

 Karlsruhe Reports in Informatics 2018,8
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

An Industry 4.0 Case Study:
The Integration of CoCoME and xPPU

Rudolf Biczok, Kiana Busch, Robert Heinrich,
Ralf Reussner

 2018

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/de.

An Industry 4.0 Case Study:
The Integration of CoCoME and xPPU

Technical Report

Rudolf Biczok, Kiana Busch, Robert Heinrich, Ralf Reussner

July 5, 2018

Contents

1 Introduction 7

2 Related work 9
2.1 Empirical approaches and community case studies 9

2.1.1 CoCoME . 10
2.1.2 xPPU . 12

2.2 Contributions in Industry 4.0 . 13
2.2.1 MyJoghurt . 13

3 Evolution Scenario 15
3.1 Structural changes . 15
3.2 Communication model . 15
3.3 DSL for cyber-physical production systems . 17
3.4 Use cases and roles . 18

4 Implementation 20
4.1 Component model . 20
4.2 Production recipe processing . 23
4.3 Plant operation processing . 24
4.4 xPPU Interface . 26

5 Developer Guide 27
5.1 Prerequirements . 27
5.2 Extending the ServiceAdapter component . 28

5.2.1 Unit testing . 30
5.3 Extending the TradingSystem::Inventory::Data component 30

5.3.1 Creating data structures and transfer objects 30
5.3.2 Extending data structure converters and factories 33
5.3.3 Extending persistence methods . 34
5.3.4 Extending parsing utilities . 35
5.3.5 Extending query providers . 35
5.3.6 Integration Testing . 36

5.4 Extending the WebService::Inventory component 36
5.4.1 Integration Testing . 38

5.5 Extending the web frontend . 38

CONTENTS 3

6 Conclusion 40

List of Figures

2.1 Overview of related work . 9
2.2 Overview of the hybrid-cloud variant of CoCoME 11
2.3 Simpli�ed component model of the hybrid-cloud variant of CoCoME 12
2.4 Image of the xPPU . 12
2.5 Tablet app in MyJoghurt . 13
2.6 Production plan in MyJoghurt . 14

3.1 Overview of Industry 4.0 variant of CoCoME 16
3.2 Example of a production recipe for a tablet . 17
3.3 Use Cases in the Industry 4.0 variant of CoCoME 19

4.1 Component model of the Industry 4.0 variant of CoCoME 22
4.2 Production order scheduling on the enterprise server 23
4.3 Plant order scheduling on the plant server . 25
4.4 Concept of the PPU REST-Interface . 26

List of Tables

2.1 Evolution scenarios and their impact . 13

3.1 Expression available in the DSL . 18
3.2 Overview of functional and structural properties of the Industry 4.0 variant . 19

4.1 Excerpt of the available REST operations on the xPPU interface 26

Acknowledgement

This work was partially supported by the DFG (German Research Foundation) under the
Priority Programme SPP1593 and the MWK (Ministry of Science, Research and the Arts Baden-
Württemberg) in the funding line Research Seed Capital (RiSC).

1 Introduction

Researches from multiple engineering disciplines study the evolution process of long-term
systems through empirical research. Recent contributions are so called community case studies,
which aim to provide reference systems for comparable and replicable case studies. The
Common Component Modelling Example (CoCoME) [6] is an example for a community case
study for information systems. It is speci�cally designed for collaborative empirical research.
CoCoME supports the aspects of evolution that have the highest relevance in the software
engineering community. Time horizon (i.e., targeting the run-time or design-time of a system)
or supported activities (i.e., targeting requirements engineering, design process, etc.) are
examples of evolutional aspects in software engineering. The eXtended Pick and Place Unit
(xPPU) [11] is another example of a community case study that is used to research the di�erent
evolution cycles in automated production systems.

Modern trends in industry blur the boundaries between pure information systems and auto-
mated production systems. As stated by Vogel-Heuser et al. [19], the proportion of software in
automated production systems is increasing and the demand for highly customizable production
systems will require higher involvement of multiple engineering disciplines. The emerging
appearance of Industry 4.0 systems will increase the demand for empirical methods to study
evolution cycles in these heterogeneous environments.

There exist case studies about demonstrators that illustrate concepts of Industry 4.0 environ-
ments (e.g., the demonstrator myJoghurt [18] or a co�ee machine as prototypical Cyber-Physical
Systems (CPS) [9]). However, these prototype systems target speci�c problems where the au-
tomation aspect is dominant. The software systems, which utilize the physical parts of these
prototypes, do not comprehend the complexity of information system in real world scenarios.
Additionally, a community case study is supposed to be a standardized or at least widely used
reference for projects with the same research topics. This requires a demonstrator that is not
only easily accessible and expendable but also comprehends the most signi�cant aspects of
evolution in Industry 4.0 scenarios.

We therefore propose a new community case study for Industry 4.0, which extends the
existing community case studies CoCoME and xPPU. This new variant of CoCoME implements
common use cases in Industry 4.0 environments, i.e., ordering a customizable product, creating
a production plan for a customizable product on multiple abstraction layers, and observing
the progress of batch size one productions. We enabled event-based communications between
information system and automated production units through a webservice-orientated com-
munication model. It is possible to de�ne and emulate the automated production systems in a
web-based frontend, or to integrate a real automated production system into CoCoME variant
that is accessible through a REpresentational State Transfer (REST) webservice Application

8 INTRODUCTION

Programming Interface (API). Researchers, who are interested in Industry 4.0 as research target
can use this CoCoME variant as starting point for their empirical work.

The next chapters of this technical report summarize the required background and published
prototype systems (see chapter 2) from which we derived repetitive properties of Industry 4.0
systems (as described in chapter 3). Additionally, we give an overview over the implementation
details (chapter 4), and guides for typical development tasks in CoCoME itself (chapter 5). In the
last chapter (chapter 6) we discuss the overall outlook of the Industry 4.0 variant of CoCoME.

2 Related work

In this project we investigate the evolution of systems from two di�erent domains: software
engineering and automation engineering (see Figure 2.1). We de�ne evolution in engineering
domains as a continuous process where systems have to adapt over a long period of time to
preserve their functionality and maintainability. This corresponds with Lehman’s laws [13]
of software evolution - the term used to describe the evolution process for software-driven
environments (e.g., information systems).

Software
Engeneering

Automation
Engeneering

System Evolution

CoCoME
[Hen15]

xPPU
[Vog14]

This
Work

Community
Case Studies

Change
Classi�cation

[CMEE]

Software
Evolution

Evolution in
Automation

Systems

CPS
[Jaz14]

CPPS
[Vog15]

Change
Propagation

[Ros15]

Model-based
Engineering

[Leg14]

Figure 2.1: Overview of related work

2.1 Empirical approaches and community case studies

There exist several ways to conduct a case study on either information systems or automated
production systems. Researchers from the �eld of software engineering, for instance, analyze
source code repositories [4] or conduct maintenance operation on open-source projects [14] to
infer relationships between software artifacts and project activities. Case studies in automation
technology are conducted in a similar way. For example, by applying model-based engineer-
ing methods to laboratory plants [12], designing a joined demonstrator for Cyber-Physical
Production Systems (CPPS) [18], or by collecting data from commercial systems [1].

10 RELATED WORK

Vogel-Heuser et al. [20] and Heinrich et al. [6] state that comparing or replicating empirical
data from case studies can be di�cult. Major shortcomings in case studies from both domains
are:

Lack of Standardization Di�erent case studies rely on di�erent reference systems (e.g., (open-
source) software applications or laboratory plants). Comparing case studies that do not
use the same reference system is hard to impossible because of diverse frame condition
and project structure [6].

Week Comprehensiveness Especially in the area of software evolution, most case studies cover
only few aspects needed for comprehensive empirical work (e.g., documentation of the
evaluation process [6]). This makes it di�cult to replicate the �ndings under di�erent
conditions.

High Setup & Reproduction Costs Researchers have to replicate results if they want to investi-
gate alternative solutions for already covered problems. If the previously used reference
system is not easily accessible, s/he must invest time to setup his own test subject. This is
especially an expensive problem in case studies for automation systems, where physical
machines must be constructed or altered [20].

These issues are the reason for the development of community case studies1. They serves as
standardized and comprehensive test subjects to ensure replicability and comparability between
other approaches [6].

2.1.1 CoCoME

CoCoME originated from a joint GI-Dagstuhl research seminar [17]. Multiple research groups
used CoCoME to apply and evaluate methods for formal component modeling. Since then,
CoCoME is part of a collaboration platform with the goal to standardize the procedure of
conducting case studies [6].

