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Abstract

The purpose of this work is to expand the current knowledge about the
mechanism with which turbulent regions interact with non-turbulent ones.
The continuous exchange of mass and momentum between these two re-
gions is a process characterized by some of the smallest and the largest
scales on the flow. In such a spectrum of scales, viscous diffusion of enstro-
phy in the past has been considered to be the drive of turbulent propagation
through small scale vortices diffusing into the nearby laminar fluid. Iner-
tial dynamics, on the other hand, are considered to play a role only in the
measure in which they are able to increase or decrease the total surface of
the interface over which vorticity viscously diffuses into the laminar region.
In order to better assess these hypotheses, the present study recurs to nu-
merical simulations of turbulent fronts with zero mean shear. First, a scale
analysis has been performed by studying the spectra of the enstrophy bud-
get equation across the interface. Secondly, the effect of an altered scales
distribution is investigated. This is achieved without directly affecting the
viscous mechanics, thus by using dilute polymer solutions. Spectral analy-
sis reveals not only that the inertial transport of turbulent fluctuations holds
a central role in sustaining the interface propagation, but also that viscous
diffusion is characterized by two scales: a thickness of the order of the Kol-
mogorov scale in direction normal to the interface and a larger width of the
order of the Taylor length scale. Polymer solutions, simulated by means of
the FENE-P model, show to produce interfaces with smoother features and
larger scales, more importantly turbulent fronts in dilute polymer solution
propagate less than their Newtonian equivalents. Evidence shows a local
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action of the polymers at the interface via preferential alignment with and
enhancement of vortex compression.

ii



Kurzfassung

Ziel dieser Arbeit ist die Erweitung des aktuellen Wissens über den Inter-
aktionsmechanismus zwischen turbulenten und laminaren Regionen. Der
kontinuierliche Austausch von Masse und Impuls zwischen den beiden Re-
gionen ist ein Prozess, der sowohl durch die kleinsten als auch durch die
größten Skalen gekennzeichnet ist. In einem solchen Skalenspektrum wurde
in der Vergangenheit die viskose Diffussion der Enstrophie als Antrieb der
turbulenten Ausbreitung kleinskaliger Wirbel in das benachbarte laminare
Gebiet betrachtet. Trägkeitseffekte, hingegen, spielen nach dieser Ansicht
lediglich bezüglich der Vergrößerung oder Verkleinerung der gesamten
Grenzfläche, über welche die Wirbelstärke in den laminaren Bereich dif-
fundiert, eine Rolle. Um diese Hypothesen besser zu bewerten, wurden in
der vorliegenden Arbeit numerische Simulationen turbulenter Grenzgebi-
ete ohne mittlere Scherung eingesetzt. Zuerst wurde eine Skalenanalyse
durchgeführt, indem die Spektren der Enstrophie-Bilanz-Gleichung aus der
gesameten Grenzfläche zwischen turbulenten und nicht turbulenten Regio-
nen untersucht wurden. Als zweites wurde die Auswirkung einer verän-
derten Skalenverteilung untersucht. Dies wurde durch den Einsatz verdün-
nter Polymerlösungen erreicht, welche die viskose Mechanik nicht direkt
beeinflussen. Die spektrale Analyse zeigt welch zentrale Rolle der Trägheit-
stransport turbulenter Fluktuationen beim Erhalt der Grenzflächenausbre-
itung spielt. Des Weiteren wird gezeig, dass die viskose Diffusion durch
zwei Skalen charakterisiert ist: einer dicken in der Größenordnung der Kol-
mogorov Länge und normal zur Grenzfläche und einer breiten, die größer
ist als die dicke un welche, der Größenordnung einer Taylor-Längenskala
ist. Polymerlösungen, die mit Hilfe des FENE-P-Modells simuliert wur-
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den, zeigten, dass sie Grenzflächen mit glatteren äußerungen und größeren
Skalen erzeugen, vor allem turbulente Fronten in verdünnter Polymerlösung
breiten sich weniger aus als ihre Newtonschen äquivalente. Der Nachweis
zeigt, wie die Polymere an der Grenzfläche durch eine bevorzugte Ausrich-
tung und eine Verstärkung der Wirbelkompression lokal wirken.
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1 Introduction

1.1 General aspects of turbulent/non-turbulent
interfaces

In most real life problems related to the flowing of a fluid, one eventually
will have to deal with turbulent flows. Even today, the highly non-linear and
chaotic behavior of turbulent flows constitute a formidable challenge to both
theoretical and applicative engineering, leaving a number of open issues in
disciplines ranging from material processing to astrophysics. A large sub-
class of turbulent flows is represented by those ones in which turbulent-flow
regions and regions in which the flow is laminar coexist. This is the case, for
example, of boundary layers, jets, shear flows, plumes and wakes, without
forgetting all kind of transitional flows. The boundary separating the laminar
and turbulent regions, often referred to as turbulent/non-turbulent interface
(or for brevity also TNTI), is a highly convoluted and non-stationary surface.
The two regions possess striking differences, among which one of the most
relevant is probably the large change in mixing rates: within a turbulent flow
quantities as momentum, temperature, passive scalars or reactants concen-
trations are spread and mixed at much faster rates [16], while in laminar flow
mixing is brought about by the several orders of magnitude slower molecular
diffusion. Therefore an enhanced spreading of the turbulent region is obvi-
ously sought-for in all applications where such increased mixing is desirable
and avoided in those where it is not. Examples of the former case are chem-
ical reactors, heat exchangers or turbulators on wings, while in the latter
group of applications one can find the drag-reduction, spillage containment,
reduction of sediment re-suspension or brown-out, erosion prevention. The
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1 Introduction

passage itself from a turbulent to a non-turbulent region is sharp and abrupt
[16], the differences are so striking that in several cases it is possible to dis-
cern the boundary between this regions without any particular expedient.
This happens, for example, for the transport of passive scalars whose dif-
fusivity is two to three orders of magnitude smaller than the kinematic vis-
cosity of the ambient fluid [16]. In such regime, the turbulent/non-turbulent
interface effectively delimits the volume of fluid within the scalar quantity
can be transported. Corrsin and Kistler [15] have been the first to study the
properties of the turbulent/non-turbulent interface in a free shear layer; in
their work they identified the non-turbulent region as the part of the field
deprived of vorticity. They theorized that the weak, large-scale irrotational
fluctuations that can be found in the laminar region should smoothly match
the intense small scale vortical fluctuations of the turbulent one in a thin
region called laminar or viscous superlayer. This layer is dominated by the
viscous forces which are recognized to be the sole mechanism of propaga-
tion of vorticity in the irrotational region [7, 16].

The sharp, quasi-discontinuous character of the turbulent/non-turbulent
interface historically made it challenging to study it and direct observations
of the laminar superlayer have not been possible until recent times. Most of
the early studies had to rely on fixed point measurement of the intermittency
of some variable (e.g. velocity, temperature, scalar concentrations) in order
to estimate the average position of the interface. With relatively recent de-
velopments in experimental techniques, the instantaneous measurements of
sufficiently resolved regions of the velocity field next to the interface became
available. Almost at the same time the increase of the available computa-
tional power had permitted to simulate interfacial flows with resolution up
to the Kolmogorov scale. As a consequence, new and more refined ways
to study the turbulent/non-turbulent interface had been developed: thanks
to these new techniques Bisset et al. [6] have first been able to observe the
theorized jump of velocity variance and vorticity across the turbulent/non-
turbulent interface. It has been observed that vorticity is the quantity that
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1.1 General aspects of turbulent/non-turbulent interfaces

changes the most sharply across the interface, proving itself as the most re-
liable way to detect the interface in a number of flows [16, 32, 27]. Other
properties, like the concentration of passive scalars or temperature, have
similar though less steep variations and have been used in order to detect
the interface where vorticity was not directly accessible [6, 32, 27, 78].

Once the interface is identified in a snapshot of the field, it is possible to
compute a series of statistics conditioned with respect to the distance from
the interface. Conditional averaging generates a new reference system for
every point over the interface and performs the average over points which
are homogeneous in their distance from the interface. This permits to high-
light the sharp changes occurring across the interface, where standard av-
eraging methods would smear out such features by averaging together con-
tributes from both turbulent and non/turbulent regions. Such an approach
was used in Holzner et al. [33] as well as in Taveira and da Silva 2013 and
2014 [62, 63] to compute budgets of kinetic energy, vorticity and strain rate
across the interface. In particular, using this approach Taveira and da Silva
2014 [63] found the existence of a layer with a thickness in the order of
the Kolmogorov scale in which the viscous diffusion of vorticity dominates
over all other effects. They identified this layer as the viscous superlayer
theorized by Corrsin and Kristler [15].

While the viscous superlayer is characterized by some of the smallest
scales in the flow [7] the convolution of the interface with its bulges and
pockets is apparently driven by the large scale dynamics of the flow [7].
Indeed, it has been observed that the largest convolutions on the surface of
the turbulent/non-turbulent interface are the imprint of large-scale vortices
beneath it [6] and large scale perturbation in jet outlets are known to produce
the phenomena of bifurcating and blooming jets [55], in which entrainment
is greatly increased. The large scale bulges at the interface are possibly quite
dependent on the large-scale dynamics that sustain the turbulent flow and
may differ in wakes, jets, boundary layers, shear flows and mixing layers [9,
7], even though is still object of debate whether this affects the entrainment
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rate [77]. Nevertheless it is hard to find a single responsible cause for these
changes when comparing such different flows: mean shear, for example,
was found to enhance entrainment by increasing both the viscous and the
inertial contributions to it [79].

Though this might discourage a generalist approach to the subject, there
are also commonalities that are shared by all types of interfacial flows.
These might be determined by "universal" characteristics of turbulence or
be due to generic properties specific to the turbulent/non-turbulent interface.
An example of both cases is probably its fractal-like nature: a constant frac-
tal dimension of the interface has been found in a range of scales spanning
from the integral scale down to near the Kolmogorov scale (Sreenivasan et
al. 1989 [60], Chauhan et al. 2014 [9]. Such a fractal dimension appears
to remain constant among different type of flows and at different Reynolds
numbers. These fractal features sensibly increase the effective surface of the
interface [60] and its diffusive flux of vorticity. Another general property
of turbulent/non-turbulent interfaces is its strong vorticity anisotropy: this
is caused by the solenoidality of the curl, which requires that the vorticity
vector remains roughly parallel to any surface across which the vorticity’s
magnitude drops or increases sharply [7]. This means that vorticity lines
cannot cross or end in the irrotational region but are tilted and follow the
interface contour. Anisotropy, steep gradients and large span of interplaying
scales make turbulent interfaces particularly challenging to both turbulence
modelling and LES simulations. This is partly due to these steep unresolved
jumps in all the properties and partly due to the fact that the hypothesis of
local equilibrium doesn’t hold in these regions [16]. This hinders the capa-
bilities of accurately predicting turbulent propagation in those cases where
the use of such models is the only viable numerical tool (as it is for most
of the medium/high Reynolds number applications). For this reason there
is a need for a sounder understanding of the physical interactions between
large scale dynamics and the small unresolved ones, as well as between the
inertial and the viscous ones.
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1.2 Turbulent flows of dilute polymer solutions

Beside these applicative necessities, the interface is an interesting region
for the study of turbulence per se. It can be seen as a problem of turbu-
lence transition, where weak perturbations in the laminar region are ampli-
fied under increasing shear and finally destabilize acquiring vorticity once
in contact with the interface. At the same time, turbulent fluctuation can un-
dergo the opposite process, i.e. re-laminarization. The difference between
the rate of this process and the rate at which irrotational fluid transitions
into turbulence determines how fast and far the turbulent region can further
spread. Summarizing we can say that in turbulent propagation several con-
current processes contribute to the spreading of the turbulent region across a
wide range of flow scales. Small (as well as large) scale vorticity diffusion,
though fundamental, cannot be used alone to characterize the propagation
rates. Similarly, it is not clear how to relate the differences in the large-
scale turbulence generation mechanisms to the differences in the observed
entrainment. One interesting way to study the balance of the different pro-
cesses contributing to entrainment dynamics is perhaps to "tweak" the tur-
bulence in such a way to alter such equilibrium for the same flow topology,
i.e. forcing mechanism. For example, one may alter the way energy is re-
distributed from the energy-containing scales towards the dissipative range
without significantly change viscous dynamics. Perhaps one of the most ef-
fective ways available to alter the turbulent flow of a Newtonian liquid is the
addition of small quantities of long chain polymers.

1.2 Turbulent flows of dilute polymer solutions

There are a number of ways to alter the properties of a turbulent flow by
adding additives to the flow. In the search of a way of reducing drag in
various wall bounded systems, scientist and engineers experimented with a
wide range of substances capable of reducing drag in a turbulent flow. The
experimented with fibers, clays, bubbles, paper pulp, surfactants cationic
and anionic, dust particles, sand suspensions, flocks, algae and biological
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molecules as certain long chain polysaccharides, flocculating agents, para-
magnetic particles in presence of magnetic fields and polymers [5, 31, 74],
just to name a few. There is not, up to today, general agreement on how
such a range of materials and techniques can achieve drag reduction in a
turbulent flow. This is particularly true for dilute polymer solutions, which
have proven to be one of the most effective agents with reported drag re-
ductions in turbulent shear flows up to 80% using dilute solutions with just
a few parts per millions of polymers [31]. Until the flow remains below a
certain Reynolds number no differences are directly observable between a
dilute polymer solution and a Newtonian fluid flow of matching viscosity
[69]. But when a certain threshold Re number is reached it is possible to ob-
serve a general reduction in the intensity of Reynolds stresses and turbulent
production [69].

One of the simplest models of a polymer molecule approximates it as a
chain of concentrated masses kept together by elastic links. Velocity gradi-
ents of scales comparable to the molecular length would act on these con-
centrated masses by pulling them apart, stretching the polymers and storing
the energy taken from the flow in their bonds. When the shear is removed
the polymer returns to a coiled state returning the energy in the dissipative
range of the flow or, at an even smaller scale, in form of thermal agitation.
One of the main difficulties in the study of turbulence in dilute polymer so-
lutions is the scales of the phenomenon: a few polymer molecules every
some million molecules of solvent already affects a turbulent flow, and the
molecules used have lengths varying from a few tens of nanometres up to
hundreds of micrometres [31]. Up to the present day,the scales of the prob-
lem combined with the impracticalities in measuring polymer stresses made
it impossible to experimentally study the molecular dynamics of polymers in
turbulent flows. Also, on the numerical side, the scales and the large number
of added degrees of freedom from the polymer molecules make it compu-
tationally prohibitive to simulate even small amount of polymer molecules
dispersed in a turbulent flow. Hence, the study of polymer dynamics in tur-
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1.2 Turbulent flows of dilute polymer solutions

bulent flows has to rely on simplified models and numerical simulations.
Despite the intrinsic limitations of this approach and the strong assumptions
used, the polymer models available today have been able to qualitatively
replicate many of the main aspects of turbulent flows of dilute polymer so-
lutions [51].

Most of the current literature on turbulence of dilute polymer solutions
focuses on the reduction of drag and hence on wall-bounded flows. In
these flows, polymers appear to be active essentially in the near-wall region,
where they are particularly effective in suppressing wall-normal velocity
fluctuations and increasing the anistropization of the flow [22]. In general, a
polymer in the flow is stretched, un-stretched, tilted and transported by the
flow according to its time scales, hence the interaction of a polymer chain
with the underlying turbulence is theoretically strongly dependent on the
history of stretching and orientation of the molecule. Nevertheless, in ex-
periments where polymers are locally injected in a point-wise manner, it has
been observed that, by choosing an injection point in the near-wall region,
it is possible to achieve maximum reduction of drag similar to flows with
homogeneously distributed polymers [48, 26, 25]. Moreover, it is observed
that, by reducing the wall-normal velocity fluctuations, the injected poly-
mers remain confined at about the same distance from the wall for several
eddy turnover times downstream of the injection point [48], maintaining
their action limited to such region. The importance of the near-wall re-
gion is highlighted by the diminished drag-reducing potential of polymers
in pipe flows with rough walls [73], suggesting that this phenomenon might
be strongly correlated to the organized structures present in the near-wall re-
gion of hydraulically smooth wall-bounded flows. Hence, even though the
interaction between polymer and fluid is theoretically strongly dependent
on the extension history, i.e. non-local in time and space, at least some of
its macroscopic effects are indeed restricted to limited regions of the flow.
This opens the possibility to at least partially de-couple the flow-polymer
interaction from the extension history and allows linking it more directly
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to the local properties of the flow. In the present study of turbulent/non-
turbulent interfaces this partial loss of memory of the polymer leaves open
the question of whether the polymer affects the interface through the gen-
eral alteration of turbulence or whether its action is more localized directly
in the interfacial region. The scales of the molecule generally used limit
any possible direct action of the polymers to the smallest scales of the flow,
although indirect effects from small scales on larger ones are possible under
certain conditions via triadic interactions [4, 69]. Dilute polymers are hence
an ideal candidate to study the importance of small-scale dynamics at the
turbulent/non-turbulent interface. Indeed, they permit the creation of flows
with the same large-scale energy injection of the Newtonian case, but with a
dissipative/diffusive range shifted towards larger scales. By analysing where
and how the polymers affect the flow, it is possible to understand how much
the interface is influenced by the local small-scale dynamics and how much
it is influenced by the bulk of the turbulence sustaining it. Finally, observing
the behaviour of the polymers at the interface will give further insight on the
mechanisms with which they suppress turbulence.

1.3 Objectives and procedure

This thesis aims to study the dynamics with which the irrotational fluid
nearby a turbulent front transitions to a turbulent state and becomes en-
trained in the mass of the turbulent flow. As previously observed, this
process is characterized by concurrent inertial and viscous dynamics over
the full range of scales of the flow. In order to discern mechanisms which
are most relevant to the entrainment, a comparison is made between how
it unfolds in a classical turbulent fluid against the case of a fluid with non-
Newtonian behaviour (specifically, a dilute polymer solution). In these flu-
ids normal turbulence is altered, and the changed interplay between scales
affects the turbulent/non-turbulent interface giving new insights on this phe-
nomenon. The objective of the thesis can be hence summarized as follows:
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1.3 Objectives and procedure

• study the scales at which the inertial and viscous propagation dynam-
ics operate,

• study how the turbulent front is affected by the introduction of poly-
mers,

• determine if the observed modifications are due to either prevalently
local or non-local effects.

• assess the importance of the viscous against the inertial dynamics in
the propagation of a turbulent front.

In order to do so, a series of direct numerical simulations of propagating
turbulent fronts with both, a Newtonian fluid and a dilute polymer solution
model have been performed. The choice of DNS has been justified by the
fact that turbulent/non-turbulent interface is characterized by both, some of
the smallest and larges scales of the flow. Contrary to experimental mea-
surements, DNS simulations provide full 3D fields and resolution over the
whole range of scales of the interface. Moreover, through dilute polymer
models, the DNS approach gives access to the extensional and orientational
status of the polymers in every point of the turbulent flow. This allows to
directly analyse how polymers interact with turbulence in different regions
of the flow. Being the literature on the behaviour of polymer models with
turbulent/non-turbulent interfaces quite limited, validation against experi-
ment is nevertheless still required. To this purpose, the numerical results
will be compared with data available from a set of experiments performed
by the Turbulence Structure Laboratory of Tel Aviv University. For the pur-
pose of this study, the scope has been limited to turbulent fronts propagating
in absence of mean shear, as this reduces the number of parameters to take
in account and in certain situations permits to use some simplification de-
rived from homogeneous isotropic turbulence and thus greatly simplifying
the analysis of the results. Generality is maintained throughout the work by
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1 Introduction

focusing on those aspect of turbulence and turbulent interfaces which have
been found to be common to different types of flow.

In the following chapters, first the propagation of shear-less turbulent
fronts in Newtonian fluids is discussed, focusing on the role of strain and
enstrophy combined with an analysis of the scales dynamics of viscous and
inertial processes. In Chapter 3 properties and models of dilute polymer so-
lutions are introduced. In Chapter 4 the simulations of turbulent fronts in
dilute polymer solutions will be first introduced. Chapter 5 proceeds with
the discussion of the simulations’ results and analyses the effect of polymers
on the turublent/non-turbulent interface.
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2 Propagation of turbulent fronts in
Newtonian fluids

One of the most delicate parts when approaching the study of the propa-
gation of turbulent fronts is the definition of when a parcel of fluid can be
considered turbulent. It is a non-trivial matter if one considers that still to-
day there is no consensus on a universal definition of what turbulent flow is
(for example see Tsinober 2001 [68] for a generous list of definitions used
in literature). An example of the difficulties in finding a definition for the
concept turbulence is shown in the definition given by Batchelor [3]: "[...] it
is a well-known fact that under suitable conditions, which normally amount
to a requirement that the kinematic viscosity ν be sufficiently small, some
of these motions are such that the velocity at any given time and position
in the fluid is not found to be the same when it is measured several times
under seemingly identical conditions. In these motions the velocity takes
random values which are not determined by the ostensible, or controllable,
or, ’macroscopic’ data of the flow, although we believe that the average
properties of the motion are determined uniquely by the data. Fluctuating
motions of this kind are said to be turbulent." This and most of the avail-
able definitions identifie turbulence as a global property of the flow but fall
short when there is the need to locally determine whether a portion of the
fluid is turbulent or not. Probably the most evident characteristic of turbu-
lence is indeed its fluctuating (both in time and space), chaotic dynamical
properties. It therefore is obvious, in the search for some robust turbulence
marker, to focus on the tensor of derivatives of the velocity field, in particu-
lar on its decomposition in its symmetric and antisymmetric parts, i.e. strain
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2 Propagation of turbulent fronts in Newtonian fluids

and vorticity. Hereafter it will be shown how vorticity is fundamental for the
identification of non-turbulent portions of the flow and how, together with
the strain, it is fundamental in the propagation of turbulent fronts.

