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Kurzfassung

Die Knappheit fossiler Ressourcen, die daraus resultierenden geopolitischen
Konflikte sowie die globale Klimaerwärmung führen dazu, dass weltweit
viele Stakeholder nach alternativen Rohstoffen suchen. Insbesondere die
Chemieindustrie ist abhängig von fossilen Ressourcen und setzt daher aus
wirtschaftlichen als auch aus gesellschaftspolitischen Gründen zunehmend
biobasierte Rohstoffe für ihre Produktion ein. Die Transformation zu und
Verbesserung einer Bioökonomie gewinnt daher zunehmend and Bedeu-
tung. Um bioökonomische Konzepte in der Chemieindustrie einsetzen
zu können, bedarf es geeigneter Wertschöpfungsketten für die Produktion
biobasierter Chemikalien. Diese Wertschöpfungsketten unterscheiden sich
sehr stark von den petro-basierten Strukturen, da sie in der Regel deut-
lich komplexer sind und stärker von Risiken und Unsicherheiten abhängig
sind, was bei strategischen Unternehmensentscheidungen berücksichtigt
werden muss. Derzeit konzentriert sich die Forschung in erster Linie auf
Versorgungs- und Nachfragerisiken in Netzwerken und Lieferketten von
Biokraftstoffen und Bioenergie. Eine ganzheitliche Betrachtung bioökono-
mischer Wertschöpfungsketten, ausgehend vomAnbau stärke- und lignozel-
lulosehaltiger Biomassen bis hin zur Produktion von Biochemikalien und
anderen Produkten für den Absatzmarkt, erfolgt bisher nicht systematisch.
Vor diesem Hintergrund wird im Rahmen dieser Arbeit ein generischer
Ansatz zur strategischen Entscheidungsunterstützung unter Unsicherheit für
die bioökonomische Standort- und Logistikplanung entwickelt, der exem-
plarisch auf die Produktion Biochemikalien angewendet wird.
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Kurzfassung

Der im Rahmen dieser Arbeit entwickelte Ansatz beinhaltet ein integri-
ertes Modell und drei Untermodelle. Das Optimierungsmodell optimiert
die Standorte und die Kapazitäten von Vorbehandlungsanlagen. Diese wan-
deln lignozellulosehaltige Biomassen in verarbeitbare Zwischenprodukte
um. Mit Hilfe des Modells werden geeignete Lieferanten von vorbehandel-
ter Biomasse ermittelt. Das Technikmodell beschreibt die Konversions-
prozesse. Technische und ökonomische Bewertungen aller betrachteten
Konversionsprozesse können basierend auf Fließbildsimulationen durchge-
führt werden. Produktionsausbeuten, Hilfsstoffbedarf, Produktionskosten
und Investitionen sind die zentralen Ergebnisse des technischen Modells.
Das Risikomodell identifiziert und bewertet Risiken und Unsicherheiten,
die entlang von Biomassewertschöpfungsketten auftreten. Ein Ergebnis ist
das Modellieren der quantifizierbaren Risiken durch Risikokosten, welche
auf Wahrscheinlichkeiten und Konsequenzen beruhen. Die Risikokosten
werden in der Zielfunktion des integrierten Modells berücksichtigt. Die
Wahrscheinlichkeiten werden als Monte Carlo Simulation modelliert. Die
nicht-quantifizierbaren Risiken werden in Szenarien beschrieben. Zusätz-
lich zu den Ergebnissen der drei Untermodelle werden weitere Faktoren
wie z.B. Kosten, Transportrestriktionen, existierende Infrastrukturen sowie
Lieferanten etc. im integrierten Modell betrachtet. Das integrierte Modell
ist als gemischt ganzzahlige, lineare Programmierung modelliert, welches
verschiedene Biomassen, Transportmodi, Zwischenprodukte und Unsicher-
heiten darstellt. In dieser Arbeit werden drei Fallstudien betrachtet: zwei
biochemische und eine thermochemische Verarbeitung in den USA. Als
Ergebnis berechnet das Modell einen nahezu optimalen Standort und das
entsprechende Logistiknetzwerk für die Produktion von Biochemikalien.

Die Ergebnisse sind stark abhängig vom Biomassepreis, Konversionsaus-
beuten und Transportmodi. Generell haben die Unsicherheiten Einfluss
auf die Struktur der Wertschöpfungskette. Insbesondere die nicht-quantifi-
zierbaren Risiken haben einen großen Einfluss und sollten daher im
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Kurzfassung

Entscheidungsprozess unbedingt berücksichtigt werden. Die Wahl des Roh-
stoffes, das Endprodukt sowie weitere Nebenprodukte sind entscheidend für
die Wirtschaftlichkeit der Wertschöpfungskette. Um die Lieferrisiken zu
minimieren, sollte ein Standort im nahen Umkreis zu mehreren Lieferanten
gewählt werden. Das Schiff ist der bevorzugte Transportmodus für lange
Distanzen. Obwohl diese Arbeit im Wesentlichen reale Daten verwendet,
sollten die Ergebnisse kritisch hinterfragt werden. Alle relevanten Daten
wurden ohne weitere Validierung der Literatur entnommen. Historische
Daten von Risiken können nicht generell auf die Zukunft projiziert wer-
den. Der Ansatz nimmt fixe Kapazitäten für Produktion und Lagerhaltung
an. Beide sollten basierend auf Unsicherheiten optimiert werden. Trotzdem
bietet das Modell einen ersten Ansatz um verschiedene Probleme in kom-
plexen Biomassewertschöpfungsketten darzustellen und näherungsweise
optimal zu lösen.
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Abstract

The scarcity of fossil resources, the resulting geopolitical conflicts and
global warming are leading many stakeholders worldwide to search for
alternative raw materials. In particular, the chemical industry depends on
fossil resources and is due to economic and socio-political reasons increas-
ingly using bio-based raw materials for its production. The transformation
to and improvement of a bioeconomy is therefore becoming more and more
important. In order to be able to use bioeconomic concepts in the chemical
industry, suitable value chains are required for the production of bio-based
chemicals. These value chains are very different from petro-based structures
because they are usually much more complex and more dependent on risks
and uncertainties. These must be taken into account in strategic corporate
decisions. Research currently focuses primarily on supply and demand risks
in biofuel and bioenergy networks and supply chains. A holistic approach
to bioeconomic value chains, starting with the cultivation of biomass con-
taining starch and lignocellulose up to the production of biochemicals and
other products for the sales market, has not yet been systematic. Against
this background, a generic approach for strategic decision support under
uncertainty for bioeconomic site and logistics planning is developed within
the scope of this work, which is applied to the production of biochemicals
as an example.

The approach developed in this work includes an integrated model and three
sub-models. The optimization model optimizes the locations and capacities
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Abstract

of pretreatment plants. These convert lignocellulosic biomass into process-
able intermediates. The model is used to identify suitable suppliers of pre-
treated biomass. The technical model describes the conversion processes.
Based on flowsheeting simulations, technical and economic evaluations of
all considered conversion processes can be carried out. Production yields,
utility demand, production costs and investments are the main results of the
technical model. The risk model identifies and evaluates risks and uncer-
tainties that occur along biomass value chains. One result is the modeling
of quantifiable risks by risk costs, which are based on probabilities and con-
sequences. The risk costs are taken into account in the objective function
of the integrated model. The probabilities are modeled as Monte Carlo sim-
ulation. The non-quantifiable risks are described in scenarios. In addition
to the results of the three sub-models, other factors such as costs, transport
restrictions, existing infrastructures, and suppliers etc. are considered in the
integrated model. The integrated model is modeled as mixed integer, linear
programming, which represents different biomass types, transport modes,
intermediates, and uncertainties. In this work three case studies are con-
sidered: two biochemical and one thermochemical processing in the USA.
As a result, the model suggests a nearly optimal location and the associated
logistics network for the production of biochemicals.

The results are strongly dependent on the biomass price, conversion yields
and transport modes. In general, uncertainties have an impact on the struc-
ture of the value chain. Non-quantifiable risks in particular have a major
impact and should therefore be taken into account in the decision-making
process. The choice of raw material, the final product and other by-products
is decisive for the feasibility of the value chain. In order to minimize deliv-
ery risks, a location close to several suppliers should be chosen. Barge is the
preferred mode of transport for long distances. Although this work aims at
using real data, the results should be critically questioned. All relevant data
were taken from literature without further validation. Historical data on risks
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cannot generally be projected to the future. The approach assumes fixed
capacities for production and storage. Both should be optimized based on
uncertainties. Nevertheless, the model offers a first approach to present var-
ious problems in complex biomass value-added chains and to solve them.
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1 Introduction

1.1 Problem description

Rising energy demand, declining fossil resources and increasing cost for
energy provision lead to the necessity to search for alternative resources of
sustainable energy provision. Furthermore, the global warming potential
due to greenhouse gas emissions is becoming more and more crucial. The
industrial use of biomass seems to be a possible alternative to conventional
carbon sources (see Kaltschmitt et al. [175]).

However, not only the energy sector dependens on fossil resources. Most of
the chemical processes, especially for platform chemicals (e.g. 5-hydroxy-
methylfurfural, furfural, gamma-valerolactone, xylitol, 2,5-furan-dicarbo-
xylic acid, levulinic acid, ethanol, etc. (see Fang et al. [111])), are based
on petrol (so-called petro-chemistry). According to Chemistry World [353],
the U.S. government expects the production of biobased chemicals to rise
significantly. The U.S. Department of Agriculture (USDA) predicts that
about 3.45 million metric tons of bio-based plastics will be produced in
2020. This relates to an increase of about 3 to 6 % per year. The total
share of biobased chemicals in that market is projected to rise from 2 % to
more than 22%. Due to the above-mentioned developments, the research for
producing chemicals from biomass has increased immensely (see Fiorentino
et al. [117]). This includes not only the production of the chemicals itself,
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but also the preprocessing of biomass and downstream processes, logistics
and market economics.



1 Introduction

Biobased processes are not very efficient and demand large amounts of
biomass. Although 10 % of the worldwide energy demand is covered
by biomass, still large, underutilized potentials exist. Especially residues
from biomass production, e.g. straw, woody residues etc. are currently
being examined for large-scale applications. Contrary to sugary and starchy
biomass, they do not compete with food and feed industry. Unfortunately,
these feedstocks have a relatively low energy density so that often the uti-
lization of them is currently not yet feasible (see Friedl et al. [123]). The
few existing biobased chemical plants are based on the sugary and starchy
biomass due to their higher performance.

Biomass value chains and the production of biobased chemicals are prone
to risks such as climate change, severe weather events, availability of water,
and the stability of markets (see Trager [353]). Contrary to energy conver-
sion from biomass to heat and electricity, chemicals need to fulfill high qual-
ity demands and distribution security for their customers. Consequently, the
design and robustness of the supply chain against uncertainties of all sorts
are essential. Similar to conventional supply chains, biomass value chains
are sensible to changes in product demand and political or regulatory deci-
sions. However, they are particularly prone to weather effects. Additionally,
as biomass processes are not state of the art yet, the technologies are not
fully researched. Uncertainties and lacking knowledge are currently dom-
inating and hindering the large-scale extension of such processes. Compa-
nies, which are pioneers in large-scale biochemical production, are trying to
minimize uncertainties in their value chain to maximize their profit.

The value chain of biochemicals consists of many steps. After harvesting
and collecting the biomass, it is transported to an intermediate location, the
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final destination or a storage. Before processing, biomass needs to be pre-
treated by washing, cutting, drying etc. The production of the final products
can be performed by a single or multiple process steps.



1.1 Problem description

The preprocessing of biomass leads to an increase of energy density and
forms an intermediate product, which can then be transported more effi-
ciently. This leads to a decoupling of processes and a multi-stage value
chain network. Consequently, the process chains need to be designed care-
fully. The supply safety and economic feasibility depends on the chosen
locations, capacities and design of process steps (centralized or decentral-
ized) as well as on the utilized biomass (see Schwaderer [314]).

Already many studies on bioenergy and biofuel supply chains and their
uncertainties exist. However, so far no research could be found, which con-
centrates on biochemicals and their specific uncertainties and risks within
their value chain. The demand for bioenergy and biofuels influences the
uncertainties of biochemicals. Hence, this work focuses on the supply chain
of biobased chemicals.

An optimal location with robust logistics and feedstock supply is essential
for the competitiveness of biomass value chains with petro-chemical path-
ways. This decision needs to be based on available biomass potentials and
suppliers, transport modes, competitors and customers. These also influence
the capacity of the production plant. Due to economies of scale, larger pro-
duction plants are often more economic. However, biomass is a wide spread
feedstock. Large demands result in high transport cost. Consequently, deci-
sion support tools need to be developed and used by stakeholders to optimize
their value chains regarding feedstock choice, transport network, capacity
and the respective risks.
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1.2 Objective of this work

Objective of this work is to develop a decision support approach for biomass
value chains under the consideration of uncertainties for the production of
biobased chemicals. Many regions cultivate various biomass types. These
can be used for the conversion to biochemicals. As the biomass influences
multiple parameters in the model, such as suppliers, production yields, and
cost, the approach should differentiate between the biomass types. Conse-
quently, this approach includes multiple biomass.

Different sources can be used as feedstock suppliers. Already existing pro-
cessing plants of the biofuel and food industry as well as possible future con-
version plants from biomass residues are included in the approach. Pretreat-
ment plants of lignocellulosic biomass do not exist yet. Hence, the location
and capacity of such possible suppliers need to be optimized beforehand.

Not only various biomass types influence the value chain. The transport
also has an impact on the logistics. Hence, the approach includes multiple
transport modes and routes for all products within the value chain. The
approach will not only propose a specific location of the biomass conversion
plants, but also the logistics to and from the plants by multiple transport
modes via transport hubs.

Finally, different process configurations are possible within biomass value
chains. These depend on the feedstock and the transport costs. Conse-
quently, the approach includes the optimization of conversion processes.
This work aims at modeling the processes in order to assess them techno-
economically. This enables the inclusion of the process parameters in the
decision support tool.
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1.2 Objective of this work

The final products are often exported or can be sold at local markets. As the
export cost depend on the port and the destination country, export shares of
the final products are included.

Multiple uncertainties occur along the biomass value chain. These have an
impact on supply, transport, harvesting yields, etc. The risks need to be
identified and assessed to include them in the decision making process for
location planning. This enables the choice of appropriate mitigation mea-
sures for more efficient value chains. Therefore, this work aims at including
risk assessment methods in the approach.

The above presented criteria result in the development of an integrated,
strategic planning approach for value chains. It should therefore include
the following aspects:

• Inclusion of multiple biomass types of the first and second
generation and their regional specified potentials and suppliers

• Biomass dependent process designs as well as material and
energy flows

• Inclusion of regional restrictions regarding transport and cost

• Continuous modeling of capacities under consideration of
investment and economies of scale for the biorefineries

• Discussion and inclusion of risks and uncertainties along the
value chain from biomass production to the distribution of the

final chemical product incl. export

• Demonstration of the applicability in reality based on a real
data case study

5
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1.3 Procedure

In chapter 2 the fundamentals of biomass value chains from the definition
of biomass to the distribution of the final product is presented. These also
include technical details of biomass characteristics as well as descriptions
of processes to convert biomass to biochemicals. Additionally, the basics of
logistics are described.

Many approaches exist to model uncertainties in location planning as well as
biomass value chains. These consider various aspects of biomass utilization
including biomass potentials, transport modes, process specifics. In order
consider all aspects of biomass value chains each step needs to be assessed.
Consequently, the technical and economic assessments of biomass conver-
sion processes as well as risk assessments are presented in chapter 3. The
different approaches for including risks in location planning, specifically
biomass value chains is analyzed in this chapter. Based on the literature
review, the considered research questions are defined.

In chapter 4 the approach for designing biomass value chains under uncer-
tainties is developed. This includes a sub-model for the determination of
future biorefinery locations for the conversion of lignocellulosic biomass.
As the biomass influences the chosen processes as well as the efficiency of
process, the simulation of conversion technologies is shown in the technical
sub-model. Uncertainties of biomass value chains are estimated by the risk
sub-model. The results of these three sub-models are utilized as input for
the integrated location model.

An example case refers to the United States of America where large amounts
of well known biomass sources as well as a well developed infrastructure
exist. The input data for the integrated model and the three sub-models is
presented in chapter 5. These include biomass potentials, economic param-
eters such as investment and production cost, logistics and infrastructure
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as well as technical parameters of the processes. The identified risks are
described. The approach is applied in different scenarios to analyze the
influence of extreme events.

The results are discussed in chapter 6. These include supplier locations of
pretreated biomass and their capacities, material and energy flow balances
of the processes as well as probabilities and consequences of risks. The
output of the sub-models as well as of the integrated model are presented.
The integrated model defines possible future setups of value chains for the
production of biobased chemicals.

Chapter 7 reflects on the approach, which has been developed in this work.
The applicability as well as the model restrictions will be discussed and
reviewed critically.

This work closes with a short summary in chapter 8.
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2 Fundamentals of biomass
value chains

In this chapter, the fundamentals of biomass value chains are presented.
Biomass value chains are complex setups. In order to enable a feasible con-
cept, both, technical and logistic factors need to be considered. Currently,
biomass of the first and second generation (see section 2.2 for a definition)
are the most promising feedstocks. These are provided by multiple suppli-
ers and are transported in a distribution network of multiple transport modes.
According to Adams et al. [5], value chains do not only include production
sites and logistics but also operators, stakeholders, and policy makers as
well as final customers. The five main steps in the biomass supply chain are
cultivation and harvesting, pre-treatment, storage, transport, and biomass
conversion facilities. In figure 2.1, the basic setup of a biomass value chain
is depicted. It includes the different steps of the product chain from biomass
sources to the final utilization of the biochemical and the process variations
in each step.

Figure 2.1: Schematic depiction of biomass value chains
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2 Fundamentals of biomass value chains

The objective of biomass value chain optimization is to minimize cost as
well as to improve the ecological footprint whilst ensuring a continuous
feedstock supply. In section 2.1, the state of the art of biochemical produc-
tion is presented. The basics on the definition of biomass and description
of sugary, starchy and lignocellulosic biomass are described in section 2.2.
Biomass can be converted by many different technologies to biochemicals.
The technical basics are described in section 2.3. These include preprocess-
ing steps, biochemical and thermal-chemical conversion as well as down-
stream processing steps. Biomass cultivation, conversion and demand sat-
isfaction need to be secured by an efficient supply chain. Therefore, an
optimized supply chain management is essential. The logistics of biomass
value chains are presented in section 2.4. The overall section 2 is concluded
in section 2.5.

2.1 Importance of biomass value chains the
production of biochemicals

In the past, the importance of biomass-based products has increased signifi-
cantly. Due to limited fossil reserves, the economy is forced to develop new
value chains and transform it to renewable resources. The aim of many polit-
ical directives is, hence, the development of an “environmentally, econom-
ically and socially sustainable global economy” (see de Jong et al. [169]).
Biomass value chains can be categorized by the feedstock that is utilized, the
products and the process (see de Jong et al. [169]). Philp et al. [285] define
biochemicals as all “chemicals that can be produced through biomass origin
and/or a bioprocessing route.” The variety of biobased chemicals is exten-
sive: propane- and butane diols, amino acids, ethanol, butanol, carboxylic
acids etc.
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2.1 Importance of biomass value chains

The U.S. Department of Energy has issued a report on biobased chemicals
which are predicted to be most likely essential building blocks for the future
(see Werpy et al. [383]). This list was issued in 2004 and has been updated
in 2010. Since the beginning of the 2000s, the production of biobased chem-
icals has increased frequently and is predicted to rise by more than 22 %
compared to those years until 2025 (see USDA [366]). According to Philp et
al. [285], biobased chemicals not only need to fulfill economic benefits but
also need to comply with ecological and social standards to be competitive
with petrochemicals. Just like fossil-based chemicals, biobased products
need to fulfill national standards such as the Toxic Substances Control Act
(TSCA) of the U.S. Environmental Protection Agency (EPA) or the Euro-
pean REACH (Registration, Evaluation, Authorization, and Restriction of
Chemicals) regulations.

Although extensive research (see Brethauer et al. [60]) has been done in the
past years to produce biochemicals from lignocellulosic biomass, the few
existing production plants are based on sugary or starchy biomass (for def-
initions see section 2.2). Agricultural residues and wood biomass are not
as easy convertible to biochemicals. As lignocellulosic biomass is not only
built up of glucose (see section 2.2.2), the produced amount of biochem-
icals is lower on mass basis than when utilizing sugar as feedstock (see
Hatti-Kaul et al. [150]). Biochemical conversion (e.g. via fermentation)
is economically feasible if the production yield is high. Thermochemical
conversion is currently not yet available in large-scale productions due to
economic reasons (see Trippe [356]).

The production yields and economic benefits might lead to the assumption
that biochemicals should be produced from first generation biomass, but
sugar, grains and other resources are also used as food and feed. The con-
version to chemicals is extensively discussed in the “food or fuel” debate
(see Kaltschmitt et al. [175]). Many people worldwide suffer from hunger,
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2 Fundamentals of biomass value chains

so that food should not be used for the production of energy, fuels or chem-
icals (see Thompson [347]).

The utilization of biomass for the provision of energy has been state of the
art for centuries. The most common use of biomass is the combustion of
wood for the conversion to heat. Biogas production for the integration in
natural gas systems has increased in the past years, especially due to rising
subsidies from politics to enhance the development of a bioeconomy (see
Dieckmann et al. [95]). Nevertheless, especially in Germany, the biogas
plants are strongly dependent on the subsidies and might not be economi-
cally feasible without them.

Contrary to bioethanol production for biofuels, the production of biochem-
icals is not as advanced. Worldwide almost 100 million cubic meters of
bioethanol were produced in 2016. Additionally, the production capacity
of biodiesel reached almost 40 million cubic meters. According to the
U.S. Department of Energy [103], the U.S. are the worldwide leader in
bioethanol production with more than 57 % of the worldwide production
in 2015. Brazil is the second largest producer of bioethanol. Whilst the
bioethanol in the U.S. is processed from corn, the main feedstock in Brazil
is sugar cane (see U.S. Department of Energy [103]). Only few produc-
tion plants exist which convert biomass to chemicals. In the following
table 2.1, large-scale production sites in operation are summarized. Espe-
cially large chemical companies such as BASF, DuPont, Bayer etc. are
leaders in transforming the chemical production towards a more sustainable
bioeconomy. They have mostly agreed to cooperations with companies, who
are either their supplier or the developer of a certain bacteria string. In the
past 10 years, the development has increased rapidly (see table 2.1).

Especially the production of building blocks is of importance as they can
be processed to other high quality chemicals, polymers, bioplastics etc. A
study of the nova-Institute [7] has identified a production capacity of about
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2 million tons in 2013. The major building blocks are succinic acid and
1,4-butanediol, even though they are “brand new drop-ins” to the market.

Contrary to the production of biochemicals from biomass, value chains for
the food industry by using first generation biomass are well established. For
example, the existing system for the utilization of corn in the United States
to produce animal feeds, starch and glucose syrup for soft drinks and bakery
ingredients is very advanced. Also the utilization of sugar cane in Brazil or
palm oil in Malaysia and Indonesia only have minimal optimization poten-
tials, which mostly accrue in the residue utilization. Biomass value chains
for the food and feed industry are often identical to biochemical or bio-
fuel setups. Nevertheless, the capacities of conversion facilities for food
applications are mostly lower than for biochemical plants. This reduces the
complexity of supplier and transport networks.

2.2 Definition of biomass and their cultivation

The National Renewable Energy Laboratory (NREL) defines biomass as
“any plant-derived organic matter. Biomass available for energy on a sus-
tainable basis includes herbaceous and woody energy crops, agricultural
food and feed crops, agricultural crop wastes and residues, wood wastes and
residues, aquatic plants, and other waste materials including some munici-
pal wastes.”

Biomass resources can be clustered into the following groups: in gen-
eral biomass and its biofuels can be defined as first or second genera-
tion and more recently also as third generation biomass. Biomass of the
first generation is mostly sugary and starchy as well as oilseed biomass
(see Sheldon [322]). In section 2.2.1, the characteristics of first generation
biomass are described.
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2 Fundamentals of biomass value chains
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2.2 Definition of biomass and their cultivation

Lignocellulosic biomass, such as woody biomass or crop residues, are
defined as second generation. The peculiarities of lignocellulosic biomass
are explained in section 2.2.2. In the present past, biomass such as algae
or energy crops are defined as third generation. The latter is currently
only available in laboratory scale. Therefore, third generation biomass is
excluded from the scope of this work.

Biomass of the first generation mostly compete with food and feed pro-
duction (see Sheldon [322]). Hence, the utilization for the production of
biochemicals is heavily criticized in the public debate. The development of
biobased chemicals is currently still in progress. Biochemicals are prone to
high quality issues so that no state of the art process based on lignocellulosic
biomass exists.

In the following the specifics of sugary, starchy and lignocellulosic biomass
are explained.

2.2.1 Sugary and starchy biomass

Sugary and starchy biomass belong to the category of first generation bio-
mass. They are easier to utilize than lignocelluloses, as they do not have to
be processed by complex conversion technologies. Contrary to lignocellu-
losic biomass, they do not contain lignin, which inhibits fermentation.

Sugary biomass

Sugary biomass is mostly built up of aldohexoses, C6-sugars, such as glu-
cose, fructose, mannose and galactose as well as their derivatives. Sugar
beets and sugar cane are examples for sugary biomass. The main content
is sucrose, a disaccharide made up of α-D-glucose and β -D-fructose. They
are combined by an α-β -1,2-glycosidic bound.
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2 Fundamentals of biomass value chains

Figure 2.2: World sugar production in 2017/2018 in million tons (USDA [119])

Sugary biomass contains more than 70 % water. The sugar content is about
70 to 80 % of the dry mass, which is about 17 % of the wet biomass (see
Lewandowski [204]). Microorganisms can especially metabolize glucose.
Hence, it is utilized as feedstock for ethanol, acetic acid, isopropanol or
n-butanol production.

In 2013/2014, almost 180 million tons of sugar were produced. With more
than 39 million tons, the majority of sugar was processed in Brazil. East-
ern countries such as India, China and Thailand produced together about
52 million tons of sugar. The distribution of the different countries is shown
in figure 2.2. The larger share of sugar with 80 % is produced from sugar
cane, which grows in tropical regions. The remaining 20 % are based on
sugar beet (see USDA [119]).

Starchy biomass

According to Lewandowski [204], starch consists of many hundreds and
thousands of α-1,4-glucosidic linked, unbranched D-glucose units
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2.2 Definition of biomass and their cultivation

(amylose) and/or of α-1,6- glucosidic, branched glucose chains (amylo-
pectin). Starch is the most common compound for energy storage of plants.
Cereals consist of 80 % endosperm, which contains starch and gluten. Other
compounds are bran and hull (about 15 %) and germ (2-5 %). Contrary to
sugar, starch is a macro molecule, which can hardly be digested by bacteria.
Hence, the polysaccharides need to be hydrolyzed by enzymes and water.

Examples for starchy biomass are corn, wheat and barley as well as vegeta-
bles such as potatoes. Corn is one of the main feedstocks for bioenergy and
biofuel production. The supply chains are well established and the prod-
uct quality of corn syrup has a high standard. Almost 40 % of the total
produced starch is based on corn, whilst the United States are the largest
producer and exporter of corn. Other major crops for starch production are
potatoes, wheat as well as cassava (see Lewandowski [204]).

2.2.2 Lignocellulosic biomass

Examples for lignocellulosic biomass are wood and agricultural residues,
such as corn stover, bagasse, wheat straw as well as energy crops. For
detailed information see Thakur [342]. These feedstocks have been stud-
ied intensively in the past years as they do not compete for utilization with
the food and feed industry such as biomass of the first generation. Lignocel-
lulosic biomass are composed of cellulose, hemicellulose and lignin, which
form a complex compound. Further components are proteins, fatty acids
and ash. The composition varies depending on the type of biomass. The
following paragraphs are based on detailed information of Thakur [342].
Consequently, the utilization is currently less feasible but is assumed to be
more sustainable as lignocellulosic biomass often occurs as waste.
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2 Fundamentals of biomass value chains

Cellulose

Cellulose is built up of long chains of glucose monomers which are linked
by β -1,4-glycosidic bonds. It can make up for 40 to 60 % of the cell wall
of lignocellulosic biomass. A single cellulose molecule may consist of up
to 10,000 glucose units. Hence, cellulose is a polysaccharide. They are
interconnected by hydrogen bonds and form strong micro fibrils. Before
glucose from cellulose can be fermented the crystalline structure needs to
be cracked.

Hemicellulose

Hemicellulose consists also of polysaccharides, but not only of glucose but
also of xylose, arabinose, galactose, mannose, thamnose and facose (pen-
toses and hexoses). Xylose, a C5-sugar, is the main component of hemicel-
lulose. It is linked by β -1,4-glycosidic bonds.

Lignin

Lignin is a highly polymer substance made up of phenyl-propane deriva-
tives. These strong bonds result in the non-fermentability of lignin. It forms
the strong outer wall of the cell and covers the hemicellulose and cellu-
lose. High lignin contents lead to low fermentation yields. As shown in
figure 2.3 the lignin complex as the outer barrier needs to be split up by pre-
treatment to access hemicellulose and cellulose. Depending on the type of
biomass, the composition of lignin, cellulose and hemicellulose as well as
other compounds can vary (see table 2.2). The influence of biomass specific
characteristics are presented in section 2.2.3.

Tye et al. [361] have summarized the potentials of different non-wood lig-
nocellulosic biomass. The most agricultural residues are produced from the
major biomass types, such as sugar cane, barley, corn, sorghum, wheat, etc.
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2.2 Definition of biomass and their cultivation

Figure 2.3: Breakdown of lignocellulosic complex (Mosier [239])

Table 2.2: Composition of different lignocellulosic biomass (Lee et al. [200])

in % of dry mass Wheat straw Corn stover Barley straw

Cellulose 37.6 37.5 40.1

Hemicellulose

Xylan 19.5 21.7 18.98

Arabinan 2.8 2.8 1.93

Galactan 1.1 1.6 0.98

Lignin 13.5 18.9 19.37

Protein 3.8 3.1 -

Ash 6.4 6.4 4.45

Extractives 13 7 5.99

Acetate 4.6 1 4.45
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2 Fundamentals of biomass value chains

This leads to an annual cellulose availability of 131.9 to 160.5 million tons
of corn stover, 210.4 to 309.0 million tons of rice straw and 474.3 mil-
lion tons of sugarcane bagasse, just to name the most important potentials
(see Tye et al. [361]). In figure 2.4, the worldwide annual production of
non-wood fibers, mostly residues from agricultural production is shown.

Figure 2.4: Annual production of non-wood fibres (Tye et al. [361])

2.2.3 Composition and characteristics of
different biomass types

Depending on the type of biomass, the composition varies greatly. In the
following, the major components and their influence on the processability
of biomass will be discussed. These are the lignin content, the sugar com-
position, the ash content, the lower heating value and the water content.

Lignin content

The lignin content of biomass is the most crucial parameter regarding the
processability by fermentation (see Tippkötter [349]). Depending on the
chosen technology it can influence the efficiency immensely. High lignin
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2.2 Definition of biomass and their cultivation

contents result in lower cellulose and hemicellulose concentrations. In case
of fermentations this leads to lower yields, as lignin is not fermentable. On
the other hand, efficient preprocessing steps that lead to high sugar contents
in the fermentation broth also result in high concentrations of inhibitors.
Thermochemical processes can convert lignin more easily and break down
the overall complex but only with a high energy input.

Sugar composition

The most important factor regarding biochemical processes is the sugar
composition (see Tippkötter [349]). Depending on the bacteria, hexoses
(especially glucose) are better fermentable than C5 sugars such as xylose.
Glucose can be found mainly in starch (e.g. wheat or corn) whilst sugary
biomass contains the same amount of glucose as fructose (C5-sugar) in the
so-called sucrose. Lignocellulosic biomass is built up of multiple sugars
such as glucose, xylose, arabinose, galactose and mannose. Contrary to bio-
chemical processes, thermochemical production is independent on the sugar
composition but is mainly focused on the carbon content of biomass.

Ash content

Biomass contains not only organic but also inorganic components. Experi-
ments (e.g. by combustion) can determine the ash content and has normally
a value of 3 to 10 % per dry ton. Ash is composed of minerals of silicon,
aluminum, calcium and magnesium. Biomass with a high ash content is
often handled as feedstock with low quality (see Trippe [356]). According
to McKendry [220], ash can influence handling as processing of biomass.
Bacteria cannot utilize ash in fermentations. This results in lower yields.
In thermochemical production it can even lead to process related problems,
especially in combustion processes ash can react to slag.
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2 Fundamentals of biomass value chains

LHV and HHV

The lower heating value (LHV) is defined as the released energy whilst com-
bustion with air (see McKendry [220]). The LHV is mostly mass or volume
based. One can differentiate between the lower heating value and the higher
heating value (HHV). The HHV is the complete energy, which is released
whilst the fuel is burned including the latent heat of steam. Hence, it gives
the maximum available energy of a biomass. The actually utilizable energy
depends on the conversion technology and the type of energy. As the LHV
cannot be measured experimentally, the vaporization heat of the water is
subtracted from the HHV (see Kaltschmitt et al. [175]).

Water content

McKendry [220] distinguishes between two different water contents: the
intrinsic and extrinsic water content. Contrary to the latter, intrinsic water
content is not influenced by the weather. The extrinsic water content depends
on the harvesting conditions. The moisture of biomass influences the con-
version to alcohols or gases/oils. Thermochemical processes require a low
water content, whilst biochemical processes can also utilize high moistures
as in grasses or manure.

2.3 Processing of biomass

In the following section, the different preprocessing and conversion steps
for producing biochemicals from biomass are presented. Depending on the
type of biomass, different conversion steps are needed. Generally, physical-
chemical, biochemical, and thermochemical processes exist to convert first
and second generation biomass to biobased chemicals. These can either be
used as solely pre-processing of biomass or for the total processing route.
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2.3 Processing of biomass

2.3.1 Preprocessing of biomass for
biochemical conversion

Biomass often needs to be preprocessed for further conversion to biochemi-
cals. Objective of the preprocessing is the easier access and further process-
ability of the feedstock. Additionally, pretreatment leads often to energetic
densification of the feedstock. This results in more economic transports.
Depending on the biomass and the conversion technology, different prepro-
cessing steps are needed. Mostly mechanical processes are used for prepro-
cessing of starchy, oily as well as sugary biomass. The large-scale processes
include corn wet milling, sugar mills or rapeseed extraction. The majority
of the preprocessing of first generation biomass is milling or extraction.

All biomass types are milled before further processing. The milling process
can facilitate the extraction processes. It also increases the surface area,
which accelerates chemical and biological reaction processes.

2.3.1.1 Pretreatment of sugary and starchy biomass

Glucose is necessary for the production of biochemicals by fermentation.
Glucose can be produced from sugary and starchy biomass. The pretreat-
ment of these is comparatively easy. These include mainly cleaning and
crushing steps. The process of milling sugary biomass such as sugar cane or
sugar beet is mostly combined with extraction. At first, the biomass is milled
in multiple mills. After milling in hammer mills or in mills with revolving
knifes, the sugar syrup is extracted from the broth by washing with counter
flowing water. Afterwards, the sugar water needs to be cleaned for example
with lime to remove impurities. The residues from sugar extraction can be
used for animal feed, biogas production or energy provision by combustion
(see Friedl et al. [123]).
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2 Fundamentals of biomass value chains

Friedl et al. [123] distinguish two different processes for pretreating starchy
biomass: dry and wet milling. To achieve higher purities, starchy biomass is
often milled with water in the so-called wet milling process. Multiple prod-
ucts can be gained in this process. The main product is starch, which can
be converted to glucose syrup by hydrolysis. Other products are proteins,
germs and fibers. These can be separated from the other products before
fermentation. The crops are cut by revolving knives. The germ is separated
by a series of hydro cyclones. Afterwards, the fibers are parted from the
remaining products (proteins and starch) by screens.

In dry milling processes the direct utilization of the complete crop for fer-
mentation is envisaged. Dry milling processes are mostly more economic
and are often used for biofuel processes. Nevertheless, the quality of the
products from dry milling and, hence, the feedstock for bioethanol fermen-
tations, is low. Consequently, the yield from fermentation is less than from
wet milling. The grain is separated in four physical components: germ,
flour, fine grits and coarse grits. The residues from dry milling and fermen-
tation can be dried and sold as Distillers Dried Grain with Solubles (DDGS)
(see Friedl et al. [123]).

2.3.1.2 Pretreatment of lignocellulosic biomass
for biochemical conversion

The pretreatment of lignocellulosic biomass for the production of bio-
chemicals does not differ from the preprocessing for biofuel production.
Bajpai [35] provides a summary on pretreatment technologies of lignocellu-
losic biomass. He describes five main types of techniques: physical, physic-
ochemical, chemical, cellulose solvent-based lignocellulose and biological
pretreatment. Physical pretreatments focus on the solely mechanical com-
minution of lignocellulose by grinding, milling etc. or high-energy radia-
tion. Physico-chemical pretreatments are based on physical and chemical
principles. The lignocellulosic complex is split up by physical forces such

24



2.3 Processing of biomass

as heat or pressure. Additionally, they are catalyzed by chemical reactions.
The most common processes are steam explosion, liquid hot water pretreat-
ment (LHW), ammonia fiber explosion (AFEX) or carbon dioxide explo-
sion. Contrary to the physical pretreatment chemical preprocessing only
uses chemical reactions to break up the lignocellulose. Lignin can be split by
oxidatives such as ozone, sulfur trioxide or hydrogen peroxide, by acids and
alkali or by sulfites. A common pretreatment is also the Organosolv process.
Cellulose solvent-based lignocellulose pretreatment This pretreatment
has gained more and more interest in research as it increases the cellulose
accessibility. This leads to higher hydrolysis rates and fermentability com-
pared to conventional lignocellulosic pretreatment technologies. Solvents
used for these processes are ionic liquids, aqueous n-Methylmorpholine-n-
oxide, urea or sodium hydroxide and N,N-Dimethylacetamide. As in all
biochemical processes, microorganisms can be used in biological pretreat-

ment to degrade lignocellulose. These are for example white-rot fungi or
brown-rot fungi. A short summary of the advantages and disadvantages of
the major pretreatment processes is presented in table 2.3.

2.3.2 Conditioning and hydrolysis
for biochemical conversion

Especially lignocellulosic biomass cannot be fully pretreated by the above
mentioned processed. Hence, the remaining poly- and oligomers need to be
broken down for fermentation as bacteria and yeasts can only metabolize
sugars. During pretreatment processes, inhibitors can be produced, which
harm the fermentation and reduce the yield. The pretreated biomass first
needs to be conditioned to remove the inhibitors. Afterwards, the broth is
hydrolyzed to produce sugar monomers for fermentation.
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2 Fundamentals of biomass value chains

Table 2.3: Pretreatment processes of lignocellulosic biomass (Kumar [192])

Process Principle Advantage Disadvantage

physicochemical

Steam
Explosion

explosive decom-
pression at 160-
260◦C (high-
pressure steam)

only water, low
disposal cost

incomplete decom-
position of the
lignin-carbohydrate
matrix, by-products

AFEX 90◦C, high pres-
sure, explosive
decompression,
ammonia addition

ammonia may
improve fermenta-
tion rate

only for low lignin
contents

LHW 160-190◦C,
distilled water,
pH of 4-7

only few toxic by-
products, small
particle sizes

low glucose yield

chemical

Ozonolysis treatment with
ozone decomposes
lignin (C=C bonds)

no toxic by-
products, at ambi-
ent conditions

high cost

Dilute
Acid

concentrated acids
(H2SO4,HCl)

decomposes the
majority of hemi-
cellulose to dis-
solved sugars

high cost, genera-
tion of furfural and
HMF

Organosolv Mixture of organic
solvents and anor-
ganic acid cataly-
sis, 180-195◦C

easy recovery of
organic solvents,
lignin isolated as
valuable product

expensive solvents,
tight process con-
trol

biological

rot funghi decompose lignin
and cellulose

low energy demand long reaction times

physical

pulsed
electric
field

short burst of high
voltage

ambient conditions,
easy construction

high investments

26



2.3 Processing of biomass

Contrary to biochemical processes, thermochemical processes are not as
sensible to varying biomass qualities and do not need to be broken down
to sugars. Pretreated biomass does not need to be conditioned for further
thermochemical processing. Hence, the in the following explained condi-
tioning and hydrolysis steps are only necessary in biochemical production
processes. Consequently, they are neglected in the following sections.

2.3.2.1 Conditioning

Depending on the type of pretreatment process (see section 2.3.1), differ-
ent toxic by-products, so called inhibitors, are produced, which can influ-
ence further processing. Especially biochemical processes for the produc-
tion of biochemicals are sensible to inhibitors. According to Pienkos and
Zhang [286], mainly five groups exist, which influence the fermentation.

In the following, these materials will be explained:

• Furfural and Hydroxymethylfurfural (HMF) interfere with the
activity of dehydrogenases and cause the inhibition of glycolysis.
This results in reduced growth rates and cell yields.

• Phenols inhibit cell growth and sugar transport once they partition
into membranes.

• Acids cause the collapse of pH gradients and, hence, cellular energy
generation. The hydrophobicity interferes the ability of the compound
to pass through the cell membranes.

• Aldehydes are hydrophobic, but contrary to acids and alcohols do not
cause a collapse of pH or the membrane structure

• Alcohols are less toxic than acids and aldehydes, but their toxicity
also results from hydrophobicity. This can cause a breakdown of the
membrane structure.
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2 Fundamentals of biomass value chains

Different processing possibilities exist to reduce the inhibitors in the fer-
mentation broth. According to Pienkos and Zhang [286], these can either
be biological, chemical or physical. For biological reduction of inhibitors,
enzymes (e.g. laccase and lignin-peroxidase) or fungi (e.g. Coniochaeta

ligniaria) can be added to the hydrolysate. The acids in the fermentation
broth are neutralized by bases, such as sodium hydroxide (NaOH), calcium
hydroxide (Ca(OH)2), potassium hydroxide (KOH), or ammonia hydrox-
ide (NH4OH). Using physical conditioning the inhibitors are not treated and
neutralized but are removed from the hydrolysate, for example by liquid-
liquid extraction.

2.3.2.2 Hydrolysis

Before the fermentation of lignocellulosic biomass, especially the cellu-
lose and hemicellulose components are further broken down by enzymes to
monomer sugars. This process is called hydrolysis. It is often the most time
consuming processing step within the overall production. Enzymes cannot
decompose lignin anaerobically. The characteristics of the biomass define
the type of process as well as the process conditions. During hydrolysis,
starch, cellulose, hemicellulose, and other oligomers are split up to sugars
and monomers. For the processing of starch, two different process types are
distinguished by Friedl et al. [123]. Enzymatic and acid treated hydrolysis
are explained in the following sections.

Enzymatic hydrolysis

In enzymatic hydrolysis, enzymes are used to convert cellulose to glucose.
Mostly biomass is pretreated by steam explosion, acids, organic solvents,
hydrogen peroxide etc. to make it accessible for enzymes. The endoglu-
canases split the connections within the long chains of cellulose molecules.
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2.3 Processing of biomass

At the new free ends exoglucanases split the cellubiose molecules from the
non-reducible ends of the cellulose.

Acid treated hydrolysis

In the past, hydrolysis plants used acids for hydrolysis. Either concentrated
acids at normal temperature or dilute acids at 200 degrees Celsius can be
used for acid treated hydrolysis. Different processes exist to break down
the oligomers by acid treatment. These are, for example, Bergius-process
with diluted hydrochloric acid, Tennessee Valley Authority (TVA) process
with concentrated sulfuric acid and the arkenol process. Details of these
processes can be found by Friedl et al. [123]. Processes with a high acid
concentration lead to high yields, high sugar concentrations and low reaction
times. Nevertheless, acids can inhibit the fermentation.

2.3.3 Production of biobased chemicals

For the production of biobased chemicals many different process routes
exist, which can be combined in various manners. In this section, the
basics of thermal-chemical processes are described. These are, for example,
combustion, gasification or pyrolysis. The fundamentals of biochemical
processes such as fermentation and hydrolysis, are presented in the fol-
lowing. The large variety of possible products from biomass is shown in
figure 2.5.
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2.3 Processing of biomass

2.3.3.1 Thermochemical processes

According to Bridgwater [61], especially pyrolysis and gasification are suit-
able for the production of chemicals. These have been studied by, e.g.
Trippe [356], Meyer [227] and Schwaderer [314]. Thermochemical pro-
cesses, especially synthesis of gasified biomass, have the advantage that
they can produce a large variety of different products. A negative aspect of
thermochemical processes is the high energy demand, which is necessary to
convert biomass (see Kaltschmitt et al. [175]). The combustion of biomass
produces heat and can, consequently, be used for the conversion to energy
in combined heat and power plants (CHP). Due to the focus of this work,
the production of heat and energy is excluded from the scope.

Gasification

According to Hofbauer et al. [155], fuel gases are produced during gasifica-
tion by two methods. Biomass can be either partially or fully oxidized. This
produces a mixture of carbon monoxide (CO), carbon dioxide (CO2), hydro-
gen (H2) and methane (CH4). The second route is the treatment with steam
or pyrolytic gasification (see Bridgwater [61]). The solid fuel is heated up,
reacts with oxidizers, such as air or steam, and is converted to a flammable
gas. This gas can then be oxidized to CO2 and water (H2O). The process
of gasification has three phases: heating, pyrolytic decomposition, and the
gasification itself. The produced syngas can be utilized for further chemical
conversion processes, such as Fischer Tropsch Synthesis. Gasification is an
endothermic process. Equation 2.1 presents the reaction.

CHxOy(Biomass)+O2( f romair)+H2O(steam)+CO2

→ (2.1)

CH4+CO+CO2+H2+H2O(unusedsteam)+C(coke)+ tar
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2 Fundamentals of biomass value chains

Pyrolysis

Contrary to gasification, pyrolysis is performed without an oxidizing mate-
rial (see Hofbauer et al. [154]). Hence, it is heated by exclusion of oxygen.
Liquid (e.g. pyrolysis oils) as well as solid (e.g. char) materials are pro-
duced during pyrolysis. Depending on the duration of the process, one can
distinguish between three different types of pyrolysis: slow, intermediate
and fast.

Aim of the slow pyrolysis is the production of primary solid products (char).
The first two faces of gasification (heating and pyrolytic decomposition) is
given enough time for full reactions. As a full oxygen-free environment is
almost impossible, some gasification processes occur nevertheless. The so
produced gases can be utilized for energy provision for the process. Liquid
products (e.g. bio-oil) are mostly produced during fast pyrolysis. The sec-
ond phase will not be fulfilled completely, so that liquids are the main prod-
uct. Pyrolysis gas is also used for energy provision. Up to date the pyrolysis
reactions are not fully understood, so that the formulations of reaction equa-
tions is not possible (see Hofbauer et al. [155]).

Fischer Tropsch Synthesis

Trippe et al. [356] describe the Fischer Tropsch (FT) Synthesis for the pro-
duction of gasoline and diesel. For the production of biofuels via FT Syn-
thesis various reactions take place. The basic principle of the FT Synthesis
is formation of −CH2− monomers, which then polymerize to longer prod-
ucts, such as paraffins, olefins, and oxygenated hydrocarbons. The reactions
can be generally formulated as follows.

nCO+(2n+1)H2 �CnH2n+2+nH2O (2.2)

nCO+2nH2 �CnH2+nH2O (2.3)
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2.3 Processing of biomass

These two equations describe the exothermic reactions of syngas to paraffins
(see equation 2.2) and olefins (see equation 2.3).

In parallel, the undesired water-gas shift reaction and methane formation
occur. By adapting FT synthesis conditions, these pathways can be reduced.
High operating pressures result in longer carbon chains and a decrease of
methane production. In order to achieve maximum product yields the reac-
tion should take place at low temperatures, high operating pressures, and
H2 :CO ratios of about 2 (see Trippe [356]).

Hydrothermal Conversion (HTC)

The term “hydrothermal” has its origin in geochemistry and mineralogy.
It defines hot, liquid water reserves under high pressure, the so-called hot
compressed water. It mostly has a temperature above 373 K and a pressure
of more than 0.1 MPa. Other influencing factors are the dry matter content
of the feed, the particle size, the process duration, the pH-value of the feed
and additives. For further details see Vogel [375].

In HTC, the thermochemical processes of heating and pyrolytic decompo-
sition are run through. The presence of liquid water benefits the hydrolysis
reactions. In the end, the main product is a lignite similar solid fuel.

Other related processes are the hydrothermal liquefaction (HTL) and the
hydrothermal gasification (HTG) (see Vogel [375]).

2.3.3.2 Biochemical processes

Biomass is a heterogeneous good and can vary greatly in its composition
(see section 2.2). Enzymes and microorganisms on the other hand are very
sensible to variations. Different pretreatment techniques, as shown in sec-
tion 2.3.1, convert biomass to more homogeneous and fermentable sugars.
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Biochemical processes have the advantage that they are carried out at low
temperatures around 303 to 313 K. This results in low energy cost. The
downside is the long reaction times, which lie often between twenty and
seventy hours, depending on the batch size. Fermentation are historically
performed in batch reactors. Currently, low reaction times and the maxi-
mum yields (e.g. due to sugar concentration and inhibitory products) limit
the performance of fermentations. Therefore, batch systems are being opti-
mized in current research (see Formenti et al. [120]). Research mainly
focuses on simultaneous saccarification and fermentation (SSF). According
to Kaltschmitt et al. [175], especially fed-batch reactors seem to increase the
production yield. Continuous production only makes sense in large scale
applications, as it is less flexible, it is sensible to substrate qualities and
results in low fermentation rates (see Kaltschmitt et al. [175]). Once the
polymers are broken down to C5 and C6 sugars, microorganisms, such as
bacteria or yeasts, can metabolize the feedstock to produce biochemicals.

As seen in figure 2.6, the routes for producing alcohols, which have a large
share in biochemical production, are mostly based on fermentation. Alco-
hols can be used as platform chemicals and be converted to a large variety
of other chemicals.

In general, two different fermentation types are differentiated: anaerobe and
aerobe, which are explained in the following based on Friedl et al. [123].

Anaerobe fermentation

This process produces biochemicals by fermenting sugars with bacteria or
yeast at anaerobic conditions, meaning without oxygen being present. Dur-
ing fermentation, an incomplete oxidation of the substrates to carbon diox-
ide and other by products occurs. During glycolysis, glucose transfers to the
intermediate product pyruvate.

34



2.3 Processing of biomass

Figure 2.6: Emerging routes to bio-based alcohols (Nexant [260])

Aerobe fermentation

Contrary to anaerobe fermentation, this type occurs with oxygen being
present. Pyruvate is decomposed to intermediate products for the biosyn-
thesis of the cell, respectively for the production of adenosine triphosphate
(ATP) as energy supply for the cell. This metabolism is also called cell
breathing. The main reaction is the consumption of oxygen by producing
carbon dioxide (see equation 2.4).

aC6H12O6+bO2+ cNH3 →CHX OyNz +dCO2+ eH2O (2.4)
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2.3.4 Downstream processing

Before the final products, derived from thermochemical and biochemical
production, can be used as chemicals, they often need to be cleaned and
processed. In the following, the different downstream processing tech-
niques based on thermochemical and biochemical production are shortly
presented.

2.3.4.1 Downstream processing of thermochemical products

After gasification or pyrolysis, the products can be processed to facilitate
downstream processes or to upgrade the product.

Upgrading of pyrolysis products

According to Samolada et al. [311], biomass pyrolysis liquids can be
upgraded to bio-gasoline via hydrogen processing and catalytic cracking.
Catalytic hydrotreatment is very cost intensive in terms of processing cost
and investment. Fluid catalytic cracking seems to be cheaper. It converts
oxygenated feedstocks to fractions of lighter hydrocarbons. Pyrolysis char
can be upgraded to active char. Instead of being converted to energy, it can
be used for emission reduction and soil upgrading (see Funke et al. [126]).

Raw syngas cleaning

The synthesis gas, which is produced from biomass gasification, still con-
tains impurities. These may inhibit downstream processes, such as Fischer-
Tropsch synthesis, by harming the catalyst. These impurities are mainly
nitrogen, chlorine, sulfur, and ash. According toWoolcock and Brown [386],
different technologies exist to clean syngas from biomass. In general, they
distinguish between hot and cold gas cleaning depending on the operat-
ing temperature of the process. While cold gas cleaning has a high energy
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demand as the gas needs to be cooled down and be reheated afterwards, the
processing conditions of hot gas cleaning are still too extreme. Hence, cold
gas cleaning technologies are still state of the art. For details on the different
processes see Woolcock and Brown [386].

2.3.4.2 Downstream processing of biochemical products

The final products need to be separated from the fermentation broth. Many
different technologies exist to isolate the different products from each other.
Some processes, such as gas stripping, adsorption, liquid-liquid extraction
etc., can be used for in-situ separation of the final products. As the fermen-
tation products often inhibit the fermentation process itself, the separation
of them during the process is endeavored. Distillation and rectification have
been the most known and utilized downstream processing technologies, but
for large-scale applications they are mostly too energy intensive. In gen-
eral, the processes can be distinguished in non-membrane and membrane
separation. These are briefly described in the following. The most common
technologies as well as their advantages and disadvantages are summarized
in table 2.4.

Non-membrane separation

The main non-membrane separation techniques are thermal processes. Most
of these processes convert the product to a gaseous phase. As a large share
of the fermentation broth consists of water, thermal processes are highly
energy intensive. On the other hand the purity of the products are high.
Non-membrane technologies include distillation, rectification, liquid-liquid
extraction, and gas stripping (see Duerre [98]).
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Membrane separation

Due to the high energy demand of non-membrane technologies, research has
increased immensely in the past years to enhance the separation from fer-
mentation broth via membranes. Membranes have the advantage that they
built up a physical barrier between the final products and the fermentation
broth. This decreases the inhibitory effect that many products have on the
microorganisms. As a disadvantage, the pores of membranes clog often.
Pertraction, pervaporation, and adsorption are examples for membrane sep-
aration techniques (see Duerre [98]).

2.4 Logistics of biobased chemicals

The main logistical operations in the material flow include multiple steps
from feedstock origin to the final market. The supply chain of biobased
chemicals is made up of harvesting, handling storage, loading and unloading
of transportation vehicles, and transport of the different products.

The transported bulk materials include all aggregate phases: solid, fluid and
gaseous. Contrary to the transport mode and the materials, the available
infrastructure depends on the region. Capacities and usable transport modes
might be restricted. Transport cost and legal constraints, such as speed or
transport volume, are given by the considered region (see Meyer [227]).

Depending on the size of the biomass suppliers, they might also own their
private transport system. Nevertheless, private and public transport net-
works as well as their respective cost are treated equally in this study (see
Meyer [227]).
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Table 2.4: Summary of downstream processing methods (Duerre [98])

Process Principle Advantages Disadvantages

Distillation Separation of the
products due to
different boiling
points

high purities
possible

high energy
demand

Gas-
stripping

Cleaning with gas,
condensation of
solvent and steam

easy process,
minor risk of plug-
ging or fouling

low selectiv-
ity, incomplete
removal of sol-
vents, higher
energy demand
as membrane
processes

Liq.-liq.
extraction

contact of the
water insoluble
solvent with the
fermentation broth

high capacity and
selectivity, minor
risk of plugging
and fouling

expensive process

Pertraction similar to liq.-liq.
extraction with
membrane which
separates extract
from fermentation
broth

high selectivity,
easy processing

large membrane
area necessary,
possible plugging
and fouling

Pervaporation selective diffusion
of solvents through
non-porous mem-
brane, recollection
of vaporized prod-
ucts by vacuum

easy processing possible plugging
and fouling

Adsorption adherence of
solvent on e.g.
silicates

low energy demand high material cost,
low capacity, low
flexibility, possible
fouling
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2.4.1 Storage

Biomass is mostly a seasonal good, especially in case of agricultural crops,
but the majority of processing facilities operates continuously throughout
the year. Consequently, at some point, biomass needs to be stored to over-
come the temporal gap of supply and demand.

Campaign production of the final product in the same season as the harvest
would require larger production capacities which will be then left unused
throughout the rest of the year.

Depending on the biomass type, different storage options and restrictions
need to be respected. Due to hygroscopic properties of some biomass,
the moisture content of stored biomass can increase under wet weather
conditions. This can be avoided by closed storage facilities. A trade-off
between more expensive storage systems and biomass quality exists (see
Meyer [227]).

During storage, two different effects occur according to Dieckman et al.
[96]. On the one hand, the water content in biomass may decrease depend-
ing on the ambient conditions. This leads to an increase of heating value and
a decline of transport mass. On the other hand, in case the ambient condi-
tions are wet, biomass deteriorates during storage. The deterioration rate λ
depends on the moisture content of the biomass and the biomass itself.

The deterioration of biomass reduces the quality and, hence, the value of
the good. Eksioglu et al. [105] define the deterioration as in equation 2.5.
The actual usable biomass amount ub,l,k is by (1−λb) lower than the stored
amount vb,l

K

∑
k=1

ub,l,k ≤ vb,l · (1−λb) ∀b, l (2.5)
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Dieckmann et al. [96] describe different risks, which go along with storage.
These are:

• Loss of substances due to biological processes (loss risk)

• Self-incineration (hazard potential)

• Fungi growth (health risks)

• Odor pollution (environment risk)

• Reallocation of water content (quality risk)

• Agglomeration due to frost effects (technical risk)

• Abrasion of fine particles (quality risk)

• Trickle away of water (environmental risk)

Not only biomass needs to be stored in biomass value chains, but all occur-
ing products. As delays might occur, the storage at each fixed location
within in the biomass value chain is needed. Just-in-time transports are
hardly feasible. Hence, at most transportation hubs and facilities, storage
for each product should be implemented. The size of the storage needs to
be optimized depending on the uncertainties, which may occur in the supply
chain (see Dieckmann [96]).

Different storage types and restrictions exist. The storage type influences the
cost and the deterioration rate. Low cost often lead to high storage losses
(e.g. on field storage without protection). Especially biomass can depreciate
during storage, causing less processable quantity and quality. This can be
overcome by installing silos or warehouses. On the other hand, these cause
investments, which increase the storage cost (see Dieckmann [96]).
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2.4.2 Transport

Even more than conventional supply chains, biomass based supply chains
are restricted by specific constraints. Biomass has a low energy density
and, hence, the transport is, depending on the type of biomass, sometimes
bound by volume less than mass capacity. Due to the low energy content,
the transport over long distances is often infeasible as the cost are too high
(see Schwaderer [314]). Many works exist, which estimate the supply cost
curves of biomass. The transport of biomass is similar to other goods, which
are transported as bulk. This leads to similar modeling structures for differ-
ent feedstocks, regions and conversion technologies (see Meyer [227]). The
transport of biomass is restricted either by the mass or volume of the trans-
ported good. The higher the density of the (pretreated) biomass is, the more
the transport is bound by mass restrictions. Therefore, biomass is often
pretreated to enable economic transport for long distances. Volume bound
transport often occurs in case of second generation biomass such as straw or
woody residues. These biomass are often only transported by short distances
if they are not pretreated. The maximum economic feasible transport dis-
tance depends on the type of biomass. High feedstock qualities, and there-
fore energy densities, result in longer distances. Transport cost are related to
the choice of transport mode and the transport distance (see Trippe [356]).
Much research is performed to optimize the logistics of biomass transport
(see Zimmer et al. [404], Hamelinck et al. [146], Mafakheri et al. [211],
a.o.). Especially the pretreatment of biomass to liquids or compressed solids
by pelletization, pyrolysis, or torrefaction may reduce long distance trans-
port cost. Even though some of these processes are very cost intensive, in
terms of energy cost and investments, the additional pretreatment is feasi-
ble in the long run. Among others, Schwaderer [314], Kerdoncuff [180], and
Uslu et al. [369] have studied the influence of energy densification processes
to increase the efficiency of biomass transport.
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Bulk materials are mainly transported by rail, barge or truck. Pipeline trans-
port can be possible for biofuels, but in the case of biochemicals the needed
network has not yet been established. Nevertheless, Kumar et al. [190] have
studied the transport of corn stover via pipeline. Due to the low feasibility,
it is neglected from this study. Depending on the type of product, different
transport modes can be applied (see Meyer [227]).

The majority of biomass is transported by truck. Especially for short dis-
tance transport, this transport mode is the most feasible. Depending on
the region, where biomass is harvested, transported and processed, different
trucks and sizes are available. Even in Europe the restrictions can reach from
28 tons in Switzerland to 40 tons in Germany and about 60 tons in Sweden.
Trucks in the United States may transport up to 80 tons (see Dieckmann
et al. [96]).

If the conversion facilities are close to the railway system, then the products
may also be transported by rail. Rail transport is mostly carried out in stan-
dard wagons. Railways can transport 40 to 60 tons per wagon depending on
the rail system (see Dieckmann et al. [96]).

In general, biomass can be transported by barge, but mostly the transport
cost for short distances are too expensive and the cultivation fields too dis-
tant from waterways, that barge transport is not feasible. Furtermore, for
the transport via ship, different production characteristics need to be consid-
ered. Barge transport is mostly preferred for long distance transportation.
According to Dieckmann et al. [96], transport ships can reach lengths of
39 to 110 meters and a width of 5 to 11.4 meters. Consequently, the trans-
portable biomass volume is between 220 and 3000 tons per ship.
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2.5 Conclusion

Biomass value chains are complex networks built up of different types of
usable biomass, preprocessing and processing technologies and respective
products. In this chapter, the various biomass types have been defined.
The influence of the biomass composition on quality and processes was
presented. Depending on the processing technology, biomass needs to be
pretreated accordingly. For biochemical processes, especially starchy and
lignocellulosic, biomass needs to be broken down to fermentable sugars,
which is mostly glucose and xylose. Thermochemical processes on the other
hand require a certain particle size for efficient conversion. After process-
ing, the different products are cleaned and separated from by-products in
downstream processes. The choice of biomass and product mostly define
the possible conversion processes.

Due to the seasonality and the wide spread production of biomass, the
supply chain is prone to specific challenges. Biomass needs to be stored
throughout the year as it accrues only in harvesting season, but most pro-
cesses work continuously. The low energy density of biomass influences
the efficiency of transport. Sometimes densification technologies, such as
pelletization or torrefaction, are used to increase the feasibility of long-
range transportation. Depending on the product type, different transporta-
tion methods can be used. These are mainly barge, rail and truck transport,
whilst truck is the most common transportation mode.

44



3 Location planning of biomass
value chains considering
uncertainties

In the following sections, the basics of location planning under uncertain-
ties are presented. After an introduction to decision support systems in sec-
tion 3.1, a selection of discrete location planning approaches, which exist in
literature is presented in section 3.2. In section 3.3, the different approaches
for integrating uncertainties in location modeling are shown. A crucial
aspect when developing location planning models for biomass value chains
is the available biomass for conversion. The basics for estimating biomass
potentials is presented in section 3.4. Knowledge on the technical processes
are necessary to convert biomass to biochemicals. Hence, approaches for
simulating the processes of biomass conversion as described in section 3.5.
The estimation of investment and production cost is an essential part of the
assessment of biomass value chains (see section 3.6). Location planning
approaches are strongly dependent on the efficiency and economic feasibil-
ity of the production process. Therefore, the optimization and simulation
of material and energy flow balances is essential for an optimal configu-
ration of a biomass value chain. The uncertainties need to be included
in location planning models. The existing methods for risk analysis are
presented in section 3.7. A literature review of approaches dealing with
location planning and risk assessment in biomass value chains is presented
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in section 3.8. Finally, the research questions and the configuration of the
developed approach in this work are presented in section 3.9.

3.1 Decision support systems

Production systems, logistical networks and information infrastructure have
become more and more complex and interconnected in the past years and
decades. Within these systems a large variety of decisions need to be made.
The decision situations are dominated by uncertainties and complexity (see
Vahidov and Kersten [371]).

Due to the rising complexity of the systems, the need for models to sup-
port the decision process has increased immensely. Hence, computable
approaches to provide decision support systems (DSS) have been devel-
oped in the past years (see Burstein and Holsapple [64]). DSS are often
computer-based systems that support decision-makers by making the pro-
cess more productive, agile, innovative and reputable due to standardized
algorithms (see Burstein and Holsapple [64]). According to Blanning [50],
a DSS needs to at least provide results for one of the following tasks: simu-
lation or optimization of decisions, data selection or aggregation, parameter
estimation or equalization of decisions. The correlations between the differ-
ent tasks need to be defined clearly to enable an efficient work.

According to Shim et al. [323], a DSS consists of three main compo-
nents: data management, model management and dialogue management.
A well established and effective DSS is characterized by short development
times, a high pre-customization and a high customization possibility (see
Gachet [127]). For more details on DSS see Schaetter [312]. DSS are
needed for different problems. Peidro et al. [278] summarize these to strate-
gic, tactical and operational planning problems, which correlates to long-,
mid- or short-term decisions. Whilst strategic problems influence the supply
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chain designs for 5 to 10 years in the long run, tactical decisions are based
on a year or two time frame and try to optimize the use of resources such
as warehouses, suppliers, transports, etc. Operational decisions are mostly
addressed by scheduling problems and have only short planning periods of
only a few weeks.

DSS can be classified in five types as defined by Power [292]. Model-driven
DSSs support the decision making process by quantitative models, which
optimize or simulate the situation but are restricted by the available data.
Data-driven models try to cope with large amounts of data as in e.g. data
warehouses or file systems. Collaboration and communication systems are
supported by communication-driven DSSs and are mostly applied in net-
work and communication technology. Document-driven DSSs provide doc-
ument retrieval and analysis within computer storage systems that include
files such as documents, images, or videos. The most subjective DSS is
knowledge-driven DSS as it includes person-computer systems with a high
expertise in the field of the decision problem and the necessary skills.

Operations research models are an approach for a model-driven decision
support for the location planning in value chains. Location planning systems
are mostly used for strategic decisions. The location of a production plant is
fix for more than ten years. In the following section deterministic operations
research models for the location planning of biochemical production plants
are presented.

3.2 Deterministic operations research models
for biomass location planning

Many approaches exist to optimize the location of future biomass conver-
sion plants. These models include various aspects of biomass value chains
and focus on different regions. Depending on the stage of development
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and focus of research, the approach deals with high complexity. Existing
approaches consider for example multiple biomass, multiple technologies,
multi-stage production, multiple transport modes, storage, etc. These mod-
els are built up as location or network planning, transport optimization or
production planning tools (see De Meyer et al. [226]).

A deterministic model is built up of an objective function and constraints
(see Rausch [300]):

Min F (x) = cT · x (3.1)

sub ject to

A · x ≥ b (3.2)

x ≥ 0 (3.3)

Objective is often to minimize cost or maximize the net present value or
profit over time. The produced amount x is multiplied with the various
cost cT of the value chain. The model is subject to different constraints. In
general, the produced amount x needs to be positive and the utilized amount
needs to be larger as the available capacity b. The coefficient matrix is rep-
resented by A.

For each step of the value chain, models exist, which for example opti-
mize harvesting schedules or biomass collection, biomass production steps
or storage duration and locations (see Foulds and Wilson [122], Rentizelas
et al. [301], Frombo et al. [125], a.o.). Weintraub and Romero [382] have
performed a literature review on operations research models for the man-
agement of agriculture and forestry. Storage capacities and storage effects
have been analyzed by Rentizelas et al. [301]. Schwaderer [314] devel-
oped an approach, which considers multiple biomass and technologies. It
optimizes the location(s) of future biomass conversion plants for energetic
and material use under consideration of lignocellulosic biomass by thermal

48



3.3 Location planning approaches considering uncertainties

conversion technologies. The capacity of these plants are optimized by the
model by including economies of scale regarding the investment. As a large
variety of models exist, a full literature review cannot be presented in this
work and is therefore neglected. In section 3.8, the relevant literature regard-
ing biomass value chains and uncertainties is presented.

3.3 Location planning approaches considering
uncertainties and risks

In Operations Research, many different approaches exist to handle uncer-
tainties and risks. These include scenario-based analysis, (conditional) value
at risk, fuzzy programming and stochastic programming. Depending on the
level of detail, the uncertainties are included more or less precise. Highly
detailed modeling approaches require detailed data to assess the influence
of uncertainty. For the description of risk analysis see section 3.7.

First, decision making situations are defined in the following section 3.3.1.
Different approaches in location planning for dealing with uncertainties are
presented in section 3.3.2.

3.3.1 Definition of decision making situations

Decisions can be distinguished in five groups based on their considera-
tion of risks, respectively uncertainty. In the following, these decisions are
explained as published by Rausch [300].

