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Abstract—Mobile phones have developed into complex plat-
forms with large numbers of installed applications and a wide
range of sensitive data. Application security policies limit the
permissions of each installed application. As applications may
interact, restricting single applications may create a false sense
of security for end users, while data may still leave the mobile
phone through other applications. Instead, the information flow
needs to be policed for the composite system of applications in a
transparent manner. In this paper, we propose to employ static
analysis, based on the software architecture and focused on data-
flow analysis, to detect information flows between components.
Specifically, we aim to reveal transitivity-of-trust problems in
multi-component mobile platforms. We demonstrate the feasibil-
ity of our approach with two Android applications.

I. INTRODUCTION

Powerful and well-connected smartphones are becoming
increasingly common. Their features are provided by focused
applications that users can easily install from application market
places. With hundreds of thousands of applications available,
however, there is only limited control over the quality and intent
of those applications. Mobile code and extensibility is one of
the key issues that increase the complexity of software security.
To counter this threat, mobile operating systems impose security
restrictions for each application. The Android mobile operating
system is one of the major smartphone platforms. The Android
security model enforces the least-privilege principle through
application-level permissions that can be requested by the
applications. End users need to grant the permissions at install
time and decide on the adequacy of the required permissions
and the trustworthiness of the individual application. Often it
cannot be assumed that a user fully understands the risks related
to granting permissions to applications [1l]. This situation be-
comes more complex if two or more applications collude, each
single application only requiring innocuous permissions. In
particular, the user has little knowledge about the consequences
regarding the transitivity of permission granting. As depicted in
Figure|l] an application (1) with only local permissions (2) may
proxy sensitive data (3) through third party applications and
services (4) to external destinations (5). The inter-component
cooperation is an important concept on the Android platform,
but the user needs transparency concerning information flows
between applications.

The above-described issue of missing transparency poses a
risk with the spreading of smartphones, the large numbers of
available applications and the prevalent custom of installing
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applications from untrustworthy sources. Attacks will become
more likely in the future due to the different kinds of sensitive
data stored on the phones, ranging from online banking and
business application credentials to communication data and
location information. The threat is further increased by the
number of data channels, such as the short message service,
E-mail or Web access that allow the flow of information out
of the device context. As a consequence, tools are needed that
reveal such information flows on mobile phones. Note that these
information flows not necessarily need to be malicious—in
fact, a higher transparency is of importance here.

In this paper, we describe an approach to making information
flows explicit between different applications and out of the
platform. This way, problems can be revealed that are induced
by interacting applications and permission transitivity. Our
contributions are in particular:

1) Static analysis of Android applications w.r.t. interactions

and transitivity of permissions.

2) Employing a two-layer approach for static analysis, com-
bining code-level analyses (on the bytecode) with analyses
at the more abstract level of the software architecture.

3) Demonstrating the feasibility of our approach with the
help of two applications from Google Play.

Our analysis method can be considered complementary
to other static code analysis approaches that aim to detect
implementation bugs [2]. We aim to focus on the aspect of
program comprehension for security assessments in making
transparent interactions between different applications.

The rest of this paper is structured as follows. In Section |1
we briefly describe the background of Android, before dis-
cussing the possible data sources and sinks of Android appli-
cations. In Section we present our approach to the security
analysis of Android applications, followed by a case study.
After listing the related work, we conclude in Section m

II. ANDROID CONCEPTS

Applications on the Android platform are developed with
Java. They are, however, not executed on traditional Java virtual
machines, but are converted into the custom bytecode and
interpreted with the Dalvik virtual machine. The Android SDK
supports most of the Java Platform and contains some specific
extensions, including telephony functionality.

Android applications consist of four basic component types,
activities, services, broadcast receivers, and content providers.
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Activities constitute the presentation layer of an application
and allow users to directly interact with the application. Ser-
vices represent background processes without a user interface.
Broadcast receivers subscribe to broadcast messages from ap-
plications or the system. Content providers allow an application
to share data with other applications. All components follow a
component-specific lifecycle that is managed by the OS. For
communication between the individual components of applica-
tions, inter-process communication (IPC) provides a means to
pass messages between different components [3]. One way of
IPC are messages that contain meta information and arbitrary
data, called intents. Two basic methods of security enforcement
are used in Android. Firstly, components run as Linux processes
with individual Unix users and thus are separated from each
other. This way, a security hole in one application does not
affect other applications. A second enforcement mechanism
in the Android middleware implements a reference monitor to
mediate the access to application components based on per-
mission labels. Similarly, access to security-critical resources,
such as Internet, is restricted by permissions.