The CoCoME platform provides multiple evolution subjects, which represent di�erent
variants of CoCoME (e.g., service-oriented variant [3] or hybrid-cloud variant [7]). Researchers
who want to study evolution of speci�c software architectures can select the CoCoME variant
that corresponds with their interests. They then use the appropriate evolution subject for their
case study by analyzing the already available project data or by doing their own software
engineering tasks. New Findings can then be used for verifying predictions, validation new
architectural patterns, or estimating maintenance costs.

For this project we choose the hybrid-cloud variant of CoCoME2, because of its distributed
and webservice-oriented nature [7]. This variant is designed for trading enterprises with
cloud-based infrastructures. As it can be seen in Figure 2.2, the hybrid-cloud variant of Co-
CoME provides software for four subsystems: Enterprises, stores, cash desk lines, and service
providers [7]. A store 1 represents the the local place where customers purchase products.
The main part of each store is a server holding informations about stocks and available products.

1or open case studies, as called by Vogel-Heuser et al. [20]
2https://github.com/cocome-community-case-study/cocome-cloud-jee-platform-migration

https://github.com/cocome-community-case-study/cocome-cloud-jee-platform-migration

EMPIRICAL APPROACHES AND COMMUNITY CASE STUDIES 11

Each store has multiple cashe desk lines 2 which represent a cashier’s work place PC in-
cluding peripheral devices (barcode scanner, cash box, printer). The enterprise 3 subsystem
is responsible for managing all connected stores. The service provider database 4 encap-
sualtes all data relevant for the whole trading enterprise in a cloud-based environment [7, 8].

1

2

3

4

Figure 2.2: Overview of the hybrid-cloud variant of CoCoME [7]

The architecture of CoCoME follows the principles of Component-Based Software Engineer-
ing (CBSE). CoCoME is therefore subdivided into readily reusable software components with
hierarchical structures. The interface between components is described by general concepts
like Plain Old Java Objects (POJO) or higher level language speci�cations like Enterprise Java
Beans (EJB). Figure 2.3 shows a coarse-grained component model of CoCoME:

1 TradingSystem::CashDeskLine contains the business logic for managing cash desk
lines (e.g., barcode scanner, display and printer management) [7].

2 TradingSystem::Inventory contains the data structures and business logic used in
stores and enterprises (e.g., product de�nition and provisioning, business reporting) [7].

3 WebService::CashDesk provides public API access from other components through
Simple Object Access Protocol (SOAP) webservices [7].

4 WebService::Inventory provides public API access from other components through
SOAP webservices[7].

5 WebFrontend::UseCases holds web-based front ends for all subsystems [7].
6 ServiceAdapter database abstraction through RESTful webservices. It allows an en-

trepreneur to outsource the inventory data to cloud providers [7].

12 RELATED WORK

5 3

1

2

4 6

Figure 2.3: Simpli�ed component model of the hybrid-cloud variant of CoCoME [7]

2.1.2 xPPU

In order to study evolutionary aspects of
an automated production system, the Insti-
tute of Automation and Information Systems
(AIS) at TU München developed the demon-
strator xPPU [11]. It reassembles a manufac-
turing unit that is able to pick and catego-
rize materials with di�erent properties (e.g.,
color, weight). Hence, it incorporates most
commonly used physical components available
in commercial automation systems without be-
coming too complex [11].

Figure 2.4: Image of the xPPU [11]

Similar to a reference system in software evolution, xPPU can be used to research the impacts
of certain evolution scenarios3. At �rst, researchers select a variant of xPPU as research subject.
Figure 2.4 illustrates the variant from scenario SC0 that consists only of a crane, a ramp, and a
stack. They then apply the changes needed to realize the evolution scenario. Scenario SC1 [20],
for instance, is the result of increasing capacity of the output storage in SC0 [20]. Table 2.1 shows
an excerpt of several evolution scenarios conducted on xPPU with their corresponding impacts.
These impacts are classi�ed by the a�ected part (e.g., ramp, crane, etc.) and the involved
engineering discipline (i.g. Mechanic parts, electronics, or embedded software). Vogel-Heuser
et al. analyzed more than 13 scenarios [20].

3also called evolution steps by Vogel-Heuser et al. [20]

CONTRIBUTIONS IN INDUSTRY 4.0 13

Scope of change
Stack Crane Stamp RampCause of

evolution Scenario
M E S M E S M E S M E S

increasing transportation
throughput

SC0 A A A A A A - - - A A A

increasing capacity of output
storage

SC1 o o o o o o - - - M o o

two di�erent products are pro-
cessed

SC2 A A A o o o - - - o o o

one product has to be labeled SC3 o o o M M M A A A o o o
.

Legend: A: Added; M: Modi�ed; -: not included in scenario; o: no Changes; M: Mechanics; E: Electronics; S: Software

Table 2.1: Evolution scenarios and their impact on xPPU (table content from Legat et al. [11])

2.2 Contributions in Industry 4.0

There exists no common de�nition of an Industry 4.0 system. Instead, we found papers
presenting structural and functional characteristics of such systems. Lee et al. , for instance,
propose a 5-level architecture for CPS in Industry 4.0 environments [10]. In that architecture,
a CPS can be classi�ed by its structural depth and responsibility (e.g., level 1 for systems
that simply interconnects machines and computing devices for data exchange or level 5 for
self-adaptive, intelligent systems). Other contributions such as the work of N. Jazdi [9] illustrate
certain aspects of Industry 4.0 systems on real prototype systems with low complexity. Such
aspects are 1 smart networking, 2 mobility, 3 �exibility, 4 integration of customers, and
5 new innovative business models [9].

2.2.1 MyJoghurt

The demonstrator MyJoghurt is another
case study reassembling an agent-oriented,
CPPS for Industry 4.0 scenarios [18]. Its archi-
tecture focuses on the aspects mobility, �exibil-
ity, and integration of customers. Customers
order their individual yoghurt through a smart
device app (mobility aspect) where they enters
the desired ingredients and packaging options
(integration of customers aspect, as seen in
Figure 2.5) [15].

Figure 2.5: Tablet app in MyJoghurt [15]

For each submitted order, MyJoghurt then uses an automatic discovery mechanism to create a

14 RELATED WORK

prediction plan based on a �xed production template.

Figure 2.6: Production plan
in MyJoghurt. Shapes with
sharp corners represent
necessary production steps.
Shapes with round corners
represent operations resolved
by the discovery system of
MyJoghurt [18] . Yoghurt

Refinement
O12

Filling
O14

Cap
Engraving

O13P3

P6

P5P2P1

P7

P8

Yoghurt
Production

O11

Fermenting
plant T11

Mixing plant
T12

Carving
plant T13

Filling
Plant T14

P4

P10

P9

B11

31B21B

B14

However, MyJoghurt does not include other subsystems except production plants. In a
modern Industry 4.0 environment, we expect to see multiple involved system types (e.g.,
information and automated production systems).

3 Evolution Scenario

In the previous section, we presented functional and structural aspects of Industry 4.0 systems
and how a subset of them are implemented in demonstrator systems like MyJoghurt. We now
use those �ndings for the following chapter to formulate a new evolution scenario for the
hybrid cloud variant of CoCoME. In other words, we describe the structural modi�cations on
CoCoME and by extension any traditional enterprise needed to transform the hybrid cloud
system to a level 5 Industry 4.0 system (according to the 5C architecture by Lee et al. [10]).
Additionally, we present details about the communication model for processing batch size one
productions and the domain-speci�c language needed to execute low-level production tasks.
These three points are required to realize the use cases and the functional properties of Industry
4.0 systems (as described by Jazdi [9]) in CoCoME.

3.1 Structural changes

The main di�erence between the hybrid could variant and the Industry 4.0 variant is the
introduction of plants as additional subsystems (as seen in Figure 3.1). Plants represent au-
tonomous production sites, which o�er low-level production operations as a service to an
enterprise and schedule these operations across a heterogeneous set of production units. Each
production unit is accessible from the local network of a plant and o�ers a RESTful interface
for state information retrieval and command execution. Webservice endpoints for production
units have the advantage that they can hide machine-speci�c complexity through a generic
(RESTful) web API. For the integration we used one of the xPPU models, which also includes
an implementation of a web API on a Raspberry Pi [2]. Researchers have also the option to
de�ne custom production units and simulate their execution within the Industry 4.0 variant.
The separation between high-level production management (done by the enterprise subsystem)
and low-level production management (done by the plant subsystem) also complies with the
5C architecture, as illustrated in Table 3.2.

