycles and
reducing extensive and costly prototyping. A wide range of research is,
therefore, associated to the virtual process chain of discontinuous fiber-
reinforced composites, e.g., moldfilling and fiber orientation evolution
analysis, prediction of warpage and eigenstresses, and structural analysis
including damage.

6.1.2 Chapter structure

Despite the enormous work already conducted within the research
of discontinuous fiber reinforced polymers, some deficiencies still
remain open. Some of those deficiencies are addressed by the actually
presented model. Few models, e.g., are physically motivated and
take the microscale into account, but are still efficiently applicable to
calculations of structural components (e.g., parts that are of interest to the
industry (Bruderick et al., 2013; Jansen, 2013; Hangs et al., 2016). Hereby,
a numerical regularization based on the redistribution of load from
fibers with debonded interfaces to undamaged fibers can be helpful.
To the authors’ knowledge, a Weibull weakest link approach with a
heterogeneous stress distribution on each interface was not presented
so far. Added value lies in the simulation of non-proportional loading
paths and a rigorous visualization of the resulting anisotropic evolution
of the effective and the microstructural quantities (see Section 6.5.3).
This allows for a better discussion and a better understanding of, e.g.,
damaged-induced anisotropy within SMC composites.
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6.2 Continuum mechanical model

This chapter presents an anisotropic continuum mechanical mean-field
damage model taking into account an arbitrary orientation distribution
of straight fibers. The outline of this chapter is as follows: In Section 6.2,
a mea-field Mori-Tanaka homogenization scheme based on an empirical
fiber orientation distribution is presented. The model accounts for fiber-
matrix interface debonding and matrix damage in SMC composites. In
the latter, a maximum principal stress criterion is applied, whereas the
former is based on a direction-dependent equivalent interface stress
which is related to a Weibull survival probability. Hence, interface
debonding ismodeled by an anisotropic evolution of load-carrying fibers.
Fiber breakage is neglected. Section 6.3 introduces the discretization
procedure and numerical implementation of the damage models. A
regularization approach ensures numerical and computational efficiency
of the model. Section 6.4 deals with the identification of the parameters
needed to properly describe the material model. Section 6.5 is devoted
to the experimental validation.

6.2 Continuum mechanical model

6.2.1 SMC microstructure

Here, the SMC is treated as a two-phase composite consisting of
a thermoset matrix phase ΩM and glass fibers ΩF. The matrix is
characterized linear elastically by an isotropic matrix stiffness tensor CM

and the corresponding volume fraction cM. All fibers are modeled
linear elastic with an isotropic stiffness CF. Due to the low shear rates
in the manufacturing process, fiber curvature and breakage during
the manufacturing process are neglected. As shown, e.g., by Jendli
et al. (2005), fiber breakage is the least important damage phenomenon
in SMC composites under tension. In-situ experiments showed that
fibers usually break only due to macroscopic crack propagation within
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the specimen. Additionally, Figure 6.2 shows, that for the material
considered here, the fiber stress is beneath the 90% confidence intervall
of the fiber strength. The fibers are, therefore, modeled as straight
ellipsoids with a uniform aspect ratio av. The unit vector n describes the
orientation of a fiber. The fiber volume fraction is cF = 1 − cM.

Figure 6.1 depicts a sliced micro-computed tomography (μCT) scan of
SMC. The colors indicate the fiber orientation in each voxel following
the orientation estimate of Pinter et al. (2018).

Figure 6.1: μCT scan of an SMC microstructure (UPPH resin, cF = 23%, (Pinter, 2017)).
Colors indicate fiber orientation in the corresponding voxel. Specimen dimensions
are 10mm × 10mm.
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6.2 Continuum mechanical model

The fiber filaments for the SMC manufacturing process are utilized

in bundles of thousands of filaments. During the impregnation and

compression molding, the fiber filaments partly disperse. Motaghi and

Hrymak (2017) characterized the tow distortion in SMC. The remaining

short-range order of fiber orientation and volume fraction is neglected

since only the one-point statistic of the microstructure is considered.

The fiber orientation distribution function f(n) (FODF) specifies the

volume fraction dv/v of fibers with orientation n relative to the total

fiber volume (see, e.g., Zheng and Du (2001); Müller and Böhlke (2016))

dv

v
(n) = f (n) dS. (6.1)

Here, dS denotes the surface element on the unit

sphere S := {n ∈ R3 : ‖n‖ = 1}. The FODF is non-negative, normalized,

and symmetric

f(n) ≥ 0,

∫
S

f(n)dS = 1, f(n) = f(−n), ∀n ∈ S. (6.2)

The FODF represents a one-point correlation function of the microstruc-

ture and is, therefore, the most simple statistical description of the

fiber dominated microstructure. A distributional representation of f(n)

with K vectors nβ and corresponding weights c (nβ) is given by an

empirical definition of the fiber orientation distribution with the Dirac

delta function δ(n, nβ)

f(n) =

K∑
β=1

c (nβ) δ(n, nβ). (6.3)

The weights c (nβ) can be interpreted as the volume fraction of fibers

oriented in direction nβ with respect to the total volume fraction cF. The

relations in Equation (6.2) imply the following properties of c (nβ)
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c(nβ) ≥ 0,

K∑
β=1

c(nβ) = 1, c(nβ) = c(−nβ), ∀β = 1 . . . K. (6.4)

We further introduce the abbreviation cβ := c (nβ). A uniform em-
pirical fiber orientation distribution can be expressed by uniform
weights cβ = 1/K and, e.g., a (planar) isotropic distribution of nβ on
the unit circle or sphere, respectively. The more directions nβ being
considered, the better a continuous fiber orientation distribution can be
approximated by the discrete weights.

6.2.2 Homogenization of linear elastic behavior

The following section describes the estimation of the effective (macro-
scopic) stiffness tensor and stress localization tensors based on the
Mori-Tanaka estimate (Mori and Tanaka, 1973). The relation between
the macroscopic stress σ̄ and strain ε̄ is given by the actual macroscopic
stiffness tensor C̄

σ̄ = C̄ [ε̄] . (6.5)

The fundamental assumption of the Mori-Tanaka homogenization
scheme is that the strain localization in the fibers is calculated from the
phase-averaged matrix strain εM instead of the macroscopic strain, by
the application of the classical Eshelby (1957) relation. The Mori-Tanaka
stiffness thus reads (see, e.g., Brylka (2017); Benveniste (1987))

C̄ = CM − cF

(
cM

〈(
P0 + (CF − CM)−1

)−1 〉−1

F
+ cF (CF − CM)−1

)−1
.

