Aspects of CP Violation

An E_{6} Symmetric Nelson-Barr Model and a Supersymmetric Solution to $\epsilon_{K}^{\prime} / \epsilon_{K}$

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN
von der KIT-Fakultät für Physik des
Karlsruher Instituts für Technologie (KIT)
genehmigte

DISSERTATION

von

Paul Tremper
aus Karlsruhe

Tag der mündlichen Prüfung:
 Referent:
 Koreferent:

18. Mai 2018

Prof. Dr. Ulrich Nierste
Prof. Dr. Matthias Steinhauser
"Nenne keinen weise, ehe er nicht bewiesen hat, dass er eine Sache von wenigstens acht Seiten her beurteilen kann."

- Konfuzius

Contents

1. An E_{6} Symmetric Nelson-Barr Model 3
1.1. Motivation: Essentials of the BBP Study \& Barr Criteria 6
1.1.1. RG survival of the complex phase 8
1.2. Field Content of our Model 10
1.2.1. Fermion Fields 11
1.2.2. GUT Breaking Scalar Fields 12
1.2.3. Higgs Fields 14
1.2.4. First Barr criterion: Complex VEVs 15
1.2.5. Second Barr Criterion: Electroweak Symmetry Breaking 16
1.2.6. Mass Matrices 17
1.3. Quark Sector 19
1.4. Lepton Sector 22
1.4.1. Lepton Doublets 22
1.4.2. Neutrino Sector 24
1.5. Results 27
1.5.1. Fitting the Standard Model Observables 27
1.5.2. Predictions 29
1.5.3. Summary and Conclusion 30
2. A Supersymmetric Solution to $\epsilon_{K}^{\prime} / \epsilon_{K}$ 31
2.1. Motivation: Recent Lattice Results 31
2.2. New Physics in ϵ_{K}^{\prime} 32
2.3. ϵ_{K}^{\prime} in the MSSM 33
2.3.1. Explicit Calculation of the Gluino Box Diagram 35
2.4. Results 38
2.5. A word on the status of $V_{c b}$ 40
3. Theoretical Background 43
3.1. Theory of Weak CP Violation 43
3.1.1. The CKM matrix 43
3.1.2. The PMNS matrix 45
3.2. Phenomenology of Weak CP Violation in the Kaon System 47
3.2.1. Qualitative discussion 47
3.2.2. Constructing Observables $-\eta_{00}$ and η_{+-} 50
3.2.3. Mixing Formalism $-\epsilon_{K}$ 53
3.2.4. Decay Formalism - ϵ_{K}^{\prime} 54
3.2.5. The Ratio $\epsilon_{K}^{\prime} / \epsilon_{K}$ 58
3.2.6. Isospin Amplitudes 60
3.2.7. $\Delta I=1 / 2$ rule: Omega 61
3.2.8. Isospin expressions for $\eta_{+-}, \eta_{00}, \epsilon_{K}$ and ϵ_{K}^{\prime} 64
3.2.9. Final Formula for $\epsilon_{K}^{\prime} / \epsilon_{K}$ 66
3.2.10. Calculating $\operatorname{Im} a_{0}$ and $\operatorname{Im} a_{2}$ 67
A. Appendix: An E_{6} Symmetric Nelson-Barr Model 69
A.1. Symmetry Breaking Pattern 69
A.1.1. SM singlet scalar fields 70
A.1.2. SM breaking scalars (Higgs fields) 71
A.2. BBP formula 73
B. Appendix: A Supersymmetric Solution to $\epsilon_{K}^{\prime} / \epsilon_{K}$ 77
B.1. The Chromomagnetic Dipole Contribution 77
B.1.1. Formulae 77
B.1.2. Diagram 1: Gluon Attached to the Gluino Line 80
B.1.3. Diagram 2: Gluon Attached to the Squark Line 87
B.1.4. Final Result 91
C. Appendix: Theoretical Background 93
C.1. Derivation of relation between the branching ratios of $K_{L} \rightarrow\left\{\pi^{0} \pi^{0}, \pi^{+} \pi^{-}\right\}$ and ϵ_{K} 93
C.2. Explicit calculation of η_{f} in terms of observables 96
C.3. Relating $\tilde{\epsilon}_{+-}^{\prime}$ and $\tilde{\epsilon}_{00}^{\prime}$ 97

Preface

A doctoral thesis is by its definition required to advance science. It should contain an answer to a previously unanswered scientific question. It is, however, common nowadays to work in collaborations and possibly even to work at multiple projects during the timespan of the thesis. The doctoral researcher grinding one question all by herself for three years and then coming up with an answer is nowadays probably the minority. These projects usually culminate in papers and therefore the proof that the doctoral researcher has conducted scientific work and contributed to advance the field has already been given prior to submitting the thesis. The same applies for this thesis. Since the scientific results are already given in the papers, this renders the doctoral thesis as a proof of scientific work obsolete. What the thesis, however, can do, is give insight in the very work the doctoral researcher conducted, the ideas that inspired the work, the thoughts that led to the results. In this sense, it can be more than a mere list of results of what the doctoral researcher has done, but it can be a portrayal of the work that the researcher has done in the timespan of the whole PhD . In my 3 years of PhD , I mainly worked on two different projects with several collaborators. Both projects culminated in scientific papers. With Teppei Kitahara and my advisor Ulrich Nierste, we investigated whether the present discrepancy of the flavor observable $\epsilon_{K}^{\prime} / \epsilon_{K}$ can be plausibly explained within the Minimal Supersymmetric Standard Model (MSSM) [1]. With Jakob Schwichtenberg and Robert Ziegler, we investigated whether an E_{6} Grand Unified Theory with spontaneously broken CP symmetry can explain the absence of CP violation in the strong sector while still producing the Standard Model at low energies [2].

The results have already been stated for everyone to read. I will therefore intend to write this thesis the way I laid down above: as a portrayal not only of the results, but of the work that we did in the collaborations, focusing on my part of the work where it is possible to entangle it. As with discussions that lead to ideas and cross-checking calculations, sometimes there is nothing to entangle but the work is a team effort.

In the end, a doctoral thesis is graded by the supervisor, and - having today's collaborative environment in mind - I do feel that a doctoral student of physics should show signs of understanding in her thesis rather than merely presenting the numbers. A thesis should demonstrate that the student thought about physics at a level deeper than mere application. In the end, it all comes down to what we expect from the PhD title. It is my personal opinion that a person who holds a PhD in theoretical physics should aspire to have broad knowledge of physics theory in general and most importantly be curious about the concepts we can use to describe nature.

An E_{6} Symmetric Nelson-Barr Model

This chapter is based on our paper "A Grand-Unified Nelson-Barr Model" [2]. The project started with the following considerations.

The strong interaction Lagrangian does allow for a CP violating term of the form $\bar{\theta} G \tilde{G}$, where G is the gluon field strength tensor and \tilde{G} its dual - the contraction of G with the four dimensional Levi Civita symbol. The term is allowed and there is no reason, why its coupling parameter $\bar{\theta}$ should be zero. However, precision measurements of the neutron dipole moment restrict $\bar{\theta}$ to $\leqslant 10^{-10}$ [3] [4]. This result can be interpreted in two ways: either the parameter $\bar{\theta}$ is very small or zero because of some underlying reason. Or, it could mean that there is something structurally misunderstood about certain parts of Yang Mills theory and the term itself does not even arise. Either way, the smallness of $\bar{\theta}$ is known as the 'strong CP problem'. Formulated differently, why is the $\bar{\theta}$ parameter zero or close to zero when it could have any value? What is the underlying reason? While in the past decades the Axion solution enjoyed most dedication by phenomenologists, there are also other solutions.

One particular attractive solution is to say that CP is a symmetry of the Lagrangian. Then, $\bar{\theta}$ is naturally zero and the strong CP problem is solved. This, however, requires one to explain where the well established CP violation in the weak sector comes from. A very straight forward solution to this is to say that CP is a good symmetry at a high scale, then it is spontaneously broken in a way which gives rise to weak CP violation while the strong sector remains unaffected. While the strong sector is pretty much a paragon of a Yang Mills theory, the weak sector is kind of a bad-boy anyway: mediating across generations, having massive gauge bosons due to electroweak symmetry breaking, violating P, violating CP. So why shouldn't the CP violation be due to another symmetry breaking where the strong sector keeps a clean sheet.

Combining this idea with a GUT seems like the reasonable next step. You break a GUT group in a way that also breaks CP and you get all the nice features of GUTs for free. There are some reasons why GUTs might be a good idea [5]: One of the reasons is that you want the CP breaking scale rather high, otherwise you can easily get in trouble with FCNCs thanks to flavor precision constraints. Another reason is that if you break CP at a low scale, you might have to explain why there are no visible domain walls in the universe, whereas when you go to a sufficient high scale, then inflation just blows them away.

The interesting perspective here is that historically people thought about spontaneous CP breaking around the weak scale and had these kinds of problems with it. When they came
up with the idea to combine it with a GUT, most of the problems just vanished [5], which is remarkable. Whenever an idea solves multiple problems at once, the idea usually has something good to offer.

The next question is how to break a GUT in a way that CP is violated while the strong sector remains unaffected? First of all, you generically break CP if your Higgs VEV is complex. ${ }^{1}$ This way we obtain complex mass matrices and by diagonalizing them, your diagonalization matrices become complex and upon forming the CKM matrix (and also the PMNS matrix!), they give rise to a complex CKM (and PMNS) phase. So how could this affect the strong sector? The key lies within the $\bar{\theta}$ parameter. The actual $\bar{\theta}$ parameter in the Lagrangian is actually a sum of two parameters: $\bar{\theta}=\theta_{Q C D}+\theta_{F}$ and usually denoted with a bar over the symbol. The first contribution, $\theta_{Q C D}$, goes by the name 'vacuum angle' and comes from the topological structure of the QCD Yang Mills vacuum. The second contribution, θ_{F}, comes from the fermion sector of the theory and is the argument of the determinant of the quark mass matrix ${ }^{2}$. How this comes to merge with a parameter of the topology of the Yang Mills vacuum seems like a miracle at first - two sectors, which appear to have nothing to do with each other - but does have a deeper reason. This reason has something to do with the chiral anomaly and the very structure of quantum field theory and is not only vastly interesting, but, as I think, a key progress to our understanding in quantum field theory and how its different aspects work together to create the phenomena we observe. Having seen, that θ_{F} gives rise to CP violation in the strong sector, the task at hand in constructing a model of spontaneous CP breaking is then to ensure that this determinant is real. This is most conveniently - and one could argue most naturally ensured by implementing the Barr criteria [6]. These criteria simply use the fact that a determinant is a product of the entries of the matrix and then demand that only certain entries may be complex while other, complementing entries have to be zero. This ensures, that in the calculation of the determinant only real entries survive and the determinant thus by construction has no phase. While this sounds somewhat arbitrary and artificial, it will hopefully become clear in the following sections that this is merely a constraint on the GUT group breaking VEVs: Only few of them can be complex, while some have to be zero to arrive at a low energy theory with vanishing strong CP violation. After all, when constructing a model one has to make certain choices, most obviously: we will only give nonzero VEVs to scalar fields that do not break the Standard Model. Similarly here, we only make VEVs complex that do not violate the strong CP conservation. In this sense, the restriction from the Barr criteria can be interpreted as more of a guideline for which VEVs to pick and which not to, in the very same way as the Standard Model gauge group tells us which VEVs to pick and which not to.

This is a subtle point we would like to emphasize again: In phenomenological GUT model building it is common sense to consider only breaking chains and thus values for VEVs which reproduce the Standard Model. All the numerous other choices are discarded because they contradict what we measure. In the same way, starting with the ambition to construct a GUT model which breaks CP spontaneously, the mere requirement that we have to end up with the Standard Model which includes a CP invariant strong sector

[^0]constrains the breaking chain and the VEVs. The term 'Barr criteria' is just a label for this.

This summarizes the approach we took and gives already an outline of our research question: We take CP to be a symmetry of the Lagrangian to naturally have $\theta_{Q C D}=0$. Then we employ a GUT group and break it through a complex VEV in order to generate weak CP violation. The obvious question is: is this possible? If so, is it reasonable? If it turns out that the model is not reasonable, what can we learn from this? If it turns out to be reasonable, what can we learn from that? The term 'reasonable' differs from person to person. There is, for example, some consensus in the community that overly fine-tuned models are usually considered not very reasonable. On the other hand, a class of something-phobic models emerged recently which seem to be widely accepted, yet I personally consider them not very reasonable. But in the end we have to judge for ourselves what we consider reasonable and what we do not. As history tells us, the next successful theory of nature will certainly be considered 'not reasonable' by a large number of people before it is verified by experiment.

I should mention, that the model turned out to be what we consider quite reasonable, in that it is consistent to the extend we investigated it. It makes predictions and it is falsifiable. It even turned out to be more reasonable than we had anticipated. These are the kind of pleasant surprises one secretly hopes to encounter in model building.

1.1. Motivation: Essentials of the BBP Study \& Barr Criteria

Why E_{6} ? This question is probably best answered by going back to the original question we had when starting with the project: which GUT group to choose? In '91, Bento Branco and Parada (BBP) investigated [7] a simplified model that featured spontaneous CP breaking by employing the Barr criteria. Their study was designed to be a minimalistic realization of the Barr criteria and analyze some of the resulting phenomenology. On top of the Standard Model (SM), they added one heavy vectorlike downtype quark ${ }^{3}\left(D_{L, R}\right)$, and a scalar, which obtained the complex VEV above the EW scale. In our model, we tried to construct a predictive model by realizing that the core idea of BBP's phenomenological study can be implemented in a model when starting with an E_{6} GUT. The difference we get is that we have three generations of exotic down type quarks, which seems more natural than having just one. The Barr criteria then state that the complex coupling may only appear in SM- $D_{L, R}$ couplings, while SM-SM couplings and $D_{L, R}-D_{L, R}$ couplings need to be real. The right handed SM down quarks d_{R} thus couple via the complex VEV to the exotic left handed down quark D_{L}, while a $d_{L}-D_{R}$ coupling cannot arise via the complex VEV because of $S U(2)_{L}$ symmetry.

To clarify this point: Before EWSB, the left handed SM down type quarks d_{L} are merely gauge degrees of freedom in the left handed quark $S U(2)_{L}$ doublets Q_{L} and thus cannot couple to the exotic quark D_{R}, which is a $S U(2)_{L}$ singlet, via the exotic scalar. Any coupling to the left handed quarks can thus only arise after EWSB, when the $S U(2)_{L}$ is broken and the gauge degrees of freedom become physical. But since we need the exotic quark to be heavy, the exotic scalar VEV needs to be far above the EW scale to generate this mass term. This leaves only one option then: coupling the exotic quark D_{L} to the right handed SM down type quarks d_{R} in a Yukawa coupling with the exotic scalar. Coupling to up type quarks is out of question because the exotic quark has the same electric charge as the SM down type quarks. To form an electrically neutral term with an SM up type quark would require a charged VEV. Note that in the BBP model, the electric charge assignment for the exotic quark is for convenience only. In a GUT model, these charges - like all quantum numbers - are fixed by the GUT group. Also, unless the GUT group unifies generations which up to today has not brought very satisfactory results, there will be three copies of the GUT group field content, leading certainly to not one exotic quark in total but one per generation. We will see this when we discuss our model in section 1.2.

The addition of one vectorlike quark effectively adds a 4th row and column to the down quark mass matrix, where one part of the new off-diagonal entries are complex while another part is zero. Diagonalizing this mass matrix then leads to complex rotation matrices and subsequently to a complex CKM matrix. This gives rise to CP violation in the weak sector. Meanwhile the Barr criteria ensure that $\operatorname{ArgDet}\left(M_{u} M_{d}\right)=0$ and thus the $\bar{\theta}$ parameter is not generated through the quark mass matrix.

We see that the Barr criteria are two rules for VEVs in a GUT model, which ensure $\operatorname{ArgDet}\left(M_{u} M_{d}\right)=0$ at tree level. The first one states, that all EW scale VEVs which mix SM and exotic quarks must be zero. The second one states, that only those (GUT scale) VEVs which mix SM and exotic quarks are allowed to be complex, all others must be real.

[^1]To explicitly show this, suppose we have a Lagrangian of the form

$$
\begin{equation*}
\mathcal{L}_{d}=d_{L} m_{d} d_{R}+D_{L} M_{C} d_{R}+d_{L} m_{C} D_{R}+D_{L} M_{R} D_{R} \tag{1.1}
\end{equation*}
$$

where the mass parameters m_{d}, M_{C}, m_{C} and M_{R} are in general a Higgs VEV times a Yukawa matrix. We can think of the $d_{L, R}$ as the SM down quarks and the $D_{L, R}$ as some exotic quarks with the same quantum numbers. By introducing new fields that are superpositions of the old fields, we can find the mass eigenstates. This is conveniently done by writing the Lagrangian as a scalar product of vectors and matrices and then diagonalizing these matrices. Generations have been suppressed for simplicity.

$$
\mathcal{L}_{d}=\left(\begin{array}{ll}
d_{L} & D_{L}
\end{array}\right)\left(\begin{array}{ll}
m_{d} & m_{C} \tag{1.2}\\
M_{C} & M_{R}
\end{array}\right)\binom{d_{R}}{D_{R}}
$$

This defines the full down quark mass matrix \mathcal{M}_{d}. Now we want a complex mass matrix in order to get a complex CKM matrix upon diagonalization, while retaining a real determinant, not to spoil $\bar{\theta}=\theta_{Q C D}+\operatorname{ArgDet}\left(M_{u} M_{d}\right)=0$. This is generically satisfied, if we impose the Barr criteria:

$$
\begin{equation*}
m_{C}=0 \quad M_{C} \in \mathbb{C}^{\mathrm{n} \times \mathrm{n}} \quad m_{d} \wedge M_{R} \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}} \tag{1.3}
\end{equation*}
$$

This way, the determinant is trivially real: we demand that every complex entry is cancelled by a zero in the calculation of the determinant. This is what the Barr criteria do. We obtain a little more sophisticated and maybe more physical seeming version of that statement when we remember that each of the mass parameters is the product of a Yukawa matrix and a Higgs VEV. Then, the Barr criteria (1.3) translate into prescriptions on the scalar VEVs: some of the VEVs mixing SM and exotic fields may become complex (those contained in M_{C}) while others have to be zero (those contained in m_{C}). We will see this explicitly when discussing the symmetry breaking scheme of our model where some VEVs are required to be zero for exactly this reason.

As we already mentioned, this line of arguments also holds for an arbitrary number of families. Bento Branco and Parada used three generations for the SM down quarks $d_{L, R}$ while adding only one exotic quark $D_{L, R}$. Since our model is based on an E_{6} gauge symmetry, we naturally get one exotic down quark $D_{L, R}$ for every generation. Therefore, the mass parameters above are all 3×3 matrices, consisting of combinations of Yukawa matrices with Higgs VEVs.

So what do we learn from BBP and their simplified model? If we want to employ a similar realization of the Barr criteria, then we need vectorlike exotic down quarks. And here is where E_{6} comes around. E_{6} can provide us with a vectorlike down type quark $D_{L, R}$, a vectorlike lepton doublet $L_{L, R}$ and a SM singlet s, if we choose the right breaking chain. And we get this once for each generation, which does seem more natural than adding just one more field. The exotic downtype quarks transport CP violation into the CKM matrix in the same fashion as in the BBP model. The fact that there are three exotic quarks doesn't alter this mechanism. The lepton doublets, interestingly, do the same in
the lepton sector, thereby generating CP violation in the PMNS matrix. This has not been measured yet at the time of writing this thesis and therefore promises a solid prediction already at this very conceptual level. Moreover, the quark CP phase and the lepton CP phase are correlated through the GUT group. So apart from the exotic singlet, the new particles predicted by the E_{6} GUT group fit just perfectly with the idea of breaking CP spontaneously and employing the Barr criteria in the BBP manner. It turns out that even the singlet s plays a crucial role in our model. Therefore all exotic particles that emerge in our model matter and are actually necessary for the model to work out. There are no superfluous exotic fermions flying around. The appeal of the traditional GUTs $S U(5)$ and $S O(10)$ lies in the fact, that they contain just the SM and essentially nothing more. With just any other GUT, you get additional particle and raise the question 'what are these good for?'. Taking a large GUT like E_{6} and realizing that all the new particles are actually useful and even needed to perform mechanisms in order to realize the original idea, is a particularly attractive observation.

We will introduce our model in Section 1.2 by spelling out the breaking chain from E_{6} to the SM. In this process we determine the fermion fields and the scalar VEVs. In Section 1.3 and Section 1.4.1 we examine the quark and the lepton sectors in some detail, showing how the complex GUT VEV feeds into the low energy phenomenology. In Section 1.4.2 we give a detailed treatment of the neutrino sector before we come to the results in Section 1.5.

1.1.1. RG survival of the complex phase

BBP showed in their paper [7], that the phase of the complex VEV that feeds into the CKM matrix is in this particular setup suppressed only by a ratio of high scale VEVs. Naively, one would assume a decoupling behaviour like EW scale over GUT scale. Formula (7a) of [7] generalized to an arbitrary number of heavy exotic quarks, is given by

$$
\begin{equation*}
K \bar{m}^{2} K^{\dagger}=m_{d}\left[1-M_{C}^{\dagger}\left(M^{2}\right)^{-1} M_{C}+\mathcal{O}\left(m_{d}^{4} M_{C}^{2} / M_{R}^{6}\right)\right] m_{d}^{\dagger} \tag{1.4}
\end{equation*}
$$

We give a detailed derivation in Appendix A.2. Here, m_{d}, M_{C} and M_{R} are defined via the Lagrangian (1.1) and the conditions (1.3). $M^{2}:=M_{C} M_{C}^{\dagger}+M_{R} M_{R}^{\dagger}$ and $\bar{m}=$ $\operatorname{Diag}\left(m_{b}, m_{s}, m_{d}\right)$ is the diagonal matrix of SM down type quark masses. K is the CKM matrix, which is unitary up to corrections of $\mathcal{O}\left(m_{d}^{4} M_{C}^{2} / M_{R}^{6}\right)$. We see from Equation (1.4) that the complex phase residing in M_{C} is essentially only suppressed by the scale of M_{R}. The scales M_{C} and M_{R} thus need to be close together, however, they may be arbitrarily high - and are required to be sufficiently high to guarantee sufficient unitarity of the CKM matrix.

In our model, M_{C} is proportional to a $S U(5)$ breaking VEV, while M_{R} is proportional to $S O(10)$ and E_{6} breaking VEVs. The takeaway message here is that the survival of the complex phase requires our GUT scales to be fairly near to each other, while the overall position of the GUT scale w.r.t. the EW scale may be arbitrarily high. The lower bounds here being flavor precision experiments which we would certainly contradict should the corrections to the approximate unitarity of the CKM matrix become too large. The CKM matrix is essentially $V_{C K M}=V_{C K M}^{S M}+\mathcal{O}\left(m_{E W}^{2} / M_{G U T}^{2}\right)$. The upper bound is the Planck
scale from physical reasonability arguments of the effective theory and the lower bound is proton decay. As we will see later, the neutrino sector expresses some preference here if we want to obtain the correct mass range of the light neutrinos by means of a seesaw mechanism. Interestingly enough, these requirements constrain the choices for the GUT scales so heavily, that their order of magnitude is essentially fixed.

1.2. Field Content of our Model

The symmetry breaking pattern we chose to work with, is

$$
\begin{equation*}
E_{6} \longrightarrow S O(10) \longrightarrow S U(5) \longrightarrow S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \tag{1.5}
\end{equation*}
$$

The rank of the group $S O(10)$ is lower than the rank of E_{6}. This expresses itself in an additional $U(1)$ factor that is broken when E_{6} is broken. The same happens when $S O(10)$ breaks to $S U(5)$. In the notation, we keep the $U(1)_{S O(10)}$ and $U(1)_{S U(5)}$ factors as subscript as a consistency check of the decomposition. They are, however, not to be interpreted as unbroken group factors.

This breaking pattern gives us suitable representations for the Barr criteria (the vectorlike down quarks) and at the same time provides us with the possibility of having the GUT scales close enough to ensure the complex phase is not suppressed. The Pati-Salam model, to name an example, requires an amount of RGE running between the Pati-Salam scale and the $S O(10)$ scale to make the unification work, which would suppress the complex phase way too much.

At the E_{6} scale, we have one single fermion field (coming in three generations), which we will call 27 . This is the fundamental representation of E_{6}, analogous to a quark with 27 colours. The gauge bosons are in the adjoint representation 78, as dictated by gauge theory. To employ symmetry breaking, we need scalar fields and we take a 27_{H} and a symmetric 351_{H}.

The Yukawa Lagrangian above the E_{6} scale is

$$
\begin{equation*}
\mathcal{L}=2727\left(\mathcal{Y}_{27} 27_{H}+\mathcal{Y}_{351} 351_{H}\right) \tag{1.6}
\end{equation*}
$$

where we choose to work in a basis where the Yukawa matrix \mathcal{Y}_{27} is diagonal. \mathcal{Y}_{351} is symmetric as a result of the E_{6} symmetry. The model is CP invariant at the E_{6} scale, therefore the Yukawa matrices need to be real [8]. We thus have $3+6=9$ Yukawa parameters.

A word on the scalar fields

It is worthwhile to note, that $\overline{27} \times \overline{27}=27+351_{A}+351$, where 351_{A} is an antisymmetric representation which we did not require to fit our model. This tensor product leaves room for creativity: a bound state of two fermions in the 27 can decompose in exactly the scalar representations required to break E_{6} to the SM. A rather appealing composite Higgs GUT scenario. We will not follow this idea in this thesis. We just comment that from the modern geometric perspective of gauge theories, fundamental scalar fields somewhat seem not to fit in very well. To that end we quote from a review by Francois, Lazzarini and Masson:
"In the early 1950s, while Yang and Mills proposed their idea of non-abelian gauge fields (generalization of electromagnetism), Ehresmann developed the notion of connections on
principal fiber bundles, which turns out to be the natural mathematical framework for YangMills field theories [...] Indeed, the \mathcal{C}^{2}-valued scalar field involved in the SSBM is, at the same time, a section of a (suitable) associated vector bundle [...] and a boson, so that it is an "hybrid structure" [...]. Moreover, in this scheme, its scalar potential does not emerge from a natural mathematical construction." (taken from [9], page 2)

Coupled with the immense size of GUT scalar sectors which make it challenging to even write them down, let alone make predictive statements from them, theory could really use some fundamental work on the origin of scalar fields. Looking at the incredible precision we reach in the determination of some Higgs decays, conceptual theory is nowadays threatened to fall behind the impressive progress of phenomenology and experiment. The case of a GUT, which seemingly offers to make the required scalar fields emergent through a bound state of 'the fermion' present in the theory sounds certainly appealing. Such attempts have been followed in the past, e.g. [10], albeit with little success as a realistic theory. Here we just write down the Yukawa Lagrangian with the side note that the scalar fields may or may not originate from a fermionic bound state, and then focus on working out the phenomenological consequences of the setup.