• Decision under certainty

This is the most common and generally least complicated decision
making problem. All information of the environment is available or
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assumed to be fix. All decisions can be made based on deterministic
models (see section 3.2).

• Decision under risk

Contrary to the decision under certainty, not all information is avail-
able in the case of decision making under risks. The only informa-
tion available, is the likelihood of a possible event. Hence, one or
many factors can have multiple characteristics, which may have dif-
ferent probability distributions. These decision making problems can
be included in stochastic optimization models (see section 3.3.2).

• Decision under fuzzyness

This class relies on the methods of Fuzzy-Set-Theory. Here model
parameters can be defined vaguely. To solve such problems, fuzzy
modeling can be applied.

• Decision under uncertainty

As in the class described above, also different characteristics are pos-
sible, but in this case likelihoods for each event are not available. For
solving a decision under uncertainty different processes of the norma-
tive decision theory need to be applied such as theMaximin-, Laplace-
or Regret Rule. Alternatively approaches of the robust optimization
may lead to good solutions.

• Decision under conflict

Contrary to a decision under uncertainty, the environment is replaced
by a rational opponent in case of a conflict. These problems are
mostly solved with the help of game theoretical approaches.

Depending on the type of decision and situation, which is considered in the
case study, different approaches can be applied. The existing approaches are
presented in the following section.
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3.3.2 Approaches for decision making in location
planning under uncertainty

Many different mathematical approaches exist to model location planning
decisions under uncertainty. Basically, all deterministic models can be
tested for their robustness by sensitivity analysis. In this case determin-
istic parameters are varied and their effect on objective values and the
setup of value chains can be tested. Hence, sensitivity analysis shows the
vulnerability of the objective values regarding changing input data. This
approach can be combined with any decision making model. Its advantage
is the easy application and the low methodological effort, but the results are
less robust.

Peidro et al. [278] have analyzed different quantitative models for supply
chain planning under uncertainty. They have categorized the different mod-
els by problem type, source of uncertainty and modeling approach. For the
differentiation of uncertainties see section 3.7. Peidro et al. [278] identi-
fied four different modeling approaches. These are analytic models, models
based on artificial intelligence, simulation models as well as hybrid mod-
els. Many different approaches can be assigned to these categories. These
clusters are briefly presented in the following.

• Analytical models

robust optimization, stochastic optimization, games theory, linear pro-
gramming, parametric programming

• Models based on artificial intelligence

multi-agent system, fuzzy linear programming, fuzzy multi-objective
programming, fuzzy goal programming, fuzzy numbers, reinforce-
ment learning, evolutionary programming, genetic algorithms

• Simulation models

discrete event simulation, system dynamics
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• Hybrid models

linear programming and simulation, model protective control (MPC),
stochastic dynamic programming, mixed integer linear programming
(MILP) and discrete event simulation, genetic algorithm and simula-
tion, MILP and system dynamics

3.3.2.1 Analytical models

Analytical models are defined as decision support approaches by theoreti-
cal modelling and mathematical equations in applied sciences (see Mula et
al. [240]). The above presented approaches are explained in more detail in
the following.

Scenario analysis

In scenario analysis three different types can be distinguished: non- stochas-
tic and stochastic scenario analysis as well as optimization under uncer-
tainty. With the help of scenario analysis different input data is varied
according to defined scenarios. The model is solved for each defined sce-
nario and is assessed in a second step. The definition of a best alternative
is the main default of the scenario analysis. Scenario analysis is especially
suitable in case of non-quantifiable data, but can also be applied in case of
risks with given distribution functions (see Schaetter [312]). Schaetter [312]
summarizes three different types of scenarios: predictive, explorative and
normative scenarios.

Games theory

Cachon and Netessine [65] have described the application of games theory
in supply chain analysis. Games theory in general analyzes the interactive
decisions of multiple agents in a supply chain. In case multiple agents aim
to find a new location of a biochemicals plant, games theory searches for
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the optimal solution for all participants with or without them knowing of
the decision of another participant in the game. However, all participants
know of other actors taking part in the “game”.

(Conditional) Value at Risk

Conditional Value at Risk is also called Mean Excess Loss or Mean Short-
all (see Uryasev [363]). Value at Risks (VaR) models can be assigned to
stochastic optimization models. This approach is often used to measure
risks and include them in a stochastic context. Unfortunately, VaR mod-
els are hard to solve numerically as it influences the convexity of the model.
Conditional Value at Risk models have recently been in the focus of research
to address this problem (see Goh and Meng [138]). Conditional Value at
Risk models can, in general, be described as defined by Uryasev [363].

Min F (α,z) = α + v
J

∑
j=1

z j (3.4)

sub ject to

z j ≥ f (x,y j)−α (3.5)

z j ≥ 0;x ∈ X ; j = 1, ...,J (3.6)

The objective function 3.4 is described by the auxiliary variables z j and the
VaR function α(x,β ). The VaR function is the “smallest percentile of the
loss distribution with confidence level β” (see Uryasev [363]).

Robust optimization

Robust optimization is a subsection of stochastic optimization. Ben-Tal
and Nemirovski [43] define robust optimization as “modeling methodol-
ogy, combined with computational tools, to process optimization problems
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in which the data is uncertain and is only known to belong to some uncer-
tainty set”. Objective of robust optimization is to calculate nearly optimal
solutions, which hardly react sensitively to different scenarios. According to
Rausch [300], robust optimization has the advantage compared to stochastic
models, that it includes an expected value and is more adaptable.

Min F (x,y) = cT · x+dT · y (3.7)

sub ject to

A · x ≥ b (3.8)

B · x+C · y ≥ e (3.9)

x ≥ 0;y ≥ 0 (3.10)

The first term of the objective function 3.7 and the first restriction (see equa-
tion 3.8) defines the design component x of the model and includes only
deterministic cost cT and coefficient matrix A and no uncertain coefficients.
The optimized value of the decision variable cannot be changed. The control
component y is defined by the second term of the objective function 3.7 and
its respective cost dT . The second restriction 3.9 includes scenario depen-
dent control components (coefficient matrixC and control variable y), which
are restricted by the scenario boundary e. It provides a solution for the
control variable y and describes uncertain parameters. Many authors define
concepts to formulate a robust model from the general structure as described
above. For further information on these models see Rausch [300].
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Stochastic programming

The deterministic model according to section 3.2 can be adapted to stochas-
tic modeling as follows:

Min F (x) = cT
u · x (3.11)

sub ject to

Au · x ≥ bu (3.12)

Ad · x ≥ bd (3.13)

x ≥ 0 (3.14)

Uncertain cost are represented by cT
u . The deterministic constraints are

defined as in equation 3.13 by the deterministic coefficient matrix Ad and
deterministic boundaries bd . The uncertain constraints as in equation 3.12
are formulated similarly by an uncertain coefficient matrix Au and uncertain
boundaries bu (see Rausch [300]). In general, the same variable types as
in deterministic modeling can be applied only that the constraints are not
defined by fix boundaries. These are linear, integer-linear, and non-linear
functions. Additionally, the model fulfills the following characteristics.

• The model includes only linear objective functions and constraints in
which the variable are non-negative and real.

• All functions are linear and utilize variables, which are restricted to
non-negative integer. Special cases include mixed-integer with real
and integer variables as well as mixed-binary optimization models in
which variables only take the binary value 0 or 1.

• In non-linear models all functions are non-linear

Deterministic models can be solved by efficient solution procedures, as the
calculation times depend on the complexity and size of the problem. In
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contrast, the calculation time of stochastic models increases exponentially
with rising problem size. Those are so called NP-hard optimization models.
NP-hard solutions are not related to a polynomial of the problem size and,
hence, are not bound in their calculation times.

Two different types of stochastic models exist: one-stage and two stage
approaches. The first defines a single strategy for which the model is opti-
mal in a certain period. Two stage approaches only give a fixed solution for
the first stage. The strategy of the following stages depend on the actually
chosen design of the uncertain input parameters.

3.3.2.2 Models based on artificial intelligence

Copeland [84] defines artificial intelligence as “the ability of a digital com-
puter or computer-controlled robot to perform tasks commonly associated
with intelligent beings.” Hence, these systems can learn from previous expe-
riences and adapt future decisions. Nevertheless, up to date the computa-
tional programs cannot simulate the same flexibility as of human beings.

Multi-agent system

According to Giannakis and Louis [136], multi-agent systems model the
collaboration of multiple decision makers in supply chains. Each agent is
responsible for a certain role. The agents can interact with each other, within
or across organizations. Multi-agent systems are particularly useful for the
analysis of collective cooperation problems where joint coordination of sup-
ply chain actors leads to a higher performance of the overall system.

Fuzzy linear programming

In fuzzy-based approaches, the uncertainties in data are quantitatively mod-
eled fuzzy sets, which approximate probabilities of vague information. This
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approach tries to quantify expressions such as "highly effects" or "much
larger than" (see Comes [82]). Due to its complexity this approach is rarely
used in logistical optimization. The data processing is very time consuming
and demands a high expertise.

M̃in F (x) = cT · x (3.15)

sub ject to

A · x≥̃b (3.16)

x ≥ 0 (3.17)

The fuzzy objective function is influenced by the decision variable x. The
cost cT and the boundaries b are a column vector of fuzzy numbers. The
coefficient A is a matrix of fuzzy numbers (see Delgado et al. [92]). Other
applications of the fuzzy theory are Fuzzy multi-objective programming,
Fuzzy goal programming and Fuzzy numbers.

Reinforcement learning

According to van Otterlo and Wiering [273], reinforcement learning, also
called approximate dynamic programming, analyzes how agents act in an
environment. Their objective is to maximize their cumulative reward. RI
is often formulated as a Markov decision process with the following steps:
(1) fix set of environment and fix set of actions, (2) analysis of probabilities
for the transition from state s to s’ under action a and (3) the immediate
reward after transition as well as (4) the assessment of stochastic rules that
describe the observation of each agent. The observations and decisions of
each agent are compared at each time step.

57



3 Location planning of biomass value chains considering uncertainties

Evolutionary programming

Falcone et al. [110] describe the application of evolutionary programming
(EP) in supply chain optimization. EP simulates the phenotypical rela-
tionship between populations. For modeling the mutation it uses Gaussian
distribution. Seven steps are necessary to optimize a supply chain by EP:
(1) creation of an initial population, (2) computation of the fitness of each
individual, (3) generation of a single descendant, (4) evaluation of each
descendant, (5) comparing all solutions to select the ancestors of the next
generation, (6) apply mutation to produce new descendants, and (7) repeat
(2)-(6) until the stopping criterion is met.

Genetic algorithm

Genetic algorithms are similar to EP. Individuals evolve throughout gener-
ations and generate new populations. Falcone et al. [110] summarize GA
to five steps: (1) creation of initial population, (2) evaluation of each solu-
tion by fitness function, (3) selection of most fitted individuals by selection
strategy, (4) application of mutation to generate a new population from the
selected individuals, and (5) repeat steps (2)-(4) until the stopping criterion
is met.

3.3.2.3 Simulation models

Contrary to algebraic models, simulation models do not use algebraic equa-
tions, but try to model real behavior as precise as possible with the help of a
software program and mathematical expressions (see Harling [148]).

System Dynamics

Forrester [121] has described the system dynamics approach. System dynam-
ics represents real world problems nonetheless the complexity and non-
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linearity it brings and can include loops. The biggest challenge of system
dynamics is to model a large number of mostly non-linear inter-temporal
relationships between the variables. According to Ranganath [298], system
dynamic models are based on problem statements, variable identifications
and looping of causal behaviors of these variables.

Monte Carlo Simulation

According to Mahedevan [212], Monte Carlo simulation is a numerical
experimentation technique. At first a random number of a distribution func-
tion is used as input for a computational model. A large number of exper-
iments is carried out in such manner. The outputs of the computational
models are compared and statistics are computed to analyze the influence of
the distribution functions. Monte Carlo simulations are often applied due to
their easy application. Meyer [227], Trinks[355] and Luo [210] are exam-
ples for such applications, which include the following steps:

1. Generate input values from random variables of a probability
distribution function

2. Calculate deterministic computational model and check system
for failures

3. Repeat steps (1) and (2) for a large number of times N

4. Analyze, compare and interpret the results of all model runs

3.3.2.4 Hybrid models

Hybrid models combine the advantages of simulation and analytic models.
They are often a combination of the above-mentioned approaches such as
linear programming and simulation or mixed integer linear programming
with system dynamics.
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According to Peidro et al. [279], the majority of models coping with uncer-
tainties were analytic models up to 2009. Almost half of the considered
models were analytic approaches. Most of the models included only a sin-
gle source of uncertainty.

3.4 Biomass potential and location analysis

Biomass is a widely spread product. The available biomass type and amount
depends on the considered region. Often geographic information systems
(GIS) are used to estimate the available potentials. These are software sys-
tems, which are based on geographical data to gather, process and visual-
ize data. The respective data can be organized by multiple layers. These
layers can include data on politics, streets, climate, weather, cultivated
area etc. and can be combined and interlinked to provide new data (see
Schwaderer [314]). In general, different types of potentials are defined.
According to Kaltschmitt et al. [175], these include theoretical, technical,
economic, harvestable and sustainable potential. In figure 3.1, the different
potential types and their relation are depicted. The different potential types
are explained in the following.

• Theoretical potential

The theoretical potential describes the total physically available bio-
mass potential within a certain region and time frame based on the
energy content of the biomass. It defines the upper limit of the theo-
retically usable energy.

• Technical potential

Due to technical restrictions such as harvesting rate, storage or con-
version losses, etc., the theoretical potential cannot be fully used. The
biomass, which can be used based on the given restrictions and also
include legal or ecological constraints, is called technical potential.
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• Economic potential

The economic potential describes the part of the technical poten-
tial, which can be utilized despite economic restrictions. Influencing
parameters of political or business economics may vary and, hence,
the calculated economic potential.

• Usable potential

The usable potential is restricted by already existing facilities. Theo-
retically, the usable potential converges to the economic potential on
the long run.

• Sustainable potential

In case of defined sustainability criteria, the sustainably usable poten-
tial is the amount of the technical potential, which can be harvested
due to climate, nature protection or soil quality restrictions.

The potential estimation is performed by multiplying the theoretical values
with factors such as utilization in slope classes or the remaining amount on
the field. Finally, the already utilized amount is subtracted to receive the
usable potential.

3.5 Approaches for assessing
technical processes

The process for converting biomass to biochemicals is an essential part of
the biomass value chain. Especially biochemical processes such as fermen-
tation are prone to high uncertainties as they utilize sensible microorgan-
isms. According to Froehling [124], three main approaches exist to estimate
the efficiency of processes: material and energy balancing, regression anal-
ysis and flow sheeting simulation.
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Figure 3.1: Biomass potential types and their relation (Kaltschmitt et al. [175])

As many biomass processes are not yet realized in industrial scale, these
approaches can support the design of conversion facilities. The results of
the simulations, material and energy flow balances, provide a basis for tech-
nical and economic assessments. These can influence the decision, whether
the investment is feasible or not, depending on technical efficiency and pro-
duction cost.

In the following the approaches are described similar to e.g. Trippe [356],
Schwaderer [314], and Schulte Beerbühl [42]).

3.5.1 Material and energy flow balances

The efficiency of biomass conversion processes influence the supply chain
immensely. More or less feedstock is needed depending on the product yield
from biomass for a fix demand. The lower the product to biomass yield is,
the more biomass needs to be transported to the facility.
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Not only the efficiency influences the robustness of a biomass value chain,
but also the energy and utility demand of the process. Both depend on the
process and the utilized biomass resource. Material and energy flow bal-
ances are the basis for process efficiency estimation. Different approaches
exist to perform the analysis. As Schwaderer [314] points out, the approaches
for material and energy balancing are limited. Approaches from engineer-
ing are necessary to accurately describe technical processes. These include
non-linearity of relations between substances and the thermodynamic and
chemical dependencies of substances.

Depending on the biomass type, different process configurations are nec-
essary to convert biomass to biochemicals. Coherent system boundaries
need to be defined to be able to compare different processes. Within these
boundaries, the material and energy balances are calculated. The processes
can be assessed based on efficiency parameters such as yield, selectivity
and conversion rate, which are all based on the law of mass conversion as
defined in equation 3.18. The sum of all input mass streams min must be
equal to all output mass streams mout plus potential mass losses mloss (see
Trippe [356]).

∑min = ∑mout +∑mloss (3.18)

The most commonmeasure to assess processes for biomass conversion is the
yield of a production. It is defined among others by Vauck andMueller [373]
as the ratio of actually produced substance to the maximum possible pro-
duced amount based on stoichiometric calculations (see equation 3.19).

Percent yield Yi =
actual yield

theoretical yield
=

ni −ni0

n ji
(3.19)

Not only the mass of a system needs to be in balance, but also energy cannot
be created or destroyed. According to the first law of thermodynamics the
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total energy of a system remains constant (see equation 3.20). All input
energy ein is converted to output energy eout and energy losses eloss.

∑ein = ∑eout +∑eloss (3.20)

3.5.2 Flow sheeting simulation

Flow sheeting simulations can be used to estimate material and energy flows
of possible large-scale installations. The approaches can vary from black

box models of a production up to very detailed simulations of computa-
tional fluid dynamics (CFD) on a molecular basis. Depending on the level
of detail, the interactions between the molecules are simulated more or less
precisely. The more detailed the simulation model is, the more data and
knowledge of the process is needed. Hence, the implementation and calcula-
tion of the model itself is more challenging. In regard to the addressed ques-
tion an adequate approach for the simulation needs to be chosen. For the
conceptual design of facilities in the process industry mostly flow sheeting
simulation is used. These are based on thermodynamic and chemical equi-
librium and therefore define a medium level of detail. The simulations can
be used in multiple stages of the plant lifetime: from process development to
the optimization of an already existing plant (see Schulte Beerbühl [42]).

Flow sheeting simulation tools have the advantage that they include a large
variety of databanks. These provide thermodynamic, chemical and phys-
ical base data and models. In general two different types of flow sheeting
simulations can be differentiated: sequential-modular and simultaneous sys-
tems. The first calculate each unit operation for itself in the sequence of the
production. In case of re-circulations, the partial streams are calculated in
iterations. Simultaneous models utilize a matrix. All balances of the unit
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operations are used as input in those matrixes and are solved all at once (see
Kerdoncuff [180]).

3.5.3 Simulation in AspenPlus®

Many commercially flow sheeting simulation software exist. The most pop-
ular tools are SuperPro Designer, ChemCad, AspenPlus® and IPSEpro. As
described by Trippe [356], Peters, Timmershaus & West [282] provide a
summary of other flow sheeting software.

The application of AspenPlus® by the company Aspen Technology, Inc.,
for the assessment of processes for the conversion of biomass has been
proven by many authors (Schwaderer [314], Trippe [356], Kerdoncuff [180],
Kumar et al. [189]). It is generally used for the assessment and optimiza-
tion of processes in chemical engineering by calculating energy and mass
flows of systems. AspenPlus® can be combined with other software such
as Excel or Matlab. Unit processes are defined for the simulation of a sys-
tem. For further details on the unit processes see appendix A.1.1. The mass
and energy balances are calculated utilizing input data as well as physical,
chemical, and thermodynamic databases. Design specifications enable the
manual definition of temperatures, pressures, etc. of unit processes. Addi-
tionally, with FORTRAN codes, MATLAB links and other user defined cal-
culation operations, the simulations can be designed to the individual needs
of the user. Sensitivity analysis can be conducted to analyze the influence of
single parameter settings.
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3.6 Economic assessment of processes for the
production of biochemicals

The economic assessment of different biochemical processes is essential
when comparing different production routes from various biomass. Depend-
ing on the biomass, the process can vary and accordingly can the investment
and processing cost of the production site. As only few biorefineries are
in operation to this day, only literature values are available for an economic
assessment. The literature values are based on many assumptions and cannot
always be applied to all production plants due to their individuality. Con-
sequently, a detailed individual estimation of the production plant is not
feasible and is also bound to a large effort.

3.6.1 Estimation of investment

Investments are defined as the total capital demand of a facility to procure
the necessary equipment and take them into operation. An investment con-
sists of multiple parts (see Meyer [227]). Properties, infrastructure for water
and electricity, repair and maintenance as well as controlling equipment are
a few examples of additional investments to the already existing facility. The
total investment is the sum of all these components. In general, the applied
method of investment estimation leads to different degrees of accuracy in
the calculation. Detailed investment estimations require detailed data input
but result in more precise calculations. According to Meyer [227], these
can be between -30 to + 50 % for estimating the order of magnitude by
turnover ratios and can reach up to -5 to +10 % in case of detailed analysis
by code of accounts. Different approaches exist to estimate the investments.
Trippe [356] discusses various methods such as summarized calculation,
factor methods and detailed individual calculation. He proposes that for the
estimation of investment of different biomass conversion technologies, the
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sub-processes should be depicted by block flow diagram. The total invest-
ment is estimated with the help of differentiated surcharge rates. Therefore,
the main components need to be defined.

All equipment is considered as main components, which are shown in the
block flow diagram. The needed data for the investment estimation are based
on different sources. Peters, Timmerhaus, & West [282] and Chauvel [75]
provide a large data base on basic components. Humbird [162] has calcu-
lated investment of a bioethanol biorefinery and published many investments
of single units.

At first, the capacity of a base investment is defined. In chemical industry,
this is mostly an annual or hourly quantity of either the final product or the
feedstock to the plant.

Economies of scale are taken into account for the estimation of the invest-
ments. The capacity of a production plant increases triple, whilst the sur-
face of single equipment only rises twofold. This results from the relation
between volume and surface area. Investment is mostly dependent on the
material, which is used for the equipment and, hence, on the surface area.
The specific investment decreases with rising capacity. Equation 3.21 shows
the correlation between the investment Ire f of a reference investment and its
capacity Cre f and the actual capacity Ccurrent and investment Icurrent of a cur-
rent facility. The factor R defines the size degression. Normally this factor
can have a value between 0.6 and 0.8 (see Trippe [356]).

Icurrent = Ire f ·
(

Ccurrent

Cre f

)R

(3.21)
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provided for a certain capacity and a specific year. For more realistic esti-
mations, both, capacity and year need to be consdiered. Investments can
be approximated according to equation 3.22 to adapt them to the current
year. The ratio between the investment in the current Icurrent to a reference
year Ire f is equivalent to the proportion of the price index of the current
Pcurrent to the reference year Pre f .

Icurrent = Ire f · Pcurrent

Pre f
(3.22)

Different price indexes exist, which adapt the price of the reference invest-
ment to the current price. The price indexes include rising cost for material,
personnel, or inflation. The most known price indexes are the Chemical
Engineering Plant Cost Index (CEPCI), the German Kölbe Schulze Index
and the Nelson-Farrar Cost Index. They are being published by American
and German journals. The CEPCI is an aggregated index of eleven single
indexes and is based on data from 1947 on. The Kölbe Schulze index relies
on data from 2005 and aggregates seven single indexes (see Meyer [227]).

Additionally to the investments, other cost such as for engineering, con-
struction and administration of the facility need to be included. These are
independent on the consumption and the operation of the plant and are cal-
culated by a fix percentage of the investment. Possible values for the per-
centages are presented in table 3.1.

These can be distinguished in direct and indirect cost. Direct cost can
directly be accounted to a specific facility. Indirect cost are general cost,
which do not depend to a cost object.
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Table 3.1: Percentage composition of the investment (Aden et al. [6])

Costs share of investment in %

Direct cost

Building 1.5
Infrastructure 9
Sales 10
Construction 10
Indirect cost

Engineering 25

3.6.2 Estimation of production cost

The specific production cost are defined by the total cost of the facility per
year and the revenues of byproducts based on the produced amount of the
biochemical. The production cost are based on the results of the material
and energy flow balances as well as on the investment. The total yearly cost
Ctotal of a facility is calculated as investment related cost Cinvestmentdependent

plus operational costCoperation plus personnelCpersonnel and other costCother

as defined in equation 3.23. These cost are presented in the following (see
Meyer [227]).

Ctotal =Cinvestmentdependent +Coperation +Cpersonnel +Cother (3.23)

Investment dependent cost

Investment dependent cost are based on the total investment. Investment
dependent cost include depreciation, repair and maintenance (R&M) cost,
taxes and insurance (see equation 3.24). The larger a production plant, the
harder it is to repair and maintain and, hence, the R&M cost rise. Taxes,
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Cinvestmentdependent = I · 1
n
+ I ·

(
1+ f capital

)
· i
2
+ I · ( f maintenance + f taxes)

(3.24)

Operational cost

Operational cost are based on the consumption and include cost for feed-
stock, energy and utilities as well as for disposal of by-products and waste.
These cost depend on the operating hours of the process or the produced
amount respectively. Biochemical products are mostly dependent on feed-
stock cost. These can make up for up to 60 % of the consumption related
cost (see Trippe [356]).

Consumption related cost are calculated by the mass flow m j of input mate-
rial j and the price p j for the input material j.

Cconsumption = ∑
j

m j · p j (3.25)

The total consumption related cost are built up as the sum of the input mate-
rial streams of the feedstock or utilities, which are processed during a certain
time period and their respective cost. The consumption of the products can
be estimated by material and energy flow balances from the flowsheeting
simulations (see section 3.5).

Process cost

Process cost are cost, that occur independently on the facility load factor and
the energy consumption of the process. Personnel cost are the most common
type of process cost. They can also be estimated based on the capacity of the
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estimates the personnel cost cpers based on relation of the reference capac-
ity Cre f to the current capacity Ccurrent multiplied with the number of people
required Nre f for the reference plant and the average annual salary ppers per
person.

cpers = ppers ·Nre f ·
(

Ccurrent

Cre f

)0.25

(3.26)

3.6.3 Other cost

Additionally to the production cost, many other cost affect biomass value
chains. These influence the economic feasibility of the supply chain. Hence,
they are presented in the following. These cost include transport, storage,
export, and transshipment cost. The cost for biomass are already included
in the production cost.

Transport cost

The specific cost of transportation cT can be defined by specific fix and
variable cost terms (see equation 3.27). The fix cost present the share, which
does not depend on the transport distance. Fix transport cost cT

f ix include
for example personnel cost as well as the investment related cost of the
transport mode. Variable transport cost cT

variable depend on the distance d,
which is traveled. The largest share of variable transport cost is made up
of fuel cost. Transport cost are mostly defined per amount of transported
product. The transport mode influences the fix and variable transport cost.
For example, due to large investments in the ship, barge transport has high
fix cost. These are compensated by low specific variable transport cost (see
Meyer [227]).

cT = cT
f ix + cT

variable ·d (3.27)
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Storage

Storage cost can be defined by the investment, which is necessary for the
storage capacity. If the company does not want to invest in additional storage
facilities, it can also rent storage capacity. The storage rent and investment
depend on the type of storage and the capacity of the storage facility (see
Rentizelas et al. [301]).

Transshipment cost

Multimodal transport has many advantages. It is often time efficient and less
cost intensive for long distance transport. However, due to transshipment
from one transport mode to another, additional handling cost need to be
considered. The transported good needs to be transferred. Depending on
the transport type and product, this can lead to high transshipment cost.

Export cost

The final products of a conversion plant can also be exported to other cities,
states, countries or continents. Depending on the export port, different cost
occur. These are influenced by the product, which is exported, the export
terminal and the receiving terminal.

3.7 Risk analysis and risk management

In this section the existing approaches for risk analysis and risk manage-
ment are described in general and specifically for biomass value chains.
Risks can often lead to disruptions in supply chains, which in turn, reduces
the profitability of the value chain. Due to recent trends, supply chains are
more and more sensible to disruptions. Hendricks and Singhal [152] see
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increased complexity, outsourcing and partnerships, single sourcing, lim-
ited buffers, focus on efficiency, over-concentration of operations and poor
planning and execution as the main drivers for disruptions in supply chains.
According to them, these can be mitigated by improving the accuracy of
demand forecasts, integrating, and synchronizing planning and execution,
reducing the mean and variance of lead times, by collaborating with sup-
ply chain partners, investing in visibility, increasing flexibility of supply
chains, postponement strategies, and investing in technologies. Often risk
assessment and risk management need to be performed to conquer these
disruptions and to find the suitable mitigation strategy. The objective of this
section is to provide an introduction to risk analysis.

At first, different definitions of risk and uncertainties are presented in sec-
tion 3.7.1. In section 3.7.2, approaches for assessing risks in biomass
value chains are described. Probabilities and consequences are essential
for assessing risks. Hence, an introduction into probability calculations is
presented in section 3.7.3. The estimation of risk consequences is presented
in section 3.7.4. Risks can be clustered into different risk categories. These
are shown in section 3.7.5. Finally, different risk mitigation strategies are
discussed in section 3.7.6.

3.7.1 Essential terms in risk management

Ayyub [28] defines risk as “the potential of losses and rewards resulting from
an exposure to a hazard or as a result of a risk event.” According to Waters
[380] risk and uncertainty need to be differentiated and can be defined as
follows. Uncertainty cannot be quantified, meaning that events might occur
in the future, but no information can be provided on the likelihood of their
occurrence, hence concrete information on certain parameters is absent.
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Risk on the other hand can be defined by probability of an incident (see
Knight [183]). According to Wu et al.[168], risks are comprised of three
main components:

• likelihood of occurrence also often called probability, can be mea-
sured either objectively based on historic data of such events or sub-
jectively based on intuition.

• the consequences of this occurrence are a multiple of simultaneous
events, which may also interact with each other.

• exposure to such an event is the most crucial part, which needs to be
well understood when handling risks as it influences the effectiveness
of risk management.

Ayyub [28] defines event consequences as “the degree of damage or loss
from some failure”. Among many, Ziegenbein [402] defines risk as the
product of probability and the effect of the event.

Risk = probability o f an event · loss o f the event happening (3.28)

The product is also called the expected loss of the event, meaning the prob-
ability weighted average (see Hubbard [160]). Risk has to include some
probability of a loss, but does not include gains.

Many different terms exist in risk research. Not only risks and uncertainties
are differentiated. Risk cannot only be defined as likelihood multiplied with
consequences (see equation 3.28). Ayyub [28] defines the main terms in risk
analysis. Hazard is an event, which poses potential harm to another person
or thing. According to Villagrán de Léon [91], hazard is the likelihood or
possibility of an extreme event with a certain intensity in a certain region
to a certain time. Reliability can be defined as the complementary value
of failure probability. A system is reliable if it can operate at its design
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function even though the boundary conditions have varied. Crichton [85]
formulates a risk function as dependency on hazard and vulnerability (see
equation 3.29).

R = f (hazard,vulnerability) (3.29)

The reaction of a system against risks and uncertainties can be described
by different terms. Vulnerability is defined as the sensitivity of a sys-
tem to harm (see Bohle [54]). Vulnerability depends on the susceptibility,
resilience and exposition of a system (see Bohle [54]). Resilience is defined
as the ability of a system to cope with external stress factors and disrup-
tions, to minimize possible losses and to recover to the initial state (see
Holling [157], Rose [307]).

Waters [380] differentiates between internal and external risks. Internal

risks occur within the respective supply chain. These include risks such
as “late deliveries, excess stock, poor forecasts, financial risks, minor acci-
dents, human error, faults in information technology systems”. These risks
are not as critical to stakeholders as they can be managed directly by the
company. Management strategies are for example additional stock, multi-
ple suppliers, etc. External risks include all risks, which have their origin
and take place outside the supply chain and are harder to control. These
are risks such as “earthquakes, hurricanes, industrial action, wars, terrorist
attacks, outbreaks of disease, price rises, problems with trading partners,
shortage of raw materials, crime, financial irregularities, etc.”

Kajüter [173] defines three types of approaches for including risk manage-
ment in the supply chain. Risk management with supply chain orienta-

tion is considered in case a company identifies, assesses and steers risks
systematically. Generally, this occurs mostly in areas, which focus on mate-
rials, good, or information flows. The risk assessment is then in the hand
of the regarded company. The next step is risk analysis within the supply

chain. This comprises the identification, assessment and steering of risks of
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multiple companies within various value chains. The collaboration focuses
on an informal basis. The systematic inclusion of risk management in plan-
ning and reporting to the supply chain does not take place. Supply chain

risk management is a structured approach to cooperatively analyze, steer
and control as well as communicate risks in the supply chain. Companies
strongly work together and have incorporated an approach to jointly estab-
lish a risk management process.

A cross-functional team of risk experts should be assembled. These should
characterize the major sources of risk as well as assess and prioritize these
risks. Finally, the identified risks should be monitored and actions need
to be defined to improve the risk management process (see Hendricks and
Singhal [152]).

In general, there are three core actions in risk management, which need to
be performed by the expert team (see Waters [380]):

1. identification of risks

2. assessment of their consequences

3. design of appropriate measures

3.7.2 Methodology for assessing risks
in biomass value chains

Risks can be assessed according to the ISO 31.000/2009 [262] process. In
figure 3.2 the methodology for analyzing and assessing risks according to
Ziegenbein [402] is presented.
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Figure 3.2: Methodology for managing supply chain risks (Ziegenbein[402])

3.7.2.1 Identification of risks

According to the ISO 31.000/2009 [262], risk identification is defined as
follows “the aim of this step is to generate a comprehensive list of risks
based on those events that might create, enhance, prevent, degrade, accel-
erate, or delay the achievement of objectives. It is important to identify the
risks associated with not pursuing an opportunity. Comprehensive identifi-
cation is critical, because a risk that is not identified at this stage will not be
included in further analysis.” The steps as seen in figure 3.2, scope defini-
tion, depiction of the supply chain, risk identification and risk catalog, need
to be performed in this part.

For the identification of risks, they firstly need to be systematized and clus-
tered. The identification is a critical process because only risks, which have
been identified can be avoided or reduced (see Aven [26]). As the risks are
very specific for each case, they need to be analyzed in a structured and sys-
tematic manner. Copying the risks of a similar case is not sufficient as some
risks might remain unidentified.
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Mullai [241] describes the risk identification steps in more detail. At first
the background of the assessment should be known. After performing a pre-
liminary risk analysis, the responsible person to conduct the risk analysis
should be identified. Also, other interested parties need to be identified and
included in the project. Risk generating activities as well as the occurring
problems need to be identified. A set of objectives for risk analysis should
be defined as well as the boundaries of the study. Appropriate methods
and techniques for risk assessment need to be selected. Finally, all relevant
risk-related data need to be collected. One approach is to differentiate risks
according to the origin of their source. Vahrencamp and Siepermann [18]
differentiate between endogenous and exogenous risks. Endogenous uncer-
tainties mostly occur within a company, exogenous risks are affected by the
environment.

The categorization of risks is adapted to the list presented by Waters [380]
and include

• environmental risks (natural and political)

• physical risks

• transport risks

• supply risks

• market risks

• technical risks

• economic risks

Melnyk [223] differentiates into natural risks, demand shifts, supplier prob-
lems, human behavior, information and technology, financial and legal risks.
Tang and Tomlin [338] share a similar classification of risks: supply, pro-
cess, demand, intellectual property, behavioral, political and social risks.
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Different approaches exist to identify risks. The most known methods are
Failure Mode and Effect Analysis (FMEA), Event Tree Analysis (ETA) and
Fault Tree Analysis (FTA), which are discussed in detail in section 3.7.3.
Nevertheless, the greatest problem is, that it is impossible to identify every
possible risk (see Waters [380]). The four main reasons, why not all con-
ceivable risks can be identified are that inherently unknowable risks exist,
risks depend on time and progress and might change with a different scope,
and secondary risks (risks that result from risk treatment) exist.

After the identification of risks, they need to be assessed. The process of
risk assessment is described in the following section.

3.7.2.2 Assessment of risks

The ISO 31.000/2009 [262] defines Risk Assessment as follows:

“Risk analysis involves developing an understanding of risk
and impacts both positive and negative. Risk analysis provides
input for risk evaluation and decisions on the most appropriate
risk treatment strategies and methods. Risk analysis can also
provide input for making decisions where the options involve
different types and levels of risk assumption, mitigation, reduc-
tion, and avoidance.”

Many different methods for the assessment of risks exist. Hubbard [160]
provides an overview of possible approaches. The appropriate method may
be chosen depending on the application. The most commonmethod is expert
intuition, which is not based on any quantified data. A more systematic
approach is an expert audit, in which experts develop comprehensive check-
lists. In simple stratification methods rating scales, such as traffic light sym-
bols are used. Weighted scores are used as risk indicators where each risk is
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multiplied with a weighting factor. In traditional financial analysis, conven-
tional financial analysis tools such as a discount rate are used. Multi-criteria
decision making (MCDM) and analytic hierarchy process (AHP) also used
weighted scores but in a more structured manner. The most detailed anal-
yses are provided by probabilistic models where the odds and magnitudes
of losses are computed. This approach is mostly chosen in insurance or
financial industry (see Zimmer [403]).

In more detail, the analysis process can be described by the following steps:
(1) system definition, (2) hazard identification, (3) exposure and conse-
quences analysis, (4) likelihood estimation and quantification, (5) risk esti-
mation and presentation, and, finally, (6) sensitivity analysis. Mullai [241]
has described each step in more detail. Step (4) will be presented in more
detail in section 3.7.3 and 3.7.4.

Ayyub [28] describes different approaches to perform reliability assess-
ments of systems. The Advanced Second-moment Method is based on
performance functions, which depend on a resistance (e.g. supply) and load
(e.g. demand) of a system. In case of a positive performance, the system
is in survival state. Negative performance functions occur in case of failure
states. Monte Carlo simulation techniques use samples of a system to esti-
mate the failure probability. These samples are randomly generated. If the
majority of samples leads to a failure, then the overall system is most likely
to fail. Time-dependent Reliability Analysis is similar to the general reli-
ability functions, but they are dynamic as they depend on time and are not
constant.

The main steps in risk assessment are, according to Ziegenbein [402], the
assessment of probabilities and occurrence, assessment of the severity of the
risk and the visualization of a risk portfolio. The result of risk assessment
visualized as a risk matrix is depicted in figure 3.3. This work uses this
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risk definition for the risk assessment. Aim of this study is to cluster the
identified risks in risk matrices as presented below.

Figure 3.3: Risk assessment of likelihood and consequences

In the matrix, the risks are clustered and displayed by likelihood and conse-
quences. The most critical risks can be identified at once and risk mitigation
can be enforced. Nevertheless, the clustering is subjective and the differ-
ence is often not as fix. Necessary risk mitigation strategies can be defined
based on the risk assessment. In the next section, the necessary steps are
presented.

3.7.2.3 Design of appropriate measures

Risk mitigation strategies aim at minimizing the effects of risks, either by
minimizing probabilities or by reducing the consequences (see Hubbard et
al. [160]). In general, four alternatives exist for managing risks: avoid-
ance, reduction, transfer and acceptance (see Hubbard [160], Mullai [241],
USCG [144]).

After comparing and ranking the risks, strategies and measures need to be
defined. Mullai [241] and Ziegenbein [402] present the main steps of risk
management as in figure 3.2: identification of options, decision making,
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planning and implementations of the actions. For more detail on risk man-
agement steps, please see Mullai [241].

3.7.3 Probability calculation

In this section, the estimation of probabilities for the calculation of risks is
presented. Three approaches can be chosen for the estimation of probabili-
ties (see Waters [380]). The likelihood of an event can be calculated if the
situation is known. In case of uncertain prediction, one can consider histor-
ical data of an event and provide empirical probabilities with this informa-
tion. The third possibility is the personal opinion of experts, which are often
qualitative and subjective.

Different approaches exist, which support the user in assessing the proba-
bility of risk occurrences. According to Vesely et al. [374] two different
approaches can be distinguished: inductive and deductive. Even though this
handbook was published by the U.S. Nuclear Regulatory Commission, the
described methodologies can be applied to multiple topics.

Inductive approaches try to formulate a general conclusion from indi-
vidual cases. Many methods have been developed to describe the context
between single and general events. Examples are the Fault Hazard Analy-
sis (FHA), Failure Mode and Effect Analysis (FMEA), or the Preliminary
Hazards Analysis (PHA) (see Vesely et al. [374]).

Contrary to the inductive approaches, the deductive methods reason from
the general to the specific problem. These approaches are more investi-
gations of a situation and occur more accidentally than intentionally. An
example for such an approach is the Fault Tree Analysis (FTA). According
to Vesely et al. [374], “inductive methods are applied to determine what

system states (...) are possible; deductive methods are applied to determine
how a given system state (...) can occur.”
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After estimation of probabilities, these can be categorized by their likeli-
hood of occurrence. Waters [380] defines the five following categories of
probabilities.

• very unlikely events might happen but hardly noticeable for people

• rare: people only meet this event once or twice in their working life

• occasional events occur sometimes

• frequent and regularly to people

• very likely: this event occurs often

In the following, different approaches for probability estimations are
explained. These include Failure Mode and Effect Analysis, Event Tree
Analysis, and Fault Tree Analysis.

3.7.3.1 Failure Mode and Effect Analysis

The Failure Mode and Effect Analysis (FMEA) is a popular approach.
Ayyub [28] distinguishes between design and process FMEA. According
to him a failure mechanism causes a failure mode within a system. A
failure mode is how a specific process may possibly fail in up- or down-
stream processes. FMEA is mostly based on data, which is available
based on past experiences. As defined by Dani [89], the FMEA is per-
formed by the following steps: (1) recognition and evaluation of potential
failures and the effects of that failure, (2) assessment of severity of the
risk, (3) detection of the failure, (4) estimation of a risk priority number
(severity · occurence · detection), (5) identification of actions, which can
reduce the risk and (6) documentation of the entire process.
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3.7.3.2 Event Tree Analysis

Event Tree Analysis (ETA) is based on the assumption that the system is
successful if a single route of events is fulfilled. As described by Ayyub [28]
the event tree is initiated by an event followed by a reaction. This can either
lead to a success or a failure of the branch. In case the branch succeeds the
movement is commonly upwards (see figure 3.4). On the contrary, a failure
is marked by a downward branch. The basic outcome is the identification of
successful scenarios. All other paths mark a failure with varying levels of
likelihood and consequence. A strength of this methodology is the effective
depiction of interdependence within the system.

The basic scheme of the ETA is presented in figure 3.4.

Figure 3.4: Basic depiction of Event Tree Analysis (Ayyub [28])

3.7.3.3 Fault Tree Analysis

Fault Tree Analysis (FTA) is often used to visualize failures within a com-
plex system. As defined by Ayyub [28] the fault tree is a graphical model
which combines single events by deductive reasoning to top event failures.
At first, the top event needs to be determined. Then other events need to be
set, which lead to the top event. Based on logical connectivity by gates the
lower level events are clustered.
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Fault trees are often linked to event trees as they can quantify parts of
event trees. The most common events that are defined as top events in
supply chains are losses of production or failures in safety systems (see
Borghesi [56]). Basic events are often given by statistical data and are rep-
resented by components or human fault. The main definitions of lower level
events are presented in the table 3.2 below.

Table 3.2: Symbols used in Fault Tree Analysis (Ayyub [28])

Symbol Name Description

OR Gate causality never passes through an
OR gate, inputs are identical to out-
put

AND Gate specifies a causal relationship
between the inputs and the output

Decomposable
event

can and should be decomposed fur-
ther to basic events

Basic event cannot be decomposed further into
lower level events, probabilities
need to be calculated for these
events

undeveloped event can be decomposed further but as
they are mostly negligible they are
not considered further

transfer nodes inclusion of the top event in another
Fault Tree
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The logic gates AND and OR can be calculated as presented in the two
following equations (see equations 3.30 and 3.31). As a result of the FTA,
the likelihood of the top event of a tree can be estimated. The main limiting
factor is the complexity and size of the tree.

Hence, all probabilities can be combined by AND and OR gates and the
likelihood of the next top event can be calculated. These combinations are
performed until the identified main top event can be calculated from the
basic events.

AND-gates are defined as such that both events need to occur in order to
lead to the top event. Hence, the probabilities of two single events P(A)

and P(B) are multiplied as defined in equation 3.30 to the joint probability
P(AandB) of the top event.

P(AandB) = P(A∩B) = P(A) ·P(B) (3.30)

OR-gates let single events through, meaning that the next top event occur in
case only one of the basic events take place. The possibility that both can
occur is neglected in the OR-gate. As defined in equation 3.31 the single
probabilities P(A) and P(B) are summarized and the AND-gate P(AandB)

is subtracted.

P(AorB) = P(A∪B) = P(A)+P(B)−P(A) ·P(B) (3.31)

The basic depiction of how fault trees are composed is shown in figure 3.5.
The basic events are 1, 2 and 3. Events 2 and 3 are combined by an AND-
gate to the top event 4. The event 1 is connected by an OR-gate with event 4
to the main top event 5. Hence, for this example, the probability of event 5
would be as presented in the following equation 3.32.
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Figure 3.5: Basic depiction of Fault Tree Analysis

3.7.3.4 Estimation of probabilities

The probability of an event is essential to assess risks. It shows the propor-
tion of times that it occurs (see Waters [380]). In a frequentist interpretation
of probabilities a low (high) probability corresponds to a low (high) occur-
rence frequency of an event. In case of a probability of zero the event never
occurs. In contrast, a value of one means that the event always take place. A
value between these represents the likelihood. According to Waters [380],
three types for estimation of probabilities exist: calculation, observation and
subjective estimates.
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• Calculation

If knowledge of a situation is available then the theoretical probabili-
ties can be calculated as follows:

Probability o f an event =
number o f ways that the event can occur

number o f possible outcomes
(3.33)
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• Observation

In this case historical data of actually happened events in the past is
used to calculate the likelihood of an event:

Probability o f an event =
number o f times that the event can occur

number o f observations
(3.34)

• Subjective estimates

Contrary to the previous approaches the subjective estimation is not
recommended. The estimation relies on the experience and opinions
of people and not on real data.

The estimation of probabilities and, hence, the setup of likelihood func-
tions are a key factor in assessing risks. In general, two different types of
probability functions can be distinguished. They can either be discrete or
continuous (see Borghesi and Gaudenzi [56]).

Discrete probability functions can be given as follows in equation 3.35,
where X is a random variable and where p depends on the value of θ .

L(θ | x) = pθ (x) = Pθ (X = x) (3.35)
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This function is the likelihood function of θ with the given value of the out-
come x of X. Continuous probability functions are defined by the following
equation 3.36:

L(θ | x) = fθ (x) (3.36)

whilst X is a random variable of a continuous probability distribution. The
distribution is defined by the function f which depends on the value θ .
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In biomass value chains, risks are often independent from previous risks.
Consequently, Poisson distributions are the most common function type.
Depending on the type of failure, different probability functions can be
applied. According to Ayyub [28] also exponential distribution, Weibull
functions, lognormal distribution etc. can be used to approximate the prob-
ability of a failure. The basics of Poisson distributions are described in the
following excursus.

Excursus: Poisson distribution

The Poisson distribution is a discrete probability distribution. It expresses
the probability of a given number of events occurring in a fixed interval
of time and/or space. These events should occur what known average rate
and independently of the last event. According to Ayyub [28] the number
of natural hazards such as hurricanes, earthquakes can be considered as a
variable number with a Poisson distribution. The random variable is defined
as a number of success in case of many (n → ∞) BERNOULLI-experiments
with a very low success rate (p → 0) (see Schira [313]).

Pλ (k) =
λ k

k!
e−λ (3.37)

With λ being the average number of events per interval, e is Euler’s number,
k takes values 0,1,2,... and k! is the factorial of k.
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Figure 3.6: Poisson distribution with λ = 4

3.7.3.5 Correlation between risks

Risks can influence other risks and lead to correlations. These can result in
varying probabilities. According to Merz [224], the dependencies and cor-
relations between risks can lead to an over- or underestimation of vulnera-
bilities and can, hence, influence the results of the vulnerability analysis.

Different methods can be applied to assess the correlation between risks.
Multivariate stochastic methods, such as factor analysis, can be used for
structure analysis. Expert based approaches, such as Decision Making
Trial and Evaluation Method (DEMATEL), can also be applied. Whilst
the first assesses stochastic correlations, the second enables the analysis of
causal structures. The stochastic correlations can be estimated by various
approaches. These are for example the correlation analysis by Pearson, the
main component resp. factor analysis as well as the definition of the Cron-
bach α . These approaches lead to linear correlations between the indicators.
Statistic methods only give an indication of direct dependencies and not of
indirect influences (see Merz [224]).
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This work neglects the correlation of risks. Many risks result in a complex
identification and quantification of correlations. This is beyond the scope of
this scientific analysis. The identification of uncertainties along the overall
value chain is already quite challenging.

3.7.4 Consequences of risks occurrence
and their evaluation

The second step in evaluating risks is to assign a value to the consequence
of a risk. In many cases, a direct measure can be defined. For example, the
effect of an event is the cost that can occur if the hazard occurs. Depend-
ing on the risk, the quantification of the consequence is more or less obvi-
ous. In case of transport, there are different methods to estimate the cost
of delay. For instance, penalty cost for a delay can be estimated or cost
for the speeding up process to ensure an on-time transport can be consid-
ered (see Waters [380]). Some risks cannot be defined by cost but rather by
time. A project, which will not terminate on time, is a risk, which is not
easily transferable to cost. In general, risk consequences can be clustered
and defined as negligible, minor, moderate, serious, critical or catastrophic
(see Waters [380]).

Two different approaches exist to estimate the consequences of a risk.
Borghesi and Gaudenzi [56] present the Probable Maximum Loss (PML)
and the Maximum Foreseeable Loss (MFL). The maximum monetary loss,
which can affect a business by the probable risk, can be measured by the
PML. Direct and indirect consequences of risk occurrence can be estimated
by different approaches, which are presented in literature. The chosen
method depends on the scope of research. It can reach from macroeco-
nomic total losses via the effect on a single loss category on regional level
to the monetary loss of single objects (see Merz [224]).
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The approaches to estimate direct and indirect consequences are presented
in the following sections.1

3.7.4.1 Quantification approaches of direct risks

According to Messner and Meyer [225], no standard evaluation methodolo-
gies for quantifying direct damages exist. Often the methods depend on the
aim of the study, the level of detail or data availability. Nevertheless, the
process of quantifying risks is mostly similar. It is depicted in figure 3.7.

Figure 3.7: Concepcional approach to quantify direct damage (Messner and Meyer [225])

The following steps need to be performed.

1 The following sections summarize the descriptions provided by Merz [224].
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1. Identification of suitable quantification approach

In the first step, the system boundaries are defined. The loss potential
of single industry locations can be assessed as well as macro-scale
approaches for assessing losses for the whole economy.

2. Definition of considered loss categories

The processing of loss assessment depend on the defined categories.
On regional level for example the losses of buildings will be consid-
ered, but inventory will be defined out of scope.

3. Collection of all needed data and information for loss assessment

The regional impact of a risk and its consequences are assessed in this
step. Hence, the necessary data needs to be collected on the respective
defined level. Therefore, either bottom-up or top-down approaches
can be chosen. Bottom-up approaches are more complex as a single
production plant will be used as basis for the industrial exposition to
risks on regional level.

4. Combination of all collected data

To overlay the defined losses on regional level the data can be assessed
in GIS systems. All methods for loss quantification are bound to vari-
ous uncertainties. These need to be considered in the final assessment
of the results.

3.7.4.2 Quantification approaches of indirect risks

According to Green and van der Veen [142], the size of the affected area or
infrastructure and the duration of the disruption have the largest influence on
the risk consequences. The spatial scale define, which type of quantification
method can be used (see Green and van der Veen [142]).

Cochrane [81] clustered the approaches for quantifying indirect damages
into the following:
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• interview of companies and assessment of historic events

• Input-Output models

• Computational General Equilibrium

• Econometric models

• Hybrid models

Of these, only the first is applicable for very detailed damage analysis. His-
toric data or the expertise of companies are used to quantify the conse-
quences of infrastructure disruptions (see Balducci et al. [40]). This method
needs large amounts of data, hence the effort is high. Nevertheless, the
results are very detailed and realistic. The output of such damage analysis
is for example the economic damage of not produced value (see Green and
van der Veen [142]).

The other approaches are based on a lower level of detail and are, therefore,
more applicable for macro-economic analysis. Input-Output models are
the most common method for economic damage analysis (see
Okuyama [268]). They are static linear models, which correlate all input
and output streams between economic sectors based on production rela-
tions. Input-Output models do not need large amounts of detailed data
sets. Unfortunately, the identified correlations are only linear, the damage
is independent from varying economic parameters and limited products and
capacities are not considered.

Computable General Equilibrium (CGE) models are market simulation
models which optimize the behavior of single consumers (see Shoven and
Whalley [325]). In contrast to Input-Output models, CGE are non-linear and
include also price variability as well as variable products and capacities. For
this method a larger amount of data is necessary.
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Econometric models are based on time series. Due to their large data
demand, they are only seldom used for the quantification of macroeconomic
indirect damage (see West and Lenze [384]).

The combination of the above described approaches are performed in hybrid

models. Consequently, they are mostly dependent on the applicant. The
most known hybrid model is the Multi-Hazard Loss Estimation Methodol-
ogy of the US Federal Management Agency. It is based on input-output
parameters which, are extended by GIS data (see Cochrane [81]).

3.7.5 Risk categories

In biomass value chains many different risks occur. In this section, the pre-
dominant risk categories will be described. These risks are applicable to
different types of biomass value chains and are not restricted to a certain
biomass type. Specific definitions of biomass related risks will be described
in section 5.5.

Many different clusters and descriptions of risks and uncertainties exist
in literature. Sodhi et al. [329] groups risks into supply, process and
demand as well as corporate-level risks. Waters [380] clusters risks based on
Mason-Jones and Towill [218] in internal, supply chain and external risks.
Other classifications differentiate between physical, financial, information
and organizational risks. The categories of Mason-Jones and Towill [218]
also include environmental, demand and supply, process and control risks.
Minahan [232] distinguishes between supply market, supplier, regulatory
and supply strategy risks.

Waters [380] provides a list, which is by no means exhaustive, of common
risks in supply chains:
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• natural, environment

• economic, financial, supply, market, transport

• physical, operations, products/process, technical

• information, safety

• strategic, management, organization, planning

• human, criminal, local permits, political

The risks, which are indicated in italic letters, are the most adequate for
describing biomass value chains. These value chains are not very critical to
human mankind so that terrorism or other criminal and safety risks do not
apply. Many risks are a matter of definition so that for example product,
physical and technical risks can be defined similarly. Therefore, the risks,
which are indicated in italic letters, will be considered in this work and are,
hence, described in more detail in the following sections.

3.7.5.1 Supply risks

Sodhi et al. [329] define supply risks as all risk events that can be associ-
ated with the suppler side. Examples for this include supply cost, delivery
and quality of the product as well as the reliability of the supplier. Supply
risks have increased in the past years as more and more production is being
outsourced by the company so that they rely on an external supplier. In addi-
tion, the supply chain has changed to a reduction of the number of suppliers
and increased the global sourcing of products (see Sodhi et al. [329]).

Tang and Tomlin [338] define different supply risks. Supply cost risk

describe the variation of the effective per-unit price, which leads to an
increase of raw material prices of the own production. In case a busi-
ness partner gives up the contract between himself (the supplier) and his
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customer, this can be seen as a supply commitment risk. The customer
needs to search for a new supplier, risking additional cost or reduced qual-
ity. Short-term supply disruptions are defined as supply continuity risk.

3.7.5.2 Transport and storage risks

Kummer and Sudy [193] define transport risks based on existing literature
as all individual risks, which occur in the context of the physical transport
of goods. This includes the risk of destruction of the good during transport
or the risk of a transport delay. The effect of transport risk to a participant of
the supply chain depends on the type of contract that was chosen. These can
either be on the side of the customer, supplier or infrastructure provider.

Storage risks regard to all individual risks in context with the storage of
goods and affect either the good or the storage site itself (see Kummer and
Sudy [193]).

Transport risks can be caused by other risks such as environmental risks
(e.g. floods, hurricanes etc.). In general, transport and storage damages can
be affected by different factors but always regard to spatial and temporal
bypassing. The likelihood of transport risks depend on the probability of
other risks (e.g. environmental risks), but can be easily estimated based
on historical data. The estimation of the consequences of transport risks is
mostly straightforward.

Kummer and Sudy [193] define the following transport and storage risks,
which apply to all types of supply chains and are, consequently, also appli-
cable to biomass value chains:

• Transport volume risk

This includes all risks, which harm the transported volume, e.g. theft,
terror or accidents. Transport volume risks lead to delays in the sup-
ply. To secure the supply additional cost occur in different scenarios
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and stages of the supply chain: express goods (logistics), additional
production and set-up cost (production), revenue reduction through
discounts (marketing) etc.

• Transport quality risk

In the case of transport quality risks, the quality of the good can depre-
ciate during the transport. Especially wet biomass can deteriorate dur-
ing long transport periods. Reduced revenues can result from this.

• Storage volume and quality risk

The risks, which affect the transport of goods, are also valid for the
storage of products. The quantity and quality of biomass can be
reduced by weather conditions or suboptimal storage during storage.

• Transport and storage cost risk

Higher transport or storage cost than planned result in risks for the
company, which needs to bear the cost.

• Transport and storage value risk

If the value of the transported or stored product decreases during
transport or storage, the procurement and marketing unit of the com-
pany bear the risks depending on the product. Transport and stor-
age value risks do not necessarily need to be affected by depreci-
ated goods, but can also have other causes such as the sudden lack
of demand for a product.

• Transport time risk

In case of a delay of the transport, production stops might be neces-
sary as the feedstock might not be available. This may lead to the pro-
vision of the needed good of the expected quality but to a later date.
Transport delays can be caused by accidents, congestion, extreme
weather events, strike etc. The delay can be so long that sometimes
the transport is canceled completely.
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• Storage time risk

Storage time risks are relevant for products, which can only be stored
for a certain time. This is especially relevant for easily perishable
goods. Depending on the type of biomass, the feedstock might also
be perishable. As some biomass are seasonal goods, they need to
be stored for a year. Consequently, biomass needs to be pretreated
accordingly to reduce storage risks.

• Transport and storage location risk

This risk occurs, when the good cannot be transported to the defined
destination or cannot be stored at the defined location. Transport to a
false location can lead to additional cost by rerouting the product.

Kummer and Sudy [193] define strategies to reduce transport and storage
risks. These include a close location to the supplier or strong coopera-
tion with a supplier, identification of safe routes, choice of transport mode,
design of the storage.

3.7.5.3 Process risks

Process risks in biomass supply chains can include many different risks,
which can depend on the process itself, but also depend on environmental
influences. These risks are presented in the following.

According to Gunukula et al. [145], technological and market risks exist.
Risks occur mostly in the development and scale-up of emerging technolo-
gies for the production of chemicals based on renewable resources technol-
ogy. In addition, the lack of economies of scale may inhibit the market
entry for low profit margin biochemicals. In case of platform technologies,
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which can produce not only single products, but multiple chemicals, this
may reduce the risk as the output is more flexible to market requirements.
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Sodhi et al. [329] also list the default of the manufacturing design, the yield
of the production, inventory imbalances and an inadequate capacity of the
production plant. In general, all risks that lead to variances in the production
are crucial for the profit of the company.

Process risks can affect both: quantity and quality. Especially in case of
biomass, it is almost impossible to produce a constant composition and
yield. As all natural goods, the harvest depends on soil, weather, and other
natural impacts (see Gunukula et al. [145]).

3.7.5.4 Market and demand risks

Demand risks are faced by all companies worldwide and include both, prod-
uct volume and mix. These risks include the forecasting of the demand for
the final product and a change in technology or in consumer preference (see
Sodhi et al. [329]).

Forecasting reflects the discrepancy between the company’s forecast and
the actual demand of the customer(s). Either the company has produced a
too high volume of the product and needs to find additional customers or
too less product can be provided, which results in reduced revenues. Sodhi
et al. [329] describe reasons for forecasting errors: “long lead times for
production, seasonality of demand, high product variety, and short product
life cycles”. Especially in case of commodity products, holding inventory
might be an appropriate measure to reduce demand risks based on forecast-
ing errors.

Changes in technology or in consumer preferences is closely related to
long-term forecasting errors. This does not only affect the demand of the
customer, but also capacity investment decisions in the company and, hence,
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the return of the investment (see Sodhi et al. [329]). Technology risks can
be reduced by Joint-Ventures with competitors, constant research and devel-
opment of new technologies, products and consumer preferences.
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Other market related risks include, for example, the variability of exchange
rates. The changes in global markets and currencies are relevant in case of
imports and exports. This might either change the benefit of the company
but revenues might also be decreased if a product price was fixed in a foreign
currency (see Sodhi et al. [329]).

3.7.5.5 Environmental risks

Whyte and Burton as part of The Scientific Committee on Problems of
the Environment (SCOPE) [385] have defined environmental risks as risks,
which “arise in, or are transmitted through, the air, water, soil or biologi-
cal food chains, to man”. These risks can have different causes, either by
mankind or by nature. As they have in common, that they harm impartial
citizens, measures need to be implemented, which manage these risks.

Environmental risks are always connected to other risks. For example, traf-
fic accidents can relate to extreme snow fall or hurricanes and tornadoes
can cause blackouts. Soil degradation, floods and pesticides/fertilizers are
among the major environmental risks of 63 developing countries, which also
affect biomass cultivation (see Whyte and Burton [385]).

3.7.5.6 Weather risks

According to Langholtz et al. [197], the effect of extreme weather events,
climate variability and change have been assessed only to a comparatively
small extent. Agricultural production is highly dependent on the weather
circumstances and are sensitive to climate changes. Eaves and Eaves [100]
found that the price of grain ethanol is more volatile to weather impacts than
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the import of gasoline. The Intergovernmental Panel of Climate Change
(IPCC) [116] gave the prediction that extreme weather events increase in fre-
quency, spatial extension, duration and/or intensity, which will most likely
affect the agricultural production immensely. Extreme weather events are
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hail, wind, tornadoes, extreme temperatures, drought, and precipitation,
which might result in floods. Especially the drought of 2012 in the U.S.
showed the vulnerability of crops to weather extremes. These have already
become more severe in the past decades and may continue to do so in the
future. Potential vulnerabilities caused by climate variability and change on
the biochemical supply chain (see Langholtz et al. [197]).

Increasing average temperatures, local changes in rainfall amount and inten-
sity, changes in climatic variability and the incidence of extreme events, in
the incidence of pests and disease can affect crop yields (see Marshall et
al. [215]). Multiple stakeholders are affected by biomass related weather
risks (see Morrow et al. [238]):

1. producers

• short-term (days to months) direct impacts on yield due to
unfavorable weather conditions and increased exposure

• long-term (years to decades) yield impacts due to declining
suitability of feedstocks to new climate conditions

2. feedstock logistics

• biomass shortages due to yield impacts and/or disruption of
transportation networks

• increased competition for biomass among brokers

• longer transportation distances to obtain needed biomass
quantities
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3. biorefinery

• price volatility, potentially reducing profitability

• reduced reliability of water for refining options

• direct damage to facilities
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4. consumers

• fuel/energy price volatility

• reduced reliability of fuel supply

3.7.5.7 Political risks

Political risks include all risks, which are influenced by decisions of policy
makers. These risks are hardly quantifiable. Political decisions are made by
individuals based on the public opinion. Corporations, investors and gov-
ernments face changing decisions, events, or conditions. This can lead to an
unexpected loss of value of an economic action. Political risks are defined
as “the risk of a strategic, financial, or personnel loss for a firm because of
such nonmarket factors as macroeconomic and social policies (fiscal, mon-
etary, trade, investment, industrial, income, labor, and developmental), or
events related to political instability (terrorism, riots, coups, civil war, and
insurrection)” (see Kennedy, Jr. [74]).

Macro- and micro-level political risks exist. Macro-level risks affect not
only a certain corporation, but all protagonists. Such risks include govern-
ment currency adaptions, regulatory changes or corruption. Some research
parties model macro-level risks. A political risk index has been developed
by the Eurasia Group. Another Global Political Risk Index is published by
The Economist, Economist Intelligence Unit or The PRS Group, Inc. (see
Kobrin [185], Clark [80]).
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In contrast, micro-level risks only have an impact on a single firm or sector.
Regional or local political climates may affect a business endeavor in a cer-
tain region. Policies are designed to foster commercialization of biobased
products (e.g. biofuels/ethanol) from corn to non-food crops (see Energy
Policy Act of 2005 [367]).
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3.7.6 Risk mitigation strategies

As defined by Ayyub [28], risk mitigation is an action to reduce the prob-
ability or the consequences of an event. Therefore, efficient management
processes are necessary. Ayyub [28] describes four possible strategies to
mitigate risks:

• Risk reduction or elimination is the most effective approach. Hence,
the amendment of the system structure might lead to an elimination
or reduction of the probabilities or consequences of risks.

• Risk transfer shifts the risk to a party within the project or process
chain, which is best able to manage them or to an insurance company.

• Risk avoidance aims at neglecting projects which could cause the
risks.

• In case the risks cannot be avoided risk absorbance is the only pos-
sible method by covering the risks by enough finances.

Smith and Petley [327] define three main strategies to reduce the impact of
hazards. Firstly, this is the mitigation of risks to reduce the loss burden. Sec-
ondly, the events can be modified by protection from hazards. And finally,
the adaption and, hence, the modification of human vulnerability to hazards
is a risk mitigation strategy.
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According to Waters [380], two approaches exist on how to react to risks.
Firstly, the risk can be ignored. This leads mostly to reactive approaches and
managers think about risk mitigation once the problem has occurred. The
second option is to proactively develop measures, which is mostly the more
expensive, but prepare for the best response.
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Sodhi et al. [329] describe different strategies to reduce the impact that a risk
has on the supply chain. The main three risk mitigation strategies include,
firstly, the alignment of partnerships with suppliers and customers by con-
tracts to increase the purchasing security. Secondly, the supply chain needs
to be designed flexible. Thirdly, buffers or redundancies reduce especially
supply and process risks.

According to Hopp et al. [158], different risk mitigation strategies exist. In
general, risks can be prevented, responded to or the company can be pro-
tected against risks. Risk prevention strategies are forecasting of uncer-
tainties and risk reduction techniques. Both approaches aim at not even
being affected by risks. In case the stakeholder is aware of a risk, he/she
can take necessary measures to avoid effects. Response strategies detect
risks and respond with high speed to them. Fast reactions minimize the
consequences of risks. The faster a supply chain is up and running, the
earlier business is back to usual. If severe risks are identified, often pro-

tection strategies are necessary. These include additional protection of and
by inventory, capacity and information. The lack and susceptibility of these
assets induce a higher vulnerability to risks of the stakeholder.

Tang and Tomlin [338] have defined two risk mitigation strategies in case
supply risks occur. Flexible supply strategies via multiple suppliers can
reduce the dependency on a single supplier. In case one supplier drops out,
another supplier can be contacted. Especially supply commitment risks can
be reduced by flexible supply strategies via flexible supply contracts.
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Sodhi and Tang [329] have defined nine robust supply chain strategies.
Some of these improve the supply management of a company and some
the demand management. In the following, these strategies are summa-
rized. See Sodhi and Tang [329] for more details. Postponement delays the
product specialization and increases the product flexibility. Strategic stock
leads to an increase of product availability. A flexible supply base enables
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the shift of production among suppliers. The production can also be shifted
from between in-house production and a supplier as so called make-and-buy
strategy. Economic supply incentives increase the product availability as it
enables the adjustment of order quantities. Flexible transportation leads to
varying transport routes in case of transport disruptions. Product demand
can be controlled by revenue management to influence the customer’s selec-
tion. Dynamic assortment planning also influences the control of product
demand. As product changes might shock customers, a silent rollout can
result in a better the product control to customers. Flexible supply contracts
allow the shift of order quantities across time and suppliers. A flexible man-
ufacturing process leads to a high flexibility in producing different products
and meeting customer demands.

Risk mitigation strategies may have a positive effect, but can also lead to an
increase of risks in other sections. For example, adding capacity to decrease
the risks of delays, procurement security and inventory. This will result in an
increase of capacity risks. Likewise, the increase of inventory will decrease
e.g. delays, but will lead to a rise of inventory risks. For further examples
and descriptions see Sodhi et al. [329]. Assessed risks can be included into
location planning models under uncertainties. Existing approaches will be
described in the following.
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3.8 Approaches for location planning in
biomass value chains under uncertainties

Technical feasibility studies and the development of technical production
processes have increased in the past years (see section 2.1). The research on
location planning models has exploded in the past years to improve biomass
value chains. Not only deterministic location and network planning mod-
els are in the focus of international research, but also the consideration of
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uncertainties within the biomass value chain has become of more and more
interest. Whilst until 2010, only a few papers have been published, the num-
ber of journal publications has increased since then (see Bairamzadeh [34]).
In the following, the developed approaches to deal with uncertainties as well
as the considered risks will be presented.