3.2 Communicationmodel

As we saw in existing prototype systems like MyJoghurt, customer involvement through
highly personalize products plays a major role in Industry 4.0. However, translating orders
for personalized products into a production cycle is a challenging task. On the one hand,
product designers wish to de�ne production templates that consist of easily combinable and
reusable production steps. On the other hand, each type of production unit o�ers di�erent set

16 EVOLUTION SCENARIO

1

2 3

Figure 3.1: Overview of Industry 4.0 variant of CoCoME: Each plant 1 is responsible for
low-level production tasks and multiple production units. These production units are either
remotely connected through a RESTful web API 2 or run as virtualized unit 3 .

of low-level instructions that require a profound knowledge in automation technology and
the unit type itself. In case of xPPU, for instance, an automation engineer must know how to
control each of the subparts of xPPU in order to utilize the production device (e.g., initializing
crane upon �rst use, or moving crane to stack to pick up work pieces).

We therefore propose two types of template de�nition: Plant operations and production
recipes. The plant operations are templates that utilize di�erent sets of production unit instruc-
tions (cf. [2]). This allows an automation engineer to hide the complexity of the production
units when providing atomic, general-purpose production steps as a service. The product
designer of an enterprise can then use the plant operations to de�ne production recipes. The
purpose of production recipes is to encapsulate multiple plant operations into more coarse-
grained and reusable services or to de�ne the entire production procedure for a customizable
product. Both plant operations and production recipes can be parameterized to make the
production procedure more con�gurable by the customer. In addition, every plant operation
and production recipe o�er (typed) input and output ports for work pieces that are consumed
or produced during the operation execution. Figure 3.2 illustrates how plant operations and
(nested) production recipes can be combined by a product designer to describe the production
of a tablet.

DSL FOR CYBER-PHYSICAL PRODUCTION SYSTEMS 17

(P2) Battery capacity

(P3) Storage

(P1) Dual sim

(P4) Operating system

Case

Hardware

Final
product

Produce
tablet hardware

Produce
tablet case

Assemble
tablet

Mount
battery

...Produce
mainboard

Mainboard Mainboard

(P1)
Dual sim (P2) Battery capacity

...

Hardware

…
xPPU_type1.init_crane1
xPPU_type1.init_crane2
if(P1 is "TRUE") {
 xPPU_type1.release_wp_stack1
} else {
 xPPU_type1.release_wp_stack2
}
…

1

2

Figure 3.2: Example of a production recipe for a tablet as directed acyclic graph. The production
recipe consists of sub-recipes (rectangles) and plant operations (rectangles with rounded
corners). Solid lines represent the (typed) material �ow between each production step. Dashed
lines symbolize the parameter mappings between the product and the various recipe steps. 1
shows the production recipe of the high-level recipe step “Produce tablet hardware”. In 2 we
can see the implementation of plant operation [2] “Produce mainboard” in a DSL.

3.3 DSL for cyber-physical production systems

As hinted in the section below, coordinating production units to ful�ll a speci�c task requires
much domain knowledge and is hard to generalize. Therefore, it is important to provide an
automation engineers with a Domain-Speci�c Language (DSL), where they can specify all

18 EVOLUTION SCENARIO

production unit instructions and dynamic elements needed to realize a speci�c plant operation.
The DSL we propose consists of two di�erent type of expressions:

Expression Function
PUType.inst Execute instruction inst on a production unit of

type PUType

if(Param == "TEST_VALUE") {

expressionList1

} else {

expressionList2

}

Test if parameter Param has the exact value
TEST_VALUE. If true, execute expressionList1, else
execute expressionList2

Table 3.1: Expression available in the DSL

These expressions are su�cient enough to perform di�erent sets of instructions based on
the parameter values passed by a customer (as seen in the example in Figure 3.2).

3.4 Use cases and roles

This evolution scenario covers one primary use case: Ordering personalized products as a
customer. As we can see in Figure 3.3, the process of ful�lling a customer’s order involves
use cases of all other subsystems (i.e., store, enterprise, and plant). At �rst, when customers
submit personalized orders to their local store, the store subsystem delegates the order to its
associated enterprise. Then the enterprise resolves the production recipe associated with the
ordered product and schedules the production. This includes requesting services from plants
(i.e., plant operations) or other enterprises (i.e., production recipes), and proceeding with other
production tasks while waiting for the corresponding plant / enterprise to deliver its service.
When a plant receives a plant operation order from an enterprise, a batch system on each plant
site must schedule necessary production unit instructions accordingly to the plant operation
template (cf. [2]).

For the enterprise subsystem and the plant subsystem, we need special user roles for de�ning
both the appropriate production recipes and plant operations. In this scenario, we assigned the
existing enterprise manager role from the hybrid cloud variant with the task of de�ning product
recipe. An enterprise manager in CoCoME can, for instance, be seen as product designer or
entrepreneur. The plant manager is a new role in the Industry 4.0 variant of CoCoME. This
role reassembles an automation engineer who is responsible for creating and maintaining plant
operation templates.

In summary, we can use the work by Jazdi [9] and Lee et al. [10] to categorize the sub use
cases in a structural way (as seen in Table 3.2).

USE CASES AND ROLES 19

uc Industry 4.0 Environment

UC1: Order
custom product

Propagate Orders to
xPPU devices

Send Orders to
enterprise

Propagate orders
to subsystems

Customer

Enterprise
Manager

Schedule/Optimize
batch processing

«subsystem»
Enterprise

Define product
recipe

Specify production
plan

Plant
Manager

«subsystem»
Store

«subsystem»
Plant

«include»

«include»

«include»

«include»

Figure 3.3: Use Cases in the Industry 4.0 variant of CoCoME

5C level Subsystem Function Industry 4.0 Feature
Store Product order customization Integration of customersCon�gure Store / Enterprise Monitoring the production

order
Flexibility

Cognition Enterprise Product template and prod-
uct recipe de�nition

New business models

Production scheduling and
surveillance based on pro-
duction recipe

Flexibility

Cyber Plant Plant operation scheduling
and surveillance based on
DSL

Smart networking

Conversion Production Unit
(RESTful service
agent)

Submission system for de-
vice operations, encapsu-
lated state machine, self-
observation

Direct system extension

Connection Production Unit
(mechanical
device)

Interaction with production
unit sensors through OPC
UA [5]

Smart networking

Table 3.2: Overview of functional and structural properties of the Industry 4.0 variant based
on the structural categorization by Jazdi [9] and the functional categorization by
Lee et al. [10]

4 Implementation

This chapter showcases the implementation details about the batch size one production schedul-
ing, which includes both the production order scheduling on the enterprise level and plant
order scheduling on the plant level. Beyond that, we present an overview of altered and added
components in the component model of CoCoME. In the last part of this chapter, we describe
the RESTful interface provided by the AIS and how it is integrated in CoCoME.

4.1 Component model

The transformation of the hybrid-cloud variant to an industry 4.0 system is a complex task
a�ecting all six major components of CoCoME [7], as seen in Figure 4.1:

1 TradingSystem::CashDeskLine The cash desk subsystem now provides the customer
with an additional product con�guration display, represented by the :Cun�gurator
subcomponent. A customer activates the con�gurator display upon typing the barcode of
a custom product into the :BarcodeScanner. Other subcomponents remain unchanged.

2 TradingSystem::Inventory This component houses the business logic for the batch
size one production mechanisms and newly added data structures. The :Applica-
tion::Production subcomponent is responsible for the high-level production order
scheduling on an enterprise server. The :Application::Plant subcomponent encap-
sulates all functionalities of a plant server. These functionalities include the low-level
plant order scheduling, creating or importing production unit types, and interfacing
or virtualizing production unit instances. Corresponding data structures for describing
production units, production unit types, plant properties, and the plant operation DSL
reside in the :Data::Plant subcomponent. Data structures for custom product de�nitions,
production operation ordering, plant operation ordering, and the production recipe DSL
reside in the existing :Data::Enterprise subcomponent. In the :Data::Store component,
we added data types for managing custom products as store items. CoCoME uses an
internal Comma Seperated Values (CSV) format to exchange database records between
:Data::Persistence and ServiceAdapter. This made it necessary to implement routines
for converting between Java runtime objects and CSV records for each altered or ad-
ditional data class. :Application::Reporting and :Application::ProductDispatcher
are una�ected.