1.2.1. Fermion Fields

We start at the E_{6} scale with three copies of a fermion field in the 27 .
All our fermion fields come from the 27 of E_{6}, which is the fundamental representation.

Figure 1.1.: Sketch of the spectrum of our model.

The 27 decomposes under $S O(10)$ into a 16 , a 10 and a 1 of $S O(10)$ (see sketch in Figure 1.1, which contains the takeaway message of this subsection). The Standard Model fermion fields (plus a sterile neutrino w.r.t. the SM) are entirely contained in the 16 of $S O(10)$, while the 10 of $S O(10)$ gives rise to new exotic fermions. We give a detailed list of the fermion fields and their representations in Table 1.1 (We normalized the SM $U(1)$ hypercharge in a way that it represents the average electric charge of the multiplet)

E_{6}	$S O(10) \times U(1)_{S O(10)}$	$S U(5) \times U(1)_{S U(5)}$	$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$	Label
27	16_{1}	10_{-1}	$(3,2)_{1 / 6}+(\overline{3}, 1)_{-2 / 3}+(1,1)_{1}$	$Q_{L}+u_{R}^{c}+e_{R}^{c}$
27	16_{1}	$\overline{5}_{3}$	$(1,2)_{-1 / 2}+(\overline{3}, 1)_{1 / 3}$	$\ell_{L}+d_{R}^{c}$
27	16_{1}	1_{-5}	$(1,1)_{0}$	ν_{R}^{c}
27	10_{-2}	5_{2}	$(1,2)_{1 / 2}+(3,1)_{-1 / 3}$	$L_{R}^{c}+D_{L}$
27	10_{-2}	$\overline{5}_{-2}$	$(1,2)_{-1 / 2}+(\overline{3}, 1)_{1 / 3}$	$L_{L}+D_{R}^{c}$
27	1_{4}	1_{0}	$(1,1)_{0}$	s

Table 1.1.: The fermion content of our model. $U(1)$ charges are written as indices.
The superscript c denotes the charge conjugate which accounts for conjugates in the representation and flipping the sign of the $U(1)$ charges. It also flips the chirality of a field, thus, since it only appears on right handed fields, we only deal with left handed fields here. The label ν_{R}^{c} is at this point merely a name. It is a SM singlet and has no relation to chirality but we introduce the label here to point at its later use as partner of the SM left handed neutrino ν_{L}.

The content of the $S U(2)$ doublets is $Q_{L}=\left(u_{L}, d_{L}\right), \ell_{L}=\left(\nu_{L}, e_{L}\right), L_{L}=\left(N_{L}, E_{L}\right)$ and $L_{R}^{c}=\left(E_{R}^{c}, N_{R}^{c}\right)$. Note the flip in the L_{R}^{c} multiplet compared to L_{L}, which is due them being charge conjugates. SM fields follow the usual notation, the capital letters (except for the Q_{L} which is the SM left handed quark doublet) denote the exotic vectorlike fermions, where the names are given with respect to their resemblance to the quantum numbers of the respective SM fields.

1.2.2. GUT Breaking Scalar Fields

To find the VEVs which we can use to break the GUT groups to the SM, we work out the scalar fields, which are singlets under the Standard Model gauge group. The relevant scalar fields are (see Appendix A.1.1 for details) given in Table 1.2.

E_{6}	$S O(10) \times U(1)_{S O(10)}$	$S U(5) \times U(1)_{S U(5)}$	$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$	Label
27	1_{4}	1_{0}	$(1,1)_{0}$	$\phi_{27 ; 1 ; 1}$
351	1_{-8}	1_{0}	$(1,1)_{0}$	$\phi_{351 ; 1 ; 1}$
27	16_{1}	1_{-5}	$(1,1)_{0}$	$\phi_{27 ; 16 ; 1}$
351	$\overline{16}_{-5}$	1_{5}	$(1,1)_{0}$	$\phi_{351 ; \overline{16} ;}$
351	126_{-2}	1_{10}	$(1,1)_{0}$	$\phi_{351 ; \overline{126} 1}$
351	54_{4}	24_{0}	$(1,1)_{0}$	$\phi_{351 ; 54 ; 24}$
351	144_{1}	24_{-5}	$(1,1)_{0}$	$\phi_{351 ; 144 ; 24}$

Table 1.2.: The SM singlet scalar fields and the progression of their representations through our breaking chain. These fields can be used to break the GUT groups while leaving the SM intact.

The labels show the representations these fields live in in order to show which symmetry groups are broken upon giving them a nonzero VEV. We have omitted the SM gauge group
in the label since they all are singlets and leave the SM gauge group intact. For the SM breaking scalar fields, we will use a different notation.

Using the above defined labels for fermions and GUT breaking scalars, the Yukawa Lagrangian which includes their interactions is given by

$$
\begin{align*}
\mathcal{L}_{\mathcal{G}_{S M}}= & \mathcal{Y}_{27}\left(\ell_{L} L_{R}^{c} \phi_{27 ; 16 ; 1}+D_{L} d_{R}^{c} \phi_{27 ; 16 ; 1}+L_{L} L_{R}^{c} \phi_{27 ; 1 ; 1}+D_{L} D_{R}^{c} \phi_{27 ; 1 ; 1}\right) \\
& \mathcal{Y}_{351^{\prime}}\left(\ell_{L} L_{R}^{c} \phi_{351 ; 144 ; 24}+D_{L} d_{R}^{c} \phi_{351 ; 144 ; 24}+\nu_{R}^{c} \nu_{R}^{c} \phi_{351 ; \overline{126 ; 1}}\right. \\
& \left.+s \nu_{R}^{c} \phi_{351 ; 16 ; 1}+L_{L} L_{R}^{c} \phi_{351 ; 54 ; 24}+D_{L} D_{R}^{c} \phi_{351 ; 54 ; 24}+\text { ss } \phi_{351 ; 1 ; 1}\right) \tag{1.7}
\end{align*}
$$

We show the explicit decomposition of the Yukawa terms in Appendix A.1.1. Mind that this is the SM language before EWSB, thus the left handed SM fields are still $S U(2)$ doublets ℓ_{L} (and Q_{L} although not appearing here), as are the (left and right) exotic leptons L_{L} and L_{R}^{c}.

We denote the VEVs of these fields $\left\langle\phi_{\left(E_{6} ; S O(10) ; S U(5)\right)}\right\rangle$ by

$$
\begin{align*}
\left\langle\phi_{(27 ; 1 ; 1)}\right\rangle & \equiv v_{6,1} \\
\left\langle\phi_{(351 ; ; 1 ; 1)}\right\rangle & \equiv v_{6,2} \\
\left\langle\phi_{(27 ; 16 ; 1)}\right\rangle & \equiv v_{10,1} \\
\left\langle\phi_{(351 ; \overline{16} ; 1)}\right\rangle & \equiv v_{10,2} \\
\left\langle\phi_{(351 ; 126 ; 1)}\right\rangle & \equiv v_{10,3} \\
\left\langle\phi_{(351 ; 54 ; 24)}\right\rangle & \equiv v_{5,1} \\
\left\langle\phi_{(351 ; 144 ; 24)}\right\rangle & \equiv v_{5,2} \tag{1.8}
\end{align*}
$$

This encodes the important information, that is down to which group the VEV will break the symmetry.

We so far ignored the Clebsch-Gordan coefficients since we were interested only in the general structure. When we want to consider the mass matrices, we need to include them however and do so in the next step. We express the scalar fields through the respective VEVs and we will also expand the SM $S U(2)$ doublets to explicitly show the form of the Lagrangian after EWSB

$$
\begin{align*}
\mathcal{L}_{\mathcal{G}_{S M}}= & \mathcal{Y}_{27}\left[\left(D_{L} D_{R}^{c}+E_{L} E_{R}^{c}+N_{L} N_{R}^{c}\right) v_{6,1}+\left(D_{L} d_{R}^{c}+e_{L} E_{R}^{c}+\nu_{L} N_{R}^{c}\right) v_{10,1}\right] \\
& \mathcal{Y}_{351^{\prime}}\left[s s v_{6,2}+s \nu_{R}^{c} v_{10,2}+\nu_{R}^{c} \nu_{R}^{c} v_{10,3}\right. \\
& \left.+\left(D_{L} D_{R}^{c}-\frac{3}{2} E_{L} E_{R}^{c}-\frac{3}{2} N_{L} N_{R}^{c}\right) v_{5,1}+\left(D_{L} d_{R}^{c}-\frac{3}{2} e_{L} E_{R}^{c}-\frac{3}{2} \nu_{L} N_{R}^{c}\right) v_{5,2}\right] \tag{1.9}
\end{align*}
$$

1.2.3. Higgs Fields

By Higgs Fields we denote the scalar fields, which can do the Standard Model symmetry breaking, that is break the electroweak symmetry in the standard way to the electromagnetic $U(1)$. From the representations $144, \overline{126}$ and 10 of $S O(10)$ we get via $\overline{45}$ and $\overline{5}$ of $S U(5)$ scalar fields that transform under the Standard Model symmetry group as $(1,2)_{-1 / 2}$ (we normalized the charge to the average electric charge of the multiplet, meaning we divided the Slansky convention [11] by 6).

E_{6}	$S O(10) \times U(1)_{S O(10)}$	$S U(5) \times U(1)_{S U(5)}$	$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$	Label
27	10_{-2}	5_{2}	$(1,2)_{1 / 2}$	$H_{27 ; 10 ; 5}^{u}$
351	10_{-2}	5_{2}	$(1,2)_{1 / 2}$	$H_{351 ; 10 ; 5}^{u}$
351	$\overline{16}_{-5}$	5_{-3}	$(1,2)_{1 / 2}$	$H_{351 ; \overline{16} ; 5}^{u}$
351	$\overline{126}_{-2}$	5_{2}	$(1,2)_{1 / 2}$	$H_{351 ; \overline{126} ; 5}^{u}$
351	144_{1}	5_{7}	$(1,2)_{1 / 2}$	$H_{351 ; 144 ; 5}^{u}$

Table 1.3.: SM Higgs fields with hypercharge $+1 / 2$. These can be used to generate EW mass terms e.g. for up type quarks and neutrinos.

The up type Yukawa Lagrangian is thus

$$
\begin{align*}
\mathcal{L}_{Y u k, S M, u}= & \mathcal{Y}_{27}\left(Q_{L} u_{R}^{c}+\ell_{L} \nu_{R}^{c}+L_{L} s\right) H_{27 ; 10 ; 5}^{u} \\
+ & \mathcal{Y}_{351}\left[\left(Q_{L} u_{R}^{c}+\ell_{L} \nu_{R}^{c}+L_{L} s\right)\left(H_{351 ; 10 ; 5}^{u}+H_{351 ; \overline{126} ; 5}^{u}\right)\right. \\
& \left.+L_{L} \nu_{R}^{c} H_{351 ; 144 ; 5}^{u}+\ell_{L} s H_{351 ; \overline{16 ; 5}}^{u}\right] \tag{1.10}
\end{align*}
$$

Where we colored the Higgs fields that can give masses to the SM up quarks.
We denote the VEVs of these Higgs fields in the following way

$$
\begin{align*}
\left\langle H_{27 ; 10 ; 5}^{u}\right\rangle & \equiv v_{u, 1} \\
\left\langle H_{351 ; 10 ; 5}^{u}\right\rangle & \equiv v_{u, 2} \\
\left\langle H_{351 ; \overline{16} ; 5}^{u}\right\rangle & \equiv v_{u, 3} \\
\left\langle H_{351 ; \overline{126} ; 5}^{u}\right\rangle & \equiv v_{u, 4} \\
\left\langle H_{351 ; 144 ; 5}^{u}\right\rangle & \equiv v_{u, 5} \tag{1.11}
\end{align*}
$$

Turning to the down type Higgs fields, we have
The down type Yukawa Lagrangian is thus

$$
\begin{align*}
\mathcal{L}_{Y u k, S M, d}= & \mathcal{Y}_{27}\left[\left(L_{R}^{c} \nu_{R}^{c}+L_{L} e_{R}^{c}+Q_{L} D_{R}^{c}\right) H_{27 ; 16 ; \overline{5}}^{d}+\left(Q_{L} d_{R}^{c}+\ell_{L} e_{R}^{c}+s L_{R}^{c}\right) H_{27 ; 10 ; \overline{5}}^{d}\right] \\
+ & \mathcal{Y}_{351}\left[\left(Q_{L} d_{R}^{c}+\ell_{L} e_{R}^{c}+s L_{R}^{c}\right)\left(H_{351 ; 10 ; 5}^{d}+H_{351 ; 126 ; 45}^{d}\right)\right. \\
& \left.+\left(L_{R}^{c} \nu_{R}^{c}+L_{L} e_{R}^{c}+Q_{L} D_{R}^{c}\right)\left(H_{351 ; 144 ; 45}^{d}+H_{351 ; 144 ; \overline{5}}^{d}\right)\right] \tag{1.12}
\end{align*}
$$

where we again colored the Higgs fields responsible for down quark mass generation.

E_{6}	$S O(10) \times U(1)_{S O(10)}$	$S U(5) \times U(1)_{S U(5)}$	$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}$	Label
27	10_{-2}	$\overline{5}_{-2}$	$(1,2)_{-1 / 2}$	$H_{27 ; 10 ; \overline{5}}^{d}$
27	16_{1}	$\overline{5}_{3}$	$(1,2)_{-1 / 2}$	$H_{27 ; 16 ; \overline{5}}^{d}$
351	10_{-2}	$\overline{5}_{-2}$	$(1,2)_{-1 / 2}$	$H_{351 ; 10 ; \overline{5}}^{d}$
351	$\overline{126}_{-2}$	$\overline{45}_{-2}$	$(1,2)_{-1 / 2}$	$H_{351 ; 126 ; \overline{45}}^{d}$
351	144_{1}	$\overline{45}_{3}$	$(1,2)_{-1 / 2}$	$H_{351 ; 144 ; \overline{45}}^{d}$
351	144_{1}	$\overline{5}_{3}$	$(1,2)_{-1 / 2}$	$H_{351 ; 144 ; \overline{5}}^{d}$

Table 1.4.: SM Higgs fields with hypercharge $-1 / 2$. These can be used to generate EW mass terms e.g. for down type quarks and electrons.

Again we denote the VEVs of these fields by

$$
\begin{align*}
\left\langle H_{27 ; 10 ; \overline{5}}^{d}\right\rangle & \equiv v_{d, 1} \\
\left\langle H_{27 ; 16 ; \overline{5}}^{d}\right\rangle & \equiv v_{d, 2} \\
\left\langle H_{351 ; 10 ; \overline{5}}^{d}\right\rangle & \equiv v_{d, 3} \\
\left\langle H_{351 ; \overline{126 ; \overline{45}}}^{d}\right\rangle & \equiv v_{d, 4} \\
\left\langle H_{351 ; 144 ; \overline{5}}^{d}\right\rangle & \equiv v_{d, 5} \\
\left\langle H_{351 ; 144 ; \overline{55}}^{d}\right\rangle & \equiv v_{d, 6} \tag{1.1}
\end{align*}
$$

1.2.4. First Barr criterion: Complex VEVs

The full Yukawa Lagrangian responsible for the mass generation looks like

$$
\begin{align*}
\mathcal{L}_{Y u k, \text { mass }}= & \mathcal{Y}_{27}\left[\left(D_{L} D_{R}^{c}+E_{L} E_{R}^{c}+N_{L} N_{R}^{c}\right) v_{6,1}+\left(D_{L} d_{R}^{c}+e_{L} E_{R}^{c}+\nu_{L} N_{R}^{c}\right) v_{10,1}\right] \\
& +\mathcal{Y}_{351^{\prime}}\left[s s v_{6,2}+s \nu_{R}^{c} v_{10,2}+\nu_{R}^{c} \nu_{R}^{c} v_{10,3}\right. \\
& \left.+\left(D_{L} D_{R}^{c}-\frac{3}{2} E_{L} E_{R}^{c}-\frac{3}{2} N_{L} N_{R}^{c}\right) v_{5,1}+\left(D_{L} d_{R}^{c}-\frac{3}{2} e_{L} E_{R}^{c}-\frac{3}{2} \nu_{L} N_{R}^{c}\right) v_{5,2}\right] \\
& +\mathcal{Y}_{27}\left[u_{L} u_{R}^{c}+\nu_{L} \nu_{R}^{c}+N_{L} s\right] v_{u, 1} \\
& +\mathcal{Y}_{351}\left[\left(u_{L} u_{R}^{c}-3 \nu_{L} \nu_{R}^{c}-3 N_{L} s\right)\left(v_{u, 2}+v_{u, 4}\right)+N_{L} \nu_{R}^{c} v_{u, 5}+\nu_{L} s v_{u, 3}\right] \\
& +\mathcal{Y}_{27}\left[\left(N_{R}^{c} \nu_{R}^{c}+E_{L} e_{R}^{c}+d_{L} D_{R}^{c}\right) v_{d, 2}+\left(d_{L} d_{R}^{c}+e_{L} e_{R}^{c}+s N_{R}^{c}\right) v_{d, 1}\right] \\
& +\mathcal{Y}_{351}\left[\left(d_{L} d_{R}^{c}-3 e_{L} e_{R}^{c}-3 s N_{R}^{c}\right)\left(v_{d, 3}+v_{d, 4}\right)+\left(N_{R}^{c} \nu_{R}^{c}+E_{L} e_{R}^{c}+d_{L} D_{R}^{c}\right)\left(v_{d, 5}+v_{d, 6}\right)\right] \tag{1.14}
\end{align*}
$$

We recognize the GUT breaking part in the first three lines and the SM breaking part in the remaining four lines. So far, we have not specified which scalar fields acquire a complex VEV. To this end, we need to employ the first Barr criterion, which tells us that only VEVs which mix light and heavy fields may become complex, all others must be real.

We look at the Yukawa Lagrangian before electroweak symmetry breaking, which consists of the first three lines of Equation (1.14) with the $S U(2)_{L}$ doublets not disassembled. It is given by

$$
\begin{align*}
\mathcal{L}_{Y u k, \text { noEWSB }}= & \left(\mathcal{Y}_{27} v_{10,1}+\mathcal{Y}_{351} v_{5,2}\right) D_{L} d_{R}^{c}+\left(\mathcal{Y}_{27} v_{6,1}+\mathcal{Y}_{351} v_{5,1}\right) D_{L} D_{R}^{c} \\
& +\left(\mathcal{Y}_{27} v_{10,1}-\frac{3}{2} \mathcal{Y}_{351} v_{5,2}\right) \ell_{L} L_{R}^{c}+\left(\mathcal{Y}_{27} v_{6,1}-\frac{3}{2} \mathcal{Y}_{351} v_{5,1}\right) L_{L} L_{R}^{c} \\
& +\mathcal{Y}_{351} v_{6,2} s s+\mathcal{Y}_{351} v_{10,2} s \nu_{R}^{c}+\mathcal{Y}_{351} v_{10,3} \nu_{R}^{c} \nu_{R}^{c} \tag{1.15}
\end{align*}
$$

The first line is the down quark sector, the second line the lepton sector and the third line a bunch of neutrino exclusive terms. The first Barr criterion tells us, that only $v_{10,1}$ and $v_{5,2}$ may be complex. Since actually only their difference is required to be complex, it is sufficient to have $v_{5,2}$ complex while $v_{10,1}$ remains real.

1.2.5. Second Barr Criterion: Electroweak Symmetry Breaking

The second Barr criterion says, that in order to get $\operatorname{ArgDet}\left(M_{u} M_{d}\right)=0$ at tree level, we must not allow EWSB scale VEVs for scalar fields, which mix SM and exotic quarks. These VEVs are colored red in the full Yukawa Lagrangian (1.14). This means

$$
\begin{equation*}
v_{d, 2}=0 \quad v_{d, 5}=0 \quad v_{d, 6}=0 \tag{1.16}
\end{equation*}
$$

Furthermore, since $v_{d, 3}+v_{d, 4}$ and $v_{u, 2}+v_{u, 4}$ only appear in their respective sum, we can just set $v_{u, 2}=v_{d, 3}=0$ without loss of generality. The Yukawa Lagrangian is then

$$
\begin{equation*}
\mathcal{L}_{Y u k, \mathrm{full}}=\mathcal{L}_{Y u k, \mathrm{u}}+\mathcal{L}_{Y u k, \mathrm{~d}}+\mathcal{L}_{Y u k, \mathrm{e}}+\mathcal{L}_{Y u k, \nu} \tag{1.17}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{L}_{Y u k, \mathrm{u}}=\left(\mathcal{Y}_{27} v_{u, 1}+\mathcal{Y}_{351} v_{u, 4}\right) u_{L} u_{R}^{c} \tag{1.18}
\end{equation*}
$$

gives mass to the up quarks. There are no exotic fields affecting this sector. The term

$$
\begin{align*}
\mathcal{L}_{Y u k, \mathrm{~d}}= & \left(\mathcal{Y}_{27} v_{d, 1}+\mathcal{Y}_{351} v_{d, 4}\right) d_{L} d_{R}^{c}+\left(\mathcal{Y}_{27} v_{10,1}+\mathcal{Y}_{351} v_{5,2}\right) D_{L} d_{R}^{c} \\
& +\left(\mathcal{Y}_{27} v_{6,1}+\mathcal{Y}_{351} v_{5,1}\right) D_{L} D_{R}^{c} \tag{1.19}
\end{align*}
$$

gives masses to the down quarks and exotic down quarks and will be the part of the Lagrangian responsible for CKM CP violation. We will cover this in Section 1.3 in great detail. The term

$$
\begin{align*}
\mathcal{L}_{Y u k, \mathrm{e}}= & \left(\mathcal{Y}_{27} v_{d, 1}-3 \mathcal{Y}_{351} v_{d, 4}\right) e_{L} e_{R}^{c}+\left(\mathcal{Y}_{27} v_{10,1}-\frac{3}{2} \mathcal{Y}_{351} v_{5,2}\right) e_{L} E_{R}^{c} \\
& +\left(\mathcal{Y}_{27} v_{6,1}-\frac{3}{2} \mathcal{Y}_{351} v_{5,1}\right) E_{L} E_{R}^{c} \tag{1.20}
\end{align*}
$$

is essentially the leptonic counterpart of $\mathcal{L}_{Y u k, \mathrm{~d}}$, yielding SM and exotic electron masses. Together with the respective $S U(2)_{L}$ counterparts from the neutrino sector, these terms will give rise to CP violation in the PMNS matrix. We will cover this in Section 1.4.

The last term

$$
\begin{align*}
\mathcal{L}_{Y u k, \nu} & =\mathcal{Y}_{351} v_{6,2} s s+\mathcal{Y}_{351} v_{10,2} s \nu_{R}^{c}+\mathcal{Y}_{351} v_{10,3} \nu_{R}^{c} \nu_{R}^{c} \\
& +\left(\mathcal{Y}_{27} v_{10,1}-\frac{3}{2} \mathcal{Y}_{351} v_{5,2}\right) \nu_{L} N_{R}^{c}+\left(\mathcal{Y}_{27} v_{6,1}-\frac{3}{2} \mathcal{Y}_{351} v_{5,1}\right) N_{L} N_{R}^{c} \\
& +\left(\mathcal{Y}_{27} v_{u, 1}-3 \mathcal{Y}_{351} v_{u, 4}\right)\left(\nu_{L} \nu_{R}^{c}+N_{L} s\right)+\mathcal{Y}_{351} v_{u, 3} \nu_{L} s+\mathcal{Y}_{351} v_{u, 5} N_{L} \nu_{R}^{c} \\
& +\left(\mathcal{Y}_{27} v_{d, 1}-3 \mathcal{Y}_{351} v_{d, 4}\right) s N_{R}^{c} \tag{1.21}
\end{align*}
$$

contains the Neutrino sector of our model, which we will also cover in Section 1.4, especially in Section 1.4.2, where we discuss the emergence of the low energy neutrino masses.

1.2.6. Mass Matrices

We define new labels for the mass terms

$$
\begin{align*}
M_{C} & =\left(\mathcal{Y}_{27} v_{10,1}+\mathcal{Y}_{351} v_{5,2}\right) \\
M_{R} & =\left(\mathcal{Y}_{27} v_{6,1}+\mathcal{Y}_{351} v_{5,1}\right) \\
M_{C 2} & =\left(\mathcal{Y}_{27} v_{10,1}-\frac{3}{2} \mathcal{Y}_{351} v_{5,2}\right) \\
M_{R 2} & =\left(\mathcal{Y}_{27} v_{6,1}-\frac{3}{2} \mathcal{Y}_{351} v_{5,1}\right) \\
M_{s} & =\mathcal{Y}_{351} v_{6,2} \\
M_{s \nu_{R}^{c}} & =\mathcal{Y}_{351} v_{10,2} \\
M_{\nu_{R}^{c}} & =\mathcal{Y}_{351} v_{10,3} \rightarrow 0 \tag{1.22}
\end{align*}
$$

where the indices C and R reflect that the matrix is complex or real, respectively. This notation will turn out to be useful when tracking the complex phase in the low energy regime. The neutrino sector mass matrices $M_{s}, M_{s \nu_{R}^{c}}$ and $M_{\nu_{R}^{c}}$ are real.

We set $v_{10,3}=0$ to reproduce acceptable neutrino masses for the light SM neutrinos. The reason is the following: the s and ν_{R}^{c} enter a seesaw mechanism where a Majorana term
for the ν_{R}^{c} would lead to the lighter mass state becoming heavier. This lighter mass state enters another seesaw with the SM neutrino. To obtain SM neutrino masses within the experimentally acceptable region, its seesaw partner needs to have a Majorana mass of order $\mathcal{O}\left(10^{16} \mathrm{GeV}\right)$. The presence of the $M_{\nu_{R}^{c}}$ Majorana mass, set by a $S O(10)$ scale VEV, will cause the resulting state to become too heavy to fill this role. Switching off $v_{10,3}$ causes this 'effective right handed neutrino' to emerge just at the appropriate scale to produce viable and experimentally testable neutrino masses.