3.8.1 Mathematical approaches for considering risks

The majority of the approaches, which were applied for location planning
are analytic methodologies (see section 3.3.2.1). Especially sensitivity anal-
ysis and Monte Carlo methods were studied extensively. Although they are
in many cases not mentioned explicitly, they are often combined with other
methods. Other approaches are robust optimization, two-stage stochastic
modeling, multi-stage stochastic modelling, fuzzy programming, value at
risk optimization, scenario analysis and simulation. Analyzed approaches
are summarized and clustered in table 3.3. Many of the approaches in lit-
erature are stochastic programming approaches. A few have used Value at
Risk models or robust optimization.
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Table 3.3: Approaches in biomass value chain optimization under uncertainty

Approach Source

Monte Carlo analysis [27], [159], [181],[206], [227],
[233], [166], [165], [316], [394]

Stochastic programming [27], [29], [31], [32], [72],
[76], [130], [133], [216], [217],
[228], [271], [270], [306],
[318], [351], [395]

Two-Stage stochastic programming [207], [272], [291], [390],
[393], [394]

Value at Risk [88], [137], [177], [186]
Fuzzy programming [36], [38],[39], [350]
Scenario analysis [20], [37], [182], [234], [299],

[319], [320], [392], [397], [398]
Robust optimization [34], [209], [317], [340], [352],

[396]
Simulation [102], [101]

3.8.2 Considered uncertainties

After a literature review of the existing models to cope with risks in biomass
value chains, the identified uncertainties were clustered in five groups.
Within these clusters, subgroups were defined as follows:

• Biomass supply uncertainties: purchase price, yield/availability,
seasonality

• Transportation and logistics uncertainties: transport cost, storage
cost, disruptions

• Production and operations uncertainties: conversion rate,
investments and production cost
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• Demand and price uncertainties: sales price, demand

• Other uncertainties

Themost common risks, which have been considered in existing approaches,
are varying biomass yields as well as sales price and demand uncertainties.
Other risks, which were studied to a larger extent are cost in general, but
transport, storage, biomass and production cost in specific. The variation
of cost in general is often performed in the sensitivity analysis and is rather
easy to include in location planning models. In literature, also more techni-
cal variations, such as seasonality of biomass, conversion rates of processes
and disruptions in transport, have been considered. These do not only have
an effect on the overall cost of the value chain, but also on the performance
of the system. In case of varying conversion rates, different amounts of
feedstock are needed. Seasonality of biomass leads to insecure supply or
maybe even the lack of feedstock. Logistic disruptions have the same effect.
The results of the literature review is presented in table 3.4.

3.9 Conclusion and research questions

This work considers value chains of first and second generation biomass.
These value chains include the cultivation of biomass and the transport
from the harvesting field to a storage facility. After storage the biomass is
converted by different pretreatment processes to pretreated biomass. Then,
the pretreated biomass is converted by thermochemical or biochemical pro-
cesses to chemicals. The performance of the conversion processes depends
on the biomass type and needs to be assessed carefully. The final products
are either sold to the local market or transferred to a port, from which they
can be exported worldwide.
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Table 3.4: Uncertainties in biomass value chain models

Uncertainty Uncertainty Source

Biomass supply

Purchase price

[27], [29], [31], [39], [137],
[159], [181], [233], [271],
[270], [166], [165], [352],
[393], [398]

Yield

[27], [29], [31], [34], [39], [72]
[76], [88], [130], [133], [159],
[177], [207], [206], [181],
[272],[270], [299], [306], [318],
[317], [319], [320], [340],
[350], [352], [351], [390],
[394], [395], [397], [398]

Seasonality/Quality [209], [318], [317], [392]
Demand [76]

Transport

Transport cost [39], [159], [177], [317], [319],
[398]

Storage [317],[319], [320], [394]
Disruptions [32], [182], [217], [291]

Process
Conversion rate [34], [159], [350], [394], [397]
Production cost [39], [101], [206], [350], [352],

[398]

Demand

Sales price [20], [27], [29], [31], [39], [88],
[101], [271], [270], [398]

Demand

[27], [29], [20], [31], [34],
[72], [102], [130], [133], [159],
[177], [186], [206], [234],
[272], [270], [306], [340],
[350], [352], [351], [394],
[395], [397]

Others [36], [207], [206], [181], [233],
[320], [352], [393]
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Along this value chain, different risks and uncertainties occur, which influ-
ence the decision of a location for such facilities. These risks need to be
identified and considered in the DSS. Accordingly, the following research
questions can be formulated.

A How can multiple aspects of biomass value chains, namely
techno-economic assessments, uncertainties, and location and
logistic planning be combined in one model?

B To which extent do biomass types influence the location of
biochemical conversion plants?

C Despite risks occurring in biomass value chains, can a robust
location be defined?

D Which technology is more suitable for large-scale production? How
can different technologies be compared?

E Which risks have an influence on the biomass value chain for the
production of biochemicals and how can these be measured?

F Which location and value chain setup is suited best considering
various risks in the biomass value chain?

An approach to address the above presented research questions is developed
in section 4.

3.9.1 Methodological conclusion

Contrary to other approaches, analytic models have the advantage that they
optimize the defined conditions and propose the best possible solution of
the system. Simulation models on the other hand may show results for
defined scenarios, but in case of large systems, the evaluation of all possible
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connections is very challenging. Biomass value chains are very complex
as they include many different aspects. Consequently, simulations models
are neglected in this work. As presented in section 3.3.2, many different
approaches exist to perform location planning under uncertainty. Objective
of this work is not to consider uncertain capacities or uncertain demands,
but to design the biomass value chain as such that fix demands of customers
can be fulfilled. Consequently, the production capacity is considered as fix
value. This work assumes that the price for biobased chemicals is equal
to petrochemicals. Hence, the overall demand for biochemicals is identical
as for conventional chemicals as the chemical properties of the product are
alike. Consequently, the demand is secure and does not need to be con-
sidered as an uncertainty. Fuzzy and stochastic programming models are
often applied for uncertain mass balances or uncertain information. In this
work, these values are assumed to be fix and certain. Consequently, the
chosen approach is an analytic operations research model. Nevertheless, to
include the variability of risks in the model, a hybrid model as defined in
section 3.3.2.4 by combining the analytic location model with the simula-
tion method of Monte Carlo is applied.

Uncertainties, which influence the design of the biomass value chain and
the economic feasibility of the production of biochemicals, are the focus
of this work. To assess the economic feasibility of the value chain, the cost,
which are inflicted by the risks, need to be included in the objective function.
Many consequences of risks in biomass value chains can be quantified and
monetized. This work utilizes Fault Tree Analysis for the identification and
quantification of the single results. This approach summarizes single risk
events to quantifiable main risks, which are easier to quantify. Each uncer-
tainty causes cost, which occur once it takes place. Therefore, the cost for
each edge of the network need to be estimated. Uncertainties, which can-
not be quantified, can be analyzed by scenario calculations to assess their
influence on the value chain. The main uncertainty categories, which are
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considered in this work are supply, market, process, environmental, trans-
port, and political risks.

In order to include realistic data on conversion technologies these need to be
simulated thermodynamically. Biomass influence the technology itself, but
also the efficiency and needed feedstock as well as utility demands. As these
restrictions influence the feasibility of the biomass value chain, they need
to be considered thoroughly. The processes are modeled by flowsheeting
simultation in AspenPlus. This software is well known and has already
been applied by many others. The material and energy flow balances from
the simulations can be used as basis for the investment and production cost
estimations. Both, technical and economic parameters are used as input
parameters in the analytic model.

Finally, both first and second generation biomass should be considered in
the analytic model due to the following reasons: demand for sustainabil-
ity, restricted first generation biomass supply and the rising food and tank
discussions. First generation biomass is already fully used in existing pre-
treatment plants. Second generation biomass biorefineries are very scarce.
Hence, large potentials exist to be used for biochemical plants.

The biorefinery locations can be used as suppliers for the biochemical
plants. Consequently, the locations need to be optimized based on con-
version rates and biomass potentials in an upstream model.

Merz [224] differentiates between uncertainty and sensitivity analysis.
Uncertainty analysis is the analysis of the relative contribution of different
input variables to the uncertainty of the model results. Sensitivity analysis
analyzes the effect of variations of the input factors on the variability of the
model. In this work, sensitivity calculations are performed to analyze the
influence of varying cost (e.g. regarding export, biomass, utility prices).
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3.9.2 Conclusion regarding content

The most central content in all publications is the limitation to the produc-
tion of biofuels or bioenergy. Contrary to those two products, the demand
for biochemicals is not as large and certain, the market is smaller and the
availability of biomass is more restricted as the demand for the biofuel pro-
duction also needs to be fulfilled. In existing publications the focus on bio-
chemicals could not be found (see section 3.8). Hence, the consideration of
specifically this market in contrast to the biofuel value chains is new to the
scientific world. The influence of biofuels on the production of biochemi-
cals as risk will be described in more detail in section 5.5.6. Consequently,
this work focuses on biochemicals.

In a few publications the conversion rate of the process is considered as a
risk, but the values are assumed and not calculated. As the conversion yield
depends on the chosen biomass, the calculation of the efficiency of different
processes is essential. Not only the yield of the processes vary, depending
on the biomass, but also the configuration of the processes itself. The type
of the chosen process as well the size of the production plant influence the
investments and production cost.

Until now, the existing models only focus on a few single uncertainties,
which occur in the biomass value chain. The advantage of this approach is
that the influence of only a few risks can be clearly identified. Contrary to
these approaches, multiple risks occur in reality. Although the influence of
a single uncertainty cannot be quantified if many risks are included, the
focus on only a few aspects restrict the possibilities. It might also lead
to neglecting significant risks. Hence, the inclusion of all identified risks
within the biomass value chain is crucial.

Additionally, biomass value chains not only depend on the biomass and the
technology but also on the logistics. Therefore, multiple transport modes as
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well as intermodal transport via hubs are included in this work. The products
are finally brought to local, national, and international customers.

This work and the developed model, as described in chapter 4, include the
following assets.

• multiple biomass of the first and second generation

• inclusion of already existing pretreatment plants

• multiple transport modes and hubs

• process variation depending on the biomass

• estimation of investment and production cost by biomass and process

• risk assessment

• intermediate products

• export of final products
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4 Development of an approach
for location and logistics
planning for biochemicals
considering uncertainties

The previous sections introduced biomass value chains (see chapter 2),
approaches to model location planning under uncertainty (see section 3),
and techno-economic assessment of processes (see section 3.5). Also gen-
eral risks (see section 3.7), which can occur within biomass value chains
were defined. Based on the presented methodologies and concepts, research
questions were defined in section 3.9. The following approach has been
developed to answer these research questions. Aim of the model-based
assessment is to provide decision support for the configuration of biomass
value chains considering uncertainties and risks related to the net present
value (NPV). Objective of the approach is to maximize the NPV of the
overall value chain. Hence, the nearly optimal setup of the value chain
under uncertain circumstances is proposed. The configuration of the value
chain includes the location, the logistics, the process setup, the types of used
biomass, and the suppliers. Existing and future locations of suppliers are
considered. As various factors influence the profitability and efficiency of
biomass value chains, multiple aspects are included in the model, which are
explained below. Outcome of the model is the proposition of a location and
a logistical concept to produce chemicals from biomass either thermochem-
ically or biochemically.
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The approach is based on an integrated model (see section 4.5), which pro-
poses a location for the production of biochemicals under uncertain condi-
tions. This model needs multiple input parameters. Some of them are cal-
culated in previous models, which are defined as sub-models. The detailed
setup of the approach is explained in section 4.1.

The approach provides a decision support tool that covers the use of multi-
ple biomass types (first and second generation biomass) as well as the pre-
treatment of these biomass to convertible feedstocks by thermochemical or
biochemical processes. Since currently only few pretreatment facilities of
second generation biomass exist, the locations of such production sites are
modeled in the optimization sub-model (see section 4.2). This results in
possible supplier locations of pretreated biomass of which the feedstock for
the final conversion to biochemicals can be sourced. The processes itself
can be implemented at the same location but can also be split up if it is tech-
nically and economically feasible. For the estimation of yields and cost the
technical sub-model (see section 4.3) is implemented.

The transport of different products in the value chain is enabled by vari-
ous transport modes and can be transshipped at hubs. The final product
can be exported to international sales markets or fulfill local demands. As
the location of export terminals influences the location of the biochemical
production plant, the ports are included in the integrated model.

Not only deterministic values influence the feasibility and design of a bio-
mass value chain, but also risks and uncertainties like accidents, weather
etc. have an impact on the decision and the value chain setup. Therefore,
the risk assessment of the value chains is essential and needs to be included
in the decision support tool (see section 4.4).
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4.1 General description of the approach

The overall location and logistics planning problem is composed of an inte-
grated model and three sub-models. The integrated model provides decision
support for the production of biochemicals from pretreated biomass consid-
ering uncertainties. The sub-models provide the needed input data for the
integrated model by a data exchange format to interchange the parameters
and results. These sub-models are:

4.2 optimization sub-model: optimization of the location of pretreat-
ment plants of second generation biomass as feedstock supplier for
biochemicals

4.3 technical sub-model: techno-economic analysis of biomass conver-
sion technologies of pretreatment and biochemical production for the
calculation of yields, investment and production cost

4.4 risk sub-model: risk assessment of the considered uncertainties (like-
lihood and consequences) in biomass value chains for risk cost

The dependencies of the integrated model and the sub-models are depicted
in figure 4.1. These optimize biorefinery locations (on the left), perform
techno-economic assessments of available technologies (middle) and evalu-
ate risks and uncertainties (on the right).

For the approach and its implementation, substantial amount of data is
needed. This includes technical process data such as yields, energy, and
utility demand. Economic cost data of production and investment as well
as of supply, transport, utilities etc. are essential to estimate the economic
feasibility of the value chain. Additionally, data on biomass potentials, pre-
defined locations and other details of logistics are needed. The assessment
of risks along the biomass value chain is a core part of this approach.
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Figure 4.1: Holistic approach for planning biomass value chains

Therefore, the relevant risk data, such as effects and probabilities of these
risks need to be analyzed. This needed data is modeled before the location
planning of the biochemical production takes place.

Biomass is mostly preprocessed before it is converted to biochemicals. The
type of biomass and the respective available conversion technologies influ-
ence the further processing. Pretreatment of biomass increases the efficiency
of the downstream production processes and transport. Especially in case of
lignocellulosic biomass, the pretreatment facilitates processing and reduces
transport cost due to its energy densification. The preprocessing can either
be done via mechanical, thermochemical or biochemical technologies. The
main pretreatment products are pellets, biooil or sugar syrup. In general,
facilities, which include the preprocessing technologies can be defined as
biorefineries. The development of biorefineries for processing second gen-
eration biomass has increased immensely in the past years (see Stichnothe
et al. [334]). Contrary to corn wet mills or sugar mills, biorefineries are
not yet state of the art. As production sites of first generation biomass to
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sugars already exist and fully utilize the available biomass potential, the
locations of these plants are assumed to be fix and will not be optimized by
the following approach. The locations of potential lignocellulosic biorefin-
ery production sites need to be optimized based on a mathematical model as
so far only few such facilities exist in large scale. In order to include them
as possible suppliers in an integrated model, that provides decision sup-
port for the value chain of biochemical production, they are estimated by
an optimization sub-model. Biomass potentials, storage restrictions and
harvesting yields are the main input data for the optimization sub-model.
As a result, the chosen locations of biorefineries as well as their product
capacities are calculated.

Different conversion technologies exist to produce biochemicals. These
define the final product, the energy demand and the demand of different util-
ities. Not only technical aspects of the conversion technologies are essential
but also their investment and other related cost. The production cost and
yield of the conversion to biochemicals decide if the value chain is feasi-
ble. Hence, for the economic profitability, the conversion technologies are
assessed techno-economically in a technical sub-model. The results, the
mass and energy balances, of the sub-model are used as input data for the
integrated model. The technical sub-model is based on the conversion rates
of the reactions, chemical properties of biomass and other products and the
energy and utility demand for the processing steps.

The third sub-model is the basis for risk assessment. Mostly historic data
is used to estimate the consequences and probabilities of different risks and
uncertainties. Based on these data the cost of each risk can be estimated
and included in the integrated model. These risks are assessed for transport
modes, products in the value chain and the conversion technologies. Uncer-
tainties, which are not evaluated in the risk sub-model, are analyzed by
scenario analysis.
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In the following, first the optimization sub-model for location planning of
biorefineries will be introduced in section 4.2. The technical sub-model for
simulating the technologies as well as estimating the investment and pro-
duction cost is presented in section 4.3. In section 4.4 the risk assessment
sub-model is explained. Afterwards, the integrated model as decision sup-
port for location and logistic planning of the production of biochemicals
from pretreated biomass will be shown in section 4.5.

4.2 Optimization sub-model

This section introduces the optimization sub-model to estimate the loca-
tion of biorefineries to pretreat lignocellulosic biomass. Contrary to given
capacities of existing first generation biomass processing plants, the size of
the biorefineries is not fixed.

Due to the low energy content of lignocellulosic biomass, the transport dis-
tance and, hence, the transport cost are crucial for the feasibility of the pro-
duction plant and overall value chain. Biomass is widely spread and not
concentrated in an area. Higher biomass demand leads to larger transport
distances to collect the biomass. Therefore, the capacity of biorefineries
is restricted by two contrary variables. On the one hand, large produc-
tion plants can benefit from economies of scale. High capacities result in
lower specific investments. On the other hand, transport cost rise immensely
with increasing distances from the production facility. Schwaderer [314]
has developed an approach, which optimizes the location and capacity of
a production plant based on the available biomass potential and non-linear
investment curves. His model includes the multiple choice approach, which
will be shown in the following in section 4.2.1. Objective of the optimiza-
tion sub-model is to optimize the capacity and location of a biorefinery.
Contrary to the approach by Schwaderer [314], the optimization sub-model
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does not include the optimization of technology choices. This work assumes
that the best available technology is known by the operator. The model
of Schwaderer [314] includes multiple biomass, a single transport mode,
multiple processes and variable capacities modeled by investment functions.
These features were adapted in the optimization sub-model.

4.2.1 Multiple-choice approach

Investments Inew of production plants can benefit from economies of scale.
These are non-linearly dependent on the ratio of capacity of a reference sys-
tem Cbasis to the capacity of a new production plant Cnew. The factor which
influences the non-linearity is the size degression factor R. The non-linear
size degression is multiplied with the investments Ibasis of the reference sys-
tem. This results in the investments of a potential new asset. This approach
can be applied to single units and also to overall production plants. Never-
theless, the size degression factors might need to be adapted.

Icurrent = Ire f ·
(

Ccurrent

Cre f

)R

(4.1)

In general, values of R = 0.6 to 0.8 can be assumed for biorefineries (see
Trippe [356]) for the size degression factor. In the following, a mean value
of 0.7 will be assumed. Based on the given reference values for a biorefin-
ery of a certain capacity and the economies of scale, the investment for an
optimized capacity can be calculated by equation 4.1.

The non-linear cost curves can be estimated by linearization of the curve as
shown in figure 4.2.

As the formulation of the optimization sub-model is a Mixed Integer Lin-
ear Programming problem, the non-linear cost curves need to be linearized.
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Figure 4.2: Linear approximation of investment curves(Schwaderer [314])

For the linear approximation of the cost curves the multiple-choice (MC)
approach is chosen. This approach defines linear curves in certain seg-
ments. Depending on the capacity, a segment is chosen and, based on the
linear curve, an investment is calculated. Many predefined segments lead to
more detailed results. Schwaderer [314] has tested the special ordered set of
type 2 (SOS2) and the MC approach and has concluded that the MC is more
adequate. For more detail on the approaches, please see Schwaderer [314].
The approach is formulated as shown in equations 4.2 to 4.5.

The decision variable ωg represents the optimal capacity in the interval
[ng−1;ng]. Due to the binary variable μg for all g ∈ 2, ...,G, it can only
have a positive value for a single section [ng−1;ng].
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Min
G

∑
g=2

(sg ·ωg + yg ·μg) (4.2)

sub ject to

ng−1 ·μg ≤ωg ≤ ng ·μg ∀g ∈ 2, ...,G (4.3)
G

∑
g=2

μg ≤ 1 (4.4)

μg ∈ 0;1 ∀g ∈ 2, ...,G (4.5)

Investment estimation is performed with the help of three linear equations in
the sections [n1;n2], [n2;n3] and [n3;n4] whereas ng with g ∈ {1, ...,G} are
the support points. Investment occurring for the support points ng are given
as I (ng). The minimum capacity is represented by n1 and the maximum by
n4. The slope of the equations is given by sg and yg gives the y-axis intercept
in the section [ng−1;ng] with g ∈ {2, ...,G} respective line.

4.2.2 Optimization model for biorefineries

In this section, the optimization sub-model is presented. The general setup
of it is depicted in figure 4.3. Many different input parameter are needed
to perform the optimization. The results of the optimization sub-model are
used as input parameters for the integrated model.

The following model determines a NPV-optimal location and capacity of
biorefineries, which produces pretreated biomass from second generation
(lignocellulosic) biomass. These pretreated biomass can be sugars, oils,
pellets etc. The biomass is harvested from the field and is stored locally
before it is transported to the conversion facilities. During storage, deterio-
ration and drying of the biomass occurs, based on its water content. After
the transport of deteriorated biomass, it is processed in biorefineries with
variable capacities.
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Figure 4.3: Block diagram of the optimization sub-model

This work assumes that the operator choses the best available technique
for the pretreatment of the biomass, based on the given boundary condi-
tions. Therefore, a technology optimization such as in Schwaderer [314]
is not considered. In addition, the transport is restricted to truck only. As
the transport distances for biomass utilization are quite short (about 30 to
50 miles), this work assumes that rail transport is too expensive and barge
transport is not feasible. Hence, multi-modal transport is not implemented
in the model.

In the following, the developed model will be explained. The used sets,
parameters and variables are summarized in table 4.1.
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Table 4.1: Sets, parameters and variables of the optimization sub-model

Parameter Description Unit

Sets

b ∈ {1, ...,B} biomass type

i, j ∈ {1, ..., I} locations of suppliers and possible production
plants

u ∈ {1, ...,U} utilities

g ∈ {1, ...,G} capacity intervals for investment approximation

Parameters

General parameters

di, j distances between location i and j [miles]

M Big M [−]

Biomass and Products

Ab,i maximum harvest of biomass b at location i [t/a]

Hj demand for final product [t/a]

λb biomass deterioration [%]]

Economic Parameters

cT, f ix
b distance independent transport cost of feedstock

f with transport t
[$/t]

cT,var
b distance dependent transport cost of feedstock

f with transport t
[$/(t ·mi)]

cut
b variable production cost by biomass b [$/t]

cB
b cost of biomass b [$/t]

pPB price of pretreated biomass [$/t]

cinv specific investment [$/t]

ng upper fulcrum of the capacity interval g [t/a]
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Table 4.1: Sets, parameters and variables of the optimization sub-model

Parameter Description Unit

sg slope of the respective investment curve in the
capacity interval g

[t/a]

σ annuity factor [−]

r interest rate [−]

T time of operation [years]

Zt yearly payments [$/a]

Process

αb conversion yield depending on biomass b [%]

mut
b,u,p amount of utility [tut/tPB]

Variables

Continuous variables

RP revenues of pretreated biomass [$/a]

CB biomass cost [$/a]

CT transport cost [$/a]

CI investment [$/a]

CU utility cost [$/a]

mSB
b,i mass flow of stored biomass [t/a]

mPB
j mass flow of pretreated biomass [t/a]

mB
b,i, j mass flow of harvested biomass [t/a]

ω j,g continuous capacity variable of the capacity
interval g at production location i

[t/a]

Binary variables

μ j,g binary variable depending on capacity interval
g at location i

[0,1]
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4.2 Optimization sub-model

4.2.2.1 Objective function

The objective of the optimization sub-model is to maximize the net present
value (NPV) of the overall value chain from biomass production and har-
vesting to the pretreated biomass. The optimal capacity shall be constrained
by an economically meaningful amount of given harvest used. The maxi-
mization of the NPV ensures that in case of positive profits the maximum
amount is produced.

In general, the NPV can be defined as in equation 4.6:

NPV =
T

∑
t=0

Ct

(1+ r)t −CI (4.6)

All net cash flows Ct are divided by the discount rates r over the time span t

from now to the end of the considered time horizon T . The NPV is calcu-
lated by subtracting the investment from the discounted cash flows. This
work assumes that the investment at the time t = 0 is fully paid by equi-
ties. The yearly payments are considered to be constant during the opera-
tional time as the revenues for biochemicals are directly dependent on the
main cost contributor, the biomass price. Hence, the difference of both will
remain more or less constant. Normally, the operational time of a produc-
tion plant is longer than the considered depreciation time. Consequently, the
residual value of the investment is assumed to be zero.

Based on the above presented assumptions, the NPV can be simplified to
the following equation 4.7.

NPV = yearly payments ·σ − investment (4.7)

129



4 Development of an approach for location and logistics planning for biochemicals

The annuity value σ is calculated as in the following equation 4.8, r being
the interest rate and T the operational lifetime of the production plant.

σ =
(1+ r)T −1

(1+ r)T · r (4.8)

The NPV is calculated by the revenue RP of selling pretreated biomass and
the cost for biomass CB, transport CT , and utilities CU as well as the invest-
ment for the biorefinery CI .

maximize NPV =
(
RP −CB −CT −CU) ·σ −CI (4.9)

The revenue for pretreated biomass is calculated as in equation 4.10 by mul-
tiplying the market price of pretreated biomass pPB with the total produced
amount of pretreated biomass mPB

j at location j.

RPB =
J

∑
J=1

pPB ·mPB
j (4.10)

The price of biomass includes cultivating, handling, harvesting etc. and
a profit margin. Therefore, the biomass price cB

b per biomass type b, is
multiplied with the harvested biomass amount mB

b,i at location i and results
in total biomass cost CB (see equation 4.11).

CB =
B

∑
b=1

I

∑
i=1

cB
b ·mB

b,i (4.11)

Total transport cost CT consist of a fix term ct, f ix
b and a variable term ct,var

b .
The fixed transport cost ct, f ix

b include personal cost and depreciation for
the vehicles. The variable transport cost ct,var

b are mostly distance-related
fuel cost. The total transport cost CT are calculated by multiplying the spe-
cific transport cost with the amount of biomass after storage mSB

b,i, j and the
transport distance d from the harvesting field to the biorefinery, where the
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4.2 Optimization sub-model

biomass is processed to pretreated biomass. This work assumes that the stor-
age at the biorefinery occurs without storage losses for two reasons. First,
biomass is stored at the biorefinery after being dried to ensure a constant
quality on site, hence losses have already occurred beforehand. Second, the
biorefinery operates Just-in-Time and does not have large storage capacities
and storage duration. Consequently, total transport cost can be expressed as
follows (see equation 4.12).

CT =
B

∑
b=1

I

∑
i=1

J

∑
j=1

mSB
b,i, j ·

(
ct,var

b ·di, j + ct, f ix
b

)
(4.12)

Utilities are needed to process raw biomass to pretreated biomass. Consid-
ered utilities are electricity, work, heat and water as well as other auxiliaries.
The necessary amount and states of utilities depend on the process condi-
tions, which vary across the biomass types. The stored biomass mSB

b,i, j is
multiplied with the variable production cost cut

b per biomass. According to
equation 4.13 this results in the total utility cost CU .

CU =
B

∑
b=1

I

∑
i=1

J

∑
j=1

cut
b ·mSB

b,i, j (4.13)

Lastly, investmentCI can be estimated by the linearized function deducted in
the previous section 4.2.1. They are predefined by capacity and investment
sections from input data and can estimated by the equation 4.14.

CI =
I

∑
i=1

G

∑
g=2

(sg ·ω j,g + yg ·μ j,g) (4.14)
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4.2.2.2 Constraints

The objective function is subject to the following constraints on biomass
potential, storage losses, biomass conversion and capacity constraints.

The amount of biomass mB
b,i that is utilized per year needs to be lower or

equal than the total amount harvested Ab,i in that year per location i and
biomass b as stated in equation 4.15.

∀b ∈ B
mB

b,i ≤ Ab,i ∀i ∈ I (4.15)

On the one hand, biorefineries operate continuously throughout the year.
On the other hand, crop residues are only harvested within one to three
months in the fall. Hence, the majority of the biomass needs to be stored.
This work assumes that these storages are close to the harvesting sites. The
factor λb represents the storage degradation after harvest. Therefore, the
maximum amount of biomass from the storage to the biorefineries mSB

b,i, j is
less or equal than the harvest mB

b,i (see equation 4.16). Consequently, more
biomass needs to be harvested than is actually available for conversion to
pretreated biomass. But for the harvest also collecting, handling and storage
cost need to be assessed. The biomass cost of the objective function are
respective to the harvested and not utilized biomass.

∀b ∈ BJ

∑
j=1

mSB
b,i, j ≤ mB

b,i · (1−λb) ∀i ∈ I (4.16)
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Different yields αb of pretreated biomass can be achieved depending on the
utilized biomass. The amount of pretreated biomass mPB

j at each produc-
tion plant at location j is related to the type and amount of the transported
biomass mSB

b,i, j to that location. The biomass conversion is modeled as in
equation 4.17.

mPB
j ≤

B

∑
b=1

I

∑
i=1

αb ·mSB
b,i, j ∀ j ∈ J (4.17)

The following constraints are defined for the estimation of investment and
utility cost of the production capacities. The sum of stored biomass mSB

b,i, j

defines the capacity of the production plant modeled by the capacity vari-
able ω j,g as shown in equation 4.18. The capacity variable ω j,g needs to
fulfill the upper (equation 4.19) and lower boundaries (see equation 4.20) of
the respective capacity intervals, which are defined by the given bases.

B

∑
b=1

I

∑
i=1

mSB
b,i, j =

G

∑
g=2

ωk,g ∀ j ∈ J (4.18)

∀ j ∈ J
ω j,g ≤ ng ·μ j,g ∀g ∈ 2, ...,G (4.19)

∀ j ∈ J
ω j,g ≥ ng−1 ·μ j,g ∀g ∈ 2, ...,G (4.20)

For every production site only one capacity interval can be chosen by sum-
marizing the binary variable μ j,g to maximum 1 as in equation 4.21, while
the variable μ j,g is defined as a binary variable in equation 4.22 .

G

∑
g=2

μ j,g ≤ 1 ∀ j ∈ J (4.21)

∀ j ∈ J
μ j,g ∈ 0,1 ∀g ∈ G (4.22)
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For the remaining decision variables non-negativity constraints need to be
implemented as in equation 4.23.

∀b ∈ B
∀i ∈ I

mB
b,i,m

SB
b,i, j,m

PB
j ,ωk,g ≥ 0 ∀ j ∈ J (4.23)

∀g ∈ G

4.3 Technical sub-model

In this section, the technical sub-model is introduced. The main in- and
output data is depicted in figure 4.4. The approach and the needed data will
be explained in detail below.

The technical sub-model provides the technical input data for the integrated
model. This includes yields of the processes, energy and utility demand and
the overall mass balances. These mass balances are also the basis for the
estimation of investments and production cost. In the technical sub-model,
the processes of the biorefineries and conversions of pretreated biomass to
chemicals are simulated and assessed techno-economically.

At first, relevant technologies, which will be considered in the process simu-
lation, need to be defined. This depends on many factors. One main factor is
the considered region, where the biomass conversion plant will be installed.
The chosen region may already determine the available biomass as feed-
stock due to climate, soil and geographical restrictions (see Lewandowski
and Wilhelm [205]) as the biomass cultivation is strongly dependent on
nutrients, moisture and temperature. The biomass potential has an influence
on the chosen technology due to the following reasons: processes are bound
to minimum and maximum production capacities; in case only a limited
amount of biomass is available, certain technologies may not be feasible.
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Figure 4.4: Block diagram of the technical sub-model

Some types of biomass are better suitable for certain processes, whilst oth-
ers can be used more efficiently in other processes. Additionally, the final
product, which will be produced from biomass, needs to be defined. Both
influence the possible processing routes. By-products might have an influ-
ence on the economics of the concept as they also create revenue, however
they are not the core decision factor for capacity and technology.

As described by Meyer [227], a technology in this sense does not refer to
a single equipment, but a set of technologies. The dimension of the plant
and processing parameters, such as temperature, pressure or residence time,
need to be defined for the evaluation of material and energy flow balances.
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The defined process routes can be assessed based on either literature data or
data given by industry. Therefore, each process step as well as the needed
equipment is defined.

In a second step, all processes are simulated in AspenPlus® V9 from
AspenTech. This flowsheeting program is one of the most known and used
software for the design and assessment of production processes. Differ-
ent properties and stream classes need to be defined depending on the type
of process, feedstocks, utilities, etc. AspenPlus® V9 has a user interface
and the possibility to include user specific information through FORTRAN,
Microsoft Excel, Matlab, etc. interfaces. AspenPlus® V9 includes a large
variety of different databanks (see AspenTech [24]). These contain the data
for the material characteristics to enable the modelling of thermodynamic
and kinetic values. PURE35, SOLIDS, ASPENPCD and INORGANIC are
some of these databanks implemented in AspenPlus® V9. These are cho-
sen for the simulation of biorefineries and the conversion of biomass to
biochemicals. These databanks include the majority of standard materials
such as alcohols, acids, organics, inorganics. As the simulations are based
on biomass, the BIODFMS3-databank by the NREL [257] is added. This
databank mainly focuses on biorefineries and includes components such as
glucose, lignin, cellulose, etc. These components are specific for biomass
and need to be implemented in the simulation.

As a first step in simulation development, a component list is defined, which
includes all for the simulation relevant chemicals. The material streams
are built up as vectors. They include the considered components with the
respective mass shares. Energy and enthalpy streams are defined by their
direction of flow and amount. All material and energy streams are balanced
with their input and output streams to or from a module.

In AspenPlus® V9 different calculation methods can be used to simulate
the thermodynamic properties of the material and energy streams. These
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can be applied to the overall system or just to single streams. Such prop-
erties define solid or conventional processes or mixed streams MIXED.
Solid streams CISOLID can be implemented with particle size distributions
(PSD) as CIPSD. This is relevant for mills, hammers etc. to calculate the
energy demand for grinding the feedstock. Solid streams CISOLID cannot
be dissolved to liquids, but remain as solid particles in solution. The ther-
modynamic properties can also be used by approximation systems such as
UNIFAC, Redlich-Kwong or NRTL. These approximation systems describe
activity coefficients of equilibria.

Humbird et al. [162] assume the reference size of the pretreatment biore-
fineries to have a capacity of 2200 dry tons per day. Humbird et al. [162]
have calculated a biorefinery of that size in detail. The capacity of the con-
version plants to biochemicals is provided as parameter for the integrated
model, and, hence also for the technical simulations. The production process
can be divided into three main steps: pretreatment, conversion and purifica-
tion. These steps can combined at one location or can be subdivided and
done at individual locations. Hence, the processes can be combined and
simulated as such as follows:

• pretreatment (P0)

• conversion (P1)

• purification (P2)

• chemical production (P12 (P1+P2))

• total production process (P0 + P12)

Splitting up processes can reduce technical risks and lead to a higher flex-
ibility within the value chain. In contrast, if multiple process steps take
place at one location, the system can benefit from heat integration effects
and reduce the total energy demand.
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The five different process configurations as described above are simulated in
AspenPlus® V9 for different biomass types. The chosen biomass influences
the yields of the process as, especially the microorganisms in biochemical
processes are very sensible to chemical composition. In case of n biomass
types 5 ·n processes are simulated.

For the simulations, literature values are taken into consideration as no
experimental or reported data from existing conversion plants are available.
Literature values include mostly laboratory results. As no other data is avail-
able, these sets will be the basis for the simulations.

This work defines the efficiency of processes ηp,bp by the amount of the
final products and respective by-products ṁ(by)product multiplied with their
energetic value Hu,(by)product related to the biomass energy input Ḣ f uelinput

(see equation 4.24). This approach is mainly applicable for assessing the
energetic efficiency of the process.

ηp,bp =
ṁproduct ·Hu,product +∑byproducts ṁbyproduct ·Hu,byproduct

Ḣ f uelinput
(4.24)

Equation 4.24 is valid beyond energetic efficiencies, and can also be formu-
lated for production yields on a mass balance defined as in equation 4.25.

εp,bp =
ṁproduct +∑byproducts ṁbyproduct

ṁ f uelinput
(4.25)

Simulation results reveal mass and energy flow balances. These results are
used not only for efficiency calculations and utility demand estimation. The
material flows define the capacity of each equipment.

In the second step of the techno-economic assessment, the mass and energy
flow balances are used for economic calculations. The capacity of each unit
is the basis for investment estimations. Literature or industry data is the
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basis to estimate total plant investment. As described in section 3.6.1, liter-
ature data is adapted to different year and size, using price adaption and size
degression factors. These factors ensure a more precise investment estima-
tion. The size degression factors includes the needed amount of material for
a larger or smaller unit as well as the complexity of the equipment. The price
adaption factor such as the CEPCI index, models variable market prices due
to inflation, personnel cost etc. In this work, the CEPCI factor is the pre-
ferred price adaption factor as it is based on U.S. dollars. Both, the literature
data and the case study, are based on U.S. dollars. Hence, the CEPCI should
lead to more reality near values. The investment estimations are used as
input data for the objective function of the integrated model. The chosen
biomass and technology influence the investment essentially.

The material and energy flow balances are the basis for the estimation of
production cost (incl. utility and personnel cost). The amount of utilities,
energy, biomass, etc. multiplied with the respective cost result in the pro-
duction cost of the production plant. High utility demands and low yields,
leading to high biomass demands, implicate high production cost.

The results of the technical sub-model compare the efficiencies of different
biomass and technologies as well as the respective investments and cost.
These are used as input data for the integrated model. In detail, the output
of the technical sub-model is process yields, utility and biomass demand,
investment and production cost.

4.4 Risk sub-model

In this section, the risk sub-model will be presented. The basic setup of the
risk sub-model is depicted in figure 4.5. Input for the risk sub-model are the
identified risks in biomass value chains. The output of the model, risk cost
and scenario definitions, are used as input of the integrated model.
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Figure 4.5: Block diagram of the risk sub-model

As described in section 3.7, the risk analysis is performed in three steps:

1. identification

2. assessment

3. mitigation

The risk identification is based on extensive literature research. Currently,
only few publications could be found that summarize the risks, which can
occur in biomass value chains. Bairamzadeh et al. [34] published a large
amount of possible risks without going much into detail. Until now, risks
are often only partly addressed in literature (see section 3.8.2). The aim of
this work is to include as many uncertainties as could be identified. Hence,
two different methods are applied to identify relevant risks in this work.
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On the one hand, risks, which are named in location planning models under
uncertainty (see section 3.8), are used for risk assessment. On the other
hand, expert interviews and discussions are performed to include uncer-
tainties, which are not mentioned in literature. Experts are defined by
Bogner [53] as people, which – based on specific practical knowledge –
create the possibility to structure a certain field sensuous and guiding for
others. The experts for this approach should be selected due to their long
experience in the field of biomass procurement and processing. They iden-
tify risks, which have occurred in their past or which are critical in their
opinion. Even though a large variety of risks in biomass value chains can be
concluded from literature and these discussions, the list of identified risks
(see section 5.5) does not intend to be exhaustive. Depending on the scope
of the value chain, the considered region, the biomass, technologies and
technology readiness levels etc., different uncertainties can be identified.

The risk assessment of the identified uncertainties is the second step. Thus,
the likelihood and the consequences are, if applicable, estimated by the fol-
lowing approaches. In general, the risks are distinguished into quantifiable
and non-quantifiable uncertainties. Non-quantifiable risks are uncertain-
ties, which cannot be addressed through probability functions. The quan-

tifiable risks are assessed by historical data, by physical calculations or
other approaches to estimate failures in biomass value chains. Historically,
Poisson distribution functions have been used for modelling of independent
events, such as in Ayyub [28]. Mathematically, risk occurrence is an integer
event, since it can - by nature - only happen or not, e.g. modeled in mul-
tiples of {0,1}. The Poisson distributions are applied for all quantifiable
risks is this work. The distribution functions are modeled by applying Fault

Tree Analysis to the defined data. This top-down approach is applicable
as main events, which can be monetarily quantified, can be defined. These
main events are caused by basic events. Multiple risks and uncertainties can
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be summed up by AND and/or OR gates to the main events. Depending on
the identified risks more or less central risks can be defined.

The likelihood of an event describes how often the event occurs within a
year. Two approaches exist to deal with the likelihood of an event. The
location planning can either be performed by choosing adequate values from
the distribution functions such as a “best case”, “worst case” and “business-
as-usual” scenario. Or the distribution functions are implemented by Monte
Carlo Analysis. Monte Carlo Analysis will automatically choose random
values of the distribution function. The integrated model will run as often as
random values from the distribution function were chosen. In case that for
all random numbers the same location is chosen by the model, the results
are robust and the value chain configuration seems insensible to the modeled
risk category. The Monte Carlo Analysis is the more realistic approach, as
the variety and randomness of events can be analyzed. Consequently, it is
implemented in this work.

After assessing the probabilities of risk events, the consequences need to
be estimated. The consequences of the occurring risks shall be calculated
using historical prices, the capacity of transport volumes or facilities, data
on process failures etc. The consequences of failure are the difference of
the current value and the losses, which will occur in case the risks will
take place. This might, for instance, be the value of final product, which
is destroyed by a fatal transport accident or the additional cost for biomass
in case of rising demand or weather effects. In this work, for all clustered
risks (done by FTA), the consequences are estimated. The calculation of the
consequence cost in this work are based on historic data and the expertise
of companies.

The integrated model includes quantifiable risks as risk cost, namely conse-
quences multiplied with the likelihood of an event (see section 3.7.4).
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4.4 Risk sub-model

In case the results of the different Monte Carlo runs show deviations in the
value chain design, appropriate measures need to be applied to mitigate the
uncertainties. These are for instance additional storage capacities. Depend-
ing on the source of uncertainty, which leads to non-robust results, other
suppliers or transport modes might need to be taken into account at slightly
higher cost. The proposition of a risk mitigation strategy is the third step
in risk analysis.

All uncertainties, which cannot be either estimated by historical values or
risks based on given physical restrictions, are assumed to be non-quantifi-

able. They cannot be modeled by Monte Carlo simulations, but need to
be taken into account using scenario analysis. The scenario analysis will
not provide a prospective of future happenings, but will show, which effect
non-quantifiable risks have on the design of the value chain. These sce-
narios show extreme cases, which might have a large effect on the overall
value chain. The definition of the scenarios largely depend on the regions
and the identified risks. In section 6.7 possible extreme events are defined
and applied to the case studies in this work. The scenarios are calculated
for all case studies by the integrated model. The value chain setups might
vary from the original setup. The results need to be interpreted to enable
reasonable recommendations for the value chain setup. Unlike the risk cost,
the scenarios are not directly used as input data for the integrated model.
Nevertheless, the definitions lead to changed prices and other parameters.
These are varied in the integrated model and lead to interpretable results.
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4 Development of an approach for location and logistics planning for biochemicals

4.5 Integrated model for optimizing the location
and logistics of future biochemical plants
under consideration of uncertainties

Finally, the integrated model, which combines the results of all sub-models
will be presented in this section. The approach of the model is derived from
the presented constraints of section 3.9. The general setup of the integrated
model is depicted in figure 4.6.

Figure 4.6: Block diagram of the integrated model
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4.5 Integrated model considering uncertainties

The integrated model provides decision support for operators and compa-
nies by estimating possible locations and the respective logistics of future
plants for the conversion of pretreated biomass to biochemicals under con-
sideration of uncertainties.

Multiple biomass are considered for producing multiple final products in a
single production process. During conversion of biomass, often not only a
single product but multiple byproducts are produced. The conversion yield
depends on the utilized biomass and the process. The products can either be
produced directly from pretreated biomass or via an intermediate. The pro-
duction of the final products can be split up into two process steps: the pro-
duction of the intermediate and the following processing to the final prod-
ucts. These can either occur at the same location or at different production
sites. Accordingly, the model is defined as a two-stage production process.
On the one hand, the benefit of producing the final product in a single pro-
cess at one location is the integration of heat in the process and the mini-
mized handling activities. On the other hand, separating the process steps
leads to an increased flexibility and might be beneficial if the downstream
processing is included in existing petro-chemical plants. This work assumes
that a single company only plans to build up biochemical production plants
one at a time to reduce the technical risk. Hence, multiple production plants
are omitted.

Depending on the feedstock and product, transport restrictions on certain
transport modes exist. These influence the logistics and chosen transport
modes. In order to interchange between transport modes, multi-modal trans-
port and transshipment is included in the model such as in Rudi et al. [309],
Yie et al. [392] and Marufuzzaman et al. [217]. To change the transport
mode, transport hubs are included in the model as additional locations.

Due to the above presented constraints of multi-modal transport and two-
stage production, storage of products is inevitable. In case the handling of
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feedstock and products occurs stepwise, storage is needed to buffer amounts
due to handling restrictions. Hence, the inclusion of storage capacity is nec-
essary. The storage capacity is set fix by the production plant operators. The
conversion facility can be included in existing infrastructure. Consequently,
this work assumes that the storage capacities at existing production sites.

The final products can be transported to multiple markets, which are either
locally or worldwide. Hence, also export ports as well as the export share
per continent are included in the model. A more detailed consideration of
customer is neglected. The distribution of biochemicals to the final customer
is not biomass specific.

The integrated model is implemented in a decision support system. It
includes the modeling in GAMS IDE 24.6.1 and solving with the CPLEX
solver by IBM. For integrating the needed input data, a VBA.net user inter-
face is created to facilitate the exchange of data. Therefore, different spread-
sheets in Microsoft Excel need to be designed to handle the input param-
eters. The results of the three sub-models are included by setting them as
input parameters in the Excel tables.

The model is built up of sets for transport, locations, feedstock, processes,
utilities and risks. In the following, the sets and subsets are defined for
the implementation of the integrated model. The set of edges of the net-
work is defined by the nodes N. The network is represented by the transport
of a feedstock/ intermediate/ product f ∈ F with the transport mode t ∈ T

on a link between two nodes. The feedstock/ intermediate/ product f is
characterized by the processing step p ∈ P. Possible products within the
value chain are pretreated biomass Fb ⊂ F \ (Fint ∧ Fz), intermediates
Fint ⊂ F \ (Fz ∧Fb) and final products Fz ⊂ F \ (Fint ∧Fb). Biomass and
intermediates are summarized to non final products Fn f ⊂ F \Fz. Interme-
diate and final products are defined as Fiz ⊂ F \Fb. The capacity H of the
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4.5 Integrated model considering uncertainties

plant is set by a single, predefined final product Ff p ⊂ Fz. All other byprod-
ucts are defined as Fbp ⊂ Fz \Ff p These products are produced in different
production settings. The process can either occur at a single location by
the process P12 or can be split up in two sub-processes: P1 to produce an
intermediate Fint and afterwards the final products Fz in P2. Hence, the final
products can be produced in Pz ⊂ P\P1. Similarly, pretreated biomass can
be processed in Pb ⊂ P \P2, solely at one site as well. The intermediate is
produced and converted to the final products in Pi ⊂ P\P12.

The edge between two nodes is described by the doublet (i, j) with i, j ∈ N.
The supply nodes Ns ⊂ N \ (Nt ∧Nx) and destinations Nd ⊂ Nxd \Nx char-
acterize the scope of the network. The origins represent the suppliers of
pretreated biomass and destinations the export ports. The amount of goods
can also be transported via transport hubs Nh ⊂ N \ (Ns ∧Ndx ∧Nl). All
production locations are defined by Nl ⊂ N \ (Nsi ∧Ndx). The intermedi-
ates f ∈ Fint are produced at locations Ni ⊂ Nl \Nf . The locations, where
the final products f ∈ Fz are produced in process p ∈ Pz are defined as
Nf ⊂ N \ (Nh ∧Ndx ∧Ns). The final products are then transported either to
hubs or directly to the export port Nhd ⊂ (Nh ∧Nd). All locations that the
intermediate product can be transported to are defined by node Nti ⊂ N \
(Nsi ∧Ni). Amongst them are also the locations before the product is
exported Nh f ⊂ (

Nf ∧Nh
)
. The different production locations of the

intermediate product and the final products as well as the hubs can have
distinctive sources. They are defined as follows. The sources of interme-
diate products are Nsi ⊂ (Nh ∧Ns). Final products can be received from
Ns f ⊂ N \ (Ndx ∧Nf

)
. Hubs can be used for transshipment from many

different sources Nsh ⊂ N \ (Ns ∧Nl ∧Ndx). The chemicals can either be
used locally or exported. The nodes of the final utilization are defined by
Nx ⊂ N \ (Nt ∧Ns). The total of export ports and the export locations are
represented by the nodes Ndx ⊂ N \Ns f . All nodes that can be approached
after the supplier are defined as transfer nodes Nt ⊂ N \ Ns.
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Figure 4.7: Subsets of the integrated model

The locations in the considered region without export are presented by
Nst ⊂ N \ Nx. The correlations of the location subsets are depicted in
figure 4.7.

Based on the above defined configurations of the model, the following deci-
sion variables m f ,t,i, j,p include all mass streams within the value chain.
These include:

• mass flow of the pretreated biomass from the supplier to the
production plant

• mass flow of a possible intermediate product from one facility
to another

• mass flow of the final products from a location to the export port

• mass flow of the export share of the final products to the final market

In table 4.2 all utilized sets, parameters and variables of the integrated model
are displayed.
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4.5 Integrated model considering uncertainties

Table 4.2: Sets, parameters and variables of the integrated model

Parameter Description Unit

Sets

f , f ′ ∈ {1, ...,F} feedstock

t, t ′ ∈ {1, ...,T} transport mode

i, j, i′ ∈ {1, ...,N} possible locations

p ∈ {1, ...,P} process

r ∈ {1, ...,R} risk

u ∈ {1, ...,U} utilities

Parameters

General parameters

dt,i, j distance between location i and j with transport
mode t

[m]

M Big M, sufficient large number [−]

Biomass and products

A f ,i supply of pretreated biomass f from supplier i [t/a]

Economic parameters

σ annuity factor [−]

cT, f ix
f ,t distance independent transport cost of feedstock

f with transport t
[$/t]

cT,var
f ,t distance dependent transport cost of feedstock

f with transport t
[$/(t ·m)]

cut
i,u cost of utility u at production location i [$/t]

cPB
f ,i cost of pretreated biomass f at supply location

i
[$/t]

cinv
f ,p specific investment for converting feedstock f

in process p
[$/t]
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Table 4.2: Sets, parameters and variables of the integrated model

Parameter Description Unit

pFP
f price for final products f [$/t]

cex
f ,i, j export cost of a final product f from port i to

destination continent j
[$/t]

cS
p specific storage cost depending on the process

p
[$/t]

Process

H produced amount of defined final product [t/a]

α f , f ′,p yield of feedstock f to product f ′ in process p [−]

mut
f ,p,u amount of utility u depending on feedstock f

and process p
[tut/tPB]

mS
p storage capacity depending on process p [t/a]

Risk parameters

π f ,t,i, j,p,r probability of risk for each feedstock/ interme-
diate/ product f , transport mode t, edge i, j, pro-
cess p and risk r

[%]

crisk
f ,t,i, j,p,r specific risk cost for each feedstock/ intermedi-

ate/ product f , transport mode t, edge i, j, pro-
cess p and risk r

[$/t]

Demand

γ f ,i′ export share to final destination [−]

Variables

Continuous variables

RFP total revenue of the final products [$/a]

Cx cost of the type x (i.e. biomass, transport,
investment, utilities, export, storage, risk)

[$/a]

m f ,t,i, j,p mass flow of each feedstock/ intermediate/
product f , transport mode t, edge i, j, process
p

[t/a]
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Table 4.2: Sets, parameters and variables of the integrated model

Parameter Description Unit

u f ,t,i, j,p,u utility cost for each feedstock/ intermediate/
product f , transport mode t, edge i, j, process
p and utility u

[t/a]

r f ,t,i, j,p,r risk cost for each feedstock/ intermediate/ prod-
uct f , transport mode t, edge i, j, process p and
risk r

[$/a]

Binary variables

y f ,t,i, j,p binary variable [0,1]

4.5.1 Objective function

The objective of the model is to provide decision support for the setup of
the overall value chain from biomass pretreatment to the export of the final
products. Therefore, the net present value (NPV) of the value chain is max-
imized as presented in equation 4.26. The revenues of the final products RP

are subtracted by the cost for pretreated biomass CB, transport CT , utili-
tiesCU , risksCR, storageCS and exportCE to calculate the yearly payments.
The NPV is calculated by multiplying yearly payments with the annuity fac-
tor σ and the investment CI is subtracted from them. The general approach
of the NPV calculation is presented in section 4.2.2.

NPV =
(
RP −CB −CT −CU −CR −CS −CE) ·σ −CI (4.26)
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The revenues RP of the value chain as in equation 4.27 are defined as the
multiplication of the price per product pFP

f with the total amount of finally
sold products m f ,t,i, j,p.

RP =
Fz

∑
f=1

T

∑
t=1

Nf

∑
i=1

Nhd

∑
j=1

P

∑
p=1

pFP
f ·m f ,t,i, j,p (4.27)

The cost for pretreated biomass CB include the processing cost as well as
the price of the biomass. As different types of biomass occur in various
regions and can result from contracts with certain suppliers, the cost cPB

f ,i

are modelled in dependence on the pretreated biomass f and location i (see
equation 4.28).

CB =
Fb

∑
f=1

T

∑
t=1

Ns

∑
i=1

Nt

∑
j=1

P

∑
p=1

cPB
f ,i ·m f ,t,i, j,p (4.28)

Transport cost CT in equation 4.26 include the transport cost for pretreated
biomass, intermediates, and final products depending on the transport mode.
If all process steps are carried out at one location no transport of an inter-
mediate product and, consequently, no transport cost occur. The total trans-
port cost are made up of a fix and a variable cost share. The fix transport
cost cT, f ix

f ,t are independent of the distance. These include cost for handling,
loading, waiting times etc. The distance-dependent variable cost cT,var

f ,t

cover energy (gasoline) and personnel cost. The distances dt,i, j between
i and j display the distances between sources, possible production loca-
tions, and sinks. Overall, the various products in the supply chain restrict
different transport modes, required insulation of trucks or similar. There-
fore, the transport cost also depend on the transported product f and the
transport mode t. The total transport cost are calculated as presented in
equation 4.29.
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CT =
F

∑
f=1

T

∑
t=1

Nst

∑
i=1

Nst

∑
j=1

P

∑
p=1

m f ,t,i, j,p ·
(

cT, f ix
f ,t + cT,var

f ,t ·dt,i, j

)
(4.29)

The investment CI is based on the specific investment cinv
f ,p per ton of input.

The capacity of the plant is represented by the mass flow of the source
m f ,t,i, j,p, the process p, and the chosen biomass f . The feed input and yield
of the process influences the needed technologies, plant operations and the
efficiency of the plant. These have an effect on the mass and energy bal-
ances, and, hence, on the dimensions of the production plant. Consequently,
the investment is calculated as follows in equation 4.30.

CI =

Fn f

∑
f=1

T

∑
t=1

Ns f

∑
i=1

Nl

∑
j=1

P

∑
p=1

cinv
f ,p ·m f ,t,i, j,p (4.30)

For processing biomass, utilities such as electricity, fresh and waste water,
heat, enzymes, etc. are needed. This work assumes that the necessary equip-
ment for converting raw materials such as oil, gas, coal, etc. into energy are
available on site, so that no investment for this need to be taken into account.
Hence, the utility cost CU are the sum of all specific utility cost u f ,t,i, j,p,u as
presented in equation 4.31. The specific utility cost are calculated as in
equation 4.42.

CU =

Fn f

∑
f=1

T

∑
t=1

Ns f

∑
i=1

Nl

∑
j=1

P

∑
p=1

U

∑
u=1

u f ,t,i, j,p,u (4.31)

The total risk cost CR are the sum of each risk r f ,t,i, j,p,r, that can occur on
one edge of the value chain. The calculation of the risks has been described
in detail in section 4.4.

CR =
F

∑
f=1

T

∑
t=1

Nst

∑
i=1

Nst

∑
j=1

P

∑
p=1

R

∑
r=1

r f ,t,i, j,p,r (4.32)
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Due to the two stage process and the risk minimization, storage is imple-
mented at the production plant. At each location, where production occurs
the feedstock as well as intermediate or final products are stored at the same
location. Hence, for calculating the total storage cost, the specific storage
cost cs

i,p are multiplied with the total amount of stored product ms
p as in equa-

tion 4.33 and the binary factor y f ,t,i, j,p for the total amount of locations.

CS =
Fiz

∑
f=1

T

∑
t=1

Nl

∑
i=1

Nti

∑
j=1

P

∑
p=1

cs
p ·ms

p · y f ,t,i, j,p (4.33)

The final products are exported to different markets worldwide. Depending
on the export port and the final destination, the export cost vary. Conse-
quently, the total export cost CE are calculated by multiplying the specific
export cost cex

f ,i, j with the total amount of final product m f ,t,i, j,p, which is
transported from the export port to the final destination (see equation 4.34).

CE =
Fz

∑
f=1

T

∑
t=1

Nd

∑
i=1

Nx

∑
j=1

Pf p

∑
p=1

cex
f ,i, j ·m f ,t,i, j,p (4.34)

4.5.2 Constraints

In the following, the restrictions such as material and energy balances of pro-
cesses, transportation hubs and export ports are defined. These constraints
need to be fulfilled to enable a reasonable biomass value chain.

4.5.2.1 Definition of pretreated biomass supply
and demand for final product

The available amount of pretreated biomass depends on the supplier. As
each supplier utilizes different biomass types and different processes, the
maximum available amount A f ,i of pretreated biomass is defined by the
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feedstock f and location i. This work assumes that there is only one sup-
plier per location. Therefore, the usable amount of pretreated biomass for
biochemical production is restricted by the maximum capacity of the sup-
plier A f ,i as presented in equation 4.35.

∀ f ∈ FbT

∑
t=1

Nt

∑
j=1

P

∑
p=1

m f ,t,i, j,p ≤ A f ,i ∀i ∈ Ns (4.35)

As the chemical industry is bound to customers, the maximum capacity
of a production site H, based on a predefined final product, is set fix by
the company. Not only the customers influence the production amounts of
a facility, but also economic parameters, technical risk minimization etc.
Equation 4.36 defines the capacity restriction.

∀i ∈ NfFf p

∑
f=1

T

∑
t=1

Nhd

∑
j=1

m f ,t,i, j,p =

Ff p

∑
f=1

T

∑
t=1

Nhd

∑
j=1

H · y f ,t,i, j,p ∀p ∈ Pz (4.36)

Depending on the export location, a share of the produced amount m f ,t,i, j,p

will be transported to different export destinations and, hence, to different
export ports. The share per export destination is defined by the user as γ f ,i′ .
This calculates the demand of each final destination in equation 4.37.

∀ f ∈ FzT

∑
t=1

Nd

∑
i=1

Pf p

∑
p=1

m f ,t,i, j,p =
T

∑
t=1

Nf

∑
i=1

Nhd

∑
j=1

Pf p

∑
p=1

γ f ,i′ ·m f ,t, j,i′,p ∀i′ ∈ Nx (4.37)

4.5.2.2 Modeling of the production processes

The process can be split in two stages. These process steps can either occur
at the same location or be combined in one production facility.
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In equation 4.38, the production of an intermediate product Fint is modeled.
Incoming biomass m f ,t,i, j,p can be converted by a yield factor α f , f ′,p to an
intermediate f ′. This intermediate is the produced, but not yet purified bio-
chemical.

∀ f ′ ∈ FintFb

∑
f=1

T

∑
t=1

Ns

∑
i=1

α f , f ′,p ·m f ,t,i, j,p =
T

∑
t=1

Nhd

∑
i=1

·m f ′,t, j,i′,p′ ∀ j ∈ Nint (4.38)
∀p, p′ ∈ Pi

In equation 4.39, the conversion of either biomass f or an intermediate to
the purified biochemical and byproducts is defined by the yield of the pro-
cess α f , f ′,p and the mass streams m f ,t,i, j,p. In case biomass is directly con-
verted to the purified final products, then equation 4.38 is skipped.

∀ f ′ ∈ FzFn f

∑
f=1

T

∑
t=1

Ns f

∑
i=1

α f , f ′,p ·m f ,t,i, j,p =
T

∑
t=1

Nhd

∑
i=1

m f ′,t, j,i′,p′ ∀ j ∈ Nf (4.39)
∀p ∈ Ps f

To minimize the risk of new technologies, a company would start with a
single production facility. Consequently, the number of locations for final
production is restricted to one.

T

∑
t=1

Nf

∑
i=1

Nhd

∑
j=1

Pz

∑
p=1

y f ,t,i, j,p = 1 ∀ f ∈ Fz (4.40)

(4.41)

The utility consumption is strongly related to the utilized biomass type, the
production location and the process. The utility cost are composed of the
specific price for a unit of utility cut

i,u and are multiplied with the needed
amount of utility mut

f ,p,u per ton of feedstock m f ,t,i, j,p as in equation 4.42.
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This work assumes that all residues are converted into chemicals and no
excess electricity is produced.

∀ f ∈ Fn f
∀t ∈ T

u( f , t, i, j, p,u) = cut
i,u ·mut

f ,p,u ·m f ,t,i, j,p ∀i ∈ Nl (4.42)
∀ j ∈ Ns f
∀p ∈ P
∀u ∈U

4.5.2.3 Transport within the value chain

The model includes multi-modal transport of all products within the value
chain. To change the transport mode, hubs are needed where the feedstock is
transferred from one mode to another. The hubs are restricted by mass bal-
ances and the necessity to change the transport mode. The total mass input
in a certain transport mode t needs to leave the hub on another transport
mode t ′.

∀ f ∈ F
∀t, t ′ ∈ TNsh

∑
i=1

m f ,t,i, j,p =
Nt

∑
i=1

m f ,t ′, j,i,p ∀ j ∈ Nh (4.43)
∀p ∈ P

To fulfill material balances the amount, which is transported to the export
port also needs to be shipped to the final destination (see equation 4.44).

∀(i, j, i′) ∈ NF

∑
f=1

T

∑
t=1

I

∑
i=1

m f ,t,i, j,p =
F

∑
f=1

T

∑
t=1

J

∑
j=1

m f ,t, j,i′,p ∀p ∈ P (4.44)
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Risks r f ,t,i, j,p,r are estimated by the probability π f ,t,i, j,p,r of an event multi-
plied with the cost effect crisk

f ,t,i, j,p,r of that risk (see equation 4.45).

∀ f ∈ F
∀t ∈ T

r f ,t,i, j,p,r = crisk
f ,t,i, j,p,r ·π f ,t,i, j,p,r ·m f ,t,i, j,p ∀(i, j) ∈ N (4.45)

∀p ∈ P
∀r ∈ R

The variables need to fulfill the non-negativity constraint, as no negative
amounts can be transported.

∀ f ∈ F
∀t ∈ T

m f ,t,i, j,p ≥ 0 ∀(i, j) ∈ N (4.46)
∀p ∈ P

According to Rudi et al. [309], the Big M-method can be used to ensure that
in case of at least one unit of feedstock or product the binary variable y f ,t,i, j,p

has the value one.

∀ f ∈ F
∀t ∈ T

m f ,t,i, j,p ≤ y f ,t,i, j,p ·M ∀(i, j) ∈ N (4.47)
∀p ∈ P

4.6 Conclusion

In this chapter, the approach for the evaluation of biomass value chains from
the biomass source to the distribution of the final products was presented.
Therefore, the integrated model with the input of three sub-models: opti-
mization, technical and risk sub-model has been described.
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4.6 Conclusion

The optimization sub-model has been developed to optimize locations of
possible future biorefineries. These biorefineries pretreat biomass to sugar
syrup, pyrolysis slurry or other pretreated biomass. The model optimizes
not only locations but also the capacity of the biorefineries. These locations
are used as supplier input for the integrated model.

The production processes are assessed according to the technical sub-model.
Therefore, the processes are simulated in AspenPlus®. As a result, mass and
energy balances are used to calculate needed input materials, the capacities
of single units and energy demands. The output of the technical sub-model
provides the input data for the conversion yields as well as investment and
production cost estimations. These in turn are important input data for the
integrated model.

Many risks and uncertainties occur in every biomass value chain. They are
distinguished in quantifiable and non-quantifiable uncertainties. Quantifi-
able risks are implemented as a cost term in the integrated model and are
assessed by Monte Carlo Analysis. Non-quantifiable risks cannot be fully
determined and are addressed by scenario analysis (see section 5.6) of the
integrated model.

Finally, the integrated model includes all the above presented input data as
well as additional data. Existing pretreatment plants, export ports, multi-
ple transport types are just examples for the above described constraints.
As a result of the integrated model a single location for the production of
biochemicals from pretreated biomass or two single locations in case of a
split up of the process is defined. The chosen transport route is calculated
including the export to overseas.
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5 Determination of
input parameters

In the previous chapter, the two stage approach for optimizing value chains
for the production of biobased chemicals has been developed. As a result,
locations and logistics of these value chains can be estimated. To prove the
applicability of the developed approach, it is tested on three case studies.
This model is applied to the value chain for the biochemical production
of butanol and succinic acid as well as the thermochemical production of
ethylene from syngas in the United States.

At first, in section 5.1 the considered biomass (corn, sugar cane, sorghum
and their residues) are presented and possible locations for future conversion
plants are defined. The possible locations are also a results of the optimiza-
tion sub-model. Hence, the input data for the optimization are presented in
section 5.1. The three case studies include either biochemical and thermo-
chemical pathways. The biochemical processes are built up of preprocess-
ing, depending on the biomass, conversion via fermentation and downstream
processing. The preprocessing technologies include corn wet milling, sugar
cane milling, sorghum milling as well as dilute acid pretreatment of agricul-
tural residues. These processes are described in section 5.2. Thermochem-
ical pathways preprocess lignocellulosic biomass by pyrolysis. The pyrol-
ysis products are converted by gasification and synthesis to ethylene. The
detailed process descriptions are presented in section 5.3. For the technical
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sub-model input data such as conversion yields, investment and production
cost are needed. These are described in the respective sections.

For modeling the optimization sub-model as well as the integrated model
logistical parameters are necessary. These include details on transport, stor-
age and intermodal hubs as well as the respective cost. The data is presented
in section 5.4. Not only the locations of processing sites are critical, but
also the export hubs for the integrated model. Additionally, the transport
distances are crucial for location planning. The respective data is presented
in the same section.

A main aspect of this approach is the consideration of risks and uncertain-
ties. These are evaluated in the risk sub-model. To understand the impact
and likelihood of the risks, they need to be explained. Therefore, the con-
sidered risks for the case studies are defined in section 5.5. They have been
clustered into transport, process, environmental, political, supply and mar-
ket risks.

Finally, the non-quantifiable risks are addressed by a scenario analysis.
These constructed scenarios are explained in section 5.6. Objective of the
scenarios is to show the influence of extreme events on the location and
logistics of the case studies.

The considered case studies are presented in figure 5.1. Six different biomass
(corn, corn stover, sugar cane, sugar cane bagasse, sorghum and sorghum
bagasse) are preprocessed. Corn wet milling, sorghum and sugar cane
milling of first generation biomass as well as dilute acid pretreatment and
pyrolysis of second generation biomass are the considered preprocessing
technologies. Fermentation of sugar syrup to butanol (case study 1) or
succinic acid (case study 2) are evaluated as biochemical production pro-
cesses. The products are purified in downstream processes such as gas
stripping with distillation or crystallization. Gasification (case study 3) of
the pyrolysis products and the following synthesis to ethylene is the applied
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thermochemical pathway. Finally, all products are sold in the market. The
market is either locally in the United States or parts are exported to Asia or
Europe. Lignocellulosic biomass can only be transported by truck. Rail and
truck transport is valid for pretreated biomass (sugar syrup and pyrolysis
slurry). Due to technical difficulties, the barge transport of these products
is omitted. All three transport modes (rail, truck, barge) can be used for the
intermediate and final products.

Figure 5.1: Definition of considered biomass value chains in the case study

5.1 Definition of biomass potentials
and locations

The needed data regarding the supply for the optimization sub-model and
the integrated model is presented in this section. The biomass potentials
are estimated as feedstock supply basis for the optimization sub-model.
The biomass potentials define the supply restrictions, which relate to the
capacity and location of pretreatment plants. The focus of the optimization
sub-model is on the residues of three major biomass in the United States.
Corn, sugar cane and sorghum are the major crops in the United States (see
USDA [244]). These are converted either to sugar syrup, which can be used
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in multiple applications such as bioethanol production or food industry or
to pyrolysis products. Corn stover, bagasse, as well as sorghum residues are
considered as crop residues. The input data for estimating biomass poten-
tials is presented in section 5.1.1. The biomass residue cost are essential to
estimate the capacities of biorefineries. As currently no market exists, the
prices need to be estimated beforehand. The necessary input data for this is
presented in section 5.1.2.