(6.6)

An explicit expression of the symmetric polarization tensor P0 = E
−1
0 CM

can be found in Ponte Castañeda and Suquet (1998), with E0 being
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6.2 Continuum mechanical model

tensor A over all fibers 〈A〉F in terms of second and fourth order
orientation tensors is given by Advani and Tucker III (1987). A
reformulation of the fiber orientation average based on the Rayleigh
product and the empirical formulation (see Equation (6.3)) leads to

〈A〉F =
K∑

β=1
cβQ (nβ) � A0, Q (nβ) ∈ Orth, (6.7)

where A0 = A (e1) is an arbitrary tensor in the reference orientation e1

and Q (nβ) is defined as the rotation (i.e. a proper orthogonal tensor)
between the reference orientation e1 and nβ . The phase-averaged matrix
and fiber stresses σM and σF can be expressed with their corresponding
phase-averaged stress localization tensors BMT

M and BMT
F of the Mori-

Tanaka homogenization

σM = B
MT
M [σ], σF = B

MT
F [σ]. (6.8)

The localization tensors are determined by

B
MT
M =

(
cMI

s + cF〈BSIP
F0 〉F

)−1
and B

MT
F = 〈BSIP

F0 〉FBMT
M . (6.9)

The fiber stress localization tensor in the single inclusion problem (SIP)
in the reference orientation BSIP

F0 is given by

B
SIP
F0 =

(
I
s + CM (Is − P0CM)

(
C

−1
F − C

−1
M

))−1
. (6.10)

Duschlbauer et al. (2003) outlined the calculation of the directional
dependent fiber stress σ∠

F (nβ)

σ∠
F (nβ) = B

SIP∠
F (nβ)BMT

M [σ]. (6.11)
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A rotation of BSIP
F0 such that the transversely isotropic axis points in

direction nβ leads to BSIP∠
F0

B
SIP∠
F (nβ) = Q(nβ) � B

SIP
F0 , Q ∈ Orth. (6.12)

Figure 6.2 visualizes the directionally-dependent fiber principal stresses
for a horizontal, uniaxial tensile load and a planar, isotropic fiber
orientation distribution. Arrows indicate the principal stress direction.
In all fiber directions, the stress state is almost planar. The fibers in
tensile direction experience the highest principal stress. Compressive
stresses in fibers perpendicular to the tensile direction arise because
the fibers contract less than the matrix in the lateral direction. If the
composite strength is loaded on the material combinations considered
here, the principal stress in the fiber never reaches the 95% confidence
level of the fiber strength. Inter alia, this motivates the assumption of
the neglection of fiber breakage.
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Figure 6.2: Fiber principal stresses (σ1
F , σ2

F , σ3
F ) as a function of the fiber orientations nβ

under macroscopic uniaxial tension in the horizontal direction (σ̄ = σ̄n0 ⊗ n0). Arrows
indicate the principal stress direction. The material is UPPH SMC loaded with 130MPa
which is 48% of its tensile strength. Damage was not considered in this calculation.
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6.2.3 Modeling the matrix damage

The damage behavior of the matrix is modeled by an isotropic degra-
dation of the initial matrix stiffness C0

M which leads to the following
relation for the isotropic matrix stiffness CM

CM = (1 − dM)C0
M. (6.13)

The damage variable dM is determined as a function of the maximum
value of the phase-averaged principal matrix stresses σα

M (α = 1, 2, 3) in
the prior loading history of the matrix

dM = dM

(
max

τ∈[0,t]

(
max

α=1,2,3
σα
M

))
. (6.14)

Since the thermoset matrix is considered a brittle material, we applied a
maximum stress criterion asssuming that the material failure is governed
by the highest principal stress. The outer max-function ensures that dM

is monotonic increasing, i.e., no healing, even for load histories that
include unloading.

6.2.4 Modeling the fiber-matrix interface debonding

We consider cylindrical fibers with a large aspect ratio, on which we
ignore the debonding of head surfaces (Figure 6.3). By doing so, we
firstly assume, that the influence of debonding of the head surfaces on
the effective stiffness is small. Secondly, we neglect the coupling of
debonding of head surfaces with other damage phenomena, e.g., we
ignore crack propagation into the lateral surface or matrix.

We assume that interface damage is governed by the stress on the lateral
surface of the interface only. Cauchy’s Lemma gives the interface stress
vector t as a function of the fiber orientation nβ and the lateral surface
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normal s (see Figure 6.3) if the phase-averaged stress tensor σ∠
F (nβ) of

a fiber with orientation nβ is known

t (nβ , s) = σ∠
F (nβ) [s] . (6.15)

We decompose the interface stress vector into its normal σI and shear τI

components thus

t (nβ , s) = σI(nβ , s)s + τI(nβ , s)m, s ⊥ nβ , m ⊥ s, τI (nβ , s) ≥ 0,

(6.16)

where the unit vector m is determined by the tangential part of the
interface traction vector t (see Figure 6.3). The component σI is obtained
by a projection of the interface stress vector on s, and the component τI,
by the norm of the two tangential projections τ1 and τ2

σI = t · s, (6.17)

τI =
√

τ2
1 + τ2

2 =
√

(t · nβ)2 + (t · (nβ × s))2
. (6.18)
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head surface

lateral surface

nβ

t · s = σI
s

t

nβ × s

t · (nβ × s) = τ2

t · nβ = τ1m

Figure 6.3: Single fiber with orientation nβ , an outer normal vector s and a tangential
vector m on its shell surface.

The maximal interface stress components σI,max and τI,max are obtained
as a function of the fiber direction nβ by a maximization over the shell
surface

σI,max(nβ) = max
s⊥nβ

{σI(nβ , s)}, (6.19)

τI,max(nβ) = max
s⊥nβ

τI(nβ , s). (6.20)

Here, the Macauley bracket {x} = max (x, 0) ensures that only the crack-
opening (positive) normal stress is considered.

Figure 6.4 shows the directionally-dependent distribution of the interface
stress components on the lateral fiber surface for uniaxial tension in the
horizontal direction and a planar isotropic fiber orientation distribution.
The maximum shear stress occurs at 45◦ with respect to the tensile
direction; the maximum normal stress, at 90◦.
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Figure 6.4: Maximum interface shear and normal stress as a function of the fiber orientation
relative to a uniaxial tensile load in horizontal direction. The material is UPPH SMC loaded
with 130MPa which is 48% of its tensile strength. Damage was not considered in this
calculation.

We now introduce an equivalent interface stress σI,eq that governs
interface failure

σI,eq (nβ , s) = σ̂I,eq
m

√(
τI (nβ , s)

τI0

)m

+
(

{σI (nβ , s)}
σI0

)m

. (6.21)

Three of the four material parameters – σ̂I,eq, τI0, σI0 and m – are
independent. Once again, only non-negative normal stress {σI (nβ , s)}
contributes to the equivalent stress.