The Yukawa Lagrangian before EWSB becomes pretty compact with this notation

$$
\begin{align*}
\mathcal{L}_{Y u k, \mathrm{noEWSB}} & =M_{C} D_{L} d_{R}^{c}+M_{R} D_{L} D_{R}^{c} \\
& +M_{C 2} \ell_{L} L_{R}^{c}+M_{R 2} L_{L} L_{R}^{c} \\
& +M_{s} s s+M_{s \nu_{R}^{c}} s \nu_{R}^{c} \tag{1.23}
\end{align*}
$$

We also define labels for the EWSB mass terms

$$
\begin{align*}
& m_{u}=\left(\mathcal{Y}_{27} v_{u, 1}+\mathcal{Y}_{351} v_{u, 4}\right) \tag{1.24}\\
& m_{d}=\left(\mathcal{Y}_{27} v_{d, 1}+\mathcal{Y}_{351} v_{d, 4}\right) \tag{1.25}\\
& m_{e}=\left(\mathcal{Y}_{27} v_{d, 1}-3 \mathcal{Y}_{351} v_{d, 4}\right) \tag{1.26}\\
& m_{\nu}=\left(\mathcal{Y}_{27} v_{u, 1}-3 \mathcal{Y}_{351} v_{u, 4}\right) \tag{1.27}
\end{align*}
$$

and write down the electroweak sector of the mass Yukawa Lagrangian so that $\mathcal{L}_{Y u k, \text { full }}=$ $\mathcal{L}_{Y u k, \text { noEWSB }}+\mathcal{L}_{Y u k, \text { EW }}$

$$
\begin{align*}
\mathcal{L}_{Y u k, \mathrm{EW}} & =m_{u} u_{L} u_{R}^{c}+m_{d} d_{L} d_{R}^{c}+m_{e} e_{L} e_{R}^{c} \\
& +m_{\nu}\left(\nu_{L} \nu_{R}^{c}+N_{L} s\right)+\mathcal{Y}_{351} v_{u, 3} \nu_{L} s+\mathcal{Y}_{351} v_{u, 5} N_{L} \nu_{R}^{c}+m_{e} s N_{R}^{c} \tag{1.28}
\end{align*}
$$

which shows in the second line, that we are about to get some interesting neutrino phenomenology in Section 1.4.2.

Next we take a look at the down quark sector and show how the complex VEV translates into a complex CKM matrix.

1.3. Quark Sector

We work in Weyl spinor notation (two components). Note that the charge conjugate of a right chiral spinor is a left chiral spinor: $\psi_{R}^{c} \equiv \epsilon \psi_{R}^{*}$ is a left chiral field, however not to be confused with ψ_{L} ! These are independent fields. We also suppress the spinor metric ϵ in all inner products.
The up Quark sector looks exactly like the normal Standard Model up Quark sector

$$
\begin{equation*}
\mathcal{L}_{\mathrm{u}}=u_{L}^{T} m_{u} u_{R}^{c} \tag{1.29}
\end{equation*}
$$

The down Quark sector contains an additional heavy vectorlike quark $D_{L, R}$

$$
\begin{equation*}
\mathcal{L}_{\mathrm{d}}=d_{L}^{T} m_{d} d_{R}^{c}+D_{L}^{T} M_{C} d_{R}^{c}+D_{L}^{T} M_{R} D_{R}^{c} \tag{1.30}
\end{equation*}
$$

where the mass matrices were given in Section 1.2.6. Recall, that M_{C} is complex, while M_{R} and m_{d} are real. Note that we get exactly the structure for the full mass matrix which we used to demonstrate the Barr criteria in Section 1.1.

Bob's method

Before electroweak symmetry breaking (setting the light masses to zero), in the down quark sector of the Yukawa Lagrangian we have

$$
\begin{equation*}
\mathcal{L}_{\mathrm{d}}=D_{L}^{T} M_{C} d_{R}^{c}+D_{L}^{T} M_{R} D_{R}^{c} \tag{1.31}
\end{equation*}
$$

We make an ansatz with undetermined coefficient matrices a, b, A, B to find the mass eigenstates

$$
\begin{equation*}
d_{R}^{c}=a \cdot \tilde{d}_{R}^{c}+b \cdot \tilde{D}_{R}^{c} \quad \quad D_{R}^{c}=A \cdot \tilde{d}_{R}^{c}+B \cdot \tilde{D}_{R}^{c} \tag{1.32}
\end{equation*}
$$

Inserting this into the kinetic terms

$$
\begin{equation*}
\mathcal{L}_{\text {kin }} \supset d_{R}^{c \dagger} \sigma^{\mu} \partial_{\mu} d_{R}^{c}+D_{R}^{c \dagger} \sigma^{\mu} \partial_{\mu} D_{R}^{c} \tag{1.33}
\end{equation*}
$$

and demanding normalized kinetic terms implies

$$
\begin{gather*}
\tilde{d}_{R}^{c \dagger}\left(a^{\dagger} a+A^{\dagger} A\right) \sigma^{\mu} \partial_{\mu} d_{R}^{c} \stackrel{!}{=} \tilde{d}_{R}^{c \dagger} \sigma^{\mu} \partial_{\mu} d_{R}^{c} \\
\tilde{D}_{R}^{c \dagger}\left(b^{\dagger} b+B^{\dagger} B\right) \sigma^{\mu} \partial_{\mu} D_{R}^{c} \stackrel{!}{=} \tilde{D}_{R}^{c \dagger} \sigma^{\mu} \partial_{\mu} D_{R}^{c} \tag{1.34}
\end{gather*}
$$

This is true and only true, if the "kinetic normalization conditions"

$$
\begin{equation*}
a^{\dagger} a+A^{\dagger} A=1 \quad b^{\dagger} b+B^{\dagger} B=1 \tag{1.35}
\end{equation*}
$$

are fulfilled. We also get two "diagonalization conditions" from demanding that we do not want any leftover mixed terms between the new eigenstates. After all, that was the whole point of introducing them.
One comes from the kinetic terms

$$
\begin{equation*}
\tilde{d}_{R}^{c \dagger}\left(a^{\dagger} b+A^{\dagger} B\right) \sigma^{\mu} \partial_{\mu} D_{R}^{c} \stackrel{!}{=} 0 \tag{1.36}
\end{equation*}
$$

giving

$$
\begin{equation*}
a^{\dagger} b+A^{\dagger} B=0 \tag{1.37}
\end{equation*}
$$

and the other one from the Yukawa terms

$$
\begin{equation*}
D_{L}^{T}\left(M_{C} \cdot a+M_{R} \cdot A\right) \tilde{d}_{R}^{c} \stackrel{!}{=} 0 \tag{1.38}
\end{equation*}
$$

giving

$$
\begin{equation*}
M_{C} \cdot a+M_{R} \cdot A=0 \tag{1.39}
\end{equation*}
$$

We obtain the latter one once we insert the ansatz into the Yukawa Lagrangian (1.31) and demand that all terms mixing D_{L} and d_{R}^{c} vanish. Now we solve Equation (1.39) for A and obtain

$$
\begin{equation*}
A=-Z_{q} \cdot a \quad Z_{q}:=M_{R}^{-1} M_{C} \tag{1.40}
\end{equation*}
$$

We insert A into Equation (1.35) from the kinetic normalization and obtain

$$
\begin{equation*}
a a^{\dagger}=\left(1+Z_{q}^{\dagger} Z_{q}\right)^{-1} \tag{1.41}
\end{equation*}
$$

where the root

$$
\begin{equation*}
a_{q}:=\left[1+Z_{q}^{\dagger} Z_{q}\right]^{-1 / 2} \tag{1.42}
\end{equation*}
$$

is well defined. We added the label q to distinguish it from its counterpart in the lepton sector, which we will turn to in the next section. Note that $a_{q}=a_{q}^{\dagger}$ is hermitian.

When we proceed to electroweak symmetry breaking, we can show that no additional mixing between the left handed fields occurs. Using the same approach as above for the d_{L} and D_{L} fields, we obtain trivial mixing coefficients. From a physical point of view, this can be understood as follows: At the GUT scale, the states d_{R}^{c} and D_{R}^{c} mix to produce mass eigenstates in the Lagrangian. Electroweak symmetry breaking introduces mixing between d_{L} and D_{L}, however, the large hierarchy between the GUT scale and the EWSB scale dictates a suppression of the EWSB effects of this mixing. To see this, introduce the EWSB mixing term with a mass of zero. In this limit, nothing can happen to observables, we just added a term that is zero. Now we can continuously increase the value of the mass, the resulting change in observables needs to be continuously aswell, up to the limit where the EWSB scale and the GUT scale are equal and in this case our approach of rotating first the fields d_{R}^{c} and D_{R}^{c} will be completely altered by the introduction of the d_{L} and D_{L} mixing terms since they are now at the same scale and thus of equal footing. This quick argument makes clear, that the effect of the EWSB induced mixing between d_{L} and D_{L} is suppressed by the scale of the d_{R}^{c}, D_{R}^{c} mixing, the GUT scale. The result that we obtain exactly trivial mixing coefficients when using the same approach in the d_{L}, D_{L} case as we did in the d_{R}^{c}, D_{R}^{c} case is naively suprising. We would expect corrections which are suppressed by the high scale. But recall, that for this approach, we implied unitarity of the CKM matrix, which however is only true up to corrections which in turn are suppressed by the high scale. It is the absence of these corrections, that leads to trivial mixing in the d_{L}, D_{L} case. The fortunate fact, that the d_{L}, D_{L} mixing is introduced only at the EWSB scale is of course a result of the SM being a chiral theory: left handed SM quark fields are $S U(2)_{L}$ doublets and thus cannot mix with the D_{L} fields which are $S U(2)_{L}$ singlets.

Electroweak symmetry breaking generates EW mass terms with the mass matrices m_{u} and m_{d} for the SM quark fields. Inserting the mass eigenstates into the Lagrangian, we get for the SM quark masses

$$
\begin{equation*}
\mathcal{L}_{\text {quarks }, \mathrm{SM}}=\tilde{u}_{L}^{T} m_{u} \tilde{u}_{R}^{c}+\tilde{d}_{L}^{T} \underbrace{m_{d} \cdot a_{q}}_{m_{d}^{\text {eff }}} \tilde{d}_{R}^{c} \tag{1.43}
\end{equation*}
$$

where the effective down quark mass matrix is given by

$$
\begin{equation*}
m_{d}^{\mathrm{eff}}=m_{d} \cdot a_{q} \tag{1.44}
\end{equation*}
$$

Our original motivation was to construct a model where CP is broken spontaneously to produce the observed CP violation in the weak sector of the SM. We see that a_{q} involves the quantities M_{R} and M_{C}, both being of comparable scale and the latter being complex, thus a_{q} in general has a sizable complex phase. At this point, we can explicitly check that the first Barr criterion did its job:

$$
\begin{equation*}
\operatorname{ArgDet}\left(m_{u} m_{d}^{\text {eff }}\right)=\operatorname{Arg}\left(\operatorname{Det}\left(m_{u}\right)\left(\operatorname{Det}\left(m_{d}\right) \operatorname{Det}\left(a_{q}\right)\right)=0\right. \tag{1.45}
\end{equation*}
$$

The last equality follows from m_{u} and m_{d} being real and a_{q} being hermitian, so all three have real determinants. This shows that there is indeed no contribution from the quark mass matrices to $\bar{\theta}$.

1.4. Lepton Sector

In the lepton sector, we follow essentially the same approach as in the quark sector. Here, however, it is not the conjugated right handed singlets which superpose, but the left handed doublets.

We recall the leptonic part of the Yukawa Lagrangian before EWSB from Equation (1.23). Since we want to obtain the correct form of the low energy mass matrices, it is important that we write down the Lagrangian properly. To this end, we choose the LR convention (left handed fields to the left of the mass matrix, right handed conjugate fields to the right). We still suppress the spinor metric in inner products.

$$
\begin{align*}
\mathcal{L}_{Y, \ell} & =\ell_{L}^{T} M_{C 2} L_{R}^{c}+L_{L}^{T} M_{R 2} L_{R}^{c} \\
& +s^{T} M_{s} s+s^{T} M_{s \nu_{R}^{c}} \nu_{R}^{c} \tag{1.46}
\end{align*}
$$

We see that the lepton sector consists of two distinct parts: One part is the mixing between the exotic neutrino fields s and ν_{R}^{c}, while the other part contains the exotic and SM lepton doublets. By decoupling arguments analogous to the quark sector, we can treat these parts separately.

1.4.1. Lepton Doublets

We first turn towards finding the mass eigenstates of the lepton doublet part, the first line of Equation (1.46).

$$
\begin{equation*}
\mathcal{L}_{\text {lep.dbl. }}=\ell_{L}^{T} M_{C 2} L_{R}^{c}+L_{L}^{T} M_{R 2} L_{R}^{c} \tag{1.47}
\end{equation*}
$$

Essentially, we just repeat the same procedure which we used in the quark sector. We make an ansatz for the mass eigenstates

$$
\begin{equation*}
\ell_{L}=a \cdot \tilde{\ell}_{L}+b \cdot \tilde{L}_{L} \quad L_{L}=A \cdot \tilde{\ell}_{L}+B \cdot \tilde{L}_{L} \tag{1.48}
\end{equation*}
$$

Inserting this into the kinetic terms and demanding proper normalization implies the "kinetic normalization conditions"

$$
\begin{equation*}
a^{\dagger} a+A^{\dagger} A=1 \quad b^{\dagger} b+B^{\dagger} B=1 \tag{1.49}
\end{equation*}
$$

and the "kinetic diagonalization condition".

$$
\begin{equation*}
a^{\dagger} b+A^{\dagger} B=0 \tag{1.50}
\end{equation*}
$$

Inserting the ansatz into the Yukawa Lagrangian (1.47) gives the "Yukawa diagonalization condition"

$$
\begin{equation*}
a^{T} \cdot M_{C 2}+A^{T} \cdot M_{R 2}=0 \tag{1.51}
\end{equation*}
$$

We solve this equation for A and obtain

$$
\begin{equation*}
A=-Z_{\ell} \cdot a \quad Z_{\ell}:=\left(M_{R 2}^{-1}\right)^{T} M_{C 2}^{T} \tag{1.52}
\end{equation*}
$$

Note that $M_{R 2}$ and $M_{C 2}$ are symmetric matrices, so we can just drop the transpositions on them. We insert A this into Equation (1.49) from the kinetic normalization and obtain

$$
\begin{equation*}
a a^{\dagger}=\left(1+Z_{\ell}^{\dagger} Z_{\ell}\right)^{-1} \tag{1.53}
\end{equation*}
$$

and subsequently the root, which is hermitian

$$
\begin{equation*}
a_{\ell}:=\left[1+Z_{\ell}^{\dagger} Z_{\ell}\right]^{-1 / 2} \tag{1.54}
\end{equation*}
$$

where we added the subscript ℓ to distinguish it from its counterpart in the quark sector. The state $\tilde{\ell}$, as defined above, is due to (1.50) a massless state, while \tilde{L} is massive at the GUT scale. When we switch on EWSB, the SM Higgs mass generation takes place: The $S U(2)_{L}$ doublets fall apart and its components form Dirac type mass terms with their $S U(2)_{L}$ singlet counterparts. For these light lepton masses we get

$$
\begin{equation*}
\mathcal{L}_{\text {leptons,SM }}=e_{L}^{T} m_{e}^{\text {eff }} e_{R}^{c}+\nu_{L}^{T} m_{\nu}^{\text {eff }} \nu_{R}^{c} \tag{1.55}
\end{equation*}
$$

where

$$
\begin{align*}
m_{\nu}^{\mathrm{eff}} & =a_{\ell}^{T} \cdot m_{\nu} \\
m_{e}^{\mathrm{eff}} & =a_{\ell}^{T} \cdot m_{e} \tag{1.56}
\end{align*}
$$

The masses m_{ν} and m_{e} are generated through EWSB in the Lagrangian. The matrix a_{ℓ} originated in the mixing of the $S U(2)_{L}$ doublets before EWSB, therefore it is the same e_{L} and ν_{L} after EWSB. Note that in the lepton sector, we get a_{ℓ}^{T} from the left because it is the $S U(2)_{L}$ doublets ℓ_{L} and L_{L} which mix. In the quark sector we had a_{q} from the right because there, the $S U(2)_{L}$ singlets d_{R}^{c} and D_{R}^{c} were mixing. It all traces back to the representations of the exotic quarks that emerge through the breakdown of the GUT scales: vectorlike down quark singlets and vectorlike lepton doublets.

1.4.2. Neutrino Sector

The neutrino sector is by far the most involved part of our model. By 'neutrino' we define every field, which is a singlet under $S U(3)_{C} \times U(1)_{E M}$. There are five fields which qualify and each comes in three generations. We will suppress the generations here, but keep in mind that the mass parameters actually are combinations of VEVs and 3×3 Yukawa matrices. We recall these fields

- s, the $S O(10)$ singlet when the 27 of E_{6} breaks to $S O(10)$
- N_{R}^{c}, the neutral part of the exotic conjugated right chiral lepton doublet L_{R}^{c} and
- N_{L}, the neutral part of the exotic left chiral lepton doublet L_{L}, both coming from the 10 of $S O(10)$
- ν_{R}^{c}, the SM singlet coming from the 16 of $S O(10)$. The label stems from it forming a Dirac mass term with ν_{L}.
- ν_{L}, the observed SM neutrino

Before EWSB, the fields residing in $S U(2)_{L}$ doublets cannot mix with the $S U(2)_{L}$ singlets. There is just no way to form a singlet from combining a doublet and a singlet. Recall the Yukawa Lagrangian (1.46) from the previous section

$$
\begin{align*}
\mathcal{L}_{Y, \ell} & =\ell_{L}^{T} M_{C 2} L_{R}^{c}+L_{L}^{T} M_{R 2} L_{R}^{c} \\
& +s^{T} M_{s} s+s^{T} M_{s \nu_{R}^{c}} \nu_{R}^{c} \tag{1.57}
\end{align*}
$$

We dealt with the first line in the last section, deriving its influence on the low energy mass terms of the SM neutrino and the charged lepton. Now we will investigate the second line before $S U(2)_{L}$ is broken. EWSB will introduce terms mixing the fields of both lines, but the large hierarchy between the GUT scale and the EW scale will again allows us to treat these sectors separately.

Seesaw 1

We look at the second line of $\mathcal{L}_{Y, \ell}$, cf. Equation (1.57). What we find is a seesaw scenario

$$
\begin{align*}
\mathcal{L}_{\text {seesaw } 1} & =s^{T} M_{s} s+s^{T} M_{s \nu_{R}^{c}} \nu_{R}^{c} \\
& =\left(\begin{array}{ll}
\nu_{R}^{c T} & s^{T}
\end{array}\right)\left(\begin{array}{cc}
0 & M_{s \nu_{R}^{c}}^{T} \\
M_{s \nu_{R}^{c}} & M_{s}
\end{array}\right)\binom{\nu_{R}^{c}}{s} \tag{1.58}
\end{align*}
$$

Due to the Majorana nature of these states, the construction of the mass matrix involves considering all combination of states. Also the transposed Dirac mass term exists, since
no notion of chirality exists here, despite the misleading label ν_{R}. We diagonalize the mass matrix using a Takagi decomposition [12] to achieve the form

$$
\begin{equation*}
\mathcal{L}_{\text {seesaw } 1}=\left(\tilde{\nu}_{R}^{c}\right)^{T} M_{\text {light }} \tilde{\nu}_{R}^{c}+\tilde{s}^{T} M_{\text {heavy }} \tilde{s} \tag{1.59}
\end{equation*}
$$

and find the new eigenstates parametrized by $\delta \simeq M_{s \nu_{R}^{c}} / M_{s} \ll 1[13]$.
Thus

$$
\begin{align*}
\tilde{\nu}_{R}^{c} & \simeq \nu_{R}^{c}+\delta \cdot s \\
\tilde{s} & \simeq s+\delta \cdot \nu_{R}^{c} \tag{1.60}
\end{align*}
$$

and we can simply ignore the mixing of states. The new masses are given by [14] [15]

$$
\begin{align*}
M_{l i g h t} & \simeq-M_{s \nu_{R}^{c}} M_{s}^{-1} M_{s \nu_{R}^{c}}^{T} \\
M_{\text {heavy }} & \simeq M_{s} \tag{1.61}
\end{align*}
$$

where again corrections of $\mathcal{O}(\delta)$ are involved. Neglecting $\delta \ll 1$, we find to a very good approximation

$$
\begin{equation*}
\mathcal{L}_{\text {seesaw } 1}=\nu_{R}^{c T}\left(-M_{s \nu_{R}^{c}} M_{s}^{-1} M_{s \nu_{R}^{c}}^{T}\right) \nu_{R}^{c}+s^{T} M_{s} s \tag{1.62}
\end{equation*}
$$

After the seesaw, we have a heavy state s and a light state ν_{R}^{c}. Funny as it may sound, we here refer to $\mathcal{O}\left(10^{13} \mathrm{GeV}\right)$ as 'light'.

Seesaw 2

After EWSB, a Dirac type mass term is generated for ν_{L} and ν_{R}^{c}. Recall from Section 1.4.1, that we constructed a massless state $\tilde{\nu}_{L}$ (the neutral part of the doublet $\tilde{\ell}$). Once we express ν_{L} through $\tilde{\nu}_{L}$ and \tilde{N}_{L}, we obtain Dirac mass terms between $\tilde{\nu}_{L}$ and ν_{R}^{c} and between \tilde{N}_{L} and ν_{R}^{c}. We can ignore the latter since the involved states both come with GUT scale masses and this mixing term is of the electroweak order and subsequently will lead to highly suppressed corrections to the states and their masses. The former is the interesting term which we shall consider now. We recall the masses for the states $\tilde{\nu_{L}}$ and ν_{R}^{c} by writing down the relevant terms of the Lagrangian.

$$
\begin{equation*}
\mathcal{L}_{\text {seesaw 2 }}=\tilde{\nu}_{L}^{T} a_{\ell}^{T} m_{\nu} \nu_{R}^{c}+\left(\nu_{R}^{c}\right)^{T}\left(-M_{s \nu_{R}^{c}} M_{s}^{-1} M_{s \nu_{R}^{c}}^{T}\right) \nu_{R}^{c} \tag{1.63}
\end{equation*}
$$

Here, a_{ℓ} was the mixing coefficient between ν_{L} and $\tilde{\nu}_{L}$, derived in Section 1.4.1, m_{ν} is the Dirac mass matrix containing electroweak VEVs, and the mass matrix between the ν_{R}^{c} states resulted from the $s \nu_{R}^{c}$ seesaw which was described above.

From the section above we know, that for largely separate scales, the seesaw mechanism changes the states only in a negligible fashion. We can thus safely apply the seesaw mechanism between $\tilde{\nu}_{L}$ and ν_{R}^{c} without having to worry about the possibility of large mixing induced elsewhere by changing the states in this part of the Lagrangian. Note that we could also apply the seesaw between ν_{L} and ν_{R} first and afterwards calculate the mixing between ν_{L} and N_{L} with the effective approach of Section 1.4.1. The result is the same.

Applying the seesaw formula to Equation (1.63), we obtain the following Lagrangian

$$
\begin{align*}
\mathcal{L}_{\text {seesaw 2 }} & =\tilde{\nu}_{L}^{T}\left(-\left(a_{\ell}^{T} m_{\nu}\right)\left(-M_{s \nu_{R}^{c}} M_{s}^{-1} M_{s \nu_{R}^{c}}^{T}\right)^{-1}\left(a_{\ell}^{T} m_{\nu}\right)^{T}\right) \tilde{\nu}_{L}+\left(\nu_{R}^{c}\right)^{T}\left(-M_{s \nu_{R}^{c}} M_{s}^{-1} M_{s \nu_{R}^{c}}^{T}\right) \nu_{R}^{c} \\
& =\tilde{\nu}_{L}^{T} m_{\nu}^{S M} \tilde{\nu}_{L}+\left(\nu_{R}^{c}\right)^{T}\left(-M_{s \nu_{R}^{c}} M_{s}^{-1} M_{s \nu_{R}^{c}}^{T}\right) \nu_{R}^{c} \tag{1.64}
\end{align*}
$$

where

$$
\begin{equation*}
m_{\nu}^{\mathrm{SM}}=a_{\ell}^{T} m_{\nu}\left(M_{s \nu_{R}^{c}} M_{s}^{-1} M_{s \nu_{R}^{c}}^{T}\right)^{-1} m_{\nu}^{T} a_{\ell} \tag{1.65}
\end{equation*}
$$

is the Majorana mass matrix for the left handed Standard Model neutrino. Here we can clearly see how the GUT scales affect the low energy neutrino mass: Recall from Section 1.2.6, that $M_{s \nu_{R}^{c}}^{c}$ contains an $S O(10) \mathrm{VEV}, M_{s}$ an $E_{6} \mathrm{VEV}$ and m_{ν} an electroweak VEV. Moreover, a_{ℓ} is $\mathcal{O}(1)$ and complex, thus causing the SM neutrino mass matrix to become complex. Diagonalizing this effective SM mass matrix via a singular value decomposition gives predictions for SM neutrino masses, as well as a generally CP violating PMNS matrix.

To obtain realistic neutrino masses, the seesaw scale for ν_{L} and ν_{R}^{c} needs to be of $\mathcal{O}\left(10^{12}-\right.$ 10^{14}) [16]. Since the ν_{R}^{c} mass term is generated through another seesaw mechanism with the heavy $S O(10)$ singlet s, we can determine the scale of the mass parameter of s to be $\mathcal{O}\left(10^{17}-10^{19}\right)$ when taking into account that the GUT scale is required to be $\gtrsim 4 \cdot 10^{15}$ by current proton decay bounds [17].

We will turn to the predictions in the next section.

1.5. Results

The model we presented here differs from the final version in our paper [2] in a few aspects. The E_{6} VEV which enters in the mass term of the heavy $S O(10)$ singlet s has to be just below the Planck scale, as argued in Section 1.4.2. To avoid this, we broke $S O(10)$ in the paper directly to the Standard Model through an adjoint scalar representation, which allows us to break the accompanying $U(1)_{5}$ factor at a lower scale than the $S O(10)$ scale. This serves to change the part in the Lagrangian that contains the high scale seesaw between s and ν_{R}^{c} from a seesaw scenario to Majorana mass terms by neglecting mixing terms proportional to the $U(1)_{5} \mathrm{VEV}$. In this way, the E_{6} Majorana mass VEV for s can be lowered comfortably below the Planck scale without impacting the low energy neutrino phenomenology through seesaw dependence. Personally, I prefer the version of the model presented in this thesis. A VEV just below the Planck scale is merely an input parameter of the effective theory. We do not speculate about Transplanckian dynamics and therefore a VEV just below the Planck scale is no conceptual problem. It is only a matter of personal philosophy.