The calculated locations of biorefineries are the result of the optimization
sub-model and are presented in section 5.1.3. These are possible suppliers in
the integrated model. Additionally, existing pretreatment plants of first gen-
eration biomass are presented as possible suppliers. These are based on the
processes of wet milling and sugar milling (see section 5.1.4). Objective of
the integrated model is to propose near-optimal locations for the production
of biochemicals. Hence, these considered possible locations are discussed
in section 5.1.5.

5.1.1 Estimation of biomass potentials
in the United States

At first, the considered biomass types in the United States are defined and
their theoretic potentials identified. In the following, corn, corn stover, sugar
cane, sugar cane bagasse, sorghum and sorghum bagasse are described and
their chemical composition presented.

Corn

The following information is published by the US Department for Agri-
culture (USDA) [346]. Corn is the major crop in the U.S. and planted on
more than 90 million acres of land. It is mainly cultivated in the so called
“Corn Belt” in the north west, in the Heartland region. In general, corn is
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used in food, feed and industrial sector. In future, larger corn farms of more
than 500 acres are favored. The number of small farms is declining. The
technology developments in gene manipulation, fertilizers, machinery etc.
have led to an increase of yields. Corn is also one of the main feedstocks
for bioethanol production in the U.S. Due to the rising demand for corn,
the prices rose significantly. Corn does not only have its customers in the
feed and biofuel industry, but is also used for human consumption. Corn
wet mills produce high-fructose corn syrup, glucose, and dextrose as well
as starch and corn oil. Dry mills process corn into cereal, flour and corn
meal. The price of corn is about 192 $ per ton (see Meade et al. [221]).
According to Wu et al. [391], corn is composed of 61 % starch, 3.8 % corn
oil, 8 % proteins, 11.2 % fiber and 16 % moisture.

The corn yields have increased significantly in the past year even though the
corn acreages have remained more or less constant. Weather, GMO corn and
other aspects influence corn yields. How strong the growth of corn yields is,
is depicted in figure 5.2.

Corn stover

Corn stover is the residue of corn harvesting and includes stalks, leaves and
cobs that remain in the field. Formerly, farmers have left the residues in the
field for soil revitalization and erosion prevention. Due to developments in
fertilizing and machinery, a larger amount of corn stover can be utilized for
other purposes, such as the biofuel industry. Corn stover is a lignocellu-
losic biomass and is composed of cellulose, hemicellulose and lignin. The
composition is presented in table 5.1. Corn and corn stover are harvested
in autumn but are stored for a continuous processing throughout the year in
wet mills or biorefineries.
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Figure 5.2: Production areas and yield of corn in the U.S. (USDA, ESR [315])

Sugar cane

Sugar cane is a tall perennial grass, which grows in tropical and subtropical
climates. As sugar cane has a high moisture content, it needs to be processed
as soon as possible as the sugar deteriorates over time. Sugar cane is mostly
cultivated in the south of the U.S., in Louisiana, Florida and small parts of
Alabama and Texas. The sugar cane of Hawaii is neglected in this study
as the transport overseas is unlikely due to high transport cost. In the past
thirty years, the acreages have increased from 704,000 to 885,000 acres.
The sugar production rose from 2.91 million short tons, raw value (STRV)
to 3.623 million STRV (see USDA [229]). The raw cane sugar price is
provided by the New York Board of Trade as it is based on the price of sugar,
which is delivered to New York. Within only three years the raw sugar price
has ranged from 28.82 cents per pound in 2013 to 55.81 cents per pound in
2011 (see USDA [229]).
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Cane field trash

When harvesting sugar cane the stalks are separated from impurities such
as mud or stones. Cane field trash can either be separated directly on the
field and transported on own trucks or the whole crop can be harvested (see
Thorburn et al. [348]). The use of cane field trash also brings problems in
the farming operations. The residue blanket normally has positive effect as it
among others prevents soil erosion and water evaporation. But it also bene-
fits the fire hazard prevention and decreases the pest infection risk. About 70
to 80 % of the harvest is left on the field, the remaining share is transported
to the mill as additional energy source. Cane trash as advantages compared
to bagasse: it has a similar calorific value at a lower moisture content. Cane
field trash consists of tops and leaves. The average lignin content is about
17 %. Cellulose makes up for about 38 % and hemicellulose for 28 %.
The share of extractives is about 13 % and ash accounts for about 4 % (see
Smithers [328]).

Sugar cane bagasse

According to Pandey et al. [276], sugar cane bagasse is a major by-product
in the sugar cane industry. It is composed of about 50 % cellulose, 25 %
hemicellulose and 25 % lignin. The detailed composition is presented in
table 5.1. Bagasse is the residue of cane stalks, which remains after sugar
cane crushing and juice extraction. Currently, it is used for energy provision
for the crushing processes in the sugar mill by firing it in boilers directly at
the production site.

Sorghum

Sorghum seems to be an attractive crop due to its high yield potential, rapid
maturation, high water-use efficiency, and drought tolerance (see Turhollow
et al. [360]). Contrary, corn for example is sensitive to moisture stress,
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regardless of the growth stage. Sorghum is an annual grass. It is mostly
grown in the Great Plains states. Kansas and Texas are the states with the
highest concentration (see Kramer and Ross [187]). Sorghum consists of
the sorghum head, which is mostly grains. According to Wu et al. [391] it is
composed of about 70 % starch, 3.5 % oil, 11.9 % proteins, 1.8 % fibers and
1.8 % ash. The grains can be processes by dry and wet-milling processes
such as corn (see Wall [377]). Additionally, the sorghum stem has a high
concentration of sugars and can be compared to sugar cane.

Sorghum bagasse

Just as sugar cane bagasse, sorghum bagasse is the residue from sorghum
extraction, whilst producing sorghum juice. The detailed composition is
presented in table 5.1. It has a higher protein content than sugar cane
bagasse and is, therefore, more suitable as animal feed (see Eggleston et
al. [104]. Sugar cane and sorghum bagasse are both currently more prof-
itable for energy conversion than for other applications (see Bennett and
Anex [44]). Wright et al. [389] have analyzed the stability and different
usage of sweet sorghum bagasse.

Table 5.1: Composition of biomass residues

Biomass Corn stover Sorghum bagasse Sugar cane bagasse
Source [200] [16] [303]

Cellulose 37.5 40.3 37
Hemicellulose 26.1 21.3 24.3
Lignin 18.9 23.2 21.5
Extractives 10 5 12
Acetate 1 2.9 -
Ash 6.4 2.6 2
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Contrary to sugary and starchy biomass, lignocellulosic biomass cannot be
fully utilized as they grow on the field. A certain amount needs to remain
in the field to maintain a certain nutrition level and to prevent soil erosion.
Hence, the available biomass potential for conversion to pretreated biomass
and biochemicals needs to be estimated.

In general, biomass potentials are distinguished in theoretical, technical and
economic available (see Kaltschmitt et al. [175]). Theoretical potentials
are the total amount of crop residues, which accrue on the field. Techni-
cal potentials can be harvested based on the technical restrictions defined by
nutrition cycles, collecting machine efficiency and soil erosion. This amount
is mostly much smaller than the theoretical available potential. Neverthe-
less, not all technical harvestable crop residues are collectible to a compet-
itive price. Hence, the economic potential is the amount of biomass, which
is gathered without making a deficit. For detailed explanations on biomass
potential estimation see section 3.4.

Detailed data for the yearly available biomass residues potentials are not
available. Hence, the utilizable lignocellulosic biomass needs to be esti-
mated by potential analysis. The ratio of straw to grain is used to approx-
imate the residue amount. The yearly biomass grain production of corn,
sorghum and sugar cane is provided for the individual counties in the
United States by the U.S. Department of Agriculture (USDA) [244]. As
Alaska and Hawaii are too distant from the mainland U.S. and large amounts
of pretreated biomass are necessary for biochemical productions, these two
states are excluded from the scope of this thesis.

Due to weather conditions, the harvest varies each year. As a basis for the
model, the mean amount of harvest from 2010 to 2014 was used. These
years include a very low and also a very high harvest. Therefore, they are
highly suitable for modeling. Regarding the three major biomass corn, sugar
cane and sorghum, 2439 counties in the considered region (east U.S.) are
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included in the model. In other counties either no cultivation of these crops
occurs or no data exists. The calculations are based on dry metric tons. The
harvested amount of corn and sorghum is displayed in bushels (bu) and short
tons for sugar cane.

According to Graham [140], the ratio of corn grain to straw is almost 1:1.
In the case of sugar cane 130 to 150 kg of cane field trash after harvest
and 140 kg of bagasse occur per ton of sugar cane (see Dias et al. [94]).
Many different sorghum types exist, which all have specific residue yields.
In literature, values between 0.7 and 1.4 can be found for the ratio of straw
to grain. Due to the scope of this thesis and the focus on sorghum and
especially its grain a value of 0.8 is assumed.

For a sustainable residue utilization and soil conservation, a certain amount
of the biomass residue needs to remain on the field. The share of residue to
ensure a high concentration of organics in the soil as well as to avoid soil
erosion depends on various parameters. These are for example the type of
soil, the specific nutrient demand of the biomass and the weather conditions
(see Ertl [107]). Soil treatment procedures often lead to a decomposition
of residues to CO2. Hence, the organic substances in the soil decrease and
effects the harvesting yield. In case of less soil treatment, the residue share
can reach a value of 50 %, if the soil is heavily treated then only 30 % of the
straw should remain on the field. Weather related erosion, caused by rain
or wind, can be avoided by a certain amount of residue on the field. The
straw prevents the washing away of soil particles by rain or the ablation by
wind (see Nelson [259]). These assumptions are used to estimate the usable
biomass potentials.
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5 Determination of input parameters

5.1.2 Estimation of biomass residue cost

The cost of the utilized biomass make up for a large share of the total cost
of the value chain. Currently, mostly first generation biomass is used for
the production of bioenergy, bioethanol and biochemicals. A large-scale
market for second generation biomass, except for the utilization as bedding
in stables or similar, does not exist yet. Hence, the prices for crop residues
and bagasse need to be estimated. In the following, the needed input data
for the estimations is presented.

5.1.2.1 Crop residues

Farmers consider selling biomass residues in case it is economically feasi-
ble for them. Therefore, different economic and crop production factors are
included in their decision making. The price, that farmers receive for their
biomass, needs to include cost for harvesting, transport from the field to the
storage space and the storage itself. This also includes personnel, material
and machinery cost. Taking residues from the field can also have an impact
on up- and downstream activities, which are combined to agricultural uti-
lization of the arable land.

In the following, the input data for estimating the market price of biomass
residues is presented. Aim is to give incentives to the farmers to sell their
residues for the conversion to biochemicals instead of leaving them on the
field. Corn stover is an attractive feedstock in the U.S. due to the high poten-
tial and the good conversion properties. Hence, many approaches exist in
literature, which try to estimate the corn stover price. These studies assume
varying values for different harvesting, storage and transport technologies.
Two very different harvesting and storage systems can be applied. Straw
with a very high moisture content can be harvested just like silage and stored
in plastic bags or airtight silos (see Shinners et al. [324]). The second pos-
sibility for harvesting and storing is the storage at low moisture contents.
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This possibility is mostly favored in literature and is, therefore, applied for
the following estimations. The harvest of straw can be performed together
with the grain harvest or separately afterwards. During a joint harvest of
grain and straw the number of field operations is reduced. Unfortunately,
this results also in lower grain yields and a strong increase in energy demand
of the harvester. The straw can be separated and transported in an extra con-
tainer. This option is mostly neglected as it leads to high transportation cost
due to the low density. Straw can also be pressed to bales to increase the effi-
ciency of the transport. Unfortunately, the moisture content is often too high
for direct baling. In case of wet straw the quality of the bales can decrease
faster. Normally, the moisture content of straw for baling should be at most
24 % to avoid depreciation of the bales. To enable the drying of the straw
it is assumed that the straw is processed in a separate step after harvest.
Therefore, the residues are chopped. After drying, the straw is gathered and
formed to bales. This processing enables a harvest yield of 75 to 85 % (see
Milhollin et al. [230]). In a next step, the bales are transported to local
storages. There they remain for up to one year, until they are transported to
production plants. As biomass is harvested mostly in autumn, but is being
processed all year long, the average storage time is six months. The storage
conditions influence the losses within this time frame. Decreased by the cost
for bale foils, which are identical for sorghum and cane field trash as well as
the transport cost to the local storage, the harvesting cost add up to 12.11 $/t
of corn stover. These cost are dependent on the farm area. Large straw har-
vest per acre result in lower specific harvesting cost. Economies of scale
can be applied. As the yield of sugar cane and sorghum farms is lower than
of corn, the harvesting cost are adapted accordingly. Based on the average
harvesting yields of corn, sorghum and sugar cane from the years 2010 to
2014, the harvesting cost can be estimated as follows: corn stover 12.11 $/t,
sorghum straw 36.51 $/t and cane field trash 9.09 $/t. In table 5.3, the cost
for harvesting and local transportation are summarized.
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Table 5.3: Harvesting and local transportation cost of corn stover

Source Collection Baling Transport
$/dt $/dt $/dt

Argo et al. [21] 11.73 3.87
Atchison and Hettenhaus [25] 16.09 9.00
DOE [97] 12.29 4.05
Gallagher et al. [128] 4.09 5.23 3.24
Gallagher and Baumes [129] 5.35 7.26 5.72
Hess et al. [153] 4.59 12.03 2.08
Kaliyan et al. [174] 6.06 26.51 5.81
Morey et al. [237] 4.80 24.89 6.48
Sokhansanj et al. [331] 2.70 9.01 3.66
Vadas and Digman [370] 11.10 3.66
Average 16.37 5.40
minus baling foil
Petrolia [283] 4.26
Harvesting cost 12.11

Together with the crop residues also the nutrients within the residues are
extracted from the soil. These need to be replaced to ensure high harvesting
yields in the following years. The amount of removed residues from the
field depends not only on the considered crop type but also on the area.
Erosion, weather, soil, harvesting techniques, etc. can influence the nutrition
demand. The need for fertilizers and the additional erosion risks lead to
higher biomass residue prices. Fertilizer prices depend on the residue type
due to its composition.

In the following table 5.4, the price for replacing the nutrition is estimated
based on the fertilizer price and the amount of nutrition needed based on the
residue composition. The estimation is based on the three main nutrients
potassium, phosphorous and nitrogen.
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Table 5.4: Nutrient prices

Source Unit N P2O5 K2O Total

Price (December 2015)
Silva [326] $/t 716.50 600.21 456.36
Corn stover
Darr et al. [90] kg/dt 4.80 1.83 8.44
Fixen et al. [118] kg/dt 9.50 2.85 16.00
Wortmann et al. [387] kg/dt 8.50 2.00 17.00
Morey et al. [237] kg/dt 7.40 2.90 12.70
Average kg/dt 7.55 2.39 13.53
cost $/dt 5.41 1.44 6.18 13.02

Sorghum straw
Stichler et al. [2] kg/dt 14.77 9.85 43.56
Cartwright et al. [70] kg/dt 24.10 5.07 27.14
Jones Jr. [172] kg/dt 19.28 5.07 27.90
Wortmann et al. [387] kg/dt 8.50 2.00 17.00
Average kg/dt 16.66 5.50 28.90
cost $/dt 11.94 3.30 13.19 28.43

Cane field trash
Suma and Savitha [336] kg/dt 5.40 1.30 3.10
o.V. [83] kg/dt 3.85 0.95 2.35
Average kg/dt 4.63 1.13 2.73
cost $/dt 3.31 0.68 1.24 5.23

Additionally to the occurring cost for the farmer, also a profit margin needs
to be considered to enhance economic incentives for the farmer. In literature,
mostly a value of 6.5 to 10 $/dt is proposed (see Kaliyan et al. [174], Morey
et al. [237], Sheehan et al. [321]). Brechbill et al. [59] suggest a profit share
of 15 % of the harvesting cost. Not only economic factors influence the
decision of farmers but also the impact of the biomass residue on the soil.
This can, on the one hand, increase the farming of the acre due to rising
effectiveness of fertilizers and decrease of possible germs. On the other
hand, often plying the soil can lead to decreased harvests due to compressed
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soil (see Hess et al. [153]). Based on the above presented calculations a
profit margin of 10.5 % is assumed in this model. The results of the biomass
residue cost are presented in section 6.3.2.

5.1.2.2 Bagasse

Not only crop residues are considered as second generation biomass, but
also processing residues from industrial conversion plants are often ligno-
cellulosic biomass. These are mostly used for energy provision by combus-
tion. The energy from bagasse combustion is larger than the demand in the
mills. Surplus energy is currently used to produce electricity and sell it as
benefit. Ongoing research activities support the development to use these
residues for products with higher value. In this work, bagasse is an example
for second generation biomass from processing. In the following, the input
data for estimating prices for such biomass is presented.

The surplus energy from bagasse is priced by the amount of fossil energy,
which can be replaced. The basis for comparison is the energy content of
bagasse and the fossil fuel, mostly natural gas (see Paturau [277]). The
energy content of bagasse strongly depends on the water content. Normally,
bagasse has a moisture content of 50 %, but is mostly dried to 25 % by
surplus heat of the process. As this affects the efficiency of the process, this
work assumes the pre-dried bagasse.

5.1.3 Possible locations for the biorefinery plants

The following steps are performed to solve the optimization sub-model for
future biorefinery locations: first of all the available biomass potential was
estimated, then possible locations are pre-selected and cost assumed for the
transport of residues.
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The biomass potentials of corn stover, sugar cane bagasse, sorghum residues
and cane field trash were calculated. As no data for residues exist these
were estimated based on the grain to straw ratio. The annual yields of corn,
sorghum and sugar cane are provided by the National Agriculture Statistics
Service of the USDA [244] on a county basis. The production yields vary
from year to year as they depend on weather conditions. In total 2439 coun-
ties were considered for the potential analysis. In the other counties either
no data was available or the crops were not cultivated there.

Soil quality, climate influence, irrigation etc. affect the amount of residues
which can be taken from the field. Additionally, a share of residues is
already used for other purposes such as animal farming. Based on litera-
ture, it is assumed that about 35 % of each residue type can be extracted
from the field (see Ertl [107]).

In total 390 potential biorefinery locations are considered in the optimization
submodel. This value is based on the considered counties. If all 2439 coun-
ties are included, the computational complexity would rise immensely with-
out adding much more detailed knowledge. Hence, only every third county
is considered in the model. These were spread geographically to all counties
in the respective regions in the U.S. Each location has a maximum distance
of 150 miles to biomass residue supply. It is assumed that all farmers are
willing to sell the residues. Consequently, all counties are considered as
suppliers and 390 as production sites in the optimization sub-model.

5.1.4 Possible suppliers for the integrated model

Two different input parameters for possible locations of future biochem-
ical production plants are defined to solve the integrated model, which
has been presented in section 4.5. On the one hand, possible locations
include already existing production sites of corn wet milling, sugar cane
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and sorghum milling plants. It is assumed that existing production plants
for sugar syrup and the respective infrastructure are used for the biochemi-
cals value chains.

Many corn wet milling plants exist in the United States. These are mostly
concentrated in the "corn belt", which is located in the upper Midwest
including the states of Illinois, Iowa, Nebraska, Indiana, Missouri, Kansas,
North Dakota, Tennessee and Ohio. The major companies in 2017 were
Tate & Lyle PLC, Cargill, Archer Daniels Midland Company (ADM),
Ingredion, Roquette and Bunge (seeMcKeany-Flavell Company, Inc. [263]).
Most of the companies do not publish their production capacity and product
portfolio of each location, which can also vary according to the current mar-
ket conditions. The product portfolio contains different qualities of starch
and glucose syrup, gluten, etc. Additionally, in case the production capacity
of corn glucose syrup is known, it is not sure how much of the produced
amount can be purchased. Not only chemical companies can benefit from
existing companies but also companies of the food and feed sector. They
already purchase sugar and starch from these suppliers. Consequently, three
different cases and product capacities are assumed in this work: in case
the maximum capacity is known, 100,000 t of sugar syrup are available for
purchase per year. If the capacity in unknown but the required quality is
produced at that location, then the purchasable amount is set to 50,000 t
per year. In case, the pretreatment already exists but does not produce the
desired quality, the location is included for later calculations but is set to a
quantity of zero tons. The locations and the respective purchasable amounts
are summarized in the appendix in table A.6.

Sugar cane milling plants have been in operation for many years. The capac-
ities of these mills are much smaller than of corn wet milling plants and are
seldom operated by the same company. Most sugar cane milling plants are
situated in the south of the U.S., mainly in Louisiana, Alabama and Florida.
These production sites are used as fixed input data for the supply of sucrose
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syrup. It is assumed that the total potential of sugar cane is already utilized
so that no additional production plants are possible. As the mills are quite
small, the maximum purchasable amount is set to 50,000 t of sucrose syrup
per year.

Wall [377] mentions the only large-scale sorghumwet mill in Corpus Christi,
which has been built up in 1948. Unfortunately it was closed in 1970 and
replaced by corn wet milling (see Inglett [164]).

On the other hand, possible future biorefinery locations as a result from the
optimization sub-model are included in the integrated model. Currently, no
large-scale biorefineries for the production of sugar syrup from crop residues
such as corn stover, bagasse, cane field trash or sorghum residues exist.
For the inclusion of these biomass types in the location planning for pro-
duction sites for biochemicals, the optimization sub-model as described in
section 4.2.2 is implemented. This approach optimizes possible locations
of future biorefinery production facilities. The results of the optimization
model can be found in section 6.3. These locations are set as supplier loca-
tions for second generation sugar syrup. The purchasable amount is defined
as the maximum production capacity. It is assumed that in the building up
phase of such biorefineries direct contracts for the supply of sugar syrup can
be signed and, therefore, the total produced amount purchased.

The existing pretreatment plants (wet mills, sugar mills, sorghum mills) as
well as the transport hubs (mostly along the Mississippi River) are depicted
in figure 5.3. The sugar mills are highly concentrated in the South of
Louisiana. Many corn wet mills are located in Illinois, Iowa and Indiana.
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5.1 Definition of biomass potentials and locations

5.1.5 Possible locations for the integrated model

This work considered different types of locations in the integrated model.
Three possible constructs need to be discussed. Firstly, all identified loca-
tions of the suppliers (wet mill, sugar mill, biorefinery) could in theory be
used for a co-location for the production plant of biochemicals. In order
to maximize the supply safety only wet mills are considered as possible co-
locations. Sugar mills cannot provide large amounts of sugar syrup and are,
hence, less attractive for large-scale production of biochemicals. As cur-
rently no large-scale biorefineries exist, relying on those locations is risky.
Additionally, the quality and quantity of those plants are insecure. This
leads to higher technology risks. Therefore, the locations of biorefineries
are not included as possible final processing plants, but the first processing
step P1 is possible there. This assumption is based on the idea, that joint
venture contracts with biorefineries would be possible, which secures the
supply. The second processing step P2 will still be preferred to at existing
petro-chemical plants.

Secondly, existing petro-chemical production plants can be converted to
biochemical sites or at least the existing infrastructure can be used, such as
storage capacities, downstream processing equipment or logistics. There-
fore, the locations of petro-chemical sites are considered for both, the pro-
cessing steps P2 and P12 to produce the final product. The single production
of the intermediate in process P1 is neglected. This work assumes that the
transport of pretreated biomass to the petro-chemical plants to only produce
an intermediate is not feasible.

Thirdly, a new location can be set up. This possibility is currently neglected
in the model, as the risk of a new process is high and, as such, the location
risk is minimized. Nevertheless, these locations can be added without any
changes to the model in case it should be adapted to other needs.
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In case of biochemical production, the above mentioned assumptions and
the boundary conditions of existing and possible locations of suppliers lead
to 92 locations in the integrated model for biochemical production. These
include 26 wet mills and 20 sugar/sorghum mills. As a result of the opti-
mization sub-model (see section 6.3.3), 44 locations were identified for
biorefineries. Two petro-chemical production sites are included. Addition-
ally, 30 transport hubs as well as 4 export ports are considered. In total, 126
locations are implemented in the integrated model.

The boundary conditions change for thermochemical production sites. As
currently, no large-scale thermochemical processes are in operation, co-
locations or new locations are identical. Hence, all 37 identified pretreat-
ment plants by pyrolysis (see section 6.3.4) can also be treated as possi-
ble locations for the production of biochemicals via thermochemical path-
way. Additionally, the two existing petro-chemical sites are included as they
provide the necessary infrastructure. Again 30 transport hubs are imple-
mented for logistical reasons. As only lignocellulosic biomass is included
in case of thermochemical production, the existing wet and sugar mills are
not included in the integrated model.

5.2 Process simulation and techno-economic
analysis of biochemical processes

After estimating the biomass potentials and identifying possible locations
for biorefineries in the previous section 5.1, the simulation of material and
energy flow balances of the value chain for the production of biochemicals
are shown in the upcoming sections.

In this work, three case studies are considered and evaluated. These case
studies include the biochemical and thermochemical conversion of biomass
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to chemicals. Therefore, three process routes are defined. At first, the bio-
chemical production of two different main chemicals is shown in this sec-
tion. In the following section 5.3, the third case study of thermochemical
conversion is presented.

Sugar syrup is the feedstock for biochemical conversion processes. There-
fore, the production of sugar syrup by corn wet milling, sugar cane milling,
and biorefineries, is presented in section 5.2.1. Then, the biochemical con-
version of sugar syrup to chemicals is explained in section 5.2.2. Two bio-
chemical processes are considered in separate case studies: butanol and
succinic acid. Based on the results of the process simulation, a techno-
economic analysis is conducted by estimating investments and production
cost. The basis for the economic assessment is input data from literature,
which is presented in section 5.2.3.

5.2.1 Production of sugar syrup in biorefineries

For the production of sugar syrup, different processes are chosen, depending
on the type of biomass used. Most processes for first generation are state
of the art and are already implemented within the United States. In this
study, corn is converted to glucose syrup by corn wet milling. Sugar cane
is crushed in mills to produce sucrose syrup. In sorghum mills the sugar
is extracted from sorghum. Lignocellulosic biorefineries are not state of
the art yet. Therefore, the set up of a lignocellulosic biorefinery is defined
by data provided in literature. Dilute acid pretreatment seems to be the
most promising technology as it leads to high hemicellulose break down
and is, therefore, applied in this work. In the following the processes of
corn wet milling, sugar cane milling and sorghum milling as well as dilute
acid pretreatment in biorefineries, are described in more detail.
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5.2.1.1 Corn Wet Milling

Corn can be processed to different qualities of glucose syrups and other
byproducts either by wet or dry milling. Wet milling is especially favorable
as it produces a high purity starch slurry as well as valuable byproducts such
as germmeal, crude oil or animal feed. The starch slurry is utilized for syrup
or high-quality dry starch production (see Blanchard [49]).

In the wet milling process, corn is broken down by physical, chemical and
biological processes into starch, germ, gluten, fiber and steep liquor. The
yields of the process steps depend on the range of by-products produced,
the available equipment and the analysis of corn. The typical corn compo-
sition, and, hence, conversion yields, on dry matter basis are presented in
table 5.5.

Table 5.5: Typical yields of the wet milling process (Blanchard [49])

Product Yield in %

Steep liquor 6.5
Germ 7.5
Bran 12.0
Gluten 5.6
Starch 68.0
Losses (volatiles, etc.) 0.4

The following descriptions are valid for the considered corn wet milling pro-
cess. Corn is first cleaned and steeped in hot 0.2 wt.-% dilute sulfur dioxide
SO2 for about 40 hours. This leads to an easier grinding, removes soluble
material and simplifies the extraction of proteins and starch. These pretreat-
ment steps lead to higher efficiency of the wet milling process as it improves
the separation of the products by softening the kernel, removes soluble mat-
ter and increases the moisture content (see Ramirez et al. [297]). Before
grinding corn, the water of the steeping process is removed. After steeping,
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corn is degermed in two stages. The lighter fraction of the germ, which con-
tains most of the oil, is separated from the suspending starch slurry by hydro
cyclones. After that the germ is dewatered, dried and the oil is extracted (see
Blanchard [49]).

The heavier fraction consists of starch, gluten, fiber and fragments of kernel.
These are separated from each other in various screening steps. The fiber is
then dewatered and dried. The fiber-free fraction is processed in high speed
nozzle centrifuges, in which the gluten is separated (see Blanchard [49]).

In the following process steps, the starch slurry is washed with fresh water
and in multiple stages of hydro cyclones for purification. The grinding pro-
cess consists of multiple stages, which are all carried out by disk plate
grinders. After the removal of corn germs, the product stream is fed to
a screen. This leads to very fine particles in the last grinding step as the
larger particles are recycled to previous grinding operations. According to
Blanchard [49], refiners and impact mills are used. The first is a modern ver-
sion of a stone mill and is composed of two vertical steel discs, which rotate
contrariwise. A 36-inch mill rotates normally at 1,800 rpm and can process
about 508 tons a day with two 250 HP machines. The impact mill only
has one disc, which is fixed either vertically or horizontally. The following
details are based on Blanchard [49].

Germ Separation

Corn germ is produced with a high quality and an oil content of 45 to 50 %.
Due to the high oil content, germ can be separated from other components
by utilizing the density difference in hydro cyclones. To ensure a volume
stream of 18 m3/h (1. step), resp. 27 m3/h (2. step), a pressure drop of 2.8 to
3.2 kg/cm2 is necessary. The top to feed ratio also influences the separation
quality. Low ratios lead to higher qualities of the germ. Afterwards, the
germ is washed on three screens.
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Fiber production

The bottom stream of the germ separation is cleaned from loose starch and
gluten particles as well as large parts of water on a screen. The remain-
ing solid particles are grinned in a third mill to remove the resident starch.
Fibers are resistant to the grinding process. The mixture is washed with
water flowing counter-currently and to separate starch and gluten from the
fibers. These are dried on a screen and a screw press to a moisture content
of 60 %.

Gluten

First sand and rust are removed from the mixture. The starch is concentrated
in a centrifuge. By using the density difference between starch and gluten
both are separated from each other by multiple disc centrifuges.

Starch

The raw starch is washed in a series of hydrocylones. The washing water is
fed in a counter current manner to the starch stream. The bottom stream is
led to the next centrifuge whilst the top stream is fed back to the previous
one. This leads to high quality starch.

Glucose from Starch

The starch is processed to sugar by multiple steps. At first α−amylase
is added to a mixture of corn starch and water. It splits up the starch to
oligosaccharides. These are then processed by γ− amylase secreted by fun-
gus aspergillus. Finally, 2300 liters of corn are needed to produce one ton
of glucose.

In figure 5.4 the basic flow sheet of a corn wet mill is shown.
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Figure 5.4: Scheme of the corn wet milling process
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5.2.1.2 Sugar Mills

Pancoast and Junk [275] have gathered the most relevant data on sugar mills.
The following descriptions are based on their knowledge. Sugar cane con-
sists of 10 to 15 % of dry fiber and 85 to 90 % of juice. The processing of
sugar cane consists of two steps. At first, the sugar cane stalks are cut into
chips and then crushed between heavy rolls. Afterwards the dark green juice
is cleared with lime (CaO) and heat. The impurities of the sugar juice are
separated by sedimentation and vacuum filters. The now dark brown juice is
evaporated in multiple stages to a solid content of about 65 %. The solution
is crystallized on vacuum pans and then the molasses are separated from the
crystals. In the second step, the refined sugar is produced. After washing of
the crystals, the sugar is decolorized and finally crystallized. In figure 5.5,
the process scheme is shown (see Bonomi et al. [3]).

Figure 5.5: Scheme of the sugar cane processing (Meyer [227])

Extraction

The first step in sugar processing is the extraction of the sugar cane juice.
The sugar cane is shredded by revolving knives, which cut the cane into
chips. Once the cane is processed to chips, the sugar syrup can be pressed
out of the chips. The sugar juice needs to be clarified in the following pro-
cess step (see Baikow et al. [33]). In this step, the byproduct bagasse, which
is the solid residue of the extraction, is produced. It can be processed as

188



5.2 Techno-economic analysis of biochemical processes

other lignocellulosic biomass. The dilute acid process to convert bagasse to
sugar syrup is explained in the following section.

Clarification

For the clarification the concentration of P2O5 is essential for the success of
the process. The level should be at least 300 ppm or else the clarification is
rather poor (see Baikow et al. [33]).

Vacuum distillers

The clarified sugar syrup has a very high water content. This does not only
lead to higher transport cost, but also to a higher vulnerability to quality
reducing processes. Hence, the sugar juice is densified in vacuum dis-
tillers to reduce the moisture content. If sucrose is sold to the market it
is mostly crystallized. As liquid sugar is used for fermentation, the crystal-
lization step is neglected in this study and is, therefore, be explained (see
Pancoast [275]).

5.2.1.3 Sorghum mills

Sorghum mills operate similar to sugar mills. At first the sorghum is milled
and separated in grains and stalks. The grains are processed in a hydrolysis
step to convert the starch to sugars. After centrifugation the products are
separated in filter cake and sugars, which are fed to the fermentation reactor.
The stalks are pressed and the sugar juice is extracted such as sugar cane.
Sorghum bagasse is one product, which can be dissolved to sugar by further
processing such as sugar cane bagasse. The juice can also be processed in a
fermentation step such as the sugars from grains (see Wall [377]).
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Grain processing

According to Wall [377], sorghum can be dry and wet-milled. Due to qual-
ity issues, wet milling is more interesting in this work. Watson [381] has
summarized the wet mill processing of sorghum. It is almost identical to the
corn wet milling process. At first, the grain is steeped aqueous at elevated
temperatures and with small amounts of sulfur dioxide. Then, the steeped
grain is milled in multiple steps to optimize the yield and purity of each
component. Afterwards, the germ is separated from the endosperm by liq-
uid cyclones. The endosperm is finally milled and washed. This results in
the separation of fiber from starch and gluten. Due to the higher density of
the starch, the latter can be split by differential sedimentation in a continu-
ous centrifuge.

Stalk processing

Similar to sugar cane, the stalks are crushed by a series of mills, which
results in extracting the juice from the stalks. Then, the juice is screened,
heated up to 100 ◦C and is clarified. Afterwards it is processed in a rotary
vacuum filter. The filtrated juice is then sent to a series of evaporators, which
reduce the water content of the syrup.

5.2.1.4 Lignocellulosic biorefineries

For the production of sugar syrup from lignocellulosic biomass different
processes exist as described in section 2.3.1. In this work, the following
steps are considered: grinding, Dilute Acid pretreatment, conditioning and
enzymatic hydrolysis as these result in the highest production yields. These
are described in the following.
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Figure 5.6: Scheme of the sorghum processing (Almodares and Hadi [16])

Grinding

Before the biochemical and physical-chemical pretreatment of biomass the
feedstock needs to be grinded. By grinding the biomass the surface area
and, therefore, the reactivity is increased. Mass and heat transfer limitations
are minimized through the reduction of particle sizes. The needed energy
for grinding varies depending on the biomass type, its moisture content, the
initial particle size and the machine parameters. Hammer mills are the most
common grinding machines as they need relatively low investments, they
are easy to operate and produce a wide variety of particle sizes. In table 5.6
the needed specific energy depending on moisture content and particle size
is presented.
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Table 5.6: Energy demand for grinding biomass residues in a hammer mill (Mani et al. [213])

Material moisture average
content (wt%) specific energy

consumption (kWh/t)

Corn stover 12.0 19.84
Bagasse 20 48

Sorghum residues a 20 48

a No information on energy consumption for sorghum bagasse milling could be found, value
of sugar cane bagasse assumed

Dilute Acid pretreatment and conditioning

The grinned biomass is pretreated with sulfuric acid or hydrochloric acid.
According to Kumar et al. [192], the acids can support an enzymatic hydrol-
ysis of lignocellulosic biomass to form fermentable sugars. Nevertheless,
acids are toxic, corrosive and expensive and need to be recovered after
the process. The acids are mostly added with a concentration of less than
4 wt %. Especially sulfuric acid seems to be very promising. It can achieve
high reaction rated and convert hemicellulose to xylose and other sugars.

In this thesis aqueous sulfuric acid with a concentration of 0.75 vol.-% is
used. The process is performed at 250 ◦F. The low temperature but com-
parably longer processing time is beneficial for the conversion of pentoses.
Saha et al. [310] state that 92 % of the hemicelluloses can be converted to
sugars but only 47 % of the cellulose is decomposed to sugar. Inhibitory
product such as furfural or HMF are not produced. After the dilute acid
pretreatment the hydrolysate is mixed with sodium hydroxide to neutralize
the acid. The yields of Dilute Acid pre-treatment depending on the biomass
type is presented in table 5.7.
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Table 5.7: Yield of Dilute Acid pre-treatment depending on the biomass type

Biomass Product Fractional conversion (%) Source

Corn stover Glucose 0.065

[295]
Xylose 0.52
HMF 0.05

Furfural 0.05
Acetic acid 1

Sugar cane bagasse Glucose 0.124

[236]
Xylose 0.9
HMF 0.05

Furfural 0.05
Acetic acid 1

Sorghum bagasse Glucose 0.065
Xylose 0.775 [290]
HMF 0.05 [399]

Furfural 0.05 [400]
Acetic acid 1

Enzymatic hydrolysis

In the next step cellulose and xylan molecules are further split up via enzy-
matic hydrolysis in a following reactor. It is processed at 113 ◦F for
72 hours. According to Qureshi et al. [296], the enzymes cellulase and
β -glucosidase lead to high conversion yields. Celluclast and Novozym 188
contain these enzymes. The yields of the enzymatic hydrolysis are presented
in the following table 5.8.

5.2.1.5 Sugar syrup

This work considers different pretreated biomass. In this section, the differ-
ent considered sugar syrups for fermentations are described. These include
glucose syrup, sucrose syrup and syrup from lignocellulose.
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Table 5.8: Yield of enzymatic hydrolysis depending on the biomass type

Reaction fractional conversion (%) Source

Corn stover
Cellulose → sugar 0.65 [6]
Xylan → Xylose 0.38
Sugar cane bagasse
Cellulose → sugar 0.65 [6]
Xylan → Xylose 0.38
Sorghum bagasse
Cellulose → sugar 0.772 [280]
Xylan → Xylose 0.68

Glucose syrup

A glucose syrup is defined by Hull [161] as “a purified and concentrated
aqueous solution of nutritive saccharides derived from starch”, and having
the following characteristics:

• Dry matter of not less than 70 %

• A dextrose equivalent (DE), expressed as d-sugar, of not less than
20 % based on dry matter

• A sulphated as content of not more than 1 % on a dry basis.

DE is defined as the total reducing sugars present in a sugar syrup. It is
a clear liquid with a sweet taste. Cargill [337] recommends to store sugar
syrup between 130 and 140 ◦F to avoid crystallization.

Sucrose syrup

Sucrose syrup from sugar cane and sorghum has a high moisture content.
It contains fructose and glucose to identical parts as sucrose. This sugar is
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also called invert sugar syrup (see Pancoast [275]). As in many publications
only glucose syrup is mentioned but not the fermentation of fructose, this
work assumes, that fructose cannot be metabolized by microorganisms.

Table 5.9: Sugar syrup composition in % by biomass type (Blanchard [49])

Component Corn glucose Sugar cane Sorghum

Water 1.5 50 83.79
Sugars 98 46 14.24
Others 0.5 4 1.97

Lignocellulosic sugar syrup

Lignocellulose is composed of cellulose, hemicellulose and lignin. The cel-
lulose and hemicellulose content is about 45 to 80 % (see Azadi et al. [30]).
Hence, the remaining content is lignin. This is results in low sugar con-
centrations in the sugar syrup as lignin cannot be hydrolyzed to sugar such
as cellulose and hemicellulose. Additionally, most microorganisms can fer-
ment hexoses much better than pentoses. During pretreatment of lignocellu-
lose, inhibitors can be produced which reduce the fermentation efficiency.

5.2.2 Production of biobased chemicals
via biochemical processes

In this section, the modeled technical processes of the fermentations are
described. This thesis focuses on two biochemical products: butanol and
succinic acid. Both can be used as platform chemicals and be further pro-
cessed to higher quality products such as plastics. Butanol has already been
produced by fermentation during the First World War, but the production
was ceased shortly afterwards as it was not economically feasible. In the
past years, rising oil prices have led to a re-establishment of the process in
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commercial scale (see Green [143]). Succinic Acid is currently the most
developed biochemical, which is already been operated in commercial scale
worldwide (see table 2.1).

Both processes are simulated in AspenPlus for all considered biomass types.
The capacity of the plants was set fix to 50,000 tons of the main final product
(butanol, succinic acid). The needed biomass input was optimized respec-
tively. Five process configurations (see section 4.3) were modeled to analyze
heat integration effects.

5.2.2.1 Case study 1: Butanol Fermentation

Butanol is produced via fermentation with the co-products acetone and
ethanol generally in a ratio of 3:6:1 (acetone : butanol : ethanol (ABE)).
Depending on the fermentation time and the downstream processing tech-
nique also acetic acid and butyric acid are produced. The so called ABE
fermentation is mostly conducted by clostridia. The most popular bacte-
ria are Clostridium acetobutylicum and Clostridium beijerinkii. This work
chooses the microorganism Clostridium beijerinkii as it is a hyper-butanol
producing bacteria with high yields of butanol. This increases the economic
feasibility of the production. Consequently, it is more favorable (see Qureshi
and Blaschek [294]). The process is split up in hydrolysis/fermentation and
downstream processing.

Hydrolysis and fermentation

At first, the received pretreated biomass might need to be hydrolyzed to
increase the concentration of pentoses and hexoses for fermentation. After
the pretreatment of biomass according to the above presented steps (milling,
conversion to sugars), the fermentation is performed. The equations of the
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reaction from glucose C6H12O6 to the products are presented in the follow-
ing. For the reaction equations from xylose please refer to the table A.3 in
appendix A.1.2.

Butanol (C4H9OH)

C6H12O6 →C4H9OH +2CO2+H2O (5.1)

Acetone (C3H6O)

C6H12O6+H2O →C3H6O+3CO2+4H2 (5.2)

Ethanol (C2H5OH)

C6H12O6 → 2C2H5OH +2CO2 (5.3)

Butyric Acid (C4H8O2)

C6H12O6 →C4H8O2+2CO2+2H2 (5.4)

Acetic Acid (C2H4O2)

C6H12O6 → 3C2H4O2 (5.5)

In this thesis, the fermentation with C. beijerinckii is chosen. This microor-
ganism metabolizes sugar to the largest share of butanol. The products are
separated from the fermentation broth by gas stripping with the help of the
fermentation gases CO2 and H2. This downstream processing technique has
the advantage that it separates the products in situ from the broth. Butanol
has a negative effect on the fermentation yield as it acts as an inhibitor to the
bacteria. Hence, the separation leads to a maximum yield of 100 % so that
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no residual sugar remains in the broth. The stripped gases with the products
are cooled down to separate CO2 and H2 from ABE.

The reactors in the AspenPlus simulation are modeled by RSTOIC. The
reactions are based on stoicometric reaction equations and the respective
conversion factors. All utilities such as enzymes, nutrition, etc. are mod-
eled by calculators, which are based on FORTRAN codes. These optimize
the amounts based on the reference stream in the model (e.g. cellulose con-
tent of the feed). The fermentation yields based on the biomass type are
displayed in table 5.10.

Table 5.10: Butanol fermentation yields depending on the biomass type

Biomass Product Yield in g/l Source

Corn Butanol 17.6
Acetone 8.3 [108]
Ethanol 0.6

Sugar cane Butanol 9.95
Acetone 3.5 [214]
Ethanol 0.4

Sorghuma Butanol 13.98
Acetone 8.83 [66]
Ethanol 1.2

Corn stover Butanol 34.77
Acetone 14.04 [295]
Ethanol 1.33

Bagasse Butanol 4.7
Acetone 9.7 [170]
Ethanol 6.3

Sorghum bagasse Butanol 12.3
Acetone 6.1 [67]
Ethanol 2.5

a No information on C. beijerinkcii is available, therefore C. acetobutylicum
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Downstream processing

Acetone, butanol, ethanol and water are led into a series of four rectification
columns. At first the light volatile acetone is distilled in the first column.
In the second, ethanol is separated as overhead product. Butanol and water
form a heterogenic azeotrope so that a conventional separation in a fraction-
ating column is not possible. Hence, butanol and water are first fed into a
decanter and parted into a butanol rich and a water rich phase, which are
then led into two distillation columns.

In figure 5.7, the basic process flow sheet for the production of ABE from
corn stover is depicted.

Figure 5.7: Process flow sheet for the production of ABE from corn stover

5.2.2.2 Case study 2: Succinic acid fermentation

Succinic acid fermentation is an attractive route for producing many plat-
form chemicals such as 1,4-butanediol, tetrahydrofuran (THF) and fumaric
acid. The bacteria for metabolizing sugars to succinic acid (SA) are well
known as they occur in nature. Up to now Actinobacillus succinogenes and
Actinobacillus succininiciproducens are the most efficient bacteria as they
produce succinic acid as a major fermentation product (see Vaswani [372]).
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Succinic acid (C4H6O4) is a dicarboxylic acid (see Song and Lee [332]).
According to Song and Lee [332], the demand for succinic acid might rise
in the coming years at it is used in the production for biodegradable poly-
mers. Werpy and Petersen [383] as well as Bozell and Petersen [57] refer to
succinic acid being one of the top building blocks.

Hydrolysis and fermentation

Just like the previous case study, the pretreated biomass might need to
be further broken down to pentoses and hexoses by enzymatic hydroly-
sis. Afterwards, the hydrolysate is fermented as described by Kurzrock
and Weuster-Both [194]. Cell-debris and proteins are separated from the
fermentation broth by ultrafiltration. Afterwards, the carboxylic acids (e.g.
lactic and citric acid) are isolated from the aqueous fermentation broth via
precipitation with calcium hydroxide or calcium oxide. This reaction leads
to calcium salt of succinic acid, which is then filtered off and treated with
sulfuric acid. The so produced gypsum (CaSO4) is generated in an equimo-
lar amount. The process of precipitation decreased the yield of the fer-
mentation by about 15 %. Another disadvantage of this process is the high
amount of calcium sulfate, which is produced but does not have any value
as by-product. Additionally, a large consumption of calcium hydroxide, cal-
cium oxide and sulfuric acid. The fermentation is performed at 37 ◦C and
normal pressure. In the following the reaction equations for the products
based on glucose is presented.

Succinic acid from glucose

7C6H12O6+6CO2 → 12C4H6O4+6H2O (5.6)

Succinic acid from xylose

7C5H10O5+5CO2 → 10C4H6O4+5H2O (5.7)
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The production yields for converting different biomass types to SA is pre-
sented in table 5.11.

Table 5.11: Succinic acid production yields depending on the biomass type

Biomass Sugar Fractional conversion Source
in %

Corn a Glucose 70 [202]
Sugar cane Glucose 77 [167]
Sorghum Glucose 77 [167]b

Corn stover Glucose 80.4 [401]
Xylose 45

Sugar cane bagasse Glucose 43 [55]
Xylose 42

Sorghum resdiues Glucose 43 [55]c

Xylose 42

a No information on A. succinogenesavailable, value based on Mannheimia succiniciproducens
b No information on sorghum fermentation available, the same conversion ratio as sucrose was
assumed

c No information on sorghum residues fermentation available, the same conversion ratio as
sugar cane bagasse was assumed

Downstream processing

According to Cheng et al. [78], the downstream processing of succinic acid
fermentation broth is crucial. It can make up more than 50 % of the total
production cost. Separation technologies are direct crystallization, mem-
brane separation, extraction, and in situ separation and others. Succinic acid
has a high boiling point and is hydrophilic. Additionally, the concentration
of succinic acid in the fermentation broth is with 5 to 15 % quite low. In
the fermentation broth, succinic acid is only one of a large amount of com-
ponents. These are succinate, water, by-products such as ethanol or acetate
as well as residual sugar and salts. Therefore, the downstream process for
separating succinic acid from the fermentation broth is made up of three
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steps. At first, the microbial cells are removed by membrane filtration or
centrifugation. Secondly, impurities are removed and the primary separa-
tion of succinic acid is performed by evaporation, electrodialysis, solvent or
reactive extraction or adsorption with ion exchange resin, molecular sieves,
active charcoal or others. Finally, the residual succinic acid is purified by
vacuum evaporation and crystallization.

In the following, the applied downstream processing technique in this work
is explained. The cell biomass and impurities are removed in a first sepa-
ration step. Afterwards, the pH of the fermentation broth is adjusted to 4.2
by adding 1.1 kg HCl per ton of succinic acid before the vacuum distillation
is performed at 60 ◦C. The crystallization of succinic acid is carried out at
4 ◦C and 2 pH (see Lee [201]). Finally, the crystals are dried.

In figure 5.8 the process flow for the production of succinic acid from corn
stover is presented.

Figure 5.8: Process flow sheet for the production of succinic acid from corn stover

5.2.3 Estimation of investment and production cost

This section defines the necessary input data and assumptions for estimating
investments and production cost. In the following, all necessary data for the
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5.2 Techno-economic analysis of biochemical processes

models are presented. As no biorefinery and biochemical production plants
exist, literature values need to be taken into account. The investment and
production cost are first calculated for the submodel. The results of the
production cost plus an additional profit margin are considered as market
price for sugar syrup from biorefineries. Hence, it is used as input for the
integrated optimization under uncertainty.

The production cost as well as the investment related cost are based on a
time period of one year. The total project lifetime is assumed to be twenty
years. In literature, different values in a range from ten (see Bergman [46])
to thirty years (see Humbird et al. [162]) can be found. Although single
elements of the production process may have shorter life time expectancy,
their utilization can be prolonged by maintenance and repair.

The investment data as well as the specific cost for the production cost are
valid for both, butanol and succinic acid production.

5.2.3.1 Estimation of investment

As a result of the process simulations, the capacity of the single equipment
can be calculated. According to section 3.6.1, the investment of the planned
production plant is estimated by comparing it to reference investments of
a reference unit and its capacity. Table 5.12 presents a summary of the
needed equipment for converting biomass to biochemicals. In general, many
requirements are valid for different fermentation process. Therefore, the
values of a bioethanol production plant can be used as reference. In case
the production plant is built up at a single location and is not split up into
two separate processes, this work assumes that the operator can benefit from
synchronizing effects. Therefore, the investments of P12 are only 95 % of
the sum of the investments for P1 and P2.
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5.2 Techno-economic analysis of biochemical processes

5.2.3.2 Estimation of production cost

Production cost are mainly variable cost. They depend on the produced
amount of final product, and, hence on the needed biomass and utilities.
Therefore, in order to estimate production cost, the specific cost of biomass
and utilities is multiplied with the biomass and utility demand. Such utilities
are energy, steam, enzymes, etc. The majority of the input data is regionally
specific. As the prices and cost for feedstock, energy and other utilities
depend on the state and, hence, on the location of the plant, price ranges are
presented in the following table 5.13.

Table 5.13: Current prices for feedstock, energy and utilities

Feedstock/utility Price Source

Corn 192 $/t [221],[368]
Sugar cane 40 $/t [362]
Sorghum 35 $/t [19]
Corn stover 40.66 $/t see section 6.3.2.1
Bagasse 25 $/t see section 6.3.2.2
Cane field trash 28.71 $/t see section 6.3.2.1
Sorghum residues 84.64 $/t see section 6.3.2.1
Electricity 0.05 - 0.1 $/kWh [147]
Water 0.53 $/t [379]
Natural gas 12.5 $/MWh [333]
Enzymes 20 $/kg [208]
Ammonia 450 $/t [184]
HCl 250 $/t [62]

For location planning and comparison of different alternatives, the maxi-
mization of the NPV is a suitable variable. In order to estimate the NPV
not only the cost in a production process are necessary, but also the rev-
enues. The assumed prices for the final products to calculate the revenues
are presented in table 5.14.
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Table 5.14: Current prices for final products

Product Price Source

Butanol 1500 $/t [134]
Ethanol 1170 $/t [103]
Acetone 1600 $/t [269]
Succinic acid 2000 $/t [199]

5.3 Process simulation and techno-economic
analysis of thermochemical processes

Not only biochemical processes can be applied to produce biochemicals.
Thermochemical processes such as the combination of pyrolysis for pre-
treatment and the conversion to chemicals via gasification and synthesis are
currently discussed thoroughly. In order to compare the results of thermo-
chemical and biochemical conversion pathways the above mentioned pro-
cess is considered in the following.

Contrary to the biochemical conversion, the thermochemical processing
of first generation biomass is not as economically favorable. Sugar and
starch is less favored for pyrolysis due to their chemical composition (see
Carpenter et al. [69]). Hence, in this case study only the biomass residues
are considered: corn stover, sugar cane bagasse, sorghum residues and cane
field trash.

Identical to biochemical conversion (pretreatment, fermentation, down-
stream processing), the thermochemical pathway is designed as a three step
process: at first, biomass is pretreated by fast pyrolysis (P0) to gain biooil
and biochar, the so called slurry. The transport of this slurry is more rea-
sonable than of biomass itself as the energetic density is much higher (just
as sugar syrup). After the pretreatment of biomass, the slurry can be trans-
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5.3 Techno-economic analysis of thermochemical processes

include the gasification of the slurry to syngas (P1) and afterwards the con-
version of syngas by DME synthesis to ethylene and gasoline (P2). Ethylene
is a platform chemical, which can be further processed to various chemicals.
In the following, the processes and their parameters are described.

5.3.1 Case study 3: Production of biooil via pyrolysis

For the production of biooil from biomass residues the thermochemical pro-
cess of fast pyrolysis is used. Trippe et al. [358] have assessed the fast
pyrolysis of wheat straw to char, oil and gas and the further processing to
syngas and ethylene. Their data is especially be used for the economic
assessment. For the representation of the processes the conversion values
given in table 5.15 for the different biomass types are presented.

Table 5.15: Biooil production yields depending on the biomass type

Biomass Product fractional conversion Source
in %

Corn stover Oil 62
Char 17 [388]
Gas 21

Bagasse Oil 60.4
Char 18 [330]
Gas 21

Sorghum bagasse Oil 69.4
Char 13 [287]
Gas 17.6
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5 Determination of input parameters

The simulation of pyrolysis in AspenPlus has hardly been done in literature
(e.g. Letsinsky and Palit [203]), as often too many products in unknowable
concentrations occur. As this research is beyond the scope, the simulation
of the pyrolysis is excluded in this work. Therefore, the basic yields as
in table 5.15 have been used in the optimization sub-model. Based on the
yields of pyrolysis, the locations of possible locations are optimized by the
optimization sub-model. These locations are suppliers of pyrolysis slurry
for syngas and ethylene production.

5.3.2 Production of biobased chemicals via
thermochemical processes

After preprocessing of biomass via pyrolysis to biooil and char (P0), the
slurry from oil and char is used as feedstock for the production of biochem-
icals. The products are gasified to synthesis gas (syngas) (P1), which is
afterwards converted to ethylene (P2). In the following, the processes and
the respective input data are presented. Both processes are based on the
currently at the Karlsruhe Institute of Technology (KIT) developed bioliq
concept (see Dahmen et al. [87]). It can convert low-value lignocellulosic
biomass as straw or wood to biofuels or biochemicals. This work focuses on
biochemicals, therefore the production of ethylene is considered. Ethylene
can be converted to a large variety of chemicals such as polyethylene (PE),
polyethylene terephthalate (PETE) or olefins.

The bioliq concept is a two-stage process (gasification and synthesis), which
enables the conversion of biomass with low energy density. In this work, the
capacity of the synthesis plant was set fix to 50,000 t ethylene per year. The
capacity of the gasification plant was sized respectively to provide enough
syngas for 50,000 t of ethylene.
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5.3 Techno-economic analysis of thermochemical processes

Gasification of pyrolysis products to syngas

The gasification of the pyrolysis slurry has been assessed techno- economi-
cally by Trippe et al. [357]. The gasification has been modeled in AspenPlus
to simulate the material and energy flow balances. Trippe et al. [357] con-
sider entrained flow gasification as the most promising technology for the
production of biochemicals from gasification. In their study a gasifier of the
size of 1 GWth input is assessed. Different configurations have been mod-
eled. The authors varied the gasification agent (oxygen and oxygen/steam),
operating pressures (40 and 80 bar), the H2 : CO ratio (1:1 and 2:1) and the
feed composition (100 % biomass and 90 %/10 % biomass). This work con-
siders only the following configuration: oxygen, 80 bar, H2 :CO ratio of 1:1
and 100 % biomass. The very simplified process is depicted in figure 5.9.

Figure 5.9: Process flow sheet for the production of syngas from slurry (Trippe et al. [357])

To produce oxygen for gasification, a cryogenic air rectification is installed.
Before gasification, the slurry of the pyrolysis needs to be handled, trans-
ported, stored, and pre-heated to approximately 120 ◦ C. In table 5.16 the
in- and output data for the gasification process is presented.
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5 Determination of input parameters

Table 5.16: Input and output data of gasification (Trippe et al. [357])

Input

Biomass slurry [t/h] 192
Natural gas

[
Nm3

]
50

Power consumption [MWe] 58
Output

Syngas
[
Nm3/h

]
217,810

Usable heat [MW ] 152
Slag [t/h] 15.3

The product stream from gasification consists of carbon monoxide CO,
hydrogen H2, steam H20, carbon dioxide CO2 and methane CH4. In the
considered process the product stream is conditioned accordingly to enable
an efficient synthesis, which is described in the following section. There-
fore, the product stream is dewatered and the H2 : CO2 ratio is adjusted to
1:1 for DME synthesis. In case Fischer Tropsch synthesis is applied in the
next step, the respective ratio should be 2:1. Finally, other impurities (hydro-
gen sulfide (H2S), carbonyl sulfide (COS), ammonia (NH3) etc.) need to be
recovered from the syngas as they can harm the catalyst, which is necessary
for the synthesis.

The implementation in AspenPlus was performed by defining the stream
class MIXED and including the sub-stream non-conventional (NC) with par-
ticle size distribution (PSD). Only the main components (H2, C, CO, CO2,
H2O, CH4, C2H6, N2 and O2 were modeled. For further details on the defi-
nition of unit processes see Trippe et al. [357].

Production of ethylene from syngas

Trippe et al. [359] and Haro et al. [149] have analyzed the production
of ethylene from syngas. After the production of syngas, it is cleaned and
conditioned. The molar H2 :CO ratio needs to be 1 : 1 to enable an optimized
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5.3 Techno-economic analysis of thermochemical processes

DME conversion. The advantage of this ratio is also, that it is quite near
to the natural composition of biomass-derived syngas. At a temperature of
35 ◦ C at 75 bar the syngas is fed into the synthesis plant. For the assessment
the process alternative of 80 bars (otherwise 40 bars) is chosen. The higher
pressure results in higher investments but also higher yields. The overall
process flow sheet for the production of ethylene from syngas is shown in
figure 5.10.

Figure 5.10: Process flow sheet for the production of ethylene f. syngas (Trippe et al. [149])

The study of Haro et al. [149] models a single step reactor. Here the
methanol synthesis and in situ dehydration take place as in equation 5.8.

3CO2+3H2 →CH3OCH3+CO2 (5.8)

The process has been simulated in AspenPlus just as the biochemical pro-
cesses for the production of butanol and succinic acid. Consequently, the
results are comparable. To model hydrocarbons and light gases accurately,
Haro et al. [149] applied the Soave-Redlich-Kwong (SRK) thermody-
namic method and the SRK with Boston-Mathias for low pressures. The
DME, olefins synthesis and gasoline reactors were modeled as yield reac-
tors (RYield); the DME synthesis as equilibrium (REquil) and the isomer-
ization reactor as stochiometric reactor (RStoic).
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5 Determination of input parameters

5.3.3 Estimation of investment and production cost

Haro et al. [149] provide the investment data for the basic equipment. The
investment are given in million Euro of 2010. Hence, the data needs to be
adapted to Dollars and the considered year of 2016 based on the capacities
of the units and the scaling factors as defined by the authors. Both have used
1 GWth as input capacity for gasification and the produced amount of syngas
for the synthesis. The investments are the reference values for the adaption
to a production capacity of 50,000 t of ethylene.

This approach is identical to Trippe et al. [356] and Haro et al. [149].
Hence, their values are comparable and applyable. The investment data is
presented in table 5.17.

Table 5.17: Economic input data of thermochemical conversion

Cost Pyrolysis Gasification Synthesis
Source [358] [357] [149]

Capital cost [tEUR] 43,950 274,000 270,800
Maintenance[tEUR/a] 1,857 12,273 8,124
Taxes [tEUR/a] 439.549 2,738 5,416
Insurance [tEUR/a] 439.549 2,738 5,416

For water, heat and electricity cost, the same values as in table 5.13 are
assumed. Additionally, a catalyst for the water gas shift reaction is neces-
sary. This work assumes a value of 1.7 $/kg of product per year (see Trippe
et al. [357]). For the calculation of the revenues in the optimization sub-
model and the integrated model, the sales prices of the pyrolysis products
as well as of gasoline and ethylene are necessary. Pyrolysis oil can be sold
for 200 $/t (see Trippe et al. [358]). Currently, the gasoline price is about
50 $/t (see EIA [163]). This work assumes an ethylene price of 675 $/t (see
Waldheim [376]).
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5.4 Definition of logistical parameters

5.4 Definition of logistical parameters

In this section, the relevant logistical parameters for the optimization sub-
model and the integrated model are defined. The optimization sub-model
only includes truck transport due to the short, economically feasible trans-
port distances of lignocellulosic biomass. The integrated model considers
three transport modes: rail, barge and truck transport. Not only the choice of
transport influences the design of the supply chain, but also the restrictions
and cost of the transported material depending on the mode. In the follow-
ing, the specifications of the American transport system is displayed.

With 39.5 % of all transported ton-miles of freight, rail is according to
LaHood [195] the most used transport mode in the U.S. followed by
truck (28.6 %) and water (12 %).

As seen in figure 5.13, truck transport of corn has the largest share in the
U.S. Even though for other goods the transport via rail seems to be more
reasonable, the transport distance of corn to pretreatment plants such as wet
mills is too short. In general, the transport of corn has increased signif-
icantly in the past years, showing also the rising demand for corn due to
biofuels and glucose syrup utilization. The transport of corn via barge does
not seem to be a feasible option as most of the corn is converted within the
corn belt itself. These observations are not only valid for corn but can also
be transferred to other biomass types.

The development and projection of the share of different transport modes,
both domestic and in total, are displayed in figure 5.11. Truck is by far the
most favored transport mode and will rise in the future, but multiple modes
are also expected to increase by 2040.

In the following, the different transport systems in the United States are
explained.
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Figure 5.11: Future development of transport of corn in the U.S. (USDA, AMS [8])

5.4.1 Rail transport

The U.S. have a very dynamic freight system. Especially four companies
own rail tracks and organize the transport of grains, solid and fluid products
as well as chemicals on a total of 140,000 rail miles long network. These
companies are BNSF (Burlington Northern Santa Fe LLC), CSX (Chessie
System, Seabord System, X-Multiplicator), NS (Norfolk Southern Railway)
and UP (Union Pacific Railroad). Most bulk materials such as grain and coal
are transported via rail (see Federal Railroad Adminstration [115]). The
amount of goods, which are transported on rail, has increased in the past
years. Even though the system mileage has decreased, the ton-miles rose
immensely (see Denicoff et al. [93]).

5.4.2 Barge transport

The waterways for the transportation from north to south are well estab-
lished in the eastern United States. The main network for barge transport
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includes theMississippi River and its waterway branches such as theMissouri

River, Ohio River or Illinois River. According to the National Waterways
Foundation [341], the overall commercially utilizable inland waterways sys-
tem of the United States is about 12,000 miles long and includes more than
240 lock sites. It stretches from Minneapolis, Minnesota to New Orleans,
Louisiana. With its connected rivers (The Illinois, Missouri, Ohio River,
Arkansas and Ouachita Rivers), the whole system covers 9,000 miles (see
Kruse et al. [188]). In 2005 approximately 513 million tons of domestic and
coastwise freight were shipped down the Mississippi River system. Since
then, transport has increased significantly.

As already seen above (see figure 5.11), barge transport is only scarcely
used for grain transport. Reasons for this are not only the higher transport
cost, but also the seasonality of barge transport. Especially in the north of
the United States, the river navigation system is shut down due to weather
and ice conditions in winter (see Meersman [222]). About 14 % of the
intercity freight is transported on waterways, which is equivalent to about
624 million tons. It is especially important for the agricultural industry as
more than 60 % of the nation’s grain exports are handled on the waterways
(see National Grain and Feed Association [141]).

5.4.3 Truck transport

Transport is the most critical element in biomass supply chains. Especially
the transport of biomass feedstock from the field to the first storage area is
very expensive due to the wide spread accumulation of biomass. In case
of grains in the United States, many so called elevators exist. Farmers can
transport their grain, mainly corn, to these facilities, which can hold between
50,000 and 5,500,000 bushels.
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The assumed variable transport cost for lignocellulosic biomass are 0.25 $
mi·t

(see Brechbill et al. [59], Gallagher and Baumes [129], Sokhansanj et
al. [331] a.o.). This work presumes fix transport cost of 4.85 $/t. The trans-
port cost for pretreated biomass and chemicals for each transport mode is
presented in table 5.18.

Table 5.18: Transport cost for pretreated biomass and chemicals by transport mode

Transport mode Fixed Variable Source
$
t

$
mi·t

truck 6.3 0.1938
rail 35 0.056
barge 11 0.008 [139]

5.4.4 Hubs

A hub is needed in case transport mdes are changed on route. At these
facilities, the equipment is available to shift the product from one mode to
the other. Depending on the total freight amount and the considered state
size, more or less transport hubs exist. The state with the most hubs is Texas
with 43 port terminals and 20 truck/rail facilities (see Strocko et al. [335]).

In this work, the following hubs were included. They can be accessed by
truck, rail and barge, whilst not all can serve all transport modes.

• Atlanta

• Baton Rouge

• Birmingham

• Burlington

• Caruthersville

• Chicago

• Cincinnati

• Cleveland

• Dallas

• Detroit

• Dubuque

• Granite City
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• Greenville

• Hannibal

• Houston

• Kansas City

• Louisville

• Memphis

• Minneapolis

• Natchez

• New Madrid

• New Orleans

• Omaha

• Quincy

• Saint Paul

• Scott City

• St. Louis

• Toledo

• Vicksburg

• West Quincy

5.4.5 Export

This work considers the four main export ports in the U.S.: New York,
New Orleans, Freeport and Los Angeles. In case many ports are close to
each other as e.g. Corpus Christi, South Texas, Houston and Freeport, only
a single port was considered. The export is currently enabled for Asia and
Europe. Due to their low industrial significance, Africa and South America
are neglected in this study. Nevertheless, the inclusion is possible in the
model. Distribution to the local markets is considered, but the definition of
certain customers or regions have been not been included in this study. The
main ports and their export shares are depicted in figure 5.12.

The export shares depend on the process and (by-)products. Bioethanol and
biobased gasoline for example will be fully used in the U.S. due to their
biofuel quota. The assumed export shares are summarized in table 5.19.

Each export port has its specific export rates. As New Orleans and Freeport
are highly frequented, their export rates are quite high. This work assumes
an export rate of 88 $/t from New Orleans and 100 $/t from Freeport.
New York and Los Angeles are less busy ports. Therefore, this work
assumes export rates of 60 $/t. As no values from literature could be found,
these value are based on expert opinions (pers. comm.).
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Table 5.19: Export shares depending on product and continent

Case study Product Local Europe Asia

1
Butanol 0.23 0.35 0.42
Acetone 0.23 0.35 0.42
Ethanol 1 - -

2 Succinic acid 0.23 0.35 0.42

3 Ethylene 0.23 0.35 0.42
Gasoline 1 - -

5.4.6 Transport distances

For optimizing the location of biochemical plants and the respective logis-
tics, the transport distances between the potential locations, the supply nodes
and demand sinks are essential. The transport cost depend on the type of
transport and the transport distances. Therefore, all distances between the
locations need to be estimated for each transport mode. Rail, barge and truck
have their own networks. Hence, the transport distances vary from transport
mode to transport mode.

As many locations are considered in this model, the manual calculation
of transport distances is time consuming. Consequently, two different
approaches were applied to estimate the truck and rail transport distances.
For truck transport, Google Maps is used as database. To download the
transport distances, the coordinates of each location is necessary. It is used
as input for a Python code in Anacoda. With two given coordinates, the code
calculates the distances between those nodes as also applied in Zimmer et
al. [404].