2.1 Role of strain and vorticity in turbulence

The strain rate tensor S = 1
2 [∂ui/∂ui + ∂x j/∂xi] is the symmetrical part of

the velocity gradient tensor A = ∇~u = [∂ui/∂x j]. Its antisymmetric part is
the rotation rate tensor O = 1

2 [∂ui/∂x j− ∂u j/∂xi], where the non-zero el-
ements of O are the components of the vorticity vector ~ω = ∇×~u. Strain
and vorticity play a fundamental role in the amplification and break-down of
velocity fluctuations that ultimately lead to turbulence and sustain it. In first
place, there is not such a thing as a turbulent flow without vorticity, making
it one of the necessary conditions for the existence of turbulence. Another
defining element of turbulent flows is the mutual interaction between vor-
ticity and strain. Their nonlinear interactions are indeed responsible for the
ability of turbulent flows to draw energy from whatever forcing mechanism
is available, redistributing it [29]. Vorticity alone, more than the strain, re-
vealed itself to be one of the most robust ways to discern between regions
of turbulent flows from non-turbulent ones [16, 27, 32, 7, 76].

Figure 2.1 shows an example of a TNTI with the velocity field vectors su-
perimposed to the enstrophy field. The white area delimits the region where
enstrophy fluctuations drop under 2% of their average value in the core of
the turbulent region, while this fluid is to be considered non-turbulent, it
still experience some velocity fluctuations. Indeed, the TNTI is highly un-
steady and the movement of its offshoots produces these irrotational veloc-
ity fluctuations in the non-turbulent region. Such fluctuations decay further
away from the interface as (x− xI)

−4 [6], where xI is the local position of
the interface, and consequently also viscous dissipation of kinetic energy
occurs outside the turbulent region [16]. Despite being unsteady and appar-
ently chaotic these irrotational fluctuations do not carry the characteristic
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2.1 Role of strain and vorticity in turbulence

Figure 2.1: Velocity field vectors (arrows) superimposed over isocontour of ω2
i /2

in a DNS of a propagating turbulent front. The color cut-off level is set
at 2% of the average enstrophy in the turbulent bulk of the flow.

increase in transport properties of turbulent flows. Indeed, when weakly
diffusive passive scalars are dispersed in a turbulent flow, the boundaries
of the region containing appreciable concentrations of scalar are found to
agree very well with the boundary of the rotational region [16, 28]. In the
measure to which the turbulent region overlaps over the rotational region of
the flow, the study of the propagation of turbulence can be reduced to the
study of the mechanics of transport, production, diffusion and dissipation of
vorticity fluctuations in the neighbourhood of the interface. The Equation
2.1 for the rate of variation of Ω = (ω2

x +ω2
y +ω2

z )/2, also called enstrophy,
contains all these contributes for a case without body forces.

∂Ω

∂ t
+u j

∂Ω

∂x j
= ωiω jsi j−ν

∂ωi

∂x j

∂ωi

∂x j
+ν

∂Ω

∂x j∂x j
(2.1)

On the left-hand side of Equation 2.1 one finds the rate of variation of
enstrophy and the advection u j

∂Ω

∂x j
, responsible for moving about existing

enstrophy. The last two terms on the right-hand side are the two viscous
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2 Propagation of turbulent fronts in Newtonian fluids

contributes−ν
∂ωi
∂x j

∂ωi
∂x j

and ν
∂Ω

∂x j∂x j
, which respectively dissipate and diffuse

enstrophy. The average of the first term on the right-hand side, ωiω jsi j, is
found to be always positive in turbulent flows and thus it is usually referred
to as enstrophy production [35]. The latter is given by the scalar product
ω ·W between vorticity and the vortex stretching W = ~ωTS = {ω jsi j} and
is responsible for the coupling between the enstrophy and the total strain
rate s2 = si jsi j. The strain-vorticity interaction is such a central point in
turbulence, that Bradshaw [8] includes vortex stretching in its definition:
"[t]urbulence is a three-dimensional time-dependent motion in which vortex
stretching causes velocity fluctuations to spread to all wavelengths between
a minimum determined by viscous forces and a maximum determined by the
boundary conditions of the flow". Accordingly three-dimensionality is also
a minimum condition for turbulence in 2D flows where this term disappears
due to the orthogonality between vorticity and strain, and one cannot talk
of turbulence and phenomena as reverse energy cascade due to the fact that
vortex coalescence can be observed [68, 35, 29]. The enstrophy production
couples the enstrophy equation with the equation for the rate of change of
strain, which is given in absence of volume forces by:

1
2

∂ s2

∂ t2 +
1
2

u j
∂ s2

∂x j
=−si jsikski−

1
4

ωiω jsi j +νsi j∇
2si j− si j

∂ 2 p
∂xi∂x j

. (2.2)

Here indeed it can be seen how ωiω jsi j is a source for the enstrophy equa-
tion and a sink for the rate of variation of the strain. Similarly to the en-
strophy production the strain has its source term −si jsikski due to nonlinear
self-interactions of strain. Likewise to ωiω jsi j, strain production is not pos-
itive definite and in turbulent flows it is positive only on average, while
locally it can contribute to the destruction of strain. The strain equation also
contains a dependence to the pressure field through the term si j

∂ 2 p
∂xi∂x j

and a
viscous term, which results in contributions equivalent to the ones observed
for the enstrophy equation. It has been shown for homogeneous isotropic
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2.1 Role of strain and vorticity in turbulence

turbulence that strain and enstrophy equations are mainly driven by the bal-
ance between production and viscous terms [44, 64, 68], a balance that for
enstrophy has been found to hold locally both in space and time. Those are
orders of magnitude higher than their corresponding terms associated with
forcing [68] and appear to have universal features among different kinds of
flow [44]. Another apparently universal feature is the relative orientation be-
tween the local vorticity vector and the strain eigenframe, which appears to
follow the same pattern in turbulent flows of different nature and Reynolds
numbers [23]. The strain eigenframe can be obtained by decomposing the
symmetric strain rate tensor in S = QΛQT, where Q = {~λ1

~λ2
~λ3} is a ten-

sor with as columns the eigenvectors ~λi of S and where Λ is the diagonal
matrix whose elements Λi are the eigenvalues associated to ~λi. The strain
eigen-decomposition is closely connected to the enstrophy production and it
can be demonstrated that the positiveness of ωiω jsi j depends on the signs of
the strain rate eigenvalues, since −3Λ1Λ2Λ3 = −si js jkski =

3
4 ωiω jsi j [68].

The three eigenvalues are identified by means of their relative magnitude:
the largest eigenvalue is Λ1, and it is always found to be positive, while the
smallest one, Λ3, is always negative. Finally, the intermediate eigenvalue
Λ2 can assume both positive and negative values. Therefore, the positive-
ness of ωiω jsi j derives from Λ2 being on average positive in all turbulent
flows. Locally, it is still possible to find negative values of Λ2 that would
lead to locally negative enstrophy production. As can be seen, the defi-
nition of the three eigenvalues is purely mathematical, and especially the
distinction between Λ1 and Λ2 when both are found positive and of similar
magnitude should not be considered a physical one, as in a fluctuating field
they might switch role rapidly, continuously reverting the axes of the eigen-
frame. Strain-vorticity orientation and enstrophy production are linked by
the relation ωiω jsi j = ω2Λi cos2(~ω ·~λi) which means that the orientation
between strain eigenframe and vorticity can affect the enstrophy production
in a stronger way than the strain and vorticity magnitude alone [68].
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2 Propagation of turbulent fronts in Newtonian fluids

The orientations between vorticity and strain eigenvectors are another
property that appears to be constant among different turbulent flows [23].
Specifically vorticity is found on average to be preferably aligned with~λ2,
weakly aligned with~λ1 and orthogonal to~λ3 [68]. Lüthi et al. [44] showed
how these preferential orientations, in particular the fact that cos(~ω ·~λi)≈ 1,
are ultimately dependent on the viscous diffusion and destruction of vortic-
ity. The alignment cos(~ω ·~λi) is indeed more likely to be stronger in those
regions of the flow where νω∇2ω can be expected to be stronger [44] and
viscosity is known to limit the otherwise unbounded growth of the vortex
stretching ωisi j [68]. Alignments become particularly important in those
regions where the topology of the flow imposes particular orientations be-
tween vorticity and strain directly affecting a number of flow properties.
Tordella and Iovieno 2011 [66] found that different levels of turbulence
among regions of the same flow, and the inhomogeneity originating from
it, are enough to re-organize the moments of the velocity derivatives in pref-
erential directions. In their simulations, an initially homogeneous isotropic
turbulent flow is manipulated in such a way to reduce the intensity of tur-
bulent fluctuations in half of the domain. What has been observed in this
shearless mixing flow is an increase in the mixing region of anisotropy of
the velocity derivatives, reduction of compression of fluid filaments paral-
lel to the mixing layer and increase of compression of those orthogonal to
it. Regions of different turbulent kinetic energy also differ in their enstro-
phy content, so this can be another example of the tendency of the vortical
lines to tilt in presence of strong enstrophy gradients and to affect turbulent
fluctuations accordingly. Such re-organization imposed by inhomogeneities
in the flow is most extreme for the case of the TNTI and it will be shown
throughout this thesis how this plays a major role in the propagation of the
turbulent front.

The relation between viscosity and large scale inhomogeneity had led to
the definition of two scalings for the TNTI. Corrsin and Kistler estimated
the thickness δv of the viscous dominated region of the interface (the vis-
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2.1 Role of strain and vorticity in turbulence

cous super layer) to be in the order of the Kolmogorov scale η . Such scal-
ing was confirmed in several instances both in shearless (using oscillating
grids experiments [33]) and sheared unbounded flows (planar jets [62, 79]).
The evidence had been found in the position of the peaks of conditional
statistics of vorticity and the peak of viscous diffusion close to the interface
which all have sizes in the order of few η . It is also evident that the com-
plex large-scale features of the interface are relevant to the interface. The
layer mostly characterized by these large scales is the one da Silva et al.
[16] refers to as turbulent sublayer which is the "region where the major ex-
changes between the irrotational fluid and the fully turbulent core occur" [7].
This layer is roughly identified with the region of rapid vorticity magnitude
growth [16] and it has been found to scale well with the Taylor microscale
λ . The two scalings have been also associated to different mechanics of
turbulent propagation: one obviously is the small-scale entrainment due to
viscous diffusion of vorticity also called nibbling. Beside this, a large-scale
entrainment process takes place when pockets of irrotational fluid are sur-
rounded by large scale structure and advected inside the turbulent bulk of
the flow before acquiring vorticity. This process is usually called engulf-
ment [47] and its relevance on the global entrainment rate is still debated
[7, 77]. The ongoing discussion extends also to the scaling of the TNTI:
recently Borrell and Jimenez 2016, while agreeing on a η scaling for the
viscous sublayer, demonstrated that in flows characterized by strong shear
the observed peaks of vorticity and η scaling can be the product of statistical
artifacts [7]. These scaling are evinced from the topology of different condi-
tional averages at the interface, in this way they depend on how conditional
sampling is performed and on how the interface is identified in first place.
Moreover, the information about the relevant scales at the interface is in this
way limited to the scales perpendicular to it. Another approach is to inves-
tigate relevant scale of the phenomena leading to the entrainment through
their spectral content as it is going to be shown in the following paragraphs.
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2 Propagation of turbulent fronts in Newtonian fluids

2.2 Scale dynamics of enstrophy in a propagating
shearless turbulent front

As previously noted, vorticity is one of the most evident markers of tur-
bulence and, therefore, it helps in understanding how turbulent fluctuations
are generated, amplified, transported and destroyed in the flow. Equation
2.1 gives a measure of exactly this and for the rest of the chapter the tur-
bulent front will be analysed in terms of its enstrophy budget. Focus will
be given to the front of a turbulent flow without mean shear as a simplified
case representative of many flows, where the turbulence is generated (and
possibly sustained) away from the interface. Such case also allows to reduce
the number of parameters in the study, as different levels of shear intensity
do not need to be accounted for. The analysis is moreover simplified by
using one of the most studied and basic classes of turbulent flows: homo-
geneous isotropic turbulence. Though practically non-realizable, homoge-
neous isotropic turbulence (HIT) represents an academical approximation
of regions of actual turbulent flows, but with independence from boundary
conditions and other external influences [29, 68]. It is a greatly simplified
system in which statistics are invariant with respect to both, translation and
rotation, making it a statistically 1D problem. In numerical simulations,
HIT can be generated as the natural evolution of the Navier-Stokes equa-
tion, starting from a random velocity field or the result of an active stirring,
usually via a body force. It has been extensively investigated in literature,
because it allows to study fundamental properties of turbulence in a sim-
plified framework with a limited parameter space (essentially reducible to
its Re number). It is interesting to study how this prototypical kind of tur-
bulence propagates into quiescent fluid and with this purpose a set of direct
numerical simulations have been performed in which TNTI have been added
to an initially homogeneous isotropic turbulent flow.

A selected part of the results discussed in this section are published in
Cimarelli, Cocconi, Frohnapfel and De Angelis 2015 [12]. In this numerical
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2.2 Scale dynamics of enstrophy in a propagating shearless turbulent front

experiment, the periodic computational domain is first "filled" with homo-
geneous isotropic turbulence by a stochastic body forcing fi with a Gaussian
distribution centred on the wave number |k|= 5 with variance σ = 0.6. The
dimensionless Navier-Stokes equations:

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p

∂xi
+

1
Re

∇
2ui + fi (2.3)

have been numerically integrated via a pseudo-spectral solver according to
the scheme illustrated in Appendix A.1, 1024× 512× 512 Fourier modes
have been used for the space discretization of a tri-periodic domain of size
Lx× Ly× Lz = 4π × 2π × 2π . For the time discretization, a time step of
∆t = 5 ·10−5 has been used. Initial velocity fields have been selected from
a statistically stationary state at Reλ0 = u′λ0/ν=120, where u′ is the root
mean square of the velocity fluctuations and the initial Taylor length scale
has been defined as λ0 =

√
15u′2/(2si jsi j). Further details on the simulation

parameters are given in Table 2.1. After an initial field has been selected,
its velocity fluctuations are artificially damped to zero in half of the domain
by multiplying the velocity in every point of the field by a function p(x) ∈
[0,1] in such a way as to generate two turbulent/non-turbulent interfaces.
Unresolved discontinuities are avoided using a smooth damping function
for the velocity fluctuations preventing the appearance of numerical artifacts
as Gibbs phenomena. The damping function, similar to the one used by
Tordella and Iovieno 2011 [66], is given by:

p(x) =
1
2

[
1+ tanh

(
a

x
Lx

)
tanh

(
a

x−Lx/2
Lx

)
tanh

(
a

x−Lx

Lx

)]
(2.4)

and permits to tune the initial thickness of the interfacial region and hence
the steepness of the gradients thereby. Different choices of a have been tried
and in the end a value of a = 20π has been used. In particular, it has been
noticed that the choice of high values of parameter a introduces sharp and
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2 Propagation of turbulent fronts in Newtonian fluids
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Figure 2.2: The smoothing function from Equation 2.4 superimposed over plotted
iso-surfaces of the enstrophy field.

Lx×Ly×Lz ∆t 1/Re l0 λ0 Reλ0 η0 ∆x/η0

4π×2π×2π 5 ·10−5 0.005 0.4 0.19 120 0.0075 1.6

Table 2.1: Initial parameters of the simulation: l0 is the integral length scale of the
initial condition and ∆x/η0 the initial resolution.

persistent peaks of vorticity at the interface during all the propagation. As
most basic example no mechanism for sustaining turbulence is introduced
in the simulation of the propagation, which means that after the initial ho-
mogeneous isotropic condition is produced and the interface introduced, no
further forcing is provided during the propagation run. In doing this, any
possible influence from the forcing mechanism is prevented, producing a
flow where turbulence propagates and decays at the same time. Following
such a procedure, over 20 independent realizations have been produced and
statics have been ensemble averaged among these realizations. The position
of the average interface position is tracked in time by locating the outer-
most points where a minimum level of enstrophy is reached for each y,z

coordinate. This threshold level has been set to 0.02Ωb or 2% of the aver-
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Figure 2.3: Average interface position with respect to time. xI0 denotes the position
of the interface at the beginning of the decay. Adapted from [12].

age enstrophy in the midplane of the turbulent flow (from now referred as
’bulk’) at a given time. Thus, the threshold decreases in time with the same
rate as the turbulence decay of the bulk, it will be shown as this definition
of thresholds permits to effectively detect the region of enstrophy growth in
this time and spatially evolving flow. After an initial transient, the interface
position defined in such a way shows a growth rate which is proportional
to
√

t, which is typical to for time evolving shearless turbulent fronts [32].
Statistics are sampled only after this growth rate is established at around 5
integral times scales from the beginning of the decay, while Reλ = 50.

2.2.1 Enstrophy budgets for a planar symmetric turbulent front

The purpose of the following analysis is to gain a better understanding of
which contributes are more relevant to the propagation of the turbulent front
and at which scales each contribute is most active. The decaying flow is con-
stituted by a bulk of turbulent flow, which remains quasi-homogeneous and
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2 Propagation of turbulent fronts in Newtonian fluids

isotropic for all the duration of the simulation. Further away in x−direction
from the center of the bulk the flow grows more and more inhomogeneous.
Statistical homogeneity in y− z direction is nevertheless maintained and
such planar homogeneity permits us to reduce equation 2.1 to:

∂ 〈Ω〉
∂ t

= 〈ωiω jsi j〉−ν

〈
∂ωi

∂x j

∂ωi

∂x j

〉
− ∂ 〈Ωu〉

∂x
+ν

∂ 2〈Ω〉
∂x2 , (2.5)

where〈Ω〉 = 〈ωiωi〉/2 and 〈·〉 indicate both the ensemble average and
spatial average in the homogeneous y− z planes. Here it can be seen that
the major differences from a completely homogeneous isotropic turbulent
flow reside in the fact that, in general, the diffusive and advective terms (re-
spectively − ∂ 〈Ωu〉

∂x and ν
∂ 2〈Ω〉

∂x2 ) are in general non-zero on average. Both
terms contribute only through their derivatives in the inhomogeneous direc-
tion already pointing out as this inhomogeneity is required in order to arise
the spatial fluxes necessary to the propagation of the front. The presence
of the interface hence leads to both, the usual redistribution of fluctuations
throughout the space of scales as well as into the physical space. Again it
can be observed as both the inertial and viscous terms redistribute enstro-
phy both into the physical space (− ∂ 〈Ωu〉

∂x and ν
∂ 2〈Ω〉

∂x2 ) and into the scale

space (〈ωiω jsi j〉 and ν

〈
∂ωi
∂x j

∂ωi
∂x j

〉
) hence once again this to process remain

entangled in the two spaces.

Figure 2.5 shows the various terms of the enstrophy equations in function
of the distance x from the average position of the interface XI and normalized
by the Taylor microscale λ measured in the bulk of the flow. In the analy-
sis the flow is divided in three regions, identifiable from Figure 2.5: firstly
the bulk region for (x−XI)/λ )< 10 is shown. There turbulence is in good
approximation still homogeneous and isotropic, the total variation of enstro-
phy is dominated by the production and the viscous dissipation sensibly in
favour of the latter. These two terms are mostly producing, redistributing
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Figure 2.4: Average magnitude of the vorticity components ωp in the homogeneous
plane and ωx normal to it as a function of the distance from the aver-
age interface position. The value are normalized by 〈Ω〉b the average
magnitude of the total vorticity in the bulk. Adapted from [12].
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Figure 2.5: Components of the enstrophy equations as a function of the distance
from the average interface position. The inset is a magnification of the
same plot at the interface region. Adapted from [12].
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and destroying enstrophy in the scales space. The negligible contribution of
the spatial fluxes (both diffusive and advective) denotes that, in the physi-
cal space, enstrophy is redistributed roughly uniformly in all the directions
within this region, the presence of the interface apparently has little effect on
enstrophy dynamics in the bulk region. Also, the importance of the balance
between dissipation and production mechanics in a turbulent flow is shown.
As a matter of fact, all the other terms of the enstrophy budget are some
orders of magnitude smaller and the time variation of enstrophy in most of
the flow appears to be determined only by the difference between 〈ωiω jsi j〉
and 〈ν∂ωi/∂x j∂ωi/∂x j〉.