III. SOURCES AND SINKS IN ANDROID

Our approach to information-flow analysis is to analyze inter-
component flows from information sources, such as contact
lists, to channels through which information leaves the device
context. Thus, we must identify communication mechanisms
between components as well as critical incoming and outgoing
channels on the Android platform. The incoming channels
are referred to as data sources, outgoing channels as data
sinks. We identified a list of inter-component communication
mechanisms, sources and sinks by exploring of the Android
application framework and the provided samples. Table [[| lists
the primary communication types on the Android platform.
For the sake of brevity, only individual examples of the API
calls are given. The origin of the data in an information flow
needs to be known to effectively analyze the flows’ criticality.
Table |II] provides a list of data sources that allow the flow
of information into the device and application context. Enck
et al. similarly identified data sources for the placement of
security hooks in their dynamic analysis, categorizing sources
into sensors, such as location sensors and camera, information
databases and device identifiers [[1]]. In Table we list data
sinks of Android applications with possible attack scenarios.

Internet

Description

Exemplary API calls

Invoke an

Activity by Intent
(in the foreground)
Broadcast messages to
registered listeners
(one-to-many)
Communication with
Service

(in the background)

Intent intent = new

Intent (this, Receiver.class);
startActivity (intent);
sendBroadcast (intent) ;
sendStickyBroadcast (intent) ;
sendOrderedBroadcast (intent) ;
startService () ;
stopService () ;
bindService () ;

TABLE I
INTER-COMPONENT COMMUNICATION MECHANISMS

Data source Accessible data

Content Provider contains passwords, contact list

SMS/MMS sensitive information
User input passwords

Files business documents
Network (HTTP) protected files

Bluetooth contacts, files, images
Camera observation of image data
C2DM sensitive URI

observation of location data
personal identification

Location Manager
Device identifiers

TABLE II
DATA SOURCES (INCOMING CHANNELS)

IV. INFORMATION FLOW ANALYSIS

We propose to analyze the information flows between the
applications to improve the transparency w.r.t. the permission-
transitivity problem on the Android platform. Our analysis
approach aims to identify information flows between different
Android applications/components. To analyze a larger set of
applications (as it usually exists on an end user’s phone), we did
not only utilize the abstract syntax tree (AST) for the entire
analysis, but also higher-level information of the software
architecture. Through this two-layer approach, we plan to
reduce the information input for resource-consuming analyses
based on the AST. Our prototype uses two distinct tools to
implement the analysis. We employ the Bauhaus tool-suite [4]]
at the architectural level and the Soot tool [5] for AST-based
analyses. The Soot tool provides different types of analyses
like context-sensitive pointer analyses implemented in the
Paddle extension [6]. However, some of these analyses cannot
be used for our approach because of Android’s specialized
method-starting mechanism for applications. The basic steps
our analysis approach are as follows: Using the Resource Flow



Data sink Attack scenario/attack requirements

(exemplary)

Network (WebView)
SMS/MMS
Bluetooth

manipulation of URI / access to URI
manipulation of data or number
influencing the transferred file / proximity,
control of receiver, completed pairing
malicious application misleads into writ-
ing into content provider / need to specify
content provider URI

malicious application misleads into writ-
ing into files/ need to specify file name
manipulation of address resolution / ac-
cess to OS services

manipulation of address resolution / ac-
cess to OS services

Content Provider

Files
Google Translate API

MapView

TABLE III
DATA SINKS (OUTGOING CHANNELS)

Graph (RFG), which is provided by the Bauhaus tool and
represents architectural information of the software, we search
for all security-relevant Android API calls. We understand all
data sources and sinks as well as Android’s IPC mechanisms
as security relevant. Having extracted those calls with the
help of Bauhaus, we obtain the software architecture of the
Android application under investigation. This information is
then communicated to the Soot tool, which performs the actual
data-flow analyses (backward slicing) on the code level. In the
last step, we annotate the software architecture in the RFG with
the data flows identified with backward slicing. This is done
via “summary edges”, a concept used in slicing algorithms [7]].
A high-level overview of our analysis technique is given in
Figure 2] In the following, we describe the single steps of our
analysis method in more detail. Input of our analysis is a set
of Android applications in Java bytecode formaﬂ