The fitting results and thus the low energy predictions are unaffected by this. In fact, we performed the entire fit in the model we presented in this thesis before we altered the model to the version presented in the paper.

1.5.1. Fitting the Standard Model Observables

We take a moment to count the degrees of freedom we have in our model. In the beginning of this section we noted that we have $3+6$ parameters coming from the diagonal \mathcal{Y}_{27} and the symmetric \mathcal{Y}_{351}, respectively. We started with 18 VEVs, where 7 were SM singlet GUT breaking VEVs, 5 were 'up-type' Higgs and 6 were 'down-type' Higgs VEVs. The first Barr criterion told us that only $v_{5,2}$ and $v_{10,1}$ may become complex and since we only needed a relative complex phase between them, we could leave $v_{10,1}$ to be real so that $v_{5,2}$ is the only complex VEV of our model, adding only 1 complex phase to the number of parameters. The second Barr criterion dictated that three of the Higgs VEVs need to be zero not to generate a possibly large $\bar{\theta}$ through a complex determinant of the quark mass matrix. Additionally, we could discard $v_{d, 3}$ and $v_{u, 2}$ because they appeared exclusively in combination with $v_{d, 4}$ and $v_{u, 4}$, respectively, and therefore do not add anything new. Finally we set the VEV $v_{10,3}$ generating a Majorana mass for ν_{R}^{c} to zero, which we require to make the seesaw structure of the neutrino sector work.

Counting the VEVs we retained, we find 11 real numbers: $v_{5,1},\left|v_{5,2}\right|, v_{10,1}, v_{10,2}, v_{6,1}, v_{6,2}$, $v_{u, 1}, v_{u, 4}, v_{d, 1}, v_{d, 4}$ and $\operatorname{Arg} v_{5,2}$.

This gives us in total $9+11=20$ real parameters. We can eliminate two more parameters by realizing that the Yukawa matrices and the VEVs always come together. We can thus absorb two VEVs into the definition of the Yukawa matrices. As a consequence of that, we find that only VEV ratios are important for the fit. Upon close inspection, we find that two more VEVs turn out to be unimportant in the fit. We carried out this reparametrization explicitly in our paper [2] and give explicit numbers for our best fit point. We will forbear from doing so in this thesis because it is not very illuminating. The structure of our model is

Fit result at the electroweak scale $\mu=M_{Z}$					
	fit	pull		fit	pull
$m_{d}(\mathrm{MeV})$	3.44	-2.4	$\Delta_{12}\left(\mathrm{eV}^{2}\right)$	7.39×10^{-5}	0.63
$m_{s}(\mathrm{MeV})$	50.4	1.4	$\Delta_{13}\left(\mathrm{eV}^{2}\right)$	-0.76×10^{-3}	-0.19
$m_{b}(\mathrm{GeV})$	2.85	0.27	$\sin \theta_{12}^{q}$	0.225	0.56
$m_{u}(\mathrm{MeV})$	1.32	-0.08	$\sin \theta_{23}^{q}$	0.0414	0.1
$m_{c}(\mathrm{GeV})$	0.63	-0.07	$\sin \theta_{13}^{q}$	0.0035	1.1
$m_{t}(\mathrm{GeV})$	171.58	0.08	$\sin ^{2} \theta_{12}^{l}$	0.302	0.37
$m_{e}(\mathrm{MeV})$	0.486	0.15	$\sin ^{2} \theta_{23}^{l}$	0.405	1.5
$m_{\mu}(\mathrm{MeV})$	102.76	-0.61	$\sin ^{2} \theta_{13}^{l}$	0.022	-0.26
$m_{\tau}(\mathrm{GeV})$	1.746	-0.04	δ_{CKM}	1.13	1.5

Table 1.5.: Result of the fitting procedure, as described in the text, as appeared in our paper [2].
much clearer in the way we presented it in the previous sections and the reparametrization is only a technical detail required for the numerical fitting procedure. The fit therefore contains 16 parameters which have to match 18 Standard Model observables.

As a measure of error, we gathered statistics on repeated fits where we allowed a total χ^{2} of $\lesssim 160$, corresponding to $\chi^{2} /$ dof $\lesssim 10$. This gives us a measure of sensitivity of the best fit point on the input variables. This range then expresses itself as error range for our predictions in the Neutrino observables. The statement is: Should one of the predicted observables be measured outside of the quoted range in Table 1.7 , the χ^{2} per degree of freedom of our fit will rise above $\chi^{2} /$ dof >10.

We performed the fit by choosing random input variables at the GUT scale and then evolved them to the electroweak scale by solving the Yukawa RGE numerically using REAP [18]. As measure of quality for our fit is given by

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{n}\left(\frac{\mathcal{O}_{i}^{\exp }-\mathcal{O}_{i}^{\mathrm{fit}}}{\sigma_{i}^{\exp }}\right)^{2} \tag{1.66}
\end{equation*}
$$

where $\mathcal{O}_{i}^{\exp }$ denotes the experimental value of observable \mathcal{O}_{i} with experimental error $\sigma_{i}^{\exp }$. $\mathcal{O}_{i}^{\text {fit }}$ is the obtained fitting value. The pull of a fit value $\mathcal{O}_{i}^{\text {fit }}$ is defined as $\operatorname{pull}\left(\mathcal{O}_{i}^{\text {fit }}\right)=$ $\left(\mathcal{O}_{i}^{\exp }-\mathcal{O}_{i}^{\text {fit }}\right) / \sigma_{i}^{\exp }$ and encodes a weighted measure of distance and direction from the experimental value. We give the fit results in Table 1.5 and collected the experimental values in Table 1.6.

The final result gave a best fit point with total $\chi^{2} \approx 15$. Taking into account, that we have 16 degrees of freedom (dof) which are relevant for the fit, we obtain $\chi^{2} /$ dof ≈ 0.9. The quality of the fit is quite surprising, considering that we fit 16 parameters on 18 targets (see Table 1.6). The success of the fit implies that there are two relations among SM observables hidden within our model. Unfortunately, we were not able to find them.

Fermion observables at the electroweak scale $\mu=M_{Z}$			
$m_{d}(\mathrm{MeV})$	2.75 ± 0.29	$\Delta_{12}\left(\mathrm{eV}^{2}\right)$	$(7.50 \pm 0.18) \times 10^{-5}$
$m_{s}(\mathrm{MeV})$	54.3 ± 2.9	$\Delta_{31}\left(\mathrm{eV}^{2}\right)$	$(2.52 \pm 0.04) \times 10^{-3}$
$m_{b}(\mathrm{GeV})$	2.85 ± 0.03	$\sin \theta_{12}^{q}$	0.2254 ± 0.0007
$m_{u}(\mathrm{MeV})$	1.3 ± 0.4	$\sin \theta_{23}^{q}$	0.0421 ± 0.0006
$m_{c}(\mathrm{GeV})$	0.627 ± 0.019	$\sin \theta_{13}^{q}$	0.0036 ± 0.0001
$m_{t}(\mathrm{GeV})$	171.7 ± 1.5	$\sin ^{2} \theta_{12}^{l}$	0.306 ± 0.012
$m_{e}(\mathrm{MeV})$	0.4866 ± 0.0005	$\sin ^{2} \theta_{23}^{l}$	0.441 ± 0.024
$m_{\mu}(\mathrm{MeV})$	102.7 ± 0.1	$\sin ^{2} \theta_{13}^{l}$	0.0217 ± 0.0008
$m_{\tau}(\mathrm{GeV})$	1.746 ± 0.002	$\delta_{\mathrm{C} K M}$	1.21 ± 0.05

Table 1.6.: The SM input parameters at the electroweak scale we used for the fit, as appeared in our paper [2]. We took quark and lepton masses as well as the quark mixing parameters from Ref. [19], and and the neutrino mixing parameters from Ref. [20] for Normal Ordering (NO). We use a 0.1% uncertainty for the charged lepton masses to make sure the fit does not give undue preference to these observables. To simplify the fitting procedure, we used for all observables the arithmetic average of the errors when not symmetric.

1.5.2. Predictions

The configuration of parameters we obtained from the best fit gives us predictions for the neutrino masses and PMNS Dirac phase δ and Majorana phases φ_{1} and φ_{1}. The different mass observables are defined as follows:

Neutrinoless double beta decay experiments like GERDA [21], EXO-200 [22] or KamLANDZen [23] measure the effective Majorana mass

$$
\begin{equation*}
m_{0 \nu \beta \beta}=\left|\sum U_{e i}^{2} m_{i}\right| . \tag{1.67}
\end{equation*}
$$

Experiments like KATRIN [24], MARE [25], Project 8 [26], or ECHo [27] measure

$$
\begin{equation*}
m_{\beta}=\sqrt{\sum\left|U_{e i}\right|^{2} m_{i}^{2}} . \tag{1.68}
\end{equation*}
$$

Cosmology neutrino experiments like PLANCK [28] probe the sum of the neutrino masses

$$
\begin{equation*}
\Sigma=\sum m_{i} \tag{1.69}
\end{equation*}
$$

We collected our predictions for these observables and their respective current bounds in Table 1.7.

	$m_{\beta}[\mathrm{meV}]$	$\Sigma[\mathrm{meV}]$	$m_{0 \nu \beta \beta}[\mathrm{meV}]$	$\delta\left[{ }^{\circ}\right]$	$\varphi_{1}\left[{ }^{\circ}\right]$	$\varphi_{2}\left[{ }^{\circ}\right]$
Prediction	8.8 ± 0.5	59 ± 3	1.8 ± 0.1	157 ± 3	187 ± 4	159 ± 5
Current Bound	$\lesssim 2000[29]$	$\lesssim 230[29,28]$	$200[30,31]$	-	-	-

Table 1.7.: Predicted values and current bounds for the neutrino observables, as appeared in our paper [2]. The current bounds were taken from Ref. [32]. As explained in the text, the ranges shown here correspond to perturbations of the best fit point with $\chi^{2} /$ dof $\lesssim 10$.

Discussion of θ_{F}

The Barr criteria ensure $\theta_{F}=\operatorname{ArgDet}\left(M_{u} M_{d}\right)$ is zero at tree level and arises only at the loop level. The suppression of one-loop effects has been discussed at length in the literature [33] [7] [34] and was found to be small enough in this type of models. Possible two-loop effects are sufficiently suppressed by loop factors and the large mass of the exotic gauge bosons [2] [33]. The leading order value for θ_{F} is in principle calculable and therefore can be a prediction in these models. In our model, however, the leading order loop calculation of θ_{F} depends on the unknown specifics of the scalar spectrum. The low energy sector is insensitive to these parameters and therefore they are not fixed by our fit.

1.5.3. Summary and Conclusion

We investigated a Nelson-Barr type model based on the GUT group E_{6}. The symmetry breaking chain $E_{6} \rightarrow S O(10) \rightarrow S U(5) \rightarrow G_{S M}$ turned out to produce exactly the required representations to realize the Barr criteria and obtain the observed weak CP violation analogous to the effective model of [7]. We break the CP symmetry through a complex $S U(5)$ VEV, which gets transported into the quark and lepton sectors via mixing between SM and exotic fermions to produce complex CKM and PMNS matrices. The phase of the complex VEV is not suppressed by the GUT scale. This has been shown by BBP [7] for a single vectorlike quark and we generalized this formula to matrix structures (cf. Equation (1.4)) to incorporate an arbitrary number of vectorlike quarks.

We performed a fit with a best fit point of in total $\chi^{2} \approx 15$ while fitting 16 input variables on 18 Standard Model targets. The surprising quality of the fit with less parameters than the Standard Model implies two hidden relations among Standard Model observables within our model. We predict a PMNS Dirac phase, which is correlated with the CKM phase via the complex $S U(5)$ VEV, as well as PMNS Majorana phases and Neutrino masses. These predictions are collected in Table 1.7 and can be tested in the near future.

A Supersymmetric Solution to $\epsilon_{K}^{\prime} / \epsilon_{K}$

2.1. Motivation: Recent Lattice Results

This chapter is based on our paper "Supersymmetric Explanation of CP Violation in $K \rightarrow \pi \pi$ Decays" [1].

A recent lattice QCD analysis [35] revealed a correction in the prediction for direct CP violation in Kaon decays $\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)$, making it deviate largely from the measured value.

$$
\frac{\epsilon_{K}^{\prime}}{\epsilon_{K}}= \begin{cases}(16.6 \pm 2.3) \times 10^{-4} & (\mathrm{PDG}[29]) \tag{2.1}\\ (1.0 \pm 4.7 \pm 1.5 \pm 0.6) \times 10^{-4} & (\mathrm{SM}-\mathrm{NLO})\end{cases}
$$

The first uncertainty in the theory prediction stems from the non-perturbative lattice computation. The second one stems from higher order corrections and the third one stems from isospin violating terms [36] [37]. The experimental values essentially stem from measurements from 1999 by KTeV [38] and NA48 [39] collaborations and have not changed since then.

The Standard Model theory prediction consists of two separate parts: One part is the perturbative calculation of the Wilson Coefficients, which encode the high energy physics. This has been done at next-to-leading order (NLO) [40] [41] [42] [43]. The other part is the calculation of the hadronic matrix elements, which encode the low energy physics and therefore cannot be treated with perturbation theory. These non-perturbative calculations have been done in various methods like $1 / N_{C}$ [44], chiral perturbation theory $(\chi P T)$ [45] and lattice QCD [35] [46].

The theory prediction has always been plagued by uncertainties in the non-perturbative quantities, so that more or less only an order of magnitude prediction was possible. In retrospective, with $\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)_{1 / N_{c}}=(8.6 \pm 3.2) \times 10^{-4}[42]$, the $1 / N_{c}$ approach has actually been closer to the now established lattice value than to the experimental value, but people were cautious to believe their own results. After all, these non-perturbative estimation methods rely on some kind of confidence in the applicability of the method in the case at hand, and thus it was always a possibility, that the $1 / N_{c}$ limit would receive large corrections and thus be a poor estimate. Additionally, another non-perturbative method - chiral perturbation theory - happened to predict $\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)_{\chi P T}=(19 \pm 11) \times 10^{-4}$ [45], a value apparently in perfect agreement with experiment. This made it hard to believe that
there is much room for new physics in $\epsilon_{K}^{\prime} / \epsilon_{K}$. In the end, even the $1 / N_{c}$ value was still substantially far away from today's lattice value, requiring to cut the relevant parameter $B_{6}^{(1 / 2)}$ nearly by half ${ }^{1}$. This naively suggests that $1 / N_{c}$ got lucky landing between experiment and the lattice value, rather than being overly precise in the prediction. Doubling the same parameter would increase the prediction so far that it would even overshoot the experimental result. Ironically, $\chi P T$ had the bad luck of landing right on the experimental value, which seemed to give a lot of credibility to the method. To be fair, without sufficient accuracy, $\epsilon_{K}^{\prime} / \epsilon_{K}$ is an incredibly ungrateful observable to predict because of the large cancellation between the amplitudes A_{0} and $A_{2}{ }^{2}$. Every expert knew fully well that as long as the full range between zero and the experimental value is comfortably within the theoretical possibility, the actual number is more like an experts opinion than a real, reliable prediction.

2.2. New Physics in ϵ_{K}^{\prime}

Talking about $\epsilon_{K}^{\prime} / \epsilon_{K}$ rather than ϵ_{K}^{\prime} is just a historical convention that somehow still made it up to today. We thus talk about $\epsilon_{K}^{\prime} / \epsilon_{K}$ whenever we refer to actual numbers, calculations or measurements, and ϵ_{K}^{\prime}, when it comes to talking about the physics behind the numbers and calculations. ϵ_{K}^{\prime} labels direct CP violation in Kaon decay. Dividing it by ϵ_{K} is just convenient for calculating numbers since the phases of both quantities accidentally coincide, making the ratio a real number.

If we take the discrepancy between the experimental value and the lattice prediction for $\epsilon_{K}^{\prime} / \epsilon_{K}$ serious and want to think about how to satisfy it with new physics, we actually need a contribution that is larger than the Standard Model value. This naively seems impossible without fine tuning because of the following argument:

The parameters which govern ϵ_{K}^{\prime} also govern ϵ_{K}. The latter, however, is measured to great accuracy and the theory predictions comply with these measurements, leaving hardly any room for new physics contributions.

The important quantities are $\tau \sim V_{t d} V_{t s}^{*}$, which is a combination of CKM elements involving the CKM phase ${ }^{3}$, and the mass of the W-Boson. These give a measure of likelihood of CP violation and a weak interaction process taking place, respectively. Thus, together, these are the essential quantities when talking about CP violation in Kaon processes $\left(\epsilon_{K}^{\prime}\right.$ and ϵ_{K}).

[^2]

Figure 2.1.: Trojan penguins [48] [49]: Gluino boxes contributing to $\epsilon_{K}^{\prime} / \epsilon_{K}$

The Standard Model (SM) prediction $\epsilon_{K}^{\prime \text { SM }}$ is proportional to $\operatorname{Im} \tau / M_{W}^{2}$, involving one strange-top vertex and one W-Boson propagator. $\epsilon_{K}^{S M}$ is proportional to $\operatorname{Im} \tau^{2} / M_{W}^{2}$, involving two strange-top vertices and two W-Boson propagators, whereas one of the latter is cancelled in the process of the loop integration.

If we want new physics (NP) to contribute to ϵ_{K}^{\prime}, we will likely have the same Feynman diagram structure, but with a new parameter δ encoding the CP violation at the vertices, and a new mediator with mass M taking on the role of the W-Boson. We thus get $\epsilon_{K}^{\prime \mathrm{NP}} \propto \operatorname{Im} \delta / M^{2}$ and $\epsilon_{K}^{\mathrm{NP}} \propto \operatorname{Im} \delta^{2} / M^{2}$.

Now we expect $M \gg M_{W}$ and thus require $\operatorname{Im} \delta \gg \operatorname{Im} \tau$ to obtain $\operatorname{Im} \tau / M_{W}^{2} \approx \operatorname{Im} \delta / M^{2}$ to have $\epsilon_{K}^{\prime \text { SM }}$ and $\epsilon_{K}^{\prime \text { NP }}$ in the same order of magnitude.

Taking into account, that we need $\epsilon_{K}^{\prime \mathrm{NP}}$ at least as large as $\epsilon_{K}^{\prime \mathrm{SM}}$ (implying $\epsilon_{K}^{\prime \mathrm{NP}} / \epsilon_{K}^{\prime \mathrm{SM}} \geq 1$) and that $\epsilon_{K}^{\mathrm{SM}}$ has barely any room for new physics, implying $\epsilon_{K}^{\mathrm{NP}} / \epsilon_{K}^{\mathrm{SM}}<1$, we can estimate

$$
\begin{equation*}
1 \leq \frac{\epsilon_{K}^{\prime \mathrm{NP}}}{\epsilon_{K}^{\prime \mathrm{SM}}}<\frac{\epsilon_{K}^{\prime \mathrm{NP}}}{\epsilon_{K}^{\prime \mathrm{SM}}} \frac{\epsilon_{K}^{\mathrm{SM}}}{\epsilon_{K}^{\mathrm{NP}}}=\mathcal{O}\left(\frac{\operatorname{Im} \delta / M^{2}}{\operatorname{Im} \tau / M_{W}^{2}} \cdot \frac{\operatorname{Im} \tau^{2} / M_{W}^{2}}{\operatorname{Im} \delta^{2} / M^{2}}\right)=\mathcal{O}\left(\frac{\operatorname{Re} \tau}{\operatorname{Re} \delta}\right) \tag{2.2}
\end{equation*}
$$

Thus we need $\operatorname{Re} \delta<\operatorname{Re} \tau$ if we want a large $\epsilon_{K}^{\prime \mathrm{NP}}$ while keeping a small $\epsilon_{K}^{\mathrm{NP}}$ compared to the respective SM part. At the same time, we need $\operatorname{Im} \delta \gg \operatorname{Im} \tau$ to obtain a large enough $\epsilon_{K}^{\prime \text { NP }}$ to resolve the discrepancy. This implies we need a largely imaginary δ. In other words, $\operatorname{Arg} \delta$ would need to be finetuned very close to $\frac{\pi}{2}$. Therefore, if we do not want to finetune our model, it naively seems impossible to noticeably enhance ϵ_{K}^{\prime} without overshooting the bound for ϵ_{K}. In the following, we will show that this assumption turns out to be too naive and that it is possible to construct a supersymmetric model that can satisfy ϵ_{K}^{\prime} while staying within the ϵ_{K} bounds without any finetuning [1].

2.3. ϵ_{K}^{\prime} in the MSSM

Any NP contribution to ϵ_{K}^{\prime} can simply be added to the SM value since ϵ_{K}^{\prime}, as an amplitude level quantity, is linear in the effective operators. The contributions we are interested in come from gluino boxes like Figure 2.1.

These boxes contribute to both, the A_{0} and the A_{2} amplitude at about equal magnitude. While A_{0} is dominated by QCD penguins, the gluino box contribution is numerically
unimportant there. In A_{2}, however, which is dominated by electroweak penguins, the gluino boxes are numerically comparable because of the larger coupling of the strong interaction. Hence the witty name Trojan Penguins [48]: they are strong box processes which kind of infiltrate the domain of electroweak penguins. It was shown [48] [49], that these contributions can become large. In the calculation of ϵ_{K}^{\prime}, the CP violating part of the amplitude A_{2} gets enhanced by the ratio of the CP conserving parts of A_{0} and A_{2}. This ratio is known as $\Delta I=1 / 2$ rule and experimentally turns out to be roughly 22 [50]. Thus, it numerically boosts all the processes contributing to A_{2}, including the gluino boxes, by a significant amount.

Figure 2.2.: Suppression of diagrams contributing to ϵ_{K} : For $m_{\tilde{g}}=1.5 M_{S}$, the diagrams with outgoing left chiral quarks cancel exactly. The diagrams with outgoing right chiral quarks vanish in the limit of negligible mixing among right chiral squarks.

The parameters, which have the potential to make Trojan Penguin contribution to ϵ_{K}^{\prime} large in supersymmetric models, also feed into ϵ_{K}. To see this, all we need to do is to change the outgoing states in any ϵ_{K}^{\prime} gluino box (either $d d$ or $u u$) into $s d$. The resulting diagrams contribute to ϵ_{K} and contain the flavor-changing parameter which mediates the $\tilde{s}_{L}-\tilde{d}_{L}$ mixing twice. The very same parameter, which governs the ϵ_{K}^{\prime} contribution. This was the argument around Equation (2.2), naively forbidding significant NP contributions to ϵ_{K}^{\prime}. But here a remarkable property of the gluinos comes in. They are Majorana fermions and thereby allow the constructions of diagrams with crossed boxes like Figure 2.2. These diagrams come with a minus sign with respect to the uncrossed boxes. The suppression of the Trojan penguin contribution to ϵ_{K} differs depending on chirality, therefore it is instructive to present the cases $s_{L} \equiv P_{L} s$ and $s_{R} \equiv P_{R} s$ separately. The authors of [51] showed, that for the diagram with outgoing left chiral quarks (LL), the two diagrams in Figure 2.2 cancel exactly for $m_{\tilde{g}}=1.5 M_{S}$. The cancellation becomes imperfect thereafter, behaving like $\left[m_{\tilde{g}}^{2}-\left(1.5 M_{S}\right)^{2}\right] / m_{\tilde{g}}^{4}$ and is depicted in Figure 2.3. At around $m_{\tilde{g}} \simeq 2.5 M_{S}$, the largeness of the gluino mass starts to dominate and numerically suppresses the whole process. In the case of outgoing right chiral quarks (LR), the diagrams vanish on their own in the limit of negligible mixing among right chiral squarks. In the case of ϵ_{K}^{\prime}, the LR diagrams do not vanish since no mixing on the squark line is needed (see Figure 2.1). For these LR diagrams, there is no cancellation with the crossed boxes. The reason lies with the QCD color factors, which are different when coupled to 'left chiral' or 'right chiral' squarks, resulting in different numerical factors that do not cancel. The dominant diagrams are shown in Figure 2.1. These diagrams come with opposite signs, we therefore also require mass splitting between the right handed up and down squarks for these diagrams not to cancel.

We therefore can have large LL mixing allowing a potentially large $\epsilon_{K}^{\prime \mathrm{NP}}$ while $\epsilon_{K}^{\mathrm{NP}}$ remains sufficiently small without having to fine-tune our model.

Figure 2.3.: The behaviour of the gluino box contribution to $\epsilon_{K}^{\mathrm{NP}}$ normalized to the $S M$ value. The blue (red) shading represents the regions which are excluded at 95% confidence level by ϵ_{K} measurements, if the exclusive (inclusive) value for $\left|V_{c b}\right|$ is taken for the $S M$ prediction. See section 2.5 for a discussion of the exclusive and inclusive values of $\left|V_{c b}\right|$. The left plot shows the behaviour according to the approximate formula given in the text, while the right plot is taken from our paper [1] and shows the exact numerical behaviour. There, the red line corresponds to gluino box contribution while the blue line corresponds to the sum of the box contributions with one or two winos.