3 WebService::CashDesk We added a SOAP webservice in :Con�guratorService along-
side to the TradingSystem::CashDeskLine::Con�gurator component. Other subcom-
ponents remain unchanged.

COMPONENT MODEL 21

4 WebService::Inventory We added the subcomponent :Plant to expose the plant server
business logic in TradingSystem::Inventory::Application::Plant as SOAP webser-
vice. Additionally, we added webservice calls in :Store and :Enterprise to support
event-based messaging between subsystems, and to expose Create, Read, Update, Delete
(CRUD) operations for the new data structures in WebService::Inventory::Data. The
:Reporting webservice remains unchanged.

5 WebFrontend::Web In :PlantView, we created web-based views for maintaining pro-
duction unit classes, production units, and plant operation recipes for the plant manager
role. For the enterprise manager role, we added views in :EnterpriseView for creating
and editing production order recipes, plants, and custom products. Finally the :Store-
View o�ers additional web controls for con�guring custom products from a cash desk, a
view for managing custom products inside a store stock, and a view for observing the
status of an ordered custom product. The components PlantConnector and PlantData
operate in the background and provide other frontend subcomponents with plant-related
CRUD operations.

6 ServiceAdapter Modi�cations or additions in TradingSystem::Inventory::Data are
also re�ected in this component. Every new data structure needs a corresponding Java
Persistence API (JPA) entity and a set of RESTful webservices to provide appropriate
CRUD operations. In addition, we extended the internal data exchange mechanism to
support polymorphic queries. This allows other components to use the base type for
querying certain records inside the cloud storage, instead of querying each subtype
separately (e.g., SELECT * FROM PRODUCT also returns all custom products)

22
IM

PLEM
EN

TA
TIO

N
«component»

WebFrontend::Web

«component»
TradingSystem::CashDeskLine

(Store Server)

«web service»
WebService::CashDeskService

(Store Server)«component»
:Connector

«component»
:Navigation

«component»
:LoginView

«component»
:CashDeskData

«component»
:PlantConnector

«component»
:StoreConnector

«component»
:EnterpriseConnector

«component»
:PlantData

«component»
:StoreData

«component»
:CashDeskView

«component»
:EnterpriseView

«component»
:CashDeskConnector

«component»
:LoginData

«component»
:StoreView

«component»
:EnterpriseData

«component»
:Data

«component»
:Frontend

«web service»
:CashDeskService

«component»
:CashDesk

«component»
ServiceAdapter

External::Bank

«web service»
WebService::Inventory

«web service»
:Store

(Store Server)

«web service»
:Reporting

(Enterprise Server)

«web service»
:Enterprise

(Enterprise Server)

«web service»
:CashBoxService

«web service»
:ExpressLightService

«component»
:CashDesk

«web service»
:BarcodeScannerService

«web service»
:PrinterService

«web service»
:UserDisplayService

«web service»
:CardReaderService

«component»
TradingSystem::Inventory

«component»
:Application

«component»
:Data

«component»
:Store

(Store Server)

«component»
:Reporting

(Enterprise Server)

«component»
:ProductDispatcher
(Enterprise Server)

«component»
:Coordinator

«component»
:CDIEventBus

«component»
:Configurator

«component»
:CardReader

«component»
:UserDisplay

«component»
:Printer

«component»
:BarcodeScanner

«component»
:ExpressLight

«component»
:CashBox

INavigationMenu

IPlantPersistence

IPlantQuery

IStoreInformation

IStoreQuery IEnterpriseQuery

IUser

ICredentialFactory

IAuthenticator

ICashDesk

IStorePersistence

IEnterprisePersistence

IPlantDataFactory

IPlantQuery

IStoreDataFactory

IEnterpriseQuery

ICashDeskModel IConfiguratorModelICardReaderModelIUserDisplayModelIPrinterModelIBarcodeScannerModelIExpressLightModelICashBoxModel

IEnterpriseManager
IEnterpriseReporting

IStoreManager

IBank

AccountSaleEvent

ICashBox

IEnterpriseQuery

 ServiceAdapter
«component»

:Plant
(Plant Server)

«component»
:Enterprise

(Enterprise Server)

«component»
:Persistence

(Store, Plant and
Enterprise Server)

«component»
:Store

(Store Server)

IReporting

IStoreInventoryManager

IEnterpriseDataFactory

IPersistenceContext

IStoreQuery

IExpressLight
IBarcodeScanner

IPrinter
IUserDisplay

IConfigurator
ICardReader

ICashDesk

IStoreInventory

«web service»
:ConfiguratorService

ICashDeskQuery

«component»
:PlantView

«web service»
:Plant

(Plant Server)

«component»
:Plant

(Plant Server)

«component»
:Production

(Enterprise Server)

IPlantManager

IProductionManager

IPUManager

1

2

3

4

5

6

Figure 4.1: Component model of the Industry 4.0 variant of CoCoME

PRODUCTION RECIPE PROCESSING 23

4.2 Production recipe processing

The most crucial part of the recipe scheduling is handled by the ProductionManager class.
Every time the EnterpriseManager1 class receives a production order from a plant or another
enterprise, it makes an asynchronous call to ProductionManager.submitOrder(order)2. From
there on, the ProductionManager loads the corresponding production order recipe, translates
it into an execution graph and stores the data with other order-speci�c data into a hash table
structure.

Step 3

Step 1B

Step 1A Step 2A

Step 2C

Step 1A

Step 2B

1

3
1

1

(a) Initial execution graph

Step 3

Step 1B

Step 1A Step 2A

Step 2C

Step 2B

plant.submitOrder(order)

0

1
0

0

(b) Issuing plant operation order "Step 2C"

Step 3

Step 1B

Step 1A Step 2A

Step 2C

Step 2B

PlantOperationOrderFinishedEvent

0

1
0

0

(c) Receiving event after order completion

Step 3

Step 1B

Step 1A Step 2A

Step 2C

Step 2B

0

0
0

0

enterprise.submitOrder(order)

(d) Issuing production order "Step 3"

Step 3

Step 1B

Step 1A Step 2A

Step 2C

Step 2B

0

0
0

0

ProductionOrderFinishedEvent

(e) Receivng event after order completion

Figure 4.2: Production order scheduling on the enterprise server

The execution graph is an optimized runtime data structure, whose nodes represent either
1Module enterprise-logic-webservice, package org.cocome.cloud.webservice.enterpriseservice
2Module enterprise-logic-ejb, package org.cocome.tradingsystem.inventory.application.production

24 IMPLEMENTATION

plant operations or other production operations. Each execution graph node has a counter
initialized to the number of input ports (i.e., the number of incoming edges). After initializing
the execution graph, the ProductionManager starts with the leaves of the execution graph and
sends orders to subsystems who provide the particular operation. The ProductionManager

then pauses his execution and the associated runtime thread can return to the application
server thread pool. If the enterprise server receives a PlantOperationOrderFinishedEvent3 or
an ProductionOrderFinishedEvent3, it delegates the event to the ProductionManager, which
in turn resumes the event-causing execution graph. The ProductionManager then �ags the
operation as �nished, traverses to the neighboring nodes and reduces each counter by one.
Nodes whose counters are reduced to zero mark the next operations to be processed by the
ProductionManager. This means the ProductionManager issues new orders for these nodes and
again pauses the execution or reaches the end of the execution graph.

Figure 4.2a shows an example of an execution graph in its initial state. Figure 4.2b shows
the execution graph after several cycles where the gray nodes are already processed. The
ProductionManager detects a zero counter on node "Step 2C" and issues an order to the cor-
responding plant. After some time, the enterprise server receives an PlantOperationOrder-
FinishedEvent and decrements the counter of operation "Step 3" (as seen in Figure 4.2c and
Figure 4.2d). The enterprise manager then detects the zero counter of "Step 3" and sends an
appropriate order to the 3nd party enterprise (Figure 4.2e).

4.3 Plant operation processing

In contrast to the ProductionManager of an enterprise server, the PUManager4 is the primary ex-
ecuting element for plant operations. Processing a plant operation order includes the following
steps (as seen in Figure 4.3):

1 Fetch the corresponding plant operation recipe from the cloud storage and evaluate
the recipe markup based on the given parameters in the order. Additionally, group the
evaluated instruction list into work packages based on the target production unit classes
(keep sequential order of the instructions)

2 Add the list of work packages as job to the PlantJobPool4. Generate a job id and use it
as hash table key for e�cient access.

3 Pick the �rst available working package of the job and put it on the job queue of the next
free PUWorker. If all instances of the desired production unit class are busy, associate the
working package to the unit with the smallest queue.

