KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards the Modeling of Flexibility Using Artificial Neural Networks in Energy Management and Smart Grids: Note

Förderer, Kevin ORCID iD icon; Ahrens, Mischa 1; Bao, Kaibin ORCID iD icon 1; Mauser, Ingo 1; Schmeck, Hartmut 1
1 Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper presents a novel approach to the representation and communication of the energy flexibility of distributed energy resources. The approach uses artificial neural networks (ANNs) to represent the devices and act as surrogate models. The main benefit of this approach is its potential to represent arbitrary energy flexibilities and the resulting universal applicability in various usage patterns, some of which are presented in detail in this paper. Furthermore, the flexibility represented by an ANN can be conditioned on the state of the corresponding devices and their environment, such that only a small state update needs to be communicated to construct feasible load profiles by a third party. Therefore, in contrast to other approaches, such as support vector data description, new ANNs only need to be constructed once the device configuration changes.

DOI: 10.1145/3208903.3208915
Zitationen: 17
Zitationen: 19
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2018
Sprache Englisch
Identifikator ISBN: 978-1-4503-5767-8
KITopen-ID: 1000084352
HGF-Programm 37.06.01 (POF III, LK 01) Networks and Storage Integration
Erschienen in Proceedings of the 9th International Conference on Future Energy Systems (ACM e-Energy 2018), Karlsruhe, 12.-15. Juni 2018
Verlag Association for Computing Machinery (ACM)
Seiten 85–90
Serie e-Energy ’18
Projektinformation grid-control (BMWK, 03ET7539F)
C/sells (BMWK, 03SIN123)
Schlagwörter Machine Learning, Deep learning, Energy Informatics
Nachgewiesen in Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page