Moving forward towards the interface, it is possible to identify a region
around −10 < (x−XI)/λ < −0.5 that from here on will be defined inho-

mogeneous layer due to the growing effect of the inhomogeneous gradient
of enstrophy in the flow. Following the gradual reduction of enstrophy in-
side this layer, both production and dissipation decrease in magnitude. Most
notably, the increasing mean gradient of enstrophy is accompanied by a non-
negligible contribution from the advective flux. Initially, the negative flux
draws enstrophy from the region −10 < (x−XI)/λ < −5, then it release
enstrophy in the region −5 < (x−XI)/λ < −0.5 where the advective flux
becomes positive. Enstrophy advection reaches its peak at (x−XI)/λ =−2
and for most of the inhomogeneous layer it remains orders of magnitude
larger than the viscous diffusion.

Finally, the interfacial layer is reached for (x−XI)/λ > −0.5. In this
layer the intensity of the advective flux becomes comparable to the one of
ωiω jsi j, the joint positive contribute of these two terms is strong enough
to overcome the viscous dissipation and to give rise to a positive total vari-
ation of enstrophy in time ∂ 〈Ω〉/∂ t. Also notable is a weak but positive
viscous diffusion which marks the presence of the viscous superlayer in this
region. Despite being small, the growth rate still allows the propagation
of the turbulent front in face of the general decay of turbulence in the rest
of the flow. It must be stressed that this growth is driven by the inviscid
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2.2 Scale dynamics of enstrophy in a propagating shearless turbulent front

transport of enstrophy via velocity fluctuations and cannot be addressable
to diffusion alone. Also notable is the fact that the regions defined here are
independent from the time during decay, hence the Reλ , at which they are
considered considered. Comparing Figures 2.5 and 2.4 it is possible to see
how the regions where the advective flux is more intense also coincides with
those regions where the anisotropy of vorticity is stronger. The negative ad-
vection close to the bulk is thus affecting mainly the in-plane component of
vorticity, while its increase close to the interface can be attributed to tilting
of out-of-plane vorticity forced by the vicinity of the interface itself.

2.2.2 Spectral Enstrophy Budget

If a more direct analysis of the scales dynamics is sought for, one way to
investigate it is to analyse the spectral content of the components of the en-
strophy. Due to the inhomogeneity in x−direction, the enstrophy spectrum
will depend both on the location in the physical space and on the wave-
numbers. In particular, for the symmetries of the problem, it is possible to
reformulate the enstrophy written in the wavenumber space along the ho-
mogeneous (y,z)-directions and in physical space along the inhomogeneous
x-direction, i.e. Ω̃ = Ω̃(x,kπ) where ˜(·) refers to a 2D Fourier transform in
the homogeneous (y− z)-space and kπ = ky,z.

This 2D spectrum of enstrophy is depicted in Figure 2.6 normalised by
λ 3/u′2b and as a function of the distance from the interface and the wave-
number kλ . For two different times during the decay they show how the
maximum enstrophy is located in the bulk at a kλ of around 2.5, this corre-
spond to a scale in the physical of L/λ = 2π/(kλ ) ≈ 2.51. Noteworthy is
how the spectral distribution of enstrophy remains rougly constant within all
the bulk region, only into the inhomogeneous layer a gradual reduction of
the enstrophy reduction of enstrophy appears and becomes more intense get-
ting closer to the interface. This region of enstrophy depletion corresponds
to the region of Figure 2.5 at −10 < (x−XI)/λ < −5 where the advection
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Figure 2.6: Isocontours of log(〈Ω̂〉λ 3/u′2b ) in the (k,x−XI)-space for (a) t/t0 = 4.5
and (b) t/t0 = 8. Adapted from [12].

acts as a sink. Similarly the positive advection observed in Figure 2.5 here
gives rise to an increase of enstrophy in the outer part of the inhomogeneous
layer for−5< (x−XI)/λ <−0.5 at intermediate to high wave-numbers kλ .
This is particularly evident at t/t0 = 8, where the peak reaches even higher

26



2.2 Scale dynamics of enstrophy in a propagating shearless turbulent front

wave-numbers than in the bulk region, while small wave-numbers see a de-
cay of enstrophy in both cases. The interfacial layer sees a general decay of
enstrophy at all wave-numbers, with a depletion of the in-plane small scales
which appears almost linear in space. For what concerns the evolution of
the spectral enstrophy in this hybrid Fourier-physical space one should start
from its formulation in the Fourier space only. The enstrophy in the Fourier
space is Ω̂ = ω̂iω̂

∗
i /2, where ·̂ denotes the Fourier transform and ∗ denotes

the complex conjugate. In the case of homogeneous isotropic turbulence,
the balance equation for spectral enstrophy is:

∂ Ω̂

∂ t
=−ik jω̂

∗
i ω̂iu j + ω̂

∗
i

(
̂
ω j

∂ui

∂x j

)
−2νk2

Ω̂, (2.6)

where k2 = k2
x + k2

y + k2
z and i is the imaginary unit. As for the spectral en-

strophy alone the budget equation due to the inhomogeneity in x−direction
will actually depend both, on the location in the physical space and on the
wave-numbers. Considering this inhomogeneity, the resulting equation will
be:

∂ Ω̃

∂ t
=−ikπ ω̃

∗
i ω̃iuπ︸ ︷︷ ︸

Tk

− ω̃
∗
i

∂ω̃iu
∂x︸ ︷︷ ︸

Tx

+ ω̃
∗
i

(
˜
ω j

∂ui

∂x j

)

︸ ︷︷ ︸
γ

−2νk2
ΠΩ̃︸ ︷︷ ︸

εk

+ν
∂ 2Ω̃

∂x2︸ ︷︷ ︸
Dx

−ν
∂ω̃i

∂x
∂ω̃∗i
∂x︸ ︷︷ ︸

εx

, (2.7)

where k2
Π
= k2

y + k2
z . Equation (2.7) allows us to analyse the dynamics

of enstrophy in both, the wavenumber and the physical space. Since the
wavenumber space kπ is isotropic, the integral of Equation (2.7) over a shell
in the (ky,kz)-space of radius k and thickness dk is considered. In such
a way Equation (2.7) turns to be a function only of k and of the position x.
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Compared to Equation 2.1, the new coordinate k adds a further dimension to
the budget by showing the contributes from advection, diffusion, production
and dissipation at different wave-numbers. Thus, while the scale transfer in
Equation 2.1 could only be inferred here the wave-number dependence is
made explicit. This formulation is only representative of the scales in y− z

directions, while the information about the scales in x−direction at best can
only be deduced. Looking into the details of Equation 2.7, it is possible
to divide it in contributes into the physical space and contributes into the
Fourier space. γ is the production term due to vortex stretching. Here, as
in the conventional budget, it represents a source of enstrophy due to non-
local interactions of vorticity and strain, it should not surprise therefore that
in Equation 2.7 this only has contributes in the Fourier space. The dissipa-
tive term in its spectral form gives rise to two different contributes, εk and
εx, which are related respectively to the gradients into the in-plane wave-
numbers k and to the spatial gradients in x−direction. Similarly there are a
spectral flux Tk which redistribute enstrophy among different in-plane wave
numbers and an inertial spatial flux that transfers enstrophy towards differ-
ent spatial locations in x−direction. The last flux is the viscous diffusion in
the physical space.

The analysis of the spectral budget can at some points be simplified, if the
terms from Equation 2.7 are regrouped in a spatial flux Sx = Tx +Dx, also
the dissipative terms and the production can be grouped into an effective
source term ξ = γ + εk + εx. In this way Equation 2.7 can be rewritten as:

∂ Ω̃

∂ t
= ξ +Sx +Tk, (2.8)

which immediately describes, as a function of k and the distance from the
interface (x−XI)/λ , how enstrophy is generated/destroyed and transferred
into both, the physical space and both the wave-number space. Here the
analysis proceeds following the subdivision introduced in the previous sec-
tion studying the spectral budgets of the bulk region in the following order:
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Figure 2.7: Spectral enstrophy budget within the bulk turbulent region for t/t0 =
4.3. The terms of Equation (2.8) are shown in (a) while the different
components of ξ and Sx from Equation (2.7) are delineated in (b).
Adapted from [12].

the inner and the outer part of the inhomogeneous layer finishing with the
interfacial layer.

As it has previously been done with the conventional budget, the bulk re-

gion is first considered as this region behaves in good approximation like
a decaying homogenous isotropic turbulence. Indeed, looking at the time
variation of enstrophy in Figure 2.7, it can be seen how enstrophy is decay-
ing over the whole spectrum. The spectral flux Tk, here negative at small
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2 Propagation of turbulent fronts in Newtonian fluids

kλ and positive at large ones, represents the classical view of a direct cas-
cade of enstrophy from the large scales (kλ < 7) towards the smaller ones
(kλ > 7). The prevalent negativeness of the source term ξ means that the
dissipative terms are stronger at almost all the wave-numbers and only at
kλ < 7 the production term can overcome the dissipation. Despite the flow
is homogeneous in the bulk region, one can observe as a non-negligible Sx

and εx arise here. These show a maximum magnitude of about one half of
their spectral counterparts Tk and εk and in this region they can be inter-
preted as respectively the spectral transfer and dissipation in the x−scales
space (or wave-numbers kx). This is confirmed by the fact that the integral
∫

Sxdk here is negligible, hence it does not produce any net transfer of en-
strophy towards the interface but it is only cascading it from low kx to larger
ones. In a similar way, in the homogeneous turbulent bulk, εk is the result
of dissipation of enstrophy in the kx space. This is again confirmed by the
fact that

∫
εxdk ≈ ∫ εkdk/2 which is what is expected from isotropic turbu-

lence. It will be shown how, getting closer to the interface, the behaviour
of the spatial terms Sx and εx will deviate from what was observed here un-
der the effect of the growing inhomogeneity in the flow. There these terms
will be less and less representative of the underlying scale transfer and will
become predominantly determined by the spatial mean gradients. In fact,
it is possible to observe a departure from the homogeneous behaviour of
the bulk region already in the inner part of the inhomogeneous layer. The
spectra of a representative section of this region are depicted in Figure 2.8
for (x−XI)/λ =−7, a section which corresponds to the location where the
enstrophy drain due to inertial advection takes place in Figure 2.5. Here,
as in the bulk, enstrophy is decaying at all the scales. On the qualitative
level, here the spectra show the same general behaviour as in the bulk with
the only noticeable distinction of the spatial flux Sx, which is a sink for a
slightly large range of wave-numbers compared to how it was in the bulk.

Figure 2.9 shows how the spectra radically change in the outer part of
the inhomogeneous layer for (x−XI)/λ = −2. In this region enstrophy is
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Figure 2.8: Spectral enstrophy budget within the inhomogeneous layer at (x−
XI)/λ = −7 where the peak of enstrophy draining due to the spatial
flux takes place. The terms of Equation (2.8) are shown in (a) while the
different components of ξ and Sx from Equation (2.7) are delineated in
(b). Adapted from [12].

being released by the inertial advection from the inner textitinhomogeneous
layer. It can be observed how, while still negative, the variation of enstrophy
is much less intense than in the bulk and how the larger wave-numbers are
already at equilibrium. The reason for this reduced decay rate is attributable
to the now strong spatial flux Sx which is positive at all the scales, implying
that enstrophy is being advected at all scales from the inner inhomogeneous
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Figure 2.9: Spectral enstrophy budget within the inhomogeneous layer at (x−
XI)/λ = −2 where the peak of enstrophy source due to the spatial
flux takes place. The terms of Equation (2.8) are shown in (a) while the
different components of ξ and Sx from Equation (2.7) are delineated in
(b). Adapted from [12].

layer and this flux strongly overcomes the underlying enstrophy cascade in
the kx space. Watching the inset of Figure 2.9, as expected it can be observed
how the flux Sx is an essentially inviscid process as the viscous diffusion Dx

is still negligible compared to the advection Tx. The diminishing intensity
of the enstrophy production γ preventsto overcome the dissipative terms,
εx and εk at all the scales, and that is in such a way that the source ξ is
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2.2 Scale dynamics of enstrophy in a propagating shearless turbulent front

negative everywhere. Also, Figure 2.9 shows that the dissipation εx due to
the gradients in the inhomogeneous direction is growing in magnitude when
compared to εk and it peaks at the same numbers as the production term
γ . As in the rest of the flow, the spectral transfer Tk here drains large-scale
enstrophy and releases it at smaller ones. The spatial flux Sx is observed to
release enstrophy at larger wave-numbers compared to the one drained in the
inner inhomogeneous layer. Indeed, while the negative peak of Sx is located
at kλ ≈ 2, the positive the flux peaks closer to the interface at kλ ≈ 5. This is
in agreement with the representation of Sx as a flux in both the physical and
the scales space, as the enstrophy drained at large scales close to the bulk
is advected towards the interface and at the same time undergoes through a
cascading process feeding enstrophy close to the interface at smaller scales.

At the interface, depicted in Figure 2.10, it is finally possible to observe
a non-negative enstrophy variation at all the wave-numbers. Especially the
largest in-plane scales of the flow gain enstrophy while the intermediate to
small ones have reached an equilibrium. Again in this generally decaying
flow this growth cannot be attributed to the local production of enstrophy
γ . Indeed, it remains as in the outer inhomogeneous layer always weaker
than the dissipation leading to ξ being negative at all wave-numbers. Part of
this is due to the increasing relevance of the viscosity at the interface and in
particular to the growth of εx. The growth of enstrophy is again determined
by the intensity of the spatial transport Sx, mostly sustained by the advection
Tx. It is also interesting to notice the apparently anomalous behaviour of the
spectral transfer Tk that, due to the strong anisotropy, at the interface does
not enforce a transfer from small to large wave-numbers anymore, but acts
as a sink for all the in-plane scales instead. In accordance with what was
pointed out in the previous sections, this is indicative of the spectral transfer
of enstrophy due to vortex tilting from the k in-plane space towards the kx

at smaller scales. Finally, the viscous diffusion here as in the budget of
Figure 2.5 shows a weak but positive contribute. It is interesting to point
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Figure 2.10: Spectral enstrophy budget within the interfacial layer at (x−XI)/λ = 0
for t/t0 = 4.3. The terms of Equation (2.8) are shown in (a) while the
different components of ξ and Sx from Equation (2.7) are delineated
in (b). Adapted from [12].

out how the in-plane scales of viscous diffusion Dx are even larger than the
ones mostly gaining from the spatial transport. This is in apparent contrast
with the typical figure of inertial processes being large-scale phenomena and
viscous processes being small-scale ones. It must be remembered that Dx is
directly representative of diffusion among scales in the in-plane direction,
while it has been observed as the out-of-plane scales of viscous diffusion
show thicknesses in the order of few Kolmogorov scales. It appears then
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Figure 2.11: Viscous diffusion of enstrophy in a 2D cross-section of the
turbulent/non-turbulent interface. Adapted from [12].

that diffusion is mostly active in sheets of relatively large in-plane extension
and Kolmogorov scale thickness.

As a confirmation of the observations made in the spectral analysis, one
can qualitatively assess the scales of the viscous diffusion at the interface.
By plotting the viscous diffusion over the surface of the TNTI, as can be seen
in figure 2.11, a qualitative observation reveals that the diffusion is mostly
positive in relatively large spots at the interface. The thickness of the vis-
cous diffusion dominated layer observed in previous studies [63], together
with the observations from spectral analysis, put together the picture of a
thin layer where vorticity fluctuations parallel to the interface diffuse most
intensely at large scales. The small-scale nibbling has more the form of a
thin but spread vortex sheet than that (often depicted in literature) of a frac-
tal like hierarchy of increasingly small structures that diffuse their vorticity
down to the Kolmogorov length scale. Indeed, by observing a cross-section
of the field of viscous diffusion ∂ 2Ω/∂xi∂xi in figure 2.12 as expected we
see how viscous diffusion is organized in thin stratified layers of alternat-
ing sign with thickness usually around 4− 5η . The outermost layer being
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Figure 2.12: Viscous diffusion field in a cross-section of the flow.

mostly positive is the one which in conditional averages produces the char-
acteristic viscous dominated region known as the viscous superlayer.
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3 Dilute polymer solutions models

3.1 Dilute polymer solutions and turbulent flows

In this chapter basics elements on the dynamics of dilute polymer solution
will briefly be introduced together with the kinetic theory which is the ba-
sis to the most diffuse models for the dynamics of dilute polymer solutions.
Polymers are molecules constituted by several repetitions of a same molec-
ular sub-group called monomer. They are ubiquitous in modern industrial
applications due to their versatility but are also very common in nature (ex-
amples range from the DNA chains to the pectin that thicken jellies and
jams). In fluid flow applications polymers gained attention due to some in-
teresting non-Newtonian phenomena that arise in flows of solvents in which
they are diluted in small concentrations. The most evident and most studied
of such modifications is certainly arise in turbulent bounded flows of dilute
polymer solution, where the drag of the flow can be found to be as little
as 80% less than equivalent Newtonian flow with matching viscosity [5].
Other anomalous phenomena are for example the dye swelling in jets or rod
climbing in rotating tank with a rod in the centre [31, 5].

In dilute polymer solutions the Newtonian linear relation between stress
and strain fail to describe the flow for all but the most simple laminar cases.
Some viscous-like relations can be used to a certain extent, but generally
these fail to describe even qualitative aspects of the flow when it transi-
tions to the turbulent state. In order to better model the rheology of diluted
polymer solutions molecular dynamics of the polymer chains have to be ac-
counted for. One of the most successful approaches to the problem is the
kinetic theory, which attempts to model polymer molecular dynamics via a
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3 Dilute polymer solutions models

stochastic approach. This theory in particular is geared towards modelling
the behaviour of high molecular weight, flexible polymers constituted by
millions of unbranched chains of a single type of simple monomer (e.g.
without phenyl groups, cyclic sugars etc. [31]). Moreover, certain assump-
tions are required such to limit the applicability of the model to dilute poly-
mer solutions only. "Dilute solution" means a mix of polymers dissolved
in a solvent in which the addition of polymers does not significantly alter
the viscosity of the solvent: typical concentrations are in the order of few
polymer molecules per million solvent molecules [31]. In the polymer chain

Figure 3.1: An atomic force microscope picture of a poly(2-vinylpyridine)
(n×C7H7N) chain of about 1500 monomers at different degrees of
un-coiling [56].

the single links between the molecules can rotate and bend allowing a great
number of possible configurations of the complete chain as it can be ap-
preciated in Figure 3.1 for poly(2-vinylpyridine) molecules. In absence of
shear, the chain tends to assume a compact coiled configuration like the one
assumed on the bottom right of Figure 3.1, while under the effect of velocity
gradients the different velocities that different parts of the chain experience
tend to uncoil the chain stretching it. One of the most typical example in the
literature on turbulence of dilute polymer solutions is the polyethilenoxide
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3.1 Dilute polymer solutions and turbulent flows

or PEO (monomer −CH2−CH2−O), which can form single chains with
up to millions of monomers for an extended length up to the order of few
micrometres [31].

For dilute polymer solutions, experimental evidence in laminar flows
showed that the rheology of the solution does not show any differences from
the one of their solvent [31]. Evident modifications in both the macroscopic
and small scale behavior of the flow start to arise only when the flow start
to transition to a turbulent state [31]. Evidence shows that, while changing
the features of the flow at all scales, polymers more directly interact with
the smallest scales of the flow: for example, when drag reduction appears,
polymers strongly decrease Reynold stresses in the flow [75], increase the
correlation length of small scales and a shift of the energy content towards
larger scales compared to a Newtonian flow [69]. Nevertheless, suppres-
sion of turbulent properties is not granted in all conditions and in certain
instances polymers have been found to actually increase the intensity of tur-
bulent fluctuations [67, 20, 42]. A direct interaction between small scales
of the flow and single polymer chains might look obvious, but it must be
remembered that drag reduction in pipe flow experiments manifests itself at
Reynolds numbers in the order of 103 [31], at these Reynolds numbers in the
same experiments the length of all but the heaviest fully stretched polymer
molecules are one or two orders of magnitude smaller than the Kolmogorov
length scale. Nevertheless, the coupling between the flow and the poly-
mers strongly depends on the coupling between their characteristic scales as
the dependence between drag reduction and polymer chain length demon-
strate [31]. Hence, in order to compare flows of dilute polymer solutions,
the Reynolds equivalence is not enough and an additional non-dimensional
group comparing polymer and fluid scales is required. This group usually
takes the form of either the Deborah number or the Weissemberg number.
The Deborah number De = τ/To where To is the characteristic time of the
observed phenomena and τ is the polymer relaxation time, i.e., the time
required for the shear stress in a simple shear flow to return to zero in con-
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stant strain conditions [51]. The Weissemberg number can be defined for
shearing flows as the product between the shear rate and the relaxation time
such that Wi = dU

dy τ . In a Newtonian fluid under such conditions, the shear
stress would immediately go to zero leading to a zero relaxation time while
for a Hookean elastic material the stress is maintained indefinitely and the
relaxation time is infinite. The Deborah number can be seen as an indicator
of how much a material undergoing a deformation with a characteristic time
scale To behaves as an elastic solid or a Newtonian fluid (with De = ∞ for
solids and De = 0 for fluids). In reality, no perfectly Hookean or Newtonian
material exists and all materials show a behaviour in between the two: for
example, water has a relaxation time in the order of 10−12s and glass one
of 28 hours [51]. The relaxation time of a polymer depends on the shape its
coils assume in a given configuration and on its orientation with respect to
the perturbation. This means that polymer do not have a single relaxation
time but a whole spectrum of them. Nevertheless, in many models a single
representative relaxation time is usually assumed for simplicity. In the case
of dilute PEO-water solution with molecular weight Mw = 2 · 106g/mol,
the typical relaxation time range is in the order of 10−4s depending on the
polymer concentration [59].