2.3.1. Explicit Calculation of the Gluino Box Diagram

In this section, we show an exemplary calculation of a gluino box diagram, namely the left diagram of Figure 2.1. Applying Feynman rules [52] [53] to this diagram, we obtain the matrix element

$$
\begin{align*}
i \mathcal{M}= & \bar{s}_{\alpha}\left[i g_{3} \sqrt{2} T_{\alpha \beta}^{a}\left(-\Gamma_{D L}^{I 2 *} P_{R}+\Gamma_{D R}^{I 2 *} P_{L}\right)\right]\left(i \frac{(-1) \gamma^{\mu}\left(p_{s}+k\right)_{\mu}+m_{\tilde{g}}}{\left(p_{s}+k\right)^{2}-m_{\tilde{g}}^{2}}\right)\left[i g_{3} \sqrt{2} T_{\delta \sigma}^{a}\left(-\Gamma_{U L}^{J 1} P_{L}+\Gamma_{U R}^{J 1} P_{R}\right)\right] u_{\sigma} \\
& \cdot \bar{u}_{\rho}\left[i g_{3} \sqrt{2} T_{\rho \delta}^{b}\left(-\Gamma_{U L}^{J 1 *} P_{R}+\Gamma_{U R}^{J 1 *} P_{L}\right)\right]\left(i \frac{(-1) \gamma^{\nu}\left(p_{d}-k\right)_{\nu}+m_{\tilde{g}}^{2}}{\left(p_{d}-k\right)^{2}-m_{\tilde{g}}}\right)\left[i g_{3} \sqrt{2} T_{\beta \gamma}^{b}\left(-\Gamma_{D L}^{I 1} P_{L}+\Gamma_{D R}^{I 1} P_{R}\right)\right] d_{\gamma} \\
& \cdot\left(\frac{i}{k^{2}-m_{\tilde{d}_{I}}^{2}}\right)\left(\frac{i}{\left(p_{s}-p_{u}+k\right)^{2}-m_{\tilde{u}_{J}}^{2}}\right) \tag{2.3}
\end{align*}
$$

where integration over the loop momentum k is implied. $\Gamma_{D L}^{I i}$ denotes the mixing matrix at the vertex of a down type quark-squark mixing (first subscript), left handed current (second subscript), of a squark generation I with quark of generation i. The translation to the convention used in [52] is given by [54]

$$
\begin{equation*}
\Gamma_{D L}^{i I}=Z_{D}^{I i} \quad \Gamma_{D R}^{i I}=Z_{D}^{(I+3) i} \quad \Gamma_{U L}^{i I}=Z_{U}^{I i *} \quad \Gamma_{U R}^{i I}=Z_{U}^{(I+3) i *} \tag{2.4}
\end{equation*}
$$

We focus on the part of the calculation with incoming left chiral quark fields and outgoing right chiral quark fields. The other combinations of chirality proceed in the same way and lead to subleading operators. We will give the results at the bottom of this section. Note that for conjugate spinors taking a right chiral projector leads to a left chiral conjugate field: $\bar{s}_{L}=\bar{s} P_{R}$. Due to the properties of the projectors P_{L} and P_{R}, the choice of the $L \rightarrow R$ transition eliminates the tensor and vector integral structures (after we sent external momenta to zero) and leaves us with only the scalar integral to be evaluated.

We rearrange the expression we obtained from evaluating the Feynman rules

$$
\begin{align*}
i \mathcal{M}= & (-1)^{2} i^{8} 4 g_{3}^{4} T_{\alpha \beta}^{a} T_{\delta \sigma}^{a} T_{\rho \delta}^{b} T_{\beta \gamma}^{b}\left(\Gamma_{D L}^{I 2}\right)^{*}\left(\Gamma_{D L}^{I 1}\right)\left(\Gamma_{U R}^{J 1}\right)^{*}\left(\Gamma_{U R}^{J 1}\right)\left(\bar{s}_{L, \alpha} u_{R, \sigma}\right)\left(\bar{u}_{R, \rho} d_{L, \gamma}\right) \\
& \cdot m_{\tilde{g}}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{\left(p_{s}+k\right)^{2}-m_{\tilde{g}}^{2}}\right)\left(\frac{1}{\left(p_{d}-k\right)^{2}-m_{\tilde{g}}^{2}}\right)\left(\frac{1}{k^{2}-m_{\tilde{d}_{I}}^{2}}\right)\left(\frac{1}{\left(p_{s}-p_{u}+k\right)^{2}-m_{\tilde{u}_{J}}^{2}}\right) \tag{2.5}
\end{align*}
$$

The color structure evaluates to

$$
\begin{equation*}
\sum_{a} T_{\alpha \beta}^{a} T_{\delta \sigma}^{a} \sum_{b} T_{\rho \delta}^{b} T_{\beta \gamma}^{b}=\frac{1}{36} \delta_{\alpha \gamma} \delta_{\sigma \rho}+\frac{7}{12} \delta_{\alpha \sigma} \delta_{\gamma \rho} \tag{2.6}
\end{equation*}
$$

For the loop integral, all masses are of the order of the SUSY scale, while the external momenta correspond to the Kaon scale, thus $p_{i} \ll m_{j}$ for all external momenta p_{i} and all masses m_{j} involved. The diagram remains finite when we take all external momenta to zero and with $\tau_{I}^{d, u}:=m_{\tilde{d}_{I}, \tilde{u}_{I}}^{2} / m_{\tilde{g}}^{2}$ we obtain for the scalar integral I_{S} :

$$
\begin{align*}
I_{S} & =m_{\tilde{g}}^{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{\left(p_{s}+k\right)^{2}-m_{\tilde{g}}^{2}}\right)\left(\frac{1}{\left(p_{d}-k\right)^{2}-m_{\tilde{g}}^{2}}\right)\left(\frac{1}{k^{2}-m_{\tilde{d}_{I}}^{2}}\right)\left(\frac{1}{\left(p_{s}-p_{u}+k\right)^{2}-m_{\tilde{u}_{J}}^{2}}\right) \\
& \stackrel{p_{i} \rightarrow 0}{=} \frac{1}{m_{\tilde{g}}^{2}} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(\frac{1}{k^{2}-1}\right)\left(\frac{1}{k^{2}-1}\right)\left(\frac{1}{k^{2}-\tau_{I}^{d}}\right)\left(\frac{1}{k^{2}-\tau_{J}^{u}}\right) \\
& =\frac{1}{m_{\tilde{g}}^{2}} \frac{i}{16 \pi^{2}} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right) \tag{2.7}
\end{align*}
$$

The loop function $F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)$ is given by [54]

$$
\begin{equation*}
F[x, y]=-\frac{x \ln x}{(x-y)(x-1)^{2}}-\frac{y \ln y}{(y-x)(y-1)^{2}}-\frac{1}{(x-1)(y-1)} \tag{2.8}
\end{equation*}
$$

For convenience, we also give the loop function $G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)$, which will appear later

$$
\begin{equation*}
G[x, y]=\frac{x^{2} \ln x}{(x-y)(x-1)^{2}}+\frac{y^{2} \ln y}{(y-x)(y-1)^{2}}+\frac{1}{(x-1)(y-1)} \tag{2.9}
\end{equation*}
$$

Inserting this into the amplitude, we get

$$
\begin{align*}
i \mathcal{M} & =i 4 \alpha_{s}^{2} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D L}^{I 2}\right)^{*}\left(\Gamma_{D L}^{I 1}\right)\left(\Gamma_{U R}^{J 1}\right)^{*}\left(\Gamma_{U R}^{J 1}\right) F\left(\tau_{I}^{d}, \tau_{J}^{u}\right) \\
& \cdot\left[\frac{1}{36}\left(\bar{s}_{L, \alpha} u_{R, \beta}\right)\left(\bar{u}_{R, \beta} d_{L, \alpha}\right)+\frac{7}{12}\left(\bar{s}_{L, \alpha} u_{R, \alpha}\right)\left(\bar{u}_{R, \beta} d_{L, \beta}\right)\right] \tag{2.10}
\end{align*}
$$

To get to the traditional operator basis, we use the following Fierz transformation [55]

$$
\begin{equation*}
\left(\bar{s}_{i} P_{R} u_{k}\right)\left(\bar{u}_{l} P_{L} d_{j}\right)=-\frac{1}{2}\left(\bar{s}_{i} \gamma^{\mu} P_{L} d_{j}\right)\left(\bar{u}_{l} \gamma_{\mu} P_{R} u_{k}\right) \tag{2.11}
\end{equation*}
$$

so the two types of fermion chains we have turn into

$$
\begin{align*}
\left(\bar{s}_{L, \alpha} u_{R, \beta}\right)\left(\bar{u}_{R, \beta} d_{L, \alpha}\right) & =\left(\bar{s}_{\alpha} P_{R} u_{\beta}\right)\left(\bar{u}_{\beta} P_{L} d_{\alpha}\right) \\
& =-\frac{1}{2}\left(\bar{s}_{\alpha} \gamma^{\mu} P_{L} d_{\alpha}\right)\left(\bar{u}_{\beta} \gamma_{\mu} P_{R} u_{\beta}\right) \\
& :=-\frac{1}{8}(s d)_{V-A}(u u)_{V+A}:=-\frac{1}{8} Q_{1}^{\prime, u} \tag{2.12}
\end{align*}
$$

and

$$
\begin{align*}
\left(\bar{s}_{L, \alpha} u_{R, \alpha}\right)\left(\bar{u}_{R, \beta} d_{L, \beta}\right) & =\left(\bar{s}_{\alpha} P_{R} u_{\alpha}\right)\left(\bar{u}_{\beta} P_{L} d_{\beta}\right) \\
& :=-\frac{1}{8}\left(s_{\alpha} d_{\beta}\right)_{V-A}\left(u_{\beta} u_{\alpha}\right)_{V+A}:=-\frac{1}{8} Q_{2}^{\prime, u} \tag{2.13}
\end{align*}
$$

We insert this into the amplitude along with $1=\frac{G_{F}}{\sqrt{2}} \frac{\sqrt{2}}{G_{F}}$, then read off $-\mathcal{M}=\mathcal{H}$

$$
\begin{equation*}
\mathcal{H}=\frac{G_{F}}{\sqrt{2}}\left[\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D L}^{I 2}\right)^{*}\left(\Gamma_{D L}^{I 1}\right)\left(\Gamma_{U R}^{J 1}\right)^{*}\left(\Gamma_{U R}^{J 1}\right) F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\left[\frac{1}{18} Q_{1}^{\prime, u}+\frac{7}{6} Q_{2}^{\prime, u}\right]\right] \tag{2.14}
\end{equation*}
$$

and with the definition $\mathcal{H}^{\Delta S=1}=\frac{G_{F}}{\sqrt{2}} \cdot \sum_{i} c_{i} Q_{i}$, we can read up the contributions of this diagram to the Wilson Coefficients $c_{1}^{\prime, u}$ and $c_{2}^{\prime, u}$.

The crossed diagram contributes with the loop function $G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)$ and a different coefficient due to the color structure. The calculation, however, proceeds in the same manner as above. Summing up all contributing diagrams, we end up with the full contributions of the gluino boxes to the coefficients $c_{1}^{\prime, u}$ and $c_{2}^{\prime, u}$:

$$
\begin{align*}
& c_{1}^{\prime, u}=\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D L}^{I 2}\right)^{*}\left(\Gamma_{D L}^{I 1}\right)\left(\Gamma_{U R}^{J 1}\right)^{*}\left(\Gamma_{U R}^{J 1}\right)\left[\frac{1}{18} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)-\frac{5}{18} G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\right] \\
& c_{2}^{\prime, u}=\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D L}^{I 2}\right)^{*}\left(\Gamma_{D L}^{I 1}\right)\left(\Gamma_{U R}^{J 1}\right)^{*}\left(\Gamma_{U R}^{J 1}\right)\left[\frac{7}{6} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)+\frac{1}{6} G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\right] \tag{2.15}
\end{align*}
$$

The coefficients $c_{1}^{\prime, d}$ and $c_{2}^{\prime, d}$ can easily be obtained by replacing the up type squark with a down type squark by simply switching $\tau_{J}^{u} \rightarrow \tau_{J}^{d}$ and $\Gamma_{U} \rightarrow \Gamma_{D}$ in the above expressions. These coefficients belong to the numerically largest matrix elements within the A_{2} amplitude - Q_{7} and especially Q_{8} in the notation of the traditional SM basis [40] - and thus constitute the largest contribution to $\epsilon_{K}^{\prime} / \epsilon_{K}$ in our model. Calculating the remaining gluino box diagrams with $L \rightarrow L, R \rightarrow L$ and $R \rightarrow R$ chiral transitions, we obtain the contributions to the remaining operators. The operator basis and the effective Hamiltonian are given in our paper [1]. The result for the Wilson coefficients complies with [49].

$$
\begin{align*}
c_{3}^{\prime, u} & =\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D L}^{I 2}\right)^{*}\left(\Gamma_{D L}^{I 1}\right)\left(\Gamma_{U L}^{J 1}\right)^{*}\left(\Gamma_{U L}^{J 1}\right)\left[-\frac{5}{9} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)+\frac{1}{36} G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\right] \\
c_{4}^{\prime, u} & =\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D L}^{I 2}\right)^{*}\left(\Gamma_{D L}^{I 1}\right)\left(\Gamma_{U L}^{J 1}\right)^{*}\left(\Gamma_{U L}^{J 1}\right)\left[\frac{1}{3} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)+\frac{7}{12} G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\right] \\
\tilde{c}_{1}^{\prime, u} & =\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D R}^{I 2}\right)^{*}\left(\Gamma_{D R}^{I 1}\right)\left(\Gamma_{U L}^{J 1}\right)^{*}\left(\Gamma_{U L}^{J 1}\right)\left[\frac{1}{18} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)-\frac{5}{18} G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\right] \\
\tilde{c}_{2}^{\prime, u} & =\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D R}^{I 2}\right)^{*}\left(\Gamma_{D R}^{I 1}\right)\left(\Gamma_{U L}^{J 1}\right)^{*}\left(\Gamma_{U L}^{J 1}\right)\left[\frac{7}{6} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)+\frac{1}{6} G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\right] \\
\tilde{c}_{3}^{\prime, u} & =\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D R}^{I 2}\right)^{*}\left(\Gamma_{D R}^{I 1}\right)\left(\Gamma_{U R}^{J 1}\right)^{*}\left(\Gamma_{U R}^{J 1}\right)\left[-\frac{5}{9} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)+\frac{1}{36} G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\right] \\
\tilde{c}_{4}^{\prime, u} & =\frac{\alpha_{s}^{2}}{2 \sqrt{2} G_{F}} \frac{1}{m_{\tilde{g}}^{2}}\left(\Gamma_{D R}^{I 2}\right)^{*}\left(\Gamma_{D R}^{I 1}\right)\left(\Gamma_{U R}^{J 1}\right)^{*}\left(\Gamma_{U R}^{J 1}\right)\left[\frac{1}{3} F\left(\tau_{I}^{d}, \tau_{J}^{u}\right)+\frac{7}{12} G\left(\tau_{I}^{d}, \tau_{J}^{u}\right)\right] \tag{2.16}
\end{align*}
$$

2.4. Results

For definiteness, we use the following set of input parameters. These mainly serve to constrain the large parameter space of the MSSM and thereby to show that our results do not depend on specifically tuned choices of MSSM parameters.

The input parameters we used are

- SUSY scale: Universal mass of the left handed squark doublet, the right handed down squark and the higgsino mass parameter: $m_{Q}=m_{\bar{D}}=\mu_{S U S Y}=M_{S}$
- Universal gaugino masses at the GUT scale $M_{G} \sim 10^{16}$
- $m_{\tilde{g}} / M_{S}=1.5$
- No trilinear SUSY terms: $A_{q}=0$
- $\tan \beta=10$
- Squark mass matrix offdiagonal elements for LL mixing $\Delta_{Q, 12,13,23}=0.1 \exp (-i \pi / 4)$, all others zero

As mentioned above, this choice of parameters is mainly for simplification as to only include the sources of the mechanism we wished to show. To this end, we need the mixing in the left handed squark mass matrix, which we chose as a 10% effect of the diagonal elements, together with a phase choice which maximizes the CP phase in ϵ_{K}, the hardest constraint on our model. In this way, we showed that our solution is not finetuned in the CP phase but even persists for the maximal choice. The right handed squark mixing needs to be absent (or at least $\mathcal{O}\left(\lesssim 10^{-5}\right)$ for the ϵ_{K} suppression to work. The $m_{\tilde{g}} / M_{S}=1.5$ relation is the prime spot for the ϵ_{K} suppression, although a ratio >1.5 also works, as discussed above.

The essential result of our investigation is that under reasonable assumptions it is possible to resolve the $\epsilon_{K}^{\prime} / \epsilon_{K}$ tension within the MSSM. Of course, the term 'reasonable assumptions' is our own interpretation of things and since we were the people conducting the analysis, this could be viewed as biased by others. So what did we view as 'reasonable assumptions' here, under which conditions can the MSSM resolve the $\epsilon_{K}^{\prime} / \epsilon_{K}$ tension?

The main result is collected in Figure 2.4. The plot shows in which region of $m_{\bar{U}}$ and M_{S} the $\epsilon_{K}^{\prime} / \epsilon_{K}$ discrepancy can be resolved together with satisfying the ϵ_{K} bounds. $m_{\bar{U}}$ is the right handed up squark mass while M_{S} is the universal SUSY mass, including the right handed down squark mass. The dark green (light green) region resolves the $\epsilon_{K}^{\prime} / \epsilon_{K}$ discrepancy at $1 \sigma(2 \sigma)$. The red shaded region between the dashed red lines is excluded through ϵ_{K} using the inclusive $V_{c b}$ measurement. In the case of the exclusive $V_{c b}$ measurement, ϵ_{K} even asks a small contribution from new physics (see Figure 2.3). The region between the blue dashed lines depicts the area, where the contribution to ϵ_{K} resolves its discrepancy.

We deliberately chose the phase of $\Delta_{Q, 12}$ (the squark mass matrix element which mediates

Figure 2.4.: Contour plot of the supersymmetric contributions to $\epsilon_{K}^{\prime} / \epsilon_{K}$ in 10^{-4} as appeared in our paper [1]. The dark (light) green bands resolve the $\epsilon_{K}^{\prime} / \epsilon_{K}$ discrepancy at $1 \sigma(2 \sigma)$. The red shaded region is the 95% exclusion region of ϵ_{K} in case of an inclusive $V_{c b}$; the region between the two blue dashed lines is the favored region of ϵ_{K} in case of an exclusive $V_{c b}$.
the $s-d$ transition) to be $-i \pi / 4$ to maximize the CP phase in the $K^{0}-\bar{K}^{0}$ mixing amplitude. This way we show that our suppression of ϵ_{K} is not finetuned at all. Flipping the sign of this phase, ϵ_{K} does not change, while $\epsilon_{K}^{\prime} / \epsilon_{K}$ flips its sign, indicated by the two green branches in Figure 2.4.

The dominant contribution comes from gluino-gluino box diagrams like the one we calculated in Section 2.3.1. The next largest contribution likely comes from gluon gluino chromomagnetic penguins [56] [57] (an explicit calculation of the Wilson coefficients is attached in Appendix B.1). However, the hadronic matrix element is poorly known with a B_{G} parameter of $B_{G}=1 \pm 3$, which makes a precision calculation of the perturbative parts practically useless until non-perturbative methods improve. This amounts to an uncertainty in the contribution of the chromomagnetic penguin of about an order of magnitude. For that reason, we excluded the chromomagnetic penguin contribution from Figure 2.4. Note that it is easy to reproduce this plot for any given value of the matrix element of the chromomagnetic penguin. The statement stays the same, just the allowed areas could shift a bit to even higher squark masses in case the hadronic matrix element turns out to be large.

Very recently, a new calculation of the relevant matrix element for the chromomagnetic

Figure 2.5.: All contributions to $\epsilon_{K}^{\prime} / \epsilon_{K}$ as appeared in our paper [1]. The dark (light) green bands resolve the $\epsilon_{K}^{\prime} / \epsilon_{K}$ discrepancy at $1 \sigma(2 \sigma)$.
penguin in the dual-QCD approach has been performed [58]. The authors come to the conclusion, that the parameter is small and hence the chromomagnetic penguin contribution to ϵ_{K}^{\prime} in our analysis is subleading.

Additional subleading contributions

Apart from the gluino-gluino boxes and the gluino chromomagnetic penguin, we also calculated gluino-neutralino boxes, gluon, photon and Z penguin diagrams involving a gluino in the loop and Z penguins with charginos and neutralinos in the loop. All these various diagrams turned out to be subleading and have little effect as shown in Figure 2.5.

The black dashed lines show the gluino-gluino box contributions for $m_{\tilde{U}} / m_{\tilde{D}}=0.5,2.0,0.8$, 1.2 from top to bottom. The yellow band shows the contribution from the chromomagnetic penguin for a B_{G} parameter of $B_{G}=1-4$. The solid black line shows the gluino-gluino box contribution in case of degenerate masses $m_{\tilde{U}}=m_{\tilde{D}}$, in which case the various diagrams mostly cancel (see Figure 2.1. Only in this degeneracy limit, together with a $B_{G} \lesssim 1$, the various subleading contributions become meaningful for our choice of parameters. Note that gluino-photon (red line) and chargino-Z penguin (blue line) have opposite signs and almost cancel. We neglected gluino-W penguin and chargino box contributions which contribute at most $\mathcal{O}\left(10^{-5}\right)$ to $\epsilon_{K}^{\prime} / \epsilon_{K}$.

2.5. A word on the status of $V_{c b}$

The calculation of $\epsilon_{K}^{\prime} / \epsilon_{K}$ and ϵ_{K} involves many different CKM elements. ϵ_{K} is measured so precisely [29] that it is beneficial to express the CKM matrix elements with larger uncertainties through the use of CKM unitarity by others with smaller uncertainties.

Especially $V_{t d}$ and $V_{t s}$ are hard to measure precisely [59]. We can express the imaginary part of $\lambda_{t}=V_{t d} V_{t s}^{*}$, which is essential for the determination of ϵ_{K} and $\epsilon_{K}^{\prime} / \epsilon_{K}$ (see Section 3.2.10), through $\operatorname{Im} \lambda_{t}=\left|V_{u b}\right|\left|V_{c b}\right| \sin \gamma[50]$. In the case of $\epsilon_{K}^{\prime} / \epsilon_{K}$, the errors of the hadronic matrix elements are presently so large, that such a tradeoff would avail to nothing. In this subsection, we would like to give a brief overview on the status of the matrix element $V_{c b}$.

The current status of $V_{c b}$ is [60] [29]

$$
\begin{align*}
\left|V_{c b}^{\text {excl. }}\right| & =(39.2 \pm 0.7) \times 10^{-3} \\
\left|V_{c b}^{\text {incl. }}\right| & =(42.2 \pm 0.8) \times 10^{-3} \tag{2.17}
\end{align*}
$$

The exclusive value is extracted from $\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}$ decays, while the inclusive value sums over final states in $\bar{B} \rightarrow X_{c} \bar{\nu}$.

While the inclusive $V_{c b}$ measurement is in perfect agreement with the SM value for ϵ_{K}, it does allow for a NP contribution of about 20% the size of the SM value. The exclusive measurement on the other hand actually disfavors the SM value at 95% confidence level and asks for a small, positive NP contribution of about 15% to 40% of the SM value. In a general analysis from 2014, Crivellin and Pokorski [61] come to the conclusion that the discrepancy between the inclusive and exclusive measurements cannot be explained by new physics and thus must stem from underestimated uncertainties. Of course, one can construct specifically tailored models to account for this discrepancy, but they usually require absurd assumptions (like most something-phobic models) in order not to violate one of the numerous other experimental bounds that include the same elementary processes but do not show discrepancies.

Recently [62] [63], a reparametrization of the form factor using new Belle data pushed the exclusive $V_{c b}$ value to perfect accordance with the inclusive value, possibly putting an end to the conundrum by giving

$$
\begin{equation*}
\left|V_{c b}^{\text {excl. }}\right|=(41.9 \pm 2) \times 10^{-3} \tag{29}
\end{equation*}
$$

This should be taken with a grain - or rather a truckload - of salt since the current situation is very biased. It remains to be seen whether this development is further solidified and subsequently reveals a flaw in the use of the old parametrization or goes away with further data and leaves us stuck with the former conundrum that the results of two established and theoretically well-founded methods exclude each other.

Theoretical Background

In this chapter we review the concepts and the formalism of weak CP violation in Kaon decays with a focus on direct CP violation. The content of this chapter is entirely common knowledge in the field and subject to a vast amount of reviews, lectures and books. Most formulae appear in most reviews and thus the citations are often meant exemplary and in no way exhausting.

3.1. Theory of Weak CP Violation

Weak CP violation in the Standard Model manifests itself in a single complex phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [64]. The CKM matrix describes the misalignment between up-type and down-type quarks. Experimental evidence of neutrino mixing angles imply that neutrinos have mass [29]. The addition of a mass term to the Standard Model Lagrangian leads to a misalignment matrix between charged and neutral leptons in the same way as in the quark sector. The misalignment matrix is denoted Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [65] and can in general contain complex phases. In the same way as in the quark sector, this can lead to CP violating phenomenology. In this chapter we will review how the CKM matrix and the PMNS matrix appear as misalignment matrices between the upper and lower component of their respective $S U(2)_{L}$ doublet after the electroweak symmetry has been broken.

3.1.1. The CKM matrix

After electroweak symmetry breaking (EWSB), mass terms for the matter fields are generated via the Higgs VEV $\langle\phi\rangle$. The quark mass matrices are then combinations of the 3×3 Yukawa matrices and the Higgs VEV $M_{u}:=\langle\phi\rangle \mathcal{Y}_{u}$ and $M_{d}:=\langle\phi\rangle \mathcal{Y}_{d}$.

$$
\begin{equation*}
\mathcal{L}_{q, \text { Mass }}=\bar{u}_{L} M_{u} u_{R}+\bar{d}_{L} M_{d} d_{R} \tag{3.1}
\end{equation*}
$$

u and d are triplets of the up-type and down-type quarks in generation space. We diagonalize the mass matrices by singular value decomposition [66].

$$
\begin{equation*}
M_{u}^{\text {diag }}:=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right)=U_{u} M_{u} V_{u}^{\dagger} \quad M_{d}^{\text {diag }}:=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right)=U_{d} M_{u} V_{d}^{\dagger} \tag{3.2}
\end{equation*}
$$

With U_{q} and V_{q} unitary, we can rewrite the Yukawa Lagrangian in the following way

$$
\begin{equation*}
\mathcal{L}_{\mathcal{Y}}=\underbrace{\bar{u}_{L} U_{u}^{\dagger}}_{\tilde{\bar{u}}_{L}} \underbrace{U_{u} M_{u} V_{u}^{\dagger}}_{M_{u}^{\text {diag }}} \underbrace{V_{u} u_{R}}_{\tilde{u}_{R}}+\underbrace{\bar{d}_{L} U_{d}^{\dagger}}_{\overline{\bar{d}}_{L}} \underbrace{U_{d} M_{d} V_{d}^{\dagger}}_{M_{d}^{\text {diag }}} \underbrace{V_{d} d_{R}}_{\tilde{d}_{R}} \tag{3.3}
\end{equation*}
$$

Where we defined the mass eigenstates of the quark fields.

$$
\begin{align*}
\tilde{u}_{L} & =U_{u} u_{L} \\
\tilde{u}_{R} & =V_{u} u_{R} \\
\tilde{d}_{L} & =U_{d} d_{L} \\
\tilde{d}_{R} & =V_{d} d_{R} \tag{3.4}
\end{align*}
$$

The charged current interaction term for the left handed quarks is not invariant under this transformation. Using (3.4), we can express it in terms of mass eigenstates $\bar{q}_{L}=\tilde{\bar{q}}_{L} U_{q}$

$$
\begin{align*}
\mathcal{L}_{W, q} & =\frac{g}{\sqrt{2}}\left(W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L}+W_{\mu}^{-} \bar{d}_{L} \gamma^{\mu} u_{L}\right) \\
\mathcal{L}_{W, q} & =\frac{g}{\sqrt{2}}(W_{\mu}^{+} \tilde{\bar{u}}_{L} \gamma^{\mu} \underbrace{U_{u} U_{d}^{\dagger}}_{=: V_{\mathrm{CKM}}} \tilde{d}_{L}+W_{\mu}^{-} \tilde{\bar{d}}_{L} \underbrace{U_{d} U_{u}^{\dagger}}_{=: V_{\mathrm{CKM}}^{\dagger}} \gamma^{\mu} \tilde{u}_{L}) \tag{3.5}
\end{align*}
$$

There is no equivalent for the right handed quarks because they do not take part in the $S U(2)_{L}$ interaction, hence this term is absent. The fact that the charged current interaction is not invariant is not suprising. The weak interaction mediates between the components of the $S U(2)_{L}$ doublet Q_{L}. After EWSB this interaction gets suppressed by the energy of the breaking scale, which we express through the mass of the W boson. In this way, the CKM matrix becoming physical is a remnant of the left handed quark fields being correlated by originating from a $S U(2)_{L}$ doublet.