4 Suspend the plant operation execution until a PUWorker issued a new plant job event. If
it is a PlantJobFinishedEvent5, pick the a�ected job from the PlantJobPool and repeat
step 3 and 4 .

3Module enterprise-logic-ejb, package org.cocome.tradingsystem.inventory.application.production
4Module plant-logic-ejb, package org.cocome.tradingsystem.inventory.application.plant.pu
5Module plant-logic-ejb, package org.cocome.tradingsystem.inventory.application.plant.pu.event

PLANT OPERATION PROCESSING 25

The plant operation scheduling for a speci�c order is �nished when no work package is
left after step 4 . The plant server then sends a PlantOperationOrderFinishedEvent to the
caller to signal the completion. Each PUWorker has its own CPU thread and encapsulates the
REST-API calls required to control the production unit. This additional abstraction is required
to provide an event-based production environment, even if the interfaced production units do
not o�er REST callback routines.

(P1) Dual sim: TRUE
(P2) Battery capacity: 12 Hours
(P3) Storage: 32 GB
(P4) Operating system: SDQ OS

…
xPPU_type1.init_crane1
xPPU_type1.init_crane2
if(P1 is "TRUE") {
 xPPU_type1.release_wp_stack1
} else {
 xPPU_type1.release_wp_stack2
}
…

plant.submitOrder(order) Evaluation

WP1: xPPU_type1
 • init_crane1
 • init_crane2
 • release_wp_stack1
 ...

...

WP2: xPPU_type2
 • init_crane
 • init_stack
 • pick_wp
 ...

WPN: xPPU_typeN
 ...

PlantJob

WP

PlantJobPool

WP

WP

WP

WP

WP

WP

WP

WP

PUWorker

xPPU_type1

WP

PUWorker

WP

WP WP

WP

...PUWorker

xPPU_typeN

WP

WP

...

PUWorkerPool

PUManager

Schedule work
packages

PlantJobStartedEvent
PlantJobProgressEvent
PlantJobFinishedEvent

1

23

4

Figure 4.3: Plant order scheduling on the plant server

26 IMPLEMENTATION

4.4 xPPU Interface

The AIS implemented an interface for providing a remote access to their xPPU instances (as
seen in Figure 4.4) [2]. It hides device-speci�c communication protocols under a REST-based
API (e.g., the machine-to-machine communication protocol Object linking and embedding for
Process Control Uni�ed Architecture (OPC UA)).

REST services client server

Plant Agent

Production
 System

Java-based
Middleware,
HW-Firewall

Figure 4.4: Concept of the PPU REST-Interface [2]

Table 4.1 shows an excerpt of the available REST operations on the xPPU interface [2].

Command Meaning
/operation Lists all available operations
/history Shows all �nished and run-

ning operations
/instance Returns the ISA-88[16] in-

stance model

Command Meaning
/start Starts a new operations
/hold Pauses the execution of an is-

sued operation
/startbatch Buck execution of operations

Table 4.1: Excerpt of the available REST operations on the xPPU interface [2]

5 Developer Guide

Implementing new functionalities in CoCoME can be di�cult for developers who didn’t work
with the community case study before. We therefore use the next pages to illustrate the neces-
sary implementations steps based on a test evolution scenario. In this test scenario, we extent
the production recipe by the data structure ResourceType. This allows an enterprise manager
to de�ne types of resources that are transported between the plants / enterprises. The current
version of CoCoME uses a string property inside the EntryPoint data structure to distinguish
between di�erent material types. Implementing this feature will a�ect multiple subcompo-
nents in CoCoME, which include the ServiceAdapter, the TradingSystem::Inventory::Data,
WebService::Inventory, and WebFrontend::Web.

5.1 Prerequirements

It is required to have a working CoCoME setup before proceeding with the next sections. A
typical CoCoME installation process includes the following steps:

1 Create a subdirectory cocome

2 Clone the main CoCoME project and the service adapter project into the cocome directory
by executing this command line commands:

1 cd cocome

2 git clone

git@github.com:cocome-community-case-study/cocome-cloud-jee-platform-migration.git

core

↪→

↪→

3 git clone git@github.com:cocome-community-case-study/cocome-cloud-jee-service-adapter.git

service-adapter↪→

3 Switch to the GIT branch xppu_integration:

1 (cd core && git checkout xppu_integration)

2 (cd service-adapter && git checkout xppu_integration)

4 Follow the preparation guides inside cocome/core/cocome-maven-platform/doc. Espe-
cially the instructions in "Installation in a nutshell.md" will be helpful

28 DEVELOPER GUIDE

5.2 Extending the ServiceAdapter component

For this section, we will modify the code of the following submodules of the service adapter:

1 cocome/service-adapter/service-adapter-ejb # JPA Entities and converters

2 cocome/service-adapter/service-adapter-rest # RESTful Java servlet

1 Modify the JPA classes in service-adapter-ejb. The JPA classes exist in the package
org.cocome.tradingsystem.inventory.data.
An example JPA class for our test evolution scenario could look like this:

1 package org.cocome.tradingsystem.inventory.data.plant.recipe;

2

3 @Entity

4 public class ResourceType implements Serializable, NameableEntity {

5

6 private static final long serialVersionUID = 1L;

7

8 private long id;

9 private String name;

10 private TradingEnterprise enterprise;

11

12 @Id

13 @GeneratedValue(strategy = GenerationType.AUTO)

14 public long getId() { return this.id; }

15

16 public void setId(final long id) {this.id = id;}

17

18 @Basic

19 public String getName() {return this.name;}

20

21 public void setName(final String name) {this.name = name;}

22

23 @ManyToOne

24 @NotNull

25 public TradingEnterprise getEnterprise() {return this.enterprise;}

26

27 public void setEnterprise(final TradingEnterprise enterprise) {this.enterprise =

enterprise;}↪→

28 }

EXTENDING THE SERVICEADAPTER COMPONENT 29

Additionally, we need to add an n : 1 relationship between the JPA classes EntryPoint
and ResourceType:

1 @Entity

2 public class EntryPoint implements Serializable, NameableEntity {

3 ...

4 private ResourceType resourceType;

5

6 @NotNull

7 @ManyToOne

8 public ResourceType getResourceType() {return resourceType;}

9

10 public void setResourceType(ResourceType resourceType) {this.resourceType =

resourceType;}↪→

11 ...

12 }

2 Modify the Data Access Object (DAO) in service-adapter-ejb. They provide meth-
ods for serializing and deserializing JPA entities during network exchange and are located
in package
org.cocome.tradingsystem.remote.access.dao

In the test evolution scenario, we need to add a new DAO class ResourceTypeDAO and
to modify the existing DAO class EntryPointDAO for the corresponding type EntryPoint.

3 In module service-adapter-rest, add references to all newly created DAO classes
in class cocome.cloud.sa.serviceprovider.impl.ServiceProviderDatabase.
For example, we would add the following entries for the ResourceTypeDAO class:

1 @WebServlet("/Database/ServiceProviderDatabase")

2 public class ServiceProviderDatabase extends HttpServlet {

3 ...

4 @Inject

5 private ResourceTypeDAO resourceTypeDAO;

6 ...

7 @PostConstruct

8 protected void initDAOMap() {

9 ...

10 daoMap.put(resourceTypeDAO.getEntityTypeName(), resourceTypeDAO);

11 ...

12 }

13 ...

14 }

30 DEVELOPER GUIDE

If you want to add CRUD operations for supertypes to the service adapter, you can add a
DAO class that extends the AbstractInheritanceTreeDAO class (e.g., see ParameterDAO
for details).

4 Redeploy the service adapter module to make the changes visible to other Co-
CoME subsystems. If you don’t use an IDE for redeployment, you may need to rebuild
a new EAR archive through the mvn package command.

5.2.1 Unit testing

We use simple Java SE unit tests for newly created DAO classes. Unit tests reside in a corre-
sponding package within the src/test subfolder of the service-adapter-ejb module. Adding
new unit tests requires the following steps:

1 Add newly created JPA classes to src/test/resources/META-INF/persistence.xml.
For example, we have to add the following line to the test persistence con�guration to
make the ResourceType class usable during testing:

1 ...

2 <class>org.cocome.tradingsystem.inventory.data.plant.recipe.ResourceType</class>

3 ...

2 Add DAO unit test to the corresponding Java package. For the test scenario, we
have to add a new unit test ResourceTypeDAOTest.