Identify components and IPC points at the architectural
level:  In the first phase of the analysis, we identify the
components as well as the associated entry and exit points at
the architectural level. The architecture-level analyses are based
on the the RFG, which the Bauhaus tool generates from the
Java bytecode of the analyzed applications. The RFG is a more
abstract representation than a common AST and represents
architecturally relevant information of the software (e.g., call
graph relations, member access) [4]. It is a hierarchical graph,
which consists of typed nodes and edges representing elements
like routines, types and components as well as their relations,
such as call relations. From the global RFG, we create a reduced
information-flow subgraph, containing only the relevant parts of
the studied Android components, also called information-flow
view. The relevant parts are identified through the search for
Android framework patterns that are described in Section
We identify relevant parts through pattern matching and mark
the related methods, classes, and calls by adding the nodes
and edges to an information-flow view.

'An analysis of applications in Android’s code format (called “DEX”)
should also be possible with the help of the ded/dare tool [8]. However, we
have not pursued this further and postpone this to future work.

Identify component-level flows by backward slicing:  An
intra-component data flow analysis is carried out at the AST
level to find information flows between entry and exit points in
components. The entry and exit points identified in the previous
step were used to focus the data-flow analysis and reduce the
analysis effort at this level. We developed analysis algorithms
for the Soot tool that utilize the known Android framework
semantics. For each class of entry and exit points supported by
the prototype a corresponding analysis building block has been
implemented. The behavior of the Android platform prevents
the Soot framework from generating a sufficient call graph for
our analyses. One reason is that there is no single entry point to
the Android applications, such as main (). More importantly,
there are several, partly dynamic framework semantics that
need to be part of the call graph, such as Ul event handlers,
but are difficult to be statically analyzed.

To identify the intra-component information flows, we search
for all program points that affect a given exit point in a
component. Therefore, we chose a static backward slicing
technique [7]]. If the backward slicing reaches an entry point
of the component under investigation, we consider this an
information flow for the specific entry and exit points. This in-
formation is stored in so-called “summary edges” [7]. Summary
edges usually store information about dataflows through called
methods (flowing from method entry to exit). We leverage
this concept by considering information which flows through
a whole Android component.

In addition, we identify the destination (component) of each
exit point. If a component’s exit point, for instance, calls
another activity explicitly, we must extract the parameter of the
startActivity () call from the AST. This information is
needed to calculate the information flows between components
and applications, respectively (see also the following step).

Consolidate inter-component information flows in the RFG:

The component-level flows from the AST-based analysis are
now employed to enrich the existing RFG-based information-
flow graph as follows. For each information flow that has been
identified in the previous analysis step, an intra-component
flow edge is added between the entry and exit point and the
corresponding nodes are added to the view. If the origin of the
current flow is tagged as “data source”, an information-flow
edge is inserted from the origin to the point of entry inside
the current information-flow view. Additionally, for all types
of destinations, an edge is inserted between the point of exit
and the destination’s point of entry.

In a last step, we derive the application-level information
flows, i.e., the flows through an entire application, by combining
the RFGs of multiple applications. To identify the detected
flows between sources and sinks in the application ecosystem
we verify them by starting from entry points that enter the
application to the exit points that leave the application. This
ensures that we have detected a potential critical flow from
a sink to source (see Section [[TI). The primary purpose of
the information-flow graph is to allow developers and security



High-level algorithm: Information flow analysis

Input: A set of Android applications in Java bytecode.

into the RFG and

Step 1: Search for data sources, sinks as well as IPC calls
on the software architecture via Bauhaus (RFG).
Step 2a: Do context-sensitive backward slicing with IPC exit points
as the slicing criteria and store this information as summary edges.
Step 2b: Calculate the target components of IPC calls.
Step 3: Insert the information determined in 2a) and b)
calculate information flows on the architectural level.
Result: Information flows of a set of Android applications.

Fig. 2.

experts to quickly identify flows and determine the risks related
to the flows without the need for digging into code details.

V. CASE STUDY

We evaluate our approach by means of a case study of a
public transport-related application and thereafter show how
the analysis results can be displayed.