Under the assumption of a weakest-link failure concept for the interface
of a single fiber, a Weibull strength distribution for an inhomogeneous
stress field can be adopted (Weibull, 1951). The survival probabil-
ity Ps (nβ) of one fiber in direction nβ is given by

Ps (nβ) = exp
(

− 1
AI0

∫
AI

{
σI,eq (nβ , s) − σu

σo

}k

dAI

)
. (6.22)
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Here, AI is the lateral surface area of one fiber. The material param-
eters AI0, σu, σo, and k characterize the strength distribution of the
interface. Most models in the literature either consider the anisotropic
damage evolution in each interface (Fitoussi et al., 1996a; 1998; Desru-
maux et al., 2000) or assume a homogeneous stress distribution on the
interface (Ju and Lee, 2000). To the authors’ knowledge, no damage
model for SMC composites, so far, considers the inhomogeneous
stress distribution on the interface in a weakest-link approach on each
interface yet. This leads to a simplified formulation of the survival
probability Ps,max

Ps,max (nβ) = exp
(

− AI

AI0

{
σI,eq (nβ , smax) − σu

σo

}k
)

. (6.23)

Figure 6.5 shows a typical survivial probability under the assumption of
a homogeneous stress distribution on the interface.
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Figure 6.5: Examplary Weibull survival probablity as a function of equivalent interface
stress, assuming homogenous stress distribution on the interface.
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Figure 6.6: Comparison of survival probability approximations and different special
cases, assuming an inhomogeneous interface stress distribution (Ps), and a homogeneous
distribution of the maximal interface stress (Ps,max). The material is UPPH SMC loaded
with 120MPa which is 44% of its tensile strength. Damage was not considered in this
calculation.

Figure 6.6 compares the two failure criteria Ps and Ps,max. It also
shows their behavior when excluding shear stress P τI=0

s , P τI=0
s,max and

when excluding normal stress P σI=0
s , P σI=0

s,max. Both criteria have equal
regions of no chance of failure (Ps = 1, Ps,max = 1). However, the failure
probability under the assumption of a homogeneous stress distribution
on the interface is significantly higher. Hereafter, Ps is applied for the
estimation of the survival probability.

We now assume that interfaces can be damaged and thus lead to a
loss of load-carrying capability. For each fiber orientation nβ , the
initial distribution of load-carrying fibers c0

β equals the fiber orientation
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distribution cβ . The fiber fraction cβ can be decomposed into the fraction
of intact load-carrying fibers c̄β and damaged fibers c̆β

cβ = c̄β + c̆β . (6.24)

For a damaged material, the variable c̄β does not represent a normed
fiber orientation distribution (

∑K
β=1 c̄β < 1).

The fraction of intact fibers in direction nβ with respect to the initial
fraction of fibers in that direction is given by the probability Pi (nβ) of
finding a load-carrying fiber in the corresponding direction

Pi(nβ) =

⎧⎪⎨
⎪⎩

1, cβ = 0,
c̄β

cβ
, cβ > 0.

(6.25)

We state that the probability Pi (nβ) of finding intact fibers in direc-
tion nβ can be no higher than the probability Ps (nβ) of fibers in that
direction surviving a given external load, represented by σI,eq(nβ , s).
This key assumption leads to the following direction-dependent damage
function and consistency condition

φ (nβ) = Pi(nβ) − Ps (nβ)
!
≤ 0. (6.26)

Equation (6.26) leads to a natural evolution for the orientation distribu-
tion of load-carrying fibers. For simplicity, we assume that fibers with
damaged interfaces behave like matrix material. This behavior can be
modeled by an artificial increase in the matrix volume fraction (ċM ≥ 0),
and a decrease in the fiber volume fraction (ċF ≤ 0). The latter one is
given by

cF = c0
F

K∑
β=1

c̄β . (6.27)
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Remark:

In case of the simplified maximum interface stress formulation of the
survival probability Ps,max

(
σI,eq (nβ , smax)

)
we can derive an evolution

equation for ˙̄cβ in analogy to classic plasticity models. For simplicity,
we introduce the maximum stress on the interface in direction nβ

as σmax
I,eq (nβ) := σI,eq (nβ , smax). Starting with Equation (6.26), we intro-

duce the Lagrange parameters λβ (β = 1 . . . K) and obtain an evolution
equation of the intact fiber fraction c̄β in rate form

˙̄cβ = −λβ

∂φ
(

nβ , σmax
I,eq (nβ)

)
∂σmax

I,eq (nβ) ∀β = 1 . . . K. (6.28)

Here, two possibilities exist: i) The deformation yields no interface dam-
age in direction nβ , φ

(
nβ , σmax

I,eq (nβ)
)

≤ 0 holds and ˙̄cβ = 0, therefore

λβ = 0 since ∂φ
(

nβ , σmax
I,eq (nβ)

)
/∂σmax

I,eq (nβ) > 0. ii) The deformation

yields interface damage in direction nβ , φ
(

nβ , σmax
I,eq (nβ)

)
= 0 holds

and ˙̄cβ < 0, therefore λβ > 0. These constraints can also be formulated
equivalently as Karush-Kuhn-Tucker conditions (Karush, 1939; Kuhn
and Tucker, 1951)

φ
(

nβ , σmax
I,eq (nβ)

)
≤ 0, λβ ≥ 0, ∀β = 1 . . . K, (6.29)

λβφ
(

nβ , σmax
I,eq (nβ)

)
= 0, ∀β = 1 . . . K. (6.30)

In the discrete formulations (Section 6.3), both, Equation (6.26) and
Equation (6.29) lead to an algebraic system of equations. Hereby,
the calculations of the increments Δ˙̄cβ and λβ only differ by a factor
of −∂φ

(
nβ , σmax

I,eq (nβ)
)

/∂σmax
I,eq (nβ), which needs to be calculated. The

introduction of a potential relation according to Equation (6.29) in, e.g.,
a von-Mises plasticity model reduces the system of equations which
needs to be solved to a single scalar equation. In constrast to that,
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6.3 Numerical implementation

here the system of equations remains unchanged by the introduction of
Equation (6.29) (K unknowns, K directions). In the following, the focus,
therefore, lies on the computation of the current fraction of intact fibers
directly based on Equation (6.26).

6.3 Numerical implementation

6.3.1 Incremental formulation

Implicit time integration

We implemented themodel as a UMAT (UserMaterial) in the commercial
implicit finite element-software ABAQUS/Standard (Simulia Dassault
Systèmes, 2014). Thereby, the algorithmic tangent was calculated
numerically by a perturbation of all stress components. Our goal
was a computationally efficient and robust implementation that allows
application to larger structures. Hereafter, the vector c̄ lists all fractions
of intact fibers c̄β

c̄ =

⎛
⎜⎜⎝

c̄1
...

c̄m

⎞
⎟⎟⎠ . (6.31)

The implicit Euler time integration scheme is applied. Here, a tuple of
unknowns yn+1 at time tn+1 is calculated using information from this
new time step

yn+1 = yn + �tẏn+1 = yn + �tf
(
yn+1, tn+1) . (6.32)

Because the desired solution yn+1 appears on both sides of the equation,
an implicit algebraic equation must be solved. This is quite compatible
with the algebraic formulation resulting from Equation (6.26), as shown
in the following.
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Application to the model

The discretization and implementation of the matrix damage (Equa-
tion (6.14)) is straight forward. Application of the implicit Euler time
integration yields

dn+1
M = dn+1

M

(
max

τ∈[0,t]

(
max

α=1,2,3
σα,n+1
M

))
. (6.33)

The maximum, absolute principal matrix stress σα,n+1
M at time tn+1

is calulated from the matrix stress σn+1
M following Equation (6.8). It

implicitly depends on all current fractions of intact fibers c̄n+1.