3 Make sure that existing tests do not break. Modi�cations on the JPA classes usually
e�ect the persistence behavior of other entities. During the implementation of the
test scenario, we have to adjust the unit tests EntryPointDAOTest, RecipeDAOTest,
EntryPointInteractionDAOTest, and PlantOperationDAOTest.

5.3 Extending the TradingSystem::Inventory::Data component

In this section we will perform all modi�cations inside the following maven submodules:

1 cocome/core/cocome-maven-project/cloud-logic-service/cloud-logic-core-api

2 cocome/core/cocome-maven-project/cloud-logic-service/cloud-logic-core-impl

3 cocome/core/cocome-maven-project/cloud-logic-service/cloud-enterprise-logic/enterprise-logic-ejb

5.3.1 Creating data structures and transfer objects

First, we have to add equivalent data classes and transfer object types to the main maven
project. The transfer objects are solely used for data exchange between webservices and do

EXTENDING THE TRADINGSYSTEM::INVENTORY::DATA COMPONENT 31

not necessarily have the same structures as the data classes in the service adapter project. The
regular data classes on the other hand should re�ect the same properties and aggregations
as their service adapter counterpart. The reason why we have to de�ne data classes twice is
because of technical limitations in the CoCoME service adapter, which will be addressed in
future iterations.

1 Create an interface for all new JPA classes created in the service adapter. These
interfaces should be located in the cloud-logic-core-api module. An example for the
test scenario could look like this:

1 package org.cocome.tradingsystem.inventory.data.plant.recipe;

2

3 import org.cocome.tradingsystem.inventory.data.INameable;

4

5 public interface IResourceType extends INameable {

6

7 long getId();

8 void setId(final long id);

9

10 String getName();

11 void setName(final String name);

12

13 ITradingEnterprise getEnterprise() throws NotInDatabaseException;

14 void setEnterprise(final ITradingEnterprise name);

15 }

2 Add a corresponding implementation for each added interface to the module
cloud-logic-core-impl:

1 package org.cocome.tradingsystem.inventory.data.plant.recipe;

2

3 @Dependent

4 public class ResourceType implements Serializable, IResourceType {

5

6 private static final long serialVersionUID = 1L;

7

8 private long id;

9 private String name;

10 private ITradingEnterprise enterprise;

11 private enterpriseId;

12

13 @Inject

32 DEVELOPER GUIDE

14 private Instance<IEnterpriseQuery> enterpriseQueryInstance;

15 private IEnterpriseQuery enterpriseQuery;

16

17 @PostConstruct

18 public void initPlant() {

19 enterpriseQuery = enterpriseQueryInstance.get();

20 operation = null;

21 }

22

23 public long getId() {return this.id;}

24 public void setId(final long id) {this.id = id;}

25

26 public String getName() {return this.name;}

27 public void setName(final String name) {this.name = name;}

28

29 public int getEnterpriseId() {return this.enterpriseId;}

30 public void setEnterprseId(final int enterpriseId) {this.enterpriseId = enterpriseId;}

31

32 public IRecipeOperation getEnterprise() throws NotInDatabaseException {

33 if (enterprise == null) {

34 enterprise = enterpriseQuery.queryEnterpriseById(operationId);

35 }

36 return enterprise;

37 }

38

39 public void setEnterprise(ITradingEnterprise enterprise) {this.enterprise =

enterprise;}↪→

40 }

The IEnterpriseQuery is used in line 34 to load the corresponding enterprise instance
lazily from the service adapter.

3 Add transfer object classes to module cloud-logic-core-impl:

1 package org.cocome.tradingsystem.inventory.application.plant.recipe;

2

3 import org.cocome.tradingsystem.inventory.application.INameableTO;

4

5 @XmlType(name = "ResourceTypeTO",

6 namespace = "http://recipe.plant.application.inventory.tradingsystem.cocome.org")

7 @XmlRootElement(name = "ResourceTypeTO")

8 @XmlAccessorType(XmlAccessType.FIELD)

9 public class ResourceTypeTO implements Serializable, INameableTO {

EXTENDING THE TRADINGSYSTEM::INVENTORY::DATA COMPONENT 33

10

11 private static final long serialVersionUID = 1L;

12

13 @XmlElement(name = "id", required = true)

14 private long id;

15 @XmlElement(name = "name", required = true)

16 private String name;

17 @XmlElement(name = "enterprise", required = true)

18 private EnterpriseTO enterprise;

19

20 public long getId() {return this.id;}

21 public void setId(final long id) {this.id = id;}

22 public String getName() {return this.name;}

23 public void setName(final String name) {this.name = name;}

24 public EnterpriseTO getEnterprise() {return this.enterprise;}

25 public void setEnterprise(final EnterpriseTO enterprise) {this.enterprise =

enterprise;}↪→

26 }

5.3.2 Extending data structure converters and factories

After creating data classes and transfer object classes, we have to extend data factory and data
conversion classes. These classes are utility classes used to convert transfer objects to primary
data classes back and forward. There exist three di�erent variants:
Classes Package
IEnterpriseDataFactory

EnterpriseDatatypesFactory

org.cocome.tradingsystem.inventory.data.enterprise

IPlantDataFactory

PlantDatatypesFactory

org.cocome.tradingsystem.inventory.data.plant

IStoreDataFactory

StoreDatatypesFactory

org.cocome.tradingsystem.inventory.data.store

IEnterpriseDataFactory, IPlantDataFactory, and IStoreDataFactory are interfaces inside the
cloud-logic-core-api module. The module cloud-logic-core-impl holds the implementa-
tions EnterpriseDatatypesFactory, PlantDatatypesFactory, and StoreDatatypesFactory.

For the test evolution scenario, we added the following methods to IPlantDataFactory /
PlantDatatypesFactory:

34 DEVELOPER GUIDE

Classes Package
IResourceType getNewResourceType(); CDI-based factory method
ResourceTypeTO fillResourceTypeTO(

IResourceType rt)

throws NotInDatabaseException;

Converts data objects to transfer objects,
which may involves database lookups

IResourceType convertToResourceType(

ResourceTypeTO rtTO);

Converts transfer objects to data objects

Additionally, we have to modify the existing methods �llEntryPointTO convertToEntryPoint
to re�ect the n : 1 relationship between EntryPoint end ResourceType.

5.3.3 Extending persistencemethods

In this step we extend the Persistence subcomponent, which provides low-level operations
for creating, updating, and deleting data records. All modi�cations will a�ect the package

1 org.cocome.tradingsystem.inventory.data.persistence

in either the cloud-logic-core-api or cloud-logic-core-impl module.

1 Add persistence method signatures to the interface IPersistence. The interface
can be found in module cloud-logic-core-api. For example, we add the following
methods for ResourceType:
Operation Function
void createEntity(IResourceType rt)

throws CreateException;

Persist a given instance to the service
provider storage

void updateEntity(IResourceType rt)

throws UpdateException;

Updates an instance in the service provider
storage denoted by its ID

void deleteEntity(IResourceType rt)

throws UpdateException;

Deletes a given instance from the service
provider storage denoted by its ID

2 Add CSV headers to the class ServiceAdapterHeaders. The class can be found in
module cloud-logic-core-impl. In our test scenario, we also have to add the Resource-
TypeId to the CSV header of type EntryType.

3 Add converter methods to ServiceAdapterEntityConverter. The class can be found
in module cloud-logic-core-impl. In the test scenario, we also have to modify existing
converter methods of type EntryType.

4 Implement persistence methods in CloudPersistenceContext. The class can be
found in module cloud-logic-core-impl and consists of delegation methods to the
ServiceAdapterEntityConverter class.

EXTENDING THE TRADINGSYSTEM::INVENTORY::DATA COMPONENT 35

5.3.4 Extending parsing utilities

The following step involves the Parsing subcomponent, which is used in CoCoME to parse
CSV records obtained from the service adapter storage. All modi�cations will a�ect the package

1 org.cocome.tradingsystem.remote.access.parsing

in either the cloud-logic-core-api or cloud-logic-core-impl module.

1 Addparsingmethod signatures to the interface IBackendConversionHelper. The
interface can be found in module cloud-logic-core-api. For our test scenario, we would
add the following signature to the class:

1 Collection<IPlantOperationOrder> getResourceType(String resourceType);

2 Implement parsing methods in CSVHelper.
The class can be found in module cloud-logic-core-impl. For the test evolution scenario,
we implemented getResourceType and change getEntryPoint.