To estimate rail distances, the given GIS data from the U.S. Department
of Transport [354] on all nodes and edges of the U.S. rail system is used.
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For the barge transport, distances the values provided by the U.S. Army
Corps of Engineers [365] have been analyzed and the differences between
the locks result in the barge transport distances.

5.5 Risk Analysis

In this section, the risk analysis and its input data are presented. At first,
the risks have been identified based on discussions with experts from indus-
try and by literature research (see section 3.8.2). The experts were part of a
joint project with the chemical industry and included partners from purchas-
ing, engineering and logistics. A recent literature review by Bairamzadeh
et al. [34] already includes a large variety of general risks. Unfortunately,
they do not go very much into detail. Hence, the identified risks in this
work are more detailed and specific to the case studies. Nevertheless, the
list below is not intended to by exhaustive. In general, the identified risks
are clustered as defined in section 3.7.5 in transport, process, environmental,
political, supply and market risks. The specific risks are described in detail
and the utilized data for analysis are displayed. The presented risks are espe-
cially relevant for biomass value chains of corn, sugar cane, sorghum as well
as their residues for the production of the biochemicals in the United States.
Some risks may be also considered for other biomass in other regions and
other final products, but many risks are specific for this application.

The risks were identified for biomass value chains from biomass cultivation
to the transport to the final port as defined in figure 5.1. This work does not
include risks for the export of products. The identified risks are based on the
current state of the art and do not include risks, which might occur based on
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future setting. Nevertheless, uncertainties of future developments based on
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5.5 Risk Analysis

5.5.1 Transport risks

Transport risks include multiple different uncertainties but are all depen-
dent on the utilized transport mode. In this work, three transport types are
considered: rail, barge and truck. The specifics of the infrastructure net-
work are presented in section 5.4. In the following, the identified uncertain-
ties are assessed for each transport mode. The main identified uncertain-
ties are: accidents, congestion, strikes, restrictions due to sugar syrup and
time delays caused by the utilization of multiple transport modes connected
by transport hubs. Especially in the United States, the historical data for
transport modes are well documented. Consequently, many data is available
for risk assessment. For estimating the likelihood of risks in transporta-
tion, all risks are analyzed for all transport modes. The respective historical
data were gathered for each relevant state in the considered region. Hence,
twenty states for three transport modes were investigated for each risk.

The consideration of uncertainties in the transport sector is crucial as the
domestic transport of corn as increased immensely in the past years as pre-
sented in figure 5.13.

From 1984 to 2013, the total transported amount of corn has increased three-
fold. Truck transport has risen the most. It is the most favored transport
mode for corn. The main reason for this is the lacking railway network to
every farmer and the short transport distances to the next processing plant.
Barge and rail transport has remained more or less constant in the past years.
In the following, the different transport risks are explained.
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Figure 5.13: Development of domestic transport of corn in the U.S. (USDA, AMS [8])

5.5.1.1 Accidents

Accidents are reported quite thoroughly by the Federal Motor Carrier Safety
Administration for truck [114], the Federal Railroad Administration [266]
for rail and the National Transportation Safety Board [258] for barge. The
accidents and their history are presented in the following.

Rail

The Office of Safety Analysis of the Federal Railroad Administration [266]
gathers all rail accidents by state and rail company from 1975 onward. This
data provides the accidents on all railroads in the United States. All acci-
dents of the largest rail companies (BNSF, UP, CSX and NS) in the relevant
states were considered in the analysis. For estimating the probability of rail
accidents, the average amount was calculated based on the available years.
As the different states have different rail distances, the number of rail acci-
dents need to be normalized to the distance of each state. In states with
longer rail miles the probability of an accident is higher. Therefore, the
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amount of accidents is divided by the rail miles in the respective state. In
figure 5.14, the rail accidents are in the past years are displayed by state.

Figure 5.14: Rail accidents by rail mile (Office of Safety Analysis [266])

Truck

The National Highway Traffic Safety Administration (NHTSA) has gath-
ered data on truck accidents in the United States (see NHTSA [252] [253]
[255] [254] [251] [250] [249] [248]). For the years 1993 to 2013 these acci-
dents have been analyzed. The number of accidents are clearly dependent
on the economy. In the time after the crash of 2008 the truck accidents
have decreased immensely as not as many goods needed to be transported
in those years. With rising economy, the accidents also increased again.
Evidently, more accidents occur in larger states with more traffic (e.g. see
Texas). Hence, the probabilities of accidents were normalized by the area
of each state. Not all reported accidents were considered. This work only
analyzed the accidents of large trucks in highways. Small truck accidents
on field roads were excluded from the analysis.
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These do not have the large influence (neither probabilities nor conse-
quence) to be considered in this work. The truck accidents of the past
years are displayed by state in figure 5.15.

Figure 5.15: Truck accidents by highway mile (NHTSA [255])

Barge

Barge accidents are rare. Mostly, accidents are directly dependent on the
river level. The Mississippi River is the main waterway from the corn belt
to the southern ports. In figure 5.16, the historical river levels are displayed.
Even though barge transport is highly weather related, the fatalities are much
lower compared to other transport modes. On a per ton mile basis, there is
only one fatality in the marine sector for every 22.7 in the rail or 155 fatal-
ities in the highway sector (see Texas Transportation Institute [341]). The
reason for this is also the low amount of barge on the Mississippi River
compared to the high frequency of trucks on highways. Although a truck
can hold much less goods than barge, the amount of corn transported by
truck is much higher (see figure 5.13). Myers [242] describes an accident
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in 2014 as a barge accident caused oil spill. Another oil spill occurred
in 2013 near Vicksburg (see Mohr [235]). Two separate accidents due to
floods on the Mississippi and Ohio rivers caused the closure of the rivers
(see Plume [288]). These are only a few examples for barge accidents.

Figure 5.16: History of Mississippi’s level at St. Louis (McDonnell [219])

5.5.1.2 Congestion

Congestion is affected by different aspects in the transport sector and is
monitored by the U.S. Department of Transportation [112]. It occurs if the
available capacity of a transport system (in this thesis mainly the highway
system) is lower than the actual traffic demand. Influencing factors for con-
gestion are: bottlenecks, traffic incidents, work zones, bad weather, poor
traffic signal timing and special events. The effect of congestion is often
not as dramatic as accidents but can cause delays, which are not planned in
Just-in-Time production.
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Rail

In the past years the amount of transported grain, oil and coal have increased
significantly in the United States (see The AgriNews [15]). As a conse-
quence, congestion occurs more and more often. Mostly oil companies
have the upper hand so that farmers and elevators can wait for thirty and
more days for a rail car to arrive. This leads to a shift of rail transport to
barges (see Meersman [222]).

Additionally to the rising demand for oil and coal, also an increasing amount
of grains leads to bottlenecks in the Upper Midwest. Especially the har-
vest of 2013/2014 caused delays in Minnesota, Montana, North Dakota
and South Dakota (see USDA [79]). These states also lack an access to
barge transport and can therefore not elude. Currently, the rail system oper-
ates near full capacity, which is risky in case other incidents such as severe
weather occur. Consequently, it is assumed, that rail congestion will further
increase in future.

Truck

Due to rising freight demands, the congestion of trucks spreads from urban
areas to larger stretches in also urban areas. According to the Federal High-
way Administration [113], congestion will increase by 2035. Highway seg-
ments with more than 10,000 trucks per day are expected to rise to more
than 10,000 miles for slow traffic and an additional 23,000 miles for stop-
and-go-traffic. This development is caused by an increased freight volume.
According to the Department of Transportation [112], truck congestion only
lead to a mean delay of a few minutes. Nevertheless, the development of tar-
diness will increase by 2035 (see figure 5.17 and figure 5.18) and are, hence,
included in this work.
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Figure 5.17: Congestion 2002 (FHA [112])
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Figure 5.18: Congestion 2035(FHA [112])

Barge

Congestion in barge transport occurs once multiple vessels arrive at the same
time at a port although they are normally scheduled throughout the week.
Additionally, the size of container ships is constantly increasing, leading to
longer loading times are space issues. Due to lock operations and an aging
infrastructure the inland waterways cause bottlenecks. In 2007, 31 % of
the 520,000 vessels were delayed on average by 30 to 90 minutes. Envi-
ronmental risks such as floods, droughts, storm or ice can cause additional
congestion (see Federal Highways Administration [113]).

5.5.1.3 Strike

Depending on the country and the existing labor unions, the risk of strikes
varies. In the United States, the number of strikes has decreased immensely.
As shown in figure 5.19, the total strikes, including sectors, which are irrel-
evant for this study (e.g. teachers and hospitals), occur seldom in the past
years. Therefore, the risk of strikes seems negligible and are not further
modeled with probabilities in this work. Nevertheless, the failure of a single
transport mode due to strikes or similar needs to be considered. Hence, this
risk is modeled as a scenario (see section 5.6.5). Strikes cannot only occur
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in the transport sector but also in production (see Arnesen [22]). This can
lead to shutdowns of the plant.

Figure 5.19: Number of U.S. strikes and locouts involving 1000 or more employees
(Matts [284], Office of Compensation and Working Conditions [265])

5.5.1.4 Restrictions for transporting pretreated biomass

Due to the crystallization characteristics of sugar syrup, the transport dis-
tance and, hence, time is restricted to the ambient temperature. Sugar syrup
can be transported in insulated containers via truck or rail, but not in vessels.
In barge transport the risk of crystallization and contamination is too high
as the vessels cannot be insulated, heated and cleaned as required. For more
details on crystallization of sugar syrup see section 5.5.5.1. These restric-
tions do not only apply to sugar syrup but also to pyrolysis slurry. It does
not crystallize when it gets too cold, but too long transportation times and a
lack of mixer can lead to sedimentation (see section 5.5.5.1).
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5.5.2 Process risks

In this section, process risks, which occur in chemical industry in general
and especially whilst using biomass as feedstock are described. Gunukula
et al. [145] have discussed the effect of platform technologies for the pro-
duction of biochemicals for risk reduction. Often, facilities are designed to
produce a single main product. These are extremely prone to technological
and market risks as they cannot swap products in case the demand decreases.
If the intermediate product can be combined by bio- and chemical-catalysis
and be further processed to other chemicals, then the financial risk might
decrease and profitability of the investment will rise. The considered pro-
cess risks in this work are utility demand, varying yields, shutdown of pro-
duction plants, color of the product, and technical storage risks.

5.5.2.1 Utility demand

The processes for converting biomass to chemicals vary depending on the
feedstock. In most cases, this leads to varying utility demands. This can
have a positive effect if for example less water is needed for the fermen-
tation but can also mean an increase of energy in case of additional down-
stream processing steps. The varying utility demand is included in the model
by simulation of different biomass sources. The quality of biomass cause
varying compositions of the pretreated biomass. However, these risks are
reduced by supplier contracts and are, therefore, minimized. Consequently,
this risk is not further analyzed in this work.

5.5.2.2 Process stability and varying yields

This section analyzes the process stability and varying yields resulting from
different feedstocks and process conditions for biochemical and thermo-
chemical processes.
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Fermentation and other biochemical processes

Fermentation yields strongly depend on the performance of the microorgan-
isms. Mainly, the sugar composition and the presence of inhibitors in the
fermentation broth will affect the efficiency of fermentations. Other pro-
duction factors such as pressure, temperature, etc. also influence the fer-
mentation yield but are more easily to control. Especially sugars syrups
from biorefineries of lignocellulosic biomass contain not only C6 sugars as
sugar but also C5 sugars (e.g. xylose), which are often not as easy to metab-
olize. Hence, the choice of biomass influences the production yield. The
influence is quantified by the simulations in AspenPlus and is used as input
parameter for the integrated model.

Thermochemical processes

Thermochemical processes are not as sensible to the biomass or pretreated
biomass composition, especially the lignin content (see Boateng et al. [52]).
Nevertheless, high ash content will cause slag in the gasifier, which can
reduce the overall efficiency. Additionally, varying qualities can lead to dif-
ferent H2 : CO ratios, which need to be buffered by the catalyst and cause
additional cost. Consequently, varying biomass qualities can lead to addi-
tional processing times, maintenance, and cost.

5.5.2.3 Shutdown

In case of weather risks, especially hurricanes/tornadoes or heavy storms, or
in case of an outage of the electricity supplier shutdowns of the production
site might occur. Often, an emergency generator will be used to overcome
the outage. Short-time shutdowns can be handled quite easily, but the elec-
tricity net can also be harmed by severe weather and power lines can be cut.
In these cases the production will halt, which might result in varying fer-
mentation yields and product destruction. Additionally, strikes can cause a
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shutdown if the production plant as no worker will arrive to run the plant.
This results in less product and unsatisfied customers.

5.5.2.4 Color

Corn syrups normally have a „water white“color. The color might change
depending on the processing as well as storage and transport conditions.
Influencing factors for the formation of color changes in corn syrups are
time, temperature, pH and SO2 concentration. Corn syrups caramelize dur-
ing heating causing the development of dark brown colors and the produc-
tion of inhibitors. The formation of 5-(hydroxymethyl)-2-furaldehayde and
2-(2-hydroxyacetyl)-furan during excessive heating at 80◦C have an influ-
ence on the color. The optical density and spectrophotometer are used to
measure and classify the color development(see Pancoast [275]).

Granulated sugars develop colors as well. When stored at room temperature
of 20 ◦C the color development is very slowly. If the ambient temperature
exceeds 50 ◦C then color will develop more rapidly. Colors in the feedstock
will also lead to color in the product. The color needs to be eliminated
by additional processing steps, which result in higher production cost (see
Pérez et al. [281]).

5.5.2.5 Technical storage risks

The storage of biomass and sugar syrup needs special care. The storage
and transport tanks need to be disinfected and sealed. Such as in biochem-
ical conversion to chemicals, the contamination with microbes leads to the
degradation of the feedstock. In case sugar, or biomass in general, is in
contact with microbes during storage, it is converted to ethanol, biogas, fer-
mentation gases, and similar. Hence, it cannot be converted to final products
anymore. To reduce storage losses the treatment and handling of biomass
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and sugar syrup as well as the storage tanks is essential. The minimiza-
tion of storage times reduces the risk of storage degradation (see Kumar and
Kalita [191]).

Long storage times just as long transport times lead to sedimentation of
pyrolysis slurry. Additional energy is needed to stir up the slurry. In
the worst case, the slurry cannot be reused and needs to be disposed (see
Nicoleit [261]).

5.5.3 Environmental risks

This section defines the specific environmental risks, which occur in the
biomass relevant states in the United States. The environmental risks include
mainly extreme weather conditions, which immensely affect the harvest.
Other environmental risks are insects and fungi. These risks are described
in the following.

5.5.3.1 Weather

Weather risks include all extreme events that can harm the harvest. Some
weather conditions do not only affect the biomass itself but also the trans-
port system, production or supply. In the following the risks, which occur
on mainland U.S. for corn, sugar cane, sorghum and their residues. Some
weather risks might have a more severe impact on some biomass than oth-
ers. Especially residues might be affected more positively by weather events
than the grain itself as the energy of the crop will not focus on the grain any-
more but the residue is still produced. The main weather risks, that affect
the crop are hail, drought, hurricane/tornado, temperatures, and blizzards.
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Hail

Hail is defined by the The National Severe Storms Laboratory of the National
Oceanic and Atmospheric Administration (NOAA) [343] as “a form of
that occurs when updrafts in thunderstorms carry raindrops upward into
extremely cold areas of the atmosphere where they freeze into balls of ice”.
The ice balls can destroy the harvest, so that the grain is not fully grown.
On the other hand, the straw share can still be utilized for sugar syrup pro-
duction in biorefineries or pyrolysis slurry. The top ten states with hail
damages are Texas, Illinois, Colorado, Missouri, Nebraska, South Carolina,
Pennsylvania, Iowa, South Dakota and Kansas. The historic data of the past
50 years has been analyzed and probabilities based on the Poisson distribu-
tion have been calculated.

Drought

According to the NOAA [245], drought is the “deficiency in precipitation
over an extended period”. In the U.S. drought is measured by the Palmer
Drought Severity Index (PDSI). Especially in the past years heavy droughts
became more and more frequent. The variability of interannual precipitation
causes not only variations in crop yields but also in quality. In 1988 a severe
drought occurred in the U.S. Midwest. The temperatures were comparably
high from early spring on throughout the summer with reduced precipita-
tion. Hence, the crop yields dropped by 37 %, which required a congres-
sional bailout for farmers of a billion dollars. Between 1989 and 2012, 90 %
of crop loss indemnity payments were caused by extreme weather events
(equivalent to $ 80 billion) of which drought accounted alone to 40 % of the
payments (see Rosenzweig et al. [308]). The drought in 2012 was one of
the most severe droughts in the past decade. Especially states with a high
corn acreage were affected by the drought. Louisiana and Alabama with
high sugar cane production had rather wet weather, which resulted in high
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yields. The past 50 years have been analyzed and Poisson distributions of
drought severity are included in the integrated model. Nevertheless, some
droughts are very severe and cannot be portrayed in probabilities. There-
fore, the severe drought of 2012 is modeled by a scenario (see section 5.6.2)
to show the influence of such risks. In figure 5.20, the precipitation ranks of
the drought in 2012 are displayed.

Figure 5.20: Precipitation ranks of 2012 drought in the U.S. (NOAA [246])

Heavy rainfall and precipitation

According to farmers in the corn belt and the USDA [63], corn yield was
extremely high in 2014 due to wet weather on the one hand. This lead to a
decrease by 13 % of corn prices compared to the previous year, which was
already 40 % lower than the years before. On the other hand, heavy rainfalls
can lead to floods or fouling of the crop roots. The past 50 years have
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been analyzed regarding extreme heavy rainfalls and included by Poisson
distribution in the integrated model.

Hurricane/Tornadoes

Hurricanes are defined as tropical cyclones with a maximum wind speed of
74 mph. This term is mostly used in the Northern Hemisphere. Typhoon is
more known for the Pacific regions (see National Hurricane Center [256]).

Tornadoes are “narrow, violently rotating columns of air that extend from
the base of a thunderstorm to the ground” (see National Severe Storms Lab-
oratory [344]). Tornadoes occur more in the north and hurricanes more in
the south of the U.S., due to the closeness of water. Both severe storms
combine heavy wind and rain, which can destroy the harvest. Especially
tornadoes are very regional, hence, the probability of destruction is lower
compared to hurricanes (see Central Pacific Hurricane Center [73]).

This work treats hurricanes and tornadoes equally in terms of harvest destruc-
tion. The probabilities of hurricane/tornadoes based on the historical values
of the past 50 years are included in the integrated model (see NOAA [247]).

Temperatures

On the one hand, at temperatures below 10◦C corn will not sprout. These
temperatures are normally reached between late April and early May in the
corn belt. On the other hand, too high temperatures will cause the sprouts to
burn. The data for the past 50 years is provided by the NOAA [247].

Blizzards

Blizzards mostly occur in winter time. As the grain is already harvested
in autumn and the new seed will not be brought out until spring blizzards
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hardly affect the crop itself. Nevertheless, the biomass as well as the prod-
ucts are processed and transported throughout the year. Blizzards cause on
the one hand frozen streets, tracks and rivers, which results in a transport
chaos. On the other hand it also influences production itself as frozen power
lines might lead to shutdowns. Therefore, the likelihood of severe blizzards
based on the historic values by the NOAA [247] is included in the model.

5.5.3.2 Natural Risks

Natural risks include all risks, which are evident in nature but are not
referred to weather risks. These can be caused by severe weather events
but are not defined as such (e.g. floods) (see Merz [224]).

Floods

Flood risks affect the biomass cultivation as well as the transport of goods on
rivers. For example in 1993 the Mississippi River flooded. 15 million acres
of farmland were hit, especially Nebraska, Iowa and Michigan. More than
50 people died and an economic damage of more than 15 billion dollars
occurred (see Larson [198]). Not only farm land was affected but the flood
had a large impact on transportation. Barge traffic stopped for about two
months on the Missouri and Mississippi River. According to Larson [198],
two major events have an influence on floods: significant rainfall and wet
soil conditions. Milly et al. [231] forecast that rainfall is likely to become
less frequent but with more intense causing more extreme floods.

Crop pests

Crop pests include insects, mites and some species of wood lice (see
Capinera et al. [68]). Many different insects can harm the crop and result
in reduced harvest yields. Depending on the biomass and the considered
region the insects vary. Especially in dry and warm periods the corn root
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worm can damage the crop. Genetically modified corn organisms have been
developed by companies such as Monsanto, Dow Chemicals or DuPont to
be resistant to pests and to herbicides (see ISAAA [264]). GMO-corn pro-
duces a protein, which should harm the corn root worm (Diabrotica spp.)
but be harmless to people and animals. Unfortunately, the corn root worm
has grown to be resistant to these proteins. Especially the major corn regions
in the Midwest (Illinois, Iowa, Nebraska and Minnesota) are affected of this
development. Farmers fear that without a soil insecticide the yields and har-
vest could be much lower and lead to financial drawbacks. In the past years
the root worm has cost more than billion dollars in expenses and lost harvest
(see Crop Science United States [86]). The rootworm-protected corn from
Monsanto only allowed 0.2 % of the total corn acreage to be unexpectedly
damaged (see Factiva [109]).

5.5.4 Political risks

In this section the considered political risks in the biomass value chain is
described. The risks are based on the political situation in 2017. It is not
possible to propose a likelihood of a certain political event, as they depend
on the people and other circumstances. Hence, this work does not esti-
mate probabilities for political risks. Nevertheless, some of these risks have
severe consequences to biomass value chains. Therefore, these are modeled
as scenarios as described in section 5.6. The political uncertainties include
the decision of policy makers based on stakeholder and public perception to
ban the utilization of GMO biomass. Politicians can also decide to foster
incentives for the utilization of lignocellulosic biomass. Not only the pro-
duction of biomass but also the use of the final product, mainly bioethanol
in the United States can be pushed and a quote for biofuel production can
be set.
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5.5.4.1 Non-GMO biomass

The influence of GMO (gene manipulated organisms) feedstock on the yield
and hence on the availability and cost for the production of biobased prod-
ucts is tremendous. GMO feedstocks are more resistant to insects, tolerant
to herbicides and have varieties of stacked genes (see Owen [274]).

Even though GMO feedstocks have a higher yield, which contributes to
nourishment of the world and the fulfillment of the bioethanol quota, the
production is highly discussed among the public. The acceptance due to
sustainability issues as well as unknown effects on biodiversity and other
organisms is declining in the population. Consequently, the topic is highly
discussed in politics. This could lead to the ban of GMO biomass (see
Frankfurter Allgemeine Zeitung [243]).

The acreage of GMO corn has increased significantly in the U.S. in since
2000. Depending on the state, the share of GMO corn has increased from
around 20 to 30 % to more than 90 %. The strongest rise could be found
for Indiana where currently 88 % of the corn acreage was gene manipulated
in 2014/2015. Compared to 2000, this is an increase of 800 %. But the
share of GMO areas has decreased slightly from 2013/2014 to the following
year for almost all states (see USDA [10] [11][12] [13]). In figure 5.21, the
development of GMO corn in the respective states is depicted.

Sugar cane on the other hand is currently not modified genetically in the
large-scale due to the complexity of its genome. Hence, the risk of polit-
ical quotas, which forbid the growth GMO sugar cane is non existent (see
Arruda [23]). As sorghum is a very drought resistant feedstock, the demand
for GMO grain is not identified. Hence, sorghum is not directly affected by
a political decision (see Bergin [45]). The influence of non-GMO corn could
have a significant influence on the biomass value chain. As the likelihood
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of such a development cannot be quantified, this work includes this work by
scenario analysis in section 5.6.3.

Figure 5.21: Percentage of GMO corn acreage in the U.S. (USDA [9])

5.5.4.2 Incentives for lignocellulosic biomass

Due to quality reasons of the sugar syrup the utilization of lignocellulosic
biomass is up to now not realized in industrial size. Sugar and starchy
biomass result in a sugar syrup, which contains mainly hexoses and only
few to none pentoses. Many microorganisms metabolize C6 sugars much
better and, hence result in a higher yield and efficiency of the fermentation.
As high yields also result in a higher economic feasibility many companies
prefer to use first generation biomass. Nevertheless, especially corn-based
bioethanol is more and more under pressure of the “food and tank” debate.
According to Chen and Smitz [77], especially government policies have a
large influence on the commercialization of cellulosic biofuels. In case gov-
ernment decides to give incentives for the use of lignocellulosic biomass
the profits can increase for sugar syrups from biorefineries. Consequently,
the choice of feedstock might shift from first to second generation biomass.
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This work assumes an incentive of 50 % as it is comparably established for
biodiesel (see Alternative Fuels Data Center [17]). As the decision of policy
makers cannot be described as a probability, this risk is modeled as scenario
(see section 5.6.4).

5.5.4.3 Quota for bioethanol production

According to the Second Renewable Fuel Standard, which was announced
in 2007 as part of the Energy Independence Act [339], the aim of the United
States is to produce 136 billion liters of biofuels annually. 61 billion liters of
which must be based on cellulosic sources. However, it also sets a maximum
of 57 billion liters of corn based ethanol. Without governmental support this
might not be feasible in the near future (see Chen and Smith [77]).

Abrams et al. [4] claim that even though public policies for biomass pro-
motion are substantial for the development of the woody biomass energy
sector, the effectiveness of them remains unclear. Many of the state level
support policies are in conflict with federal regulatory policies and lead to
additional cost and uncertainties.

This work assumes, that the aim of the Second Renewable Fuel Stan-
dard can be met and will increase the competition for biomass. This will
result in increasing prices. These influences cannot be quantified by prob-
abilities, hence, the developments are shown by scenario calculations in
section 5.6.4.

5.5.5 Supply risks

As in many other supply chains, biomass supply is one of the most criti-
cal aspects. In case biomass or one of its downstream products cannot be
supplied, all following steps lack their feedstock. In the following, the con-
sidered supply risks of the defined biomass supply chain in the United States

240



5.5 Risk Analysis

are explained. These include utilization risks of the feedstock, uncertainties
in harvesting seasons, supplier outage and storage.

5.5.5.1 Risks affecting the utilization of pretreated biomass

After producing pretreated biomass (sugar syrup and pyrolysis slurry) the
transport and supply is sensible to ambient conditions. Sugar syrup can
crystallize or caramelize, color can develop during storage and inhibitors
can affect the syrup quality. Pyrolysis slurry can sediment, which reduces
the efficiency of the utilization.

Crystallization of sugar syrup

Corn glucose syrup is produced in corn wet mills, in biorefineries from lig-
nocellulosic biomass such as corn stover or bagasse or as an intermediate
product in sugar mills. If sugar syrup cools down below 130 to 140 ◦F,
which is about 55 ◦C (see Sweeteners Regional Offices [337]), it crystallizes
and forms a solid state. The crystallized sugar syrup is not pumpable so that
it needs to be reheated, which can then, cause caramelization and other risks.
These lead to additional cost for the transport and timing problems. Accord-
ing to information given by a large corn syrup producer, the corn sugar syrup
is transported in vacuum isolated tanks to prevent crystallization. The tank
temperature decreases by 1◦F every four days. Consequently, a tank can be
stored for about half a year before crystallization occurs (private informa-
tion). This of course depends on the outside temperature, the material of the
tank as well as the starting temperature of the sugar syrup. In order to prove
the information by the source, the duration of crystallization is calculated
according to the following equation 5.9.

1
Bi

=
λ

α ·L (5.9)
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The Biot number Bi is a dimensionless value, which is used for thermo-
dynamic calculations. With λ being the thermal conductivity, α the heat
transfer coefficient and L the characteristic length of the heat transfer, the
cooling down of a truck by ambient temperature can be calculated. See the
appendix A.1.3 for more details. As most supply chains, especially in the
United States, are shorter than the maximum calculated distance, the risk of
crystallization does not seem essential. Furthermore, not only the probabil-
ity of crystallization is low but also the effect of a crystallized tank. Hence,
this work does not model the the time dependency of crystallization in detail
but considers the mean risk.

Caramelization of sugar syrup

Yildiz [176] defines caramelization as “the degradation of sugars in the
absence of amino acids and proteins by heating them over their melting
point and thereby causing color and flavor changes.” Caramelization can
lead to the production of unpleasant compounds within the sugar syrup,
which influence the downstream processes and the final product quality due
to color and inhibitors. During caramelization inhibitors such as furfural,
5-hydroxymethyl furfural (HMF), weak acids, and phenolic compounds are
produced by the degradation of sugar.

Color

The color of the sugar syrup itself does not have a direct impact on the
fermentation process itself. If colored products are envisaged, then this
caramelization effect does not induce a risk. Otherwise, if clear white chem-
icals are produced, then the formation of color leads to a risk.

Color is formed by nonenzymatic glycation, the so calledMaillard Reaction,
which was observed in 1912. During the reaction the reducing-sugars of the
carbonyl groups react with the amino groups of amino acids, polypeptides,
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proteins, enzymes etc. to a brown pigment called melanoidin. The type of
sugar has a large influence on the browning of the Maillard Reaction. Prod-
ucts from glucose react faster to brown pigments as from fructose. Also,
shorter sugars, e.g. xylose have a higher reactivity than longer sugars. Tem-
perature has the highest impact on the Maillard Reaction. If temperature
rises by 10 K then the browning rate is two to three fold. Temperature also
affects the composition of the products of the Maillard Reaction. Bozkurt et
al. [58] found that the browning rate increased by 3.2 times whilst changing
the reaction temperature from 55 to 65 ◦C.

Inhibitors

As already described in section 2.3.2.1, inhibitors can be produced during
preprocessing of mainly second generation biomass. These inhibitors are
for example furfural, hydroxymethylfurural, phenols, acids, aldehydes and
alcohols. Especially biochemical processes are sensible to these chemicals.
Therefore, the preprocessed biomass needs to be conditioned accordingly.
In case this is not done in a sufficient manner, the fermentation can either
process less efficiently or not at all (see Pienkos and Zhang [286] and Joens-
son et al. [171]). Consequently, lower efficiencies cause additional feed-
stock demand.

Sedimentation of pyrolysis slurry

The slurry composition of biooil and biochar influences the stability of the
suspension. Nicoleit [261] has analyzed the stability of the pyrolysis slurry
and proposed a constant stirring of the slurry to avoid sedimentation. Once
the slurry is fully sedimented it is almost impossible to stir it up. Hence, the
container cannot be used for further processing.
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5.5.5.2 Uncertainties in harvesting season

Harvesting seasons depend on the weather conditions throughout the year.
Firstly, if the soil is still too frozen and wet then the seed cannot be brought
out to the field. This delays the harvesting. Also, if the season is too dry
or cold then the crop cultivation time is longer. On the one hand, an early
harvest leads to an overfull stock at storage locations and an efficient stor-
age management is necessary. On the other hand, in case of a late har-
vest shortages in the supply may occur (see Xie et al. [392], Rentizelas
et al. [301]). These are uncertainties, which are not biomass or location
dependent. In order to manage these risks, the storage capacity should be
optimized accordingly, both at the farmers location and the conversion facil-
ities. Additionally, the possibility to import pretreated biomass from other
continents need to be considered. As storage and biomass import are not
optimized in this work, these uncertainties are not included in the model.

5.5.5.3 Supplier cannot supply

It might occur that the supplier cannot provide the pretreated biomass. This
risk could have multiple causes. The supplier might shut down his produc-
tion due to strikes, blackouts, etc. He might also need to pause his produc-
tion because of lacking biomass supply due to rising demand or weather
related risks. The effect of this risk depends on the storage management of
the company. If still enough feedstock is available, then the supply for the
fermentation is still ensured. A lack of supply can cause additional cost for
the production of biochemicals. The operator needs to choose another sup-
plier, which is either more expensive or will cause additional transport cost
to ensure a continuous production. Alternatively, he could also optimize
his storage capacity to overcome some days without new supply. The most
reasonable solution seems to be a location close to a many suppliers.
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5.5.5.4 Economic storage risk

Storage can be a source for risk mitigation but also risk occurrence. Dur-
ing storage, the raw biomass can deterioate but also pretreated biomass can
crystallize or sediment respectively. The storage capacity depends on many
different factors. Additional storage is therefore chance and risk at once.
Large storage capacities are expensive, but can buffer on the one hand sup-
ply risks. On the other hand, in case of deterioration, large storage capacities
lead to large losses. Its optimization is essential and should be considered
carefully. This is beyond the scope of this work and is therefore not included
in the integrated model. Rentizelas et al. [301] for example have developed
a model, that optimizes storage capacities.

5.5.6 Market risks

This section analysis the market risks, which occur in biomass to biochem-
icals value chains. Market risks mostly focus on the demand for final prod-
ucts. This can affect either the demand for the biochemical itself or for a
competing product such as biofuels. Additionally, varying market prices
can influence the profitability of the value chain. These risks are described
in the following.

5.5.6.1 Demand for biobased chemicals

The demand for biomass based chemicals have different impacts. Higher
demands lead to a higher demand for the feedstock. This, in turn, results
in higher prices of pretreated biomass. Consequently, the own value chain
and production would be more expensive. On the one hand, if other chem-
ical companies produce the same product, the market can decrease and the
prices are more competitive. On the other hand, this might persuade the
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customers to increase their the willingness to pay more for biobased chem-
icals (see Carus et al. [71]). Currently, only few facilities for the produc-
tion of biobased chemicals exist. For example, DuPont and Tate & Lyle
have installed a biobased propanediol plant in Loudon (see DuPont and
Tate & Lyle [99]). This work assumes that the majority of other compa-
nies would also tend to build up biobased chemical plants in the corn belt.
This would increase the demand and, hence, the price of corn based glucose
syrup. This risk has similar effects as any scenario, which reduces the corn
availability. Consequently, it is not separately considered as scenario.

5.5.6.2 Demand for bioethanol

The production of bioethanol is strongly related to the oil prices, the ris-
ing demand for fuels in the transport sector and the quota for bioethanol as
shown above. An increasing demand for bioethanol leads to rising biomass
prices and a lack of supply in the worst case. Hence, the production prices
for biochemicals rise and the economic feasibility is questionable. Cur-
rently, a large number of bioethanol plants exist in the United States. The
locations are depicted in figure 5.22. These plants are currently based on
corn, therefore, they are mainly located in the corn belt. Political decisions
(see section 5.5.4) can lead to more lignocellulosic bioethanol, which could
release additional corn syrup potential for biochemicals.

5.5.6.3 Market price

Biochemicals may replace petrochemical products structurally or function-
ally (see Gunukula et al. [145]). Low market prices for petrochemical prod-
ucts results in a decreased interest of the customers in biobased chemicals.
Many of them are not willing to pay a high benefit for a more sustainable
product as it decreases their margin.
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Figure 5.22: Existing bioethanol plants in the U.S. (USDA [14])

5.6 Scenario construction

The developed approach in this work includes quantifiable and non- quan-
tifiable risks. In case of quantifiable risks the likelihood and consequences of
the risks can be estimated based on historical data as described in section 4.4.
Non-quantifiable risks are modeled by scenarios, which show the effect of
these risks on the design of the biomass value chain.

In this section, the basics for the construction and input data of different sce-
narios are defined. The model as presented in section 4.5 is calculated with
varying input parameters, which are explained in the upcoming sections.
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5.6.1 Basic scenario

The basic scenario focuses on the business as usual (BAU) without includ-
ing non-quantifiable risks. This scenario only includes the quantifiable risks,
which are described above. The values of the basic scenario are given by a
year without any outstanding occurrences, such as a severe drought or fer-
tility, which influences the biomass yield. No additional, unforeseeable dis-
ruptions of the logistics occur. The politics have not changed compared to
the year 2016, hence no additional incentives or similar have been imple-
mented. All used input is presented in this chapter. The three case studies
butanol, succinic acid, and ethylene are analyzed. It is assumed that the pre-
processing of sorghum can be integrated in factories, which are similar to
sugar cane mills. Hence, it is assumed, that the investment are comparable
and the values of sugar cane mills are applied.

5.6.2 Scenario 1: Drought 2012

Drought has a large influence on biomass availability. Sorghum is a very
drought tolerant crop. Extreme weather events do not have a large impact
on the sorghum yield. Corn grain is more sensitive to water availability.
On the other hand, although the grain is not fully grown, the straw of the
different biomass types is still available.

In the year 2012, the drought in the U.S. was very severe. This led to a
sudden increase of the corn prices. Whilst the corn belt had very little rain,
the precipitation increased in Louisiana. Even though water scarcity was
a crucial point in 2012, sugar yields of sugar cane in Louisiana were on
record-high (see Gautreaux [132]). Hence, the sugar cane, and, therefore,
sucrose and bagasse prices were comparably low.
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After the severe drought in 2012, Emerson et al. [106] have analyzed the
effect of drought on the chemical composition and yield of corn stover. They
have shown, that the drought had only a small influence on the corn stover
yield, but affected other grasses. As only corn stover, bagasse/cane field
trash and sorghum bagasse are included in this model, only the corn stover
results are considered in this work. Rippey [305] has described and analyzed
the drought of 2012 on agriculture. The National Centers for Environmen-
tal Information (NCEI) have estimated the damage of the 2012 drought to
about $30 billion. In 2012, about 65 % of continental U.S. was affected
by drought. The Palmer Drought Index measures the severity of drought
by their duration. The drought of 2012 was the most severe according to
the PDI. The drought reduced the corn crop yield by more than 25 %. As
sorghum is more drought resistant, its yield was reduced by only 9 %. In
table 5.20, the altered biomass prices for the drought 2012 are presented.
Other values such as process yields, investments, transport cost and routes
remain as defined for the basis scenario. The results of scenario 1 are ana-
lyzed in section 6.7.1.

Table 5.20: Changed prices for scenario 1

Biomass Price in $/t

Corn 600
Corn stover 275
Sugar cane 400

5.6.3 Scenario 2: Customers neglect
GMO based feedstocks

Currently, in the U.S. the corn is gene manipulated. This leads to very
high productivity and harvesting yields. Not only the corn to crop ratio is
higher, but also the resistance against natural risks such as drought, crop
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pests or insects. This makes the corn more robust against outer influences.
On the other hand gene manipulated crops are discussed more and more
often. Especially in case of first generation biomass, which is used not
only for energy and biochemical feedstock provision but also for food
and feed, the critics are rising. The consequences of gene manipulated
organisms on the human organism are unsure. In other countries such as
e.g. Germany, the use of gene manipulated crops is even forbidden (see
German Federal Government [293]). As the discussions are also rising in
the U.S., the cultivation of GMO corn can be neglected by customers to buy
a sustainable product. If conventional corn is grown, then the overall yield
will decline. Assuming the same demand for corn and a decreased sup-
ply will lead to rising prices. However, not only are the prices influenced
directly, but also the sensitivity of the crops to risks. Insects or droughts will
harm crops to a larger extent than it would affect GMO corn. This might
influence the yield and price. Hence, this work assumes that the cultivation
of non-GMO corn will lead to half of the yield and, consequently, to dou-
ble the price. Reducing the harvest also results in less available biomass
potential. This will have a negative effect on the production capacities. This
scenario assumes, that only half of the capacity of the base scenario is avail-
able at each corn supplier location. For calculating the second scenario the
following data in table 5.21 is assumed.

Table 5.21: Changed input values for scenario 2

Biomass Price in $/t

Corn 700
Corn stover 550
Sugar cane 400
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5.6.4 Scenario 3: Incentives for
lignocellulosic bioethanol

According to Chen and Smith [77], different factors have an influence on
the use of lignocellulosic biomass for ethanol. The three main drivers for
launching lignocellulosic bioethanol are governmental policies, added value
from non-fuel co-products as well as the reduction of carbon emissions and
volatile oil prices. Despite this, the high production cost compared to corn-
grain ethanol, the policy uncertainties and the competition with petro-fuel
inhibit the commercialization of ligno-cellulosic ethanol.

This scenario assumes that the price of pretreated lignocellulosic biomass is
subsidized by 50 % by governmental incentives. Hence, the input cost for
corn stover, sugar cane residues and sorghum residues are reduced to 50 %
of the former value. For the scenario calculations the values of table 5.22
are applied.

Table 5.22: Changed input values for scenario 3

Biomass Price in $/t

Corn 350
Corn stover 137.5
Sugar cane 400

5.6.5 Scenario 4: Influence of transport disruption on the
choice of logistics

Supply chain disruptions of a certain route can be caused by floods, strikes
or other disturbances. Even though these events have been considered dur-
ing the decision process of the location, these events demand for short-term
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adaption of the logistics. These can be alternative suppliers, transport routes
with longer distances or the change of transport mode.

Due to sudden events the proposed logistics as calculated by the base sce-
nario cannot be used. Under these circumstances the route and, possibly, the
transport mode needs to be adapted. In the scenario 4, the expected route
will be disrupted. The effect on the chosen biomass, transport cost and route
will be recalculated. The chosen transport mode as from the results of the
base scenario will be changed. Hence, the transport is not feasible anymore
due to different possible reasons. These are strikes, sudden floods, earth-
quakes or similar. The model is adapted accordingly and the possibility
of transport is neglected. Two different types of scenarios are considered
regarding this point of view. In scenario 4a, only a short term disruption is
considered. Hence, the location of the conversion facilities is fix and other
suppliers might be chosen. Scenario 4b discusses the alternative setup in
case the normally chosen transport route is not available for a longer period
or not for the chosen feedstock.

5.6.6 Scenario 5: Increased conversion yields from
second generation biomass

Currently, the conversion yields from second generation biomass are much
lower than of first generation biomass. Also, the conversion of fructose and
xylose is much lower than of fructose. Reason for this is the low sugar
content of the fermentation broth and the lacking ability of the microorgan-
isms to metabolize multiple sugars, especially also sugars from hemicellu-
lose. This scenario assumes higher conversion yields from second genera-
tion biomass as well as of sucrose by applying the same fractional conver-
sion to pentoses as for hexoses. The prices of this scenario are the same as
of the basis scenario.
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5.7 Conclusion

Biomass value chains depend on many different input parameters. Data on
biomass potentials, biomass quality and composition as well as biomass cost
are needed to estimate the supply for biochemical plants. For the conversion
of biomass to biochemicals, data on conversion yields, energy demand, util-
ities, etc. are used to estimate the efficiency of the production. Additionally,
cost for transport, utilities, export, investment and production are neces-
sary. The relevant input data for the integrated model as well as the sub-
models has been presented in the previous sections. This work considers six
biomass types (corn, sugar cane, sorghum, corn stover, sugar cane bagasse,
and sorghum residues). These biomass are pretreated either by corn wet
milling, sugar cane milling, dilute acid pretreatment or pyrolysis. The pre-
treated biomass (sugar syrup and pyrolysis slurry) is then converted either
biochemically to butanol and succinic acid as well as thermochemically to
ethylene as three case studies. These processes are applied to the region of
the western United States. In total 142 resp. 137 locations were included as
suppliers, hubs and production locations. Three different transport modes
(truck, rail, barge) are used to transport biomass, pretreated biomass, inter-
mediate products and the final products. The considered risks as well as
the analyzed data for probability estimations were displayed. Uncertainties,
which cannot be quantified, were identified. Five scenarios have been pro-
posed and described to model the most crucial uncertainties. These data are
the basis for the integrated model and the three sub-models. The approaches
are carried out and the results are presented in the following chapter.
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6 Value chains for the production
of biochemicals in the United
States and other results of the
model application

In the previous chapter, the input data is defined for the calculation of
the case studies based on the developed approach. The integrated model
includes the results of the optimization, technical, and risk sub-model. The
results of the technical sub-model are discussed in section 6.1 for biochem-
ical conversion pathways and in section 6.2 for thermochemical pathways.
In the following section 6.3, the results of the optimization sub-model are
presented for two cases: sugar for biochemical fermentation and pyrolysis
slurry for thermochemical gasification and synthesis. In section 6.4, the
results of the risk sub-model are discussed. The results of the integrated
model are presented in section 6.5 for all three case studies. In section 6.6,
sensitivity analysis for different input parameters are performed and inter-
preted. The integrated model are undergone scenario calculations to show
the dependency of the results from different non-quantifiable uncertainties.
These are discussed in section 6.7. The chapter closes with a conclusion in
section 6.8.

In the following, the raw biomass (corn, corn stover, sugar cane, bagasse,
sorghum, and sorghum residues) are named as simplification instead of writ-
ing “corn based glucose syrup” or “sugar cane syrup”. Except in the case
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of the pretreatment processes, these references always recall the pretreated
and not the raw biomass.

6.1 Results of the technical sub-model for
biochemical pathways

In the technical sub-model for biochemical processes, the conversion of
biomass residues to sugar via dilute acid pretreatment as well as the existing
corn wet milling, sugar milling, and sorghum milling are considered. The
biochemical conversion of sugars to butanol as well as succinic acid have
been modeled in case study one and two. These processes were simulated
in AspenPlus. In the following sections, the results of these simulations as
well as the techno-economic assessment are presented for both case stud-
ies. The results include the efficiency of the conversion to sugar syrup and
to biochemicals, the energy and utility demand, the plant capacity as well
as the estimation of investment and production cost. At first, the results of
the technical sub-model for the conversion of biomass residues to sugars is
presented in section 6.1.1. Afterwards, in the sections 6.1.2 and 6.1.3, the
efficiencies and cost of the case studies one (butanol) and two (succinic acid)
are discussed.

This work distinguishes between six processes based on the respective
biomass types. Hence, the following processes are discussed:

P-C corn

P-SC sugar cane

P-SO sorghum

P-CS corn stover

P-SCB sugar cane bagasse

P-SR sorghum residues

256



6.1 Technical sub-model for biochemical pathways

The milling processes are also simulated in AspenPlus to show heat integra-
tion effects with the conversion processes to chemicals. At this point, the
detailed evaluation of the processes is neglected. Ramirez [297] has already
simulated a corn wet mill in detail and evaluated it techno-economically.
This work is based on his simulations. Bonomi et al. [3] have published
results of simulations of a sugar cane biorefinery. The sugar milling is
adapted to their results. This work utilizes real market data for sugar cane
syrup and corn glucose syrup. Therefore, the production cost and investment
are not as relevant as input data. Nevertheless, to compare different pre-
treatment technologies economically, the investments have been estimated
based on the desired capacity for producing 50,000 tons of butanol or suc-
cinic acid. The results are included in the investments of the case studies.
For details, see sections 6.1.2 and 6.1.3.

6.1.1 Evaluation of biorefineries for
sugar syrup production

In this section, the performance of biorefineries for the production of sugar
syrup for the biochemical conversion to biochemicals is discussed. The
technologies, as described in section 5.2.1, are applied for the production
of sugar syrup. The efficiency as well as economic feasibility of the sugar
production are evaluated and are presented in the following sections.

6.1.1.1 Efficiency of sugar production

The efficiency of conversion depends on the biomass type. The size of
the production plant is optimized based on the circumstances in the U.S.
These include the available biomass potentials, the transport cost and the
economies of scale of the respective production plants. The AspenPlus sim-
ulations provide the material and energy flow balances of the processes.
Based on the material balances, the efficiency of the conversion of biomass
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residues to fermentable sugars can be calculated. The results are shown in
table 6.1.

Table 6.1: Efficiency of sugar production depending on biomass type

Biomass Yield in %

Corn stover 61.98
Sugar cane bagasse 55.15
Sorghum residues 59.45

Sugar cane bagasse and sorghum residues have a higher lignin content than
corn stover. Therefore, the sugar yield from corn stover is higher. The effi-
ciency of sugar production correlates directly with the cellulose and hemi-
cellulose content. Nevertheless, the yields are all in the same order of mag-
nitude between 55 and 62 %.

6.1.1.2 Investment of biorefineries

The variable production cost by biomass type are summarized in table 6.2.
Glucose cost and electricity revenues depend on the biomass as these rely
on the chemical composition. The conversion of sorghum residues is more
complex (see Theerarattananoon et al. [345]). Nevertheless, the reaction
conditions can be optimized at additional cost. Hence, 2 $/t are added to the
variable production cost.

The investment of biorefineries to convert biomass residues to sugars are
calculated. Humbird [162] published reference values of a 2000 tons per
day biorefinery of the year 2000. This work estimates the investment of
2016 by applying CEPCI indexes.

Humbird [162] assumes that the biomass is transported to the facility already
washed and shredded. Therefore, additionally handling cost defined by
Aden et al. [6] are included. The results shown below in table 6.3.
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Table 6.2: Variable production cost of biorefineries by biomass($/t)

Utilities CS SCB SR

Sulfuric acid 2.78
Ammonia 8.15
Glucose for enz. prod. 31.26 34.86 30.18
Other materials 1.43
Waste treatment 2.85
Electricity -8.79 -7.94 -7.88
Surcharge 2
Total 37.68 42.13 39.51

Table 6.3: Investment of sugar production from lignocelluose

Investment in t$ 2016

Direct cost
Handling 10,188
Pretreatment 33,622
Enzym. hydrolysis 19,969
Enzym. production 18,645
Solid recovery 7,438
Storage 1,926
Boiler 67,244
Utilities 7,030
Total investment 166,100
Indirect cost 120,600
Fixed capital 286,700
Current assets 14,300
TCI 301,000
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6.1.2 Evaluation of butanol production

Based on the simulation of the ABE (acetone, butanol, ethanol) fermenta-
tion, as described in section 5.2.2.1, the production yields depending on the
biomass types are evaluated. These are used as input data for the integrated
model. The efficiency and economic feasibility influence the performance
of the biomass value chain and decide, which type of biomass and, therefore,
location are chosen.

6.1.2.1 Efficiency of butanol production

The efficiency of butanol fermentation depends on the type of biomass,
which is metabolized by the bacteria C. beijerinckii. The results for each
process is presented in figure 6.1.

ABE fermentation produces not only butanol, but also the by-products
ethanol and acetone. Both can be sold to the market and are, therefore, valu-
able products. Hence, they are also included in the efficiency calculations.
The yield of the different processes is calculated on a mass basis by biomass
as biomass utilization rate (see equation 4.25). As seen in figure 6.1, the pro-
cess based on corn glucose syrup is the most efficient. About 35 % of the
input biomass is converted to ABE. Other products such as water, CO2 and
H2, are not included in the efficiency calculations. Even though sorghum
and sugar cane syrups also have high sugar contents, the utilization is much
lower. This work assumes that fructose cannot be metabolized to biochem-
icals due to a lack of data on the fructose conversion by the C. beijerinckii.
The sugar syrup (mostly sucrose) consists of 50 % fructose in the sugars.
If fructose would be fermentable, the biomass utilization would double, but
would still be lower than the conversion rate of corn syrup. This assumption
reduces the production yield estimations. Additionally, sugar syrups from
sugar cane and sorghum have higher water contents in the feed. This also
leads to lower conversion yields on a mass basis.
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The biomass utilization of the three biomass residue syrups (corn stover,
sugar cane bagasse, sorghum residues) is in the same order of magnitude.
The efficiency based on those biomass types is about 4 to 8 %. The biomass
utilization of sorghum residue is the highest as sorghum residue still con-
tains large amounts of sugar although the lignin content is. The cellulose
content of sorghum residues is higher compared to corn stover and sugar
cane bagasse due to the low extractives content and lower hemicellulose
concentrations. The ratios of ABE differ depending on the biomass. The
share of butanol is rather low in case of sorghum and sorghum residues,
whereas the acetone share is high for those two biomass types. The highest
butanol share is found for corn and corn stover. This results from high shares
of glucose in the sugar syrup. C. beijerinckii preferably convert glucose to
chemicals. Butanol is the focus of production in this work. Hence, biomass,
which produce large shares of butanol, are preferred. Based on the results
of the efficiency calculations, corn glucose syrup is the most favorable feed-
stock for the production of ethanol, acetone and butanol.

Figure 6.1: Efficiency of biomass utilization for butanol production
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The utility demand depends on the process and, therefore, on the biomass
type (see figure 6.2). The main utilities are water and heat. Ammonia,
enzymes, and electricity are also utilized. Due to its large water content,
sugar syrup from sugar cane bagasse leads to large waste water streams.
Additionally, according to Jonglertjunya et al. [170], butanol is not the main
product in this fermentation. Hence, also large amounts of water are pro-
duced in fermentation. In case of biomass of the first generation, much less
waste water is produced, due to the high butanol selectivity. In total, the
most utilities are needed for corn stover and sugar cane bagasse processes.
Process routes based on sorghum and corn sugar syrup need the least. Low
utility demands lead to low variable production cost.

Figure 6.2: Utility demand of butanol production

6.1.2.2 Investment of butanol production

In this section, the results of the economic assessment of butanol produc-
tion from different sugar syrups are analyzed. The results are displayed in
figure 6.3. The investment for the six different processes based on the six

262



6.1 Technical sub-model for biochemical pathways

biomass types are comparably similar for all processes except for the sugar
cane bagasse. The majority of the investment is about 60 million dollars.
Only the production of butanol from sugar cane is only 40 million dollars.
For utilizing sugar cane bagasse almost thrice of the investment is necessary
(175 million dollars). Due to the low butanol yield and the high water con-
tent, the units are much larger to produce the same amount of butanol as in
the other process simulations.

Figure 6.3: Investment of butanol production by biomass type

The expensive pretreatment of lignocellulosic biomass results in the largest
share of investment for the dilute acid pretreatment compared to sugar and
sorghum milling. Corn milling is the most expensive of the first generation
biomass pretreatment. This facility produces four products (starch, fiber,
germ, gluten). The separation in high quality products is complex. This
leads to the high investments. For more comparable results, the investments
should be related to the amount of product. This would reduce the invest-
ment related to starch.
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In case of sugar cane bagasse, the conversion ratio to butanol is very low.
Hence, large amounts of bagasse are needed to produce the same amount of
butanol as in the other processes. This results in large production capaci-
ties for the pretreatment. Consequently, these investments are much higher
compared to the other processes.

The above presented values are the joint investment for process P1 and P2.
Nevertheless, this work assumes that the operator can benefit from lower
engineering and personnel cost in case both processes are built at the same
location. Consequently, the investment of P12 is only 95 % of the total
investment of P1 and P2.

Although the investment of sugar cane based butanol production is lower,
the high yield of corn based glucose syrup is that high, that it is presumably
the preferred feedstock.

6.1.3 Evaluation of succinic acid production

In this section, the production of succinic acid by fermentation is evalu-
ated techno-economically. The following sections show the results of the
yield calculations and the estimation of investments. Contrary to ABE fer-
mentation, no valuable by-products are produced to increase efficiency and
profitability of the value chain.

6.1.3.1 Efficiency of succinic acid production

The efficiency of succinic acid production is estimated for each biomass type
based on the material balances from AspenPlus. The results are depicted in
figure 6.4. As corn syrup has a high concentration of glucose, the biomass
utilization is the highest based on corn starch. The succinic acid conversion
factors from corn hydrolysate is above 94 %. The other two processes based
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on first generation biomass are less efficient. The low concentration of sug-
ars and the higher ratio of non-glucose sugars result in lower efficiencies for
all other biomass types. The water content of these syrups is much higher.
This leads to a higher mass input than for corn syrup. Additionally, sugar
cane and sorghum have high concentrations of fructose from sucrose. Sec-
ond generation biomass also consists of high lignin and xylose fractions,
which reduces the efficiency. These fractions are not or to a lesser extent
convertible than cellulose. Cellulose, which can be converted to glucose,
only makes up for about one third of the syrup. This work assumes, that
lignin is not separated from the sugar syrup. Additional processing steps or
other production processes such as Organosolv processes can be considered
to resolve the lignin problem. Nevertheless, corn syrup is the feedstock of
choice for biochemical processes.

Figure 6.4: Efficiency of biomass utilization for succinic acid production

Not only the efficiency depends on the biomass type, but also the utility
demand. In figure 6.5, the utility demand by process, biomass type and
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utility is depicted. Sugar syrup is hydrolyzed and fermented in P1. For this,
enzymes, ammonia, CO2, heat, and water is needed. In P2, the downstream
processing, only heat and HCl is necessary for crystallization. Waste water
occurs in the second processing step. P-C is not only the most efficient, but
also needs the least utilities. P-SCB on the other hand has large waste water
amounts due to the large water content in the feedstock.

Figure 6.5: Utility demand of succinic acid production

6.1.3.2 Investment of succinic acid production

The investment of succinic acid production from sugar syrup is analyzed in
this section. The results are displayed in figure 6.6. Just as explained in the
previous section, this work assumes that the investment of P12 is only 95%
of the total investment of P1 and P2. The investment includes all relevant
units from biomass pretreatment to the final product. Due to the high pre-
treatment demand in the wet mill, the investment for pretreating corn to corn
starch and glucose syrup respectively is the highest of all six processes. The
high efficiency of corn syrup conversion leads to comparatively low invest-
ments for the fermentation and downstream processes. High yields result in
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lower needed inputs for the same output. Hence, the overall material flows
are less. Low material flows lead to low unit capacities and, hence, invest-
ments. The investments for second generation biomass such as corn stover,
sugar cane bagasse and sorghum residues are higher for the fermentation
and downstream processes. This is in regard to the higher water contents
based on the pretreatment technology and also due to lower yields. Second
generation biomass also consist of C5 sugars, which reduce the efficiency.
The corn based process route is the most expensive but results in the highest
yields. The optimization will show, which of these parameters is predom-
inant to influence the chosen location. Sorghum also seems to be a favor-
able feedstock due to the low investment and the second highest production
yields.

Figure 6.6: Investment of succinic acid production by biomass type
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6.2 Results of the technical sub-model for
thermochemical pathways

In this section, the results of the technical sub-model for estimating the effi-
ciency and economic feasibility of thermochemical conversion plants from
biomass to biochemicals are presented.

This third case study considers the thermochemical production via pyrol-
ysis and gasification as well as synthesis to ethylene. In this case study,
only lignocellulosic biomass (corn stover, sugar cane bagasse and sorghum
residues) is considered.

6.2.1 Evaluation of fast pyrolysis conversion

The simulation of pyrolysis in AspenPlus is not feasible. The thermochem-
ical processes of pyrolysis are very complex and not well understood by lit-
erature yet (see Trippe et al. [358]). Therefore, it was modeled as described
by Trippe et al. [358]. The process dries biomass to 8 % water content.
This work assumes steel balls as heat carriers and a three-stage product
recovery. The conversion factors for the biomass sources was presented
in section 5.3.1.

According to Trippe et al. [358] this results in 43.95 million euro. The ref-
erence investment was defined for the year 2010. Therefore, the investment
is recalculated to the year 2016 by CEPCI values (see equation 6.1).

CI
pyr = 33 · 541.7

541.8
·
(

x
617,000

)0.7

mio$ (6.1)

The investments are variable and depend on the capacity x. Due to the
economies of scale, the dependency is non-linear and has a size degression
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factor of 0.7. The investment is implemented as linearized investments as
presented in section 4.2.1. Based on the estimated 35 EUR per MWh, this
work assumes a selling price of 200 $ per ton of pyrolysis slurry.

6.2.2 Evaluation of syngas production and synthesis

In this section, the production of syngas from pyrolysis products is evaluated
technically and economically. The results of the efficiency calculations and
investment estimations are described in the following.

6.2.2.1 Efficiency of syngas production and synthesis

The efficiencies of the gasification and synthesis are calculated based on the
mass flow balances. These are provided by the simulations in AspenPlus.
54.27 tons of syngas are produced from 192.75 tons of pyrolysis slurry per
hour. Hence, the overall conversion factor is 28 %. The 54.27 tons are then
converted to 6.25 tons per hour of ethylene. This results in a conversion
factor of 0.115.

The gasification efficiencies are in the same order of magnitude as of the
direct combustion of biomass. Haykiri-Acma et a. [151] have analyzed the
latter and came to results of 20 to 30 %.

6.2.2.2 Investment of syngas production and synthesis

The investments are based on the data published by Trippe et al. [357] and
Haro et al. [149]. According to Trippe et al. [357], the investments for a
gasification plant of 145.88 t/h are about 274 million euro in 2010. With
the CEPCI values, dollar/euro conversion and the capacities of the reference
gasification plant and the gasification plant for 50,000 tons of ethylene, the
investment is calculated as in equation 6.2.
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CI
gas = 251.84 · 541.7

541.8
·
(

434,782
1,021,160

)0.7

mio$ (6.2)

= 138.5mio$

The approach for estimating the investment of synthesis plants is identical to
the investment calculation of the gasification plant (see equation 6.3). The
reference plant presented by Haro et al. [149] has a capacity of 18.2 t/h and
a reference investment of 270.8 million euro.

CI
synt = 203.53 · 541.7

541.8
·
(

50,000
127,400

)0.7

mio$ (6.3)

= 105.73mio$

This work assumes, that the operator can benefit from infrastructure and
learning effects of 5 % in case both, gasification and synthesis, are built
at the same location. Hence, the overall facility needs an investment of
238.95 million dollars (see equation 6.4).

CI
DME =

(
CI

gas +CI
synt

) ·0.95 (6.4)

= 238.95mio$

6.3 Results of the optimization sub-model

Contrary to wet mills and sugar mills, biorefineries to produce pretreated
biomass from biomass residues do not exist yet. Therefore, the optimiza-
tion sub-model aims at proposing future biomass pretreatment facility loca-
tions. Different input data are necessary for this. First, this section presents
the results of the biomass potential analysis (see section 6.3.1). Second,
the cost estimation of biomass residues (see section 6.3.2) are shown. The
results of the optimization sub-models for both case studies (sugar syrup and
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pyrolysis slurry) are discussed. The locations of possible suppliers were
optimized based on the model described in section 4.2. The locations for
sugar production in biorefineries are defined in section 6.3.3. Section 6.3.4
determines the locations of pyrolysis facilities.

6.3.1 Usable biomass potentials in the U.S.

This section presents the results on the usable biomass potentials in the U.S.
for the production of pretreated biomass in biorefineries. These are the basis
for the supplier locations and capacities of future biorefineries. The biomass
potential analysis is performed as described in section 3.4 with the input data
described in section 5.1.1. This work assumes that 35 % of the biomass are
available for the conversion to pretreated biomass.

The available biomass potential for each county in the U.S. is depicted in
figure 6.7. These include 2273 biomass counties. As expected, the majority
of usable biomass potential is located in the corn belt. Corn stover is the pri-
mary biomass residues for biorefineries. Other biomass residues are not as
highly concentrated. Of the 2273 counties, 390 are chosen as possible loca-
tions for biorefineries. The maximum distance between these is 150 miles.
The locations are widely spread across the eastern U.S. and are mostly con-
centrated where large biomass potentials exist. The usable biomass poten-
tials as well as the possible locations are depicted in figure 6.7. The price for
these residues needs to be estimated, as they currently remain on the field
and are not used in large scale production plants. Hence, no market prices
are available for implementation in the optimization sub-model. The estima-
tion of biomass residue cost is performed in the following section 6.3.2.
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6.3.2 Estimation of biomass residue cost

In this section, the results of the estimated crop residue and bagasse cost
are presented. As these feedstocks are currently not used in large scale bio-
chemical plants, the prices need to be estimated based on the data presented
in section 5.1.2. The estimation is performed for both, crop residues (see
section 6.3.2.1) and bagasse (see section 6.3.2.2). The results of the cost
estimations are used as input for the optimization sub-model.

6.3.2.1 Crop residue cost

Based on the data given for harvesting, baling, transport, storage, and fer-
tilization in section 5.1.2.1, the total cost for biomass residues (corn stover,
cane field trash, sorghum bagasse) for their utilization in biorefineries is
estimated. The results are displayed in table 6.4.

Table 6.4: Estimated biomass residues cost in $ per ton

CS CFT SR

Harvest 12.11 36.51 9.09
Round bale foil 4.26 4.26 4.26
Transport to local storage 5.4 5.4 5.4
Storage 2 2 2
Fertilizer 13.02 28.43 5.23
Bonus 3.86 8.06 2.73
Total 40.66 84.64 28.71

Harvesting of the residues as well as the fertilizer for removed nutrients have
the largest influence on the crop residue cost. Hence, cane field trash is the
most expensive and sorghum residues are the cheapest.
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6.3.2.2 Bagasse cost

Based on the approach as presented in section 5.1.2.2, the price of bagasse
was estimated. A natural gas price of 3 $ per thousand cubic feed lead to a
bagasse price of about 42 $/t (see table 6.5).

Sugar and sorghummills run only three months per year. During the remain-
ing months, energy conversion from bagasse would cause production cost,
which reduce the value of bagasse (see Kent et al. [179]). Hence, this work
assumes a value of 25 $/dt. This price includes storage cost.

Table 6.5: Estimation of bagasse cost from natural gas cost

Natural gas Bagasse

Lower Heating Value 983 BTU/cft 7447 kJ/kg
1037 kJ/cft 12595 kJ/kg

Boiler efficiency 80 % 72 %
Net energy 830 MJ/Mcft 11701 MJ/dt
Price 3 $/Mcft 42 $/dt

6.3.3 Results of the optimization sub-model
for biorefineries

The model is implemented in GAMS IDE 24.6.1 and is solved with the
CPLEX Solver of IBM. Due to its long calculation times, a regret of 4 %
of the optimal solution is admitted. Different scenarios are calculated. For
the utilization in the integrated model only the results of the base case are
considered. 95.73 % of the available biomass can be converted to 55 million
tons of sugar syrup. Of the possible 390 locations, 44 were chosen for a
production plant. A map of the proposed locations is depicted in figure 6.8.
The detailed listing of locations including their sugar syrup production is
displayed in the appendix A.4.
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Table 6.6: Main results of the optimization sub-model for sugar production

Result Value

Net present value billion $ 33.71 billion $
Produced sugar syrup 55.18 mio t per year
Number of production plants 44
Mean transport distance 64.31 miles
Utilized corn stover 97.61 %
Utilized sorghum residues in 13.33%
Utilized sugar cane residues 95.38 %

In table 6.6, the main results of the optimization sub-model are summarized.
Sorghum residues are only utilized by 13.33 %. Due to high harvesting and
fertilizing cost it is not attractive for utilization. The share of total transport
cost make up for about 21 % of the total cost. Biomass cost are the most
expensive part of the value chain and add up to 42 %. The remaining 37 %
can be assigned to the variable production cost. In total about 55 million
tons of sugar syrup is produced in biorefineries.

6.3.4 Results of the optimization sub-model
for pyrolysis

In this section, the results of the optimization sub-model for the pretreat-
ment of biomass by pyrolysis are displayed. This work assumes that both,
pyrolysis oil and char are used in the gasification plant. Hence, no revenues
for by-products are included. In total, for a selling price of 200 $/t (see
section 6.2.1) of slurry 37 possible pretreatment plants are calculated by
the sub-model. A detailed listing of the locations and their pyrolysis slurry
capacity is presented in the appendix A.5. The results of the model are very
sensible to the selling price. In case the price rises or declines by 7.5 %
either only 27 or 305 plants are installed.
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6.4 Results of the risk sub-model

In figure 6.9, the utilized biomass potentials and the chosen locations for
pyrolysis plants is shown.

In case of pyrolysis, sorghum residues are not used. The mean transporta-
tion difference is a lot lower. The biomass residues are only transported
15.81 miles on average. Only about 5 million tons of slurry are produced
per year. Nevertheless, the NPV is higher than in case of sugar syrup. The
results are summarized in table 6.7.

Table 6.7: Main results of the optimization sub-model for pyrolysis

Result Value

Net present value 161.22 billion $
Produced slurry 4.8 mio. t per year
Number of production plants 37
Mean transport distance 15.81 miles
Utilized corn stover 95 %
Utilized sorghum residues 0 %
Utilized sugar cane residues 93.5 %

6.4 Results of the risk sub-model

In this section, the results of the risk sub-model are presented. The results
include the calculations of probabilities (see section 6.4.1) and consequences
(see section 6.4.2). Finally, risk matrices show, which uncertainties are the
most and the least crucial in biomass value chains (see section 6.4.3). This
work identifies three main risks:

• process variation

• feedstock price

• transport delays
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6.4 Results of the risk sub-model

Process variation describes the deviation of the final products from the
optimal process conditions. This can either be the case regarding the qual-
ity, quantity or time issues. Risks, which could influence variation of the
process are inhibitors, caramelized sugar syrup, or failed reactions due to
microorganisms. A low feedstock quality leads to low fermentation yields.
Process variations result in unsatisfied customers and additional cost.

The second main risk is variation in feedstock prices. Especially weather
risks or other natural risks such as insects can have a large effect on the price
of the feedstock. Not only natural risks but also increasing demand for the
feedstock or non-GMO crop can lead to increasing feedstock prices. Feed-
stock cost make up for the majority of the value chain cost. An increase in
feedstock prices question the economic feasibility of the overall value chain.
In case customers are willing to pay higher prices for the final products, the
influence is negligible, but otherwise, the profit is reduced drastically.