The intact fiber fractions in the current time step tn+1 are

c̄n+1 = c̄n + �t ˙̄cn+1. (6.34)

A corresponding evolution equation for ˙̄cn+1 will be presented in
Section 6.3.2.

Resulting system of equations

The resulting system of equations to be solved comprises all consis-
tency conditions (Equation (6.26)) with active damage directions dα

(α = {1 . . . L}, where L is the number of active directions) and the
matrix damage equation (Equation (6.14)). Substituting relations (6.33)
and (6.34) yields the nonlinear system of equations

φ
(
d1, c̄n+1, dn+1

M

) != 0
...

φ
(
dL, c̄n+1, dn+1

M

) != 0

dn+1
M = dn+1

M

(
max

τ∈[0,t]

(
max

α=1,2,3
σα,n+1
M

))
(6.35)
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which must be solved for the unknown entities c̄n+1 and dn+1
M . Due

to the equivalent interface stress (Equation (6.21)) which is based on
the Mori-Tanaka localization (Equation (6.8)), the resulting equation
system (Equation (6.35)) is nonlinear in the intact fiber fractions c̄ and
the matrix damage dM. Identification of active damage directions dα will
be discussed in Section 6.3.2.

6.3.2 Solving the system of equations

The consistency condition (Equation (6.26)) yields an evolution equation
for the fraction of intact fibers c̄β in direction nβ . Consider q ≤ K

directions in which the consistency condition (Equation (6.26)) is not
fulfilled. An active damage direction dα is estimated by the direction
with the highest violation of the consistency condition (Equation (6.26))

dα = argmax
nβ∀β∈[1,q]

(φ (nβ , c̄, dM)) . (6.36)

The intact fiber fractions in the current time step tn+1 (Equation (6.34))
are modeled as

c̄n+1 = c̄n +
L∑

α=1
γαR

α
c̄0. (6.37)

Here, L is the number of active damage directions, γα is a Lagrange
coefficient representing the share of newly damaged fibers in the
corresponding direction, R

α
is a regularization matrix, and c̄0 are the

initial intact fiber fractions. The regularization matrix smears the initially
Dirac-like damage in a single direction to neighboring fiber directions,
according to the definition

R
α

= diag (cosp (∠ (dα, n1)), cosp (∠ (dα, n2)), . . . , cosp (∠ (dα, nK))) .

(6.38)
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The parameter p ∈ [1, ∞) defines the sharpness of the regularization. The
introduction of this kind of regularization is based on the redistribution
of load to neighboring directions as soon as interfaces in a considered
direction are damaged (see Figure 6.9a). To circumvent expensive calcu-
lations, the suggested regularization can be applied in order to distribute
beforehand the damage in a certain range around a considered direction.
Figure 6.7 shows regularizations of a single Dirac-like horizontal damage
direction d1 for different parameters p. Hereby, a regularization
parameter of p → ∞ means that regularization is not considered. Small
values of the regularization parameter (p → 1) correspond to a high
regularization. According to Figure 6.7 and Equation (6.38), respectively,
the share of directions which are significantly affected by a single active
damage direction through the regularization, increases with a decrease
of p.
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Figure 6.7: Regularization of the horizontal damage direction d1 for different regulariza-
tion parameters p.

The size of the system of equations (Equation (6.35)) that needs to be
solved, i.e., the number of active damage directions L, can therefore be
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reduced significantly by a suitable regularization. In doing so, numerical
stability and efficiency are both increased.

According to Equation (6.37), the unknowns to be solved for are γα

and dn+1
M . The resulting solution

(
c̄n+1, dn+1

M

)
needs to fulfill all

consistency conditions. If no convergence is achieved yet, the solution
is considered incorrect, and an additional active damage direction dα

according to Equation (6.36) needs to be taken into account. This
additional active damage direction for the next iteration is chosen as
that direction from the current iteration with the highest violation of
the consistency condition. The size of the equation system (6.35) is thus
increased by one. This straight forward “active set search” of a single
newly-considered active damage direction dα in each iteration leads to
a comparatively small equation system (see, e.g., Miehe (1996)). This
system then needs to be solved to gain a solution

(
c̄n+1, dn+1

M

)
, such

that all consistency conditions are fulfilled. Detailed information on the
numerical solution of constrained nonlinear algebraic equations and
active sets can be found in Shacham (1986) and Nocedal and Wright
(2006). We applied a Banach fixed-point iteration and a Quasi-Newton
scheme.

The essential aspects of the implemented SMC composite damage model
are shown in the flow chart in Figure 6.8.
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Figure 6.8: Flow chart of the implemented SMC composite damage model.

Figure 6.9 shows the solutions for different regularization parameters p

in a uniaxial stress state. The left column shows γα as a function of the
macroscopic strain. The planar isotropic fiber orientation distribution is
discretized in K = 179 directions on the half circle. Therefore, a maximal
number of α ∈ (L ≤ K = 179) damage directions dα are possible. Each
point indicates an active damage direction dα at a specific strain level,
that is, the number of points on a vertical line corresponds to the
number of active damage directions. The point color illustrates the
value of γα. The more reddish a point, the higher the share of fibers with
newly debonded interfaces in the corresponding time step. The tensile
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direction in the left column is the n1 direction (α = 1) which is the lowest
abscissa axis. The right column shows a polar plot of an approximation
of the load-carrying directional fiber content c̄β , evaluated at strain
levels corresponding to the left column. The tensile direction in the
right column lies on the horizontal axis. The first row (Figure 6.9a and
Figure 6.9b) was obtainedwithout regularization (p → ∞) and, therefore,
exhibits a sharp damage initiation in each direction. In each strain step,
the full equation system (L = K = 179) is solved. After a certain applied
strain level (respectively load level), most of the interfaces in a direction
are debonded and, therefore, the value of γα in this direction decreases.
Simultaneously, the load is spread over neighboring directions and the
value of γα in these directions increases. The second row (Figure 6.9c
and Figure 6.9d) is the result for a regularization of p = 20. The deviation
of c̄β and the macroscopic behavior between the first and second row is
low. The regularization in the third row (Figure 6.9e and Figure 6.9f) is
relatively high (p = 8). The evolution of c̄β shows significant deviations
relative to the non-regularized solution. Only three (L = 3) or fewer
damage directions are active in each time step.
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Figure 6.9: Evolution of 𝛾𝛾𝛼𝛼 and 𝑐𝑐𝛽𝛽 for different regularizations 𝑅𝑅
𝛼𝛼

under uniaxial tension
in the 𝑛𝑛1 direction. The tensile direction corresponds to the horizontal direction in the
right polar plots. The initially planar isotropic fiber orientation distribution is discretized
in 𝐾𝐾 = 179 directions on the half circle.
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6.4 Parameter identification