At the polymer length scale, the smallest velocity gradients in the flow are
still perceived as a uniform shear [5], and the reaction of a polymer to these
gradients would happen at scales smaller than the Kolmogorov one. Nev-
ertheless, polymers induce macroscopic changes at all scales of the flow.
One reason, at least for the case of the PEO, comes to the experimental ev-
idence of the formation of supermolecular structures between several poly-
mer chains even at low concentrations that would form reticulate structures
of much larger dimensions [36, 37], but there are other mechanisms with
which small-scale inputs can result in the production of large-scale alter-
ations via triadic interactions [69]. As it can be seen from this brief intro-
duction to the topic, polymers increase the complexity of the problem on
several levels. The large spectrum of configurations a single polymer chain
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alone can assume can add millions of degrees of freedom to the problem
and a single fluid parcel would contain several of them. One is then forced
to resort to a number of simplifications in order to reach a numerically treat-
able formulation of the problem. In this process a number of dependencies
on the properties of the molecules employed, on their interaction with the
surrounding solvent and other polymer’s molecules, all characteristics of
the solution will be deliberately over-simplified or ignored. The resulting
models have the advantage of qualitatively capturing some of the relevant
dynamics of turbulent flows of dilute polymers solution. Moreover, as for
turbulence modelling, the success of a simple model can help to direct the
research in understanding what is mostly relevant in the observed physical
phenomenon. Thus, in the following the theory behind the FENE-P model
used in the rest of this work will be introduced.

3.2 The kinetic theory

The most diffuse models in computational rheology of dilute polymer solu-
tions start from the kinetic theory in order to reach a continuum formulation
of the relation, or constitutive equation, between stress and deformation at
a macroscopic level, .i.e. at the level of the fluid element. The kinetic the-
ory is a coarse-grained model for the polymer conformation, which means
it does not try "to provide a description of the fluid at a molecular level" and
that "processes at atomistic levels are ignored" [51]. The contribution of the
conformation of the polymers molecules to the stress in a fluid particle is
represented via the ensemble average of the conformation of a number of
modellised polymers. The typical basic unit of such models is composed by
two spherical bodies, or beads, that are linked together. Due to its shape it
is also referred to as ’dumbbell model’. At an atomistic level the monomers
are linked together with fixed bond angles, bond lengths and torsion an-
gles. It is possible to reduce the complexity of the model by substituting
concatenations of monomers over which a certain correlation in the orien-
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(a) (b) (c)

Q Q Q

Figure 3.2: Various degrees of simplification of the polymer model with its end-
to-end vector Q. (a) Multi chain dumbbell model with rigid connectors
between the beads. (b) Multi-chain dumbbell model with elastic con-
nectors. (c) Single elastic dumbbell model.

tation persists with a single dumbbell element. Such correlation length is
called persistence length and is a measure of the degree of flexibility of a
molecule. On distances shorter than this persistence length, the molecule
behaves as a flexible elastic rod, while at larger distances the correlation
vanishes and the molecule will behave as a freely jointed chain made of
rigid or elastic links with completely flexible joints [54]. In the model, the
continuously distributed mass of the polymer molecule is assumed to be dis-
tributed over a finite number of discrete beads at the junction points of the
chain. The beads not only account for the mass but are also the nodes on
which the external forces can act, while in the kinetic theory the links rep-
resent the internal reaction forces due to the chemical bonds. Depending on
how coarse the model is, the basic element can represent a limited subset
of monomers of the chain up to the whole polymer molecule, as depicted
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in Figure 3.2. Multi-chain models, thought simplified, still require the ad-
dition of several hundred degrees of freedom per point of the velocity field.
With the computational power currently available, those are applicable to
only very simple flow cases. With the purpose of studying relatively com-
plex turbulent flows, here a single dumbbell model will be used. It will be
shown how this approach limits the additional degrees of freedom to six, in-
troducing six more equations to the Navier-Stokes system and maintaining a
continuum formulation of the problem. In the following part the derivation
of the Finite Extensibility Nonlinear Elastic (FENE) model is demonstrated
following mostly Owens and Phillips [51]. An elastic dumbbell immersed

Q

r1

r2

O

u(r2)

u(r1)

Figure 3.3: Single dumbbell model constituted of two beads linked by an elastic
force.

in a Newtonian solvent is considered as shown in Figure 3.3. Such dumbbell
consists of two beads with mass m and position vectors ~r1 and ~r2 relative to
some fixed coordinate system. The equations of motion for the beads in the
dumbbell are:

m
d
dt

(d~ri

dt
−~u(~ri)

)
=−ζ

(d~ri

dt
−~u(~ri)

)
+~Fi +~Bi (3.1)
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for i = 1,2. Here ~u(~ri) is the velocity of the solvent at position ~ri of the
ith bead, ~Fi is the force on the ith bead exerted by the spring and ~Bi is the
Brownian force due to the impact of the solvent molecules on the ith bead.
The constant ζ is the friction coefficient and it arises from the Stoke’s law:
the drag force on the ith bead is assumed to be directly proportional to the
difference between the bead velocity and that of the surrounding medium.
With the hypothesis of spherical beads, the friction coefficient is ζ = 6πηsa,
where a is the radius of the bead, and ηs is the solvent viscosity. In mod-
elling solvent-beads interaction in such a way, hydrodynamic interactions,
i.e, the effect that one bead may have on the velocity of the solvent in the
vicinity of the other bead, are neglected. External inertial forces and weak
chemical bound forces, as the ones between solvent and beads or beads with
other beads, are neglected as well. The characteristic time scale of the bead
velocity fluctuations due to the Brownian forces is represented by the ratio
λB = m/ζ . When the considered time scales of the flow are large compared
to λb, the Brownian force ~Bi can be written in the form

~Bi =
√

2kT ζ
d~Wi

dt
(3.2)

where ~Wi = ~Wi(t) is a multi-dimensional Wiener process, k is the Boltzmann
constant and T the temperature.

Given that Wiener processes are Gaussian-stochastic processes, are com-
pletely characterized by the mean and auto-correlation of its components
Wi, j:

E(Wi, j(t)) = 0, (3.3)

E(Wi, j(t)(Wi, j(t ′)) = min(t, t ′). (3.4)

The coefficient
√

2kT ζ is derived by the principle of equipartition of en-
ergy. This states that, for a system in equilibrium, the kinetic energy associ-

44



3.2 The kinetic theory

ated with each physical component of the velocity d~ri/dt−~u(~ri) for the ith
bead is kT/2.

The velocity of the flow can be expressed as the truncated Taylor expan-
sion

~u(~ri) = ~u(0)+∇~uT~ri. (3.5)

If ~Q = ~r2−~r1 denotes the end-to-end vector of the dumbbell, the two veloc-
ity components can be subtracted in order to introduce the relative velocity

~V =
d~Q
dt
−∇~uT ~Q. (3.6)

In order to reformulate Equation 3.1 as a function of the relative velocity
and obtain the first-order system of equations

md~V =−(ζ~V +2~F)dt +2
√

kT ζ d~Wt , (3.7)

d~Q = (~V +∇~uT ~Q)dt. (3.8)

Here ~F = ~F1 =−~F2 and ~Wt = (~W2− ~W1)/
√

2. These equations are a system
of stocastic differential equation of a Ito processes, the first of which is
driven by the Wiener process ~Wt . The probability that a dumbbell has an
orientation ~Q to ~Q+ d~Q and a velocity in the range~V to ~V + d~V at time t

is given by Ψ(~Q,~V , t)d~Qd~V where Ψ(~Q,~V , t) is the dumbbell probability
density function. Then the equation that describes the time evolution of
the probability density function is the Fokker-Planck equation governing
Ψ(~Q,~V , t) which is

∂Ψ

∂ t
=− ∂

∂ ~Q

[
(~V +∇~uT ~Q)Ψ

]
+

1
m

∂

∂~V

[
(ζ~V +2~F)Ψ

]
+

2kT
m2

∂Ψ
2

∂~V 2
. (3.9)

In this equation the first two right-hand-side terms determine the drift in
time of the distribution, while the third right-hand-side ones determine its
diffusion. The reaction force ~F will be considered to be an entropic spring
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force law. In such law, the extension of a polymer chain reduces the con-
figuration space of the polymer and its entropy, the restoring force arises by
the tendency of the chain to return to a higher entropy state when the exten-
sion force is removed (Treloar (1975), Physics of Rubber Elasticity). Such
restoration force is represented by the law

~F = H f (Q)~Q, (3.10)

where H is a spring constant and f (Q) a scalar function of the dumbbell
length Q= |~Q|. The introduction of the relaxation time scale of the dumbbell
as λ1 = ζ/4H leads to

∂Ψ

∂ t
=− ∂

∂ ~Q

[
(~V +∇~uT ~Q)Ψ

]
+

1
λb

∂

∂~V

[(
~V +

1
2λ1

f (Q)~Q
)
Ψ

]
+

2kT
mλb

∂Ψ
2

∂~V 2
.

(3.11)
A contraction of the Equation 3.11 is seeked in such a way that it is defined
for the marginal probability density function of the end-to-end vector only

ψ(~Q, t) =
∫

~V
Ψ(~Q,~V , t)d~V . (3.12)

In order to do so, first Equation 3.11 is integrated with respect to ~V , obtain-
ing the continuity equation

∂Ψ

∂ t
=− ∂

∂ ~Q

[
(�~V �+∇~uT ~Q)Ψ

]
, (3.13)

where the velocity-space average� ·� is defined as

� ·�=
1
ψ

∫

~V
·Ψ(~Q,~V , t)d~V . (3.14)
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Then Equation 3.11 is multiplied by λb~V T , integrated it with respect to ~V
and letting λb→ 0 it leads to

λb
∂

∂ ~Q
·
(
�~V~V T � ψ

)
+�~V �+

1
2λ1

f (Q)~Qψ = 0. (3.15)

Thirdly, multiplying Equation 3.11 by λb~V~V T and again integrating it with
respect to ~V and letting λb→ 0 it gives us the Maxwell-Boltzmann relation
for the kinetic energy of the dumbbell in equilibrium:

1
2

m�~V~V T �= kT I. (3.16)

Combining Equations 3.14, 3.15 and 3.16, we finally obtain the contracted
Fokker-Planck equation

∂ψ

∂ t
=− ∂

∂ ~Q

[
∇~uT ~Qψ− 1

2λ1
f (Q)~Qψ− 2kT

ζ

∂ψ

∂ ~Q

]
. (3.17)

We may define an ensemble average 〈·〉 for any function g of ~Q by

〈g(~Q)〉=
∫

R3
g(~Q)ψ(~Q, t)d~Q, (3.18)

and relate the extra-stress tensor T to the ensemble average of the dyadic
product ~Q~F

T =−nkT I+ηsγ̇ +nH〈~Q~QT f (Q)〉, (3.19)

where n is the number density of the dumbbells. Equation 3.19 is also called
the Kramer form of the stress tensor. In order to obtain a constitutive relation
for the extra-stress T, we multiply Equation 3.17 by ~Q~QT and integrate it
over R3. Using the divergence theorem and assuming that ψ → 0 as |~Q|
tends to its maximum permissible length we obtain

∂

∂ t
〈~Q~QT 〉−∇~uT 〈~Q~QT 〉−〈~Q~QT 〉∇~u =

4kT
ζ

I− 1
λ1
〈~Q~QT f (Q)〉. (3.20)
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The left-hand side of Equation 3.20 is called upper-convected derivative of

〈~Q~QT 〉, and is denoted by
5

〈~Q~QT 〉.

3.3 The FENE model and the Peterlin closure

The Finite Extensibility Non-linear Elastic (FENE) model us as connector
force the law

~F =
H~Q

1− (Q2/Q2
0)
, (3.21)

where Q2 = tr(~Q~QT ) and Q0 is some finite constant. Such force law pre-
vents the spring to be extended beyond the length Q0. The problem with
such connector force lays in the treatment of the term 〈~F~QT 〉= 〈~Q~QT f (Q)〉,
which implies knowing the ensemble average of the product ~Q~QT f (Q)

afore-hand. The problem has been by-passed by using relation[5] as con-
nector force instead

~F =
H~Q

1−〈Q2/Q2
0〉
, (3.22)

in such a way that when the ensemble average of the diatic product 〈~F~QT 〉
is plugged into the Kramer expression 3.19 we obtain

T = τ +ηsṠ =−nkT I+
nH〈~Q~QT 〉

1−〈Q2/Q2
0〉

+ηsṠ. (3.23)

The final relation for the evolution of the conformation tensor using the
FENE-P model is

∂

∂ t
〈~Q~QT 〉−∇~uT 〈~Q~QT 〉−〈~Q~QT 〉∇~u =

4kT
ζ

I− 1
λ1

〈~Q~QT 〉
1−〈Q2/Q2

0〉
, (3.24)
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where again the characteristic relaxation time of the polymer is λ1 = τ =

ζ/4H. In order to non-dimensionalize Equation 3.24, the quantity 〈~Q~QT 〉 is
divided by the equilibrium length of the polymer 〈Q2〉eq defined as:

〈Q2〉eq =
3kT
H

1+ 3kT
HQ2

0

. (3.25)

This permits to redefine the conformation tensor as

C =
〈~Q~QT 〉
1
3 〈Q2〉eq

, (3.26)

C2 =
Q2

1
3 〈Q2〉eq

, (3.27)

which at the equilibrium leads to C = I, leading to:

∂Ci j

∂ t
+uk

∂Ci j

∂xk
=

∂ui

∂xr
Cr j +Cir

∂u j

∂xr
+

1
λ1

(
1+

3kT
HQ2

0

)
I− 1

λ1

Ci j

1− (C2/C2
0)
.

(3.28)
Now the maximum distance between polymers bead can be then defined as

L2
max =

Q2
0

1
3 〈Q2〉eq

, (3.29)

so that:

∂Ci j

∂ t
+uk

∂Ci j

∂xk
=

∂ui

∂xr
Cr j +Cir

∂u j

∂xr
− 1

λ1

[
L2

max−3
L2

max−C2 Ci j−δi j

]
. (3.30)

When normalized by 〈Q2〉eq the stress T = Ti jbecomes

Ti j = nkT [
L2

max−3
L2

max−C2 Ci j−δi j]. (3.31)
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It is possible to write nKT as a function of the polymer viscosity knowing
that

ηp = nkT λ1
b

b+3
, (3.32)

where b = HC2
0/kT = L2

max− 3. For dilute polymer solutions b is usually
large enough to permit to approximate ηp≈ nkT λ1 so that the polymer stress
becomes [5]:

Ti j =
ηp

λ1

[
L2

max−3
L2

max−C2 Ci j−δi j

]
. (3.33)

1
2

Du2

Dt
=

∂

∂ s j
(ui pδi j +2νuisi j)+

∂

∂x j
(uiTi j)−2νsi jsi j−Ti j

∂ui

∂x j
+ fiui,

(3.34)

where the term Ti j
∂ui
∂x j

is the rate of energy transfer to or from the potential
energy stored in form of polymer stretching. This is called free energy and
is given by [2]:

Ap =−
ηp

2De
{(L2

max−1) log[
L2

max−Tr(Ci j)

L2
max−3

]+
1
3

log(detC)}. (3.35)

The rate of variation of the free energy of the polymers is given by:

DAp

Dt
= Ti j

∂ui

∂x j
− 1

2De
tr(Ti j)[

L2
max−3

L2
max−Tr(Ci j)

]. (3.36)

The second term on the left-hand side of Equation 3.36 is definite posi-
tive and it hence represents the dissipation of free-energy due to the Stokes
friction of the solvent on the bead [17]. This becomes an additional source
of dissipation for the whole polymer-solvent system. During the coil stretch
transition it reaches the same magnitude of the solvent viscous dissipation
and keeps growing at higher mean extensions.
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3.3 The FENE model and the Peterlin closure

3.3.1 Limitations of FENE-P model

The FENE-P model works best for long-chain stretched polymers with no
branching and a certain degree of flexibility. In such conditions, it is able
to capture the main rheological behaviour of dilute polymer solution flows,
among which the shear thinning, drag reduction, alteration of the energy
spectra [5, 31, 69]. Nevertheless it fails to capture quantitative properties of
the flow. Reducing the ensemble of polymer chains to one single representa-
tive dumbbell configuration, the FENE-P loses all the information on higher
order moments of the configurations of the ensemble. Multi-dumbbell mod-
els and experiments on DNA molecules [82, 30, 41] demonstrated the exis-
tence of several relaxation times and modes while the FENE-P only repre-
sents one, which is commonly imposed to be the slowest one. This arises
from the reduction of the polymer ensemble in a fluid parcel to one single
representative polymer conformation as well as from the single dumbbell
approximation. Indeed, depending on the assumed shape, in a multi-element
chain, different numbers of elements with different extensions and orienta-
tions can react to the imposed stress, leading to different reaction forces
for a given end-to-end distance and orientation. Hence, the FENE-P model
tends to underestimate the reaction force when the polymer is at the equi-
librium length or at a low extension [30, 72]. Also due to the removal of the
excluded-volume forces, the stress at low extensions is poorly represented
by the model. Similarly, the assumption of a uniform Brownian bombard-
ment on the polymer beads can lose validity in coiled sections of the poly-
mer and prevents a number of phoretic effects on the dumbbell [38]. The ki-
netic theory also neglects polymer-polymer interactions, which nevertheless
have been shown to take place for dilute solutions as well [37]. Additionally,
excluded volume and intra-molecular interactions are responsible for the er-
roneous prediction of the polymer concentration effects [61, 13]. Finally,
properties at the atomistic levels are at large not incorporated in the kinetic
theory in such a way that dependence on solvent-polymer forces, effect of
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the monomer size and shape on the Brownian force, effects of temperature
on the equilibrium length and so on are not directly accounted for.

The difficulties previously encountered in the use of this model for quan-
titative analysis reside in the difficulty to model a great number of prop-
erties of the polymer molecules, the properties of its ensemble, as well as
the properties of the polymer-flow interaction through a three parameters
model, namely τ , ηp and L2

max with the addition of only six degrees of free-
dom to the system. On the other side, the success of this model of this
model resides in its relative simplicity. It is indeed capable to account for
some atomistic behaviours of the polymer-solvent interaction without the
need to recur to a stochastic approach and the simulation of large ensembles
of polymer molecules for every fluid parcel of the flow. The FENE-P hence
presents advantages also over only slightly more complex models, as the
various multi-element FENE models, by reducing several folds the number
of degrees of freedom in the system. As it will be shown in the rest of the
chapter, the simulation of flows of dilute polymer solutions requires higher
resolutions compared to an equivalent Newtonian flow, making the FENE-P
the only viable solution for the simulation of such flows up to today. The
major drawback is that the behaviour of the model must always be confirmed
against qualitative observations of experimental results.