Transport delays can have the most causes. Transport risks such as acci-
dents or congestion have the largest influence on transport delays, but also
natural risks such as floods lead to transport delays. Process related delays
such as the crystallization of sugar syrup delay the transport as the sugar
needs to be warmed up before it can be used. Also the sedimentation of
pyrolysis slurry leads to transport delays as the slurry needs to be stirred
up before utilization. Transport delays lead to a lack of supply either on
the supply or demand side. Finally, this causes unsatisfied customers and,
hence, additional cost.

6.4.1 Probabilities

In order to estimate the risk cost for the integrated model, the likelihood of
their occurrence needs to be calculated. This was done based on the data of
section 5.5 with a Fault Tree Analysis. The FTA is performed for all three
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main risks. In the following figure 6.10, the Fault Tree for the feedstock
prices is presented. Within this Fault Tree, also the Fault Trees of trans-
portation and process failures are included. These are depicted by separate
FTAs as shown by the triangles in the sugar syrup Fault Tree. The inclusion
of these Fault Trees would cause a decrease of visibility. Therefore, they are
presented in the appendix A.3.

The circles at the bottom of the Fault Tree depict the basic events, such
as weather, process specifications, accidents, etc. These basic events are
combined by AND and OR gates, which define the dependencies of these
events. The selection of AND and OR gates are discussed with experts.
The probabilities for quantifiable risks are calculated according to the cal-
culation routines described in section 3.7.3.3. Based on the FTA, equations
can be defined, with which the overall likelihood of the main risk event can
be calculated and used as input in the integrated model. In the following,
the calculations of the probabilities of the three main risks are presented.
They are performed for biochemical pathways based on sugar syrup and for
thermochemical pathways based on pyrolysis slurry.

6.4.1.1 Biochemical pathways

The risk of process variation is influenced by unplanned maintenance as it
reduces the operating hours and, hence, the yearly output. The presence of
inhibitors in the fermentation broth might reduce the production yield. The
lack or quality of enzymes could also influence the fermentation yields as it
reduces the available amount of fermentable sugars. Varying process tem-
peratures, which can be affected by ambient temperatures, lead to decreased
yields due to the temperature sensitivity of microorganisms. In case of crys-
tallization and caramelization of the pretreated biomass (esp. sugar syrups),
the final products may have reduced quality (e.g. color). Additionally,
energy is needed to warm up crystallized sugar syrup.
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The estimation of the probability of varying processes P(vp,b) is presented
in equation 6.5 based on the existing AND and OR gates in the FTA.

P(pv,b) =

π (unplanned maintenance)+π (inhibitors)+π (enzymes)

+π (temperature)+π (crystallization)+π (caramelization)

−π (unplanned maintenance) ·π (inhibitors) ·π (enzymes)

·π (temperature) ·π (crystallization) ·π (caramelization) (6.5)

Delayed transports are a crucial risk in supply chains. If a transport does
not arrive on time, this leads to lacking feedstocks and, hence, the process
cannot produce the final products. This is especially critical if not enough
raw material is stored. Transport delays are affected by weather risks and
transport risks. Weather risks such as tornadoes/hurricanes, blizzards and
floods, can lead to disruptions in infrastructure. Therefore, other, more
flexible transport modes (e.g. trucks), might need to be used. This leads
to increased transport cost and longer transport times. Depending on the
transport mode, different transport risks can occur. These are congestion,
strikes or accidents. Congestion and strike result in transport delays, acci-
dents might even cause spillage, and, hence also destruction of the trans-
ported good. The likelihood of transport delays P(td,b) can be estimated as
presented in equation 6.6.

P(td,b) =

π (tornado)+π (blizzard)+π ( f loods)

+π (congestion)+π (accidents)+π (crystallization)

−π (tornado) ·π (blizzard) ·π ( f loods)

·π (congestion) ·π (accidents) ·+π (crystallization) (6.6)
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Feedstock prices are influenced by the market itself but also by the avail-
ability of the feedstock. Especially natural risks affect the harvesting yields,
and, hence, the availability of biomass. Tornadoes/hurricanes, hail, frost,
increased precipitation, drought, blizzards as well as insects or fungus
decrease the harvesting yields. Low harvests lead to high feedstock prices.
The likelihood of higher feedstock prices P(fp,b) can be calculated accord-
ing to equation 6.7.

P( f p,b) =

π (tornado)+π (hail)+π ( f rost)+π (precipitation)

+π (drought)+π (blizzard)+π (insects)+π ( f unghus)

+π (tornado)+π (crystallization)+π (caramelization)

−π (tornado) ·π (hail) ·π ( f rost) ·π (precipitation)

·π (drought) ·π (blizzard) ·π (insects) ·π ( f unghus)

·π (tornado) ·π (crystallization) ·π (caramelization) (6.7)

6.4.1.2 Thermochemical pathways

The likelihoods of the three main risks not only need to be calculated for bio-
chemical pathways but also for the conversion of pyrolysis slurry by gasifi-
cation and synthesis to ethylene. The main risks and many of the influencing
factors are identical to the biochemical risks. Nevertheless, there are some
minor differences. Therefore, the calculation of the probabilities are pre-
sented in the following. In case of process variation risks P(pv,t) as shown
in equation 6.8, the same factors are summarized by AND and OR gates as
in case of biochemical processes. The main difference is, that slurry does
not crystallize or caramelize. Nonetheless, it can sediment. This causes the
same risks as the crystallization: time delays and quality issues.
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P(pv, t) =

π (unplanned maintenance)+π (inhibitors)+π (slag)

+π (sedimentation)+π (temperature)

−π (unplanned maintenance) ·π (inhibitors) · (sedimentation)

·π (temperature) ·π (slag) (6.8)

Transport delays P(td, t) of thermochemical products are also dependent on
the sedimentation of the pyrolysis slurry and are adapted accordingly (see
equation 6.9).

P(td, t) =

π (tornado)+π (blizzard)+π ( f loods)

+π (congestion)+π (accidents)+π (sedimentation)

−π (tornado) ·π (blizzard) ·π ( f loods)

·π (congestion) ·π (accidents) ·+π (sedimentation) (6.9)

The calculation of the feedstock price risk P( f p, t) is identical to biochem-
ical pathways. Just the same adaption as for process variation needs to
be made: slurry does not crystallize or caramelize but can sediment (see
equation 6.10).

P( f p, t) =

π (tornado)+π (hail)+π ( f rost)+π (precipitation)

+π (blizzard)+π (insects)+π ( f unghus)

+π (tornado)+π (sedimentation)

−π (tornado) ·π (hail) ·π ( f rost) ·π (precipitation)

·π (blizzard) ·π (insects) ·π ( f unghus)

·π (tornado) ·π (sedimentation) (6.10)
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6.4.2 Consequences of the occurring risks

The consequences of are estimated for each of the three main risks and each
case study. They depend on the type of feedstock/intermediate/product, the
transport mode, and the process. The type of feedstock/intermediate/product
influence the value of loss, which influence the revenues and cost. The
transport mode defines the volume of feedstock/intermediate/product, that
is being transported. In case of process variation not the volume of the trans-
port mode, but of the reactor is the value defining volume. The product of
both, lost volume and value of that volume describes the risk consequences.
In the following, the estimation of the consequences is described in detail.

The risk consequences are estimated based on historical data. For the loss by
transport delays caused by strikes, accidents, etc. the value of lost feedstock
is calculated by the volume in the transport mode and its value. Regarding
the risk of feedstock at alternative cost, the difference between mean and
maximum biomass feedstock cost of recent history is chosen. Which cost
are applied depend on the risk and the involved products.

Process variation includes the quality and amount variability of the final
product. The most crucial risk is the destruction of a complete fermenta-
tion broth, which is assumed to be about one truck load (25t). In case of
destruction of the final product, the cost do not only include the final prod-
ucts itself, but also the value for the feedstock. If the final product cannot
be sold to generate value, the price for the feedstock was paid regardless.
Consequently, the consequence of process variation C (pv) is the volume of
the reactor v(reactor) multiplied with the value of the pretreated biomass
c(pretreated biomass) and of the final products c( f inal products) as pre-
sented in equation 6.11.

C (pv) = v(reactor) · (c(pretreated biomass)+ c( f inal products))

(6.11)
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Transport delays can have different causes. Accidents, congestion or
strikes are sources for this risk. In case the transport is delayed, this
might result in a lack of feedstock/intermediate/final product. This leads
to an interruption of production or the final customer cannot be supplied.
Therefore, transport delay risk have the consequence C (td) of the value
of the product within the transport mode and of the final products (see
equation 6.12).

C (td) = v(transport mode) · c(transported good)

+ v(reactor) · c( f inal product) (6.12)

The consequence of feedstock prices are only dependent on the feedstock
type. The products in the biomass value chain are clustered into three dif-
ferent groups. This work assumes that the prices of final products and inter-
mediates are directly dependent on the biomass price. In order to not double
count the effect of increased feedstock prices, the consequence of this risk
is set to zero for intermediates and final products. This work distinguishes
between biomass of the first and second generation. Sugary and starchy
biomass are directly affected by other risks. Based on historical data corn
prices can rise by $150 per ton. Hence, this consequence is assumed for
first generation biomass. Crop residues have a price of about one third com-
pared to corn. Consequently, an additional risk consequence of $50 per ton
of second generation biomass is assumed (see equation 6.13).

C ( f p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

$150 for corn, sugar cane, sorghum

$50 for corn stover, sugar cane bagasse,

sorghum residues

$0 for intermediates, final products

(6.13)
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6.4.3 Risk matrix

In this section, the risks depending on the feedstock/ intermediate/ product
as well as on the state and transport mode are discussed. The risks differ by
technology and are therefore presented below for butanol, succinic acid and
ethylene. The risks are displayed in two different figures. For all case studies
3D diagrams show the dependency on feedstock/intermediate/final product
as well as on the state and transport mode. In these figures, the risks are
depicted as the multiplied values of consequences and likelihood of events.
The second chart shows the risk matrix as single combinations of probabil-
ities and effects. These diagrams show the difference between risks with
high likelihood and low consequences and vice versa. The black bars depict
the risk of process variation. Transport delays are displayed by red bars and
feedstock prices are presented by green bars. On the x-axis the feedstock/
intermediate/ product are distinguished. The y-axis displays the states and
the respective transport mode (truck, rail, barge). The z-axis determines the
risk of feedstock prices, process variation and transport delays.

As the consequence of feedstock price variation was set zero for interme-
diates and final products, the green bars are only applicable for the differ-
ent biomass types. The risk of varying feedstock prices is immensely high
for truck and rail transport. As the transport of sugar syrup and pyrolysis
slurry in barge was omitted, the feedstock risk does not apply for this trans-
port mode. Transport delays are especially crucial in case of large vessels.
Hence, the risk of transport delays have the largest consequences for rail and
barge transport. This risk is negligible for truck transport.

6.4.3.1 Case study 1: Biochemical production of butanol

As explained above and proven in the following figure (see figure 6.11),
feedstock price risks are only applicable for the biomass types. These risks
are the highest in the biomass value chain. Especially, as feedstock risks
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often dependend on natural risks, which are hard to mitigate compared to
transport risks. The process and transport risks depend on the value of the
considered product and the respective volume. Due to the small transport
volumes, truck transports are not as risky as rail or barge. Some states are
more prone to risks than others. Illinois, Nebraska and Iowa for example
have higher feedstock risks than Louisiana.

Figure 6.11: 3D risk matrix of the identified risks of butanol

In figure 6.11, the risk is multiplied by consequence and likelihood. This
already provides a decision basis to see which states, transport modes and
feedstock/intermediate/final products have the largest risks. Nevertheless,
the measures depending on the likelihood and consequence are different.
Risks with low probability of occurrence but high consequences are hard to
influence and mitigate.
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6.4 Results of the risk sub-model

High probability risks with low consequences can easily be avoided. There-
fore, the differentiation between high and low likelihoods as well as high
and low consequences is essential for risk mitigation. This differentiation
was performed in figure 6.12. Especially barge transport delays cause high
consequences but are quite rare. Variations in feedstock prices on the other
hand almost always occur, but their consequences are often negligible.

Figure 6.12: Risk matrix of the identified risks of butanol

6.4.3.2 Case study 2: Biochemical production of succinic acid

In case of succinic acid, the figures are quite similar. The main difference
is the higher value of succinic acid, but no by-products are considered.
The 3D risk matrix depicts the multiplied consequences and probabilities
depending on feedstock/intermediate/product as well as state and transport
mode in figure 6.13. The transport delays and process variations include the
influence of the value of succinic acid as well as of the feedstocks.
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Consequently, process variations are in the same order of magnitude as feed-
stock prices. The likelihood of feedstock price variations is much higher.
Values of almost 100 % can occur due to the FTA approach. As all possible
natural risks are summarized by OR gates, a variation in feedstock price will
occur every year. The risk matrix is displayed in figure 6.14.

Figure 6.13: 3D risk matrix of the identified risks of succinic acid

6.4.3.3 Case study 3: Thermochemical production of ethylene

In figure 6.15, the multiplied risks by feedstock/intermediate/final product is
presented. Due to the low value of gasoline, the risks are not as high as in the
case of butanol or succinic acid. Feedstock price risks are the highest risk in
case study 3. Transport risks are the highest for barge and rail transport due
to the high consequences resulting from large transport capacities.
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Figure 6.14: Risk matrix of the identified risks of succinic acid

The products ethylene and gasoline have lower values than butanol and suc-
cinic acid. Therefore, the consequences depicted in figure 6.16 are a lot
lower. Also, only crop residues are considered in this case study. Hence,
the maximum loss is $50 per ton. The likelihood of feedstock variation is
identical to the other case studies.

6.5 Results and system configurations
of the integrated model

In this section, the results of the integrated model with and without consid-
ering uncertainties are presented. The comparison of both shows, if uncer-
tainties in general have an influence on the biomass value chain. As only a
single random probability is chosen, the effects can vary depending on the
case study.
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Figure 6.15: 3D risk matrix of the identified risks of ethylene

6.5.1 Results without uncertainties

Not only the effect of varying probabilities, but also the presence of risks
in the model need to be considered. Therefore, the results of the integrated
model with and without risks are analyzed in the following. The correspond-
ing results of the risk analysis is presented in section 6.5.

6.5.1.1 Case study 1: Biochemical production of butanol

In this first case study, butanol is produced from corn syrup, which was
pretreated in wet mills. These wet mills are all already existing suppliers. As
only maximum 100,000 tons of corn syrup can be supplied by one wet mill
to one customer, three suppliers are necessary to provide the 222,694 tons
for the production of 50,000 tons of butanol.
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Figure 6.16: Risk matrix of the identified risks of ethylene

The chosen suppliers are Cedar Rapids, Clinton and Sycamore. The sup-
pliers transport corn syrup by truck to Clinton. The final products butanol,
acetone and ethanol are produced in Clinton. From there they are trans-
ported by barge to the export port New Orleans. Locally used products are
transported there by truck, all exports to Asia and Europe are shipped there
by barge. This work assumes that ethanol is not exported in order to fulfill
the national biofuel quota in the U.S. The results of the integrated model
without uncertainties for case study 1: butanol is presented in table 6.8. The
results are also depicted for geographical orientation in a map of the U.S. in
figure 6.17.
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Table 6.8: Product flows for the production of butanol

Product From To Transport Amount [t/a]

Corn Cedar Rapids Clinton Truck 100,000
Corn Clinton Clinton Truck 100,000
Corn Sycamore Clinton Truck 22,694
Butanol Clinton New Orleans Barge 50,000
Acetone Clinton New Orleans Barge 26,341
Ethanol Clinton New Orleans Barge 4,273
Butanol New Orleans Asia Barge 20,800
Acetone New Orleans Asia Barge 10,958
Butanol New Orleans local Truck 17,500
Acetone New Orleans local Truck 9,219
Ethanol New Orleans local Truck 4,273
Butanol New Orleans Europe Barge 11,700
Acetone New Orleans Europe Barge 6,164

Figure 6.17: Suppliers and production of butanol
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6.5.1.2 Case study 2: Biochemical production of succinic acid

As in case study 1 above, case study 2 also is calculated with and without
uncertainties. The setup of the value chain is quite simple. Due to the high
conversion efficiency, only a single supplier is necessary to provide corn
syrup (77,400 tons) to the fermentation to succinic acid. Both, supplier
and production site, are situated in Keokuk. From Keokuk, 50,000 tons of
succinic acid (SA) are transported by barge to New Orleans and are exported
from there to Asia and Europe and are sold locally.

Table 6.9: Product flows for the production of succinic acid without uncertainties

Product From To Transport Amount [t/a]

Corn Keokuk Keokuk - 77,400
SA Keokuk New Orleans Barge 50,000
SA New Orleans Asia Barge 20,800
SA New Orleans Europe Barge 11,700
SA New Orleans Local Truck 17,500

The closeness to theMississippi River compensates for the lack of additional
suppliers close to Keokuk. However, if the supplier cannot supply, the feed-
stock and transport cost will increase. The results of the model is presented
in table 6.9. The results are also depicted for geographical orientation in a
map of the U.S. in figure 6.18.

6.5.1.3 Case study 3: Thermochemical production of ethylene

In this section, the setup of the biomass value chain for the production of
ethylene from biomass is presented. The results are shown in table 6.10.
Due to the low conversion factors, eleven suppliers of pyrolysis products
are necessary.

295



6 Value chains for the production of biochemicals in the United States

Figure 6.18: Suppliers and production of succinic acid

Floyd is chosen as main production location and is supplied by corn stover
based sugar syrup from Benton, Blue Earth, Cedar, Clay, Fayette, Floyd,
Freeborn, Grundy, Crawford, Nobles and Stephenson County. The latter
three are accessed by rail, the others by truck. The final products are sold
to the market via New Orleans port. The results of the base scenario are
depicted in figure 6.19 for a better understanding of the local surround-
ings.

6.5.2 Results with uncertainties

The configuration of the value chain according to the base scenario of the
integrated model is presented in this section. At first the different system
configurations for the production of butanol and succinic acid as well as
ethylene from pyrolysis and gasification are described in the following. The
input data for the integrated model is presented in chapter 5.
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Table 6.10: Product flows for the production of ethylene without uncertainties

Product From To Transport Amount [t/a]

Corn stover Benton Floyd Truck 127,022
Corn stover Blue Earth Floyd Truck 145,320
Corn stover Cedar Floyd Truck 145,320
Corn stover Clay Floyd Truck 145,320
Corn stover Fayette Floyd Truck 144,221
Corn stover Floyd Floyd - 134,593
Corn stover Freeborn Floyd Truck 145,320
Corn stover Grundy Floyd Truck 142,766
Corn stover Crawford Floyd Rail 142,044
Corn stover Nobles Floyd Rail 145,320
Corn stover Stephenson Floyd Rail 135,549
Ethylene Floyd New Orleans Truck 50,000
Gasoline Floyd New Orleans Truck 54,783
Ethylene New Orleans Europe Barge 11,700
Ethylene New Orleans Local Truck 17,500
Ethylene New Orleans Asia Barge 20,800
Gasoline New Orleans local Truck 54,783

6.5.2.1 Case study 1: Biochemical production of butanol

The results of the first case study regarding the value chain configuration as
well as the logistics is presented in this section. The product flows of the
value chain to produce butanol are shown in table 6.11.

The risks influence the value chain setup for butanol production. The results
are based on the worst case probabilities (highest likelihood) of the Poisson
functions. Contrary to the base scenario without uncertainties, Clinton is not
the production location anymore. Based on the worst case, Lafayette is the
best possible location under the given circumstances. Lafayette is supplied
by Marshall and Indianapolis with corn glucose syrup. From Lafayette, the
products are transported to New Orleans for export.
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Figure 6.19: Suppliers and production of ethylene

Table 6.11: Product flows for the production of butanol with uncertainties

Product From To Transport Amount [t/a]

Corn Marshall Lafayette Truck 100,000
Corn Lafayette Lafayette - 100,000
Corn Indianapolis Lafayette Truck 22,694
Butanol Lafayette New Orleans Barge 50,000
Acetone Lafayette New Orleans Barge 26,341
Ethanol Lafayette New Orleans Barge 4,273
Butanol New Orleans Asia Barge 20,800
Acetone New Orleans Asia Barge 10,958
Ethanol New Orleans local Truck 4,273
Butanol New Orleans local Truck 17,500
Acetone New Orleans local Truck 9,219
Butanol New Orleans Europe Barge 11,700
Acetone New Orleans Europe Barge 6,164

298



6.5 Results and system configurations of the integrated model

If uncertainties are considered, the risk cost rise. The change of location
from Clinton to Lafayette does not have an influence on transport or biomass
cost. However, Clinton in located in Illinois and Lafayette in Indiana. It
seems that Illinois is a state with higher risks due to traffic and weather.

6.5.2.2 Case study 2: Biochemical production of succinic acid

Contrary to the base scenario, the production location is not Keokuk but
Clinton. It is supplied also from there and succinic acid is transported to
New Orleans for export to Asia, Europa and the local markets. The product
flows of the value chain to produce succinic acid are presented in table 6.12.
Although Keokuk can benefit from the closeness to the Mississippi River,
the location is prone to multiple risks. The transport via barge does not have
a economic alternative. Additionally, Keokuk is located in a state, which is
affected by multiple weather risks. As no additional supplier is near, risk
mitigation is complex. The uncertainties influence the choice of location.

Table 6.12: Product flows for the production of succinic acid with uncertainties

Product From To Transport Amount [t/a]

Corn Clinton Clinton - 77,400
SA Clinton New Orleans Barge 50,000
SA New Orleans Asia Barge 20,800
SA New Orleans Europe Barge 11,700
SA New Orleans Local Truck 17,500

6.5.2.3 Case study 3: Thermochemical production of ethylene

The product flows of the value chain to produce ethylene and gasoline are
presented in table 6.13.

If risks are considered in the value chain calculations, the setup varies from
the previous result of the basis scenario. The uncertainties lead to a change
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in feedstock choices and shift from north to south. Freeport is the production
location of choice instead of Floyd. It is supplied with sugar syrup from
bagasse from Iberia, St. James, and St. Landry. Additionally, sugar syrup
based on corn stover is transported to Freeport from Blue Earth, Freeborn,
Macon, Montgomery, Stephenson, Tazewell, Warren, and White. Of course,
the closest port, Freeport, is used for export.

Table 6.13: Product flows for the production of ethylene with uncertainties

Product From To Transport Amount [t/a]

Bagasse Iberia Freeport Truck 145,320
Bagasse St.James Freeport Truck 145,320
Bagasse St.Landry Freeport Truck 145,320
Corn stover BlueEarth Freeport Rail 128,101
Corn stover Freeborn Freeport Rail 145,320
Corn stover Macon Freeport Rail 136,845
Corn stover Montgomery Freeport Rail 129,062
Corn stover Stephenson Freeport Rail 145,320
Corn stover Tazewell Freeport Rail 145,320
Corn stover Warren Freeport Rail 145,320
Corn stover White Freeport Rail 141,547
Ethylene Freeport Freeport Port Truck 50,000
Ethylene Freeport Port local Truck 17,500
Ethylene Freeport Port Asia Barge 20,800
Ethylene Freeport Port Europe Barge 11,700
Gasoline Freeport Freeport Port Truck 54,783
Gasoline Freeport Port local Truck 54,783

6.5.3 Comparison of economic results

In table 6.14, the results of the economic parameters are compared for all
three case studies, with and without the consideration of risk.
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In all cases, the consideration of risks reduces the NPV. Values, which do
not variate with changing logistics, remain identical to the results without
risks. These include revenues, utility, storage, and export cost as well as
investments. Biomass, transport, and risk cost are affected by the inclusion
of uncertainties. In case study 1 and 2, the optimal biomass does not change.
Therefore, the biomass cost remain. Mainly, the suppliers shift to other
states and, hence, locations. This results in an increase of transport cost.
Risks have a crucial effect especially on ethylene production. Due to eleven
suppliers, the transport distances are high. Consequently, feedstock prices
and transport delays have a large influence. Succinic acid is hardly affected
as it only depends on a single supplier.

Table 6.14: Comparison of economic parameters of the three case studies

Ba B-Ra SAb SA-Rb Ec E-Rc

NPV in mio. $ 258 153 556 555 -3617 -3994
Revenue in mio. $ 119 100 35
Cost in mio. $
Biomass 77 77 27 27 342 350
Transport 5.2 14.4 1.5 1.62 68 82
Risk - 3.25 - 0.02 - 30.2
Utility 0.1 0.59 20
Storage 0.32 0.32 0.32
Export 4.3 4.4 2.9
Investment 10.8 8.7 236

a B: butanol, B-R: butanol with risks
b SA: succinic acid, SA-R: succinic acid with risks
c E: ethylene, E-R: ethylene with risks
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6.6 Sensitivity analysis of the influence of
economic parameters and risks

In the following sections, the influence of economic parameters and uncer-
tainties are analyzed. The main economic parameters are transport, export,
biomass, and utilities. The effects of single parameters on the value chain
configuration will be shown by choosing adequate parameter variations.

Often, investments have an influence on the capacity of the production plant
(see Schwaderer [314]), but this work currently does not consider capacity
optimization. Hence, the variation of investment would only have an effect
on the NPV, but not on the setup of the value chain. Also the prices for the
final products, hence the revenues, will not have an influence on the value
chain. Only parameters, which are location specific, are crucial to the setup
of the value chain. The influence of risks on the value chain configura-
tion and their probability are analyzed by Monte Carlo Simulations. Based
on random values of the distribution function and multiple model runs, the
effect of risks is presented.

6.6.1 Transport cost and transport routes

Transport cost have a large effect on the biomass value chain. Not only do
they influence the profitability of the production, but also the configuration
of the value chain and the choice of transport mode. In the following, the
transport mode cost are varied. Currently, the transport by rail is the most
expensive as the total amount of transported goods is significantly lower
than in case of barge. The share of transport cost of the overall value chain
depends on the process. Due to increasing transport along the rivers, it is
assumed that the transport cost will also rise for barge transport. Hence, in
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the following analysis the influence of rising barge transport cost or sink-
ing rail cost respectively, on the biomass value chain, the logistics and the
location will be investigated.

6.6.1.1 Case study 1: Biochemical production of butanol

The transport is sensitive to varying transport cost. These make up for about
15% of the total biobased value chain for butanol production. This work
assumes, that truck is too expensive for long distances. Hence, only rail and
barge transport cost were varied. In case both transport cost are identical, the
location with the shortest distance to the export port is chosen. As the loca-
tion is now independent on the river access, the production shifts in case of
butanol from Clinton to Decatur. The results are displayed in table 6.15.

Table 6.15: Product flows for the production of butanol with varying transport cost

Product From To Transport Amount [t/a]

Identical rail and barge cost

Corn Decatur Decatur - 100,000
Corn Lafayette Decatur Rail 100,000
Corn Indianapolis Decatur Rail 22,695
Butanol Decatur New Orleans Rail 50,000
Acetone Decatur New Orleans Rail 10,958
Ethanol Decatur New Orleans Rail 4,273
Rail cost: 20$/t fix, 0.02$/(tm)

Corn Keokuk Keokuk - 100,000
Corn Eddyville Keokuk Rail 100,000
Corn Cedar Rapids Keokuk Rail 22,695
Butanol Keokuk New Orleans Barge 50,000
Acetone Keokuk New Orleans Barge 10,958
Ethanol Keokuk New Orleans Barge 4,273

In the second case, the rail transport cost, both fix and variable, are about
the mean of the previous rail and the current barge fix and variable cost.
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These cost lead to the above presented setup. The shorter transport dis-
tance by barge from Keokuk is now feasible, as the transport cost to Keokuk
from Eddyville and Cedar Rapids are now lower compared to the basis sce-
nario. Comparing the overall transport cost, the transport in the basis sce-
nario cost 5.173 mio. $. The location at Keokuk reduces the transport cost to
5.019 mio. $. In case the rail transport is at the same cost as barge transport,
the transport cost are reduced to 3.5 mio. $.

6.6.1.2 Case study 2: Biochemical production of succinic acid

Variations in transport cost might have a crucial influence on the setup of the
value chain. Transport cost make up for about 5 % in the succinic acid value
chain. In case rail and barge would have the same fix and variable transport
cost, the location of the supplier and production plant of succinic acid would
change. Loudon is closer to New Orleans. Hence, Loudon is chosen as a
new location. It does not have an influence, if the rail and barge cost are
low or high, as long as they are less than truck transport cost in the long run.
River access is not needed anymore. Due to the single supplier, the location
of succinic acid production is quite flexible. The changed setup is depicted
in table 6.16.

Table 6.16: Product flows for the production of succinic acid with varying transport cost

Product From To Transport Amount [t/a]

Corn Loudon Loudon - 77,400
SA Loudon New Orleans Barge 50,000

6.6.1.3 Case study 3: Thermochemical production of ethylene

Ethylene production and transport is sensible to rail transport cost. In case
the transport cost for rail are reduced to a fix share of 20 $/t and a vari-
able share of 0.02 $/(tm), rail is preferred. Consequently, all transports are
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performed with rail. Freeport is now the production location of choice.
Compared to the other two case studies, transport cost make up for the
largest share with 16 % in this case study. The results are summarized in
table 6.17.

Table 6.17: Product flows for the production of ethylene with varying transport cost

Product From To Transport Amount [t/a]

Bagasse Iberia Freeport Rail 145,320
Bagasse St.James Freeport Rail 145,320
Bagasse St.Landry Freeport Rail 145,320
Corn stover Delaware Freeport Rail 131,067
Corn stover Floyd Freeport Rail 134,593
Corn stover Freeborn Freeport Rail 145,320
Corn stover Grundy Freeport Rail 142,766
Corn stover Stephenson Freeport Rail 145,320
Corn stover Tazewell Freeport Rail 144,658
Corn stover Warren Freeport Rail 145,320
Corn stover Webster Freeport Rail 127,791
Ethylene Freeport Freeport Truck 50,000
Gasoline Freeport Freeport Truck 54,782

6.6.2 Export shares

In this section, the influence of export shares cost on the value chain design
is analyzed. Therefore, export factors for different products are analyzed.

6.6.2.1 Case study 1: Biochemical production of butanol

Even though export shares were set to 100 % to Europe, the port of choice
was not New York but remained New Orleans. This work assumes, that
New York can only be approached by rail and truck. These transport
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modes are too expensive for long distance transport. Therefore, barge trans-
port down the Mississippi River is preferred compared to the export from
New York, even though the export cost from there are lower. In case of
butanol, the variation of export shares does not have an influence.

6.6.2.2 Case study 2: Biochemical production of succinic acid

Export does not show a sensitivity in case study 2. Due to the same rea-
sons as case study 1, succinic acid is always exported from New Orleans.
An increase of export cost in New Orleans, lead to a shift of export from
New Orleans to Freeport.

6.6.2.3 Case study 3: Thermochemical production of ethylene

In case of case study 3, barge transport is only implemented between trans-
port hubs. The transport to New York can also be performed by rail just as to
New Orleans. The export cost to Europe are lower than from New Orleans.
This work assumes at this point, that 100 % of ethylene is exported to
Europe. This leads to a shift in the value chain setup. Gasoline is still trans-
ported to New Orleans, but due to the lower export cost from New York to
Europe, ethylene is transported to New York instead of New Orleans.

6.6.3 Biomass cost

Different approaches exist to test the dependency of the value chain on
biomass prices. Not only the prices influence the setup, but also the yields.
Biomass with high yields is often preferred due to lower transport and
biomass prices as less input is needed. Nevertheless, only biomass prices
are varied in this sensitivity analysis. The price of biomass depends not only
on the type of biomass, but also on the availability within a season and the
demand for the biomass. In case of weather extremes the price can increase
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significantly (see section 6.7). The influence of biomass cost on the setup of
the value chain for the production of biochemical is analyzed in this section.
As the overall configuration and system boundaries influence the results, the
sensitivity analysis is performed for all three case studies. The results are
presented in the following.

6.6.3.1 Case study 1: Biochemical production of butanol

Biomass cost are an important parameter for the production of butanol. They
announce for more than 75 % of the total value chain cost. Two different
parameter variations were considered in this sensitivity analysis. At first, the
cost for sugar syrup based on lignocellulosic biomass is reduced to see the
shift from first to second generation resources. In a second step, the price
of corn based glucose syrup is increased to analyze the influence on other
sugary biomass. The results are summarized in table 6.18.

In case lignocellulosic sugar prices are reduced to only 35 $/t, bagasse based
sugar syrup is chosen as additional feedstock from Iberville Parish. Never-
theless, corn is still the feedstock of choice. The production location is in
the corn belt, in Lafayette.

In case corn price is increased by more than 500 %, the production loca-
tion shifts to Geismar and the main suppliers are New Iberia, Belle Rose,
Jeanerette, Paincourtville and Raceland for sugar cane syrup.

6.6.3.2 Case study 2: Biochemical production of succinic acid

The prices of sugar syrup from lignicellulosic biomass have to sink to
about 35 $/ton to become economically feasible. The supplier changes
to Macon County. From there the sugar syrup is transported to Decatur as
displayed in table 6.19.
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Table 6.18: Product flows for the production of butanol with varying biomass prices

Product From To Transport Amount [t/a]

2nd gen. sugar syrup price: 35 $/t

Corn Lafayette Lafayette - 100,000
Corn Decatur Lafayette Truck 81,418
Bagasse Iberville Parish Lafayette Rail 605,700
Butanol Lafayette N. Orleans Barge 50,000
corn glucose syrup price: 1800$/t

Corn Loudon Geismar Rail 100,000
Sugar cane New Iberia Geismar Truck 50,000
Sugar cane Belle Rose Geismar Truck 50,000
Sugar cane Jeanerette Geismar Truck 50,000
Sugar cane Paincourtville Geismar Truck 50,000
Sugar cane Raceland Geismar Truck 605,700
Butanol Geismar N. Orleans Barge 50,000

Biomass prices are essential in succinic acid production. They make up for
more than 75 % of the value chain cost. In case not the price of second gen-
eration biomass is reduced, but the price for corn glucose syrup is increased
to 1800 $/t, then sorghum is the feedstock of choice. The production loca-
tion is now in Kansas City and is also supplied with corn glucose syrup
from there. Additionally, sugar syrup from sorghum from Overland Park,
Plainview and Colwich is used to produce succinic acid (see table 6.19).
Due to the low investments and comparably high production yields based
on sorghum, this feedstock seems to be an interesting alternative to corn.

6.6.3.3 Case study 3: Thermochemical production of ethylene

The sensitivity analysis of biomass cost for the case study 3 is not as com-
plex. Only two biomass types are considered as feedstock for pyrolysis and,
therefore, for the production of ethylene. Up to a bagasse sugar price of
200 $/t, corn stover is the preferred feedstock.
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Table 6.19: Product flows for the production of succinic acid with varying biomass prices

Product From To Transport Amount [t/a]

2nd gen. sugar syrup price: 35$/t

Corn stover Macon County Decatur Truck 534,760
corn glucose syrup price: 1800$/t

Corn Kansas City Kansas C. - 35,953
Sorghum Plainview Kansas C. Rail 50,000
Sorghum Colwich Kansas C. Rail 50,000
Sorghum Overland Park Kansas City Rail 50,000

In case the sugar syrup price from bagasse sinks below 190 $/t, the value
chain setup shifts from corn stover to sugar cane bagasse. The results are
identical to the scenario 2 (see section 6.7.2). Biomass cost are not as crucial
to the value chain as in the previous case studies. In case of ethylene, they
only account for about 66 % of the total value chain cost.

6.6.4 Utility cost

The influence of water, energy and other utility cost on the overall value
chain design are analyzed in this section. Depending on the process, partly
large amounts of utilities are needed. The biomass type and process influ-
ences the needed amount of utilities. In case the location is integrated in
already existing production plants the energy demand can be lowered. This
might have a great effect on the chosen locations. Therefore, the influence
of utility cost at different locations is analyzed in the following section for
each case study.
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6.6.4.1 Case study 1: Biochemical production of butanol

In the case study of butanol, the basis scenario results in Clinton as the main
production location. Cedar Rapids and Sycamore are close by and sup-
ply Clinton with corn glucose syrup. The influence of variable utility cost
depending on the location were tested in this sensitivity analysis. Although
the utility cost were set zero for the next closest location Cedar Rapids, the
production location remained in Clinton. The latter location has the advan-
tage, that is directly located at theMississippi River. Therefore, the transport
cost are low. A shift in the location would lead to much higher transport cost,
which reduces the profitability of the overall value chain. The transport cost
have a higher share of the overall value chain cost. Hence, the utility cost
do not have a large influence on the butanol value chain.

6.6.4.2 Case study 2: Biochemical production of succinic acid

For the second case study, the utility cost of different locations were varied.
As Clinton seems to be a robust location (it is often chosen as location in
case study 1), the utility cost are decreased there. In case of a co-location
plant, a contract might be possible to buy certain utilities to a reduced price.
Enzymes or nutrients need to be paid nonetheless, but other utilities such as
water, carbon dioxide or heat/electricity might be used from excess utilities
of the wet mill. Hence, this work assumes the cost for these utilities to be
half the size as in the basis scenario for Clinton. This small adaption of the
model input data leads to a change of the value chain setup. Indeed, Clinton
is chosen as location as supplier and production location. The results of
case study 2 are sensible to variations of utility cost at certain locations.
Nevertheless, not all locations can be influenced by utility cost adaption. All
utility cost at the locations Geismar and Freeport were set to zero. This work
assumes that also enzymes and nutrients could be received to special prices
at large scale chemical production sites. These locations were not chosen
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although the cost were changed dramatically. The results are presented in
table 6.20.

Table 6.20: Product flows for the production of succinic acid with varying utility cost

Product From To Transport Amount [t/a]

Corn Clinton Clinton - 77,400
SA Clinton New Orleans Barge 50,000

6.6.4.3 Case study 3: Thermochemical production of ethylene

In case of ethylene, two different variations were chosen for sensitivity anal-
ysis. At first, the utility prices in Freeport were set to zero for heat and elec-
tricity, assuming, that the production can benefit from the existing petro-
chemical plant. Second, the utility prices at the former location Floyd were
increased by 20 %. Both cases led to a shift in the biomass value chain. As
heat and electricity are the major cost in thermochemical processes, the pro-
duction is shifted to Freeport. The case study is very sensible to utility cost.
Already an increase by 20 % resulted in a new production location close to
Floyd, in Lee. The results are summarized in table 6.21.

6.6.5 Uncertainties

The influence of the identified risks and uncertainties on the value chain and
the logistics are analyzed in this section. Therefore, the integrated model is
run with a Monte Carlo simulation. This work performs 100 trial runs with
varying risk events. These risk events are based on a probability function
and random numbers for these events. The random numbers are calculated
by the random function in Microsoft Excel. These assume values, which are
in the same order of magnitude as the risk events.
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Table 6.21: Product flows for the production of ethylene with varying utility cost

Product From To Transport Amount [t/a]

Corn stover BlueEarth Freeport Rail 145,320
Corn stover Clay Freeport Rail 145,320
Corn stover Delaware Freeport Rail 131,067
Corn stover Floyd Freeport Rail 134,593
Corn stover Freeborn Freeport Rail 145,320
Corn stover Grundy Freeport Rail 142,766
Corn stover Nobles Freeport Rail 144,658
Corn stover Stephenson Freeport Rail 145,320
Corn stover Tazewell Freeport Rail 145,320
Corn stover Warren Freeport Rail 145,320
Corn stover Webster Freeport Rail 127,791
Corn stover Benton Lee Truck 127,022
Corn stover BlueEarth Lee Truck 145,320
Corn stover Delaware Lee Truck 131,067
Corn stover Fayette Lee Truck 144,221
Corn stover Lee Lee Truck 145,320
Corn stover Macon Lee Truck 136,845
Corn stover Stephenson Lee Truck 145,320
Corn stover Tazewell Lee Truck 145,320
Corn stover Warren Lee Truck 145,320
Corn stover Freeborn Lee Rail 144,274
Corn stover Grundy Lee Rail 142,766
Ethylene Lee New York Truck 50,000
Gasoline Lee New Orleans Truck 54,782
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For each Monte Carlo run, a new random number is used. Due to the long
calculation times of the model not more than 100 trials have been imple-
mented and analyzed. The approach can be extended without much effort to
perform more model runs. The benefit of more model runs on more accu-
rate results needs to be proven. For this first analysis 100 are sufficient. The
results of the Monte Carlo Analysis for all three case studies are presented
in the following sections.

6.6.5.1 Case Study 1: Monte Carlo Analysis

In 93 test runs, the same location (Clinton) as in the basis scenario was
selected (see figure 6.20). Seven of the 100 runs, hence 7 % of the test series,
resulted in different value chain setups. The alternative locations were in
5 test runs Blair (see table 6.22), in one Bedford Park (see table 6.23) and in
another one Lafayette (see table 6.24).

In case Blair is the chosen location, Fort Dodge and Columbus are additional
suppliers. The feedstock corn is transported by truck. The final products
are transported from Blair to New Orleans for export just as in the basis
scenario. Therefore, the further transport is not presented in the table.

Table 6.22: Monte Carlo Simulation: Blair as alternative location

Product From To Transport Amount [t/a]

Corn Fort Dodge Blair Truck 72,694
Corn Blair Blair - 100,000
Corn Columbus Blair Truck 50,000
Butanol Blair New Orleans Barge 50,000
Acetone Blair New Orleans Barge 26,341
Ethanol Blair New Orleans Barge 4,273
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Bedford Park is supplied from Lafayette, Hammond and Bedford Park
by Truck and from Marshall by rail. After the production of ABE in
Bedford Park, the products are transported to New Orleans and sold to the
markets from there.

Table 6.23: Monte Carlo Simulation: Bedford Park as alternative location

Product From To Transport Amount [t/a]

Corn Marshall Bedford Park Rail 22,694
Corn Lafayette Bedford Park Truck 100,000
Corn Hammond Bedford Park Truck 50,000
Corn Bedford Park Bedford Park - 50,000
Butanol Bedford Park New Orleans Barge 50,000
Acetone Bedford Park New Orleans Barge 26,341
Ethanol Bedford Park New Orleans Barge 4,273

Lafayette is the fourth chosen location. It was selected in one model run.
Lafayette is supplied by itself and by Indianapolis and Marshall by truck.
The final products are transported to New Orleans to be exported from there.

Table 6.24: Monte Carlo Simulation: Lafayette as alternative location

Product From To Transport Amount [t/a]

Corn Marshall Lafayette Truck 100,000
Corn Lafayette Lafayette - 100,000
Corn Indianapolis Lafayette Truck 22,694
Butanol Lafayette New Orleans Barge 50,000
Acetone Lafayette New Orleans Barge 26,341
Ethanol Lafayette New Orleans Barge 4,273

The alternative locations were especially chosen for very low random num-
bers. The probabilities for risky events are the highest for low numbers.
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Figure 6.20: Cumulative frequency of the Monte Carlo runs for butanol

These lead to high risk cost. They exceed other cost of the value chain.
Consequently, in these cases, the risk cost have larger impact on the value
chain. Clinton seems to be a location, which is prone to risks. Blair is
located in Nebraska and is the second preferred location. Illinois seems to
be a risky state for biomass value chains according to the results above.

6.6.5.2 Case Study 2: Monte Carlo Analysis

Succinic acid often needs only a single supplier due to higher yields. Hence,
only two value chain setups are defined by the integrated model. Of the
100 Monte Carlo runs, 80 % resulted in Keokuk as the supplier and produc-
tion location as in the basis scenario without risks. In the remaining 20 %
Clinton was chosen for both, supplier and production (see table 6.25).
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Table 6.25: Monte Carlo Simulation: Clinton as alternative location

Product From To Transport Amount [t/a]

Corn Clinton Clinton - 77,400
SA Clinton New Orleans Barge 50,000

The results lead to the same interpretation as for butanol. The alternative
location Clinton is chosen for low random numbers. For these low numbers,
the probabilities are the highest. The risk cost are higher than other cost.
Therefore, they have a larger influence on the results. Keokuk is located
in Iowa, Clinton in Illinois. The results lead to the conclusion, that value
chains in Iowa are more prone to risks. The weather extremes occur more
often in Iowa than in Illinois. They have a larger influence on the value
chain than transport or process risks. Not only the exposure to risks, but
also the closeness of alternative suppliers (see butanol results) lead to the
decision, that Clinton should be the preferred location. Despite the results
of the majority of the Monte Carlo Simulations (80 % for Keokuk), Clinton
is more robust and reduces risks.

The cumulative frequency function of the 100 Monte Carlo runs for suc-
cinic acid is presented in figure 6.21.

6.6.5.3 Case Study 3: Monte Carlo Analysis

Of the 100 Monte Carlo runs, only six runs led to overall four different
setups for case study 3. The main production location is Floyd. Other loca-
tions are Freeport, Fayette and Lee. Hence, the majority of the production
locations are in the corn belt close to biomass as corn stover. The main
reason is that a lot of pyrolysis slurry is needed and the most suppliers are
located in the corn belt.
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Figure 6.21: Cumulative frequency of the Monte Carlo runs for SA

The alternative locations minimize Iowa as supplier. Fayette is also in Iowa
but more to the south, so that it has an additional supplier from Florida. Lee
is located in Illinois and Freeport in Texas. All three locations are chosen in
two cases.

The setup for Lee is presented in table 6.26. Lee is situated in Illinois.
Although this state is often neglected Lee is chosen due to the reduced uncer-
tainties in this one Monte Carlo run (very high number).

Even though Fayette is in the same state as Floyd, it includes less suppliers
from Minnesota and Iowa but adds suppliers from Florida and Illinois (see
table 6.27).

Two different setups for Freeport as alternative location exist (see table 6.28).
In the first setup, most of the supply is provided from corn stover. The sec-
ond setup includes more bagasse based suppliers.

The cumulative frequency function of the 100 Monte Carlo runs for succinic
acid is presented in figure 6.22.
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Table 6.26: Monte Carlo Simulation: Lee as alternative location

Product From To Transport Amount [t/a]

Corn stover Benton Lee Truck 127,022
Corn stover Cedar Lee Truck 145,320
Corn stover Delaware Lee Truck 131,067
Corn stover Fayette Lee Truck 144,221
Corn stover Lee Lee - 145,320
Corn stover Macon Lee Truck 136,845
Corn stover Stephenson Lee Truck 145,320
Corn stover Tazewell Lee Truck 145,320
Corn stover Warren Lee Truck 145,320
Corn stover Clay Lee Rail 144,274
Corn stover Grundy Lee Rail 142,766

Table 6.27: Monte Carlo Simulation: Fayette as alternative location

Product From To Transport Amount [t/a]

Corn stover Blue Earth Fayette Truck 145,320
Corn stover Cedar Fayette Truck 145,320
Corn stover Clay Fayette Truck 145,320
Corn stover Delaware Fayette Truck 131,067
Corn stover Fayette Fayette - 144,221
Corn stover Floyd Fayette Truck 134,593
Corn stover Freeborn Fayette Truck 145,320
Corn stover Grundy Fayette Truck 142,766
Corn stover Lee Fayette Truck 128,228
Corn stover Stephenson Fayette Truck 145,320
Corn stover Warren Fayette Truck 145,320
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Table 6.28: Monte Carlo Simulation: Freeport as alternative location

Product From To Transport Amount [t/a]

Bagasse Iberia Freeport Truck 145,320
Bagasse Cedar Freeport Truck 145,320
Corn stover Delaware Freeport Rail 131,067
Corn stover Freeborn Freeport Rail 145,320
Corn stover Grundy Freeport Rail 142,354
Corn stover Macon Freeport Rail 136,845
Corn stover Montgomery Freeport Rail 129,062
Corn stover Stephenson Freeport Rail 145,320
Corn stover Tazewell Freeport Rail 145,320
Corn stover Warren Freeport Rail 145,320
Corn stover White Freeport Rail 141,547
Bagasse Iberia Freeport Truck 145,320
Bagasse St. James Freeport Truck 145,320
Corn stover St. Landry Freeport Truck 145,320
Corn stover Blue Earth Freeport Rail 128,101
Corn stover Freeborn Freeport Rail 145,320
Corn stover Macon Freeport Rail 136,845
Corn stover Montgomery Freeport Rail 129,062
Corn stover Stephenson Freeport Rail 145,320
Corn stover Tazewell Freeport Rail 145,320
Corn stover Warren Freeport Rail 145,320
Corn stover White Freeport Rail 141,547

6.7 Scenario calculations

The results of the different scenarios are presented and discussed in this
section. The scenarios are defined as presented in section 5.6. The set up of
the value chain varies depending on the configuration of the scenario.
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Figure 6.22: Cumulative frequency of the Monte Carlo runs for ethylene

The considered scenarios are the following: drought of 2012, the neglect
of GMO based feedstocks, incentives for the utilization of lignocellulosic
biomass, transport disruptions in the value chain, and increased production
yields. As the quantifiable risks are not the focus of this analysis, the Monte
Carlo Analysis is neglected for the scenario calculations. Therefore only
results for one risk value is calculated for all three case studies.

6.7.1 Scenario 1: Drought 2012

The results of the three case studies under consideration of scenario 1 are
discussed in this section. Years with heavy drought have increased in the
past. The drought of 2012 was a severe drought in the U.S.. The boundary
conditions for this scenario is described in section 5.6.2.
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6.7.1.1 Case study 1: Biochemical production of butanol

The grain to residue ratio is influenced in case of drought. The amount of
corn stover remains the same, but the grain yield is decreased. Other crops,
such as sugar cane and sorghum are more drought resistant or are cultivated
in areas, which are not effected by drought. Hence, only the price of corn
increased during the drought of 2012. Consequently, the supplier changes to
other feedstocks in case of a drought. This might also lead to an alternative
location for the production of the final products. Nevertheless, if only a
single year of drought occurs, it is not feasible to change the overall setup
of the value chain. In future, drought years could occur more often, which
can lead to this alternative scenario.

The results for the scenario 1 of the case study 1 is presented in table 6.29.

Table 6.29: Product flows for the production of butanol in scenario 1

Product From To Transport Amount [t/a]

Corn Cedar Rapids Clinton Truck 100,000
Corn Clinton Clinton - 100,000
Corn Sycamore Clinton Truck 22,694
Butanol Clinton New Orleans Barge 50,000
Acetone Clinton New Orleans Barge 26,341
Ethanol Clinton New Orleans Barge 4,273

Even though the price for corn, and therefore glucose syrup, has increased,
it is still the preferred feedstock. The yield from glucose is very high.
Hence, less feedstock and, consequently, suppliers are needed, compared
to the other feedstocks. This keeps the transport cost at a minimum. Con-
sequently, the setup of the value chain is the same as in the basis scenario.
The profit of that year decreases due to the increased feedstock cost by about
44 mio $.
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6.7.1.2 Case study 2: Biochemical production of succinic acid

Despite the rising corn price, the high yield of corn to succinic acid still
results in an identical value chain set up as the basis scenario. Hence,
Keokuk is still the location of choice for producing the succinic acid. The
results for the scenario 1 of the case study 2 is presented in table 6.30. The
additional cost for glucose syrup are 15 mio. $.

Table 6.30: Product flows for the production of succinic acid in scenario 1

Product From To Transport Amount [t/a]

Corn Keokuk Keokuk - 77,400
SA Keokuk New Orleans Barge 50,000

6.7.1.3 Case study 3: Thermochemical production of ethylene

The results for the scenario 1 of the case study 3 is presented in table
6.31. The price of corn stover is identical to the basis scenario, but bagasse
price, and hence the sugar price from bagasse, was decreased by $20 as the
sugar cane price was also lower in 2012. Even though the price of bagasse
is decreased, corn stover is still the feedstock of choice. The transport cost
are too high to benefit from the $20 lower bagasse price. Consequently, the
setup of the value chain is equivalent to the basis scenario. As the corn stover
price has not changed, the profit of this setup remains the same.
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Table 6.31: Product flows for the production of ethylene in scenario 1

Product From To Transport Amount [t/a]

Corn stover Benton Floyd Truck 127,022
Corn stover Blue Earth Floyd Truck 145,320
Corn stover Cedar Floyd Truck 145,320
Corn stover Clay Floyd Truck 145,320
Corn stover Fayette Floyd Truck 144,221
Corn stover Floyd Floyd - 134,593
Corn stover Freeborn Floyd Truck 145,320
Corn stover Grundy Floyd Truck 142,766
Corn stover Crawford Floyd Rail 142,044
Corn stover Nobles Floyd Rail 145,320
Corn stover Stephenson Floyd Rail 135,549
Ethylene Floyd New Orleans Truck 50,000
Gasoline Floyd New Orleans Truck 54,783

6.7.2 Scenario 2: Customers neglect
GMO based feedstocks

GMO feedstocks produce not only more harvest, but are also more resistant
to risks such as insects, drought etc. This work assumes, that by forbidding
GMO based feedstocks, the yields decrease by half. Less feedstock results
in reduced production capacities for pretreated biomass. Hence, each sup-
plier can only sell half the pretreated biomass than originally. The amount
of suppliers is expected to increase due to a constant demand for pretreated
biomass. In this section, the results of the three case studies under consid-
eration of scenario 2 will be discussed. A more detailed description of the
scenario is presented in section 5.6.3.
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6.7.2.1 Case study 1: Biochemical production of butanol

Due to the low harvesting yields, in total seven suppliers are needed, from
which the full amount of pretreated biomass is used. To minimize transport
cost, the location with the most adjacent suppliers is chosen for producing
ABE. The final products are then transported by barge to the export port.

The results for the scenario 2 of the case study 1 is presented in table 6.32.

Table 6.32: Product flows for the production of butanol in scenario 2

Product From To Transport Amount [t/a]

Corn Sycamore Clinton Truck 25,000
Corn Eddyville Clinton Truck 47,695
Corn Cedar Rapids Clinton Truck 50,000
Corn Clinton Clinton - 50,000
Corn Keokuk Clinton Truck 50,000
Butanol Clinton New Orleans Barge 50,000
Ethanol Clinton New Orleans Barge 2,980
Acetone Clinton New Orleans Barge 25,325

Additionally to the suppliers Clinton, Cedar Rapids and Sycamore, the sup-
pliers Eddyville and Keokuk are included to deliver enough sugar syrup.
The transport cost increase by 2.4 mio. $ due to the additional two suppli-
ers. Not only the harvesting yields are expected to decrease but also the corn
prices, and hence, the glucose syrup price will increase. This leads to higher
feedstock cost of double the original cost.

6.7.2.2 Case study 2: Biochemical production of succinic acid

As now less feedstock is available at the supplier locations, more suppliers
need to be considered. The transport distance is the restrictive variable.
Hence, a location for the production of the final product is chosen, where the
sum of all transports is minimized. Clinton is now the production location
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of choice. As already seen in case study 1, it is adjacent to multiple other
suppliers. The lacking amount of feedstock is provided by Cedar Rapids.
Succinic acid is then transported via barge to the export port of NewOrleans.
The results for the scenario 2 of the case study 2 is presented in table 6.33.

Table 6.33: Product flows of the succinic production in scenario 2

Product From To Transport Amount [t/a]

Corn Cedar Rapids Clinton Truck 27,400
Corn Clinton Clinton - 50,000
SA Clinton New Orleans Barge 50,000

Both, transport and feedstock cost increase for the scenario. Cedar Rapids
is very close to Clinton and Clinton is directly situated at the Mississippi
River. Hence, the transport cost only increase by about $500,000.

6.7.2.3 Case study 3: Thermochemical production of ethylene

In case GMO feedstock is neglected, corn yields will decrease immensely.
Corn yield will only be half of the current yields. Not only corn yield
decreases but also of corn stover. The prices of sugar syrup from corn stover
is doubled. This results in a shift towards the utilization of sugar cane
residues. The results for the scenario 2 of the case study 3 is presented
in table 6.34. The production location is no longer set up in Floyd and sup-
plied by corn stover biorefineries. In this scenario, the location of choice
is Geismar in Louisiana. It is preferably supplied by bagasse based pyrol-
ysis slurry. As not enough sugar syrup is available in the south, additional
suppliers of the corn belt are used. They transport the corn stover based
pyrolysis slurry by rail to Geismar. As the total supply decreases for corn
stover, more suppliers are needed as in the basis scenario.
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Table 6.34: Product flows of the ethylene production in scenario 2

Product From To Transport Amount [t/a]

Bagasse Hendry Geismar Truck 145,320
Bagasse Iberia Geismar Truck 145,320
Bagasse Palm Beach Geismar Truck 145,320
Bagasse Rapides Geismar Truck 36,984
Bagasse St. James Geismar Truck 145,320
Bagasse St. Landry Geismar Truck 145,320
Corn stover Cedar Geismar Rail 70,549
Corn stover Crawford Geismar Rail 71,022
Corn stover Fillmore Geismar Rail 72,660
Corn stover Grundy Geismar Rail 71,383
Corn stover Hall Geismar Rail 71,383
Corn stover Hidalgo Geismar Rail 73,761
Corn stover Lee Geismar Rail 72,660
Corn stover Macon Geismar Rail 68,422
Corn stover Tazewell Geismar Rail 72,660
Corn stover Warren Geismar Rail 72,660
Corn stover White Geismar Rail 70,773
Ethylene Geismar New Orleans Barge 50,000
Gasoline Geismar New Orleans Barge 54,782

6.7.3 Scenario 3: Incentives for the production
of lignocellulosic bioethanol

In this section, the results of the three case studies under consideration of
scenario 3 are discussed. The input data is varied according to the descrip-
tion indicated in section 5.6.4. Consequently, the prices of lignocellulosic
biomass are lowered due to 50 % incentives by politics.
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6.7.3.1 Case study 1: Biochemical production of butanol

The results for the scenario 3 of the case study 1 is presented in table 6.35.
Even though the price of lignocellulosic biomass was reduced by 50 %, still
corn is chosen as the favored feedstock. The high conversion yields lead
to the same setup and, therefore, cost and revenues as in the basis scenario.
Cedar Rapids, Clinton and Sycamore are chosen as the suppliers and Clinton
as production location of the joint process P12.

Table 6.35: Product flows for the production of butanol in scenario 3

Product From To Transport Amount [t/a]

Corn Cedar Rapids Clinton Truck 100,000
Corn Clinton Clinton - 100,000
Corn Sycamore Clinton Truck 22,694
Butanol Clinton New Orleans Barge 50,000
Acetone Clinton New Orleans Barge 26,341
Ethanol Clinton New Orleans Barge 4,273

6.7.3.2 Case study 2: Biochemical production of succinic acid

Even though the cost for lignocellulosic biomass are 50 % less, the produc-
tion yields are high for glucose syrup. Hence, corn is still the feedstock of
choice for the biomass value chain. Consequently, the setup of the value
chain does not deviate from the basis scenario. Therefore, the cost and rev-
enues remain unaltered as well. The results for the scenario 3 of the case
study 2 is presented in table 6.36.

6.7.3.3 Case study 3: Thermochemical production of ethylene

As all relevant cost in this case study are reduced by 50 %, this scenario does
not have an influence on the setup of the value chain for ethylene production.
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Table 6.36: Product flows for the production of succinic acid in scenario 3

Product From To Transport Amount [t/a]

Corn Keokuk Keokuk - 77,400
SA Keokuk New Orleans Barge 50,000

The overall feedstock cost are reduced by half. Hence, the biomass cost are
only 170 mio.$. The results for the scenario 3 of the case study 3 is presented
in table 6.37.

Table 6.37: Product flows of the ethylene production in scenario 3

Product From To Transport Amount [t/a]

Corn stover Benton Floyd Truck 127,022
Corn stover Blue Earth Floyd Truck 145,320
Corn stover Cedar Floyd Truck 145,320
Corn stover Clay Floyd Truck 145,320
Corn stover Fayette Floyd Truck 144,221
Corn stover Floyd Floyd - 134,593
Corn stover Freeborn Floyd Truck 145,320
Corn stover Grundy Floyd Truck 142,766
Corn stover Crawford Floyd Rail 142,044
Corn stover Nobles Floyd Rail 145,320
Corn stover Stephenson Floyd Rail 135,549
Ethylene Floyd New Orleans Truck 50,000
Gasoline Floyd New Orleans Truck 54,783

6.7.4 Scenario 4: Influence of transport disruption
on the choice of logistics

In this section, the results of the three case studies under consideration of
scenario 4 will be discussed. Depending on which transport mode (rail
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or barge) was used in the basis scenario, the possible transport modes are
defined in scenario 4. The logistics and setup of the value chain will change.
Two different types of transport disruptions are considered in scenario 4 and
are discussed in the following sections.

6.7.4.1 Scenario 4a: Short-term disruption of a transport

Scenario 4a analyzes short-term disruptions of transport modes. The loca-
tions, which are chosen in the basis scenario, are set fix. The suppliers and
export ports are variable.

Case study 1: Biochemical production of butanol

Clinton is the production location in the basis scenario. The final products
ABE are transported via barge to New Orleans and sold to different markets
from there. In this scenario, the facility is still located in Clinton, but barge
transport is omitted. The results for the scenario 4a of the case study 1 is
presented in table 6.38. Now that the barge transport is forbidden, ethanol
is transported to New York. Ethanol has an export share of 0 and is fully
used in the local market to fulfill the bioethanol quota. The rail transport
distance is closer to New York. The remaining products are transported by
rail to New Orleans and exported from there.

Case study 2: Biochemical production of succinic acid

Barge transport was possible in the basis scenario. In this scenario 4a, barge
transport is omitted. This changes the chosen transport mode of the value
chain. As the final production location cannot be changed in this scenario,
the results remain the same as in the basis scenario. Keokuk can provide
enough supply for the production of succinic acid.
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Table 6.38: Setup of the butanol production in scenario 4a

Product From To Transport Amount [t/a]

Corn Sycamore Clinton Truck 22,695
Corn Clinton Clinton - 100,000
Corn Cedar Rapids Clinton Truck 100,000
Butanol Clinton New Orleans Rail 50,000
Butanol New Orleans Europe Barge 11,700
Butanol New Orleans local Truck 17,500
Butanol New Orleans Asia Barge 20,800
Acetone Clinton New Orleans Truck 25,325
Acetone New Orleans Europe Barge 5,926
Acetone New Orleans local Truck 8,864
Acetone New Orleans Asia Barge 10,535
Ethanol Clinton New York Truck 2,979
Ethanol New York local Truck 2,979

Nevertheless, succinic acid is transported to New Orleans by rail. This setup
increased the transport cost almost fourfold. The results for the scenario 4a
of the case study 2 is presented in table 6.39.

Table 6.39: Product flows of the succinic production in scenario 4a

Product From To Transport Amount [t/a]

Corn Keokuk Keokuk - 77,400
SA Keokuk New Orleans Rail 50,000

Cast study 3: Thermochemical production of ethylene

Floyd was set as fix production location in this scenario 4a, as in the result
of the basis scenario. The transport by rail is omitted. Hence, all transports
are performed by truck. Regardless, the same suppliers are chosen by the
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Table 6.40: Product flows for the production of ethylene in scenario 4a

Product From To Transport Amount [t/a]

Corn stover Benton Floyd Truck 127,022
Corn stover Blue Earth Floyd Truck 145,320
Corn stover Cedar Floyd Truck 145,320
Corn stover Clay Floyd Truck 145,320
Corn stover Crawford Floyd Truck 142,044
Corn stover Fayette Floyd Truck 144,221
Corn stover Floyd Floyd - 134,593
Corn stover Freeborn Floyd Truck 145,320
Corn stover Grundy Floyd Truck 142,766
Corn stover Nobles Floyd Truck 145,320
Corn stover Stephenson Floyd Truck 135,549
Ethylene Floyd New Orleans Truck 50,000
Gasoline Floyd New Orleans Truck 54,783

6.7.4.2 Scenario 4b: Long-term disruption of a certain transport mode

Scenario 4b considers the long-term neglect of a certain transport mode.
Depending on the results of the basis scenario a certain transport mode was
chosen to be avoided. The results are discussed in the following.

Case study 1: Biochemical production of butanol

The results of scenario 4b do not differ from the scenario 4a. Even though
the location is flexible, the integrated model defines Clinton as the produc-
tion location. Reason therefore, is the closeness of two other suppliers. This
reduces the transport cost from suppliers to production plant.
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Table 6.41: Product flows for the production of butanol in scenario 4b

Product From To Transport Amount [t/a]

Corn Cedar Rapids Clinton Truck 100,000
Corn Clinton Clinton - 100,000
Corn Sycamore Clinton Truck 22,694
Butanol Clinton New Orleans Rail 50,000
Acetone Clinton New Orleans Barge 26,341
Ethanol Clinton New Orleans Barge 4,273

Case study 2: Biochemical production of succinic acid

In case of succinic acid, barge was the optimal transport mode. As the pro-
duction location can be changed in this scenario, the overall setup of the
value chain is adapted. Corn is used as it has the highest production yield.
Loudon is directly connected to the railway system and has the shortest dis-
tance to the port in New Orleans, from which the final product is exported
to overseas.

Table 6.42: Product flows of the succinic production in scenario 4b

Product From To Transport Amount [t/a]

Corn Loudon Loudon - 77,400
SA Loudon New Orleans Rail 50,000

Case study 3: Thermochemical production of ethylene

The location was flexible in scenario 4b, but the transport by rail was omitted
completely. Regardless these changes, Floyd remains the chosen location
for the production. The setup is presented in table 6.43.
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Table 6.43: Product flows for the production of ethylene in scenario 4b

Product From To Transport Amount [t/a]

Corn stover Benton Floyd Truck 127,022
Corn stover Blue Earth Floyd Truck 145,320
Corn stover Cedar Floyd Truck 145,320
Corn stover Clay Floyd Truck 145,320
Corn stover Crawford Floyd Truck 142,044
Corn stover Fayette Floyd Truck 144,221
Corn stover Floyd Floyd - 134,593
Corn stover Freeborn Floyd Truck 145,320
Corn stover Grundy Floyd Truck 142,766
Corn stover Nobles Floyd Truck 145,320
Corn stover Stephenson Floyd Truck 135,549
Ethylene Floyd New Orleans Truck 50,000
Gasoline Floyd New Orleans Truck 54,783

6.7.5 Scenario 5: Increased conversion yields from
second generation biomass

In this section, the results of the three case studies under consideration of
scenario 5 are discussed. Assuming that research can increase the conver-
sion factors of alternative biomass sources the production yields are adapted.
The yield of sugar cane and sorghum are increased to the yield of corn.
Additionally, the conversion rates from sugar cane bagasse and sorghum
residues are set to the same rates as from corn stover.

6.7.5.1 Case study 1: Biochemical production of butanol

Even though the conversion yields are increased significantly, corn syrup
is still the feedstock of choice. This has two reasons. Firstly, the suppli-
ers Cedar Rapids and Sycamore are close to Clinton. Hence, the transport
cost are comparably low. Secondly, corn syrup price remains constant in
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this scenario. It is lower than the syrup prices of sorghum and sugar cane.
Consequently, the setup of scenario 5 is identical to the basis scenario. The
results for the scenario 5 of the case study 1 is presented in table 6.44.

Table 6.44: Product flows of the butanol production in scenario 5

Product From To Transport Amount [t/a]

Corn Cedar Rapids Clinton Truck 100,000
Corn Clinton Clinton Truck 100,000
Corn Sycamore Clinton Truck 22,694
Butanol Clinton New Orleans Barge 50,000
Acetone Clinton New Orleans Barge 26,341
Ethanol Clinton New Orleans Barge 4,273

6.7.5.2 Case study 2: Biochemical production of succinic acid

The results for the scenario 5 of the case study 2 is presented in table 6.45.
The conversion yields are adapted as described above. Nevertheless, the
setup of the value chain is identical to the basis scenario. The biomass cost
are higher than the transport cost. Corn syrup is less expensive than sorghum
and sugar cane syrup. Consequently, corn is still the feedstock of choice.

Table 6.45: Product flows of the succinic production in scenario 5

Product From To Transport Amount [t/a]

Corn Keokuk Keokuk - 77,400
SA Keokuk New Orleans Barge 50,000

6.7.5.3 Case study 3: Thermochemical production of ethylene

Even though the conversion yields from corn stover and bagasse based
pyrolysis slurry are identical, a location in the corn belt is still favored.
As the prices for the slurry are identical, the only influencing factor are the
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transport distances. These are directly related to the amount and location
of the suppliers. Not enough bagasse based pyrolysis slurry suppliers exist
in the south. Hence, the location is built in Floyd and supplied by Benton,
Blue Earth, Cedar, Clay, Fayette, Floyd, Grundy, Crawford and Stephenson
county. The results for the scenario 5 of the case study 3 is presented in
table 6.46.