6.4.1 Matrix damage

In this chapter, two matrix materials are considered: epoxy resin
(reinforced with 43vol.% and 50vol.% e-glass fibers) and UPPH resin
(reinforced with 23vol.% e-glass fibers). Monotonic tensile tests of
neat resin bone specimens were performed to characterize the matrix
behavior. The epoxy neat resin samples were casted pressureless in
a net shape mold. The UPPH neat resin samples were manufactured
by a project partner in the International Research Training Group GRK
2078 (Trauth, 2017). Figure 6.10 shows the stress-strain behavior and
the evolution of dM under the assumption that the nonlinear behavior
arises solely from damage (i.e., nonlinear viscoelasticity and plasticity
are neglected). For the computations, dM (εM) was approximated by an
ansatz such that dM is zero until a damage initiation strain threshold
followed by a, sufficiently precise fit with a ninth-order polynomial
for dM above the damage initiation threshold.
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Figure 6.10: Tensile behavior of the matrix systems.
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For instance, Kinloch and Young (1983) and Morgan and O’Neal
(1977) reported microcracks in neat epoxy under tensile load which
mainly result in stiffness degradation. The estimation of dM from
solely the secant modulus is, therefore, considered to be sufficient.
The determination of irreversible stiffness degradation is, in general,
challenging when not only considering damage but a general nonlinear
elasto-viscoplastic damage material behavior (Brylka et al., 2018). The
strain rate for the matrix samples was set to the estimated average matrix
strain rate experienced in the composite tensile tests. Thereby, linear
viscous effects can be excluded.

6.4.2 Fiber-matrix interface strength distribution

The fiber and matrix material properties, the fiber surface properties, the
roving composition, the fiber sizing, and the process-dependent fiber
impregnation characteristics all influence the interface strength distri-
bution. The interface failure behavior is not directly characterized in
this work. Instead, we obtain the interface properties from the literature
and inverse parameter identification with tensile tests performed on the
SMC composite.

The literature commonly applies a linear criterion (m = 1, Equa-
tion (6.21)) (Fitoussi et al., 1996a;b; 1998; Derrien et al., 2000; Desrumaux
et al., 2000; 2001; Meraghni et al., 2002), a quadratic criterion (m = 2)
(Ben Cheikh Larbi et al., 2006; Tandon et al., 2002; Koyanagi et al.,
2012; Fitoussi et al., 1996b; Jendli et al., 2009; Ogihara and Koyanagi,
2010; Swentek, 2014), or a parabolic criterion (cubic contribution of
shear stress and quadratic contribution of normal stress) (Koyanagi
et al., 2012; Ogihara and Koyanagi, 2010). Typical experimental results
(Koyanagi et al., 2012; Ogihara and Koyanagi, 2010) fit similarly to the
quadratic and parabolic criterion. Here, the more commonly considered
quadratic criterion (Tandon et al., 2002; Koyanagi et al., 2012; Ogihara
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and Koyanagi, 2010; Swentek, 2014) is applied. The contributions of
the normal and shear stress on the failure behavior can be quantified
by σI0/τI0. Experimentally, this relation was obtained in a lap shear
test by Swentek (2014) (σI0/τI0 ≈ 1.6). Ogihara and Koyanagi (2010)
(σI0/τI0 = 1.3 − 1.8) and Tandon et al. (2002) (σI0/τI0 ≈ 1.22) measured
the interface strength of epoxy and glass fibers using a fragmentation
test on cruciform specimens with varying angles between the specimens’
arms. Koyanagi et al. (2012) (σI0/τI0 = 1.3) compared the method to
single-fiber pull-out tests under a combined stress state. In the following,
we assume σI0/τI0 = 1.5.
The parameters σ̂I,eq, τI0, σI0, AI0, σu, σo and k describe the interface
strength. If σI0/τI0 is given, three of the five remaining parameters
are independent. Following Equation (6.21) and Equation (6.22), these
independent parameters ξ1, ξ2 and ξ3 are

ξ1 := 1
(AI0)1/k

1
σo

σ̂I,eq
τI0
σI0

,

ξ2 := 1
(AI0)1/k

σu

σo
,

ξ3 := k.

We estimate these three parameters by fitting the model to uniaxial
tensile tests on bone specimens. We assumed an initially planar isotropic
microstructure, since the flow lengths in the compression molding were
short. Figure 6.11 shows the fit and experimental results for the epoxy
SMC and UPPH SMC with the low fiber volume fractions.The resulting
interface strength distributions are plotted in Figure 6.12 under the
assumption of a homogeneous interface stress distribution. Interpreting
the interface strength distribution requires caution, since it does not
capture the real distribution, but instead, also serves as an implicit
model corrector. For example, the assumption of homogeneous matrix
damage underestimates the composite stiffness degradation. Thus, the
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fitting procedure results in a lower interface strength distribution than
the real distribution.
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Figure 6.11: Experimental tensile test results (dotted lines) with the corresponding model
fits (solid lines).

The fitted interface strengths (Figure 6.12) show a significantly wider
range than the interface strength typically measured in the literature
(e.g., Broutman (1969)), the shape of which is similar to the strength
distribution in Figure 6.5. Such a more narrow strength distribution
results in a stress-strain behavior of approximately bilinear nature.

6.5 Application

6.5.1 Variation of fiber content

The epoxy matrix SMC was available with two fiber contents. After
fitting the model to the lower fiber content (c0

F = 43%), we applied the
model to the higher fiber content (c0

F = 50%) under the assumption that
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the interface strength distribution is not affected by the fiber content
and, thus, remains constant. The simulations were performed in one
macroscopic homogeneous material point.

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

σI,eq,max in MPa

P
s,
m
ax

(σ
I,e

q,
m
ax

)i
n
-

(a) epoxy matrix, c0
F = 43%

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

σI,eq,max in MPa

P
s,
m
ax

(σ
I,e

q,
m
ax

)i
n
-

(b) UPPH matrix, c0
F = 23%

Figure 6.12: Interface survival probabilities (assumption: homogenous stress distribution
on the interface), resulting from fits in Figure 6.11.