5.3.5 Extending query providers

Next, we have to extend the query provider used to fetch existing data from the service adapter.
The subsystems store, plant, and enterprise have their own query provider. The interfaces are
all part of the module cloud-logic-core-api:

Class Package
IEnterpriseQuery org.cocome.tradingsystem.inventory.data.enterprise

IPlantQuery org.cocome.tradingsystem.inventory.data.plant

IStoreQuery org.cocome.tradingsystem.inventory.data.store

The implementations of these interfaces can be found in di�erent modules:
Implementation Interface Module
EnterpriseQueryProvider IEnterpriseQuery enterprise-logic-ejb

ProxyEnterpriseQueryProvider IEnterpriseQuery cloud-logic-core-impl

PlantEnterpriseQueryProvider IEnterpriseQuery plant-logic-ejb

StoreEnterpriseQueryProvider IEnterpriseQuery store-logic-ejb

EnterprisePlantQueryProvider IPlantQuery cloud-logic-core-impl

EnterpriseStoreQueryProvider IStoreQuery cloud-logic-core-impl

IPlantQuery and IStoreQuery with their implementation classes are only used in their dedicated
subsystems. The IEnterpriseQuery is accessible from all major subsystems including enter-
prises, plants and stores. This makes it necessary to provide di�erent proxy implementation
for the plant subsystem (PlantEnterpriseQueryProvider) and the store subsystem (StoreEnter-

36 DEVELOPER GUIDE

priseQueryProvider). The superclass ProxyEnterpriseQueryProvider provides the complete
implementation for the concrete proxy classes.

ResourceType class is part of the production recipe DSL, it is required to modify IEnter-
priseQuery, EnterpriseQueryProvider, and ProxyEnterpriseQueryProvider. However, it is not
possible to extend EnterpriseQueryProvider and ProxyEnterpriseQueryProvider in one step,
because the ProxyEnterpriseQueryProvider requires the existence of enterprise webservice
stubs. However these webservice stubs cannot be generated if a compilation error exist. For
our test evolution scenario, we have to delay the modi�cation ProxyEnterpriseQueryProvider
until the end of the up-following section.

5.3.6 Integration Testing

It is possible to use CDI-based integration testing to verify if the correctness of changed
persistence- and query classes. An example can be found within the enterprise-logic-ejb

module:

1 org.cocome.tradingsystem.inventory.data.enterprise.QueryProviderAndPersistenceIT

These tests require a running application server with a running service adapter instance.

5.4 Extending the WebService::Inventory component

We so far implemented the back end of the CRUD operations. In the next stage of the test
scenario, we add webservice calls for these operations to make them visible to other subsystems.
The SOAP-based webservices in CoCoME consist of four components:

• The general service de�nition inside the pom.xml �le of the cloud-logic-core-services

module
• An annotated webservice interface inside the cloud-logic-core-services module
• An implementation of the webservice interface (the location can vary.)
• An Apache CXF mapping �le for the transfer objects

The mapping �le reside in cloud-logic-core-services/src/main/resources and are nec-
essary during the webservice stub generation. This generation process is managed by the
webservice framework Apache CXF. During the stub generation, Apache CXF processes the
Java interfaces to generates Webservice De�nition Language (WSDL) documents and client
source code. The mapping �les are used to exclude the transfer objects to be replaced with
stub classes during the source code generation.

The �les / packages of the three subsystem webservices (i.e., enterprise, plant, and store) are:

EXTENDING THE WEBSERVICE::INVENTORY COMPONENT 37

Class Maven Module
IEnterpriseManager

EnterpriseManager

cloud-logic-core-webservice

cloud-enterprise-logic/enterprise-logic-webservice

IPlantManager

PlantManager

cloud-logic-core-webservice

cloud-plant-logic/plant-logic-webservice

IStoreManager

StoreManager

cloud-logic-core-webservice

cloud-store-logic/store-logic-webservice

webservice Package
Enterprise manager org.cocome.logic.webservice.enterpriseservice

Plant manager org.cocome.logic.webservice.plantservice

Store manager org.cocome.logic.webservice.storeservice

webservice Mapping �le
Enterprise manager enterpriseManagerBindings.xml

Plant manager plantManagerBindings.xml

Store manager storeManagerBindings.xml

For the test evolution scenario, we modi�ed the enterprise manager webservice by performing
the following steps:

1 Add CRUD operations to the interface IEnterpriseManager:

1 ...

2 @WebMethod ResourceTypeTO queryResourceTypeById(

3 @XmlElement(required = true)

4 @WebParam(name = "resourceTypeID") long resourceTypeId)

5 throws NotInDatabaseException;

6

7 @WebMethod Collection<ResourceTypeTO> queryResourceTypeByEnterpriseId(

8 @XmlElement(required = true)

9 @WebParam(name = "enterpriseID") long enterpriseId)

10 throws NotInDatabaseException;

11

12 @WebMethod long createResourceType(

13 @XmlElement(required = true)

14 @WebParam(name = "resourceTypeTO") ResourceTypeTO resourceTypeTO)

15 throws CreateException, NotInDatabaseException;

16

17 @WebMethod void updateResourceType(

18 @XmlElement(required = true)

19 @WebParam(name = "resourceTypeTO") ResourceTypeTO resourceTypeTO)

20 throws UpdateException, NotInDatabaseException;

21

22 @WebMethod void deleteResourceType(

38 DEVELOPER GUIDE

23 @XmlElement(required = true)

24 @WebParam(name = "resourceTypeTO") ResourceTypeTO resourceTypeTO)

25 throws UpdateException, NotInDatabaseException;

26 ...

2 Implement webservice methods in EnterpriseManager.
3 Repackage the core package of CoCoME with the mvn package command.
4 Add newly created transfer objects to enterpriseManagerBindings.xml:

1 ...

2 <bindings if-exists="true" schemaLocation="IEnterpriseManager_schema2.xsd">

3 ...

4 <bindings node="//xsd:complexType[@name='ResourceTypeTO']">

5 <class

6 ref="org.cocome.tradingsystem.inventory.application.plant.recipe.ResourceTypeTO"/>

7 </bindings>

8 ...

9 </bindings>

10 ...

One way to determine which IEnterpriseManager_schema*.xsd to use for the mapping
below, is to perform step 4 and look inside the XML Schema De�nitioon (XSD) �les in
the src/main/resources directory of the cloud-logic-core-webservice module.

5 Repackage the core package of CoCoME with the mvn package command.
6 Add new available webservice calls to the ProxyEnterpriseQueryProvider, if nec-

essary.
7 Redeploy the modi�ed CoCoME maven modules to the application server.

5.4.1 Integration Testing

We use integration tests that use the Apache CFX clients to call running webservice directly.
There exist one test for each manager webservice, e.g., EnterpriseManagerIT, PlantManagerIT,
and StoreManagerIT.

5.5 Extending the web frontend

Extending the web-based user interfaces requires modi�cations in this maven submodule:

1 cocome-cloud-jee-platform-migration/cocome-maven-project/cloud-logic-web

EXTENDING THE WEB FRONTEND 39

For the test evolution scenario, we want to add an additional web interface for retrieving
and adding resource types. To make the enterprise manager responsible for controlling the
resource types, we have to perform the following steps:

1 Add view data classes for each new data structure. For the class ResourceType, it
would look like this:

1 package org.cocome.cloud.web.data.enterprisedata;

2

3 import org.cocome.cloud.web.data.ViewData;

4 import org.cocome.tradingsystem.inventory.application.plant.recipe.RecourceTypeTO;

5

6 public class RecourceTypeTOViewData extends ViewData<RecourceTypeTO> {

7

8 public RecourceTypeViewData(RecourceTypeTO data) {

9 super(data);

10 }

11

12 @Override

13 public long getParentId() {

14 return this.data.getEnterprise().getId();

15 }

16 }

2 Add a view DAO class for each new data structure. These DAO classes encapsulate
webservice calls and provide an automatic caching mechanism. Data retrial through
webservice calls can lead to performance degeneration if CoCoME is executed on a single
computer. Examples of view DAO classes exist inside package
org.cocome.cloud.web.data.enterprisedata.

3 Add a view class for each web view. These classes build the bridge between Java
Server Faces (JSF) documents and the view DAO classes. Examples of view classes exist
inside package
org.cocome.cloud.web.frontend.enterprise.

4 Add JSF pages for each web view. These EXtensible HyperText Markup Language
(XHTML) documents can be found inside the directory src/main/webapp. For our test
scenario, we added a new JSF page inside the subfolder enterprise. Additionally,
we modi�ed the pages show_enterprises.xhml, create_input_entry_point.xhml, and
create_output_entry_point.xhml.