Table 6.46: Product flows of the ethylene production in scenario 5

Product From To Transport Amount [t/a]

Corn stover Benton Floyd Truck 127,022
Corn stover Blue Earth Floyd Truck 145,320
Corn stover Cedar Floyd Truck 145,320
Corn stover Clay Floyd Truck 145,320
Corn stover Fayette Floyd Truck 144,221
Corn stover Floyd Floyd - 134,593
Corn stover Freeborn Floyd Truck 145,320
Corn stover Grundy Floyd Truck 142,766
Corn stover Crawford Floyd Rail 142,044
Corn stover Nobles Floyd Rail 145,320
Corn stover Stephenson Floyd Rail 135,549
Ethylene Floyd New Orleans Truck 50,000
Gasoline Floyd New Orleans Truck 54,783

6.7.6 Comparison of economic results

In this section, the setup results of the five scenarios are compared for each
case study. For the specific setup please see the previous sections.

The five scenarios are compared to the basis scenario S0. The cost for utili-
ties, storage, export as well as the revenues and the investments are identical
for all scenarios. Reasons are that the same amount of products are sold
from the same export port to the same markets. Additionally, the process
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configuration does not change. Hence, the utility demand and, consequently,
utility cost are identical. The setup also influences the investment. The main
influence on the NPV is the biomass and transport cost.

6.7.6.1 Case study 1: Biochemical production of butanol

The economic results of the scenarios are depicted in table 6.47. In the
following, the influence of the scenarios on the economic performance of
the system is analyzed and compared. The NPV of almost all scenarios is
positive. Consequently, the investment in this value chain is economically
feasible. Only scenario S2 leads to a negative NPV. In case GMO corn is
forbidden, prices explode and additional suppliers are needed. This does not
only increase the biomass cost but also the transport cost. The use of non-
GMO corn leads to the closure of such a production plant. Even incentives
of 50 % for lignocellulosic biomass do not alter the setup and the economic
feasibility of the value chain. The conversion efficiency of corn glucose
syrup is too high. Rising corn prices as in scenario S1 due to weather risks
have no impact on the value chain but reduce the profit.

Table 6.47: Value chain cost of butanol production of the different scenarios

cost in $ bio S0 S1 S2 S3 S4 S5

NPV 258 -222 -432 258 256 258
Revenue 119
Biomass 77 133 156 77 77 77
Transport 5.2 5.2 7.6 5.2 10.3 5.2
Risk 0.309 0.309 0.252 0.309 0.297 0.309
Utility 0.099
Storage 0.32
Export 4.3
Investment 10.8
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The process setup does not change throughout the scenario calculations.
Hence, the utility, storage, export cost as well as the investment remain con-
stant in all scenarios. As the capacity of the production plant is set fix and
the biomass type does not change in the scenarios, the revenues are identi-
cal. The high revenues result from the additional by-products which gener-
ate profits. Without the consideration of these by-products, the value chain
would not be economical feasible.

6.7.6.2 Case study 2: Biochemical production of succinic acid

The production of succinic acid is in all scenarios feasible. This process
generates high revenues due to the high market price of succinic acid. It
is very efficient and has therefore low biomass demands. This leads to low
transportation cost. Although GMO restrictions result in reduced biomass
supply and high prices, the process is economically feasible. As not many
suppliers are needed, the risks are low. Succinic acid fermentation does
not produce other by-products. This, and the high conversion rates from
corn glucose syrup, result in low investments. Succinic acid seems to be a
product, which is highly recommendable for large-scale production.

Table 6.48: Value chain cost of succinic acid production of the different scenarios

cost in $ bio S0 S1 S2 S3 S4 S5

NPV 556 389 319 556 528 556
Revenue 100
Biomass 27 46 54 27 27 27
Transport 1.5 1.5 2 1.5 4.8 1.6
Risk 0
Utility 0.59
Storage 0.32
Export 4.4
Investment 8.7
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As in case study 1, the process setup is identical for all scenarios. Conse-
quently, utility, storage, and export cost as well as revenues and investments
are equal in all scenarios.

6.7.6.3 Case study 3: Thermochemical production of ethylene

The most significant difference to the other two case studies is the negative
NPV in all scenarios. The production of ethylene from pyrolysis slurry via
gasification and synthesis does not seem economically feasible at the time.
Compared to butanol and succinic acid production, the investments are high
but the revenues are low. Ethylene and gasoline are products of lower value
than butanol or succinic acid. Especially gasoline needs to compete with
petrol. Additionally, thermochemical processes have high energy demands.
This leads to high utility cost.

To produce ethylene from pyrolysis slurry, many suppliers are needed due
to the low conversion yield on a mass basis. This results in high transport
cost, which in turn, reduces the profit of the value chain. The results of the
different scenarios are presented in table 6.49.

Table 6.49: Value chain cost of ethylene production of the different scenarios

cost in $ bio S0 S1 S2 S3 S4 S5

S0 S1 S2 S3 S4 S5
NPV -3,617 -3,617 -6,176 -2,163 -3,620 -2,367
Revenue 35
Biomass 342 342 603 171 342 342
Transport 68 68 105 68 68 68
Risk 0.046 0.131 0.119 0.046 0.018 0.046
Utility 19.5 19.5 19.6 19.5 19.5 19.5
Storage 0.32
Export 2.9
Investment 237
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6.8 Conclusion

The results of the model runs are presented in this chapter. At first, the sub-
models are applied to generate the necessary input data for the integrated
model. All three case studies (butanol, succinic acid, ethylene) are simu-
lated in AspenPlus. The material and energy balances are used to estimate
investments and calculate the conversion efficiencies of the processes.

Based on the estimated biomass potentials, the optimization sub-model is
applied to two case studies to produce pretreated biomass (sugar syrup and
pyrolysis slurry). The results of the optimization sub-model are used as
suppliers for the integrated model.

All identified risks and uncertainties are analyzed. The FTA approach leads
to a clustering of all uncertainties to three quantifiable main risks. Probabili-
ties and consequences are estimated for these main risks and depicted in risk
matrices. Feedstock prices are the highest risk that occurs in biomass value
chains. Transport risks of large vessels such as barge is the second crucial
risk. Monte Carlo simulations are implemented in the integrated model to
assess these risks. The influence of non-quantifiable risks is discussed based
on five predefined scenarios.

Although some locations are the preferred location based on the extreme
scenarios, risks can exceed the influence of biomass cost. Biomass cost is
the primary influence value in the scenario calculations, but are even less
than the risk cost in the Monte Carlo Simulations.

The setup of most value chains is quite robust. Due to the high yield of
biochemicals from corn glucose syrup, it is the most favored feedstock. The
production yield based on corn glucose syrup is often more than threefold
compared to other. Additionally, many suppliers exist in the corn belt.
Hence, multiple suppliers for a single biochemical plant are often close
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together. This reduces supply risks and transport cost. The cost of barge
transport is the cheapest for long distances. As all ports are in many cases
more than 1000 miles away, the transport mode of choice is barge. Conse-
quently, the facilities close to the Mississippi River are preferred.

Biomass cost make up for the largest share of the overall value chain. In
the case studies, the share was between 66 and 75 %. Transport cost are the
second most crucial cost share with about 15 %.

Based on the case studies, the preferred locations are most likely in the
corn belt. Depending on the risks, the location can even shift to the south
as droughts and other natural risks are less likely in Texas or Louisiana.
Sorghum and sugar cane are also more resistant to risks. In many cases,
Clinton was the location of choice for production processes based on corn
glucose syrup. Consequently, it seems to be the most robust location for the
production of chemicals based on biochemical conversion.
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The model itself as well as the results are critically reflected and discussed
in chapter 7.1. Also the application of the model to real world problems
and the transferability to other problems are analyzed. A conclusion and an
outlook are presented in chapter 7.2.

7.1 Discussion and application

In the following section 7.1.1, the developed approach is discussed. The
results are summarized and analyzed in section 7.1.2. The application of the
approach is discussed in section 7.1.3.

7.1.1 Discussion of the developed approach

This work has developed a two stage approach, which includes three sub-
models and an integrated model. Objective of this work is to provide a
decision support tool for the location and logistics optimization of value
chains for the production of biobased chemicals under uncertainties. This
approach can be applied to different case studies and research questions by
varying input parameters. Most of the identified risks can be found in other
regions. Nevertheless, the risk assessment needs to be performed individu-
ally for each application. In all cases, the input data for the three sub-models
and the integrated model needs to be recalculated. Results and conclusions
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for the above presented case studies might vary depending on the boundary
conditions (other biomass, regions, processes and cost).

The following reviews will discuss the single models: optimization, techni-
cal, and risk sub-model as well as the integrated model.

7.1.1.1 Optimization sub-model

The optimization sub-model has been developed as capacity and biomass
optimization model. Based on precalculated biomass potentials and non-
linear investment curves, the approach optimizes future locations and capac-
ities of biomass conversion plants. Sugar syrup or pyrolysis slurry are prod-
ucts of these pretreatment plants.

Many different technologies can be applied to pretreat biomass. Their use
depends on the type of biomass and the desired pretreatment product. This
work has considered only a single technology for each, biochemical and
thermochemical conversion, which is applicable for the production of sugar
syrup, resp. pyrolysis slurry. The operator needs to preselect the technolo-
gies and the necessary input data. The inclusion of a technology optimiza-
tion would support the decision of the operator.

The optimization sub-model is based on non-linear investment functions.
These functions describe the economies of scale of investments. They need
to be linearized to include them in the MILP model. The user defines a cer-
tain amount of support points to describe the linear functions. More support
points lead to more accurate results. This work has defined only five points
to enhance the calculation times.
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7.1.1.2 Technical sub-model

The simulation of the pretreatment facilities has been based on a single ref-
erence plant, but not on the actual plant capacity. The results might deviate
from the simulated values. Due to variable capacities in the optimization
sub-model, the simulation of the true capacities is not feasible. The utility
demand and efficiencies could be approached by simulating multiple capac-
ities and finding a regression function based on the capacity.

No biorefineries for the conversion of biomass residues to high value sugar
syrups exist. Therefore, the validation of the model has not been possible.
The existing biochemical plants are based on first generation biomass. Their
location is often not only based on the available biomass potentials, but also
by already existing petrochemical plants. Up to now, the decision of possible
locations are also based on strategic reasons and not only based on hard facts
such as cost and raw material supply.

Due to the restricted data on large scale biochemical plants, the used data for
the model application is based on publications, which have tested different
process variations at laboratory scale. Hence, the utilization of these values
for large scale plants is questionable. Especially in case of biochemical
conversion with microorganisms such as bacteria, the efficiency strongly
depends on the sugar concentration and composition in the fermentation
broth, the downstream processing mode, the chosen microorganism, etc.

This work has simulated the technical process for the assessments in the
technical sub-model. The processes have been implemented in AspenPlus.
Unfortunately, AspenPlus is still developing appropriate tools for the sim-
ulation of batch processes. Especially fermentations are often batch pro-
cesses and, therefore, time dependent and discrete. Hence, the quality of
simulation might be reduced. Nevertheless, AspenPlus is a well-known and
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accepted flowsheeting simulation program. Its application is sufficient for
first estimations.

The efficiencies of the processes are calculated on a mass basis, which is
currently, the most interesting measure as long as the economic feasibility
is assured. The overall efficiency of the process, also regarding energetic
parameters, is currently becoming more and more important. In terms of
sustainability, the process needs to be technically and economically feasible
and efficient. Therefore, not only the mass, but also the energy balances
should be considered more carefully.

7.1.1.3 Risk sub-model

The risk model presents the identification of risks along biomass value
chains. In order to assess these risks, the estimation of probabilities and
consequences of risks based on historic events has been performed. The
likelihood of the events has been described as Poisson distribution. These
risks have been summarized by Fault Tree Analysis to quantifiable main
events. The cost, which accrue in case the risk occurs, are included in the
objective function of the integrated model. The variability of the distribution
function has been considered by applying Monte Carlo analysis. Although
many aspects are included in the approach, time and event dependencies are
not yet considered due to complexity reasons. Additionally, risks can cor-
relate with each other. For example, heavy rains can lead to floods, which
in turn result in barge transport delays. The description and calculation of
the correlations between risks are very complex. Due to the large amount
of considered risks in this work, the correlation analysis is not included.
Hence, correlations such as Markov chains are neglected in this work.

Risks can be time dependent and especially occur multiple years in a row.
Normally for example, dry periods alternate with wet seasons. In case of
global warming, multiple drought years could occur in a row. As the storage
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might decrease or be fully consumed, the supply risks could increase with
each additional drought year. Scenarios on weather developments have not
been included in this work.

7.1.1.4 Integrated model

The integrated model enables the use of multiple biomass types. The con-
version yields as well as the investments are based on the biomass. The
input depends on the conversion yield and leads to the capacity of the facil-
ity. The investments have been estimated for production plants of a single
biomass. Hence, the applicability of this approach to a mixed plant is ques-
tionable. Not only the investment but also the conversion yield might be
influenced by the mix of feedstock input. Currently, no data on mixed plants
are available to provide realistic input data for these critical aspects. From
a technical point of view, it does not seem realistic, that multiple biomass
plants are feasible at the same efficiency as single feedstock facilities. Due
to the complexity of the problem, this work needed to simplify the problem
regardless of the knowledge of this critical point. As soon as better data is
published and available, the respective input data should be adapted.

A risk mitigation strategy could be the accurate storage capacity. This work
has assumed a fix storage capacity. Nevertheless, the optimization of the
needed storage capacity depending on the risk likelihood and consequence
would be an additional value for the operator. The optimization of the stor-
age capacity is complex. Many risks are time dependent and restrict storage
itself as well. For example, in case a barge transport is three days delayed,
then the storage needs to hold the production volume for three days. Still,
pretreated biomass, e.g. sugar syrup or pyrolysis products, can deteriorate
during storage. In this work, sugar syrup can crystallize or slurry can sedi-
ment. Consequently, storage is also prone to risks, which need to be consid-
ered in the optimization of storage capacities.
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7.1.2 Discussion of the results

The results of the sub-models and the integrated model are summarized and
interpreted in this section.

7.1.2.1 Optimization sub-model

Two case studies have been considered in the optimization sub-model: pro-
duction of sugar syrup by dilute acid pretreatment and slurry by fast pyrol-
ysis. Both are based on lignocellulosic biomass such as corn stover, sugar
cane bagasse and sorghum residues. The approach optimizes locations and
capacities of future biorefineries. In case of sugar syrup, 44 locations were
found. Almost all residues were utilized to produce the sugar syrup. The
model calculated 37 locations for the production of pyrolysis slurry. Both
products are sensible to the investment functions and the product prices.
Only an increase of about 7 % of the final product price led to 305 locations

instead of only 37 in case of pyrolysis. Therefore, the results need to be
considered carefully. Due to the high available potential of corn stover, the
majority of the locations are situated in the corn belt.

7.1.2.2 Technical sub-model

The three case studies (butanol, succinic acid, ethylene) have been simulated
in AspenPlus. The results cannot be validated with existing plants, as so far
only few biochemical plants exist. Unfortunately, they do not publish their
processing data. Only literature data was available for this analysis.

Baral et al. [41] have analyzed the conversion of biomass to butanol via
ABE fermentation. According to them, the efficiency is about 11 %. The
results of this work show a lower conversion yield of 8.8 %. Nevertheless,
the results are in the same order of magnitude.
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Vaswani [372] has estimated the total capital investment of succinic acid
production via fermentation. His results are about 123.1 million dollars
for a 37,500 t/year plant. This leads to a specific succinic acid price of
2.86 $/kg. This is higher than the current market price of 2 $/t for petro-
based succinic acid. The investments of Vaswani [372] is about tenfold the
value of the estimations in this work. Unfortunately, his calculations are
not very detailed. Therefore, no comparison on the assumptions and results
could be performed.

In general, corn based glucose syrup led to the highest efficiencies in both,
butanol and succinic acid fermentation. Due to the fermentability of glu-
cose, these feedstocks were preferred.

Corn stover was the feedstock of choice in case of the thermochemical path-
way. According to Trippe [356], the market price needs to be at least
1.5 $/liter. Currently, the ethylene and gasoline prices are much lower.
Hence, the revenues do not cover the investments and production cost. Con-
sequently, the NPV is below zero and the investment is not feasible.

7.1.2.3 Risk sub-model

The results of the risk sub-model have been based on historic data. The U.S.
government departments offer many officially available data banks to dif-
ferent topics. Accident, weather or crop cultivation statistics are provided
for each year and state at the least. These available sources were used to
estimate the probabilities. As different reference values are applied by pre-
senting these data, they needed to be adapted to enable a generic approach.
Nevertheless, this work had to make many assumptions, which can devi-
ate from reality. Additionally, historic events cannot predict the future.
Especially historic weather data will not provide certain information on
future events. Therefore, some scenario calculations should be performed
for extreme events.
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The distribution functions have been performed with a Monte Carlo simu-
lation. For this, random numbers for all risks have been assumed to enable
a comparable data basis. Nevertheless, the values were in a certain range.
Higher numbers are more applicable for accidents than for hurricane days
per year. This led to very low possibilities in some cases, which could under-
estimate the results.

The basic risks have been summarized by Fault Tree Analysis (FTA) to three
main risks: transport delays, feedstock price variations and process varia-
tions. As no correlations between the risks were analyzed, the FTA led in
some cases to probabilities of more than 100 %. Especially weather risks
have been added together due to the OR gates. Assuming a single random
number, one of the weather events are very likely to occur in a year and lead
to feedstock price variations. This is actually a fact, as feedstock prices are
very fluctuating.

Low random numbers led to variations in the value chain. Hence, the risks
have an influence on the setup. Uncertainties need to be considered in case
of new investments to reduce possible risks beforehand.

7.1.2.4 Integrated model

In most cases, corn is considered the primary feedstock of choice. High
conversion factors influence the location and suppliers the most. Due to the
low efficiencies from second generation biomass, these are hardly chosen.
Their prices need to be reduced by 90 % in order to change the feedstock.

Some locations are very robust to risks and cost variations such as utility or
biomass prices. Only transport cost have a large influence on the value chain
and the logistics. Clinton was in many scenarios the preferred location and
seems to be robust against transport, utility, and biomass cost changes. It
was also often the preferred location considering risks.
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The scenario calculations of extreme events has proven that these often have
a large influence on the value chain and need to be considered carefully.

7.1.3 Application

The approach has been applied for six biomass types, first and second gen-
eration biomass, which are cultivated in the United States. Each feedstock
has been converted by three technologies to biochemicals. These have been
modeled by case studies. The location planning models included three trans-
port modes, hubs, storage and the export of the final products. The uncer-
tainties were calculated based on existing statistics in the considered region
and represent real world problems. Hence, the approach provides decision
support for realistic value chains in a defined region.

The decision support system can be applied not only to the above presented
parameters, but can be seen as a generic approach for multiple problems.
In general, different transport modes, biomass, risks, technologies, etc. can
be implemented. The model can be adapted to other transport, biomass
and utility cost as well as investment and production cost. The suppliers,
possible locations and export hubs can be individualized. Nevertheless, the
transport distances per transport mode need to be adapted. These depend on
the region, the predefined locations and the available transport modes.

Uncertainties, their occurrence, probabilities and consequences, strongly
depend on the value chain and need to be carefully reconsidered in case
the model is applied to other value chains. The risks need to be identified
from scrap. Of course, the identified risks in this work can be used as basis,
but they do not claim completeness.

This work focuses on biochemicals. Nevertheless, the approach is also
applicable for bioenergy and biofuel processes. Some risks might be identi-
cal, but need to be reconsidered (e.g. quota for bioenergy/biofuel). In case
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of bioenergy, the assessment of the production process efficiency needs to
be redefined. This work has assessed the efficiency on mass basis. In case
of bioenergy, the more reasonable indicator is the energy content (e.g. lower
heating value (LHV) of biomass).

7.2 Conclusion and outlook

This final section concludes this work and presents an outlook on further
possible research.

7.2.1 Conclusion

This work has developed an approach for decision support for location plan-
ning of biomass value chains for the production of biochemicals. Biomass
value chains are prone to multiple risks. Their economic and technical fea-
sibility depend on many input factors. This work has proposed a two stage
approach to include the majority of the influencing factors. In three sub-
models, optimization, technical, and risks, the necessary input data for the
integrated model have been calculated and analyzed.

7.2.1.1 Optimization sub-model

Currently, conversion facilities for first generation biomass are state of the
art but only few biorefineries for the pretreatment of lignocellulose exist.
These can supply the production of biobased chemicals with the respective
feedstock. In order to include these in the approach, an optimization sub-
model has been developed. The optimization sub-model optimizes future
biorefinery locations based on lignocellulosic biomass residues. This work
has developed a capacity and feedstock optimization problem. The non-
linear economies of scale of the plant capacity have been approximated
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based on investment curves. Biomass is transported by truck to the pre-
treatment facility. This work has considered two different technologies and,
therefore, pretreated feedstocks. Dilute Acid pretreatment converts ligno-
cellulosic biomass to sugars for biochemical conversion. Fast pyrolysis
is used to produce pyrolysis slurry (biooil and biochar) as feedstock for
thermochemical processes. Based on the biomass potentials of corn stover,
sorghum residues and sugar cane bagasse, 44 biorefineries for sugar or 37
pyrolysis locations were selected by the model. The price of the pretreated
biomass has a large influence on the amount of opened facilities. Already an
increase of 7.5 % of the slurry price led to 305 locations. Incentives on the
price of pretreated lignocellulosic biomass could result in a large increase
of pretreatment facilities.

7.2.1.2 Technical sub-model

The technical sub-model has been used to simulate the conversion processes
from biomass to sugar or pyrolysis slurry and for the conversion from pre-
treated biomass to chemicals. The results of the simulations have been used
to estimate production cost, especially of utilities, and investments. These
provide input data for the integrated model. Corn resulted in the highest
conversion yields of biochemical processes. It contains the highest con-
centration of glucose, which is metabolized best by microorganisms. Other
biomass of the first generation, such as sugar cane and sorghum, also con-
sist of fructose. The conversion rates are unknown for sucrose and have
been therefore neglected in this work. Lignocellulosic biomass contains
large amounts of hemicellulose and, hence, xylose as well as lignin. These
led to reduced efficiencies. Nevertheless, due to high pretreatment cost,
the price of corn is rather high. Succinic acid for example has quite large
yields of almost 80 % based on corn glucose syrups but investments of about
60 mio. dollars.
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7.2.1.3 Risk sub-model

The risk sub-model has identified quantifiable and non-quantifiable risks in
biomass value chains. The quantifiable risks, such as transport risks (e.g.
accidents, congestion) or weather risks (e.g. drought, hurricane) haven been
estimated based on historical data. All identified risks have been summa-
rized to three main risks by Fault Tree Analysis: process variation, transport
delay, and feedstock prices. These have been be described by Poisson dis-
tributions. The integrated model has included the probability functions by
Monte Carlo Analysis. Although the risk for a single risk event was low,
the sum of all possible risks, which have an influence on the main risks was
in some cases almost 100 %. Therefore, these risks need to be considered
carefully. The non-quantifiable risks have been modeled by scenario analy-
sis. These events could not be described by historical data as they are often
very extreme (e.g. extreme drought in 2012) or are influenced by mankind
(e.g. policies). These risks had the largest influence on the biomass value
chain. Therefore, extreme scenarios are inevitable to be considered.

7.2.1.4 Integrated model

The choice of biomass depended on the conversion yields. The efficiency
of the process had the greatest influence on the setup of the value chain.
Corn was the preferred biomass for fermentations. The high glucose con-
centrations of corn glucose syrup has led to the highest conversion yields
in case of biochemical processes. Microorganisms can metabolize hexoses
more easily. Consequently, the efficiencies of sugar syrup from sugar cane,
sorghum and biomass residues, have been much lower. Only very high corn
cost resulted in a switch in feedstock supply.

Processes were more likely to operate at the same location. Splitting up
processes in conversion and downstream processes did not seem feasible
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due to increased transport cost and utility demands. Additionally, this work
assumed, that joint locations reduces the engineering and personnel cost.

Often, a single supplier was not sufficient for the provision of pretreated
biomass for the conversion to biochemicals. A production location, which is
close to multiple suppliers can increase supply security and, hence, reduce
the risk of supply outages. Therefore, even if only a single supplier was
needed (as in case study 2), the operator should consider to choose a location
close to multiple suppliers. This is also proposed based on the Monte Carlo
simulation. Case study 2 showed a high probability of 20 % to change the
production location compared to the other case studies (case study 1: 7 %,
case study 3: 6 %).

Barge transport was the most efficient for long distances. As the final prod-
ucts needed to be transported to the ports for export, the transport distances
were very long. Especially, if corn wet mills were selected as co-location,
the products need to be transported from the central corn belt to the coast for
export. Nonetheless, barge transport risks have high consequences, which
might occur. Hence, locations, which are not restricted to barge transport
should be considered.

The developed approach provides decision support to operators of chemical
plants based on biomass and other stakeholders. New production plants are
strategic decisions, which need to be carefully accessed. This problem is
very complex due to many influencing factors. The operators can utilize the
approach to plan such facilities and the overall value chain. With the help of
the approach, many different scenarios and regions can be evaluated. This
can lead to a more profound result. Nevertheless, the effort to gather all
relevant data for the models is very time consuming and complex.

353



7 Conclusion

7.2.2 Outlook

Although this work includes multiple characteristics of biomass value chains
and risks, many possible targets exist to extend more aspects in the approach.

7.2.2.1 Optimization sub-model

The optimization sub-model is a capacity and location optimization model,
which takes different biomass types into account. Nevertheless, many addi-
tional aspects can be considered in the approach. Currently, the biomass
potentials are modeled as a total sum of available feedstock. The usable
potentials are non-linearly restricted by harvesting cost, technical possibil-
ities and ecological restrictions. In order to estimate, which share of the
potential should be harvested, biomass supply can be modeled by non-linear
supply cost curves.

The biomass transport is currently enabled only by truck. For long distances
in the corn belt, also rail transport is feasible. The optimization sub-model
could be further developed not only as location optimization but also as a
logistics model.

Furthermore, the optimization sub-model currently assumes that the appli-
cator of the model is aware of the best available technique (BAT) and imple-
ments the necessary data. As multiple technologies exist to pretreat biomass,
the optimization of the utilized method should be considered. The efficiency
and economic feasibility depends on the capacity and, therefore, on the
biomass potentials. Consequently, the applied technology needs to be opti-
mized. Additionally, the investment is currently only estimated based on a
reference capacity. As the size of the conversion facility is optimized, the
conversion yields, investments and variable production cost might deviate
from the optimal value. Hence, correlation functions between these factors
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and the capacity should be implemented instead of fix values in order to lead
to more accurate results.

7.2.2.2 Technical sub-model

The simulation for the technical sub-model is currently implemented in
AspenPlus. The application of AspenPlus is currently optimized for con-
tinuous processes. However, biochemical processes are often batch pro-
cesses. In future research, other software tools such as Chemadis, Super-
Pro Designer, etc. should be tested. The results of the simulations should be
compared and validated with real production data.

The current simulations could not be validated with real world data of large
scale conversion plants. Companies are very strict with disclosing process
data of their facilities. Nevertheless, a cooperation with a chemical company
should be envisaged to validate the models.

Besides the simulation results, research needs exist to further develop the
efficiency of biochemical conversion of ligocellulosic biomass. Bacterial
strains need to be developed that can convert other sugars than glucose more
efficiently. Thermochemical conversion processes are not well understood.
Especially pyrolysis processes can currently not be simulated. Hence, the
knowledge of the processes further need to be extended.

7.2.2.3 Risk sub-model

Currently, multiple risks are considered and modeled. Nevertheless, the
risks are considered individually. In many cases, correlations between these
risks exist. For example, heavy rains correlate with floods and therefore
barge accidents. Also, drought and heavy rain are unlikely to occur in the
same month. Consequently, the identification and consideration of correla-
tions between risks leads to a more precise result. This work focuses on the
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identification of most risks along the biomass value chain as well as many
other parameters. Hence, the analysis of correlations is beyond the scope
but should be considered in future research.

Additionally, not all possible risks are included in the approach. This work
assumes that the demand for biobased chemicals is fix. However, many fac-
tors influence the demand for biochemicals. Multiple operators, fluctuating
customers, varying market conditions can lead to shifting demands. These
demand variations influence the biomass demand and, hence, the location
of suppliers and production. In literature, demand variations are often mod-
eled by stochastic programming. As this approach is beyond the scope of
this work, it was neglected. In further research it should be considered. The
approach should be tested, if it can be adapted to stochastic programming.

7.2.2.4 Integrated model

The integrated model has been developed as location and logistic planning
model. This work considers three case studies: two biochemical conver-
sion plants (n-butanol and succinic acid) and one thermochemical produc-
tion pathway (DME via pyrolysis). A general approach has been developed,
which can be applied to other processes (e.g. propanediol, itaconic acid,
bioenergy, etc.) as well. In future research, also other processes can be
assessed with this approach. Although this work focuses on biochemicals,
the approach is also applicable for bioenergy and biofuels. The general idea
and setup of the approach can also be transferred to other research fields.

The case studies focused on the United States and the major biomass
resources there. The general approach can also be applied to other regions
and biomass types. Europe, for example, might lead to very different results
as many smaller countries exist and the biomass is far less concentrated.
The input data needs to be adapted to the regional specifics. Especially,
transport distances, locations, biomass potentials, existing plants, all other
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regional aspects, need to be reassessed and included in the sub-models and
integrated model.

The integrated model currently focuses on economic parameters. However,
biomass value chains also aim at reducing emissions and increasing sustain-
ability by producing “green chemicals”. Therefore, not only the economic
optimization of value chains, but also the consideration of ecologic factors
by multi-objective optimization should be implemented. The locations and
logistical concepts might deviate from the current setup and lead to pareto-
optimal results.
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8 Summary

Due to limited fossil resources, the importance and improvement of a bio-
economy has increased more and more in the past years. Biomass based
value chains are very complex and depend on many different factors. Cur-
rently, research focuses on supply and demand risks of biofuel and bio-
energy networks or parts of the supply chain. Nevertheless, the inclusion of
the full scope of sugary/starchy as well as lignocellulosic biomass from cul-
tivation to the production of biochemicals for the final market could not be
found in literature. Consequently, in this work a decision support approach
for location and logistics planning has been developed and applied to the
production of chemicals from biomass considering uncertainties.

The decision support approach consists of an integrated model and three
sub-models. The optimization sub-model optimizes the location and capac-
ities of pretreatment plants, which convert lignocellulosic biomass to pro-
cessable feedstocks. The technical sub-model assesses conversion processes
techno-economically by flowsheeting simulations. Production yields, util-
ity demands, production costs and investments are the main results of the
technical sub-model. The risk sub-model identifies and assesses risks and
uncertainties that can occur along biomass value chains. Beside the results
of the three sub-models, the integrated model also considers various cost,
transport restrictions, existing infrastructures and suppliers, etc. The inte-
grated model, designed as a Mixed Integer Linear Programming model,
allows modeling of multiple biomass, multiple transport modes, intermedi-
ate processes and uncertainties. In this work, three case studies are analyzed
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8 Summary

with this model, two biochemical and one thermochemical conversion in
the United States. As a result, the integrated model proposes a nearly opti-
mal location and the respective logistical network for the production of bio-
based chemicals.

The results are strongly related to the biomass price, the conversion yields
and transport modes. In general, uncertainties have an impact on the setup
of the value chain. Especially non-quantifiable risks have a large influ-
ence on the value chain and should therefore be considered carefully before
decision-making. Although this work aims at modeling problems based on
real world data, the results need to be revised carefully. All relevant data is
based on literature and could not be validated with reality. Nevertheless, the
presented model is a first approach to assess multiple problems of complex
biomass value chains.
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A.1 Appendix 1

A.1.1 Unit processes in AspenPlus

Table A.1: List of the most common unit processes in AspePlus Simulation
AspenTech manual [289]

Unit Label Process unit Description

Mixer stream mixer merge and mixing of multiple
material and energy streams

FSplit stream split split of material and energy
streams in multiple sub streams

SSplit cyclone separation of solids from fluids

SEP component
separation

separation of the feed in mul-
tiple output streams based on
flow rates or split factors

Flash vacuum
evaporator

separation by utilizing the satu-
ration equilibrium

Heater heat exchanger inducing and dissipating heat
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Decanter decanter separation of phases of in each
other insoluble mixtures

RStoic stoichiometric
reactor

reactions based on stoichiomet-
ric definitions in form of reac-
tion equations

Compr compressor
or turbine

pressure change of gases
and vapors

Pump pump pressure increase of fluids

RadFrac rectification

column
separation of a fluid in two/three
components

Crusher mill modeling of hammer mills,
impact mills etc.

CCD counter stream
decanter

multistage solid wash

Screen screen solid-solid separation
with screens

HyCyc hydroyyclone solid-fluid separation

CFuge centrifuge solid-fluid separation

ClChng manipulator change of stream classes
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A.1.2 Conversion factors of biomass processing

Table A.2: Conversion factors of pretreatment Saha et al. [310]

Number Reaction equation Dilute Acid
in %

1 Cellulose+H2O → Glucose(Monomer) 6.5
2 Cellulose → Glucose(Oligomer) 0.7
3 Xylan → Xylose(Oligomer) 52
4 Xylan+H2O → Xylose 2
5 Xylan → Fur f ural +2H2O 0.01
6 Mannan+H2O → Mannose 52
7 Mannan → Mannose(Oligomer) 2
8 Manan → HMF +2H2O 0.01
9 Galactan+H2O → Galactose(Monomer) 52
10 Galactan → Galactose(Oligomer) 2
11 Galactan → HMF +2H2O 0.01
12 Arabinan+H2O → Arabinose(Monomer) 52
13 Arabinan → Arabinose(Oligomer) 2
14 Arabinan → Fur f ural +2H2O 0.01
15 Acetat → Aceticacid 100
16 Xylan+H2O → DEGRAD 5
17 Lignin → LIGNSOL−1 5
18 Arabinan+H2O → DEGRAD 5
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Table A.3: Conversion rates of hydrolysis and fermentation of ABE Qureshi et al. [296]

Number Reaction equation Yield
in %

Hydrolysis

1 Cellulose+H2O → Glucose(Monomer) 65
2 Xylan+H2O → Xylose(Monomer) 38

Fermentation

Glucose

1 Glucose → Butanol +2CO2+H2O 58.2
2 Glucose+H2O → Acetone+3CO2+4H2 24.5
3 Glucose → 2Ethanol +2CO2 1
4 Glucose → Butyricacid +2CO2+2H2 0
5 Glucose → 3Aceticacid 0

Xylose

1 3Xylose → 2.5Butanol +5CO2+2.5H20 58.2
2 Xylose → 2Aceton+2CO2+2H2 4.5
3 3Xylose → 5Ethanol +5CO2 17
4 3Xylose → 2.5Butyricacid +5CO2+2.5H2 0
5 2Xylose → 5Aceticacid 0

A.1.3 Cooling down of glucose syrup during
truck transport

During transport, glucose syrup, or any other sugar syrup, cools down. The
cool down curve depends on the ambient temperature, the driving velocity
as well as on the insulation of the container and its materials. All presented
values are based on VDI Wärmeatlas [378]. No detailed data is available
on the containers. According to experts (pers. comm.) the containers are
vacuum insulated. No values could be found on vacuum, therefore an insu-
lation of glass wool was assumed for the calculations. Additionally, this
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• air - steel (as)

• steel - glass wool (sw)

• glass wool - steel (ws)

• steel - glucose syrup (sg)

Consequently, the following equation has been developed:

∑ 1
Bi

=
1

Bias
+

1
Bisw

+
1

Biws
+

1
Bisg

(A.1)

This work assumes, that already contact with a cold steel wall will cause
crystallization. Hence, the last Biot value can be neglected and will not be
included in the calculations of the following equation.

=
λs

αas ·L +
λw

αsw ·L +
λs

αws ·L (A.2)

=
50

80 ·0.01 +
0.04

150 ·0.1 +
50

150 ·0.01 (A.3)

= 95.83 (A.4)

Bi = 0.01 (A.5)

According to the Wärmeatlas, this results in Fourier numbers of 15, which
in turn is about 1◦C per 4 days. Experts say, that a container looses about
1◦F per 4 days. Considering, that vacuum and not glass wool insulated
containers are used, these values are comparable.
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A.2 Appendix 2

A.2.1 Biomass utilization and sugar production of the
optimization sub-model

Table A.4: Biomass capacity and sugar production: results of the optimization sub-model

County State Biomass utilization Sugar production
dt/year dt/year

Lauderdale County AL 329,404 204,164
Palm Beach County FL 1,175,319 691,758
Terrell County GE 333,385 206,632
Iroquois County IL 2,844,541 1,763,046
Lee County IL 3,506,270 2,173,186
Macon County IL 3,506,270 2,173,186
Pike County IL 2,336,093 1,447,807
Warren County IL 3,506,270 2,173,186
Hamilton County IN 3,033,092 1,879,910
Knox County IN 3,074,948 1,905,725
Kosciusko County IN 2,527,977 1,566,840
Grundy County IO 3,506,270 2,173,186
Plymouth County IO 3,253,439 2,016,482
Pottawattamie County IO 3,506,270 2,173,186
Webster County IO 3,506,270 2,173,186
Cheyenne County KS 2,109,673 1,306,452
Kingan County KS 472,656 292,952
Stevens County KS 2,075,325 1,282,815
Simpsons County KE 481,982 298,732
Iberville Parish LA 1,132,817 669,945
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Table A.4: Biomass capacity and sugar production: results of the optimization sub-model

County State Biomass utilization Sugar production
dt/year dt/year

Midland County MI 1,328,616 823,476
Blue Earth County MN 3,506,270 2,173,186
Fillmore County MN 3,246,338 2,012,080
Kandiyohi County MN 3,438,380 2,131,108
Washington County MS 1,550,638 960,874
Cass County MO 1,537,923 953,183
New Madrid County MO 1,575,456 976,292
Boone County NE 2,816,402 1,745,572
Dawson County NE 2,235,726 1,385,466
Fillmore County NE 3,376,384 2,091,473
Morrill County NE 383,823 237,894
Yates County NY 552,499 342,439
Hertford County NC 492,103 305,006
Robeson County NC 475,970 295,006
Cass County ND 2,023,501 1,254,166
Wells County ND 335,251 207,788
Wyandot County OH 3,506,270 2,173,186
Armstrong County PE 383,517 237,704
Chester County PE 1,259,057 780,361
Brown County SD 2,272,228 1,408,318
Minnehaha County SD 3,278,204 2,031,829
Bastrop County TX 489,383 303,320
Castro County TX 419,751 260,162
Dane County WI 2,450,409 1,518,763
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A.2.2 Biomass utilization and pyrolysis oil production of
the optimization sub-model

Table A.5: Biomass capacity and slurry production: results of the optimization sub-model

County State Capacity of biomass Oil production
dt/year dt/year

Glades County FL 81,621 56,482
Hendry County FL 210,000 145,320
PalmBeach County FL 210,000 145,320
Macon County FL 197,752 142,044
Montgomery County FL 186,505 131,067
Stephenson County FL 210,000 144,220
Tazewell County FL 210,000 134,593
Warren County FL 210,000 142,766
Lee County IL 210,000 145,320
Knox County IN 167,007 94,073
White County IN 204,547 127,790
Benton County IO 183,558 145,320
Cedar County IO 210,000 136,845
Clay County IO 210,000 129,061
Crawford County IO 205,266 145,320
Delaware County IO 189,403 145,320
Fayette County IO 208,411 145,320
Floyd County IO 194,498 115,568
Grundy County IO 206,309 141,546
Story County IO 135,943 127,022
Webster County IO 184,668 145,320
Iberia County LA 210,000 145,320
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Table A.5: Biomass capacity and slurry production: results of the optimization sub-model

County State Capacity of biomass Oil production
dt/year dt/year

Iberville Parish LA 210,000 145,320
Rapides County LA 53,444 36,983
St.James County LA 210,000 145,320
St.Landry County LA 210,000 145,320
BlueEarth County MI 210,000 145,320
Freeborn County MI 210,000 145,320
Nobles County MI 210,000 145,320
Stevens County MI 158,487 109,673
Atchison County MO 141,213 97,720
Boone County NE 199,167 137,824
Cedar County NE 210,000 145,320
Dodge County NE 173,662 120,174
Fillmore County NE 210,000 145,320
Hall County NE 210,000 145,320
Hidalgo County TX 106,590 73,760
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A.2.3 Existing pretreatment plants in the U.S.:
corn, sugar cane and sorghum

Table A.6: Existing corn wet mills, sugar cane mills, sorghum mills

City Feedstock Assumed sugar syrup capacity
dt/year

Atchison Corn 50,000
Bedford Park Corn 50,000
Belle Glade Sugar Cane 50,000
Belle Rose Sugar Cane 50,000
Blair Corn 100,000
Campus Sorghum 50,000
Cedar Rapids Corn 100,000
Clewiston Sugar Cane 50,000
Clinton Corn 100,000
Columbus Corn 50,000
Colwich Sorghum 50,000
Crete Sugar Cane 50,000
Danville Sugar Cane 50,000
Dayton Corn 50,000
Decatur Corn 100,000
Eddyville Corn 100,000
Fort Dodge Corn 100,000
Franklin Sugar Cane 50,000
Hammond Corn 50,000
Indianapolis Corn 50,000
Jeanerette Sugar Cane 50,000
Kankakee Sugar Cane 50,000
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Table A.6: Existing corn wet mills, sugar cane mills, sorghum mills

City Feedstock Assumed sugar syrup capacity
dt/year

Keokuk Corn 100,000
Keyes Sorghum 50,000
Lafayette Corn 100,000
Lakeland Sugar Cane 50,000
Loudon,IL Corn 100,000
Marshall Corn 100,000
New Iberia Sugar Cane 50,000
Sagamore Corn 50,000
North Kansas City Corn 50,000
Orangeville Corn 50,000
Overland Park Sorghum 50,000
Paincourtville Sugar Cane 50,000
Plainview Sorghum 50,000
Port Wentworth Sugar Cane 50,000
Raceland Sugar Cane 50,000
Santa Rosa Sugar Cane 50,000
St. Martinville Sugar Cane 50,000
Stockton Corn 50,000
Stockton Sorghum 50,000
Sycamore Corn 50,000
Thibodeaux Sugar Cane 50,000
Wahpeton Corn 50,000
West Palm Beach Sugar Cane 50,000
White Castle Sugar Cane 50,000
Winston-Salem Corn 50,000
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A.3 Appendix 3

A.3.1 Fault Tree of transport delays
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A.3.2 Fault Tree of process variations
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for high-volume and long-haul transportation of densified biomass
feedstock. In: Transportation Research Part A: Policy and Practice

49 (2013), S. 48–61

[140] GRAHAM, R. L. ; NELSON, R. ; SHEEHAN, J. ; PERLACK, R. ;
WRIGHT, L. L.: Current and potential US corn stover supplies. In:
Agronomy Journal 99 (2007), Nr. 1, S. 1–11

393

http://agfax.com/2017/12/19/louisiana-sugarcane-crop-poised-to-break-record/
http://agfax.com/2017/12/19/louisiana-sugarcane-crop-poised-to-break-record/
http://dx.doi.org/10.1002/aic.13844
http://dx.doi.org/10.1002/aic.13844
http://gestis.itrust.de/nxt/gateway.dll?f=templates&fn=default.htm&vid=gestisdeu:sdbdeu
http://gestis.itrust.de/nxt/gateway.dll?f=templates&fn=default.htm&vid=gestisdeu:sdbdeu
http://gestis.itrust.de/nxt/gateway.dll?f=templates&fn=default.htm&vid=gestisdeu:sdbdeu
http://www.gfbiochemicals.com/company/
http://www.gfbiochemicals.com/company/


Bibliography

[141] GRAIN, N. ; ASSOCIATION, F. ; N.N. (Hrsg.): Impor-

tance of Waterway Transportation to U.S. Agriculture.
������������	
���
�
�����
	��	�����
��������������

���������������� �����!���"�����. Version: 2013

[142] GREEN, C. ; VEEN, A. Van d.: Indirect economic damage: con-
cepts and guidelines. In: Evaluating flood damages: guidance and

recommendations on principles and methods, FLOODsite, Report,

T09-06-01 (2007)

[143] GREEN, E. M.: Fermentative production of butanol - the
industrial perspective. In: Current Opinion in Biotechnol-

ogy 22 (2011), Nr. 3, 337 - 343. ��������#��
"�
�
��

��������
"�
�
�������$�%��
�&"
�����������' . – DOI
https://doi.org/10.1016/j.copbio.2011.02.004. – ISSN 0958–1669. –
Energy biotechnology - Environmental biotechnology

[144] GUARD, U. C.: Risk based decision making guidelines. 2003

[145] GUNUKULA, S. ; KEELING, P. L. ; ANEX, R. : Risk advantages
of platform technologies for biorenewable chemical production. In:
Chemical Engineering Research and Design 107 (2016), S. 24 – 33

[146] HAMELINCK, C. N. ; FAAIJ, A. P. ; UIL, H. den ; BOERRIGTER,
H. : Production of FT transportation fuels from biomass; technical
options, process analysis and optimisation, and development poten-
tial. In: Energy 29 (2004), Nr. 11, S. 1743–1771

[147] HANKEY, R. ; CASSAR, C. ; LUI, J. ; WONG, P. ; ADMINISTRA-
TION, U. E. I. (Hrsg.): Electric Power Monthly with Data for Decem-

ber 2017. �������������"��

(�������"�"���)
	�������)!

��&��!
����������*�+��)�!,!$!�

[148] HARLING, J. : Simulation techniques in operations research - A
review. In: Operations Research 6 (1958), Nr. 3, S. 307–319

394

https://www.ngfa.org/wp-content/uploads/2013-NGFA-Waterways-Issue-Paper-_April.pdf
https://www.ngfa.org/wp-content/uploads/2013-NGFA-Waterways-Issue-Paper-_April.pdf
http://dx.doi.org/https://doi.org/10.1016/j.copbio.2011.02.004
http://dx.doi.org/https://doi.org/10.1016/j.copbio.2011.02.004
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a
https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_6_a


Bibliography

[149] HARO, P. ; TRIPPE, F. ; STAHL, R. ; HENRICH, E.
: Bio-syngas to gasoline and olefins via DME - A
comprehensive techno-economic assessment. In: Applied

Energy 108 (2013), 54 - 65. �����������	
�	��������

������	
�	���
��
�
���������������
������
� . – DOI
http://dx.doi.org/10.1016/j.apenergy.2013.03.015. – ISSN 0306–
2619

[150] HATTI-KAUL, R. ; TOERNVALL, U. ; GUSTAFSSON, L. ; BOERJES-
SON, P. : Industrial biotechnology for the production of bio-based
chemicals, a cradle-to-grave perspective. In: Trends in Biotech-

nology 25 (2007), Nr. 3, 119 - 124. �����������	
�	����

����������	
�	���
��
�
�����
������������
���
 . – DOI
http://dx.doi.org/10.1016/j.tibtech.2007.01.001. – ISSN 0167–7799

[151] HAYKIRI-ACMA, H. ; YAMAN, S. : Interpretation of
biomass gasification yields regarding temperature intervals under
nitrogensteam atmosphere. In: Fuel Processing Technol-

ogy 88 (2007), Nr. 4, 417 - 425. �����������	
�	����

��������	
�	���
��
�
��������	�������

���� . – DOI
https://doi.org/10.1016/j.fuproc.2006.11.002. – ISSN 0378–3820

[152] HENDRICKS, K. B. ; SINGHAL, V. R.: Supply chain disruptions
and corporate performance. In: Supply Chain Disruptions. Springer,
2012, S. 1–19

[153] HESS, J. R. ; KENNEY, K. L. ; WRIGHT, C. T. ; PERLACK, R. ;
TURHOLLOW, A. : Corn stover availability for biomass conversion:
situation analysis. In: Cellulose 16 (2009), Nr. 4, S. 599–619

[154] In: HOFBAUER, H. ; KALTSCHMITT, M. ; KEIL, F. ; MEIER, D. ;
WELLING, J. : Pyrolyse. 3. Springer Berlin Heidelberg, 2016, S.
1183–1265

395

http://dx.doi.org/http://dx.doi.org/10.1016/j.apenergy.2013.03.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.apenergy.2013.03.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.tibtech.2007.01.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.tibtech.2007.01.001
http://dx.doi.org/https://doi.org/10.1016/j.fuproc.2006.11.002
http://dx.doi.org/https://doi.org/10.1016/j.fuproc.2006.11.002


Bibliography

[155] In: HOFBAUER, H. ; KALTSCHMITT, M. ; KEIL, F. ; NEULING, U. ;
WAGNER, H. : Vergasung in der Gasatmosphäre. 3. Springer Berlin
Heidelberg, 2016, S. 1059–1182

[156] In: HOLLAND, F. ; WILKINSON, J. : Process Economics. 7.
McGraw-Hill Professional, New York, N.Y. USA, 1997

[157] HOLLING, C. S.: Resilience and stability of ecological systems. In:
Annual review of ecology and systematics 4 (1973), Nr. 1, S. 1–23

[158] HOPP, W. J. ; IRAVANI, S. M. ; LIU, Z. : Mitigating the impact of
disruptions in supply chains. In: Supply Chain Disruptions. Springer,
2012, S. 21–49

[159] HU, H. ; LIN, T. ; WANG, S. ; RODRIGUEZ, L. : A cyber-
GIS approach to uncertainty and sensitivity analysis in biomass
supply chain optimization. In: Applied Energy 203 (2017), 26-
40. �����������	
�	���
��
�
���������������
�����
�� .
– DOI 10.1016/j.apenergy.2017.03.107. – cited By 4

[160] HUBBARD, D. W. ; HUBBARD, D. W. (Hrsg.): The Failure of Risk

Management: Why It’s Broken and How to Fix it. JohnWiley & Sons,
Inc., 2009

[161] HULL, P. : Glucose syrups: technology and applications. John Wiley
& Sons, 2010

[162] HUMBIRD, D. ; DAVIS, R. ; TAO, L. ; KINCHIN, C. ; HSU, D. ;
ADEN, A. ; SCHOEN, P. ; LUKAS, J. ; OLTHOF, B. ; WORLEY, M.
; SEXTON, D. ; DUDGEON, D. : Process Design and Economics
for Biochemical Conversion of Lignocellulosic Biomass to Ethanol:
Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover /
National Renewable Energy Laboratory. 2011. – Forschungsbericht

[163] INDEPENDENT STATISTICS AND ANALYSIS ; U.S. ENERGY

INFORMATION ADMINISTRATION (Hrsg.): Today in Energy. ����
���������
���	���	���
����������
�������. Version: 2017

396

http://dx.doi.org/10.1016/j.apenergy.2017.03.107
https://www.eia.gov/todayinenergy/prices.php
https://www.eia.gov/todayinenergy/prices.php


Bibliography

[164] INGLETT, G. : Cereals for Food and Beverages: Recent Progress in

Cereal Chemistry and Technology. Elsevier, 2012

[165] J.E.SANTIBAEZ-AGUILAR ; MORALES-RODRIGUEZ, R. ;
GONZÁLEZ-CAMPOS, J. ; PONCE-ORTEGA, J. : Stochastic design of
biorefinery supply chains considering economic and environmental
objectives. In: Journal of Cleaner Production 136 (2016), 224-245.
�����������	
�	���
��
�
����������	���
�����
�� . –
DOI 10.1016/j.jclepro.2016.03.168. – cited By 9

[166] J.E.SANTIBANEZ-AGUILAR ; MORALES-RODRIGUEZ, R. ;
GONZÁLEZ-CAMPOS, J. ; PONCE-ORTEGA, J. : Sustainable
multi-objective planning of biomass conversion systems under
uncertainty. In: Chemical Engineering Transactions 45 (2015),
367-372. �����������	
�	���
����������
������. – DOI
10.3303/CET1545062. – cited By 1

[167] JIANG, M. ; DAI, W. ; XI, Y. ; WU, M. ; KONG, X. ; MA, J.
; ZHANG, M. ; CHEN, K. ; WEI, P. : Succinic acid production
from sucrose by Actinobacillus succinogenes NJ113. In: Bioresource

Technology 153 (2014), 327 - 332. �����������	
�	������

��������	
�	���
��
�
�����
	��������
��

���� . – DOI
http://dx.doi.org/10.1016/j.biortech.2013.11.062. – ISSN 0960–8524

[168] JIN DONG, J. B. a. a. a. a. ; DONG, J. ; DOODY, P. ; FAISAL,
M. N. ; GOH, M. ; HILMOLA, O.-P. ; HUANG, C.-C. ; MENG,
F. ; NAGURNEY, A. ; QIANG, Q. ; RITCHIE, B. ; SAGAR, N. ;
SESHADRI, S. ; SLONE, R. ; SODHI, M. S. ; TANG, C. S. ; TSENG),
T.-L. B. ; WANG, W. ; WU, T. ; WU, T. (Hrsg.) ; BLACKHURST,
J. (Hrsg.): Managing supply chain risk and vulnerability : tools

and methods for supply chain decision makers. 1st ed. Springer
London ����������������� !�������� ���"
����
#����$ . –
ISBN 978–1–84882–633–5

397

http://dx.doi.org/10.1016/j.jclepro.2016.03.168
http://dx.doi.org/10.3303/CET1545062
http://dx.doi.org/http://dx.doi.org/10.1016/j.biortech.2013.11.062
http://dx.doi.org/http://dx.doi.org/10.1016/j.biortech.2013.11.062
http://swbplus.bsz-bw.de/bsz306714388inh.htm


Bibliography

[169] JONG, E. de ; HIGSON, A. ; WALSH, P. ; WELLISCH, M. : Bio-
based chemicals value added products from biorefineries. In: IEA

Bioenergy, Task42 Biorefinery (2012)

[170] JONGLERTJUNYA, W. ; CHINWATPAIBOON, P. ; THAMBARAMEE,
H. ; PRAYOONYONG, P. : Butanol, Ethanol and Acetone
Production from Sugarcane Bagasses by Acid Hydrolysis and
Fermentation Using Clostridium sp. In: Advanced Materials

Research 931 (2014), 7, S. 1602–1607. �����������	
�	��

�
�������������
���
�
������������
�����
��� . – DOI
10.4028/www.scientific.net/AMR.931–932.1602

[171] JÖNSSON, L. J. ; ALRIKSSON, B. ; NILVEBRANT, N.-O. : Biocon-
version of lignocellulose: inhibitors and detoxification. In: Biotech-

nology for biofuels 6 (2013), Nr. 1, S. 16

[172] JR., J. B. J.: Agronomic Handbook. 2002

[173] In: KAJÜTER, P. : Risk Management in Supply Chains. Erich Smidt
Verlag, 2003, S. 321 – 336

[174] KALIYAN, N. ; MOREY, R. V. ; TIFFANY, D. G.: Economic and envi-
ronmental analysis for corn stover and switchgrass supply logistics.
In: BioEnergy Research 8 (2015), Nr. 3, S. 1433–1448

[175] KALTSCHMITT, M. ; HARTMANN, H. ; HOFBAUER, H. : Energie

aus Biomasse: Grundlagen, Techniken und Verfahren. 3. Springer
Verlag, 2016

[176] KARAKAS, B. ; CERTEL, M. ; MANTHEY, F. A. ; XU, Y. ; YILDIZ,
F. ; ARAPOGLOU, D. G. ; LABROPOULOS, A. E. ; VARZAKAS, T. H.
; ARVANITOYANNIS, I. S. ; KIOKIAS, S. ; KURNAZ, I. A. ; CEYLAN,
C. ; KARAKOC, A. ; DINELLI, G. ; MAROTTI, I. ; BOSI, S. ; GIOIA,
D. D. ; BIAVATI, B. ; CATIZONE, P. ; BOYACIOGLU, D. ; NILUFER,
D. ; CAPANOGLU, E. ; VELIOGLU, Y. S. ; GÖGÜS, F. ; FADTLOGLU,

398

http://dx.doi.org/10.4028/www.scientific.net/AMR.931-932.1602
http://dx.doi.org/10.4028/www.scientific.net/AMR.931-932.1602


Bibliography

S. ; SOYSAL, C. ; EKMEKCI, A. ; CIAK, M. Y. ; KARAHALIL, B. ;
YILDIZ, F. (Hrsg.): Advances in food biochemistry. CRC press, 2009

[177] KAZEMZADEH, N. ; HU, G. : Optimization models for biorefinery
supply chain network design under uncertainty. In: Journal of Renew-

able and Sustainable Energy 5 (2013), S. 053125–1 – 053125–17

[178] KAZI, F. K. ; FORTMAN, J. ; ANEX, R. ; KOTHANDARAMAN, G.
; HSU, D. ; ADEN, A. ; DUTTA, A. : Techno-Economic Analy-
sis of Biochemical Scenarios for Production of Cellulosic Ethanol /
National Renewable Energy Laboratory. 2010. – Forschungsbericht

[179] KENT, G. : The value of bagasse to an Australian raw sugar factory.
(2007)

[180] KERDONCUFF, P. : Modellierung und Bewertung von Proezsssketten

zur Herstellung von Biokraftstoffen der zweiten Generation, Univer-
sität (TH), Diss., 2008

[181] KIM, J. ; REALFF, M. J. ; LEE, J. H.: Optimal design and global sen-
sitivity analysis of biomass supply chain networks for biofuels under
uncertainty. In: Computers and Chemical Engineering 35 (2011), S.
1738 – 1751

[182] KIM, J. ; REALFF, M. J. ; LEE, J. H. ; WHITTAKER, C. ; FURTNER,
L. : Design of biomass processing network for biofuel production
using an MILP model. In: Biomass and Bioenergy 35 (2011), S. 853
– 871

[183] KNIGHT, F. H.: Risk, uncertainty and profit. Courier Corporation,
2012

[184] KNORR, B. ; FUTURES, F. (Hrsg.): Fertilizer Outlook - Ammonia

prices surge higher on Plains. ������������	
�����

��������
�
���

�����

�����

�

��
���������. Version: 2017

399

http://www.farmfutures.com/story-weekly-fertilizer-review-0-30765
http://www.farmfutures.com/story-weekly-fertilizer-review-0-30765


Bibliography

[185] KOBRIN, S. J.: Political Risk: A Review and Reconsideration.
In: Journal of International Business Studies 10 (1979), Nr. 1, 67–
80. �����������	
�	���
��
��������������
���������
 . –
DOI 10.1057/palgrave.jibs.8490631. – ISSN 1478–6990

[186] KOSTIN, A. ; GUILLÃ©N-GOSÃ¡LBEZA, G. ; MELEB, F. ; BAGA-
JEWICZC, M. ; JIMÃ©NEZ, L. : Design and planning of infrastruc-
tures for bioethanol and sugar production under demand uncertainty.
In: Chemical Engineering Research and Design 90 (2012), S. 359 –
376

[187] In: KRAMER, N. W. ; ROSS, W. M.: Cultivation of Grain Sorghum

in the United States. 1970

[188] KRUSE, C. J. ; PROTOPAPAS, A. ; OLSON, L. E. ; BIERLING, D. H.:
A Modal Comparison of Domestic Freight Transportation Effects on
the General Public / Texas Transportation Institute, The Texas A&M
University System, College Station, Texas. 2007. – Forschungs-
bericht

[189] KUMAR, A. ; DEMIREL, Y. ; JONES, D. D. ; HANNA, M. A.: Opti-
mization and economic evaluation of industrial gas production and
combined heat and power generation from gasification of corn stover
and distillers grains. In: Bioresource technology 101 (2010), Nr. 10,
S. 3696–3701

[190] KUMAR, A. ; CAMERON, J. B. ; FLYNN, P. C.: Pipeline transport
and simultaneous saccharification of corn stover. In: Bioresource

technology 96 (2005), Nr. 7, S. 819–829

[191] KUMAR, D. ; KALITA, P. : Reducing postharvest losses during stor-
age of grain crops to strengthen food security in developing countries.
In: Foods 6 (2017), Nr. 1, S. 8

[192] KUMAR, P. ; BARRETT, D. M. ; DELWICHE, M. J. ; STROEVE, P.
: Methods for Pretreatment of Lignocellulosic Biomass for Effi-

400

http://dx.doi.org/10.1057/palgrave.jibs.8490631


Bibliography

cient Hydrolysis and Biofuel Production. In: Industrial Engineering

Chemical Resources 48 (2009), S. 3713 – 3729

[193] In: KUMMER, S. ; SUDY, I. : Management von Transport- und

Lagerrisiken in Supply Chains. 2006

[194] KURZROCK, T. ; WEUSTER-BOTZ, D. : Recovery of succinic acid
from fermentation broth. In: Biotechnology letters 32 (2010), Nr. 3,
S. 331–339

[195] LAHOOD, R. : National Rail Plan / U.S. Department of Transporta-
tion, Federal Railroad Administration. 2010. – Forschungsbericht

[196] LAM, K. F. ; LEUNG, C. C. J. ; LEI, H. M. ; LIN, C. S. K.:
Economic feasibility of a pilot-scale fermentative succinic acid pro-
duction from bakery wastes. In: Food and Bioproducts Pro-

cessing 92 (2014), Nr. 3, 282 - 290. �����������	
�	��

������������	
�	���
��
�
����������
�������
 . – DOI
http://dx.doi.org/10.1016/j.fbp.2013.09.001. – ISSN 0960–3085

[197] LANGHOLTZ, M. ; WEBB, E. ; PRESTON, B. L. ; TURHOLLOW,
A. ; BREUER, N. ; EATON, L. ; KING, A. W. ; SOKHANSANJ, S.
; NAIR, S. S. ; DOWNING, M. : Climate risk management for the
U.S. cellulosic biofuels supply chain. In: Climate Risk Management

3 (2014), S. 96 – 115

[198] LARSON, L. W.: The Great USA Flood of 1993. In: Destructive

Water: Water-Caused Natural Disasters - Their Abatement and Con-

trol

[199] LAU, P. C.: Quality Living Through Chemurgy and Green Chemistry.
Springer, 2017

[200] LEE, D. ; OWENS, V. N. ; BOE, A. ; JERANYAMA, P. : Composi-
tion of Herbaceous Biomass Feedstocks / Plant Science Department,
South Dakota State University. 2007. – Forschungsbericht

401

http://dx.doi.org/http://dx.doi.org/10.1016/j.fbp.2013.09.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.fbp.2013.09.001


Bibliography

[201] LEE, H. : Development of lactic and succinic acid biorefinery con-

figurations for integration into a thermomechanical pulp mill, Diss.,
2015

[202] LEE, P. ; LEE, S. ; HONG, S. ; CHANG, H. : Isolation
and characterization of a new succinic acid-producing bacterium,
Mannheimia succiniciproducens MBEL55E, from bovine rumen. In:
Applied Microbiology and Biotechnology 58 (2002), Apr, Nr. 5,
663–668. �����������	
�	���
��
��������������������� .
– DOI 10.1007/s00253–002–0935–6. – ISSN 1432–0614

[203] LESTINSKY, P. ; PALIT, A. : Wood pyrolysis using aspen plus simu-
lation and industrially applicable model. In: GeoScience Engineering

62 (2016), Nr. 1, S. 11–16

[204] In: LEWANDOWSKI, I. : Landwirtschaftlich produzierte Biomasse.
3. Springer Berlin Heidelberg, 2016, S. 167–247

[205] In: LEWANDOWSKI, I. ; WILHELM, C. : Biomasseentstehung. 3.
Springer Berlin Heidelberg, 2016, S. 77–123

[206] LI, Q. ; HU, G. b.: Techno-economic analysis of biofuel produc-
tion considering logistic configurations. In: Bioresource Technology

206 (2016), 195-203. �����������	
�	���
��
�
�����
	���

�����
���
�
�
. – DOI 10.1016/j.biortech.2016.01.101. – cited
By 2

[207] LI, Q. ; HU, G. : Supply chain design under uncertainty for advanced
biofuel production based on bio-oil gasification. In: Energy 74
(2014), S. 576–584

[208] LIU, G. ; ZHANG, J. ; BAO, J. : Cost evaluation of cellulase enzyme
for industrial-scale cellulosic ethanol production based on rigorous
Aspen Plus modeling. In: Bioprocess and Biosystems Engineering

39 (2016), Jan, Nr. 1, 133–140. �����������	
�	���
��
����

402

http://dx.doi.org/10.1007/s00253-002-0935-6
http://dx.doi.org/10.1016/j.biortech.2016.01.101
http://dx.doi.org/10.1016/j.biortech.2016.01.101
http://dx.doi.org/10.1007/s00449-015-1497-1
http://dx.doi.org/10.1007/s00449-015-1497-1


Bibliography

�����������������. – DOI 10.1007/s00449–015–1497–1. – ISSN
1615–7605

[209] LIU, Z. ; WANG, S. ; OUYANG, Y. : Reliable biomass supply chain
design under feedstock seasonality and probabilistic facility disrup-
tions. In: Energies 10 (2017), Nr. 11. 	

��

����������
���

����
����������. – DOI 10.3390/en10111895. – cited By 0

[210] LUO, Q. ; JONES, R. N. ; WILLIAMS, M. ; BRYAN, B. ; BEL-
LOTTI, W. : Probabilistic distributions of regional climate change
and their application in risk analysis of wheat production. In: Cli-

mate Research 29 (2005), S. 41–52

[211] MAFAKHERI, F. ; NASIRI, F. : Modeling of biomass-to-energy sup-
ply chain operations: Applications, challenges and research direc-
tions. In: Energy Policy 67 (2014), 116 - 126. 	