Figure 6.13a shows the simulated and measured stress-strain behav-
ior. The model slightly over-estimates the stiffness reduction for an
increasing fiber volume fraction. Figure 6.13b depicts the estimated
evolution of the total load-carrying fiber volume fraction cF and the
relative matrix stiffness reduction dM. The matrix degradation is
underestimated by the phase-averaged isotropic matrix damage model.
As the fiber volume fraction increases, the matrix volume fraction
decreases, respectively, and with it, the influence of the underestimated
matrix damage decreases, as well. The higher influence of the interface
damage model, therefore, results in an overestimation of the overall
stiffness reduction.
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Figure 6.13: Validation of epoxy SMC under uniaxial tension for two different volume
fraction (interface strength distribution fitted to c0

F = 43%).
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Another source of the deviation between the experiment and the
model prediction might be a fiber-content-dependent interface strength
distribution. One possible explanation for an increase in the interface
strength with increasing fiber content might be the improved fiber
filament impregnation caused by roving dispersion during fiber-fiber
interaction in the manufacturing process.

6.5.2 Biaxial tensile loading

Cruciform specimens that allow for comparably high biaxial and
homogeneous stress made it possible to validate the damage model
in a biaxial stress state. The specimens arms were reinforced with
continuous tapes manufactured in a co-molding process. A detailed
discussion of the cruciform design and experimental procedure will be
covered in an upcoming publication. These samples were only available
for UPPH SMC which have a B-stage (partially cured resin) that allows
for co-molding with UD-reinforcements.

Figure 6.14a compares the model prediction and the experimental results.
Figure 6.14b displays the estimated evolution of total load-carrying fiber
volume fraction cF and matrix damage dM. The evolution of interface
and matrix damage is earlier and faster under biaxial tension, compared
to uniaxial tension. The failure strain is significantly lower under biaxial
tension (0.95% vs. 1.54%). The tensile strength, likewise, is lower under
biaxial than under uniaxial tension (111MPa vs. 136MPa).
The model predicts the stress under biaxial tension with a maximal
relative error of about 4%. This result is satisfactory, considering the
typically high fluctuations in the mechanical properties of SMC.

121



6 Anisotropic mean-field modeling of debonding and matrix damage in SMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

50

100

ε̄11 (= ε̄22) in %

σ̄
11

(≈
σ̄

22
)
in

M
Pa

Exp. (biax)
Model (biax)
Exp. (uniax)
Model (uniax)

(a) Stress-strain behavior

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60.18

0.2

0.22

0.24

ε̄11 (= ε̄22) in %

c F
in

-

cF (biax)
cF (uniax)

0

0.02

0.04

0.06

0.08

0.1

0.12

d
M

in
-

dM (biax)
dM (uniax)

(b) Evolution of cF and dM

Figure 6.14: Validation of UPPH SMC under a uniaxial and biaxial stress state (interface
strength distribution fitted to uniaxial stress state).
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6.5.3 Application to different load paths

Here, we present detailed simulation results of additional load cases of
the UPPH SMC with a fiber volume fraction of c0

F = 23%. We did not
validate these load cases experimentally. Rather, the numerical results
serve to illustrate the performance of the two-scale damage model for
non-proportional loading scenarios. The thereby considered ultimate
loadings somewhat exceed the strength of the material. All load cases
consist of two subsequent loading steps, applied at a constant strain rate
in a plane stress state. The directionally Young’s modulus was calculated
following the procedure of Böhlke and Brüggemann (2001).

The first load case (in detail documented in Figure 6.15) is given by
uniaxial compression in the e1-direction followed by uniaxial tension in
the e1-direction, respectively. In the first loading step, the interface shear
damage, dominantly 45◦ to the tensile direction, governs the damage
behavior. The interface damage due to normal stress (which is highest
perpendicular to the tensile direction) evolves only in the second loading
step. As we modeled matrix damage in dependence of the highest
principal matrix stress, matrix damage also mainly evolves in the second
loading step.

The second load case (in detail documented in Figure 6.16) is tension in
e1-direction and subsequent tension in e2-direction. In the first loading
step, the stiffness reduction is perpendicular to the tensile direction,
that is the e2-direction, which mainly derives from interface damage.
Accordingly, the initial stiffness in the second loading step is significantly
lower. The interface damage due to shear stress and matrix damage do
not evolve in the second loading step, as their behavior is invariant to
this load rotation. The final stiffness is approximately planar isotropic in
the shown e1-e2-plane.

The third load case (in detail documented in Figure 6.17) prescribes
subsequent planar shear in opposing direction (±e1-e2-directions). In
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the first loading step, the main interface damage appears in the e1-
and e2-directions. The main damage already evolves during the first
loading step. The anisotropy of interface damage with respect to the
vertical axis is again due to the fact that we only consider positive normal
interface stresses. In the second loading step, the damage evolution is
significantly lower. The tensile load leads to a symmetrization of the
FODF with respect to the vertical axis visualized by the weights c̄β . The
small amount of matrix damage at the end of the second loading step is
due to the evolution of load partitioning implied by the micromechanical
damage model.

The fourth load case (in detail documented in Figure 6.18) is planar shear
(e1-e2-plane) followed by uniaxial tension in the e1-direction. The first
loading step is, therefore, equal to the first step in the previous load
case (Figure 6.17). In the horizontal tension, mainly the fibers in the
upper right direction experience interface damage, as their strength is
significantly lower than the others (because less interfaces are damaged).

Obviously, the model is able to handle various load cases and loading
sequences and yields reasonable results. Experimental validation,
however, remains a challenging task.
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Figure 6.15: Model predictions for a subsequent compression (in e1-direction) and tensile
(also in e1-direction) load.
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Figure 6.16: Model predictions for a subsequent tension in e1-direction and tension in
e2-direction.
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Figure 6.17: Model predictions for a subsequent shear load e1-e2-direction and shear load
in negative e1-e2-direction.
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Figure 6.18: Model predictions for a subsequent shear load e1-e2-direction and tensile
load in e1-direction.
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6.6 Conclusions

Our elasto-damagemodel for SMC capturesmatrix damage and interface
debonding on the microscale. A Mori-Tanaka homogenization scheme
is applied to calculate the corresponding macroscopic behavior. The
model accounts for an arbitrary, mold-flow-induced, inhomogeneous
fiber orientation distribution of straight fibers. The complete model
can predict SMC damage behavior for different matrix systems, fiber
contents, and stress states. However, the applicability is so far only
demonstrated for a small number of material combinations. Further
validation is required to evaluate the model capabilities and limitations
more precisely.

Matrix damage is modeled as an isotropic degradation of the matrix
stiffness based on the maximum principal matrix stress. This approach
underestimates the stiffness degradation and does not adequately
capture anisotropy due to microcracks. Interface debonding is modeled
as a reduction of load-carrying fiber fraction in the directions exposed to
sufficiently large equivalent interface stresses. Here, a Weibull interface
strength distribution is assumed. We show that an approach that
only takes account of the maximum equivalent stress occurring on the
interface, notably underestimates the interface survival probability. We,
therefore, consider the inhomogeneous stress distribution around the
transverse fiber axis. The interface damage model presented here, leads
to anisotropic stiffness degradation.