5 Add localized messages by adding message keys and values to the properties �le in
src/main/resources/cocome/frontend/Strings.properties.

6 Conclusion

In this technical report we gave an overview over existing case studies and concept papers
about Industry 4.0. Based on our �ndings, we designed an evolution scenario that combines the
hybrid-cloud variant of CoCoME with the REST-enabled xPPU into an Industry 4.0 community
case study. We identi�ed reoccurring structural [10] and functional [9] properties of Industry
4.0 systems in the implemented evolution scenario. Examples of these properties are the
user involvement through customizable products, the �exibility and modularity in de�ning
production templates, as well as the hierarchy between production units, plants, and enterprises.

With the new variant of CoCoME, we can provide a platform for automation engineers and
software engineers who want to conduct empirical Industry 4.0 studies. They can observe the
impacts of their applied methods on a more heterogenous environment (e.g., predictability
of performance impacts on the high-level CoCoME use cases with changing production unit
hardware) [7]. Case studies on the Industry 4.0 variant of CoCoME are more replicable and
comparable, since they ful�ll the requirements of a research platform (e.g., available tools,
documentation, and design-type / run-tine artifacts).

For the future, we plan to implement other functional requirements on Industry 4.0 systems
that are not already part of our evolution scenario. Known examples are real-time monitoring of
production unit utilization, auto-adjustment of the production process depending on changing
pricing policies or order quantities, and a meta-model for describing resources and products
with their di�erent production stages [9]. Furthermore, the research communities in automation
engineering and software engineering lack a �ne-grained categorization of Industry 4.0 system
characteristics, like quality of service requirements, design- and run-time activities, or used
middleware technologies other than SOAP-based web services. A systematic literature research
could be an appropriate method to obtain this information.

Acronyms

API Application Programming Interface. 7, 8, 25

CBSE Component-Based Software Engineering. 11
CDI Contexts and Dependency Injection. 34, 36
CoCoME Common Component Modelling Example. 7
CPPS Cyber-Physical Production Systems. 9, 13
CPS Cyber-Physical Systems. 7, 13
CRUD Create, Read, Update, Delete. 21, 30
CSV Comma Seperated Values. 20, 34, 35

DAO Data Access Object. 29, 30, 39
DSL Domain-Speci�c Language. 17–20, 36

EJB Enterprise Java Beans. 11

IDE Integrated Development Environment. 30

JPA Java Persistence API. 21, 28–31
JSF Java Server Faces. 39

OPC UA Object linking and embedding for Process Control Uni�ed Architecture. 19, 26

POJO Plain Old Java Objects. 11

REST REpresentational State Transfer. 7, 25

SOAP Simple Object Access Protocol. 11

WSDL Webservice De�nition Language. 36

XHTML EXtensible HyperText Markup Language. 39
xPPU eXtended Pick and Place Unit. 7
XSD XML Schema De�nitioon. 38

Bibliography

[1] M. Bonfè, C. Fantuzzi, and C. Secchi. Design patterns for model-based automation
software design and implementation. Control Engineering Practice, 21(11):1608 – 1619,
2013. Advanced Software Engineering in Industrial Automation (INCOM’09).

[2] S. Bougou�a, K. Meßzmer, S. Cha, E. Trunzer, and B. Vogel-Heuser. Industry 4.0 inter-
face for dynamic recon�guration of an open lab size automated production system to
allow remote community experiments. In 2017 IEEE International Conference on Industrial
Engineering and Engineering Management (IEEM), pages 2058–2062, 2017.

[3] B. Demchak, V. Ermagan, E. Farcas, T.-j. Huang, I. H. Krüger, and M. Menarini. A rich
services approach to cocome, 01 2007.

[4] M. Goeminne, A. Decan, and T. Mens. Co-evolving code-related and database-related
changes in a data-intensive software system. 2014 Software Evolution Week - IEEE Con-
ference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pages 353–357, 2014.

[5] S. Grüner, J. Pfrommer, and F. Palm. Restful industrial communication with opc ua. IEEE
Transactions on Industrial Informatics, 12(5):1832–1841, Oct 2016.

[6] R. Heinrich, S. Gärtner, T.-M. Hesse, T. Ruhroth, R. Reussner, K. Schneider, B. Paech,
and J. Jürjens. A Platform for Empirical Research on Information System Evolution.
Proceedings of the 27th International Conference on Software Engineering and Knowledge
Engineering (SEKE’15), pages 415–420, 2015.

[7] R. Heinrich, K. Rostami, and R. Reussner. The CoCoME Platform for Collaborative
Empirical Research on Information System Evolution. 2016.

[8] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner, K. Krogmann, H. Koziolek,
R. Mirandola, B. Hummel, M. Meisinger, and C. Pfaller. CoCoME - The common component
modeling example. Lecture Notes in Computer Science (including subseries Lecture Notes
in Arti�cial Intelligence and Lecture Notes in Bioinformatics), 5153 LNCS:16–53, 2008.

[9] N. Jazdi. Cyber physical systems in the context of industry 4.0. In 2014 IEEE International
Conference on Automation, Quality and Testing, Robotics, pages 1–4, May 2014.

[10] J. Lee, B. Bagheri, and H.-A. Kao. A cyber-physical systems architecture for industry
4.0-based manufacturing systems. Manufacturing Letters, 3:18 – 23, 2015.

BIBLIOGRAPHY 43

[11] C. Legat, J. Folmer, and B. Vogel-Heuser. Evolution in industrial plant automation: A case
study. In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society,
pages 4386–4391, 2013.

[12] C. Legat, D. Schütz, and B. Vogel-Heuser. Automatic generation of �eld control strate-
gies for supporting (re-)engineering of manufacturing systems. Journal of Intelligent
Manufacturing, 25(5):1101–1111, 2014.

[13] M. Lehman. On understanding laws, evolution, and conservation in the large-program
life cycle. Journal of Systems and Software, 1:213 – 221, 1979.

[14] P. Mäder and A. Egyed. Do developers bene�t from requirements traceability when
evolving and maintaining a software system? Empirical Software Engineering, 20(2):413–
441, 2015.

[15] D. Pantförder, F. Mayer, C. Diedrich, P. Göhner, M. Weyrich, and B. Vogel-Heuser. Agen-
tenbasierte dynamische Rekon�guration von vernetzten intelligenten Produktionsanlagen –
Evolution statt Revolution, pages 145–158. Springer Fachmedien Wiesbaden, 2014.

[16] J. Parshall and L. Lamb. Applying S88: Batch Control from a User’s Perspective. ISA, 1999.

[17] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil. The common component modeling
example. Lecture notes in computer science, 5153, 2008.

[18] B. Vogel-Heuser, C. Diedrich, D. Pantförder, and P. Göhner. Coupling heterogeneous
production systems by a multi-agent based cyber-physical production system. In 2014
12th IEEE International Conference on Industrial Informatics (INDIN), pages 713–719, 2014.

[19] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy. Evolution of software in automated
production systems: Challenges and research directions. Journal of Systems and Software,
110:54 – 84, 2015.

[20] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann. Researching Evolution in Industrial
Plant Automation: Scenarios and Documentation of the Pick and Place Unit. Technical
Report, (TUM-AIS-TR-01-14-02), 2014.

	2018,8_Titelbl.doc.pdf
	cocome_xppu_techreport.pdf
	1 Introduction
	2 Related work
	2.1 Empirical approaches and community case studies
	2.1.1 CoCoME
	2.1.2 xPPU

	2.2 Contributions in Industry 4.0
	2.2.1 MyJoghurt

	3 Evolution Scenario
	3.1 Structural changes
	3.2 Communication model
	3.3 DSL for cyber-physical production systems
	3.4 Use cases and roles

	4 Implementation
	4.1 Component model
	4.2 Production recipe processing
	4.3 Plant operation processing
	4.4 xPPU Interface

	5 Developer Guide
	5.1 Prerequirements
	5.2 Extending the ServiceAdapter component
	5.2.1 Unit testing

	5.3 Extending the TradingSystem::Inventory::Data component
	5.3.1 Creating data structures and transfer objects
	5.3.2 Extending data structure converters and factories
	5.3.3 Extending persistence methods
	5.3.4 Extending parsing utilities
	5.3.5 Extending query providers
	5.3.6 Integration Testing

	5.4 Extending the WebService::Inventory component
	5.4.1 Integration Testing

	5.5 Extending the web frontend

	6 Conclusion