3.3.2 Numerical issues: the high Weissenberg number problem

As it can be observed Equation 3.3 lacks a diffusive term, while in reality
polymer conformation has its own diffusivity, which is so small that it can
be easily neglected for the purposes of the FENE-P model. The resulting
set of equation is hyperbolic and does not have a stabilizing mechanism
able to prevent the formation of gradients of virtually infinite steepness in
the conformation tensor field [70]. The effect is comparable to the shock
formation in compressible fluids, but due to the limited knowledge in poly-
mer dynamics it is hard to determine whether it is a problem limited to the
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model only or whether it is actually present in real flows. The hyperbolic
nature of the viable viscoelastic models plagued the field of computational
rehology of polymers since its birth. According to Martien 2005 [45] "all
existing numerical methods break down when the Weissenberg number ex-
ceeds a critical value", with such value being dependent on the geometry of
the problem, the polymer model, the numerical scheme, the initial and the
boundary conditions and mesh. For years it has been possible to obtain sta-
ble simulations only at very modest Weissenberg numbers and even in these
cases often at the price of some local loss of positive definitiveness of the
conformation tensor. Before proceeding in illustrating the methods, used to
stabilize the numerical methods it is important to stress out that though the
formation of shocks and the numerical instability that it follows are a theo-
retically expected behaviour of the model, this might not reflect the physical
behaviour of polymers in the flow. The absence of a dissipative mechanism
in the FENE-P equation permits the formation of arbitrarily small scales.
Conformation tensor fluctuations at sub-Kolmogorov scale would not have
the possibility to interact with larger velocity gradients being such an inter-
action effectively filtered out by the fluid viscosity. Incoherent fluctuations
at sub-Kolmogorov scales would remain trapped in such a range and would
most likely result in an increment of the molecular agitation and a shift of
the equilibrium length of the polymers. There is hence the possibility for
the definition of a "dissipative" mechanism in the sense of a transformation
of kinetic energy from turbulent fluctuations in the non-recoverable or any-
way low-grade energy form of sub-Kolmogorov scale exchange of energy
between polymer stretching and molecular agitation. During the years, a
number of techniques have been developed in order to deal with the high
Weissenberg problem, many of these being in some measure derived from
the methods used in compressible turbulence. All of them, by reducing the
gradients to a manageable level, have the effect to introduce enough dissi-
pation to the scheme in order to make it stable.
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It shouldn’t be surprising that one of the earliest and simplest stabilization
method is the direct addition of an artificial diffusive term to the evolution
of the conformation tensor in the form of χ∇2Ci j. When enough artificial
diffusion is added, it is possible to increase the stability up at higher Weis-
senberg and Reynolds numbers. When using this added diffusivity, it is usu-
ally considered advisable to keep its value as small as possible and its ratio
ν/χ over the kinematic viscosity as large as possible. This can be consid-
ered as a Schmidt number Sc of the polymers and, in literature, values close
to one or smaller are usually chosen for it [46, 80, 52]. By conjecturing that
the small scales of the conformation tensor in first approximation act like
passive objects, one can use the Schmidt number similarity to observe that
Sc ≈ 1 coincide to a Batchelor scale of the polymers λb = η/Sc1/2 ≈ η .
Hence the choice of Sc≈ 1 is efficient from a computational point of view,
as both the flow and the conformation-tensor scales are equally resolved.
It also gives an idea on the increase of resolution needed with decreasing
Schmidt numbers. For example, a simulation which would be resolved for
SC = 1 in a box of 2563 points with Sc = 10 would require a box of 7683

points. This is not a negligible issue as a code solving the Naviers-Stokes
equations together with the FENE-P model requires 3 times more memory
compared to the Navier-stokes solver alone and the computational costs are
5 times as high.

Other approaches try to maintain the positive definiteness of the confor-
mation tensor through a different mathematical formulation of the problem.
Fattal and Kupferman (2004) [24] for example solved the evolution of the
conformation tensor in its logarithmic representation, Balci et al. 2011
[1] used a square-root-conformation representation instead, while Vaithi-
anathan and Collins 2002 [70] applied matrix decompositions to the confor-
mation tensor. These stabilization methods cannot completely overcome the
high Weissenberg number problem [10], but they can moderately increase
the range at which the computation remains stable. Only the method de-
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veloped by Fattal and Kupferman allows computations at considerably high
Weissenberg numbers but it cannot guarantee accuracy at these numbers.
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4 Simulation of a turbulent front in dilute
polymer solutions

4.1 Set-up of the numerical experiment

One of the principal objectives of this thesis is to understand the relevant
mechanics to the propagation of turbulent fronts by studying such propaga-
tion in flows with altered turbulent dynamics. In order to do so, flows with
polymers have been taken in considerations due to their peculiar properties.
Now when one wants to study the turbulent/non-turbulent interface with a
polymer model, the approach followed in Chapter 2 presents some draw-
backs. First, it only allows to study a decaying flow, this prevents the com-
putation of time averages and requires instead the use of ensemble averages
that need many more independent realizations in order to converge. It also
makes it hard to discern effects related to the decay of the flow from the ones
related to its spatial evolution. With the introduction of the polymer model,
the problem of defining a meaningful initial condition for the conformation
tensor also arises. Artificially reducing the conformation tensor to the mini-
mum extension in a similar way to the velocity damping easily leads to loss
of definite positiveness, moreover it opens the question on how the arbi-
trarily imposed profile of conformation would affect the physical behaviour
during the decay. While using non-stretched polymers at the beginning of
the decay would solve the former problem, this would aggravate the latter.
Finally, as it has been shown in Chapter 3 polymers can lead in both exper-
iments and simulations to contradictory behaviors depending on the chosen
parameters, initial and boundary conditions [42, 20, 51]. At the same time
the FENE-P model chosen for the present study is known to give some un-
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satisfactory results in certain set-ups [30] and to the knowledge of the author
it has not been validated before in the framework of turbulent/non-turbulent
interfaces without mean shear. A validation against the dynamics observed
in experiments is required and again the set-up of Chapter 2 is not suitable
as it is not easily reproducible in experiments.

A different set-up has been then sought, such as to remain in the frame-
work of turbulent flows without mean shear and one of the most diffused
classes of such experiments are probably the ones utilizing oscillating grids
in water tanks. The validation against such a particular reference case had
been possible thanks to the availability of data from experiments performed
at the Turbulence Structure Laboratory of Tel Aviv University. Despite be-
ing limited by the constraint imposed by the available technologies, these
measurements are suitable to validate the macroscopic behaviour of the
FENE-P model in the shearless turbulent/non-turbulent interface. The mod-
elling approach and its validation against experiments presented in the rest
of the chapter are published in Cocconi, De Angelis, Frohnapfel, Baevsky,
Liberzon 2017 [14].

4.2 Modelling oscillating grid turbulence

4.2.1 Properties of oscillating grid turbulence

Performing a resolved DNS of a moving grid with the FENE-P model would
be extremely computationally expensive, further reducing the maximum at-
tainable Reynolds number of the simulation. A more efficient approach is to
produce a grid forcing model stirring a region of the flow in such a way to
reproduce the turbulent scales and dynamics of an actual oscillating grid. In
order to do so, some of the properties of these flow must first be discussed.
A test rig for the study of oscillating grid turbulence is commonly consti-
tuted by a transparent water tank with a square cross-section in which a
square grid is immersed. In most experiments, the grid area completely fills
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the tank’s horizontal cross-section trying to leave the smallest possible gap
between the tank walls and the grid. Via vertical rigid rods the grid is then
connected to a motor that imposes the periodic vertical motion. Thompson
and Turner 1975 [65] and Hopfinger and Toly 1976 [34] performed exten-
sive studies of the turbulence generated by oscillating grids of different size
and shapes in mixing across density interfaces. They found that, with cer-
tain choices of the grid and within defined operation bounds, the turbulent
flow can be characterized in terms of few a parameters. In particular when
the right grid geometry is chosen, the relevant parameters are the depth of
the vertical oscillation motion or stroke S, the oscillating frequency f , the
distance between contiguous holes in the grid or mesh size M, the solidity
ratio, i.e. the ratio between the total cross-section area of the tank and the
total projected area of the grid bars. It has been found that for a grid made
of square bars, within well defined range of values for the aforementioned
parameters, the flow shows a number of properties that make it suitable for
the study of turbulent mixing [65, 34, 49, 33].

For example, the root mean square of the velocity fluctuations decays in
inverse proportion to the distance x in the inhomogeneous direction [34].
On the opposite, inertial scales as the integral length scale or the Taylor mi-
croscale λ are found to grow linearly with the same distance in such a way
that both the turbulent Reynolds number Re= l0u/ν and Reλ are approxima-
tively constant within the turbulent region [81]. The reported ratio between
in-plane and perpendicular velocity fluctuations are typically in the range
of 1.1−1.2 [34] making oscillating grid turbulence attractive for studies on
quasi-isotropic turbulence.

The turbulent properties of oscillating grid flows are the result of the cor-
rect interaction between the wakes and the jets generated behind the grid
bars. It should hence generally be expected a departure from the aforemen-
tioned properties in the vicinity of the grid where those jets and wakes are
still in formation. Cheng and Law 2001 [11] measured the mean values of
velocity fluctuations and Reynolds stresses at different grid-plan locations,
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showing that up to 2− 3M from the grid mid-position the flow over a bar
exhibits stronger rms of both u and v together with inhomogeneities in the
locations over grid crossings. Regarding the outermost part of the turbu-
lent region instead, in many of these experiments it is unfortunately unclear
where the turbulent/non-turbulent interface is located, if present at all. Also,
many of the experiments mentioned above were generally conducted in a
steady state condition, which means that before starting the measurement
the flow is stirred until an equilibrium between the energy injected and the
dissipation is reached. However, a number of studies can be found in lit-
erature about non-steady properties of oscillating-grid turbulence. Most of
these works had the purpose of identifying the speed of propagation or the
mixing region of a turbulent flow. In a theoretical work, Long 1978 [43]
first proposed a relation for the position of the interface between turbulent
and non-turbulent fluid. For a flow at high Reynolds number the average
distance H of such interface from the turbulence source can be plotted as

H ∝ (Kt)1/2. (4.1)

Here K is a parameter called "grid action", which is constant once a se-
ries of experimental parameters are kept constant. Equation 4.1 had found
good agreement with experimental results [18, 19, 33], even though also
other propagation rates have been reported in literature [40] under tight con-
finment or rotation. In any case, none of the experiments mentioned above
report what happens in the final stage of propagation when the spatial decay
of turbulence fluctuations reaches an equilibrium with the local dissipation,
preventing the further propagation of the front.

4.2.2 Body force model implementation

Despite the popularity in the experimental community, only few attempts
can be found in literature of simulations of oscillating grid. The simulation
of an oscillating grid with its physical moving boundaries are too computa-
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tionally expensive, so the existing simulations mostly relied on a selection
of boundary conditions or body forces able to reproduce the effects of such
a grid without actually simulating it. As an example, Holzner et al. 2008
[33] imposed a set of time-dependent, random velocities with length and
time scales comparable to the ones of an oscillating grid. Here we follow a
similar approach, but instead of directly imposing the velocities at one side
of the domain we introduce a body force and instead of forcing only over the
2-dimensional boundary of the domain we force in a 3-dimensional region
with finite thickness.

The body force distribution in space and time is determined by the follow-
ing procedure. First a random amplitude distribution A(y,z, t) in the y− z

directions is generated, this is done by assigning random values ∈ [−1,1]
at equispaced nodes with separation M = 2π/8, the amplitude distribu-
tion is then obtained in the remaining points of the y− z plane by a bi-
cubic interpolation in space intersecting the randomly assigned nodes. A
new random distribution is generated periodically with a frequency 1/T f .
The passage between two amplitudes distributions in time, A(y,z,nT f ) and
A(y,z,(n+ 1)T f ), with n ∈ N, is moreover smoothed by interpolating the
two configurations in time, which produces a function Ã(y,z, t). The forced
region is periodic in the y− z cross-section of the domain, while it remains
confined to a thickness of around M in x-direction. The final 3-dimensional
time varying distribution of the forcing f (x,y,z, t) is given by

f (x,y,z, t) =
K
2

(
1+ tanh

(
a∆

2
−a|x|

))
Ã(y,z, t), (4.2)

where the parameter K sets the intensity of the body force while ∆ and a

determine the thickness of the forced region. The transition in time between
two different random configurations is given by the two functions φ0(t) and
φ1(t):
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φ0(t) =
∆t−mod(t,T f )

T f
, (4.3)

φ1(t) =
mod(t,T f )

T f
, (4.4)

where mod is the modulo function. An example of the body force distribu-

Figure 4.1: 3D representation of the amplitude distribution A(y,z, t) generated by
the forcing model.

tion at a given time is depicted as a height map in figure 4.1.

4.3 Validation and flow properties

As a first step, a set of Newtonian simulations have been performed in
order to validate the forcing model against some known experimental re-
sults on oscillating grid turbulence. All the simulations presented here-
after were performed over a computational grid of 512×256×256 Fourier
modes before de-aliasing. The simulation domain is a box with dimensions
Lx× Ly× Lz = 4π × 2π × 2π . The body-force modelling the grid energy

62



4.3 Validation and flow properties

input is added in a region of dimensions ∆× Ly× Lz at the centre of the
domain as shown in figure 4.2. The non-dimensional viscosity is set by the

Figure 4.2: Depiction of the computational box with a slice of the enstrophy iso-
contour for a Newtonian simulation. Adapted from [14].

choice of Re, which is in this case is ν = 1/Re = 1/200, while the simula-
tion time step is ∆t = 0.002. The standard configuration for the body force
is the one with 8× 8 collocation points for a characteristic forcing length
of M = 2π/8 = 0.785, the maximum amplitude is K = 3.8, a = 1.5π and
the thickness parameter is ∆ = 0.065. This sets the total thickness of the
region where the forcing is above 10% of the maximum value to be about
±0.5M. For convenience, the bulk of the flow is defined to be the two planes
at a distance of 0.6M from the mid-plane and these planes will be used to
compute statistics relatively unperturbed by the forcing, but still close to the
maximum turbulence level of the flow. For example, this permits to define
an eddy turnover time as the ratio between the root mean squares of velocity
fluctuations in the bulk and the length scale M. Finally, the update frequency
of the forcing which determines the correlation time of it is every Tf = 0.1.
The Newtonian statistics presented in the following chapter refer to a sta-
tistical data-set of 10 independent simulations of the duration of about 16
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eddy turnover times defined as M/u′b. All simulations start from an ini-
tial condition of quiescent fluid. When the forcing action is introduced, the
fluid is perturbed and a patch of turbulence rapidly forms at the centre of the
domain. The two planar-symmetric turbulent fronts then start to advance
into the irrotational region of the flow. The two fronts keep propagating
until the enstrophy locally advected and generated reaches an equilibrium
with the one dissipated and the local enstrophy remains constant. When this
happens the average position of the interface, as detected by the enstrophy
threshold technique, remains constant in time. Weak vorticity, which does
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Figure 4.3: Time variation of enstrophy.

not possess the self-sustaining mechanisms of actual turbulent fluctuations
anymore, can still diffuse into the non-turbulent region as can bee seen from
figure 4.3. This also highlights the risk that a too low vorticity threshold
would not be capable to capture the actual limit of the region where the flow
manifests all the properties of turbulence (i.e. increased mixing, energy cas-
cade, self-amplification of fluctuations and so on). It will be shown as other
turbulent properties are required to validate the choice of a threshold value.

As can be observed from Figure 4.4, when one considers the initial growth
of the turbulent patch, this follows the expected ∝

√
t law. This growth

slowly declines until it reaches a quasi-stationary state. How can be seen
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Table 4.1: Newtonian simulations parameters.

A0 ∆ ∆t 1/Re M ∆tu Reλ η M/u0

3.8 0.065 0.001 0.005 Ly−z/8 0.1 50 0.037 1.92
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0
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turms/M

x
/M

∼
√

t

Figure 4.4: Average interface position with respect to the time.

from Figure 4.5, the decay of the velocity fluctuations u‖ in the in-plane di-
rection has been observed to follow a slope proportional to (x−x0)

−1 in the
turbulent region, where x0 = 0.09M is a virtual origin slightly offset from the
domain origin [34]. The fluctuations decay faster than the fitted curve after
the average interface position, but this is in accordance with the observation
that velocity fluctuations decay faster outside the turbulent/non-turbulent
interface (specifically as a function of (x− xI)

−4 from the local interface
position xI [16]). The integral length scale l0 =

∫
E(k)k−1dk/

∫
E(k)dk, de-

picted in Figure 4.5, as expected shows a linear increase within the turbulent
region. As a further proof of the good choice of the threshold value for the
interface detection, it can be noticed that the growth of l0 departs from the
observed trend of the turbulent region at the sampled average position of
the turbulent/non-turbulent interface. The initial propagation of the inter-
face also evolves according to a

√
t law before slowing down and reaching
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Figure 4.5: (a) Profiles of the magnitude of velocity fluctuations in the direction
parallel to the homogeneous planes y− z and normal to them as a func-
tion of the distance from the average interface position. The black
dashed line represent the fit with a function inversely proportional to
the distance from a virtual origin in the forced region. (b) Variation of
the integral length scale as a function of the distance from the average
interface position.

a statistically steady position. In order to rule out effects of the domain size,
a simulation has been performed in a domain with double the extension
in x-direction and no effect on the interface propagation was observable.
When looking at the anisotropy of the velocity fluctuations in Figure 4.6 it
is possible to see how the body force produces a nearly isotropic flow in the
centre of the domain. In the bulk the ratio between the out-of-plane fluctu-
ations u′⊥ and the in-plane ones u′‖ grows due to the inhomogeneity of the
flow until a constant value of 1.13 is reached. This value is well within the
range of values reported in experimental literature [34] but getting close to
the interface, as expected, the anisotropy further increases until it reaches a
maximum value of 1.28 at the interface.

For the viscoelastic simulations, the same set-up has been used as in the
Newtonian case. One of the purposes of the present work is to discern pos-
sible local effects of the polymers at the interface from the general effect on
the bulk of the flow. In order to do so a special set-up has been conceived
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Figure 4.6: Anisotropy in the magnitude of velocity fluctuations as a function of the
distance from the average interface position.

in order to obtain a viscoelastic turbulent flow with bulk properties closer to
its Newtonian counterpart. In fact, the forcing amplitude in the viscoelastic
case has been tuned in order to obtain a similar steady-state integral of the
energy computed among the point within the turbulent volume of the do-
main for the two simulations. In both cases, this should allow the interfaces
to drain from a comparable supply of turbulent fluctuations, making the dif-
ferences at the interface that are due to the local effect of the polymers more
apparent.

The polymer diffusivity χ has been set to be equal to the kinematic vis-
cosity such that χ = 1/200, τ = 2, L2

max = 5000 Here we focus only on
phenomenological effects of the polymers on turbulent dynamics, thus de-
spite different sets of parameters have been tested, only the results from one
of these sets will be shown.

Experiments with a similar set-up have been produced by the Turbulence
Structure Laboratory of Tel Aviv University. Instead of a planar grid, in
their set-up a spherical agitation grid in a water tank has been used. This
was justified by the necessity of avoiding any interaction between the tur-
bulent front and the walls of the tanks while maintaining a flow with only
one inhomogeneous direction (the radial one). The experimental observa-
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4 Simulation of a turbulent front in dilute polymer solutions

tions will be used to verify that the FENE-P model is able to reproduce the
same flow features. The Reynolds number in the experiment has been de-
fined similarly to the simulation on the average mesh size M of the agitation
device and the root mean square of the velocity fluctuations outside the en-
velope of movement of the grid. As for the Newtonian case, the kinetic
energy in the viscoelastic simulations initially increases and reaches a sta-
tionary state after a few eddy turnover times. The main difference regards an
initial overshoot in the viscoelastic simulation that precedes the steady state.
It is nevertheless well known that pre-averaged models as the FENE-P per-
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Figure 4.7: Time variation of the integral of the kinetic energy contained in the
region between the bulk and the interface. Gray areas mark ±1.96 stan-
dard errors of the mean. Adapted from [14].

form poorly in transient flows and that an accurate prediction of the polymer
stress before sufficient extensions are reached requires multi-mode models
[82]. This may be imputable to a delay in the "activation" of the polymers,
as it takes some time to the random fluctuations in the flow to stretch the
polymers in an appreciable way. The forcing model on the other hand can
also be responsible for this delayed polymer effect, as initially velocity gra-
dients are not yet developed down to the smallest scales of the spectrum.
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4.3 Validation and flow properties

Once the polymers in the bulk start to stretch significantly, the energy visi-
bly drops and stabilizes. Such behaviour is not observable in Figure 4.7 for
the experiments, where the energy grows slower in the dilute polymer solu-
tion when compared to the Newtonian case. This can be related to the fact
that the physical grid immediately generates the sharp gradients required to
stretch the polymers at its walls, while the forcing model requires the cas-
cading process to develop before these are produced. This behaviour can be
observed in a number of transitional statistics of viscoelastic simulations and
often makes them ill-suited for transient flows [30, 53, 21, 50]. The com-
bination of stronger forcing and Newtonian-like initial behaviour produces
an initial growth of the patch which is faster than its Newtonian counterpart.
Due to these reasons, it was not possible to study the transient growth of the
turbulent patch for the viscoelastic case, but only its final statistically sta-
tionary state. Despite the differences in the transitory, in both simulations
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Figure 4.8: Time variation of the average interface position for Newtonian fluid
and the dilute polymer solution, comparison between simulation and
experimental measurements. The left y−axis refers to the experiments
while the right one to the simulations. Grey areas mark ±1.96 standard
errors of the mean. Adapted from [14].

and experiment the final maximum size of the patch of the polymer flow is
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4 Simulation of a turbulent front in dilute polymer solutions

smaller than the Newtonian one, with a difference of about one mesh size
M. The smaller patch size is not imputable to lower enstrophy levels in the
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Figure 4.9: Average profiles of enstrophy as a function of the distance from the
average position for the experiments (a) and for the simulations (b).
The quantities have been normalized by the average enstrophy of the
bulk for the Newtonian case.

vicinity of the interface, as can be seen from Figure 4.9, which on the con-
trary is higher for the polymer case in both, experiments and simulations.
A qualitative comparison of the turbulent/non-turbulent interfaces in Figure
4.10 reveals another apparent difference between the two cases: the inter-
face produced in the polymer flow is a smoother interface with less visible
small-scale features. Again, this observation has been confirmed in the ex-
periment indicating that with the chosen set-up polymers produce interfaces
that are less convoluted. To quantify reduction in convolution one can esti-
mates the fractal dimension of the interface. Sreenivasaan et al. 1989[60]
and De Silva et al. 2013[58], using box counting algorithms, had estimated
for turublent/non-turublent interfaces a power law scaling with exponent D

varying between −1.3 and −1.4 in free and wall-bounded shear flows for
a fractal dimension D f of the surface of about 2.35± 0.05. Following the
same procedure 2D slices of the flow are divided in square sectors of equal
side ∆ and the number of such "boxes" containing parts of the interface is
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4.3 Validation and flow properties

Figure 4.10: Isosurfaces of ω2
i = 0.02ω2

i,b for a Newtonian simulation (left) and for
a simulation with polymers (right).
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Figure 4.11: (a) Number of boxes N containing portion of the interface against box
size ∆/η . The dotted line marks the box of size ∆ = M. (b) Integral
length scale as a function of the distance from the interface.

counted. The procedure is repeated for diminishing size of the boxes and
the fractal dimension D is extracted from the relation N = ∆D [58]. Figure
4.11 (a) summarizes the results of the box-counting at the steady-state in
the simulations. The fractal dimension computed for the Newtonian inter-
face obtained with a least square fit on the box count is −1.31, while when
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4 Simulation of a turbulent front in dilute polymer solutions

the polymers are introduced the fractal dimension drops to −1.25. Compar-
ing the integral length scales for the two cases in Figure 4.11 (b) it appears
that the polymer flow is characterized by larger scales. The integral length
scale grows at a steeper rate for the polymer case producing much larger
scales at the interface compared to the Newtonian fluid.