Matrix and interface damage are coupled by the localization relation
which does not capture such phenomena as crack propagation from
the matrix into the interface or vice versa. Artificial regularization
of the considered damage directions and a computationally efficient
model implementation permit application to larger components. Char-
acterizing the process-dependent interface strength distribution remains
a challenge – particularly for fiber filaments constituted in rovings.
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Manufacturing-induced eigenstresses such as those resulting from
chemical and thermal shrinkage, influence matrix and interface behavior.
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Chapter 7

Summary, conclusions, outlook

In this chapter, the thesis is summarized, chapter by chapter. Then the
individual chapters are linked and their correlation is discussed before
ending with a general outlook.

Chapter 4 introduces a novel scheme to characterize the anisotropic
elastic and macroscopically inhomogeneous SMC in biaxial tensile tests.
μCT scans suggest that macroscopic inhomogeneities result mainly from
an inhomogeneous fiber orientation distribution. The identification of
a generally inhomogeneous stiffness leads, however, to an ill-posed
problem allowing for no unique solution. A linear correlation between
the stiffness tensor and the fiber orientation distribution is, therefore,
assumed. This simplification reduces the problem size to five degrees
of freedom per specimen, which do not depend on the fiber orientation
distribution. Four of these parameters are identifiable and determined
in a Gauss-Newton type optimization procedure.

Chapter 5 presents an investigation of different cruciform specimen
designs for damage characterization in SMC. Here, various (material-
specific) requirements for optimal specimen design are defined. One
key challenge was achieving a high strain level in the center region
of the cruciform specimen, while preventing premature failure in the
clamped specimen arms. Starting from the ISO norm for sheet metals,
design variations are introduced, including two concepts to reinforce the
specimens’ arms. An experimental evaluation included two different
loading scenarios: uniaxial tension and equi-biaxial tension. The best fit,
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in terms of the defined optimality criteria, was a specimen manufactured
in a layup with unidirectional reinforcing outer layers. A gentle milling
process exposed the pure SMC in the center region of the specimen. This
cruciform specimen performed excellently for all loading conditions
considered. For example, in the uniaxial loading scenario, the average
strain in the center region reached 87% of the failure strain in a uniaxial
tensile bone specimen.

Chapter 6 presents an anisotropic, micromechanical damage model
for SMC. The model captures the dominant damage mechanisms –
matrix damage and fiber-matrix interface debonding – in a Mori-Tanaka
homogenization framework. The matrix damage was modeled as a
phase-averaged isotropic stiffness degradation. The interface damage
is governed by an equivalent interface stress on the lateral fiber surface.
The inhomogeneous stress distribution in the fiber-matrix interface is
taken into account in the definition of the equivalent stress governing the
fiber-matrix interface damage. A Weibull distribution for the interface
strength is assumed. The model can account for anisotropic distribution
and evolution of load-carrying fibers with intact interfaces. The model
was validated with tensile tests on unsaturated polyester polyurethane
hybrid and epoxy resin systems having different glass fiber contents
(23-50vol.%). The model yielded satisfyingly accurate predictions under
uniaxial and biaxial stress states. However, the applicability is so far
only demonstrated for a small number of material combinations. Further
validation is required to evaluate the model capabilities and limitations
more precisely.

For both the characterization and modeling of SMC, it is important to
take the microstructure into account. In Chapter 4, with prior knowledge
of the fiber orientation tensor and a simple constitutive assumption, the
degrees of freedom could be reduced from infinity to five. These five
parameters define the anisotropic elasticity for any fiber orientation
distribution. For the biaxial characterization of the damage behavior
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7 Summary, conclusions, outlook

(Chapter 5), the inhomogeneity and anisotropy of SMC by testing
specimens with various microstructures and orientations needs to be
investigated. In the presented damage model (Chapter 6) the SMC
microstructure is a key input for estimating the macroscopic stiffness
and stress localization in the matrix and on the interface. The model
can predict the nonlinear behavior of SMC for any given fiber volume
fraction and fiber orientation distribution.

The validation of the damage model with a specimen developed in
Chapter 5 under biaxial tension highlights the synergies of this research
project. To better understand the anisotropic damage behavior of SMC,
further experimental results would be useful, for instance, adding more
loading ratios and observing stiffness degradation outside the main
loading direction. A microstructure-based parameter identification
similar to the one presented in Chapter 4 could be applied to validate or
calibrate the model. Additionally, biaxial tensile testing could be used to
characterize the interface or matrix behavior.

A visionary application of this or an improved version of the mean-
field damage model would consist of a complete, virtual process chain.
Mold-filling analysis could provide the fiber orientation distribution,
and this result could be validated by μCT analysis. Chemo-thermo-
mechanical full-field simulations could give insight into eigenstresses
on the microscale and macroscale. A two-scale structural simulation
of an SMC component with a mean-field damage model could predict
warpage, component stiffness, and strength. Loading experiments on
the component level could serve to validate the damage model and the
entire virtual process chain.
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Appendix A

Specific numerical fiber
orientation tensors

This Appendix lists a selection of fiber orientation tensors of the
microstructure shown in Figure 4.1. Pinter (2017) captured the image
and performed the fiber orientation analysis (Pinter et al., 2018). We list
the fiber orientation tensors of the first kind and fourth order N in the
tupel N according to the defined standard in GRK 2078 (Priesnitz, 2016)

N = (N3333, N3332, N3322, N3222, N2222,

N3331, N3321, N3221, N2221, N3311,

N3211, N2211, N3111, N2111, N1111)T.

The fiber orientation tensors at points A, B, C, and D in Figure 4.1 are
listed in the following

NA ≈ (0.0009, 0.0003, 0.0038, 0.0030, 0.1803,

0.0034, 0.0013, 0.0158, 0.0126, 0.0150,

0.0060, 0.1216, 0.0759, 0.0351, 0.5380)T,
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A Specific numerical fiber orientation tensors

NB ≈ (0.0011, 0.0000, 0.0075, 0.0008, 0.4775,

− 0.0030, −0.0003, −0.0191, −0.0330, 0.0102,

0.0020, 0.1331, −0.0383, −0.0324, 0.2199)T,

NC ≈ (0.0011, −0.0005, 0.0028, −0.0050, 0.0958,

0.0042, −0.0020, 0.0138, −0.0303, 0.0182,

− 0.0099, 0.1094, 0.0916, −0.0361, 0.6424)T,

ND ≈ (0.0021, 0.0007, 0.0097, 0.0053, 0.4480,

− 0.0049, −0.0016, −0.0234, 0.0069, 0.0142,

0.0032, 0.1301, −0.0483, −0.0040, 0.2420)T.
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Appendix B

Strain fields shortly before
failure and images of failed
cruciform specimens

This appendix shows the strain fields in the area of interest in terms of
the last captured image before specimen failure. For better comparison,
all contour plots refer to the legend in Figure B.1. Additionally, we
present images of the failed specimens. The fractured areas are marked
in green.