��

����������

	

��

����������
�������
������������������� . – DOI
http://dx.doi.org/10.1016/j.enpol.2013.11.071. – ISSN 0301–4215

[212] In: MAHADEVAN, S. : Monte Carlo Simulation. 1997. – ISBN
0–8247–9793–0

[213] MANI, S. ; TABIL, L. G. ; SOKHANSANJ, S. : Grinding performance
and physical properties of wheat and barley straws,corn stover and
switchgrass. In: Biomass and Bioenergy 27 (2004), S. 339 – 352

[214] MARIANO, A. P. ; DIAS, M. O. ; JUNQUEIRA, T. L. ; CUNHA,
M. P. ; BONOMI, A. ; MACIEL FILHO, R. : Butanol production in
a first-generation Brazilian sugarcane biorefinery: technical aspects
and economics of greenfield projects. In: Bioresource Technology

135 (2013), S. 316–323

[215] MARSHALL, E. ; AILLERY, M. ; MALCOLM, S. ; WILLIAMS, R. :
Climate Change, Water Scarcity, and Adaptation in the U.S. Field-
crop Sector / United States Department of Agriculture. 2015. –
Forschungsbericht

403

http://dx.doi.org/10.1007/s00449-015-1497-1
http://dx.doi.org/10.1007/s00449-015-1497-1
http://dx.doi.org/10.3390/en10111895
http://dx.doi.org/10.3390/en10111895
http://dx.doi.org/http://dx.doi.org/10.1016/j.enpol.2013.11.071
http://dx.doi.org/http://dx.doi.org/10.1016/j.enpol.2013.11.071


Bibliography

[216] MARUFUZZAMAN, M. ; D.EKSIOGLU, S. ; HUANG, Y. E.: Two-
stage stochastic programming supply chain model for biodiesel pro-
duction via waste water treatment. In: Computers & Operations

Research 49 (2014), S. 1 – 17

[217] MARUFUZZAMAN, M. ; EKSIOGLU, S. D. ; LI, X. ; WANG, J. : Ana-
lyzing the impact of intermodal-related risk to the design and man-
agement of biofuel supply chain. In: Transportation Research 69
(2014), S. 122 – 145

[218] MASON-JONES, R. ; TOWILL, D. R.: Shrinking the supply chain
uncertainty circle. In: IOM control 24 (1998), Nr. 7, S. 17–22

[219] MCDONNELL, T. ; DESK, C. (Hrsg.): Ups and Downs. 2012

[220] MCKENDRY, P. : Energy production from biomass (part 1):
overview of biomass. In: Bioresource Technology 83 (2002), S. 37 –
46

[221] MEADE, B. ; PURICELLI, E. ; MCBRIDE, W. ; VALDES, C. ; HOFF-
MAN, L. ; FOREMAN, L. ; DOHLMAN, E. : Corn and Soybean Pro-
duction Costs and Export Competitiveness in Argentina, Brazil, and
the United States / United States Department of Agriculture. 2016. –
Forschungsbericht

[222] MEERSMAN, T. : Rail congestion sends more grain to mar-

ket on river barges. �������������	
�
��
�������
	���

�������������������
���
	�������	
�������
���
�

�	
��������������. Version: November 2014

[223] MELNYK, S. A. ; RODRIGUES, A. ; RAGATZ, G. L.: Using simula-
tion to investigate supply chain disruptions. In: Supply Chain Risk.
Springer, 2009, S. 103–122

[224] MERZ, M. : Entwicklung einer indikatorenbasierten Methodik zur

Vulnerabilitaetsanalyse für die Bewertung von Risiken in der indus-

triellen Produktion, Karlsruhe Institute of Technology, Diss., 2011

404

http://www.startribune.com/rail-congestion-sends-more-grain-to-market-on-river-barges/282788131/
http://www.startribune.com/rail-congestion-sends-more-grain-to-market-on-river-barges/282788131/
http://www.startribune.com/rail-congestion-sends-more-grain-to-market-on-river-barges/282788131/


Bibliography

[225] MESSNER, F. ; MEYER, V. : Flood damage, vulnerability and
risk perception–challenges for flood damage research. In: Flood

risk management: hazards, vulnerability and mitigation measures.
Springer, 2006, S. 149–167

[226] MEYER, A. D. ; CATTRYSSE, D. ; RASINMAEKI, J. ; ORSHOVEN,
J. V.: Methods to optimise the design and management of biomass-
for-bioenergy supply chains: A review. In: Renewable and Sus-

tainable Energy Reviews 31 (2014), Nr. Supplement C, 657 -
670. �����������	
�	�������
����	
�	��������������
��

������������. – DOI https://doi.org/10.1016/j.rser.2013.12.036. –
ISSN 1364–0321

[227] MEYER, J.-C. : Economic Evalutation of Bio-Commodity PrProduc-

tion Supply CHain Modelling, Design and Simulation, Diss., 2015

[228] MEYER, S. : US Biofuels Analysis Under Uncertainty and Volatility
in the Biofuels Industry: FAPRI Stochastic Modeling. In: Biofuels,

Food and Feed Tradeoffs Farm Foundation. Saint Louis, Missouri,
12 - 13 April 2007

[229] MICHAEL J. MCCONNELL ; UNITED STATES DEPARTMENT OF

AGRICULTURE - ECONOMIC RESEARCH SERVICE (Hrsg.): Sugar

& Sweeteners. ����
���������
��
����	���	�
�
���	�
�
�

����
��������
�������	����

[230] MILHOLLIN, R. ; HOEHNE, J. ; HORNER, J. ; WEBER, S. ; GEORGE,
C. : Feasibility of Corn Stover in Missouri. In: University of Mis-

souri, Commercial Agriculture Program (2011)

[231] MILLY, P. C. D. ; WETHERALD, R. T. ; DUNNE, K. ; DELWORTH,
T. L.: Increasing risk of great floods in a changing climate. In: Nature

415 (2002), Nr. 6871, S. 514–517

[232] MINAHAN, T. : The supply risk benchmark report. In: Aberdeen

Group, Boston, MA (2005)

405

http://dx.doi.org/https://doi.org/10.1016/j.rser.2013.12.036
http://dx.doi.org/https://doi.org/10.1016/j.rser.2013.12.036
https://www.ers.usda.gov/topics/crops/sugar-sweeteners/background/
https://www.ers.usda.gov/topics/crops/sugar-sweeteners/background/


Bibliography

[233] MOBINI, M. ; SOWLATI, T. ; SOKHANSANJ, S. : Forest biomass
supply logistics for a power plant using the discrete-event simulation
approach. In: Applied Energy 88 (2011), S. 1241 – 1250

[234] MOBINI, M. ; SOWLATI, T. ; SOKHANSANJ, S. : A simulation model
for the design and analysis of wood pellet supply chains. In: Applied

Energy 111 (2013), S. 1239 – 1249

[235] MOHR, H. ; PRESS, T. A. (Hrsg.): Mississippi River remains

closed after barge accident. ������������	�
���

��������

�
�������
�����������������������������������
����


������������� ��

[236] MORAES ROCHA, G. J. ; MARTIN, C. ; SOARES, I. B.
; MAIOR, A. M. S. ; BAUDEL, H. M. ; ABREU, C.
A. M.: Dilute mixed-acid pretreatment of sugarcane bagasse
for ethanol production. In: Biomass and Bioenergy 35
(2011), Nr. 1, 663 - 670. ��������!��������������

���!��������������� �"��������������������� . – DOI
http://dx.doi.org/10.1016/j.biombioe.2010.10.018. – ISSN 0961–
9534

[237] MOREY, R. V. ; KALIYAN, N. ; TIFFANY, D. G. ; SCHMIDT, D. R.:
A corn stover supply logistics system. In: Applied Engineering in

Agriculture 26 (2010), Nr. 3, S. 455–461

[238] MORROW, W. R. ; GOPAL, A. ; FITTS, G. ; LEWIS, S. ; DALE, L.
; MASANET, E. : Feedstock loss from drought is a major economic
risk for biofuel producers. In: Biomass and Bioenergy 69 (2014), S.
135 – 143

[239] MOSIER, N. ; WYMAN, C. ; DALE, B. ; ELANDER, R. ; LEE, Y.
; HOLTZAPPLE, M. ; LADISCH, M. : Features of promising tech-
nologies for pretreatment of lignocellulosic biomass. In: Bioresource

technology 96 (2005), Nr. 6, S. 673–686

406

https://www.usatoday.com/story/news/nation/2013/01/29/mississippi-river-barge-accident/1873467/
https://www.usatoday.com/story/news/nation/2013/01/29/mississippi-river-barge-accident/1873467/
https://www.usatoday.com/story/news/nation/2013/01/29/mississippi-river-barge-accident/1873467/
http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2010.10.018
http://dx.doi.org/http://dx.doi.org/10.1016/j.biombioe.2010.10.018


Bibliography

[240] MULA, J. ; POLER, R. ; GARCÍA-SABATER, J. P. ; LARIO, F. C.:
Models for production planning under uncertainty: A review. In:
International journal of production economics 103 (2006), Nr. 1, S.
271–285

[241] MULLAI, A. : Risk management system–a conceptual model. In:
Supply Chain Risk. Springer, 2009, S. 83–101

[242] MYERS, B. ; GROUP, N. M. (Hrsg.): Barge accident on Mississippi

River causes petrol spill in New Orleans

[243] N.A. ; ZEITUNG, F. A. (Hrsg.): Käferalarm im Mittleren Westen

[244] NATIONAL AGRICULTURAL STATISTICS SERVICE ; UNITED

STATES DEPARTMENT OF AGRICULTURE (Hrsg.): Quick

Stats. ����������	
������
����
����
��������������

�����
��
�����. Version: 2016

[245] NATIONAL CENTERS FOR ENVIRONMENTAL INFORMATION:
National Weather Service Drought Fact Sheet / National Oceanic and
Atmospheric Administration. 2012. – Forschungsbericht

[246] NATIONAL CENTERS FOR ENVIRONMENTAL INFORMATION ;
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

(Hrsg.): National Temperature and Precipitation Maps. 2017

[247] NATIONAL CENTERS FOR ENVIRONMENTAL INFORMATION ;
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

(Hrsg.): Storm Events Database. �����������
�
�

����
��

������� � ����
���� ��� �
!��"���� #	��$%&&&��'()) .
Version: 2017

[248] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION: Traf-

fic Safety Facts 2008. ����������%���
�����
���
����*�+�

�,����,
��#. Version: 2010

407

https://quickstats.nass.usda.gov/%20[Stand:%2024.05.2016]
https://quickstats.nass.usda.gov/%20[Stand:%2024.05.2016]
https://www.ncdc.noaa.gov/stormevents/choosedates.jsp?statefips=-999%2CALL
https://www.ncdc.noaa.gov/stormevents/choosedates.jsp?statefips=-999%2CALL
http://www-nrd.nhtsa.dot.gov/Pubs/811158.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811158.pdf


Bibliography

[249] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION: Traf-

fic Safety Facts 2009. ������������	
�����
�
�����������

���������
�. Version: September 2011

[250] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION: Traf-

fic Safety Facts 2010. ������������	
�����
�
�����������

���������
�. Version: June 2012

[251] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION: Traf-

fic Safety Facts 2011. ������������	
�����
�
�����������

���������
�. Version: April 2013

[252] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRA-
TION: Traffic Safety Facts for Arkansas 2009 to 2013 Fatal-

ities in Crashes Involving a Large Truck. �����������

�	
�����
�
�������
��
	��������	
�������
� ! "��#

$%������$	&
��
�#'
�#�#($!$#������(). Version: 2013

[253] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRA-
TION: Traffic Safety Facts for Florida 2009 to 2013 Fatal-

ities in Crashes Involving a Large Truck. �����������

�	
�����
�
�������
��
	��������	
�������
� ! "�

��#)*������)+�	,

#'
�#�#($!$#������(). Version: 2013

[254] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION: Traf-

fic Safety Facts 2012. ������������	
�����
�
�����������

���������
�. Version:May 2014

[255] NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION: Traf-

fic Safety Facts 2013. ������������	
�����
�
�����������

���������
�. Version: June 2015

[256] NATIONAL HURRICANE CENTER ; NATIONAL OCEANIC AND

ATMOSPHERIC ADMINISTRATION (NOAA) (Hrsg.): Glossary of

NHC Terms. �����������������

�����
�����+��������+-� .
Version: 2017

408

http://www-nrd.nhtsa.dot.gov/Pubs/811388.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811388.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811628.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811628.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811752.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811752.pdf
http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/STSI/5_AR/2013/Arkansas_Map_8_DATA_2013.PDF
http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/STSI/5_AR/2013/Arkansas_Map_8_DATA_2013.PDF
http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/STSI/5_AR/2013/Arkansas_Map_8_DATA_2013.PDF
http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/STSI/12_FL/2013/Florida_Map_8_DATA_2013.PDF
http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/STSI/12_FL/2013/Florida_Map_8_DATA_2013.PDF
http://www-nrd.nhtsa.dot.gov/departments/nrd-30/ncsa/STSI/12_FL/2013/Florida_Map_8_DATA_2013.PDF
http://www-nrd.nhtsa.dot.gov/Pubs/811868.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/811868.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/812150.pdf
http://www-nrd.nhtsa.dot.gov/Pubs/812150.pdf
http://www.nhc.noaa.gov/aboutgloss.shtml#t


Bibliography

[257] NATIONAL RENEWABLE RESSOURCE LABORATORY ; U.S.
DEPARTMENT OF ENERGY (Hrsg.): NREL Biorefinery Analysis Pro-

cess Models. ������������	
���
��
��	��
����
	
���
	��

���
���
�
���, Abruf: 05.06.2017

[258] NATIONAL TRANSPORTATION SAFETY BOARD ; N.A. (Hrsg.):
Data & Stats. ������������������
�����
���
����������.
Version: 2017

[259] NELSON, R. G.: Resource assessment and removal analysis for corn
stover and wheat straw in the Eastern and Midwestern United States,
rainfall and wind-induced soil erosion methodology. In: Biomass and

Bioenergy 22 (2002), Nr. 5, S. 349–363

[260] NEXANT ; BUSINESS, I. C. (Hrsg.): bio-based chemicals on the fast

to commercialization. 2012

[261] NICOLEIT, T. : Konditionierung von biogenen Energieträgern aus

den Produkten der bioliq®-Schnellpyrolyse, Diss., 2017

[262] N.N. ; STANDARDIZATION, I. O. (Hrsg.): ISO 31000. 2009

[263] N.N. ; MCKEANY-FLAVELL COMPANY, I. (Hrsg.): The U.S. Corn

Wet Milling Industry. ��������������
��������
����
�����

�
��
������������
������ 
	��!
��"�������������#�
	

��
��$%&'����. Version: 2017

[264] N.N. ; AGRI-BIOTECH APPLICATIONS, I. S. o. (Hrsg.): GM Devel-

opers List. �����������������
	�������	
����������
��
�


�
�
	������
���������. Version: 2018

[265] OFFICE OF COMPENSATION AND WORKING CONDITIONS ;
BUREAU OF LABOR STATISTICS (Hrsg.): Major Work Stoppages

in 2015. ���������
�����. Version: February 2016

409

http://www.nrel.gov/extranet/biorefinery/aspen_models/
http://www.nrel.gov/extranet/biorefinery/aspen_models/
https://www.ntsb.gov/Pages/default.aspx
http://www.mckeany-flavell.com/wp-content/publications/US_Corn_Wet_Milling_Study_Overview_2017.pdf
http://www.mckeany-flavell.com/wp-content/publications/US_Corn_Wet_Milling_Study_Overview_2017.pdf
http://www.mckeany-flavell.com/wp-content/publications/US_Corn_Wet_Milling_Study_Overview_2017.pdf
http://www.isaaa.org/gmapprovaldatabase/developerlist/default.asp
http://www.isaaa.org/gmapprovaldatabase/developerlist/default.asp
www.bls.gov/wsp


Bibliography

[266] OFFICE OF SAFETY ANALYSIS ; FEDERAL RAILROAD ADMIN-
ISTRATION (Hrsg.): Accident Data as reported by Rail-

roads. ����������	�
������
���������������	�����	�
��

��������	������	���
��������������. Version: 2017

[267] OKABE, M. ; LIES, D. ; KANAMASA, S. ; PARK, E. Y.: Biotechno-
logical production of itaconic acid and its biosynthesis in Aspergillus
terreus. In: Applied Microbiology and Biotechnology 84 (2009), S.
597–606

[268] OKUYAMA, Y. : Economic modeling for disaster impact analysis:
past, present, and future. In: Economic Systems Research 19 (2007),
Nr. 2, S. 115–124

[269] ORBICHEM, T. ; N.N. (Hrsg.): Chem-Net Facts, Chemical Market

Insight and Foresight-On a single page - Aceton. ������������
��
��	��������	
���	����� !"�����	������#$�##����

[270] OSMANI, A. ; ZHANG, J. : Multi-period stochastic optimiza-
tion of a sustainable multi-feedstock second generation bioethanol
supply chain - A logistic case study in Midwestern United
States. In: Land Use Policy 61 (2017), 420-450. �����

����������
��#"�#"#%�&�������	����!"#%�#"�"!' . – DOI
10.1016/j.landusepol.2016.10.028. – ISSN 02648377

[271] OSMANI, A. ; ZHANG, J. : Stochastic optimization of a multi-
feedstock lignocellulosic-based bioethanol supply chain under multi-
ple uncertainties. In: Energy 59 (2013), S. 157 – 172

[272] OSMANI, A. ; ZHANG, J. : Economic and environmental optimiza-
tion of a large scale sustainable dual feedstock lignocellulosic-based
bioethanol supply chain in a stochastic environment. In: Applied

Energy 114 (2014), S. 572 – 587

410

http://safetydata.fra.dot.gov/OfficeofSafety/publicsite/on_the_fly_download.aspx
http://safetydata.fra.dot.gov/OfficeofSafety/publicsite/on_the_fly_download.aspx
http://www.orbichem.com/userfiles/CNF%20Samples/act_13_11.pdf
http://www.orbichem.com/userfiles/CNF%20Samples/act_13_11.pdf
http://dx.doi.org/10.1016/j.landusepol.2016.10.028
http://dx.doi.org/10.1016/j.landusepol.2016.10.028


Bibliography

[273] In: OTTERLO, M. van ; WIERING, M. : Reinforcement Learning and

Markov Decision Processes. Springer Berlin Heidelberg. – ISBN
978–3–642–27645–3, 3–42

[274] OWEN, M. D.: Current use of transgenic herbicide-resistant soybean
and corn in the USA. In: Crop Protection 19 (2000), Nr. 8-10, S.
765–771

[275] PANCOAST, H. M. ; JUNK, W. R.: Handbook of sugars, 2nd edition.
The AVI Publishing Company Inc„ 1980

[276] PANDEY, A. ; SOCCOL, C. R. ; NIGAM, P. ; SOCCOL, V. T.: Biotech-
nological potential of agro-industrial residues. I: sugarcane bagasse.
In: Bioresource technology 74 (2000), Nr. 1, S. 69–80

[277] PATURAU, J. : ALTERNATIVE USES OP SUGARCANE AND ITS
BYPRODUCTS IN AGROINDUSTRIES. (1987). ������������	

�
���
�����
���	�	����������������������

[278] PEIDRO, D. ; MULA, J. ; POLER, R. ; LARIO, F.-C. : Quantitative
models for supply chain planning under uncertainty: a review. In:
The International Journal of Advanced Manufacturing Technology 43
(2009), Nr. 3, 400–420. �����������
��
������������������

�� ����!�". – DOI 10.1007/s00170–008–1715–y. – ISSN 1433–
3015

[279] PEIDRO, D. ; MULA, J. ; POLER, R. ; VERDEGAY, J.-L. : Fuzzy
optimization for supply chain planning under supply, demand and
process uncertainties. In: Fuzzy Sets and Systems 160 (2009), S.
2640 – 1657

[280] PENGILLY, C. ; GARCÍA-APARICIO, M. ; DIEDERICKS, D. ;
BRIENZO, M. ; GÖRGENS, J. : Enzymatic hydrolysis of steam-
pretreated sweet sorghum bagasse by combinations of cellulase and
endo-xylanase. In: Fuel 154 (2015), 352 - 360. �����������

411

http://www.fao.org/livestock/agaP/Frg/AHPP72/72-24.pdf
http://www.fao.org/livestock/agaP/Frg/AHPP72/72-24.pdf
http://dx.doi.org/10.1007/s00170-008-1715-y
http://dx.doi.org/10.1007/s00170-008-1715-y
http://dx.doi.org/http://dx.doi.org/10.1016/j.fuel.2015.03.072
http://dx.doi.org/http://dx.doi.org/10.1016/j.fuel.2015.03.072


Bibliography

����������	
�������������
��
�
�����������
�������� .
– DOI http://dx.doi.org/10.1016/j.fuel.2015.03.072. – ISSN
0016–2361

[281] PÉREZ, J. ; MUÑOZ-DORADO, J. ; RUBIA, T. de l. ; MARTÍNEZ, J. :
Biodegradation and biological treatments of cellulose, hemicellulose
and lignin: an overview. In: International Microbiology 5 (2002),
Jun, Nr. 2, 53–63. ���	
�������������
��
�����
�
�������

������. – DOI 10.1007/s10123–002–0062–3. – ISSN 1139–6709

[282] PETERS, M. S. ; TIMMERHAUS, K. D. ; WEST, R. E.: Plant design

and economics for chemical engineers. Bd. 5. McGraw-Hill Boston,
2003

[283] PETROLIA, D. R.: The economics of harvesting and transporting corn
stover for conversion to fuel ethanol: A case study for Minnesota. In:
Biomass and Bioenergy 32 (2008), Nr. 7, S. 603–612

[284] PHILLIPS, M. ; QUARTZ (Hrsg.): American labor-union strikes are

almost completely extinct. ���	
�������������

� ����� !�

"��#����� $��	����%���������		������!�������������

	�"������"� 	�!�. Version: February 2015

[285] PHILP, J. C. ; RITCHIE, R. J. ; ALLAN, J. E.: Biobased chemicals:
the convergence of green chemistry with industrial biotechnology. In:
Trends in biotechnology 31 (2013), Nr. 4, S. 219–222

[286] PIENKOS, P. T. ; ZHANG, M. : Role of pretreatment and conditioning
processes on toxicity of lignocellulosic biomass hydrolysates. In:
Cellulose 16 (2009), S. 743 – 762

[287] PISKORZ, J. ; MAJERSKI, P. ; RADLEIN, D. ; SCOTT, D. S.
; BRIDGWATER, A. : Fast pyrolysis of sweet sorghum and
sweet sorghum bagasse. In: Journal of Analytical and Applied

Pyrolysis 46 (1998), Nr. 1, 15 - 29. ���	
����������������

412

http://dx.doi.org/http://dx.doi.org/10.1016/j.fuel.2015.03.072
http://dx.doi.org/http://dx.doi.org/10.1016/j.fuel.2015.03.072
http://dx.doi.org/10.1007/s10123-002-0062-3
http://dx.doi.org/10.1007/s10123-002-0062-3
http://qz.com/342311/american-workers-have-pretty-much-stopped-using-their-most-powerful-weapon/
http://qz.com/342311/american-workers-have-pretty-much-stopped-using-their-most-powerful-weapon/
http://qz.com/342311/american-workers-have-pretty-much-stopped-using-their-most-powerful-weapon/
http://dx.doi.org/http://dx.doi.org/10.1016/S0165-2370(98)00067-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0165-2370(98)00067-9


Bibliography

������������	
�������
����
�������������
��� . – DOI
http://dx.doi.org/10.1016/S0165–2370(98)00067–9. – ISSN 0165–
2370

[288] PLUME, K. ; REUTERS (Hrsg.): Barge accidents shut parts of Mis-

sissippi, Ohio rivers. ������������	����	������ 	���!�����

�� �������"
�������������	�#�	�$ 	
�� �����"���

������ 	����%������������������	�#�	����&�'()����*+

[289] PLUS, A. : Aspen Plus User Guide, 2000. ����������$�������!�
������������ � ��,���"�,��&��	-���������%

[290] POONSRISAWAT, A. ; PHUENGJAYAEM, S. ; PETSOM, A. ; TEER-
ADAKORN, S. : Conversion of Sweet Sorghum Straw to Sugars by
Dilute Acid Saccharification. In: Sugar Tech 15 (2013), Sep, Nr. 3,
322–327. ���������������	
�������������������������� .
– DOI 10.1007/s12355–013–0235–8. – ISSN 0974–0740

[291] POUDEL, S. R. ; QUDDUS, M. A. ; MARUFUZZAMAN, M. ; BIAN,
L. ; BURCH V, R. F.: Managing congestion in a multi-modal trans-
portation network under biomass supply uncertainty. In: Annals

of Operations Research (2017), 1–43. ���������������	
����

��������.��������.���/. – DOI 10.1007/s10479–017–2499–y.
– ISSN 1572–9338

[292] POWER, D. J.: Decision support systems: a historical overview. In:
Handbook on Decision Support Systems 1 (2008), S. 121–140

[293] PRESSE- UND INFORMATIONSAMT DER BUNDESREGIERUNG

; DIE BUNDESREGIERUNG (Hrsg.): Lebensmittel in Deutsch-

land grundsätzlich gentechnikfrei. ������������$�"���	�


��	�"
����0�"��"��12�,	��3�!����.��
�������
����

!�$�"������!��"�������
���"��
�"����"�3%	������! .
Version: 2018

413

http://dx.doi.org/http://dx.doi.org/10.1016/S0165-2370(98)00067-9
http://dx.doi.org/http://dx.doi.org/10.1016/S0165-2370(98)00067-9
https://www.reuters.com/article/us-usa-shipping-mississippi-river/barge-accidents-shut-parts-of-mississippi-ohio-rivers-idUSKBN1792JW
https://www.reuters.com/article/us-usa-shipping-mississippi-river/barge-accidents-shut-parts-of-mississippi-ohio-rivers-idUSKBN1792JW
https://www.reuters.com/article/us-usa-shipping-mississippi-river/barge-accidents-shut-parts-of-mississippi-ohio-rivers-idUSKBN1792JW
https://web.ist.utl.pt/ist11038/acad/Aspen/AspUserGuide10.pdf
https://web.ist.utl.pt/ist11038/acad/Aspen/AspUserGuide10.pdf
http://dx.doi.org/10.1007/s12355-013-0235-8
http://dx.doi.org/10.1007/s10479-017-2499-y
http://dx.doi.org/10.1007/s10479-017-2499-y
https://www.bundesregierung.de/Content/DE/Artikel/2014/06/2013-06-12-lebensmittel-in-d-weitgehend-gentechnikfrei.html
https://www.bundesregierung.de/Content/DE/Artikel/2014/06/2013-06-12-lebensmittel-in-d-weitgehend-gentechnikfrei.html
https://www.bundesregierung.de/Content/DE/Artikel/2014/06/2013-06-12-lebensmittel-in-d-weitgehend-gentechnikfrei.html


Bibliography

[294] QURESHI, N. ; BLASCHEK, H. : Butanol production using Clostrid-
ium beijerinckii BA101 hyper-butanol producing mutant strain and
recovery by pervaporation. In: Twenty-First Symposium on Biotech-

nology for Fuels and Chemicals Springer, 2000, S. 225–235

[295] QURESHI, N. ; COTTA, M. ; SAHA, B. : Bioconversion of barley
straw and corn stover tobutanol (a biofuel) in integrated fermentation
and simultaneous product recovery bioreactors. In: Food and Bio-

products Processing 92 (2014), S. 298 – 308

[296] QURESHI, N. ; SAHA, B. C. ; HECTOR, R. E. ; HUGHES, S. R. ;
COTTA, M. A.: Butanol production from wheat straw by simultane-
ous saccharification and fermentation using Clostridium beijerinckii:
Part I—Batch fermentation. In: Biomass and Bioenergy 32 (2008),
S. 168 – 175

[297] RAMIREZ, E. C. ; JOHNSTON, D. B. ; MCALOON, A. J. ; YEE, W. ;
SINGH, V. : Engineering process and cost model for a conventional
corn wet milling facility. In: Industrial crops and products 27 (2008),
S. 91 – 97

[298] RANGANATH, B. : System dynamics: Theory and case studies. IK
International Pvt Ltd, 2010

[299] RANISAU, J. ; OGBE, E. ; TRAINOR, A. ; BARBOUTI, M. ;
ELSHOLKAMI, M. ; ELKAMEL, A. ; FOWLER, M. : Optimiza-
tion of biofuel production from corn stover under supply uncertainty
in Ontario. In: Biofuel Research Journal 4 (2017), Nr. 4, 721-
729. �����������	
�	���
��
���
������
�������. – DOI
10.18331/BRJ2017.4.4.4. – cited By 0

[300] RAUSCH, A. : Strategische Standortplanung unter Unsicherheit -

Robuste Distributionsstruktur für einen Automobilzulieferer in GUS,
Universität Fredericiana zu Karlsruhe, Diss., 2006

414

http://dx.doi.org/10.18331/BRJ2017.4.4.4


Bibliography

[301] RENTIZELAS, A. A. ; TOLIS, A. J. ; TATSIOPOULOS, I. P.: Logistics
issues of biomass: the storage problem and the multi-biomass supply
chain. In: Renewable and Sustainable Energy Reviews 13 (2009), Nr.
4, S. 887–894

[302] REVERDIA ; REVERDIA (Hrsg.): Growing Our Leadership Position

in the Bio-succinic Market. ������������	
	���
������	�����
��������	���
����
����. Version: 2015

[303] REZENDE, C. A. ; LIMA, M. A. ; MAZIERO, P. ;
RIBEIRO DEAZEVEDO, E. ; GARCIA, W. ; POLIKARPOV, I. :
Chemical and morphological characterization of sugarcane bagasse
submitted to a delignification process for enhanced enzymatic
digestibility. In: Biotechnology for biofuels 4 (2011), Nr. 1, S. 54

[304] RIESER, K.-P. ; BASF SE (Hrsg.): BASF and Avantium intend to

establish joint venture. �������������
�������	������
����	
���
����	��
��	����	�	
�	�����������������������

[305] RIPPEY, B. R.: The U.S. drought of 2012. In: Weather

and Climate Extremes 10 (2015), 57 - 64. ���������������

��������������������������� ��
�	�����������! . – DOI
https://doi.org/10.1016/j.wace.2015.10.004. – ISSN 2212–0947. –
USDA Research and Programs on Extreme Events

[306] RODRÍGUEZ-GONZÁLEZ, P. A. ; FRAUSTO-HERNÁNDEZ, S. ;
BRAVO-SÁNCHEZ, U. I.: Stochastic Optimization of the Strate-
gic Planning Supply Chain of Biorefineries: Large Scale Mod-
els. Version: 2014. �������������������������������������
�����"#$%���!!!���!���#�����$��. In: KLEMES, J. J. (Hrsg.)
; VARBANOV, P. S. (Hrsg.) ; LIEW, P. Y. (Hrsg.): 24th European

Symposium on Computer Aided Process Engineering Bd. 33. Else-
vier. – DOI https://doi.org/10.1016/B978–0–444–63455–9.50117–3.
– ISSN 1570–7946, 1693 - 1698

415

http://www.reverdia.com/technology/commercial-plants/
http://www.reverdia.com/technology/commercial-plants/
https://www.basf.com/en/company/news-and-media/news-releases/2016/03/p-16-153.html
https://www.basf.com/en/company/news-and-media/news-releases/2016/03/p-16-153.html
http://dx.doi.org/https://doi.org/10.1016/j.wace.2015.10.004
http://dx.doi.org/https://doi.org/10.1016/j.wace.2015.10.004
http://dx.doi.org/https://doi.org/10.1016/B978-0-444-63455-9.50117-3
http://dx.doi.org/https://doi.org/10.1016/B978-0-444-63455-9.50117-3


Bibliography

[307] ROSE, A. Z.: Economic resilience to disasters. (2009)

[308] ROSENZWEIG, C. ; IGLESIAS, A. ; YANG, X. ; EPSTEIN, P. R. ;
CHIVIAN, E. : Climate Change and extreme weather events. In:
Global Change & Human Health 2 (2001), S. 2

[309] RUDI, A. ; FRÖHLING, M. ; ZIMMER, K. ; SCHULTMANN, F. :
Freight transportation planning considering carbon emissions and in-
transit holding costs: a capacitated multi-commodity network flow
model. In: EURO Journal on Transportation and Logistics 5 (2014),
S. 1 – 38

[310] SAHA, B. C. ; ITEN, L. B. ; COTTA, M. A. ; WU, Y. V.: Dilute acid
pretreatment, enzymatic saccharification and fermentation of wheat
straw to ethanol. In: Process Biochemistry 40 (2005), S. 3693 – 3700

[311] SAMOLADA, M. ; BALDAUF, W. ; VASALOS, I. : Production of a
bio-gasoline by upgrading biomass flash pyrolysis liquids via hydro-
gen processing and catalytic cracking. In: Fuel 77 (1998), Nr. 14,
1667 - 1675. �����������	
�	�������
����	
�	�����������
���������������������. – DOI https://doi.org/10.1016/S0016–
2361(98)00073–8. – ISSN 0016–2361

[312] SCHAETTER, F. : Decision support system for a reactive manage-

ment of disaster-caused supply chain disturbances, Diss., 2015

[313] SCHIRA, J. : Statistische Methoden der VWL und BWL: Theorie und

Praxis. Pearson Deutschland GmbH, 2009

[314] SCHWADERER, F. : Integrierte Standort-, Kapazitaets- und Tech-

nologieplanung von Wertschöpfungsnetzwerken zur stofflichen und

energetischen Biomassenutzung, Karlsruher Institut für Technologie,
Diss., 2012

[315] SERVICE, N. A. S. ; AGRICULTURE, U. S. D. (Hrsg.): Charts and

Maps. ����
���������

��
����	�������
 ��� !��
�"
#$

� ��	�
�. Version: 2018

416

http://dx.doi.org/https://doi.org/10.1016/S0016-2361(98)00073-8
http://dx.doi.org/https://doi.org/10.1016/S0016-2361(98)00073-8
https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/
https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/


Bibliography

[316] SHABANI, N. ; SOWLATI, T. : Evaluating the impact of uncer-
tainty and variability on the value chain optimization of a forest
biomass power plant using Monte Carlo Simulation. In: Interna-

tional Journal of Green Energy 13 (2016), Nr. 7, 631-641. ��

���������	
�	���
��
����
����������
�������� . – DOI
10.1080/15435075.2014.993764. – cited By 1

[317] SHABANI, N. ; SOWLATI, T. : A hybrid multi-stage stochastic
programming-robust optimization model for maximizing the sup-
ply chain of a forest-based biomass power plant considering uncer-
tainties. In: Journal of Cleaner Production 112 (2016), 3285-
3293. �����������	
�	���
��
�
����������	���
�������� .
– DOI 10.1016/j.jclepro.2015.09.034. – cited By 0

[318] SHABANI, N. ; SOWLATI, T. ; OUHIMMOU, M. ; RÖNNQVIST, M. :
Tactical supply chain planning for a forest biomass power plant under
supply uncertainty. In: Energy 78 (2014), S. 346–355

[319] SHARIFZADEH, M. ; GARCIA, M. C. ; SHAH, N. : Supply chain
network design and operation: Systematic decision-making for cen-
tralized, distributed, and mobile biofuel production using mixed inte-
ger linear programming (MILP) under uncertainty. In: Biomass and

Bioenergy 81 (2015), S. 401–414

[320] SHARMA, B. ; INGALLS, R. G. ; JONES, C. L. ; HUHNKE, R. L. ;
KHANCHI, A. : Scenario optimization modeling approach for design
and management of biomass-to-biorefinery supply chain system. In:
Bioresource Technology 150 (2013), S. 163 – 171

[321] SHEEHAN, J. ; ADEN, A. ; PAUSTIAN, K. ; KILLIAN, K. ; BRENNER,
J. ; WALSH, M. ; NELSON, R. : Energy and environmental aspects of
using corn stover for fuel ethanol. In: Journal of Industrial Ecology

7 (2003), Nr. 3-4, S. 117–146

417

http://dx.doi.org/10.1080/15435075.2014.993764
http://dx.doi.org/10.1080/15435075.2014.993764
http://dx.doi.org/10.1016/j.jclepro.2015.09.034


Bibliography

[322] SHELDON, R. A.: Green and sustainable manufacture of chemicals
from biomass: state of the art. In: Green Chemistry 16 (2014), Nr. 3,
S. 950–963

[323] SHIM, J. P. ; WARKENTIN, M. ; COURTNEY, J. F. ; POWER, D. J. ;
SHARDA, R. ; CARLSSON, C. : Past, present, and future of decision
support technology. In: Decision support systems 33 (2002), Nr. 2,
S. 111–126

[324] SHINNERS, K. J. ; BINVERSIE, B. N.: Fractional yield and moisture
of corn stover biomass produced in the Northern US Corn Belt. In:
Biomass and Bioenergy 31 (2007), Nr. 8, S. 576–584

[325] SHOVEN, J. B. ; WHALLEY, J. : Applying general equilibrium. Cam-
bridge university press, 1992

[326] SILVA, G. ; EXTENSION, M. S. U. (Hrsg.): Fertilizer prices in

2015. ����������	
��

���
	����	����	
�����	
��
��	��

�������. Version: 2015

[327] SMITH, K. ; PETLEY, D. N.: Environmental hazards : assessing risk

and reducing disaster. 6. ed. London [u.a.] : Routledge, 2013. –
ISBN 978–0–415–68105–6; 0–415–68105–7; 978–0–415–68106–3;
0–415–68106–5978–0–415–68105–9. – Previous ed.: 2008. - For-
merly CIP Uk. - Includes bibliographical references and index

[328] SMITHERS, J. : Review of sugarcane trash recovery systems for
energy cogeneration in South Africa. In: Renewable and Sustain-

able Energy Reviews 32 (2014), 915 - 925. ���������
���
�


�������������
�
����
������

�	

����
��
��� . – DOI
https://doi.org/10.1016/j.rser.2014.01.042. – ISSN 1364–0321

[329] SODHI, M. S. ; TANG, C. S. ; HILLIER, F. S. (Hrsg.): Managing

Supply Chain Risk. Springer, 2012

418

http://msue.anr.msu.edu/news/fertilizer_prices_in_2015
http://msue.anr.msu.edu/news/fertilizer_prices_in_2015
http://dx.doi.org/https://doi.org/10.1016/j.rser.2014.01.042
http://dx.doi.org/https://doi.org/10.1016/j.rser.2014.01.042


Bibliography

[330] SOHAIB, Q. ; MUHAMMAD, A. ; YOUNAS, M. : Fast pyrolysis
of sugarcane bagasse: Effect of pyrolysis conditions on final prod-
uct distribution and properties. In: Energy Sources, Part A: Recov-

ery, Utilization, and Environmental Effects 39 (2017), Nr. 2, 184-
190. �����������	
�	���
��
����
����������
��
�
���� .
– DOI 10.1080/15567036.2016.1212292

[331] SOKHANSANJ, S. ; KUMAR, A. ; TURHOLLOW, A. F.: Development
and implementation of integrated biomass supply analysis and logis-
tics model (IBSAL). In: Biomass and Bioenergy 30 (2006), Nr. 10,
S. 838–847

[332] SONG, H. ; LEE, S. Y.: Production of succinic acid by bacterial
fermentation. 39 (2006), S. 352 – 361

[333] STATISTICS, I. ; ANALYSIS ; U.S. ENERGY INFORMATION ADMIN-
ISTRATION (Hrsg.): Natural Gas. �������������
���	��������
���
����������������. Version: 2017

[334] STICHNOTHE, H. ; MEIER, D. ; BARI, I. de: Chapter 3 -
Biorefineries: Industry Status and Economics. Version: 2016.
�����������	
�	������������	
�	���
��
�
���������


�����
������������. In: LAMERS, P. (Hrsg.) ; SEARCY,
E. (Hrsg.) ; HESS, J. R. (Hrsg.) ; STICHNOTHE, H. (Hrsg.):
Developing the Global Bioeconomy. Academic Press. – DOI
https://doi.org/10.1016/B978–0–12–805165–8.00003–3. – ISBN
978–0–12–805165–8, 41 - 67

[335] STROCKO, E. ; SPRUNG, M. ; NGUYEN, L. ; RICK, C. ; SEDOR, J. :
Freight Facts and Figures 2013 / SAIC. 2014. – Forschungsbericht

[336] SUMA, R. ; SAVITHA, C. : Integrated sugarcane trash management:
a novel technology for sustaining soil health and sugarcane yield. In:
Advances in Crop Science and Technology (2015)

419

http://dx.doi.org/10.1080/15567036.2016.1212292
https://www.eia.gov/dnav/ng/hist/n3035us3m.htm
https://www.eia.gov/dnav/ng/hist/n3035us3m.htm
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-805165-8.00003-3
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-805165-8.00003-3


Bibliography

[337] SWEETENERS REGIONAL OFFICES: ClearsweetÂ® 95Forschungs-
bericht

[338] TANG, C. ; TOMLIN, B. : How much flexibility does it take to miti-
gate supply chain risks? In: ZSIDISIN, G. A. (Hrsg.) ; RITCHIE, B.
(Hrsg.): Supply chain risk. Springer, 2009, S. 155–174

[339] TAUERS, R. ; ENERGY, . P. Technology (Hrsg.): The Second Renew-

able Fuel Standard. ����������		�
���
�
	������
��
�����

�������������������������
�����	��������������
��

[340] TAY, D. H. ; NG, D. K. ; ; TAN, R. R.: Robust Optimization Approach
for Synthesis of Integrated Biorefineries with Supply and Demand
Uncertainties. In: Environmental Progress & Sustainable Energy 32
(2013), July, Nr. 2, S. 384 – 389

[341] TEXAS TRANSPORTATION INSTITUTE ; MARAD MARITIME

ADMINISTRATION (Hrsg.): Waterways: Working for America

[342] THAKUR, I. S.: Environmental Biotechnology: Basic Concepts and

Applications. I.K. International Pvt. Ltd., 2006

[343] THE NATIONAL SEVERE STORMS LABORATORY ;
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRA-
TION (NOAA) (Hrsg.): Severe Weather 101, Hail Basics.
�������������������������������������
����������� .
Version: 2017

[344] THE NATIONAL SEVERE STORMS LABORATORY ; NATIONAL

OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA)
(Hrsg.): Severe Weather 101, Tornado Basics. �����

��������������������������������
��������
������� .
Version: 2017

[345] THEERARATTANANOON, K. ; WU, X. ; STAGGENBORG, S. ;
PROPHETER, J. ; MADL, R. ; WANG, D. : Evaluation and char-

420

https://webberenergyblog.wordpress.com/2013/03/25/the-second-renewable-fuel-standard/
https://webberenergyblog.wordpress.com/2013/03/25/the-second-renewable-fuel-standard/
http://www.nssl.noaa.gov/education/svrwx101/hail/
http://www.nssl.noaa.gov/education/svrwx101/tornadoes/
http://www.nssl.noaa.gov/education/svrwx101/tornadoes/


Bibliography

acterization of sorghum biomass as feedstock for sugar production.
In: Transactions of the ASABE 53 (2010), Nr. 2, S. 509–525

[346] THOMAS CAPEHART ; ECONOMIC RESEARCH SERVICE, UNITED

STATES DEPARTMENT OF AGRICULTURE (Hrsg.): Corn. ������

������	
�����
�������������
������
�

[347] THOMPSON, P. B.: The agricultural ethics of biofuels: the food vs.
fuel debate. In: Agriculture 2 (2012), Nr. 4, S. 339–358

[348] THORBURN, A. H. P. A. H. A. P. J.; Archer R. P. J.; Archer A. P.
J.; Archer: Value chain analyses of whole crop harvesting to max-
imise co-generation. In: Australian Society of Sugar Cane Technolo-

gists Conference, 2006, S. 37 – 48

[349] In: TIPPKÖTTER, N. : Grundlagen der biochemischen Umwandlung.
3. Springer Berlin Heidelberg, 2016, S. 1447–1500

[350] TONG, K. ; GLEESON, M. J. ; RONG, G. ; YOU, F. : Optimal design
of advanced drop-in hydrocarbon biofuel supply chain integrating
with existing petroleum refineries under uncertainty. In: Biomass

and Bioenergy 60 (2014), S. 108 – 120

[351] TONG, K. ; GONG, J. ; YUE, D. ; YOU, F. : Stochastic Programming
Approach to Optimal Design and Operations of Integrated Hydro-
carbon Biofuel and Petroleum Supply Chains. In: ACS Sustainable

Chemistry Engineering 2 (2014), S. 49 – 61

[352] TONG, K. ; YOU, F. ; RONG, G. : Robust design and operations of
hydrocarbon biofuel supply chainintegrating with existing petroleum
refineries considering unitcost objective. In: Computers and Chemi-

cal Engineering 68 (2014), S. 128 – 139

[353] TRAGER, R. ; CHEMISTRY WORLD (Hrsg.): Bio-based chemicals on

the rise in US. ��������������	����
���
��������	�������

�
�	����	���
��������	�
��	������������

����	

421

https://www.ers.usda.gov/topics/crops/corn
https://www.ers.usda.gov/topics/crops/corn
https://www.chemistryworld.com/news/bio-based-chemicals-on-the-rise-in-us/7865.article
https://www.chemistryworld.com/news/bio-based-chemicals-on-the-rise-in-us/7865.article


Bibliography

[354] TRANSPORTATION STATISTICS, B. of ; TRANSPORTATION,
U. D. (Hrsg.): Railroad Nodes. ������������	
��
�������

����
���������
��������	����������	�	�	���������� .
Version: 2017

[355] TRINKS, C. : Auswahl einer robusten Supply Chain-Strategie für

Waldhackschnitzel aus dem organisierten Kleinstprivatwald unter

Berücksichtigung von Unsicherheiten und eines multikriteriellen

Bewertungsproblems, Diss., 2014

[356] TRIPPE, F. : Techno-Ã¶konomische Bewertung alternativer Ver-

fahrenskonfigurationen zur Herstellung von Biomass-to-Liquid (BtL)

Kraftstoffen und Chemikalien, Karlsruher Institut fÃ¼r Technologie,
Diss., 2013

[357] TRIPPE, F. ; FRÃ¶HLING, M. ; SCHULTMANN, F. ; STAHL,
R. ; HENRICH, E. : Techno-economic assessment of gasi-
fication as a process step within biomass-to-liquid (BtL) fuel
and chemicals production. In: Fuel Processing Technology

92 (2011), Nr. 11, 2169 - 2184. �������� ���
��
�����

����� ���
��
���!��!���"��#�
����!���!��!�� . – DOI
http://dx.doi.org/10.1016/j.fuproc.2011.06.026. – ISSN 0378–3820

[358] TRIPPE, F. ; FROEHLING, M. ; SCHULTMANN, F. ; STAHL, R. ; HEN-
RICH, E. : Techno-Economic Analysis of Fast Pyrolysis as a Pro-
cess Step Within Biomass-to-Liquid Fuel Production. In: Waste and

Biomass Valorization 1 (2010), Dec, Nr. 4, 415–430. �������� ��
�
��
���!��!!��������$!�!$�!��$�. – DOI 10.1007/s12649–
010–9039–1. – ISSN 1877–265X

[359] TRIPPE, F. ; FROEHLING, M. ; SCHULTMANN, F. ; STAHL,
R. ; HENRICH, E. ; DALAI, A. : Comprehensive
techno-economic assessment of dimethyl ether (DME) synthe-
sis and Fischer-Tropsch synthesis as alternative process steps

422

https://www.arcgis.com/home/item.html?id=366792a73ec7451f8a7afa1ec46cc3b3
https://www.arcgis.com/home/item.html?id=366792a73ec7451f8a7afa1ec46cc3b3
http://dx.doi.org/http://dx.doi.org/10.1016/j.fuproc.2011.06.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.fuproc.2011.06.026
http://dx.doi.org/10.1007/s12649-010-9039-1
http://dx.doi.org/10.1007/s12649-010-9039-1


Bibliography

within biomass-to-liquid production. In: Fuel Processing Tech-

nology 106 (2013), 577 - 586. �����������	
�	������

��������	
�	���
��
�
��������	����
�������� . – DOI
http://dx.doi.org/10.1016/j.fuproc.2012.09.029. – ISSN 0378–3820

[360] TURHOLLOW, A. F. ; WEBB, E. G. ; DOWNING, M. : Review of
sorghum production practices: Applications for bioenergy. In: Oak

Ridge National Laboratory, Oak Ridge, Tennessee (2010), S. 37831–
6283

[361] TYE, Y. Y. ; LEE, K. T. ; ABDULLAH, W. N. W. ; LEH, C. P.:
The world availability of non-wood lignocellulosic biomass for the
production of cellulosic ethanol and potential pretreatments for the
enhancement of enzymatic saccharification. In: Renewable and Sus-

tainable Energy Reviews 60 (2016), 155 - 172. �����������	
�	

������������	
�	���
��
�
�����������
���
���� . – DOI
https://doi.org/10.1016/j.rser.2016.01.072. – ISSN 1364–0321

[362] UNIT, E. R. ; AGRICULTURE, U. D. (Hrsg.): Sugarcane for sugar

: price per ton, by state. ����������������������	�������

��	��������������������������������		 ����!������� .
Version: 2017

[363] URYASEV, S. : Conditional value-at-risk: Optimization algorithms
and applications. In: Computational Intelligence for Financial Engi-

neering, 2000.(CIFEr) Proceedings of the IEEE/IAFE/INFORMS

2000 Conference on IEEE, 2000, S. 49–57

[364] U.S. ARMY CORPS OF ENGINEERS ; U.S. DEPARTMENT OF

TRANSPORTATION (Hrsg.): Demands on the Transportation Sys-

tem. ��������	���������	���	�����
�������
���"���!��


�����
���"��	�����#�������#. Version: 2017

423

http://dx.doi.org/http://dx.doi.org/10.1016/j.fuproc.2012.09.029
http://dx.doi.org/http://dx.doi.org/10.1016/j.fuproc.2012.09.029
http://dx.doi.org/https://doi.org/10.1016/j.rser.2016.01.072
http://dx.doi.org/https://doi.org/10.1016/j.rser.2016.01.072
https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx
https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx
https://ops.fhwa.dot.gov/freight/freight_analysis/freight_story/demands.htm
https://ops.fhwa.dot.gov/freight/freight_analysis/freight_story/demands.htm


Bibliography

[365] U.S. ARMY CORPS OF ENGINEERS ; ROCK ISLAND DISTRICT

(Hrsg.): Navigational Charts. ������������	��
��
��������

��������������	����������
��������. Version: 2017

[366] US DEPARTMENT OF AGRICULTURE: US Biobased Products Mar-

ket Potential and Projections Through 2025. 2008

[367] US GOVERNMENT PRINTING OFFICE: Energy Policy Act of 2005

Public Law 109 - 58. August 2005

[368] USDA: Table 12–Corn: Cash prices at principal mar-

kets. ���������������
������	����������

������������

�������������������������������������������� !"#$%

[369] USLU, A. ; FAAIJ, A. P. ; BERGMAN, P. : Pre-
treatment technologies, and their effect on international bioen-
ergy supply chain logistics. Techno-economic evaluation of
torrefaction, fast pyrolysis and pelletisation. In: Energy

33 (2008), Nr. 8, 1206 - 1223. �������������������

���������������&'�&'&"�(��������!'')�'*�''+ . – DOI
https://doi.org/10.1016/j.energy.2008.03.007. – ISSN 0360–5442

[370] VADAS, P. A. ; DIGMAN, M. F.: Production costs of potential corn
stover harvest and storage systems. In: biomass and bioenergy 54
(2013), S. 133–139

[371] VAHIDOV, R. ; KERSTEN, G. E.: Decision station: situating decision
support systems. In: Decision Support Systems 38 (2004), Nr. 2, S.
283–303

[372] VASWANI, S. : Bio-based Succinic Acid / SRI Consulting. –
Forschungsbericht

[373] VAUCK, W. R. A. ; MÃ¼LLER, H. A.: Grundoperationen chemis-

cher Verfahrenstechnik. 2000

424

http://www.mvp.usace.army.mil/Missions/Navigation/Locks-Dams/
http://www.mvp.usace.army.mil/Missions/Navigation/Locks-Dams/
http://www.ers.usda.gov/data-products/feed-grains-database/feed-grains-yearbook-tables.aspx#26954
http://www.ers.usda.gov/data-products/feed-grains-database/feed-grains-yearbook-tables.aspx#26954
http://dx.doi.org/https://doi.org/10.1016/j.energy.2008.03.007
http://dx.doi.org/https://doi.org/10.1016/j.energy.2008.03.007


Bibliography

[374] VESELY, W. E. ; GOLDBERG, F. F. ; ROBERTS, N. H. ; HAASL, D. F.:
Fault Tree Handbook. 1981

[375] In: VOGEL, F. : Hydrothermale Verfahren. 3. Springer Berlin
Heidelberg, 2016, S. 1267–1337

[376] WALDHEIM, J. ; NEWS, I. (Hrsg.): US July ethy-

lene contracts settle down 1.25 cents/lb, not market-wide.
������������	
	��
���
����

�������������������

��������������������������
���
�
�����������������

���
��������������
 ����	���

[377] WALL, J. S. ; ROSS, W. M. u. a.: Sorghum production and utilization.

Westport, Connecticut: AVI Publishing Company, Inc., 1970

[378] WÄRMEATLAS, V. : 11. Auflage. 2013

[379] WATERNEWS ; BLUE circle o. (Hrsg.): Price of Water 2015: Up

6 Percent in 30 Major U.S. Cities; 41 Percent Rise Since 2010.
�����������
	

���!������
"��������
����
	
���!�

����
�������������

����	���������
�����
	�	���#��

��

����
	����	�
�������. Version: 2015

[380] WATERS, D. : Supply chain risk management: vulnerability and

resilience in logistics. Kogan Page Publishers, 2011

[381] In:WATSON, S. A.: Wet-Milling Process and Products. 1970

[382] WEINTRAUB, A. ; ROMERO, C. : Operations research models and
the management of agricultural and forestry resources: a review and
comparison. In: Interfaces 36 (2006), Nr. 5, S. 446–457

[383] WERPY, T. ; PETERSEN, G. ; (PNNL), P. N. N. L. (Hrsg.) ; (NREL),
N. R. E. L. (Hrsg.): Top Value Added Chemicals from Biomass: Vol-

ume I – Results of Screening for Potential Candidates from Sugars

and Synthesis Gas. U.S. Department of Energy Energy Efficiency and

425

https://www.icis.com/resources/news/2017/08/03/10062158/us-july-ethylene-contracts-settle-down-1-25-cents-lb-not-market-wide/
https://www.icis.com/resources/news/2017/08/03/10062158/us-july-ethylene-contracts-settle-down-1-25-cents-lb-not-market-wide/
https://www.icis.com/resources/news/2017/08/03/10062158/us-july-ethylene-contracts-settle-down-1-25-cents-lb-not-market-wide/
http://www.circleofblue.org/2015/world/price-of-water-2015-up-6-percent-in-30-major-u-s-cities-41-percent-rise-since-2010/
http://www.circleofblue.org/2015/world/price-of-water-2015-up-6-percent-in-30-major-u-s-cities-41-percent-rise-since-2010/
http://www.circleofblue.org/2015/world/price-of-water-2015-up-6-percent-in-30-major-u-s-cities-41-percent-rise-since-2010/


Bibliography

Renewable Energy. �����������	
�	���
���
���
�������. ��
���������	
�	���
���
���
�������

[384] WEST, C. T. ; LENZE, D. G.: Modeling the regional impact of nat-
ural disaster and recovery: A general framework and an application
to Hurricane Andrew. In: International regional science review 17
(1994), Nr. 2, S. 121–150

[385] WHYTE, A. V. ; BURTON, I. : Environmental Risk Assess-
ment / Scientific Commitee on Problems of the Environment
(SCOPE) of the International Council of Scientific Unions (ICSU).
Version: 1980. ������������������
���
���������������

������
��������
���� !. John Wiley and Sons. – Forschungs-
bericht

[386] WOOLCOCK, P. J. ; BROWN, R. C.: A review of clean-
ing technologies for biomass-derived syngas. In: Biomass

and Bioenergy 52 (2013), 54 - 84. �����������	
�	����

��������	
�	���
��
�
"�#�$
	 $
	����
%�����%" . – DOI
https://doi.org/10.1016/j.biombioe.2013.02.036. – ISSN 0961–9534

[387] WORTMANN, C. ; KLEIN, R. N. ; SHAPIRO, C. A.: NebGuide:
Harvesting Crops Residues / University of Nebraska. 2012. –
Forschungsbericht

[388] WRIGHT, M. M. ; DAUGAARD, D. E. ; SATRIO, J. A. ; BROWN,
R. C.: Techno-economic analysis of biomass fast pyrolysis to trans-
portation fuels. In: Fuel 89 (2010), S2 - S10. �����������	
�	��
������������	
�	���
��
�
"�#�&��!���
�������� . – DOI
http://dx.doi.org/10.1016/j.fuel.2010.07.029. – ISSN 0016–2361. –
Techno-economic Comparison of Biomass-to-Biofuels Pathways

[389] WRIGHT, M. ; LIMA, I. ; BIGNER, R. : Stability and Use of Sweet
Sorghum Bagasse. In: Sugar Tech 19 (2017), Nr. 5, S. 451–457

426

http://dx.doi.org/10.2172/15008859
http://dx.doi.org/10.2172/15008859
http://dx.doi.org/10.2172/15008859
https://dge.carnegiescience.edu/SCOPE/SCOPE_15/SCOPE_15.html
https://dge.carnegiescience.edu/SCOPE/SCOPE_15/SCOPE_15.html
http://dx.doi.org/https://doi.org/10.1016/j.biombioe.2013.02.036
http://dx.doi.org/https://doi.org/10.1016/j.biombioe.2013.02.036
http://dx.doi.org/http://dx.doi.org/10.1016/j.fuel.2010.07.029
http://dx.doi.org/http://dx.doi.org/10.1016/j.fuel.2010.07.029


Bibliography

[390] WU, C. ; HUANG, G. ; LI, W. ; XIE, Y. ; XU, Y. : Multistage stochas-
tic inexact chance-constraint programming for an integrated biomass-
municipal solid waste power supply management under uncertainty.
In: Renewable and Sustainable Energy Reviews 41 (2015), S. 1244–
1254

[391] WU, X. ; ZHAO, R. ; BEAN, S. ; SEIB, P. ; MCLAREN, J. ; MADL,
R. ; TUINISTRA, M. ; LENZ, M. ; WANG, D. : Factors Impacting
Ethanol Production from Grain Sorghum in the Dry-Grind Process.
In: Cereal Chemistry 84(2) (2007), 130 - 136. �����������	
�	

���
��
����������������
��. – DOI 10.1094/CCHEM–84.2–
0130

[392] XIE, F. ; HUANG, Y. ; EKSIOGLU, S. : Integrating multimodal trans-
port into cellulosic biofuel supply chain design under feedstock sea-
sonality with a case study based on California. In: Bioresource Tech-

nology 152 (2014), S. 15 – 23

[393] YEH, K. ; WHITTAKER, C. ; REALFF, M. J. ; LEE, J. H.: Two stage
stochastic bilevel programming model of a pre-established timber-
lands supply chain with biorefinery investment interests. In: Com-

puters & Chemical Engineering 73 (2015), S. 141–153

[394] YOU, F. ; WANG, B. : Optimal design and operations of cellulosic
biofuel supply chains under uncertainty. – cited By 0

[395] YOU, F. : Design of biofuel supply chains under uncertainty with
multiobjective stochastic programming models and decomposition
algorithm. In: Computer Aided Chemical Engineering Bd. 32. Else-
vier, 2013, S. 493–498

[396] YUE, D. ; YOU, F. : Modelling of multi-scale uncertainties in biofuel
supply chain optimization. In: Chemical Engineering Transactions

52 (2016), 205-210. �����������	
�	���
����������
������.
– DOI 10.3303/CET1652035. – cited By 0

427

http://dx.doi.org/10.1094/CCHEM-84.2-0130
http://dx.doi.org/10.1094/CCHEM-84.2-0130
http://dx.doi.org/10.3303/CET1652035


Bibliography

[397] ZAMAR, D. S. ; GOPALUNI, B. ; SOKHANSANJ, S. ; NEWLANDS,
N. K.: Robust optimization of competing biomass supply chains
under feedstock uncertainty. In: IFAC-PapersOnLine 48 (2015), Nr.
8, S. 1222–1227

[398] ZAMAR, D. ; GOPALUNI, B. ; SOKHANSANJ, S. b. ; NEW-
LANDS, N. : A quantile-based scenario analysis approach to
biomass supply chain optimization under uncertainty. In: Com-

puters and Chemical Engineering 97 (2017), 114-123. �����

������	
�	���
��
�
�����	������������
��

��
� . – DOI
10.1016/j.compchemeng.2016.11.015. – ISSN 00981354

[399] ZHANG, B.-Z. ; ZHANG, S.-P. ; ZHAO, S.-T. ; XU, Q.-L. ;
YAN, Y.-J. : Pretreatment of Sweet Sorghum Stalk Using Dilute
Acid. In: Energy Storage 36 (2014), Nr. 16, S. 1835 – 1842.
�����������	
�	���
��
����
����������

������ . – DOI
10.1080/15567036.2011.59689

[400] ZHANG, B.-Z. ; ZHANG, S.-P. ; ZHAO, S.-T. ; XU, Q.-L. ; YAN, Y.-
J. : Conversion of Sweet Sorghum Bagasse Residue to Glucose by
Dilute Acid Hydrolysis. In: Energy Sources 37 (2015), Nr. 15, S.
1688 – 1696

[401] ZHENG, P. ; DONG, J.-J. ; SUN, Z.-H. ; NI, Y. ; FANG, L. :
Fermentative production of succinic acid from straw hydrolysate
by Actinobacillus succinogenes. In: Bioresource Technology

100 (2009), Nr. 8, 2425 - 2429. �����������	
�	������

��������	
�	���
��
�
�����
	�����������

���� . – DOI
http://dx.doi.org/10.1016/j.biortech.2008.11.043. – ISSN 0960–8524

[402] ZIEGENBEIN, A. ; SCHÖNSLEBEN, P. D. P. (Hrsg.): Supply Chain

Risiken - Identifikation, Bewertung und Steuerung. vdf Hochschul-
verlag AG an der ETH Zürich, 2007

428

http://dx.doi.org/10.1016/j.compchemeng.2016.11.015
http://dx.doi.org/10.1016/j.compchemeng.2016.11.015
http://dx.doi.org/10.1080/15567036.2011.59689
http://dx.doi.org/http://dx.doi.org/10.1016/j.biortech.2008.11.043
http://dx.doi.org/http://dx.doi.org/10.1016/j.biortech.2008.11.043


Bibliography

[403] ZIMMER, K. : Entscheidungsunterstützung zur Auswahl und

Steuerung von Lieferanten und Lieferketten unter Berücksichtigung

von Nachhaltigkeitsaspekten, Diss., 2016

[404] ZIMMER, T. ; RUDI, A. ; MÜLLER, A.-K. ; FRÖHLING, M. ;
SCHULTMANN, F. : Modeling the impact of competing utilization
paths on biomass-to-liquid (BtL) supply chains. In: Applied Energy

208 (2017), S. 954–971

429





Band 1 National Integrated Assessment Modelling zur Bewertung 
 umwelt politischer Instrumente. 
 Entwicklung des otello-Modellsystems und dessen Anwendung 
 auf die Bundes republik Deutschland. 2012
 ISBN 978-3-86644-853-7

Band 2  Erhöhung der Energie- und Ressourceneffizienz und 
 Reduzierung der Treibhausgasemissionen in der Eisen-, 
 Stahl- und Zinkindustrie (ERESTRE). 2013
 ISBN 978-3-86644-857-5

Band 3 Frederik Trippe
 Techno-ökonomische Bewertung alternativer Verfahrens - 
 konfigurationen zur Herstellung von Biomass-to-Liquid (BtL)  
 Kraftstoffen und Chemikalien. 2013
 ISBN 978-3-7315-0031-5

Band 4 Dogan Keles
  Uncertainties in energy markets and their  

consideration in energy storage evaluation. 2013
 ISBN 978-3-7315-0046-9

Band 5 Heidi Ursula Heinrichs
 Analyse der langfristigen Auswirkungen von  
 Elektromobilität auf das deutsche Energiesystem  
 im europäisschen Energieverbund. 2013
 ISBN 978-3-7315-0131-2

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe zu bestellen.

PRODUKTION UND ENERGIE

Karlsruher Institut für Technologie (KIT)
Institut für Industriebetriebslehre und Industrielle Produktion  
Deutsch-Französisches Institut für Umweltforschung

ISSN 2194-2404 



Band 6 Julian Stengel
 Akteursbasierte Simulation der energetischen  
 Modernisierung des Wohngebäudebestands  
 in Deutschland. 2014
 ISBN 978-3-7315-0236-4 

Band 7 Sonja Babrowski
 Bedarf und Verteilung elektrischer Tagesspeicher im  
 zukünftigen deutschen Energiesystem. 2015
 ISBN 978-3-7315-0306-4

Band 8 Marius Wunder
 Integration neuer Technologien der  
 Bitumenkalthandhabung in die Versorgungskette. 2015
 ISBN 978-3-7315-0319-4

Band 9 Felix Teufel
  Speicherbedarf und dessen Auswirkungen auf  

die Energiewirtschaft bei Umsetzung der politischen  
Ziele zur Energiewende. 2015

 ISBN 978-3-7315-0341-5

Band 10  D. Keles, L. Renz, A. Bublitz, F. Zimmermann, M. Genoese,  
W. Fichtner, H. Höfling, F. Sensfuß, J. Winkler

   Zukunftsfähige Designoptionen für den deutschen  
Strommarkt: Ein Vergleich des Energy-only-Marktes  
mit Kapazitätsmärkten. 2016

 ISBN 978-3-7315-0453-5 

Band 11 Patrick Breun
 Ein Ansatz zur Bewertung klimapolitischer Instrumente  
 am Beispiel der Metallerzeugung und -verarbeitung. 2016
 ISBN 978-3-7315-0494-8 

Band 12  P. Ringler, H. Schermeyer, M. Ruppert, M. Hayn,  
V. Bertsch, D. Keles, W. Fichtner

  Decentralized Energy Systems,  
Market Integration, Optimization. 2016

 ISBN 978-3-7315-0505-1

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe zu bestellen.



Band 13 Marian Hayn
  Modellgestützte Analyse neuer Stromtarife für  

Haushalte unter Berücksichtigung bedarfsorientierter  
Versorgungssicherheitsniveaus. 2016

 ISBN 978-3-7315-0499-3

Band 14 Frank Schätter
 Decision support system for a reactive management  
 of disaster-caused supply chain disturbances. 2016
 ISBN 978-3-7315-0530-3 

Band 15 Robert Kunze
 Techno-ökonomische Planung energetischer  
 Wohngebäudemodernisierungen: Ein gemischt- 
 ganzzahliges lineares Optimierungsmodell auf  
 Basis einer vollständigen Finanzplanung. 2016
 ISBN 978-3-7315-0531-0

Band 16 A. Kühlen, J. Stengel, R. Volk, F. Schultmann,  
 M. Reinhardt, H. Schlick, S. Haghsheno, A. Mettke,  
 S. Asmus, S. Schmidt, J. Harzheim
 ISA: Immissionsschutz beim Abbruch - Minimierung  
 von Umweltbelastungen (Lärm, Staub, Erschütterungen)  
 beim Abbruch von Hoch-/Tiefbauten und Schaffung  
 hochwertiger Recyclingmöglichkeiten für Materialien  
 aus Gebäudeabbruch. 2018
 ISBN 978-3-7315-0534-1 

Band 17 Konrad Zimmer
  Entscheidungsunterstützung zur Auswahl und Steuerung  

von Lieferanten und Lieferketten unter Berücksichtigung  
von Nachhaltigkeitsaspekten. 2016

 ISBN 978-3-7315-0537-2

Band 18 Kira Schumacher, Wolf Fichtner and Frank Schultmann (Eds.)
  Innovations for sustainable biomass utilisation in the  

Upper Rhine Region. 2017
 ISBN 978-3-7315-0423-8 

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe zu bestellen.



Band 19 Sophia Radloff
  Modellgestützte Bewertung der Nutzung von Biokohle  

als Bodenzusatz in der Landwirtschaft. 2017
 ISBN 978-3-7315-0559-4 

Band 20 Rebekka Volk
  Proactive-reactive, robust scheduling and capacity planning  

of deconstruction projects under uncertainty. 2017
 ISBN 978-3-7315-0592-1 

Band 21 Erik Merkel
  Analyse und Bewertung des Elektrizitätssystems und des  

Wärmesystems der Wohngebäude in Deutschland. 2017
 ISBN 978-3-7315-0636-2 

Band 22 Rebekka Volk (Hrsg.)
  Entwicklung eines mobilen Systems zur Erfassung und  

Erschließung von Ressourceneffizienzpotenzialen beim  
Rückbau von Infrastruktur und Produkten („ResourceApp“): 
Schlussbericht des Forschungsvorhabens. 2017

 ISBN 978-3-7315-0653-9  

Band 23 Thomas Kaschub
 Batteriespeicher in Haushalten unter Berücksichtigung  
 von Photovoltaik, Elektrofahrzeugen und Nachfrage- 
 steuerung. 2017
 ISBN 978-3-7315-0688-1

Band 24  Felix Hübner, Rebekka Volk, Oktay Secer, Daniel Kühn,  
Peter Sahre, Reinhard Knappik, Frank Schultmann,  
Sascha Gentes, Petra von Both  

  Modellentwicklung eines ganzheitlichen  
Projektmanagementsystems für kerntechnische  
Rückbauprojekte (MogaMaR):  
Schlussbericht des Forschungsvorhabens. 2018

 ISBN 978-3-7315-0762-8 

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe zu bestellen.



Band 25  Karoline Fath  
  Technical and economic potential for photovoltaic  

systems on buildings. 2018
 ISBN 978-3-7315-0787-1 

Band 26 Ann-Kathrin Müller
  Decision Support for Biomass Value Chains for the  

Production of Biochemicals Considering Uncertainties. 2018
 ISBN 978-3-7315-0820-5 

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe zu bestellen.



9 783731 508205

ISBN 978-3-7315-0820-5

institut für industriEBEtriEBslEhrE und industriEllE Produktion

dEutsch-franZÖsischEs institut für umWEltforschung

d
ec

is
io

n
 s

u
p

p
o

rt
 f

o
r 

B
io

m
as

s 
V

al
u

e 
c

h
ai

n
s 

fo
r 

th
e 

Pr
o

d
u

ct
io

n
 o

f 
B

io
ch

em
ic

al
s

a
.-

k
. m

ü
ll

Er

issn  2194-2404 
isBn  978-3-7315-0820-5            g

ed
ru

ck
t 

au
f 

fs
c

-z
er

ti
fi 

zi
er

te
m

 P
ap

ie
r

Due to scarce fossil resources, many stakeholders, especially in the chemical industry, 
are searching for alternative raw materials. Value chains of bio-based chemicals are 
very complex and more dependent on risks than petro-based chemicals. Therefore, 
a generic approach for strategic decision support under uncertainty for bioeconomic 
site and logistics planning is developed. It includes an integrated model and three 
sub-models. The optimization model optimizes the locations and capacities of pre-
treatment plants as future suppliers. The technical model performs technical and 
economic evaluations based on fl owsheeting simulations. The risk model evaluates 
uncertainties that occur along biomass value chains. The risk costs are considered 
in the objective function of the integrated model. Quantifi able risks are modeled as 
Monte Carlo simulation, non-quantifi able risks as scenarios. The integrated model 
represents different biomass types, transport modes, intermediates, and uncertain-
ties. As a result, the model suggests a nearly optimal location and the associated 
logistic network for the production of biochemicals. The results are strongly depend-
ent on the biomass price, conversion yields and transport modes. Especially uncertain-
ties have an impact on the structure of the value chain. The choice of raw material 
and (by-)products is decisive for the feasibility of the value chain.
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