We interprete the CKM matrix as the misalignment matrix between down quark mass eigenstates and flavor eigenstates.

$$
\begin{equation*}
d_{L}=V_{\mathrm{CKM}} \tilde{d}_{L} \tag{3.6}
\end{equation*}
$$

We note that we could equally well have attributed the CKM matrix to the up type quarks. Attributing it to the down type quarks is just a convention. In the neutrino sector, the corresponding matrix is attributed to the upper part of the $S U(2)_{L}$ doublet, the neutrinos.

3.1.2. The PMNS matrix

In the lepton sector, we have to distinguish two cases. If there is a Majorana term present, we need to treat the mass matrix in a little more general and complicated way. If no Majorana term is present, we can proceed in exactly the same way as we did in the quark sector. The Lepton mass Lagrangian then is

$$
\begin{equation*}
\mathcal{L}_{\ell, \text { Mass }}=\bar{\nu}_{L} M_{\nu, D} \nu_{R}+\bar{l}_{L} M_{l} l_{R} \tag{3.7}
\end{equation*}
$$

ν_{L} and l are triplets in generation space, containing the neutral leptons (in the following just called neutrinos) and charged leptons, respectively. This is the same form as the quark mass Lagrangian (3.1) and the procedure is exactly the same as in the quark sector. We diagonalize the mass matrices,

$$
\begin{align*}
\bar{\nu}_{L} M_{\nu} \nu_{R} & =\bar{\nu}_{L} U_{\nu}^{\dagger} U_{\nu} M_{\nu} V_{\nu}^{\dagger} V_{\nu} \nu_{R} \\
& =\tilde{\bar{\nu}}_{L} M_{\nu}^{\mathrm{diag}} \tilde{\nu}_{R} \\
\bar{l}_{L} M_{l} l_{R} & =\bar{l}_{L} U_{l}^{\dagger} U_{l} M_{l} V_{l}^{\dagger} V_{l} l_{R} \\
& =\tilde{\bar{l}}_{L} M_{l}^{\operatorname{diag}} \tilde{l}_{R} \tag{3.8}
\end{align*}
$$

thus the mass eigenstates are

$$
\begin{array}{ccc}
\tilde{\bar{l}}_{L}=\bar{l}_{L} U_{l}^{\dagger} \quad \longleftrightarrow \quad l_{L}=U_{l}^{\dagger} \tilde{l}_{L} \\
\tilde{\bar{\nu}}_{L}=\bar{\nu}_{L} U_{\nu}^{\dagger} & \longleftrightarrow & \nu_{L}=U_{\nu}^{\dagger} \tilde{\nu}_{L} \tag{3.9}
\end{array}
$$

and the charged currents look like

$$
\begin{align*}
& \mathcal{L}_{W, \ell}=\frac{g}{\sqrt{2}}\left(W_{\mu}^{+} \bar{\nu}_{L} \gamma^{\mu} l_{L}+W_{\mu}^{-} \bar{l}_{L} \gamma^{\mu} \nu_{L}\right) \\
& \mathcal{L}_{W, \ell}=\frac{g}{\sqrt{2}}(W_{\mu}^{+} \tilde{\nu}_{L} \gamma^{\mu} \underbrace{U_{\nu} U_{l}^{\dagger}}_{=: U_{\text {PMNS }}} \tilde{l}_{L}+W_{\mu}^{-} \tilde{\bar{l}}_{L} \underbrace{U_{l} U_{\nu}^{\dagger}}_{=: U_{\text {PMNS }}^{\dagger}} \gamma^{\mu} \tilde{\nu}_{L}) \tag{3.10}
\end{align*}
$$

This allows us to define the PMNS matrix as the misalignment matrix between the neutrino mass eigenstates and flavor states

$$
\begin{equation*}
\nu_{L}=U_{\mathrm{PMNS}}^{\dagger} \tilde{\nu}_{L} \tag{3.11}
\end{equation*}
$$

Note the Hermitian conjugate on the PMNS matrix, which is purely conventional. In this convention, the PMNS matrix is defined in line with the CKM matrix, such that they are
without Hermitian conjugate when interpreted as mixing matrices of the lower component of the $S U(2)_{L}$ doublet (d_{L} and l_{L}, respectively) or with Hermitian conjugate when they are interpreted as mixing matrices of the upper component of the $S U(2)_{L} \operatorname{doublet}$ (u_{L} and $\left.\nu_{L}\right)$.

Presence of a Majorana mass term - Takagi diagonalization

In presence of a Majorana mass term, the left and right handed fields obtain separate masses. To treat this, we switch to two component spinor notation in LR convention. The mass Lagrangian for the leptons then looks like

$$
\begin{equation*}
\mathcal{L}_{\ell, \text { Mass }}=\nu_{L}^{T} M_{\nu, D} \nu_{R}^{c}+l_{L}^{T} M_{l} l_{R}+\nu_{L}^{T} M_{\nu, M} \nu_{L} \tag{3.12}
\end{equation*}
$$

We obtain the full neutrino mass matrix M_{ν} in the following way [12]

$$
M_{\nu}=\binom{\nu_{L}}{\nu_{R}^{c}}^{T}\left(\begin{array}{cc}
M_{\nu, M} & M_{\nu, D} \tag{3.13}\\
M_{\nu, D}^{T} & 0
\end{array}\right)\binom{\nu_{L}}{\nu_{R}^{c}}
$$

Here, ν_{L} and ν_{R}^{c} are still triplets and the matrix (3.13) is really a 6×6 matrix. When trying to diagonalize this matrix via a SVD, a subtle problem arises: The matrix M_{ν} is symmetric and this leaves an arbitrariness in the determination of the phases of the diagonalization matrices U_{ν} and V_{ν} :

$$
\begin{equation*}
U_{\nu} M_{\nu} V_{\nu}^{\dagger}=M_{\nu}^{\text {diag }}=M_{\nu}^{\text {diag, }, T}=V_{\nu}^{*} M_{\nu}^{T} U_{\nu}^{T}=V_{\nu}^{*} M_{\nu} U_{\nu}^{T} \tag{3.14}
\end{equation*}
$$

where we explicitly used the symmetry of M_{ν} in the last step. The symmetry of M_{ν} thus allows us to identify

$$
\begin{equation*}
U_{\nu}=V_{\nu}^{*} \tag{3.15}
\end{equation*}
$$

which corresponds to a choice of the phases, making the diagonalization matrices unique. We find the Takagi diagonalization [12]

$$
\begin{equation*}
U_{\nu} M U_{\nu}^{T}=M_{\nu}^{\text {diag }} \tag{3.16}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
V_{\nu}^{*} M V_{\nu}^{\dagger}=M_{\nu}^{\text {diag }} \tag{3.17}
\end{equation*}
$$

Note that this only applies to complex symmetric matrices. Real symmetric matrices are considered hermitian and an eigenvalue decomposition gives the correct results.

3.2. Phenomenology of Weak CP Violation in the Kaon System

The raison d'être of phenomenology is to make the connection between theory and experiment. This means to extract and calculate observables from a given theory and compare these theory predictions with existing measurements. This connection is where the scientific statement is made, whether a theory coincides with measurements and thus establishes more and more confidence in its power to model a part of nature, or whether it is falsified, contradicting measurements.

Phenomenology does thus play a crucial role in modern day physics, where theories are most of the time so complex that it requires a lot of dedicated work by well-trained specialists to make the connection to experiment. Without phenomenology, statements like 'our model contains a complex phase in the quark mixing matrix' and 'neutral long living Kaons decay occasionally to two Pions instead of three' would stand each for themselves without the crucial connection that this part of the theory actually manifests itself in exactly this measurement. Each statement for itself does not hold scientific value, it is only in connecting them that there is scientific value, that there is science, that there actually is theory and experiment. Without the connection to experiment, theory are just random ideas. Without the connection to theory, experiment is just playing games. Throwing an apple becomes an experiment when you try to investigate Newtonian gravity, otherwise you just throw an apple.

3.2.1. Qualitative discussion

Kaon CP Violation History

In 1964, Christenson, Cronin, Fitch and Turlay measured [67] a K_{L} decay to 2π and thereby found experimental evidence for CP violation in the neutral Kaon system. How does that show CP violation? To see this, we first look at how the Kaon flavor states behave under CP transformation. With $\left|K^{0}\right\rangle=|\bar{s} d\rangle$ and $\left|\bar{K}^{0}\right\rangle=|s \bar{d}\rangle$ we get

$$
\begin{align*}
\mathrm{CP}\left|K^{0}\right\rangle & =\left|\bar{K}^{0}\right\rangle \\
\mathrm{CP}\left|\bar{K}^{0}\right\rangle & =\left|K^{0}\right\rangle \tag{3.18}
\end{align*}
$$

where the CP transformation introduces an unobservable phase factor to the Kaon state which we just set to 1 . We know that the weak force can mediate flavor transitions and thus there is a probability for the transition shown in figure 3.1. The two quarks exchange two W bosons and what initially was a $K^{0}\left(\bar{K}^{0}\right)$ is now a $\bar{K}^{0}\left(K^{0}\right)$. At the level of the theory of mesons, we talk about it in a language like 'particles which are identical in all conserved quantum numbers can mix'. Once we go to the levels of the theory of quarks, we can actually model the dynamics which underlie this mixing via the diagram shown in figure 3.1.

The Kaon oscillation period is determined by the mass splitting of the mass eigenstates and can be measured to be $\Delta m / 2 \pi \approx 1.2 \times 10^{-9} s$ [29]. From this experimental result we

Figure 3.1.: Feynman diagram representing the transition of a K^{0} into a \bar{K}^{0} by the exchange of two W bosons.
can qualitatively conclude that we should expect on average around 40-50 oscillations in the lifetime of the long lived Kaon mass eigenstate K_{L} with $\tau_{L} \approx 0.5 \times 10^{-7} \mathrm{~s}$. Although a classical picture, it is similar to flipping a coin where we have no possibility of tracking the number of flips but expecting several flips midair. We have to go with a $50 / 50$ heads/tails expectation value. Hence we take a superposition of the Kaon flavor states. In the end, we want the expectation value for finding a K^{0} or a \bar{K}^{0} in the final state. Should the weak interaction, which is responsible for the oscillation diagrams, couple equally to the constituent quarks of K^{0} and \bar{K}^{0} (and as such not differentiate between particle and antiparticle), we take superpositions with even weights.

$$
\begin{align*}
\left|K_{C P+}\right\rangle & =\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right] \\
\left|K_{C P-}\right\rangle & =\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\right] \tag{3.19}
\end{align*}
$$

These happen to be CP eigenstates with eigenvalues +1 and -1 as we can easily verify.
Kaons decay via the weak interaction into Pions. The only possible Pion final states are $(\pi \pi)$ and $(\pi \pi \pi)$ since four Pions would exceed the Kaon rest mass. A single Pion is a CP eigenstate with eigenvalue -1 , thus the $(\pi \pi)$ state has CP eigenvalue $(-1)(-1)=+1$ while the $(\pi \pi \pi)$ state has CP eigenvalue $(-1)(-1)(-1)=-1$. This dictates $K_{C P+} \rightarrow(\pi \pi)$ and $K_{C P-} \rightarrow(\pi \pi \pi)$ as the only possibilities.

The decay into a three Pion final state has a very small phase space because the production of three Pions take nearly all the energy of the Kaon rest mass. This results in a large difference in lifetime between the two physical Kaon states of ~ 600. Hence the experimentally observed Kaon states were labelled K_{S} for the short lived state, to be identified with the $K_{C P+}$ state, and K_{L} for the long lived state, to be identified with $K_{C P-}$.

This large difference in lifetime is unique to the Kaon system (as opposed to the B and B_{s} meson systems for example). It presents a great opportunity to test the assumption we made about whether the weak interaction actually treats the constituents of the K^{0} equally to the constituents of the \bar{K}^{0} - whether it treats particles and antiparticles in the same way. If we were to prepare a Kaon beam and waited a sufficient amount of time of the order of the K_{L} lifetime, we would expect all K_{S} to have decayed long ago. Hence only K_{L} particles remain, which by CP conservation can only decay into three Pions. Should
we observe a two Pion final state, we found that CP is not conserved.
This is what Christenson, Cronin, Fitch and Turlay found in 1964. Thus the weak interaction does not conserve CP, albeit the violation is very tiny as can be seen by the smallness of the fraction of K_{L} which decay to two Pions, which is only about 0.3% of all decaying K_{L}. Nevertheless, the CP violation is there. In our line of arguments, there are two spots where we assumed CP invariance of the weak interaction.

CP violation in mixing

First we assumed that the mixing via the box diagrams would be equally weighed because the exchange of the weak bosons would not differentiate between particle and antiparticle. This turns out to be not quite right, one seems to be slightly favored over the other, leading to slightly uneven weights in the superposition [68].

$$
\begin{align*}
& \left|K_{S}\right\rangle \sim(1+\tilde{\epsilon})\left|K^{0}\right\rangle+(1-\tilde{\epsilon})\left|\bar{K}^{0}\right\rangle \\
& \left|K_{L}\right\rangle \sim(1+\tilde{\epsilon})\left|K^{0}\right\rangle-(1-\tilde{\epsilon})\left|\bar{K}^{0}\right\rangle \tag{3.20}
\end{align*}
$$

both having a slightly larger portion of K^{0} than \bar{K}^{0}. The proportionality is just a normalization factor. Therefore $\tilde{\epsilon}$ is a measure of CP violation in mixing. The states K_{L} and K_{S} are not orthogonal anymore as a result of this [69]

$$
\begin{equation*}
\left\langle K_{S} \mid K_{L}\right\rangle=\frac{2 \operatorname{Re} \tilde{\epsilon}}{1+|\tilde{\epsilon}|^{2}} \approx 2 \operatorname{Re} \tilde{\epsilon}=2 \operatorname{Re} \epsilon_{K} \tag{3.21}
\end{equation*}
$$

$\tilde{\epsilon}$ is not convention independent and the above picture is valid only in a certain class of conventions which we will assume from now on. These are the so called 'physical phase conventions' [70] which assume $\operatorname{Arg} A_{0} \ll 1$ [71] which implies $\tilde{\epsilon}$ is a small parameter. We will define the convention independent observable called ϵ_{K} in Section 3.2.4. The relation between these quantities is given by $\epsilon_{K}=\tilde{\epsilon}+i \operatorname{Im} A_{0} / \operatorname{Re} A_{0}$ [72] [29], where A_{0} is a Kaon to Pion isospin amplitude to be defined in Section 3.2.6. The quantities A_{0} and A_{2} depend on the phase convention chosen for the strange quark state and it is possible to make either of them real [29]. For example, the Wu Yang convention is defined by $\operatorname{Im} A_{0}=0$ [71], which is the choice that gives $\tilde{\epsilon}=\epsilon_{K}$. Neverthless, the real parts of $\tilde{\epsilon}$ and ϵ_{K} are identical and measure the non-orthogonality of the physical Kaon states, as indicated by equation (3.21). The normalization factor is negligible since $|\tilde{\epsilon}| \sim \mathcal{O}\left(10^{-3}\right)$.

We note, that the non-orthogonality of the Kaon mass eigenstates can be measured via the semileptonic charge asymmetry [29]

$$
\begin{equation*}
A_{L}=\frac{\Gamma\left(K_{L} \rightarrow \pi^{-} \ell^{+} \nu\right)-\Gamma\left(K_{L} \rightarrow \pi^{+} \ell^{-} \nu\right)}{\Gamma\left(K_{L} \rightarrow \pi^{-} \ell^{+} \nu\right)+\Gamma\left(K_{L} \rightarrow \pi^{+} \ell^{-} \nu\right)}=\frac{2 \operatorname{Re} \tilde{\epsilon}}{1+|\tilde{\epsilon}|^{2}} \tag{3.22}
\end{equation*}
$$

and was found to be [29]

$$
\begin{equation*}
A_{L}=(3.32 \pm 0.06) \times 10^{-3} \tag{3.23}
\end{equation*}
$$

therefore $\operatorname{Re} \epsilon_{K} \approx 1.6 \times 10^{-3}$. Compared with the measurements of $\left|\epsilon_{K}\right|=2.228 \pm 0.011 \times$ 10^{-3}, this implies an imaginary part of roughly $\operatorname{Im} \epsilon_{K} \approx 1.5 \times 10^{-3}$ or a phase of about $\operatorname{Arg} \epsilon_{K} \approx 44^{\circ}$.

CP violation in decay

Second we assumed that the decay was only possible from states of a certain CP parity to states of the same CP parity, meaning CP were conserved in the decay. So even if we retained a negative CP eigenstate, that is were to project the K_{L} state on its $K_{C P-}$ part, the CP (-1) Kaon state could only decay into the CP $(-1)(\pi \pi \pi)$ state. However, also being mediated through the weak interaction, this does not hold. There is a slight chance to go from a definite CP initial state to a different CP final state through a weak decay. This is more clearly shown in charged Kaon decays, where mixing is absent and hence the only source of CP violation is CP violation in the decay.

3.2.2. Constructing Observables - η_{00} and η_{+-}

We now know that we have CP violation when we observe a K_{L} decay into two Pions. As phenomenologists, we want to construct observables that can be calculated and compared with the experimental numbers. The central observables in the neutral Kaon system are the amplitude ratios [68]

$$
\begin{align*}
\eta_{00} & =\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \\
\eta_{+-} & =\frac{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \tag{3.24}
\end{align*}
$$

We want to take some time to address some central questions about these quantities which are usually glossed over in technical reviews. Like: 'why do we take amplitude ratios? I can't measure amplitudes, can I?', 'why is K_{L} normalized to K_{S} ? How much sense does that make?' or to rephrase that a little 'what do the magnitudes of these η 's mean, how much CP violation do I have if they are $3,10^{-3}$ or 10.000 ?'. Clarifying questions like that is essential to understand the results.

The η FAQ

On the theory side, we take ratios of amplitudes to discriminate 'direct CP violation' and 'indirect CP violation'.

We can calculate the amount of the probability amplitude that comes from decay type diagrams (direct CP violation) and the amount that comes from mixing type diagrams (indirect CP violation). If we can combine the experimental observables in such a way that we can compare the measured numbers with our Standard Model calculations, we can obtain values for these amplitude level quantities. As it turns out, this is indeed possible as we will see later.

Since 'direct CP violation' and 'indirect CP violation' are concepts defined at amplitude level, it is most convenient to work with amplitudes which we can formally just separate into a sum of these parts.

On the experimental side, we can access these combinations of amplitudes because it is a ratio which has a common final state. We can take a ratio of decay rates and see that the phase space dependence cancels and all that remains is the ratio of amplitudes.

$$
\begin{equation*}
\frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}=\frac{\left.\left|\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}\right| K_{L}\right\rangle\left.\right|^{2}}{\left.\left|\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}\right| K_{S}\right\rangle\left.\right|^{2}}=\left|\eta_{00}\right|^{2} \tag{3.25}
\end{equation*}
$$

The parameters $\boldsymbol{\epsilon}_{\boldsymbol{K}}$ and $\boldsymbol{\epsilon}_{\boldsymbol{K}}^{\prime}$ correspond to 'indirect CP violation' and direct ' CP violation', respectively. Barring coefficients, they are

$$
\begin{align*}
\epsilon_{K} & \sim \eta_{+-}+\eta_{00} \\
\epsilon_{K}^{\prime} & \sim \eta_{+-}-\eta_{00} \tag{3.26}
\end{align*}
$$

We will discuss these relations in Section 3.2 .4 in more detail and derive the coefficients explicitly in Appendix C.3. Here we can understand them qualitatively as follows: The amplitudes η_{+-}and η_{00} only differ in their final states, which means that the mixing parts of the amplitudes, which have no business with those final states, are the same and cancel in the difference. Hence, if the difference of the η 's is nonzero it is a measure of direct CP violation.

We should mention that according to [72], while "a nonzero ϵ_{K}^{\prime} is an unambiguous indication of direct $C P$ violation [...] However, even if the theory has direct $C P$ violation, ϵ_{K}^{\prime} may still be zero. This occurs if the two CP-violating phases are equal." ([72], p.1115) Experiments did measure a nonzero ϵ_{K}^{\prime} and thereby established direct CP violation in the SM.

Why exactly the sum of the η s is proportional only to indirect CP violation is not that easy to answer. We hope to clarify that by the end of Section 3.2.4. Let's consent ourselves for the moment with the limit in which the η s are equal and hence identical to ϵ_{K}. This may make sense because this is the limit in which the final states contribute not at all (or equally for that matter). We see from experiment, that $\left|\eta_{+-}\right| \approx\left|\eta_{00}\right|$ is sufficiently fulfilled, therefore we can say $\left|\epsilon_{K}\right| \approx\left|\eta_{+-}\right| \approx\left|\eta_{00}\right|$. In this limit, we neglected direct CP violation $\left|\epsilon_{K}^{\prime}\right| \approx 0$. But $\left|\epsilon_{K}^{\prime}\right| \ll\left|\epsilon_{K}\right|$ anyway and in this limit, we get a very clear picture and a more accessible and even not that inaccurate measure of $\left|\epsilon_{K}\right|$.
"How much CP violation do we have if $\left|\eta_{00}\right|=2 \times 10^{-3}$?"

Phrases like 'CP violation is small. It's 10^{-3}, are very common. Yet, that statement in itself is without meaning. We need a standard against which we can define something as 'small' or 'large'. Would $5 \cdot 10^{-3}$ be a lot of CP violation? Would 10^{4} be? Or would these numbers also be considered 'small'? So what is the standard against which 'small' and 'large' are defined? And to give this standard meaning, we need most of all a context that allows us to grasp these concepts.

We give this context by starting with branching ratios. We laid out in section 3.2.1 in detail why observing a K_{L} decay into two Pions means that CP is violated in the process. Branching ratios give us a very accessible idea on what we can define as 'small' and 'large'. They tell us how many percent of all decays of a given initial state decay to this specific final state. For the K_{L}, there are two possible final states for the pair of Pions, namely $\left|\pi^{+} \pi^{-}\right\rangle$and $\left|\pi^{0} \pi^{0}\right\rangle$. We can thus define the question how much CP violation we talk about through the sum of the CP violating decays

$$
\begin{equation*}
\mathrm{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)+\mathrm{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \neq 0 \tag{3.27}
\end{equation*}
$$

It is actually possible to relate the sum of the branching ratios to the $\eta \mathrm{s}$ if we take some minor approximations of the order of neglecting the difference of the ηs. Hence, we have $\left|\eta_{00}\right| \approx\left|\eta_{+-}\right| \approx\left|\epsilon_{K}\right|$ as argued above. We end up with

$$
\begin{equation*}
\mathrm{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)+\mathrm{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \approx \tau_{L} / \tau_{S} \cdot\left|\epsilon_{K}\right|^{2} \tag{3.28}
\end{equation*}
$$

we give an explicit derivation of this formula in Appendix C.1. This formula is actually also used in the original paper by Christenson et al [67], although they seem to have accidentally multiplied the lifetimes instead of taking the ratio. Also, compare with equation (8.26) of [73], where the ratio of total widths has not been replaced by the inverse ratio of the lifetimes. Otherwise, its this equation.

The nonlinear relation and the lifetime factor suggests that the branching ratios and the η s are only by accident numerically similar. However, there are often deeper connections in such accidents and it may be that such a connection here merely escaped us. In any case, we find that if the sum of the branching ratios was 10% or even 50% - so by all means large - the η s would be $\eta \approx 1.32 \times 10^{-2}$ and $\eta \approx 2.96 \times 10^{-2}$ where the latter had to be interpreted as a large number!

3.2.3. Mixing Formalism $-\epsilon_{K}$

Working in the well known two state formalism for mixing and propagation for neutral mesons, we start with the Schroedinger equation [74]

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}\binom{\left|K^{0}\right\rangle}{\left|\bar{K}^{0}\right\rangle}=H\binom{\left|K^{0}\right\rangle}{\left|\bar{K}^{0}\right\rangle} \tag{3.29}
\end{equation*}
$$

which governs the time evolution of the two state system. The two state Hamiltonian is given by

$$
H=M-\frac{i}{2} \Gamma=\left(\begin{array}{ll}
M_{11} & M_{12} \tag{3.30}\\
M_{12}^{*} & M_{11}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{12}^{*} & \Gamma_{11}
\end{array}\right)
$$

with hermitian matrices M and Γ and $M_{22}=M_{11}$ and $\Gamma_{22}=\Gamma_{11}$ from assuming CPT invariance.