ε11 in %

0.0 0.5 1.0 1.5

Figure B.1: Legend for the following contour plots
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B Strain fields shortly before failure and images of failed cruciform specimens

e1

e2

(a) Strain field ε11 in AI for PΓ=0 (b) Failed specimen for load case PΓ=0

e1

e2

(c) Strain field ε11 in AI for PΓ=1 (d) Failed specimen for load case PΓ=1

Figure B.2: Unreinforced specimen arms. Last image of strain field before failure and
failed specimen.
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B Strain fields shortly before failure and images of failed cruciform specimens

e1

e2

(a) Strain field ε11 in AI for PΓ=0 (b) Failed specimen for load case PΓ=0

e1

e2

(c) Strain field ε11 in AI for PΓ=1 (d) Failed specimen for load case PΓ=1

Figure B.3: Bonded specimen arms. Last image of strain field before failure and failed
specimen.
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B Strain fields shortly before failure and images of failed cruciform specimens

e1

e2

(a) Strain field ε11 in AI for PΓ=0 (b) Failed specimen for load case PΓ=0

e1

e2

(c) Strain field ε11 in AI for PΓ=1 (d) Failed specimen for load case PΓ=1

Figure B.4: Continuous fiber specimen arms, geometry 1. Last image of strain field before
failure and failed specimen.
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B Strain fields shortly before failure and images of failed cruciform specimens

e1

e2

(a) Strain field ε11 in AI for PΓ=0 (b) Failed specimen for load case PΓ=0

e1

e2

(c) Strain field ε11 in AI for PΓ=1 (d) Failed specimen for load case PΓ=1

Figure B.5: Continuous fiber specimen arms, geometry 2. Last image of strain field before
failure and failed specimen.
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Frequently used acronyms,
symbols, and operators

Acronyms

μCT Micro-computed tomography
CoDiCoFRP Discontinuous fiber-reinforced polymer with

continuous fiber reinforcements
CoDiCoFRTP Discontinuous fiber-reinforced thermoplast with

continuous fiber reinforcements
CoDiCoFRTS Discontinuous fiber-reinforced thermoset with

continuous fiber reinforcements
CoFRP Continuous fiber-reinforced polymer
CoFRTP Continuous fiber-reinforced thermoplast
CoFRTS Continuous fiber-reinforced thermoset
DIC Digital image correlation
DiCoFRP Discontinuous fiber-reinforced polymer
DiCoFRTP Discontinuous fiber-reinforced thermoplast
DiCoFRTS Discontinuous fiber-reinforced thermoset
FEM Finite element method
FFT Fast Fourier transformation
FODF Fiber orientation distribution function
FOT Fiber orientation tensor
FRP Fiber-reinforced polymer
FRTP Fiber-reinforced thermoplast
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Frequently used acronyms, symbols, and operators

FRTS Fiber-reinforced thermoset
IDD Interaction direct derivative
RVE Representative volume element
SIP Single inclusion problem
SMC Sheet molding compound
UPPH Unsaturated polyester polyurethane hybrid resin
vol.% Volume fraction in %
wt.% Weight fraction in %

Latin letters

a, b, A, B, D, . . . Scalar quantities
a, b, c, . . . First-order tensors
A, B, C, . . . Second-order tensors
A,B,C, . . . Fourth-order tensors
A〈n〉,B〈n〉,C〈n〉, . . . nth-order tensors, where n is larger than four
a, b, c Column vectors
A, B, C Matrices
I Second-order identity tensor
Is Symmetric fourth-order identity tensor
Q Rotation tensor

P1 First isotropic fourth order projector: P1 = 1
3I ⊗I

P2 Second isotropic fourth order projector:
P2 = Is − P1

x Position Vector
v Volume
cF Fiber volume fraction
cM Matrix volume fraction
f (n) Fiber orientation distribution function
cβ Weight or volume fraction
N ,N,N〈n〉 Fiber orientation tensors of the first kind
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F ,F,F〈n〉 Fiber orientation tensors of the second kind
D′,D′,D′

〈n〉 Fiber orientation tensors of the third kind
A Strain localization tensor
B Stress localization tensor
C Stiffness tensor
P0 Hill’s polarization tensor in the reference

orientation
d Scalar damage variable
E Young’s modulus
p Vector of material parameters
PΓ=0, PΓ=1 Biaxial loading procedures
AI Area of interest
Pi Fraction of intact interfaces
Ps Survival probability of interfaces
p Regularization parameter

Greek letters

σ Cauchy stress tensor
ε Infinitesimal strain tensor
εI Average strain in the area interest
Γ Loading ratio in biaxial testing
σI,eq Equivalent interface stress

Operators

AB Composition of second-order tensors
A = C [B] Linear mapping of a second-order tensor

by a fourth-order tensor
A · B Scalar or inner product of two tensors A, B
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Frequently used acronyms, symbols, and operators

a × b Cross product of two vectors a, b

A ⊗ B Dyadic product of two tensors A, B

n⊗k Higher order dyadic product: n⊗k = n ⊗ · · · ⊗ n

(·)T Transpose of a vector or second order tensor
(·)TM Main transpose of a fourth order tensor

(CTM
ijkl = Cklij)

(·)TR Right transpose of a fourth order tensor
(CTR

ijkl = Cjikl)
(·)TL Left transpose of a fourth order tensor

(CTL
ijkl = Cijlk)

symF (·) Full symmetrization, i.e. invariance with regard
to all permutations of all indices

(·)′ Irreducible or deviatoric part of a tensor
˙(·) Material time derivative

(̄·) Effective quantity
(·)0 Initial or reference quantity
(·)F Reference to fiber
(·)M Reference to matrix
〈·〉 Volume average
(·)SIP Reference to single inclusion problem
(·)MT Reference to Mori-Tanaka type homogenization
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The focus of this work lies on the microstructure-based modeling and char-
acterization of discontinuous fiber-reinforced thermosets in the form of sheet 
molding compound (SMC). Due to the high specific strength and stiffness, 
very good formability and economical mass production, SMC is increasingly 
applied in lightweight components in the automotive industry. The inhomo-
geneous and anisotropic fiber orientation distribution determines the mechan-
ical behavior of SMC.
For the heterogeneous stress and strain state of a cruciform specimen it is, in 
general, not possible to analytically identify the material parameters of a con-
stitutive equation. A microstructure-based parameter identification scheme for 
SMC with an inhomogeneous fiber orientation distribution is introduced.
A key challenge in the design of a cruciform biaxial tensile specimen lies in 
the design of a cruciform specimen that achieves a high strain level in the 
center region and prevents premature failure in the clamped specimen arms. 
Different cruciform specimen designs, including two concepts to reinforce the 
specimens‘ arms are evaluated. 
Additionally, a micromechanical mean-field damage model for the SMC is 
introduced. The model captures the dominant damage mechanisms – matrix 
damage and fiber-matrix interface debonding – within a Mori-Tanaka homog-
enization framework. The simulation results are validated and provide an insight 
into the anisotropic damage evolution for different loading scenarios.
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