4.4 Concluding Remarks

The forcing model developed for the simulation has been proven capable
to reproduce features of oscillating grid turbulence as the quasi-isotropy of
velocity fluctuations, their rate of decay, linear growth of integral scales and
initial growth rate of the turbulent region. The FENE-P model, of which the
application in turbulent/non-turbulent interface is scarce if not absent, has
been validated against ad-hoc experiments. Agreement between simulations
and experiment could not be found for the initial growth phase, though fur-
ther investigations are required in order to known weather shortcomings in
the forcing or in the polymer model are to be imputed. Once the steady state
was reached, the FENE-P proved to reproduce a number of flow features ob-
served in the real dilute polymer solutions of the experiments, proving yet
another time the capability of this model to capture the qualitative behaviour
of turbulent flows of dilute polymer solutions.
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5 Results and discussion

In the previous chapter the numerical set-up has been introduced and the
simulations have been compared to experiments in a similar set-up. The
most evident effects of the polymers in the flow can be resumed in a re-
duced maximum size of the turbulent patch and a reduction in the fractal
complexity of the turbulent/non-turbulent interface. In the following chap-
ter possible reasons for these phenomena are investigated. The flow will
be first investigated in the Eulearian frame of reference. In particular tak-
ing advantage of the numerical approach the interaction between polymers,
vorticity and strain will be directly investigated. Comparison with the New-
tonian case will be as before used in order to spot the most relevant changes
introduced by polymers. At the same time statistics at the interface will
be compared with the ones in the bulk of the flow, allowing to detect de-
viations of polymers behaviour from the ones expected for homogeneous
quasi-isotropic turbulence. Statistics of orientations between vorticity field,
strain eigenframe and polymer conformation tensor are also analysed in this
chapter. Such statistics have been in part previously published in Cocconi,
De Angelis, Frohnapfel, Baevsky, Liberzon 2017 [14]. In a second moment
turbulent statistics along Lagrangian trajectories across the turbulent/non-
turbulent interface will be analysed. This allows for a better assessment of
the contributes on the observed Eulerian statistics at the interface from the
antagonists process of entrainment of non-turbulent fluid and of the return
to the laminar state of previously turbulent parts of the fluid.
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5 Results and discussion

5.1 Eulerian statistics

The statistics presented in this section are ensemble averaged across all
the realizations performed and averaged in time in the steady state interval
tu′b/M ∈ [7,16] for a total of 60 independent samples. As it has been ob-

100 101 102
10−18

10−10

10−2

k

E
(k

)

(a)

Newtonian

Polymer

100 101 102
10−18

10−10

10−2

k

E
(k

)

(b)

Newtonian

Polymer

Figure 5.1: Spectra of kinetic energy compute over homogeneous planes y− z in
the bulk (a) and at the average interface position (b).

served from the integral scales, the flow with polymers lead to an increased
size of the large scales. As expected also the energy spectra taken in the
bulk of the flow shown in Figure 5.1 (a) confirm an increase in the energy
content of the largest scales (small wave-numbers k) with a reduction in the
energy of the smaller ones. Nevertheless, the differences are little and the
two flows experience relatively similar distribution of energy in the bulk of
the flow. The reduction of energy is more evident for the spectra sampled
at the average interface position of Figure 5.1 (b). Indeed, looking at Fig-
ure 5.2 it can be seen how getting closer to the interface the difference in
the Kolmogorov scales between the two cases increases so that both small
and large scales have increased sizes at the interface for the polymer case.
One of the main advantages of the numerical approach over the experimen-
tal one is the possibility to measure the state of the conformation tensor for
every point of the field. In such a way orientation and extension state of
the polymers can be obtained, allowing to directly study the polymer-fluid
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interaction. For example the average end-to-end extension of the polymers
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Figure 5.3: Average trace of the conformation tensor normalized by the maximum
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max as a function of the distance from the average
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is given by the trace of the conformation tensor tr(C). In Figure 5.3 this has
been normalised by the maximum extension L2

max to show the distribution
of the average stretching with the distance from the interface. One can see
there how the polymers are most stretched in the forced region and the bulk,
where the strongest velocity gradient resides. There average extensions up
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5 Results and discussion

to 30% of L2
max are reached while getting close to the non-turbulent region

the average extension quickly decays as the intensity of turbulent fluctua-
tions also decay. Noteworthy is the presence of residual extension into the
non-turbulent region: this can in part be explained by the presence of weak
irrotational fluctuations that can still stretch the polymers and in part by the
presence of fluid particles "extrained" from the turbulent flow that retains
some degree of polymer extension. While stretching and relaxing polymers
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Figure 5.4: (a) Average profiles of kinetic energy and free energy of the polymers.
(b) Viscous and polymer dissipation rates. Both as a function of the
distance from the average interface position.

store, release and dissipate energy. Figure 5.4 (a) depicts the free energy Ap

stored into polymers compared to the kinetic energy. While both Newtonian
and polymer flows present comparable maximum kinetic energies, the total
energy available to the flow is roughly 30% higher. Part of the excess of
free energy is continuously exchanged with flow, part of it though is being
dissipated by means of Stokes friction during the relaxation of the chain.
This is depicted in Figure 5.4 (b) together with the viscous dissipation for
the two flows. As expected, the maximum viscous dissipation rate is lower
for the polymer case, while the dissipation of free-energy due to polymer
relaxation results comparatively much larger. The larger polymer dissipa-
tion is ultimately responsible for the dissipation of the additional kinetic
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5.1 Eulerian statistics

energy injected by the body force into the flow and captured by polymers
and stored in form of end-to-end extension. As velocity gradients are the
driving mechanism for both the unfolding and relaxing of polymers, free
energy and polymer dissipation are deeply interconnected to strain and vor-
ticity. Indeed, when the polymers are taken in account the budget equation
for the enstrophy presents an extra term due to the polymer stress interact-
ing with vorticity. When also the forcing contribution is added, Equation
2.1 becomes:

1
2

∂ω2

∂ t︸ ︷︷ ︸
∂ t
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2

u j
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(5.1)

Figures 5.5 and 5.6 depicts the terms of Equation 5.1 as a function of the
distance from the mean interface position XI .
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Figure 5.5: Enstrophy budget for the Newtonian case. The right scale refers to fm,
i.e. the maximum possible amplitude of the body force.
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Figure 5.6: Enstrophy budget for the polymer case. The right scale refers to fm, i.e.
the maximum possible amplitude of the body force.

The time variation has been directly computed by finite differentiation in
time of the enstrophy profiles. Both plots show how enstrophy is steady in
time everywhere, even at the mean interface position there is no appreciable
variation in time of enstrophy.

While looking at Figure 5.5 a parallel can be drawn with the budget stud-
ied in Chapter 2: similarly to the decaying case, the advection here draws
enstrophy from the most turbulent part of the flow and releases it towards
the interface. Also, similarly to the decaying case, viscous diffusion is prac-
tically negligible everywhere. For the Newtonian case in the forced region
we observe the expected approximate Tenneks and Lumley balance between
enstrophy production P and destruction ε . The production though is slightly
weaker than the dissipation and the enstrophy lost through the latter and
through advective fluxes is compensated by the one injected by the body-
force (not shown). Getting closer to the interface the production decays
faster than the dissipation and the rate of variation of enstrophy is kept con-
stant only by the increasing relative weight of the advection. By looking at
the budget for the polymer case of Figure 5.6 it can be seen how the vis-
cous dissipation in the bulk is in magnitude about one third stronger than
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5.1 Eulerian statistics

the production. The enstrophy sink in the forced region is further reinforced
by the advection and the viscoelastic contribution Ve, this stronger sink is
compensated by a much stronger enstrophy injection from the forcing com-
pared to the Newtonian case. Particularly interesting is the behaviour of the
viscoelastic term while where the turbulence is most intense it leads to a
destruction of enstrophy, away from the bulk the relaxation of the polymers
with its energy release leads to a small but positive contribute to the enstro-
phy variation. In the inset of Figure 5.6 it is also possible to see that the
contribute from the polymers becomes negligible about half mesh size M

before the average interface position where the enstrophy variation appears
where the dominant terms are again dissipation, production and advection.
Interesting is the fact that the advection appears to be more intense in the
polymer flow when scaled in inertial units. It is possible that in certain con-
dition the increased advection could tip-off the other propagation-reducing
effects of polymers, thus explaining these cases reported in literature of in-
creased propagation speed in dilute polymer solutions [42].

5.1.1 Conditional statistics

The statistics previously presented average together samples homogeneous
in their x coordinate. In this way, though, the sample in the region close
to the average position of the interface includes both, turbulent and non-
turbulent samples. The homogeneity of the turbulent property of the sample
close to the interface region can be improved by means of conditional sam-
pling. In in interface studies this generally means that samples are averaged
together when they possess the same distance from the instantaneous local
distance of the interface. Details on how this distance can be defined and
how conditional statistics are performed can be found in Appendix. Obvi-
ously, these statistics maintain a certain sensitivity to the arbitrary choice
of the enstrophy threshold. The initial choice of a 2% enstrophy threshold
proved to be good enough to detect the changes in conventional statistics,
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marking the passage between turbulent and non-turbulent region and hence
constitute the reference value for the present study. Nevertheless, also statis-
tics at 0.5% and 10% threshold will be occasionally shown in order to as-
sess the effect of different thresholds on the robustness of the observations
made. One typical observation in conditional statistics across turbulent/non-
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Figure 5.7: Conditional enstrophy profiles normalised by the average enstrophy in
the bulk for three different thresholds ω2

i,th = 0.1−0.02−0.005ω2
i,b. (a)

Newtonian case, (b) polymers.

turbulent interfaces is a steep jump of enstrophy. Here when the threshold
ω2

i,th is set to 0.005ω2
i,b (or 0.5% of the mean bulk enstrophy) the enstrophy

jump across the interface is barely visible for the polymer case. High thresh-
olds, as in the case of ω2

i,th = 0.1ω2
i,b, show a steep jump in the enstrophy

profile but also introduce an unrealistic peak at the interface. The 2% thresh-
old capture the jump of enstrophy across the interface for the polymer case
without introducing any peak in the profile, confirming to be a reasonable
threshold choice.

The relatively steep jump observed in the conditional enstrophy is not
observable in the conditional profiles of turbulent kinetic energy of Figure
5.8. It is interesting to observe how as the initial build-up of turbulent kinetic
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Figure 5.8: Conditional averages of kinetic energy normalised by their values in the
bulk.

energy moving from the interface towards the bulk is comparable for the
two cases. From the conditional averages it appears that the polymer flow in
the interface region experiences reduced turbulent enstrophy but with very
similar levels of kinetic energy. In homogeneous isotropic turbulence on
average strain and enstrophy fluctuations are in equilibrium being si jsi j =

ω2
i /2.

In Figure 5.9 for both, polymer and Newtonian flows the expected equilib-
rium is found in the turbulent region far from the interface. The equilibrium
is nevertheless lost in the region around the interface and this is particularly
apparent in the Newtonian case where, moving towards the non-turbulent
region, vorticity fluctuations decays much faster than the strain rate. For the
polymer case, the difference is less intense and strain rate fluctuations de-
crease only marginally slower than the vorticity ones into the non-turbulent
region. Borrell and Jimenz [7] exploited the existence of a non-equilibrium
region in their definition of interface layer for a turbulent boundary layer
identifying it with it. Also, as found by Borrell and Jimenez [7] to rectilin-
ear distances, it is possible to observe that the interface thickness for both
cases scales with λ , but the polymer one appears to be sharper due to a re-
duction of the thickness of the non-equilibrium region, as it can be seen by
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Figure 5.9: Conditional averages of enstrophy compared to the strain rate. (a) New-
tonian case, (b) polymers for ω2

i,th = 0.02.

the ratios ω2
i /(2si jsi j of Figure 5.10. Indeed, the region of stronger inhomo-

geneity has a thickness on the order of 1.4λ or about 30η for the Newtonian
case while for the Polymer case we have a thickness around 0.4λ or 10η .
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Figure 5.11: Conditional average of the tr(C) normalised by the maximum allowed
extension L2

max.

Similarly to the strain, the conditional averages of the polymer extension
of Figure 5.11 present non-zero values well into the non-turbulent region.
Also, the steepness of the growth of the average extension moving towards
the turbulent region is not as marked as for strain and enstrophy. More infor-
mation can be obtained by watching at the joint pd f of the polymer exten-
sion respect to the distance from the interface. Figure 5.12 shows how close
to the bulk of the flow the occurrences of non-stretched polymers is rela-
tively low, while in the non-turbulent region almost all the samples have the
minimum extension. It also shows that two concurrent behaviours are ob-
servable: medium to large extensions in the bulk (0.17 < tr(C)/L2

max < 0.4)
decay almost linearly with the distance from the interface up to a distance
of about 0.3λ before the interface. On the other side in the region between
−0.3λ and the interface an increasing frequency of weak extensions (around
0.03L2

max is observable. Especially the relatively large extensions in the ir-
rotational region are likely to be due to residual extension from extrained
fluid particles that do not reach the minimum extension up to distances of
about 3λ from the interface. Conversely it is likely that the high frequency
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of lightly extended polymers inside the turbulent region within 1−2λ from
the interface are partially due the presence of recently entrained fluid parti-
cles. In this region a large number of fluid particles are little stretched or not
stretched at all. Together the two trends produce a peak of extensions below
7% of the maximum allowed close to the turbulent/non-turbulent interface.
Firstly, the peak highlights how at the steady state the two phenomena of
entrainment and extrainment bring different contributes to the statistics of
the interface, and secondly how the polymer action at the interface is likely
to be dominated by stretching and relaxing at very low extensions. Low-
extension range is known to present some difficulties for FENE models, as
these tend to underestimate the polymer reaction force, overestimating its
extension[30], which helps to explain the overestimation of the maximum
patch size for polymers compared to the experiment. Concluding from con-
ditional statistics it appears that polymers in the region around the interface
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are mostly transitioning to a quasi un-stretched state or first uncoiling from
it. In the same region the ratio ω2

i /2si jsi j appears much different from the
one observed for the Newtonian flow, possibly highlighting a local polymer
effect on the dynamics between strain and vorticity

5.1.2 Strain and vorticity

In Chapter 2 the importance of the dynamics between strain and vorticity
in the framework of turbulence propagation have been illustrated. Here it
is shown how the interaction between polymers and velocity gradients alter
those dynamics in both the bulk and in the turbulent/non-turbulent interface.
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Figure 5.13: Probability density function of the strain eigenvalues Λi (a) in the bulk
and (b) at the interface. Adapted from [14].

In the FENE-P model the polymers are influenced by the velocity gradi-
ents through the terms ∂ui

∂xr
Cr j +Cir

∂u j
∂xr

. This can be rewritten as sirCr j +

Cirsr j [69], highlighting the direct dependence to the strain field. In the evo-
lution of the conformation tensor the strain contribution must counteract the
one from the elastic reaction force in order to stretch the polymers. It is
possible to observe how polymers in return alter the strain field, especially
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considering the influence of the latter on the enstrophy dynamics. In Figure

Bulk Interface

Newtonian Polymer Newtonian Polymer

〈Λ1〉 1.34 1.12 0.49 0.39

〈Λ2〉 0.29 0.15 0.14 0.07

〈Λ3〉 -1.70 -1.28 -0.64 -0.47

Table 5.1: Average values of the strain rate eigenvalues from the DNS.

5.13 changes in the strain eigenframe are investigated through the probabil-
ity density functions of its eigenvalues. In in Figure 5.13 (a) it can be seen
how both polymer and Newtonian flow in the bulk show a typical relative
distribution of the eigenvalues Λi for turbulent flows. The polymer flows ap-
parently experience lower probability of extreme events with reduced tails
of the distribution for all the eigenvalues but for the negative tails of the
intermediate eigenvalue Λ2. The same trend is observable in Figure 5.13
(b) for the interface: again, the negative events of Λ2 have the same fre-
quency for both the polymer and the Newtonian flow, all the other extreme
events are reduced for the polymer case compared to the Newtonian one.
The trend is also confirmed by the average values of Λi recapitulated in Ta-
ble5.1 where one can also note as the largest variation between Newtonian
and polymer case happens for the intermediate eigenvalue Λ2. The main
difference from the bulk is an increased weight of the tails for the poly-
mer eigenvalues denoting that relatively extreme straining events are more
frequent for the polymer case. On average Λ1Λ2Λ3 = − 1

4 ωiω jsi j so it can
be expected that the reduced frequency of positive events of Λ2 leads to a
reduced positive contribution to the enstrophy production.

However, Lüthi et al. 2005 [44] demonstrated how the contribution to the
enstrophy production depends more on the orientation of those eigenvec-
tor with vorticity than on their magnitude alone, as the relation ωiω jsi j =
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ω2
i Λicos2(~ω ·~λi) highlights. Thus, independently from the intensity of the

vorticity and the eigenvalue Λi, if the associated eigenvector ~λi is perpen-
dicular to the local vorticity vector, there is no net change in enstrophy.
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Figure 5.14: Probability density function of the cosine of the angle between the
vorticity vector and the three strain eigenvector~λi. (a) in the bulk, (b)
at the interface. Adapted from [14].

In Figure 5.14 (a) and (b) the probability density function of the align-
ment between the eigenvectors ~λi and the vorticity ~ω is shown respectively
for the bulk and the interface. The bulk does not show any strong deviation
from the Newtonian case for the polymer flow and in general it follows the
same behaviour observed for a number of other turbulent flows [69]. For
both it can be seen how |cos(~ω · ~λ2)| having a higher frequency of values
close to 1 shows that ~λ2 is the eigenvector most strongly aligned with the
vorticity. The orientation with ~λ1 has almost equal probability for all the
angles denoting a random alignment. Finally higher probability of values
of the cosine close to zero means that ~λ3 is more likely found to be orthog-
onal to the vorticity vector. The only notable difference between polymer
and Newtonian flow in the bulk is indeed a higher probability that ~λ3 and
vorticity are orthogonal for the Newtonian case. In Figure 5.14 (b) the same
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alignments are depicted for the turbulent/non-turbulent interface. It is useful
to remember that in this region the vorticity has to align with the interface
and hence orientation between strain and vorticity is also representative of
the orientations between strain and the interface itself. Comparing the New-
tonian case at the interface with the bulk an increased alignment with the ~λ1

is observable, while the alignment with the compressive eigenvector ~λ3 is
further reduced. Henceforth for the Newtonian flow an enhanced enstrophy
production can be expected at the interface due to a combination of reduced
negative contribution from compressive events (~λ3) and increased positive
one from stretching events(~λ1). A similar trend is observed for ~λ3 in poly-
mers, but in this case a further increase in ~λ2 alignment is observed with-
out the increase in ~λ1 alignment observed for the Newtonian case. Lüthi
et al. [44] noted how the strongest positive contributes to ωiω jsi j comes
from ω2

i Λicos2(~ω · ~λ1), hence from the vorticity being parallel to ~λ1. There-
fore, a stronger ~λ2 alignment leads to weaker, yet positive, contributes to
the enstrophy production due to the fact that the eigenvalue Λ2 can have
negative values and its positive values are smaller compared to Λ1 ones. In
Figure 5.13 (b) it has been seen that the pdf of Λ2 in the polymer case, com-
pared to the Newtonian case, shows a reduced frequency of positive events
without a comparable reduced frequency of negative ones. This fact, cou-
pled with the observed alignment, further moves the balance in favour of
negative enstrophy production events for the polymer flow at the interface.
The change in those in alignments is connected to the interaction between
polymers and the velocity derivatives field so it is interesting to study how
these stretch with respect to the strain eigenframe and vorticity. Similarly
to the strain rate the polymer orientation and extension state in the FENE-P
model has the representation of a tensor, its directionality is determined by
its eigenframe and in particular the polymer orientation is represented by
the eigenvector associated to the strongest eigenvalue of the conformation
tensor. Figure 5.14 (c) depicts the cosine of the angle between the principal
polymer eigenvector~ε1 and the strain eigenframe~λi in the bulk and at the
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interface. For the interface only those samples with a minimum maximum
eigenvalue of 1.5 have been used in order to avoid the contribution from
non-stretched polymers for which the orientation is ill-defined in the model.
Figure 5.15 depicts for the bulk a picture observed before in other homoge-
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Figure 5.15: Probability density function of the cosine of the angle between the
largest conformation tensor eigenvector~ε1 and the three strain eigen-
vector~λi. (a) in the bulk, (b) at the interface. Adapted from [14].

neous isotropic turbulence studies with polymers [72, 71]. In particular~ε1

is preferentially aligned with~λ1, it is randomly oriented respect~λ2 and it is
more likely to be orthogonal to~λ3. At the interface the alignment between
polymers and both ~λ1 and ~λ2, is further increased as well as the orthogo-
nality with~λ3 denoting that polymers are more uniformly aligned with the
strain eigenframe. Polymers in homogeneous isotropic turbulence are also
known to be preferably aligned with vorticity [72, 71]. Indeed, 5.16 shows
how polymers are preferably oriented along the vorticity vector in the bulk
of the flow, so that the orientation between strain and polymers partially re-
flects the one with vorticity. The interface sees this trend exacerbated with
polymers on average almost parallel to the vorticity. It is important to note
how the vorticity vector at the interface is parallel to the interface itself so
that polymers can be considered strongly aligned with the latter. The pref-
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Figure 5.16: Probability density function of the cosine of the angle between the
largest conformation tensor eigenvector~ε1 and the vorticity vector.
Adapted from [14].

erential orientation along the interface also lets infer that, while stretching,
polymers tend to oppose the inertial mechanism that try to further increase
the surface of the interface.