The Kaon mass states can be expressed via the weak interaction states in the following way

$$
\begin{align*}
\left|K_{S}\right\rangle & =p\left|K^{0}\right\rangle+q\left|\bar{K}^{0}\right\rangle \\
\left|K_{L}\right\rangle & =p\left|K^{0}\right\rangle-q\left|\bar{K}^{0}\right\rangle \tag{3.31}
\end{align*}
$$

where the connection to the formulation via $\tilde{\epsilon}$ is given by $\tilde{\epsilon}=\frac{1-q / p}{1+q / p}$ or $\frac{q}{p}=\frac{1-\tilde{\epsilon}}{1+\tilde{\epsilon}}$.
The Bell-Steinberger relation [75] links the loss of probability caused by the anti-hermitian part Γ to the Kaon decay amplitudes. Based on physical intuition, this does make a lot of sense: Whatever amount of probability we loose in the oscillating Kaon system must correspond to Kaons which have decayed. This relation ties the mass and decay matrix of the quantum mechanical mixing formalism to the field theoretic amplitudes for mixing and decay. Its success gives credit to the Bell-Steinberger relation, although it is not derived on strict mathematical grounds. The physical idea behind it is solid enough that it should hold to a good approximation. We should, however, be cautious to conclude that it holds to arbitrary precision. This has been discussed in the literature, see e.g. [76] for a recent discussion and references therein. Especially CPT tests based on formalisms involving the Bell-Steinberger relation are criticized as to possibly be problematic.

We find [77]

$$
\begin{equation*}
\left(\frac{q}{p}\right)^{2}=\frac{M_{12}^{*}-\frac{i}{2} \Gamma_{12}^{*}}{M_{12}-\frac{i}{2} \Gamma_{12}} \tag{3.32}
\end{equation*}
$$

Note that this is not an absolute square. We can then express the element of the two state Hamiltonian through the mixing matrix element computable by quantum field theory [78]

$$
\begin{equation*}
H_{12}=M_{12}-\frac{i}{2} \Gamma_{12}=\left\langle K^{0}\right| \mathcal{H}_{e f f}\left|\bar{K}^{0}\right\rangle \tag{3.33}
\end{equation*}
$$

Putting all this together, we can express the deviation from orthogonality of the mass eigenstates K_{L} and K_{S} from equation (3.21) in the following way [74]

$$
\begin{equation*}
2 \operatorname{Re} \epsilon_{K} \approx\left\langle K_{L} \mid K_{S}\right\rangle=\frac{1-|q / p|^{2}}{1+|q / p|^{2}} \tag{3.34}
\end{equation*}
$$

where the approximation made is that $1+|\tilde{\epsilon}|^{2} \approx 1$ holds, as already mentioned in section 3.2.1.

3.2.4. Decay Formalism $-\epsilon_{K}^{\prime}$

The formalism for ϵ_{K}^{\prime} has been developed in more than 50 years of science. Having been improved at many stages depending on the necessities of that time, it carries some nowadays impractical and outdated formalism. We try to give a comprehensive review here, although trying to keep a slightly more modern perspective than most standard literature. The following is largely based on the reviews [78] and [69].

The focal point for our construction of an observable is the decay from a Kaon CP eigenstate with eigenvalue -1 to a $(\pi \pi)$ final state. We take this as the definition of direct CP violation. [79]

$$
\begin{equation*}
\tilde{\epsilon}_{f}^{\prime}:=\frac{\langle f| \mathcal{H}_{e f f}\left|K_{C P-}\right\rangle}{\langle f| \mathcal{H}_{e f f}\left|K_{C P+}\right\rangle} \tag{3.35}
\end{equation*}
$$

where $f=\left\{\left(\pi^{+} \pi^{-}\right),\left(\pi^{0} \pi^{0}\right)\right\}$. We normalized the expression to the amplitude of the CP +1 eigenstate for convenience. How can we relate this to experimental observables?

First, we express the CP eigenstates through flavor eigenstates (cf. Equation (3.19)) and choose the CP phase to be trival

$$
\begin{equation*}
\tilde{\epsilon}_{f}^{\prime}=\frac{\langle f| \mathcal{H}_{e f f}\left|K^{0}\right\rangle-\langle f| \mathcal{H}_{e f f}\left|\bar{K}^{0}\right\rangle}{\langle f| \mathcal{H}_{e f f}\left|K^{0}\right\rangle+\langle f| \mathcal{H}_{e f f}\left|\bar{K}^{0}\right\rangle}=: \frac{1-g_{f} / h_{f}}{1+g_{f} / h_{f}} \tag{3.36}
\end{equation*}
$$

We defined $g_{f}:=\langle f| \mathcal{H}_{e f f}\left|K^{0}\right\rangle$ and $h_{f}:=\langle f| \mathcal{H}_{e f f}\left|\bar{K}^{0}\right\rangle$. In the standard literature, these quantities are often denoted A_{f} and \bar{A}_{f}. Note that $\tilde{\epsilon}_{f}^{\prime}$ depends on the final state, whereas for mixing, there was trivially just one such quantity $\tilde{\epsilon}$. In this CP phase convention, the form (3.36) again shows clearly why this quantity is related to CP violation: it is zero if there is no difference between K^{0} and its antiparticle \bar{K}^{0} in the decay to a certain final state.

We now define the amplitude ratio η_{f} for the physical Kaon states [78]

$$
\begin{equation*}
\eta_{f}:=\frac{\langle f| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\langle f| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}=\frac{1-q g_{f} / p h_{f}}{1+q g_{f} / p h_{f}} \tag{3.37}
\end{equation*}
$$

which can be determined experimentally. This is the definition for the aforementioned η_{+-}and η_{00}, now explicitly using the definitions for the mixing and decay coefficients q, p, h_{f} and g_{f}, given in Equations (3.31) and (3.36). The task at hand is to entangle g_{f} and h_{f} from q and p and at the same time construct phase convention independent quantities from then. Through a gruesome calculation we get (see Appendix C. 2 for details. The authors of [78] sarcastically comment on this "it is not difficult to show, that η_{f} can be rewritten as: ([78], p.2)")

$$
\begin{equation*}
\eta_{f}=\frac{a_{\tilde{\epsilon}}+a_{\tilde{\epsilon}_{f}^{\prime}}+i a_{\tilde{\epsilon}+\tilde{\epsilon}_{f}^{\prime}}}{2+a_{\tilde{\epsilon}} a_{\tilde{\epsilon}_{f}^{\prime}}+a_{\tilde{\epsilon} \tilde{\epsilon}_{f}^{\prime}}} \tag{3.38}
\end{equation*}
$$

where the a s are constructed to be phase convention independent. They are given by [78]

$$
\begin{align*}
a_{\tilde{\epsilon}}=\frac{1-|q / p|^{2}}{1+|q / p|^{2}} & =\frac{2 \operatorname{Re} \tilde{\epsilon}}{1+|\tilde{\epsilon}|^{2}} \\
a_{\tilde{\epsilon}_{f}^{\prime}}=\frac{1-\left|g_{f} / h_{f}\right|^{2}}{1+\left|g_{f} / h_{f}\right|^{2}} & =\frac{2 \operatorname{Re} \tilde{\epsilon}_{f}^{\prime}}{1+\left|\tilde{\epsilon}_{f}^{\prime}\right|^{2}} \\
a_{\tilde{\epsilon}+\tilde{\epsilon}_{f}^{\prime}}=\frac{-4 \operatorname{Im}\left(q g_{f} / p h_{f}\right)}{\left(1+\left|g_{f} / h_{f}\right|^{2}\right)\left(1+|q / p|^{2}\right)} & =\frac{2 \operatorname{Im} \tilde{\epsilon}\left(1-\left|\tilde{\epsilon}_{f}^{\prime}\right|^{2}\right)-2 \operatorname{Im} \tilde{\epsilon}_{f}^{\prime}\left(1-|\tilde{\epsilon}|^{2}\right)}{\left(1+\left|\tilde{\epsilon}_{f}^{\prime}\right|^{2}\right)\left(1+|\tilde{\epsilon}|^{2}\right)} \\
a_{\tilde{\epsilon}_{f}^{\prime}}=\frac{4 \operatorname{Re}\left(q g_{f} / p h_{f}\right)}{\left(1+\left|g_{f} / h_{f}\right|^{2}\right)\left(1+|q / p|^{2}\right)}-1 & =\frac{4 \operatorname{Im} \tilde{\epsilon} \operatorname{Im} \tilde{\epsilon}_{f}^{\prime}-2\left(\left|\tilde{\epsilon}_{f}^{\prime}\right|^{2}+|\tilde{\epsilon}|^{2}\right)}{\left(1+\left|\tilde{\epsilon}_{f}^{\prime}\right|^{2}\right)\left(1+|\tilde{\epsilon}|^{2}\right)} \tag{3.39}
\end{align*}
$$

We know experimentally that CP violation is small and we work in a physical phase convention which reflects this $\left(\left|\tilde{\epsilon}_{f}^{\prime}\right|,|\tilde{\epsilon}| \ll 1\right)$. Therefore we can safely neglect terms quadratic in $\left|\tilde{\epsilon}_{f}^{\prime}\right|$ and $|\tilde{\epsilon}|$. We then get

$$
\begin{align*}
a_{\tilde{\epsilon}} & \approx 2 \operatorname{Re} \tilde{\epsilon}=: 2 \operatorname{Re} \epsilon_{K} \\
a_{\tilde{\epsilon}_{f}^{\prime}} & \approx 2 \operatorname{Re} \tilde{\epsilon}_{f}^{\prime}=: 2 \operatorname{Re} \epsilon_{f}^{\prime} \\
a_{\tilde{\epsilon}+\tilde{\epsilon}_{f}^{\prime}} & \approx 2 \operatorname{Im} \tilde{\epsilon}+2 \operatorname{Im} \tilde{\epsilon}_{f}^{\prime} \equiv 2 \operatorname{Im} \epsilon_{K}+2 \operatorname{Im} \epsilon_{f}^{\prime} \\
a_{\tilde{\epsilon}_{f}^{\prime}}^{\prime} & \approx 0 \tag{3.40}
\end{align*}
$$

As already shown in the last section, $a_{\tilde{\epsilon}}$ purely measures indirect CP violation. In the case that the final states are CP eigenstates (which is the case for $K \rightarrow \pi \pi$ decays we are
interested in), $a_{\tilde{\epsilon}_{f}^{\prime}}$ purely measures direct CP violation. $a_{\tilde{\epsilon}+\tilde{\epsilon}_{f}^{\prime}}$ purely measures interference CP violation [78]. With the approximation that CP violation is small, we recover here that the imaginary parts of $\tilde{\epsilon}$ and $\tilde{\epsilon}_{f}^{\prime}$ indicate interference type CP violation, while the real parts are measures of mixing and decay type CP violation, respectively. Note that while $a_{\tilde{\epsilon}+\tilde{\epsilon}_{f}^{\prime}}$ is convention independent, $\operatorname{Im} \tilde{\epsilon}$ and $\operatorname{Im} \tilde{\epsilon}_{f}^{\prime}$ themselves are not, as already mentioned for $\tilde{\epsilon}$ in Section 3.2.1. Hence, the convention dependence of $\operatorname{Im} \tilde{\epsilon}$ and $\operatorname{Im} \tilde{\epsilon}_{f}^{\prime}$ must cancel in the sum. $\operatorname{Re} \tilde{\epsilon}$ and $\operatorname{Re} \epsilon_{f}^{\prime}$ are both convention independent, thus we symbolically removed the tildes in equation (3.40) to indicate that we ended up with convention independent quantities.

We write η_{f} with this approximation [78]

$$
\begin{equation*}
\eta_{f}=\frac{a_{\tilde{\epsilon}}+a_{\tilde{\epsilon}_{f}^{\prime}}+i a_{\tilde{\epsilon}+\tilde{\epsilon}_{f}^{\prime}}}{2+a_{\tilde{\epsilon}} a_{\tilde{\epsilon}_{f}^{\prime}}+a_{\tilde{\epsilon}_{f}^{\prime}}} \approx \operatorname{Re} \epsilon_{K}+\operatorname{Re} \epsilon_{f}^{\prime}+i \operatorname{Im} \epsilon_{K}+i \operatorname{Im} \epsilon_{f}^{\prime}=\epsilon_{K}+\epsilon_{f}^{\prime} \tag{3.41}
\end{equation*}
$$

As we already mentioned, the convention dependence must cancel in the sum of the imaginary parts, hence we can identify it with the sum of the imaginary parts of the observables. Here we see very clearly that the experimentally accessible amplitude ratio measuring CP violation gets split into two parts: One part, ϵ_{K}, is independent of the final state and thus contains mixing type CP violation while the other part, ϵ_{f}^{\prime}, depends on the final state and thus contains decay type CP violation.

So for the two Pion final states in neutral Kaon decays, we have

$$
\begin{equation*}
\eta_{+-}=\epsilon_{K}+\epsilon_{+-}^{\prime} \quad \eta_{00}=\epsilon_{K}+\epsilon_{00}^{\prime} \tag{3.42}
\end{equation*}
$$

In the next section we will relate ϵ_{00}^{\prime} to ϵ_{+-}^{\prime}. This leaves us with two unknowns in two equations (3.42) and allows us to express ϵ_{K} and ϵ_{K}^{\prime} through the experimental quantities η_{+-}and η_{00}.

There can be only one ϵ_{K}^{\prime}

When you get a chance to quote Christopher Lamberts most famous role (rivaling his appearance as thundergod in 'Mortal Kombat'), you should generally do it. The reason why there is only one ϵ_{K}^{\prime} instead of two - which we ended up with in the last section - is, that they are related by CPT invariance [69]. In Appendix C. 3 we calculate ϵ_{+-}^{\prime} and ϵ_{00}^{\prime} explicitly and obtain

$$
\begin{align*}
\epsilon_{+-}^{\prime} & =\tilde{\epsilon}_{K}^{\prime} \frac{1}{1+\omega / \sqrt{2}} \\
\epsilon_{00}^{\prime} & =-2 \tilde{\epsilon}_{K}^{\prime} \frac{1}{1-\sqrt{2} \omega} \tag{3.43}
\end{align*}
$$

as found in [69] [80]. This gives us the relation

$$
\begin{equation*}
\epsilon_{00}^{\prime}=-\frac{1}{2}\left(\frac{1-\sqrt{2} \omega}{1+\omega / \sqrt{2}}\right) \epsilon_{+-}^{\prime} \tag{3.44}
\end{equation*}
$$

ω is the parameter of the "poorly understood ([69], p.2)" $\Delta I=1 / 2$ rule, for a definition see Section 3.2.7.

With Equation (3.42) we find

$$
\begin{align*}
\eta_{+-} & =\epsilon_{K}+\tilde{\epsilon}_{K}^{\prime} \frac{1}{1+\omega / \sqrt{2}} \\
\eta_{00} & =\epsilon_{K}-2 \tilde{\epsilon}_{K}^{\prime} \frac{1}{1-\sqrt{2} \omega} \tag{3.45}
\end{align*}
$$

For completions sake, we give the widely used standard approximations, which correspond to discarding higher orders in ω (Note that ϵ_{K}^{\prime} includes one power of ω). We then have

$$
\begin{equation*}
\epsilon_{K}^{\prime} \approx \epsilon_{+-}^{\prime} \approx-1 / 2 \epsilon_{00}^{\prime} \tag{3.46}
\end{equation*}
$$

and subsequently get [29] [68] the famous Wu Yang triangle relations [81]

$$
\begin{equation*}
\eta_{+-}=\epsilon_{K}+\epsilon_{+-}^{\prime} \approx \epsilon_{K}+\epsilon_{K}^{\prime} \quad \quad \eta_{00}=\epsilon_{K}+\epsilon_{00}^{\prime} \approx \epsilon_{K}-2 \epsilon_{K}^{\prime} \tag{3.47}
\end{equation*}
$$

and thereby

$$
\begin{equation*}
\epsilon_{K} \approx \frac{2 \eta_{+-}+\eta_{00}}{3} \quad \epsilon_{K}^{\prime} \approx \frac{\eta_{+-}-\eta_{00}}{3} \tag{3.48}
\end{equation*}
$$

which are commonly used in relating the $\eta \mathrm{s}$ to ϵ_{K} and ϵ_{K}^{\prime}.

3.2.5. The Ratio $\epsilon_{K}^{\prime} / \epsilon_{K}$

It is very convenient to normalize ϵ_{K}^{\prime} to ϵ_{K}. On the one hand, the phases of the two quantities coincide [68] and $\left|\epsilon_{K}^{\prime} / \epsilon_{K}\right| \approx \operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)$. On the other hand, the ratio is historically particularly accessible to experiment [82] [83]. We work with the Wu Yang triangle relations, see Equation (3.47), which means neglecting higher powers of ω.

Through the relations (3.47) between η_{00}, η_{+-}and $\epsilon_{K}^{\prime}, \epsilon_{K}$, we can write the ratio of the $\eta \mathrm{s}$ as

$$
\begin{equation*}
\frac{\eta_{00}}{\eta_{+-}}=\frac{\epsilon_{K}-2 \epsilon_{K}^{\prime}}{\epsilon_{K}+\epsilon_{K}^{\prime}}=\frac{1-2 \epsilon_{K}^{\prime} / \epsilon_{K}}{1+\epsilon_{K}^{\prime} / \epsilon_{K}} \tag{3.49}
\end{equation*}
$$

Then taking the absolute square

$$
\begin{equation*}
\left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2}=\left|\frac{1-2 \epsilon_{K}^{\prime} / \epsilon_{K}}{1+\epsilon_{K}^{\prime} / \epsilon_{K}}\right|^{2}=\frac{1-2\left(\epsilon_{K}^{\prime} / \epsilon_{K}+\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)^{*}\right)+4\left|\epsilon_{K}^{\prime} / \epsilon_{K}\right|^{2}}{1+\epsilon_{K}^{\prime} / \epsilon_{K}+\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)^{*}+\left|\epsilon_{K}^{\prime} / \epsilon_{K}\right|^{2}} \tag{3.50}
\end{equation*}
$$

We now use $\epsilon_{K}^{\prime} / \epsilon_{K}+\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)^{*}=2 \operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)$ and because of $\left|\epsilon_{K}^{\prime} / \epsilon_{K}\right| \ll 1$ (which implies $\left.\operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right) \ll 1\right)$ we can restrict ourselves to linear terms and get

$$
\begin{equation*}
\left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2} \approx \frac{1-4 \operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)}{1+2 \operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)} \approx\left(1-4 \operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)\right)\left(1-2 \operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right)\right) \tag{3.51}
\end{equation*}
$$

where we used the geometric series $\frac{1}{1-q}=1+q+\mathcal{O}\left(q^{2}\right)$ with $q<1$. We thus find

$$
\begin{equation*}
\left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2} \approx 1-6 \operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right) \tag{3.52}
\end{equation*}
$$

up to corrections of order $\mathcal{O}\left(\left|\epsilon_{K}^{\prime} / \epsilon_{K}\right|^{2}\right)$. This is a form often quoted in the literature [29] [83] [82]

We want to go one step further here, because connecting abstract quantities to quantities which most people have an intuition for is what nurtures understanding. In the ratio of decay rates to the same final state, the phase space dependence cancels and thus we have

$$
\begin{equation*}
\left|\frac{\eta_{00}}{\eta_{+-}}\right|^{2}=\frac{\left|\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right|^{2}}{\left|\frac{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right|^{2}}=\frac{\left(\frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}\right)}{\left(\frac{\Gamma\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}\right)}=\frac{\left(\frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}\right)}{\left(\frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}\right)} \tag{3.53}
\end{equation*}
$$

where we used that the lifetime factor drops out in this expression and we can therefore express it directly via branching ratios.

We thus find

$$
\begin{equation*}
\frac{\left(\frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}\right)}{\left(\frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}\right)} \approx 1-6 \operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right) \tag{3.54}
\end{equation*}
$$

up to corrections of order $\mathcal{O}\left(\left|\epsilon_{K}^{\prime} / \epsilon_{K}\right|^{2}\right)$ and $\mathcal{O}\left(|\omega|^{2}\right)$ due to the ansatz.
Now recall that the phases for ϵ_{K}^{\prime} and ϵ_{K} coincide. Therefore $\operatorname{Im}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right) \approx 0$ and $\operatorname{Re}\left(\epsilon_{K}^{\prime} / \epsilon_{K}\right) \approx\left|\epsilon_{K}^{\prime} / \epsilon_{K}\right| \approx \epsilon_{K}^{\prime} / \epsilon_{K}$. This gives us

$$
\begin{equation*}
\frac{\epsilon_{K}^{\prime}}{\epsilon_{K}} \approx \frac{1}{6}\left[1-\frac{\left(\frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}\right)}{\left(\frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}\right)}\right] \tag{3.55}
\end{equation*}
$$

This way we connect $\epsilon_{K}^{\prime} / \epsilon_{K}$ directly to Kaon to Pion branching ratios.

3.2.6. Isospin Amplitudes

To investigate Kaon CP violation, it is very useful to switch to the Pion isospin basis. We have yet to find a clear statement about the interpretation of these isospin states. Most authors are very conservative about this and just state that the decomposition is possible and useful. Mathematically, it is just a change of basis, but while we have clear interpretations of the Kaon bases in terms of propagating mass states, interacting flavor states or CP states that we need to define CP violation, we have found no comment about the physical interpretation of the isospin states.

The two Pion final states we find in the detector are $\left|\pi^{+} \pi^{-}\right\rangle$and $\left|\pi^{0} \pi^{0}\right\rangle$. Using standard methods for the addition of two spin-1 states, we can obtain the strong isospin states of the two Pion systems

$$
\begin{align*}
\left|\pi^{0} \pi^{0}\right\rangle & =\sqrt{\frac{1}{3}}\left|(\pi \pi)_{I=0}\right\rangle-\sqrt{\frac{2}{3}}\left|(\pi \pi)_{I=2}\right\rangle \\
\left|\pi^{+} \pi^{-}\right\rangle & =\sqrt{\frac{2}{3}}\left|(\pi \pi)_{I=0}\right\rangle+\sqrt{\frac{1}{3}}\left|(\pi \pi)_{I=2}\right\rangle \tag{3.56}
\end{align*}
$$

Solving for the isospin eigenstates $\left|(\pi \pi)_{I=0}\right\rangle$ and $\left|(\pi \pi)_{I=2}\right\rangle$, we get

$$
\begin{align*}
& \left|(\pi \pi)_{I=0}\right\rangle=\sqrt{\frac{2}{3}}\left|\pi^{+} \pi^{-}\right\rangle+\sqrt{\frac{1}{3}}\left|\pi^{0} \pi^{0}\right\rangle \\
& \left|(\pi \pi)_{I=2}\right\rangle=\sqrt{\frac{1}{3}}\left|\pi^{+} \pi^{-}\right\rangle-\sqrt{\frac{2}{3}}\left|\pi^{0} \pi^{0}\right\rangle \tag{3.57}
\end{align*}
$$

There is no $I=1$ state in the two Pion system because the Pion wave function is bosonic and does not allow an odd state.

We use the following notation for the amplitudes $A_{I}:=\left\langle(\pi \pi)_{I}\right| \mathcal{H}_{e f f}\left|K^{0}\right\rangle$ and the CP conjugates $\bar{A}_{I}:=\left\langle(\pi \pi)_{I}\right| \mathcal{H}_{e f f}\left|\bar{K}^{0}\right\rangle$. Through Watson's theorem [84], the strong phases δ_{I} which correspond to strong elastic rescattering of the Pions can be extracted explicitly. Assuming CPT conservation, the amplitudes can be written with explicit phases [68]

$$
\begin{align*}
A_{I} & =a_{I} e^{i \delta_{I}}=\left|a_{I}\right| e^{i \phi_{I}} e^{i \delta_{I}} \\
\bar{A}_{I} & =a_{I}^{*} e^{i \delta_{I}}=\left|a_{I}\right| e^{-i \phi_{I}} e^{i \delta_{I}} \tag{3.58}
\end{align*}
$$

The 'strong phases' δ_{I} are defined as not to flip sign when transformed under CP, while the 'weak phases' ϕ_{I} by definition do change sign under CP.

3.2.7. $\Delta I=1 / 2$ rule: Omega

The amplitude ratio ω is constructed from the $K_{S} \rightarrow(\pi \pi)_{I}$ amplitudes. These decays are CP allowed and with CP violation being as small as it is, it can usually be neglected in this quantity, taking K_{L} and K_{S} as CP eigenstates by $q / p=1$.

$$
\begin{align*}
\omega & :=\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \\
& =\frac{A_{2}+\frac{q}{p} \bar{A}_{2}}{A_{0}+\frac{q}{p} \bar{A}_{0}} \\
& \approx e^{i\left(\delta_{2}-\delta_{0}\right)} \frac{a_{2}+a_{2}^{*}}{a_{0}+a_{0}^{*}} \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)} \frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}} \tag{3.59}
\end{align*}
$$

This form is found e.g. in [85]. Therefore we can take $|\omega| \approx \operatorname{Re} a_{2} / \operatorname{Re} a_{0}$ and $\operatorname{Arg} \omega \approx$ $\delta_{2}-\delta_{0}$.

The $K_{S} \rightarrow\left\{\pi^{0} \pi^{0}, \pi^{+} \pi^{-}\right\}$branching ratios

We can use this notation to show explicitly that the ratio of observed branching ratios in K_{S} decays to two Pions is an expression of the $\Delta I=1 / 2$ rule. We start by taking the ratio of branching ratios

$$
\begin{align*}
\frac{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)} & =\frac{\Gamma\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \\
& =\left|\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right|^{2} \tag{3.60}
\end{align*}
$$

where we assumed that the phase space for both two Pion final states is sufficiently identical. The normalization of decay rates in the branching ratio drops out in the ratio because we have the same initial states. Next, we decompose the Pion final states into Pion isospin states (see equation (3.57)):

$$
\begin{align*}
\left|\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right|^{2} & =\left|\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle+\sqrt{2}\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\sqrt{2}\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle-\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right|^{2} \\
& =\frac{1}{2}\left|\frac{1+\sqrt{2} \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}}{1-\frac{1}{\sqrt{2}} \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}}\right|^{2} \\
& =\frac{1}{2}\left|\frac{1+\sqrt{2} \omega}{1-\frac{1}{\sqrt{2}} \omega}\right|^{2} \tag{3.61}
\end{align*}
$$

where we put in our definition for ω as amplitude ratio of the K_{S} to the two Pion isospin final states.