Case Study Setup:  We chose to analyze two real-world
Android applications that are available on Google Play with
installations up to 50,000 devices. The first application is called
EfaFahrplan [9], an interface to a public transport routing
Web application, primarily improving the input form to take
advantage of the context (current location and time as well
as previous searches). EfaFahrplan takes parameters such as
origin, destination and desired arrival time and sends a query to
the routing Web application. Thus, the EfaFahrplan application
requires unrestricted Web access privileges.

When entering the public transport routing parameters, the
user may choose to take the current location as the origin. Since
using detailed location data is not strictly necessary for the
application’s main goal, location queries have been factored out
into a separate Android component that is installed as a separate
application. As shown in Figure [3| the EfaQueryLocation appli-
cation [10] thus requires location data permissions. With two
separate applications, a user may choose whether she would like
to grant location access. Still, as shown in the figure, there is an
information flow between both applications. This information
flow is required to fulfill the intended goals, but it was not
explicitly granted at installation time. Although not harmful,
this information flow is an example of the missing transparency
w.r.t. permission transitivity on the Android platform.

There are several reasons for selecting these two applications.
One pragmatic aspect is that one of the authors developed the
applications; thus, we had access to the applications’ Java
bytecode as the basis for our analysis. A more important
criterion for choosing this application was that it encompassed
different frequently-used Android concepts such as starting
activities or binding to services and a multi-component design
(see Section [[). The two applications also demonstrate that

Approach for analyzing the Android applications

the permission transitivity is a necessary concept, although the
missing transparency may cause the concept to be misused.

Applying the Analysis Prototype to EfaFahrplan:  We
now describe our analysis approach in more detail with the
help of this case study. In Figure 3] we can see that our system
consists of two applications with three Android components.
We can identify the entry and exit points of the components by
means of the architecture-level analysis (step 1 in Section [[V).
Taking a closer look at the ResultWebView activity, we
obtain onCreate () as an entry point, and as an exit point
the call to the Android WebView Ul element, which is at
the same time a possible data sink as described in Section [I1I
Thereafter, we interface with the Soot tool to perform the
detailed analysis on the AST.

At the AST level, we carry out the Soot analysis with the
backward slicing algorithm (step 2 in Section [[V]), based on the
component and IPC point information. For the ResultWebView
component, we need to verify, for example, whether an intra-
component information flow exists between the IPC points
onCreate () and WebView. The backward slice starting
point for each component is the exit point of the component,
for example, calling loadUr1l () on the WebView component.
Beginning here, we look up all variables passed on with the
method call and move backward along the statements inside the
method loadResults () to identify each point that affects
the exit point. When the beginning of this method is reached, we
have a set of variables that affect the exit point and we evaluate
whether any of these are method parameters to do further
analysis on affected points, maybe, in other methods of the
ResultWebView class. In this case, the variable extras, is
a parameter, so we trace where the current method was called.
The method was called by onCreate () that is described as a
starting point for activities in Section @ Inside onCreate (),
loadResults () is called with the returned value of the
inherited method getIntent (). This inherited method is
another artifact of Android activities and returns the intent with
a set of parameters that started the activity. Thus, we identified
an intra-component information flow between the entry point
onCreate () and the exit point WebView.
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The results from the AST-level analysis are passed back to
the architectural analysis through an exchange file. In the last
step, the information flow data are used to draw appropriate
edges in the information-flow view at the architectural level
(step 3 in Section [V). The information-flow view of the
resulting RFG is shown in Figure 4 as displayed in the Bauhaus
Gravis visualization. When comparing the information-flow
graph to the case study set up in Figure 3] one can follow the
information flow from the location provider source through the
three components to the Internet. Thus, the developed method
successfully identified the non-transparent information flow.
This detailed visualization is helpful for security analysts and
developers, who need to find out which architectural elements
are related to potentially unexpected information flows.