Being aligned with vorticity, polymers can only weakly directly interact
with it, in fact this would require to affect the asymmetric part of the ve-
locity gradient tensor in the plane orthogonal to the polymers. Hence, by
stretching and relaxing, the polymers mainly influence the strain. This is
particularly important for the vortex stretching, as when aligned to vorticity,
polymers can only either adverse the stretching of vorticity or enhance vor-
tex compression. The stronger alignments of the polymers with~λ1 and~λ2

observed in Figure 5.15 can be thus expected to lead to reduced enstrophy
production via a combination of reduction of stretching and enhanced vor-
tex compression. Figure 5.17 compares the orientation between the vortex
stretching vector ~W = ωisi j and the polymer eigenvector~ε1. The plot indeed
shows how the increase of alignment between polymers and the two eigen-
vectors~λ1 and~λ2 previously observed coincide with an increased alignment
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Figure 5.17: Probability density function of the cosine of the angle between the
largest conformation tensor eigenvector~ε1 and the vortex stretching
vector ~W = {ω jsi j}.

between polymers and the vortex stretching vector ~W = ωisi j, when com-
pared to the bulk of the flow.
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Figure 5.18: Probability density function of the enstrophy production ωiω jsi j nor-
malized by its average value. (a) in the bulk (b) at the interface, µ3 is
the estimated skewness of the distribution. Adapted from [14].
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The final effect of these changes in the orientation statistics at the inter-
face is to move the typical distribution between positive enstrophy produc-
tion events (stretching) and negative ones (compression). In Figure 5.18 (a)
and (b) such changes are investigated through the pdf of the enstrophy pro-
duction, for both cases, in the bulk and at the interface. These distributions
have been normalized by the average of ωiω jsi j of the sections to which
they refer in order to highlight the differences in the balance. In Figure 5.18
(a) it can be seen how the distributions for the polymer case and the Newto-
nian one almost collapse in the bulk. Only a small increase in weak negative
events is observable for the polymer case and it appears that despite the ac-
tion of the polymers that effectively introduce new stresses into the flow in
the bulk, vorticity and strain reorganize according to the observed "univer-
sal" pattern. The same does not hold anymore for the interface, as can be
seen from Figure 5.18 (b). First it can be observed how for both cases the
distribution between compression and stretching is strongly shifted towards
stretching events when compared to the bulk. Strong stretching events can
be up to eight times stronger than the strong compressive events of the same
likelihood, while at the bulk they were at best two time stronger. The preva-
lence of stretching events at the interface is peculiar when it is observed
that the interface is an inherently viscous region and viscosity in homoge-
neous isotropic turbulence is known to be the main bounding factor against
the growth of the vortex stretching [44]. In the pdfs for the polymer case
the significant changes in the interactions between strain and vorticity pre-
viously observed lead to an increased weight of vortex compression com-
pared to the Newtonian one. The observed shift also appears to be robust to
the choice of the threshold, as shown in Figure 5.19, and it becomes more
evident when the threshold is lowered. The pdf of the strain rate production
si js jkski , unlike ωiω jsi j, shows how polymers shift towards negative events
in both the bulk and the interface. How it has been noted before, the strain
field is more directly coupled with the polymers and thus more apparently
affected everywhere in the flow.
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Figure 5.19: Probability density function of the normalized enstrophy production
ωiω jsi j at the interface with different thresholds ω2

i,th/2 for the inter-
face sampling.
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Figure 5.20: Probability density function of the normalized strain rate production
si js jkski normalized by its average value. (a) in the bulk (b) at the in-
terface, µ3 is the estimated skewness of the distribution. Adapted from
[14].

Recapitulating, at the interface the flow re-organizes itself. Vorticity close
to the interface has to tilt and align parallel to it, the intermediate and the
positive strain eigenvector becomes more strongly aligned along vorticity
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while the compressive one is more likely to be orthogonal to it compared to
the bulk of the flow. The change in alignments are reflected in a distribution
of enstrophy and strain production more skewed towards positive events of
both, strain and enstrophy production. The shifted weight towards stretching
(positive) events denotes how the interface is a region particularly active in
amplifying and redistributing fluctuations towards smaller scales. Polymers
at the interface are found to re-orient preferably along the vorticity direc-
tion (i.e. parallel to the interface) and are also aligned with the local vortex
stretching vector. The observable effect on strain and enstrophy produc-
tion dynamics is to oppose the suppression of negative events observed for
the Newtonian flow at the interface while leaving the occurrence of positive
ones relative unaltered. The bulk, in comparison, sees changes only for the
distribution of the negative strain rate production while the pdfs of enstro-
phy production are almost the same. Therefore, there is an apparent local
effect of polymers at the interface over enstrophy mechanics that tends to
oppose the effect of vortex stretching and surely contributes to the observed
increase of the scales of the interface’s features. For the case of the enstro-
phy production, the effect of polymers can be expected to be linked to their
preferential alignment with the vortex stretching. Polymers are either op-
posing vortex stretching while extending or enhancing vortex compression
while relaxing. This, though, is hardly assessable through Eulerian statistics
only and this is where Lagrangian analysis can help.
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5.2 Lagrangian Statistics

5.2 Lagrangian Statistics

The Lagrangian statistics have been obtained by seeding the domains of the
same 10 simulations with tracers and sampling the integrated position of
the particles after fixed time intervals. Along the trajectories, also the local
speed, velocity gradient tensor and polymer conformation tensor have been
sampled. 1000 tracers have been seeded in each run for a total of 100′000
sampled trajectories for a sampling time of about 30τη after the steady state
is reached. The focus of this analysis are the statistics of trajectories cross-
ing the interface, hence tracers have been added only in regions within a
distance between 1M and 3M from the centre of the domain and spanning
its whole y− z cross-section. This allows to have a good concentration of
particles in the region around the turbulent/non-turbulent interface, increas-
ing the number of interface crossings detected for a given number of seeded
particles. Conditional Lagrangian statistics are performed by averaging to-
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Figure 5.21: Position in time of a sub-sample of the Lagrangian tracers, the colour
encodes the enstrophy in logarithmic scale.

gether samples among all the trajectories with the same distance in time
from the instant tI at which the interface has been crossed. The crossing
events are identified by means of enstrophy thresholding as done before for
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the interface detection in the Eulerian statistics. In this way two kind of
crossing events can be univocally discerned: in the first case a trajectory
that starts with zero vorticity is identified to be in the irrotational region and
interface crossing tI is identified at the first instant at which the enstrophy
overcomes the selected threshold. These events are tagged as entrainment
events. A second type of event is identified when the enstrophy of a trajec-
tory is at some point in time above the threshold but it decays and remains
below it for the remaining time of the simulation. In this case the last time
at which the enstrophy is found above the average is identified as the inter-
face crossing time tI and the event is tagged as extrainment. This strategy
permits to easily tag, separate and average together a subset of all the en-
trainment and extrainment events with the limitation of failing to detect all
those events where the same trajectory crosses the interface in more time
points. The dataset of sampled trajectories is pruned to accept only trajec-
tories with a length of at least ±10τη . Entrainment and extrainment events,
especially in the polymer case, have different mechanics and the Lagrangian
statistics permit to better discern their contribution to the Eulerian statistics
observed in the previous section.

5.2.1 Entrainment

First the statistics of trajectories undergoing entrainment are considered. In
Figure 5.22 (a) the conditional energy profiles with respect to the time tI at
which the interface is crossed are shown. In this and in the following plots
(t− tI)/τη = 0 represents the point in time where the interface is crossed;
negative times refer to times before the interface crossing, hence to the ir-
rotational region. Positive times, on the other hand, refer to the turbulent
region. It is possible to see in for (t− tI)/τη < 0 that the initial growth of
the energy during the entrainment phase is relatively similar for both cases
with slightly less energy for the polymer case. Nevertheless after the inter-
face crossing energy rises more steeper in the polymer flow until it peaks at
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Figure 5.22: Conditional averages in time of entrainment events with respect to the
distance from the interface crossing. Energy normalized by the energy
in the bulk.

(t− tI)/ ≈ 5τη and under the turbulence-reducing effect of the polymers it
drops again until it reaches a local plateau. In order to have an impression of
the distances travelled by the particle and the location in the flow of the ob-
served features of the energy profiles, it is interesting to consider the average
position of the particles from the interface. Figure 5.22 (b) depicts the aver-
age position of the particles respect to the position xI at which its trajectory
crosses the interface. Here positive distances represent the irrotational re-
gion, while negative ones represent the turbulent one. For (t− tI)/≈−20τη

particles start on average at about 1M from the position of interface cross-
ing and approach the interface with a quasi-constant velocity in x-direction.
After the interface crossing, despite the observed increase of kinetic energy,
the particles seem to proceed at a slower pace towards the bulk of the flow,
confirming the observations of previous studies [79]. This is valid for both,
the Newtonian and the polymer case, even though on average polymers ap-
pear to have a slightly higher speed towards the bulk. Figure 5.23 (a) shows
how the enstrophy increases and reaches a plateau in both cases, similarly
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Figure 5.23: Conditional averages in time of entrainment events with respect to the
distance from the interface crossing. (a) Enstrophy normalized by the
enstrophy in the bulk, (b) ratio between enstrophy and strain.

to what has been observed before in the Eulerian conditional statistics. The
plateau is reached in both cases within 10τη from the interface crossing, but
for the polymer case it is possible to observe a sharper gradient and a distinct
peak of enstrophy at about 5τη . The peak is the mark of the transition of
the polymers to a stretched state. At this point they start to react back to the
flow and suppress enstrophy. Again, similarly to the conditional Eulerian
statistics, the ratio between enstrophy and strain in Figure 5.23 (b) shows
a steeper slope for the polymers compared to the Newtonian case, confirm-
ing that for polymers vorticity across the interface reaches the equilibrium
with strain faster than in the Newtonian flow. The transition of polymers to
the stretched state is easily observable in the conditional profile of polymer
stretching in Figure 5.24 (a) which reach a plateau around the same time at
which enstrophy does. A plateau is observed at around 10τη , where poly-
mers reach and average extension of around 17% of the maximum allowed
one. Furthemore it can be noted how the polymer in the irrotational region
have almost negligible extension and they start to significantly stretch only
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Figure 5.24: Conditional averages in time of entrainment events with respect to the
distance from the interface crossing. (a) polymer extension normalized
by average extension in the bulk, (b) free energy Ap.

within the turbulent region. Figure 5.24 (b) depicts the energy stored in
the polymers as free energy Ap. The energy stored in the polymers keeps
growing. The plateaus observed in the Lagrangian entrainment statistics are
consistent with observations in previous studies that stated that entrained
particles tend to station in the whereabouts of the interface for some time
[79, 77].

5.2.2 Extrainment

It is interesting to observe how the extrainment process, which also affects
the mechanics of the turbulent/non-turbulent interface, unfolds. In the fol-
lowing set of plots negative (t− tI)/τη are portions of trajectories that are
within the turbulent region while positive (t− tI)/τη represent portions of
trajectories in the irrotational region. The turbulent kinetic energy shown
in Figure 5.25 (a) appears to be maintained during the extrainment rela-
tively flat gradients for both the polymer and the Newtonian case, the main
difference being a lower level of kinetic energy for the polymer one. Sim-
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Figure 5.25: Conditional averages in time of extrainment events with respect to the
distance from the interface crossing. Energy normalized by the energy
in the bulk.

ilarly to the entrainment case there is no direct correlation between turbu-
lent kinetic energy and velocity respect to the interface position. Indeed,
by looking at Figure 5.25 (b) one can see how tracers in the polymer case
starts slightly further away from the interface respect to Newtonian tracers
indicating slightly larger speeds towards the interface. Once crossed the
interface the tracers appear to station just outside it reaching within 10τη

a negligible speed in x-direction. From the distance statistics of both en-
trainment and extrainment events it appears that particles after crossing the
interface tend to remain in its whereabouts and especially there is a delay
between the entrainment of a particles and its actual mixing into the bulk
of the flow. The introduction of polymers seems to slightly increase the ex-
change of particles between bulk and interface by increasing both the speed
of trajectories towards the bulk during entrainment as well as the speed of
trajectories towards the interface during extrainment.

As can be observed from Figure 5.26 (a) on average the sampled trajec-
tories of the particles undergoing extrainment show similar profiles of en-
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Figure 5.26: Conditional averages in time of extrainment events with respect to the
distance from the interface crossing.(a) Enstrophy normalized by the
enstrophy in the bulk, (b) ratio between enstrophy and strain.

strophy for the Newtonian and the polymer case. Interestingly the transition
from the turbulent to the non-turbulent region is demarcated by only a light
change in the slope of the profiles. While enstrophy profiles appear almost
unchanged, polymers still affect the strain. Indeed, due to a faster decay of
strain fluctuations the ratio ω2

i /2si jsi j of Figure 5.27 (b) is larger compared
to the Newtonian case. Looking at the average polymer extension in Figure
5.27 (a) it can be noticed how this is lower than the threshold of activation
observed for the entrainment statistics of Figure 5.23, so it can be expected
that polymers are not the major responsible for the decay in enstrophy of
these particles. Moreover, a small residual extension is maintained for more
than 10τη after the crossing of the interface confirming that what observed
for the non-turbulent region in the Eulerian conditional statistics of Figures
5.11 is partly imputable to the expulsion of stretched particles from the tur-
bulent region. The free energy in Figure 5.27 (b) follows the decay of the
average extension and similarly retains some non-zero level quite far from
the interface crossing.
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Figure 5.27: Conditional averages in time of extrainment events with respect to the
distance from the interface crossing.

The Lagrangian analysis is concluded with a comparison of enstrophy
production dynamics between entrainment and extrainment events in the
proximity of the interface. Indeed, the plots of Figure 5.28 depict the prob-
ability distribution of the enstrophy production normalized by its average
value at the interface of the Lagrangian tracers for which t− ti = ±τη . In
the case of entrainment events, the normalized production shows a much
larger probability of extreme events for the polymer case. In both cases the
distribution maintains a prevalence of positive events over the negative ones
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Figure 5.28: Probability density function of the normalized enstrophy production
from the Lagrangian tracers at the interface crossing. (a) Entrainment
events, (b) extrainment.

and, overall, they both positively contribute to the enstrophy variation at the
interface. For the case of extrainment events, as expected, much weaker en-
strophy production is observed, the distributions are flatter and more similar
to Gaussians than the ones previously observed even though a little preva-
lence of positive enstrophy production is still present. More noticeably, both
the distributions are very similar further showing that both Newtonian and
Polymer trajectories undergo to similar decay histories. When observing
these pdfs, it is hard to draw a parallel with their Eulerian equivalent. In
particular, from these distributions, it is not possible to detect the shift to-
wards more negative events observed for the Eulerian statistics with poly-
mers. Similarly, caution should be used in trying to link the Lagrangian
conditional profiles of the statistics shown here to their Eulerian counter-
parts. It is obvious that the entrainment and extrainment events brings very
different contributions to the global statistics of the interface. The extrain-
ment statistics depict another side of the interface, where properties of the
two regions blend smoothly and the border between the two regions is more
blurred. The sharp gradients across the turbulent/non-turbulent interface ob-
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served in the Eulerian conditional statistics in this sense appear to be more
related the Entrainment events. Nevertheless, at the steady state it can be
expected that entrainment events are as likely and equally important as the
extrainment ones. Unfortunately, a balance between the two could not be
performed being the sampling algorithm capable to track only the first (en-
trainment) and the last (extrainment) interface crossing for any given tra-
jectory. The majority of interface crossings are from particles that after en-
trainment/extrainment remain or return to the whereabouts of the interface
and undergo to extrainment/entrainment many times along the same trajec-
tory. As evidence suggests, both entrained and extrained particles tend to
remain close to the interface, and these events can be expected to consist
of a relevant number of all the entrainment/extrainment events at the steady
state. Indeed, all the events tagged either as entrainment or extrainment by
the algorithm used here represents around 21% of all the detected crossings
of the enstrophy threshold for the Newtonian case and 17% for the polymer
case. In total around 79−83% of the events remain untagged and represent
all those cases where the threshold is crossed due to either internal turbu-
lent fluctuations of enstrophy or actual multiple crossing of the interface by
the same trajectory. The Lagrangian statistics are hence representative of
only a limited subset of the trajectories crossing the interface and cannot
explain the Eulerian statistics shown in the previous sections alone. Nev-
ertheless, it is interesting to study the differences between the entrainment
and extrainment processes as these may be more or less predominant dur-
ing different phases of the life of a turbulent patch. For example, during the
growing phase at the interface, the entrainment events will prevail leading to
different global properties compared to the steady state case. Conversely, in
a receding flow the extrainment events will be determinant to the interface
properties. These factors are particularly important in order to understand
the behaviour of the polymer model in the transient phases of the turbulent
patch. Extrainment showed to be the strongest contribution to the observed
presence of stretched polymers in the non-turbulent region. At the steady-
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state these can accumulate producing a shell around the irrotational side of
the interface of uncoiled polymers capable to apparently affect the strain
field in that region. Being currently unable to address the transient phase
of the polymers, it is not possible to determine if the observed mechanics of
polymer re-organization of strain/vorticity alignments and their effect on the
strain/enstrophy production can be generalized also to the growing phase of
the turbulent patch.

105





6 Conclusions

In this thesis the relatively unexplored topic of the mechanics of turbulent
propagation in dilute polymer solutions has been studied with the objective
of increasing the current understanding on turbulent propagation not only
of this particular kind of flow but also of Newtonian turbulent flows in gen-
eral. Among the many open issues in the understanding of turbulent prop-
agation there is the one of properly assessing the two dichotomies of small
versus large scales role and of viscous versus inertial dynamics. Polymers
in this framework permit to study the propagation of turbulence in condi-
tions where inertial dynamics and scale distribution have been altered com-
pared to Newtonian turbulence, without affecting the physical mechanism
of molecular viscous diffusion. Preliminary spectral analysis on shearless
turbulent/non-turbulent interfaces of a Newtonian decaying flow highlighted
the presence of a complex system of viscous and non-viscous fluxes, with
sources and sinks in different regions of the flow and at different turbulent
scales. In particular a central role of large-scale inhomogeneities in the flow
has been found. The inhomogeneities prompt advective fluxes of enstrophy
from the bulk towards the interface which feed turbulent fluctuations near
the interface and further the propagation and enstrophy growth despite the
general decay in the rest of the flow. It has been observed that while condi-
tional statistics in literature confirm the presence of a thin layer dominated
by viscous diffusion [63], the spectral analysis found that scales parallel to
the interface of such regions are relatively large. Qualitative observations of
the viscous diffusion of enstrophy near the interface confirm the presence
of waves of alternating positive and negative diffusion with thin thickness
normally to the interface but with relatively large extension parallel to it.
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DNS of turbulent fronts in a continuously forced set-up have been per-
formed with Newtonian and FENE-P models for the constitutive relation
between stress and deformation. The employing of a coarse grained model
as the FENE-P is imposed by the current limitations on the computational
power available and requires a validation against experimental observation
in order to confirm the trends observed in the simulations. A number of dif-
ficulties have been encountered during this study that might limit the gen-
erality of the observations made. First, both experiments and simulations
with polymers present some sensitivity to the parameters chosen and results
cannot be generalized to all the parameter space. The limits of both, the
experimental and numerical technique limited the flow to small Reynolds
numbers and again polymers are known to lead to contradictory behaviours
with increasing Reynolds numbers [39] partially due the fact that polymers
interact differently with the different turbulent structures that can arise at
different Reynolds numbers. On another side Reynolds number’s effects are
expected to be less influential on a region like the turbulent/non-turbulent
interface where by definition turbulent fluctuations are almost completely
decayed.

Both simulations and experiments confirmed a reduction of the maximum
propagation of the turbulent region for the dilute polymer case, even with
comparable levels of turbulent fluctuations respect to the Newtonian case.
Also, both experiments and simulations showed a reduction in the fractal-
like complexity of the interface for the polymer case, leading to flatter in-
terface featuring larger scales. Unfortunately it has not been possible to
study the growth rate of the turbulent region for the polymer case due to
the fact that the FENE-P model requires few eddy turnover times in order
to reach sufficient average extensions to start to affect the flow. Despite
its deficiencies in properly predicting the transient behaviour, the FENE-
P model proved itself again to qualitatively predict the behaviour of dilute
polymer solutions even in this non-canonical case. The dynamics of vortic-
ity and strain at the turbulent/non-turbulent interface have been extensively
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investigated permitting to observe how those are altered by the introduction
of the polymeric stress. Like many other anisotropic Lagrangian tracers,
polymers have been found to assume the orientation of the local vorticity,
leading to a direct interaction with the vortex stretching. In those regions
of the flow that are still approximatively isotropic this does not lead to ap-
preciable differences in the distribution of positive and negative events of
the normalized enstrophy production ωiω jsi j/〈ωiω jsi j〉 as polymers seem
to affect both kind of events in the same way and a "universal" balance is
conserved. At the interface though, the balance moves for dilute polymer
solutions towards more intense compressive events. This globally leads to-
wards lower production of enstrophy at the interface, shift towards larger
scales, reduced convolution of the interface and entrainment flux.

Through Lagrangian tracking it has been possible to separate trajecto-
ries in three different groups: trajectories that enter the turbulent region and
remain within it, trajectories that leave the turbulent region without return-
ing turbulent again and, finally, trajectories that cross the interface several
times in both directions. It has been possible to univocally identify and tag
only the first two type of trajectories, but those already showed how parti-
cles crossing the interface from the irrotational region towards the turbulent
one have dramatically different statistics respect to the ones crossing the
interface in the opposite direction. In particular entrainment appears to be
responsible for the relatively steep gradients observed in conditional Eule-
rian statistics of many quantities. On the opposite side extrainment events
have very flat profiles that tend to smooth the aforementioned gradients. It
can be argued that the balance between entrainment and extrainment events
defines the Eulerian statistics of the interface partially explaining some of
the differences observed between different type of flows or even between
different regions of the same flow [7, 76]. The distinction between the ex-
trainment and entrainment Lagrangian statistics is even more marked for
the polymer case. Indeed, since polymers are in the coiled conformation at
the beginning of the entrainment, they only little affect the enstrophy at the
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interface, allowing for faster growths in the more energetically stirred poly-
mer flow. On the other hand, extrainment events have very similar enstrophy
and energy profiles and areresponsible for the observed presence of resid-
ual polymer stretching in the non-turbulent region. The residual stretching
of the polymers after extrainment might be significant for the largest class
of events represented by trajectories crossing the interface multiple times.
Along those trajectories, polymers can constantly maintain a certain degree
of extension and react more rapidly during subsequent entrainment events.
In wall-bounded flows, polymers have been observed to strongly interact
with near-wall turbulent structures. Near the wall polymers are indeed more
intensely affecting the flow [26], they are strongly aligned with coherent vor-
tical structures and increase the anisotropy of turbulent fluctuations, while
far from the wall they have a more isotropic behaviour [22, 39]. Similarly,
for the flow investigated in this thesis the polymers have more freedom of
orientation in the bulk of the flow where the properties of both polymers and
flow better approximate the ones of homogeneous isotropic turbulence.

Concluding, it has been possible to obtain some further insight on the
mechanism with which polymer affect turbulence and interact with coher-
ent structures in the flow. At the border between the turbulent and the irrota-
tional region, it is possible to see a strong alignment with the large (though
thin) organized structure which is the turbulent/non-turbulent interface. A
preferential alignment of polymers with large coherent structures means that
the polymer stresses can affect larger turbulent scales at the interface com-
pared to the ones affected in more turbulent, chaotic and isotropic regions
of the flow. These observations can probably be extended to flow control
applications, where the control might be more easily applicable and more
effective in those regions of a flow where turbulence experiences a reduced
degree of freedom and is forced to organize in large structures.
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A Appendix

A.1 Numerical Implementation

The incompressible Navier-Stokes equations and the evolution of the poly-
mer conformation tensor are discretized by means of a pseudo-spectral
method based on Fourier series and are integrated in time through a partially
implicit Crank-Nicholson/Runge-Kutta scheme following the implementa-
tion used in De Angelis et al. 2005 [17].

The momentum conservation is given by:

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p

∂xi
+

1
Re

∇
2ui +gi + fi, (A.1)

where fi is the ith-component of the body force and gi is the ith-component
of the added polymer contribution

gi =
1

Re

∂T p
i j

∂x j
. (A.2)

Using the FENE-P model the stress Ti j is given by:

T p
i j =

ηp

τ

(
L2

max−3
L2

max−Tr(Ci j)
Ci j−δi j

)
. (A.3)

Here τ is the relaxation time of the polymer chain, ηp is the ratio between
the asymptotic zero-shear-rate viscosity of the solution with polymers and
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the solvent viscosity. L2
max is the maximum allowed extension of the poly-

mer chains and Ci j is the conformation tensor that represents the average
orientation and extension of the polymer chains at a given point of the field.
The evolution of the conformation tensor in the current implementation is
governed by

∂Ci j

∂ t
+uk

∂Ci j

∂xk
=−1

τ

(
L2

max−3
L2

max−Tr(C)
Ci j−δi j

)
+

∂ui

∂xr
Cr j

+Cir
∂u j

∂xr
+χ∇

2Ci j, (A.4)

where the diffusive term χ∇2Ci j is added in order to increase the stability
of the simulation. The Navier-Stokes equations when transformed in the
Fourier space assume the form

∂ ûi

∂ t
= ĥi−

ki

k2 (kiĥi)+
1

Re
∇

2ûi + ĝi−
ki

k2 (kiĝi)+ f̂i−
ki

k2 (ki f̂i) (A.5)

where ĥi = ˆu jωkεi jk. The Equation A.5 is then integrated in time using a
third order Runge-Kutta scheme in the form:

ûn+1
i = ûn

i +anĤn
i +bnĤn−1

i − an +bn

2Re
k2 (ûn+1

i + ûn
i
)
+

an +bn

2Re

(
B̂n+1

i + B̂n
i
)

(A.6)

Where B̂i = ĝi− ki
k2 (kiĝi)+ f̂i− ki

k2 (ki f̂i) and hatHi = ĥi− ki
k2 (kiĥi). The

non-linear term is integrated using an Adam-Bashforth scheme and the lin-
ear term by using an implicit Carnk-Nicolson one.

Lagrangian statistics have been computed by seeding the flow at random
coordinates within a desired region of it. The particles’ positions are then in-
tegrated at each time step using the Eulerian velocities. Being in general the
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particles’ positions not coincident to the discretized points of the domain the
particle velocity is obtained by a bicubic interpolation of the velocities of the
neighbouring points. The same applies for all the other sampled quantities
at the particles’ positions.

A.2 Forcing characterization

The thickness ∆ is usually chosen to be ∆ ≈ M in order to have a more
isotropic energy injection scales. With our forcing model the governing
parameters are the maximum amplitude A0, the forcing interval ∆tu, the
mesh-size M and ∆. A number of simulations have been performed with
the purpose of assessing the effect of each of these parameters and it has
been observed how, within the range used, the forcing produced results con-
sistent with the ones expected from oscillating grid turbulence. The data-set
presented here refers to a single simulation re-initialized every time with
different forcing parameters. All simulations, apart the ones at different
forcing frequency 1/Tf and different mesh size M, share the same random
number time-sequence for the generation of the forcing distribution. This
has been made in order to allow a direct comparison between single runs.
The forcing parameters used in this parametric study are recapped in Table
A.1 where also some flow statistics, sampled in the middle of the forced re-
gion, are presented. Figures A.1–A.2–A.3–A.4 show the effect of the choice
of the various parameters over the average energy in the middle of the forced
region and over the interface position detected by a threshold of enstrophy
equal to the 2% of the bulk enstrophy. While the growth phase of the
patch seems to be accelerated by parameters that increase the energy con-
tent of the forced region the final patch size appears to be less sensitive to
changes in the forcing parameters. According to this metric the parameters
that affect the most the final position of the turbulent front are the energy
injection scales M and ∆.
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Name K ∆ Tf M u′ Re λ Reλ

Base 3.8 0.065 0.1 Ly−z/8 0.50 80 0.65 65

A1 5.8 0.065 0.1 Ly−z/8 0.58 91 0.61 70

A2 6.8 0.065 0.1 Ly−z/8 0.65 102 0.59 76

A3 3.8 0.065 0.1 Ly−z/8 0.75 117 0.56 84

T1 3.8 0.065 0.05 Ly−z/8 0.71 112 0.59 84

T2 3.8 0.065 0.3 Ly−z/8 0.38 59 0.70 53

D1 3.8 0.075 0.1 Ly−z/8 0.52 82 0.65 68

M1 3.8 0.065 0.1 Ly−z/4 0.50 157 0.76 76

M2 3.8 0.065 0.1 Ly−z/16 0.44 34 0.46 41

Table A.1: Parameters for the characterization of the forcing. All simulations were
run at Re = 200, ∆t = 0.001
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Figure A.1: Kinetic energy in the forced region(a)and average interface position
(b).
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Figure A.2: Kinetic energy in the forced region(a)and average interface position
(b).
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Figure A.3: Kinetic energy at the center of the forced region (a), average interface
position (b).

A.3 Choice of the parameters for the FENE-P model

Within a limited range of values, also the effect of the choice of the FENE-
P model parameters has been assessed. A set of simulations have been
performed with fixed forcing parameters and different parameters for the
polymer model. The simulations have all the same random number time-
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Figure A.4: Kinetic energy at the center of the forced region (a), average interface
position (b). In this case for the sake of comparison the interface posi-
tion has been normalized by the box half size Lx

sequence for the generation of the forcing distribution in order to have a
better comparison. The FENE-P parameters used in this parametric study
are recapped in Table A.3 where, like previously done for the forcing study,
also some flow statistics sampled in the middle of the forced region are pre-
sented. The simulations have been stopped at the time at which turbulence
for the base case stops propagating. In Figures A.5–A.10–A.11–A.12
show like for the Newtonian study little sensitivity of the detect interface
position with respect to the model parameters.

For the cases TA1,TA2,TA3 in Figure A.10, a consistent trend of reduc-
tion of the kinetic energy could be found at increasing values of τ . The same
leads to contradictory results for the interface propagation, where all three
cases led to larger patches than the base case. Simulations P1 and P2 test
sets of parameters where the value of Kcoiled is kept constant where:

Kcoiled =
ηp

τ

L2
max−3

L2
max−Tr(Ci j)

(A.7)
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Table A.2: My caption

Name L2
max τ ηp χ u′ Re λ Reλ

Base 5000 2 0.1 1/200 0.45 70 0.77 69

ET1 5000 2 0.06 1/200 0.47 73 0.74 70

ET2 5000 2 0.25 1/200 0.44 69 0.79 68

TA1 5000 0.8 0.1 1/200 0.43 68 0.75 64

TA2 5000 4 0.1 1/200 0.41 66 0.72 60

TA3 5000 7 0.1 1/200 0.50 78 0.72 71

P1 5000 4 0.25 1/200 0.41 64 0.72 62

P2 3600 5 0.25 1/200 0.36 62 0.76 60

CHI 5000 2 0.1 1/100 0.45 70 0.47 69

Table A.3: Parameters for the test of the polymer parameters. All simulations were
run at Re = 200, ∆t = 0.001
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Figure A.5: Kinetic energy at the center of the forced region (a), average interface
position (b).

is computed for small extensions (below 1% of the maximum allowed).
Therefore, these simulations have almost the same polymer reaction force
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Figure A.6: Kinetic energy at the center of the forced region (a), average interface
position (b).
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Figure A.7: Kinetic energy at the center of the forced region (a), average interface
position (b).

in the small extension range. These simulations, though having the largest
reductions in the kinetic energy in the tested parameter space, lead to very
similar profiles of the patch growth further underlying the importance of
the low extensions regime for the FENE-P model in turbulent/non-turbulent
interfaces.
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Figure A.8: Kinetic energy at the center of the forced region (a), average interface
position (b).
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Figure A.9: Kinetic energy at the center of the forced region (a), average interface
position (b).

Finally, simulation CHI has been realized in order to test the effect of
the artificial diffusivity on the energy and the propagation. This simula-
tions show maximum differences below 2% for both, energy and propaga-
tion when the artificial diffusivity is double the one of the base case.

141



A Appendix

0 2 4 6 8
0

0.2

0.4

t

E

(a)

τ = 0.8

τ = 2

τ = 4

τ = 7

0 2 4 6 8
0

1

2

t
x
/M

(b)

τ = 0.8

τ = 2

τ = 4

τ = 7

Figure A.10: Kinetic energy at the center of the forced region (a), average interface
position (b).
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Figure A.11: Kinetic energy at the center of the forced region (a), average interface
position (b).

A.4 Interface Detection Methods and conditional
averages

Several methods can be found in literature that permit to track the position
of the turbulent/non-turbulent interface. Each of them can lead to different
detected interfaces, often producing results that are difficult to compare [7].
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Figure A.12: Kinetic energy at the center of the forced region (a), average interface
position (b).

Some further detail on the interface detection techniques is given here in
order to better clarify the origin of some variability in the literature results.
As it has been introduced in the first chapter of the thesis, several quanti-
ties present relatively sharp changes across the interface and, virtually, any
of these quantities can be used for interface detection. Scalar quantities
are particularly suitable for such purpose and, for example, velocity mag-
nitude, enstrophy, temperature, concentrations of scalars (both passive and
reacting) had been used for interface detection purposes [27, 32, 16]. The
basic principle involves setting a maximum value or threshold of such scalar
quantity, above which the fluid can be considered with a certain confidence
to be turbulent. Then all the points of the field are tagged as turbulent when
the scalar quantity is above the threshold, and non-turbulent when it is be-
low. Further post-processing is required in order to extract the boundary
between the two regions and a number of algorithms have been developed
in order to do so. This has introduced a further source of variability in the
interfaces detected by different studies. Part of the post-processing usually
implies removing internal pockets of irrotational fluid trapped inside the tur-
bulent region as well as isolated turbulent bubbles in the irrotational region
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detached by the mass of the turbulent flow. When this pocket/bubble remo-
tion is applied to 2D slices of the scalar field, parts that in the more complex
3D field would result connected to the main irrotational/turbulent body are
also removed. The error associated to this remotion is usually considered
negligible and to the knowledge of the author only Borrell and Jimenez [7]
implemented an algorithm that accounts for connected 3-dimensional re-
gions at the cost of a sensible increase of the computational costs. In these
study the turbulent/non-turbulent interface has been identified by mean of
an enstrophy threshold, i.e, non-turbulent regions are identified in the flow
where the vorticity magnitude falls below a certain level. Such approach
has proved itself one of the most robust techniques for interface detection,
though it presents the problem of the choice of a meaningful value for the
threshold Ωth. Following this method, the average position of the interface
has been define as XI = 〈xI〉 where xI = xI(y,z) is the instantaneous position
of the interface detected by finding the outermost point where enstrophy,
Ω = ωiωi/2 with ωi denoting vorticity, equals a given threshold. Figure
A.13 shows a comparison between the interface detected by the algorithm
used in the present work and the one detected by a simplified implemen-
tation of the algorithm used in Borrell and Jimenez 2016[7]. As in both,
experiments and simulations a certain level of noise is always present in
the non-turbulent region, 0 level thresholds are not practically applicable.
Moreover, it can be argued that not any arbitrarily low enstrophy fluctuation
denotes turbulence. Hence, the choice for the threshold depends on empir-
ical observations and on constraints dependent on the particular flow case.
For example in certain time and space evolving flows a single constant value
for the threshold would fail to properly detect the interface at every stage of
the flow. In these cases the threshold should be dependent on some local-
in-time or -space turbulent property. In the present work a time-dependent
threshold has been used and, following Wolf et al. 2013 [79], a value of 2%
of the mean enstrophy in the bulk of the flow at a given time has been used (
Ωth = 0.02Ω0). Such a choice has proven well suited through the study for
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Figure A.13: Example of the interface by two different detection algorithms. Right:
only the outermost thresholded points are selected. Left: simplified
algorithm from Borrell and Jimenz algorithm prior the removal of
pockets and bubbles.

identifying the region of the flow where propagation takes place. In Chap-
ter I it permits to properly detect the interface in the location of maximum
positive enstrophy variation of the single-points budgets. In chapter IV it
properly detect the interface at the end of the region of linear growth of the
integral scale and the region of maximum velocity anisotropy.

Once identified the interface, it is possible to define properties related to
the distance from the interface. This consists in defining a new local refer-
ence system centered at the local position of the interface. Then, statistics
are sampled averaging together all the points at the same coordinate respect
to its local interface position. Different choices of this reference system
can give different results, especially at growing distances from the interface.
The simplest choice is to use the horizontal distance ∆x referred to the outer-
most detected interface position for every coordinate couple (y,z). In doing
so, the local reference system maintains the same angle respect to the global
one, and changes its position only. This has the disadvantage of hiding the
contribution from inner parts of the interface, but it permit to depict statistics
at the interface as well as to return to the fully turbulent (classical) statistics
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far enough from it. This is the approach used here and in Chauhan et al.,
Westerweel et al. and da Silva and Taveira [9, 62, 78]. A second approach

x

y

xI (y, z)

x − xI > 0

x − xI < 0

Detected Interface

Figure A.14: Conditional averaging procedure.

consists in defining a local reference system oriented as the direction nor-
mal to the local interface. This approach is used for example in Watanabe
et al. 2016 [77] and da Silva and Pereira [57]. This technique improves the
quality of the statistics near the interface, especially for strongly convoluted
ones, but the local axes tend to intercept each other further away from it,
making the samples at larger distances far from homogeneous. Borrell and
Jimenez 2016 [7] use a third approach in which, for every point p of the
field, they find the ball distance ∆b from the interface defined as the mini-
mum radius of a sphere with center in p and surface tangent to the interface.
Then they compute statistics as a function of the distance ∆b. The opera-
tion of generating the new reference systems for all the points of the field
has computational cost of Nplog(N) and was deemed to expensive for the
application of this study. As already pointed out, the three approaches give
in general different results mostly in the mid to far distance to the interface.
The more regular is the interface, though, the more similar are the statistics
obtained by the three methods. Another source of arbitrariness in the com-
pute statistics is the choice of the enstrophy threshold. In experiments, a
value is chosen such that it is preferably of some orders of magnitude lower
than average values in the bulk but still robustly above the magnitude of the
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noise in the non-turbulent region [32]. In such a way, there is a range of
thresholds for which the turbulent volume enclosed by the detected inter-
face do not changes much [16]. Borrell and Jimenez, though, pointed out
that this plateau spans over several decades of Ω and that both, turbulent
statistics and the topology of the interface can change considerably within
this range. They suggest, nevertheless, an order of magnitude for the choice
of the interface [7]. Here, the threshold is time dependent and defined as the
a fraction of the average enstrophy of the bulk. The position at which this
average is computed corresponds to a plane at a distance of x = 0.6M from
the middle of the domain, which is just outside the forced region. The cho-
sen threshold equals 2% of the average bulk enstrophy, such a value roughly
correspond to the threshold used for similar flows and Reλ in [32, 33, 79],
and an half of the one used for jet flows in [6, 76]. The interface is highly
fluctuating and in both, simulations and experiments, can reach deep into
the turbulent bulk [16, 7]. In order to avoid effects of the body force on the
statistics, all those samples within the forced region have been eliminated
from the computation. For the Lagrangian statistics the conditional averag-
ing is performed with respect to the time. For the entrainment events only
trajectories that start with vorticity below the threshold are selected, and the
first time at which the enstrophy threshold is overcome is identified as the
time of interface crossing tI . Conversely for extrainment events only trajec-
tories that end with vorticity below the threshold are selected, and the last
time at which the enstrophy decays below the threshold is tagged as the time
of interface crossing tI . In both cases, samples that cross the threshold be-
fore the steady state phase is settled are eliminated from the data set. Then,
a new time reference system is defined as t− tI and conditional statistics are
obtained by ensemble averaging all the samples at the same distance in time
from the interface.
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