Visualization for Information Flow Transparency: The
developer-oriented visualization in Figure [d]is too detailed to be
of use for end users. To provide an adequate level of abstraction,
we generate a more abstract visualization from the analysis
results, depicted in Figure 5] The goal is to provide insights
into the potentially malicious information flows between the
applications and critical sources and sinks. We display those
information flows that take advantage of the transitivity of trust.
First, we show all information flows that start out at a critical
source and lead to a critical sink. Additionally, to prevent false
negatives, we also display flows to the sink from applications on
the path. One option is for end users to employ this visualization
on-demand to gain an overview of hidden information flows on
their devices. Arguably even more effectively, the visualization
might serve as an addition to the existing installation process.
In this case, additional information flows that are facilitated by
the new application are shown after the user has accepted the
permissions that the application requires but before the actual
installation. The latter case is what Figure [5 depicts.
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While currently implemented as a separate application, the
information flow transparency view could be integrated into the
installer at a later time. Also, the flow transparency application
currently reads the information flow data from a file that
has been previously generated on a PC. We may port the
analysis to the Android platform as part of our future work.
Alternatively, the analysis may be conducted by the Android
Market owner when the application is uploaded to the market
and provided at installation time in addition to the application
package. The generated information flow data may additionally
be used by security engineers to assess the security of a set
of applications. For example, the market supervision could
use an appropriate visualization to identify potentially harmful
applications. Information security staff at companies might also
be interested in analyzing the security of applications on their
employees’ smartphones.



VI. RELATED WORK

Several works for the static security analysis of software
exist, which are discussed by Chess and West [2]. Some
of the prototypes for static security analysis have developed
into commercial tools such as the Fortify Source Code An-
alyzer (SCA) [L1]]. Our approach is complementary to the
aforementioned tools as they are designed to detect common
low-level security bugs such as SQL injection and Cross-
site scripting vulnerabilities. We, however, focus on interac-
tions between applications and specifically consider Android’s
framework semantics for our analyses. In the latest versions,
Fortify SCA supports Android analyses, but these are quite
simple. Fortify SCA scans the manifest/configuration files
and notes if security-critical permissions are requested and
if components are not appropriately secured by permissions.
In addition, Fortify rules exist that can track information
flow within Android components. The interaction between
components is not supported at the time of this writing.

The TaintDroid tool implements dynamic monitoring of
privacy-relevant flows by modifying the Dalvik VM and the
Android kernel [1]. Instead of static analysis before installation,
TaintDroid complements our approach by offering analyses at
runtime. While TaintDroid aims to minimize the performance
overhead, static analyses can also afford to carry out more
detailed analyses. Enck et al. reported on their results of
statically analyzing widely-used Android applications [8]. They
implemented the “ded” tool which translates DEX code to Java
class files, and used Soot as a decompiler to finally recover
Java source code. Then, they use Fortify SCA to check security
rules against the Android apps, for example, to detect phone
misuse or hidden eavesdropping functionality. Their approach,
however, does not support IPC, which is one of the main
concepts of the Android platform. As a consequence, this
analysis technique cannot follow information flows between
Android components. Chin et al. presented ComDroid, a tool,
which can detect vulnerabilities in apps which stem from the
faulty usage of IPC, e.g., broadcast messages which are not
protected by permissions [[12]]. Their approach works on the
dex code level in contrast to our approach. Although quite
effective, they only use simple data- and control flow algorithms
rather than more sophisticated analyses as we have done
(context-sensitive backward slicing, summary edges as well as
architectural analyses). Consequently, ComDroid cannot reveal
situations as shown in Fig. ] Building upon ComDroid and a
permission map for the Android framework, Felt et al. provided
a tool that can detect overprivileged Android apps. These are
apps which request permissions that they do not need [13].
Grace et al. present their Woodpecker tool which can detect
capability leaks in Android system apps, e.g., provided by
smartphone manufacturers [14]]. They also employ a static
analysis approach on the dex code (or to be more precise, on
the format of the disassembler baksmali). However, they
currently do not consider the collusion of applications nor
an architectural representation of apps and their interactions.
To improve security in Google Play, Google has introduced

the Bouncer, a dynamic test tool for Android apps. Apps run
within Google’s Cloud and are checked for suspicious behavior.
This mechanism, however, has been successfully tricked, by
delaying the actual attack [15].

VII. CONCLUSION AND OUTLOOK

We described an approach to making transparent interactions
between applications in dynamic multi-component systems.
Focusing on the Android platform, we presented a two-layer
approach to the static security analysis of information flows
for composite Android applications. On the upper layer, we
identified the applications’ architecture including entry and exit
points as well as Android components. Thereafter, the actual
data flow analysis is carried out at the AST level for single
components. The results are integrated into the architecture
to derive information flows at the architectural layer. There
are several directions for further research. First, we aim to
support a more complete set of data sources and sinks as well
as other concepts of the Android framework such as pending
intents and service hooks. We will also analyze larger sets of
applications. For example, it would be interesting to investigate
(at least) parts of Google Play and develop information-flow
policies that the applications should adhere to.
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