At this point, we can insert the experimental numbers for ω and basically replace the question of why the branching ratios to the interaction final states of the two Pion system have the observed value by the question why the ratio of the isospin amplitudes have a certain value. This looks like no gain, and indeed the value of ω is poorly understood and coined $\Delta I=1 / 2$ rule (see e.g. [86] for a discussion of technical aspects), where the word 'rule' is the usual quantum mechanics jargon for not knowing the mechanics at work. Nevertheless, although we do not know why the value of ω is what it is, the above form helps a lot to understand about the formalism used in Kaon CP violation. The factor in brackets often appears and makes derivations look complicated. Here, we saw that it consists of Clebsch Gordan coefficients originating in the transition from interaction final states and isospin final states of the two Pion system, as well as ω itself, which expresses the preference of the K_{S} state to decay into the $(\pi \pi)_{0}$ state or the $(\pi \pi)_{2}$ state. The experimentally determined smallness of $|\omega| \approx 1 / 22 \approx 0.045$ [80] means K_{S} largely prefers to decay into $(\pi \pi)_{0}$ and is often exploited by expanding in $|\omega|$.

Separating ω in phase and absolute value, we can use the approximations $\operatorname{Arg} \omega \approx-\pi / 4$ [80] and $|\omega| \ll 1$ and get

$$
\begin{equation*}
\frac{1}{2}\left|\frac{1+\sqrt{2} \omega}{1-\frac{1}{\sqrt{2}} \omega}\right|^{2} \approx \frac{1}{2}(1-3|\omega|) \approx \frac{3}{7} \tag{3.62}
\end{equation*}
$$

We thus find for the branching ratios

$$
\begin{equation*}
\frac{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)} \approx \frac{3}{7} \tag{3.63}
\end{equation*}
$$

which reflects the experimental numbers [29]

$$
\begin{align*}
& \operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right) \approx(0.3069 \pm 0.0005) \\
& \operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right) \approx(0.6920 \pm 0.0005) \tag{3.64}
\end{align*}
$$

to a very good degree.
From the point of symmetry, we can thus view these numbers in the following way. In the limit $|\omega| \rightarrow 0$, the K_{S} state would only decay to the $(\pi \pi)_{0}$ final state. We can view this as an exact symmetry, which is broken by the small parameter ω. In the limit of vanishing ω we would have

$$
\begin{equation*}
\left.\frac{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}\right|_{\omega=0} \approx \frac{1}{2} \tag{3.65}
\end{equation*}
$$

With the input that K_{S} decays to pretty much nothing else than these two states, we get subsequently

$$
\begin{align*}
& \left.\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)\right|_{\omega=0} \approx 0 . \overline{3} \\
& \left.\operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)\right|_{\omega=0} \approx 0 . \overline{6} \tag{3.66}
\end{align*}
$$

which shows that the effect of ω is up to 10% in the branching ratios and far away from the quoted experimental errors. Nevertheless, the main effect on the split between the two interaction final states comes from Clebsch Gordan coefficients. In all the fuss about ω, this shouldn't be swept under the carpet. The split between the observed branching ratios for K_{S} to $\pi^{+} \pi^{-}$and $\pi^{0} \pi^{0}$ is 90% due to Clebsch Gordan coefficients. The picture is then following: The values of the branching ratios from K_{S} to $\pi^{+} \pi^{-}$ and $\pi^{0} \pi^{0}$ are due to the $\Delta I=1 / 2$ rule, which says: K_{S} mostly decays to the $(\pi \pi)_{0}$ isospin state, while the transition to the $(\pi \pi)_{2}$ state is suppressed by the small parameter $\omega=\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle /\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle \approx 0.045 \cdot \exp (-i \pi / 4) .[86]$ [87]

3.2.8. Isospin expressions for $\eta_{+-}, \eta_{00}, \epsilon_{K}$ and ϵ_{K}^{\prime}

To find the final form for $\epsilon_{K}^{\prime} / \epsilon_{K}$ which we used in our analysis, we first express η_{00} and η_{+-}through isospin amplitudes (3.56) and use the definition (3.59) for ω

$$
\begin{align*}
\eta_{+-} & =\frac{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{\text {eff }}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \\
& =\frac{\sqrt{2}\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle+\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\sqrt{2}\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle+\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \\
& =\frac{\sqrt{2}\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle+\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{\text {eff }}\left|K_{S}\right\rangle\left[\sqrt{2}+\frac{\left.\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}| |_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right]} \\
& =\left[\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{\text {eff }}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}+\frac{1}{\sqrt{2}} \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right]\left(\frac{1}{1+\frac{\omega}{\sqrt{2}}}\right) \tag{3.67}
\end{align*}
$$

$$
\eta_{00}=\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}
$$

$$
=\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle-\sqrt{2}\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle-\sqrt{2}\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}
$$

$$
=\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle-\sqrt{2}\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle\left[1-\sqrt{2} \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right]}
$$

$$
\begin{equation*}
=\left[\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}-\sqrt{2} \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right]\left(\frac{1}{1-\sqrt{2} \omega}\right) \tag{3.68}
\end{equation*}
$$

$\boldsymbol{\epsilon}_{\boldsymbol{K}}-$ Recall from equation (3.48) that $\epsilon_{K}=\left(2 \eta_{+-}+\eta_{00}\right) / 3$

$$
\begin{align*}
3 \epsilon_{K} & =2 \eta_{+-}+\eta_{00} \\
& =\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{2}{1+\omega / \sqrt{2}}+\frac{1}{1-\sqrt{2} \omega}\right]+\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{\sqrt{2}}{1+\omega / \sqrt{2}}-\frac{\sqrt{2}}{1-\sqrt{2} \omega}\right] \\
& =3 \frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{1-\omega / \sqrt{2}}{(1+\omega / \sqrt{2})(1-\sqrt{2} \omega)}\right]-3 \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{\omega}{(1+\omega / \sqrt{2})(1-\sqrt{2} \omega)}\right] \\
& =3 \frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[1+\omega^{2}+\mathcal{O}\left(\omega^{3}\right)\right]-3 \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\omega+\frac{\omega^{2}}{\sqrt{2}} \mathcal{O}\left(\omega^{3}\right)\right] \tag{3.69}
\end{align*}
$$

And with $\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}=\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}=\omega \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}$ we have

$$
\begin{equation*}
\epsilon_{K}=\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[1+\mathcal{O}\left(\omega^{2}\right)\right] \tag{3.70}
\end{equation*}
$$

$\boldsymbol{\epsilon}_{\boldsymbol{K}}^{\prime}-$ Recall from equation (3.48) that $\epsilon_{K}^{\prime}=\left(\eta_{+-}-\eta_{00}\right) / 3$

$$
\begin{align*}
3 \epsilon_{K}^{\prime}= & \eta_{+-}-\eta_{00} \\
= & \frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{1}{1+\omega / \sqrt{2}}-\frac{1}{1-\sqrt{2} \omega}\right]+\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{\sqrt{2}}{1+\omega / \sqrt{2}}+\frac{\sqrt{2}}{1-\sqrt{2} \omega}\right] \\
= & \frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{-3 \omega / \sqrt{2}}{(1+\omega / \sqrt{2})(1-\sqrt{2} \omega)}\right] \\
& \quad+\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{1}{\sqrt{2}} \frac{3}{(1+\omega / \sqrt{2})(1-\sqrt{2} \omega)}\right] \\
& =\left[\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}-\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right] 3 \frac{1}{\sqrt{2}} \omega\left[\frac{1}{(1+\omega / \sqrt{2})(1-\sqrt{2} \omega)}\right] \tag{3.71}
\end{align*}
$$

Expanding in ω we find

$$
\begin{equation*}
\epsilon_{K}^{\prime}=\frac{1}{\sqrt{2}}\left[\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}-\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right]\left[\omega+\frac{\omega^{2}}{\sqrt{2}}+\mathcal{O}\left(\omega^{3}\right)\right] \tag{3.72}
\end{equation*}
$$

To find an often used expression, we push the amplitudes around a little

$$
\begin{align*}
& \left(\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}-\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right) \omega \\
& =\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\left[\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}-\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right] \tag{3.73}
\end{align*}
$$

and insert ϵ_{K}

$$
\begin{equation*}
\epsilon_{K}^{\prime}=\frac{1}{\sqrt{2}} \epsilon_{K}\left[\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}-\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right]\left[1+\frac{\omega}{\sqrt{2}}+\mathcal{O}\left(\omega^{2}\right)\right] \tag{3.74}
\end{equation*}
$$

Ignoring subleading contributions in ω, we recover

$$
\begin{equation*}
\frac{\epsilon_{K}^{\prime}}{\epsilon_{K}} \approx \frac{1}{\sqrt{2}}\left[\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}-\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right] \tag{3.75}
\end{equation*}
$$

see e.g. [88].

3.2.9. Final Formula for $\epsilon_{K}^{\prime} / \epsilon_{K}$

We will now cast this into a different form with explicit dependence on the isospin amplitudes

$$
\begin{align*}
\sqrt{2} \frac{\epsilon_{K}^{\prime}}{\epsilon_{K}} & =\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \cdot\left(\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}\right)^{-1}-\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \\
& =\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{L}\right\rangle}-\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{S}\right\rangle} \\
& =\frac{A_{2}-(q / p) \overline{A_{2}}}{A_{0}-(q / p) \bar{A}_{0}}-\omega \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)}\left(\cdot \frac{a_{2}-(q / p) a_{2}^{*}}{\left.a_{0}-(q / p) a_{0}^{*}-\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}}\right)}\right. \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot\left(\frac{\operatorname{Re} a_{2}+i \operatorname{Im} a_{2}-(q / p) \operatorname{Re} a_{2}+i(q / p) \operatorname{Im} a_{2}}{\operatorname{Re} a_{0}+i \operatorname{Im} a_{0}-(q / p) \operatorname{Re} a_{0}+i(q / p) \operatorname{Im} a_{0}}-\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}}\right) \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot\left(\frac{(1-q / p) \operatorname{Re} a_{2}+i(1+q / p) \operatorname{Im} a_{2}}{(1-q / p) \operatorname{Re} a_{0}+i(1+q / p) \operatorname{Im} a_{0}}-\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}}\right) \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot\left(\frac{\tilde{\epsilon} \operatorname{Re} a_{2}+i \operatorname{Im} a_{2}}{\tilde{\epsilon} \operatorname{Re} a_{0}+i \operatorname{Im} a_{0}}-\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}}\right) \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot\left(\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}} \cdot \frac{\tilde{\epsilon}+i \frac{\operatorname{Im} a_{2}}{\operatorname{Re} a}}{\tilde{\epsilon}+i \frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}-\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}}}\right) \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot\left(\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}} \cdot \frac{\tilde{\epsilon}+i \frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}-i \frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}+i \frac{\operatorname{Im} a_{2}}{\operatorname{Re} a_{2}}}{\tilde{\epsilon}+i \frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}} \frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}}\right) \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot\left(\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}} \cdot \frac{\epsilon_{K}-i \frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}+i \frac{\operatorname{Im} a_{2}}{\operatorname{Re} a_{2}}}{\epsilon_{K}}-\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}}\right) \\
& =e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot\left(\frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}} \cdot \frac{-i \frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}+i \frac{\operatorname{Im} a_{2}}{\operatorname{Re} a_{2}}}{\epsilon_{K}}\right) \\
& =-i e^{i\left(\delta_{2}-\delta_{0}-\phi_{\epsilon_{K}}\right) \frac{|\omega|}{\left|\epsilon_{K}\right|} \cdot\left(\frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}-\frac{\operatorname{Im} a_{2}}{\operatorname{Re} a_{2}}\right)} \tag{3.76}
\end{align*}
$$

We find

$$
\begin{equation*}
\frac{\epsilon_{K}^{\prime}}{\epsilon_{K}}=-i e^{i\left(\delta_{2}-\delta_{0}-\phi_{\epsilon_{K}}\right)} \frac{1}{\sqrt{2}} \frac{|\omega|}{\left|\epsilon_{K}\right|} \cdot\left(\frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}-\frac{\operatorname{Im} a_{2}}{\operatorname{Re} a_{2}}\right) \tag{3.77}
\end{equation*}
$$

as found in e.g. [85], [29] and [79]. We used $\omega=e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot\left(\operatorname{Re} a_{2} / \operatorname{Re} a_{0}\right)$ as defined in equation (3.59), $\phi_{\epsilon_{K}}:=\operatorname{Arg} \epsilon_{K}, \tilde{\epsilon}=\frac{1-q / p}{1+q / p}$ from section 3.2.3 and the relation $\epsilon_{K}=\tilde{\epsilon}+i \frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}}$ from section 3.2.1. Note that the prefactor experimentally evaluates as $-i e^{i\left(\delta_{2}-\delta_{0}-\phi_{\epsilon_{K}}\right)} \approx 1$ [68]. This is a numerical accident, causing the ratio $\epsilon_{K}^{\prime} / \epsilon_{K}$ to be approximately real.

In practice, we take the phase factor to be unity, take $|\omega|$ and $\left|\epsilon_{K}\right|$ from experiment, as well as the real parts of the amplitudes $\operatorname{Re} a_{0}$ and $\operatorname{Re} a_{2}$.

3.2.10. Calculating $\operatorname{Im} a_{0}$ and $\operatorname{Im} a_{2}$

We are left to calculate the imaginary parts $\operatorname{Im} a_{0}$ and $\operatorname{Im} a_{2}$. The full determination of $\epsilon_{K}^{\prime} / \epsilon_{K}$ is quite involved. It requires calculating the hadronic matrix elements by nonperturbative methods like lattice QCD [35], as well as performing a matching calculation of the perturbative Wilson coefficients [40]. The latter capture the high energy effects and as such the appearance of new physics particles in virtual intermediate states. These parts need to be connected through a renormalization proceedure [43] which correctly converts the high energy expectation values to the low energy scale at which the decay or reaction in question actually takes place in experiment.

The formulae for the isospin amplitudes are given by [40]

$$
\begin{equation*}
a_{I}=\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K^{0}\right\rangle=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*} \sum_{i=1}^{10}\left[\left(z_{i}(\mu)-\tau y_{i}(\mu)\right)\left\langle(\pi \pi)_{0}\right| Q_{i}^{|1 / 2-I|}(\mu)\left|K^{0}\right\rangle\right] \tag{3.78}
\end{equation*}
$$

where $\tau=-V_{t d} V_{t s}^{*} / V_{u d} V_{u s}^{*}$ and $y_{i}(\mu)=v_{i}(\mu)-z_{i}(\mu)$. Because we are ultimately interested in $\operatorname{Im} a_{I}$, the relevant part is $\operatorname{Im} \tau$. In the standard parametrization of the CKM matrix [29], $V_{u d}$ and $V_{u s}$ are both real and the complex CKM phase, from which all weak CP violation in the Standard Model originates, causes $\operatorname{Im} V_{t d} V_{t s}^{*} \equiv \operatorname{Im} \lambda_{t} \neq 0$ and thereby in general $\epsilon_{K}^{\prime} / \epsilon_{K} \neq 0$.

The Wilson Coefficients z_{i} and y_{i} in Equation (3.78) are given by [40]

$$
\begin{align*}
& \vec{z}(\mu)=\hat{U}^{3}\left(\mu, m_{c}\right) \vec{z}\left(m_{c}\right) \\
& \vec{v}(\mu)=\hat{U}^{3}\left(\mu, m_{c}\right) M_{c} \hat{U}^{4}\left(m_{c}, m_{b}\right) M_{b} \hat{U}^{5}\left(m_{b}, m_{W}\right) \vec{C}\left(m_{W}\right) \tag{3.79}
\end{align*}
$$

Here, $\left\langle(\pi \pi)_{0}\right| Q_{i}^{|1 / 2-I|}(\mu)\left|K^{0}\right\rangle \equiv\left\{\left\langle Q^{1 / 2}\right\rangle,\left\langle Q^{3 / 2}\right\rangle\right\}$ are the nonperturbative hadronic matrix elements. $\hat{U}^{f}\left(\mu_{1}, \mu_{2}\right)$ is the evolution matrix between μ_{2} and μ_{1} for f active flavor. M_{q} is the threshold matrix for the quark threshold $q . \vec{C}\left(m_{W}\right)$ and $\vec{z}\left(m_{c}\right)$ are Wilson Coefficients that can be obtained from a matching calculation at the corresponding scale. The next-to-leading order values for all these objects as well as detailed technical discussions can be found in [40] and [42].
$\epsilon^{\prime} / \epsilon$ is an amplitude level quantity, hence it is linear in the operators. Therefore, New Physics (NP) contributions can just be added to the Standard Model value. We calculate new Wilson Coefficients w_{i}, which encode the high energy physics, at the NP scale $\mu_{N P}$ and evolve them to the Kaon scale μ by

$$
\begin{equation*}
\vec{w}(\mu)=\hat{U}^{3}\left(\mu, m_{c}\right) M_{c} \ldots \vec{w}\left(\mu_{N P}\right) \tag{3.80}
\end{equation*}
$$

including all necessary thresholds and evolution matrices that lie between the NP scale $\mu_{N P}$ and the Kaon scale μ.

Appendix: An \boldsymbol{E}_{6} Symmetric Nelson-Barr Model

A.1. Symmetry Breaking Pattern

The E_{6} Yukawa Lagrangian, as given in Section 1.2, is

$$
\begin{equation*}
\mathcal{L}=2727\left(\mathcal{Y}_{27} 27_{H}+\mathcal{Y}_{351} 351_{H}\right) \tag{A.1}
\end{equation*}
$$

The relevant representations decompose to $S O(10)$, from there to $S U(5)$ and finally to $S U(3) \times S U(2) \times U(1)$ according to [11]. $U(1)$ charges are denoted as subscripts.
$E 6 \rightarrow S O(10) \times U(1)$

$$
\begin{align*}
27 & \rightarrow 16_{1}+10_{-2}+1_{4} \\
351 & \rightarrow 144_{1}+\overline{126}_{-2}+54_{4}+\overline{16}_{-5}+10_{-2}+1_{-8} \tag{A.2}
\end{align*}
$$

$S O(10) \rightarrow S U(5) \times U(1)$

$$
\begin{align*}
10 & \rightarrow 5_{2}+\overline{5}_{-2} \\
16 & \rightarrow 10_{-1}+\overline{5}_{3}+1_{-5} \\
54 & \rightarrow 24_{0}+\overline{15}_{-4}+15_{4} \\
\overline{126} & \rightarrow 50_{2}+\overline{45}_{-2}+15_{-6}+\overline{10}_{6}+5_{2}+1_{10} \\
144 & \rightarrow \overline{45}_{3}+40_{-1}+24_{-5}+15_{-1}+10_{-1}+5_{7}+\overline{5}_{3} \tag{A.3}
\end{align*}
$$

$$
\begin{align*}
S U(5) \rightarrow S U & (3) \times S U(2) \times U(1) \\
5 & \rightarrow(1,2)_{3}+(3,1)_{-2} \\
10 & \rightarrow(3,2)_{1}+(\overline{3}, 1)_{-4}+(1,1)_{6} \\
15 & \rightarrow(6,1)_{-4}+(3,2)_{1}+(1,3)_{6} \\
24 & \rightarrow(8,1)_{0}+(\overline{3}, 2)_{5}+(3,2)_{-5}+(1,3)_{0}+(1,1)_{0} \\
40 & \rightarrow(\overline{6}, 2)_{1}+(8,1)_{6}+(\overline{3}, 3)_{-4}+(\overline{3}, 1)_{-4}+(3,2)_{1}+(1,2)_{-9} \\
45 & \rightarrow(8,2)_{3}+(\overline{6}, 1)_{-2}+(\overline{3}, 2)_{-7}+(\overline{3}, 1)_{8}+(3,3)_{-2}+(3,1)_{-2}+(1,2)_{3} \\
50 & \rightarrow(8,2)_{3}+(6,1)_{8}+(\overline{6}, 3)_{-2}+(\overline{3}, 2)_{-7}+(3,1)_{-2}+(1,1)_{-12} \tag{A.4}
\end{align*}
$$

We spot the SM Higgs field $(1,2)_{3}$ emerge from a 5 of $S U(5)$ (and the conjugate field $(1,2)_{-3}$ consequently from the conjugate $\left.\overline{5}\right)$. Please note, that this is Slanksy's convention [11] for the $U(1)$ charges, which is very practical for model building since it only involves integer numbers. The frequently used convention for SM purposes, which normalizes hypercharge as the average electric charge, is related to Slanksy's convention by a factor of 6 .

A.1.1. SM singlet scalar fields

The SM singlet scalar fields introduced in Section 1.2.2 used in our model. In the \mathcal{Y}_{27} we have the following terms with respective patterns

$$
\begin{aligned}
272727 & \rightarrow 10_{-2} 10_{-2} 1_{4} \rightarrow \overline{5}_{-2} 5_{2} 1_{0} \rightarrow(1, \overline{2})_{-3}(1,2)_{3}(1,1)_{0}+(\overline{3}, 1)_{2}(3,1)_{-2}(1,1)_{0} \\
& =\left(L_{L} L_{R}^{c}+D_{R}^{c} D_{L}\right) \phi_{27 ; 1 ; 1}
\end{aligned}
$$

$$
272727 \rightarrow 16_{1} 10_{-2} 16_{1} \rightarrow \overline{5}_{3} 5_{2} 1_{-5} \rightarrow(1, \overline{2})_{-3}(1,2)_{3}(1,1)_{0}+(\overline{3}, 1)_{2}(3,1)_{-2}(1,1)_{0}
$$

$$
\begin{equation*}
=\left(\ell_{L} L_{R}^{c}+d_{R}^{c} D_{L}\right) \phi_{27 ; 16 ; 1} \tag{A.5}
\end{equation*}
$$

and in the \mathcal{Y}_{351} we have

$$
\begin{align*}
2727351 & \rightarrow 16_{1} 10_{-2} 144_{1} \rightarrow \overline{5}_{3} 5_{2} 24_{-5} \rightarrow(1, \overline{2})_{-3}(1,2)_{3}(1,1)_{0}+(\overline{3}, 1)_{2}(3,1)_{-2}(1,1)_{0} \\
& =\left(\ell_{L} L_{R}^{c}+d_{R}^{c} D_{L}\right) \phi_{351 ; 144 ; 24} \\
2727351 & \rightarrow 16_{1} 16_{1} \overline{126} \\
& =\nu_{R}^{c} \nu_{R}^{c} \phi_{351 ; \overline{126} ; 1} \\
2727351 & \rightarrow 11_{-5} 1_{-5} 1_{10} \rightarrow\left(10_{-2} 54_{4} \rightarrow \overline{5}_{-2} 5_{2} 24_{0}(1,1)_{0}(1,1)_{0}\right. \\
& =\left(L_{L} L_{R}^{c}+D_{R}^{c} D_{L}\right) \phi_{351 ; 54 ; 24} \\
2727351 & \left.\rightarrow 16_{1} 1_{4} \overline{16}\right)_{-5} \rightarrow 1_{-5} 1_{0} 1_{5} \rightarrow(1,2)_{3}(1,1)_{0}+(\overline{3}, 1)_{2}(1,1,1)_{-2}(1,1)_{0}(1,1)_{0} \\
& =\nu_{R}^{c} s \phi_{351 ; \overline{16} ; 1} \\
2727351 & \rightarrow 1_{4} 1_{4} 1_{-8} \rightarrow 1_{0} 1_{0} 1_{0} \rightarrow(1,1)_{0}(1,1)_{0}(1,1)_{0} \\
& =s s \phi_{351 ; 1 ; 1} \tag{A.6}
\end{align*}
$$

A.1.2. SM breaking scalars (Higgs fields)

The up-type Higgs fields $(1,2)_{1 / 2}$ arise as follows

$$
\begin{align*}
272727 & \rightarrow 16_{1} 16_{1} 10_{-2} \rightarrow 10_{-1} 1_{-1} 5_{2}+\overline{5}_{3} 1_{-5} 5_{2} \rightarrow(3,2)_{1}(\overline{3}, 1)_{-4}(1,2)_{3}+(1, \overline{2})_{-3}(1,1)_{0}(1,2)_{3} \\
& =\left(Q_{L} d_{R}^{c} H_{27 ; 10 ; 5}^{u}+\ell_{L} \nu_{R}^{c} H_{27 ; 10 ; 5}^{u}\right) \\
272727 & \rightarrow 10_{-2} 1_{4} 10_{-2} \rightarrow \overline{5}_{-2} 1_{0} 5_{2} \rightarrow(1, \overline{2})_{-3}(1,1)_{0}(1,2)_{3} \\
& =L_{L} s H_{27 ; 10 ; 5}^{u} \\
2727351 & \rightarrow 16_{1} 16_{1} 10_{-2} \rightarrow 10_{-1} 10_{-1} 5_{2}+\overline{5}_{3} 1_{-5} 5_{2} \rightarrow(3,2)_{1}(\overline{3}, 1)_{-4}(1,2)_{3}+(1, \overline{2})_{-3}(1,1)_{0}(1,2)_{3} \\
& =\left(Q_{L} d_{R}^{c} H_{351 ; 10 ; 5}^{u}+\ell_{L} \nu_{R}^{c} H_{351 ; 10 ; 5}^{u}\right) \\
2727351 & \rightarrow 10_{-2} 1_{4} 10_{-2} \rightarrow \overline{5}_{-2} 1_{0} 5_{2} \rightarrow(1, \overline{2})_{-3}(1,1)_{0}(1,2)_{3} \\
& =L_{L} s H_{351 ; 10 ; 5}^{u} \\
2727351 & \rightarrow 16_{1} 1_{4} \overline{16}-5 \rightarrow \overline{5}_{3} 1_{0} 5_{-3} \rightarrow(1, \overline{2})_{-3}(1,1)_{0}(1,2)_{3} \\
& =\ell_{L} \nu_{R}^{c} H_{351 ; \overline{16} ; 5}^{u} \\
2727351 & \rightarrow 16_{1} 16_{1} \overline{126} \overline{-2}_{-2} \rightarrow 10_{-1} 10_{-1} 5_{2}+\overline{5}_{3} 1_{-5} 5_{2} \rightarrow(3,2)_{1}(\overline{3}, 1)_{-4}(1,2)_{3}+(1, \overline{2})_{-3}(1,1)_{0}(1,2)_{3} \\
& =\left(Q_{L} d_{R}^{c} H_{351 ; \overline{126} ; 5}^{u}+\ell_{L} \nu_{R}^{c} H_{351 ; \overline{126} ; 5}^{u}\right) \\
2727351 & \rightarrow 10_{-2} 1_{4} \overline{126}-2 \rightarrow \overline{5}_{-2} 1_{0} 5_{2} \rightarrow(1, \overline{2})_{-3}(1,1)_{0}(1,2)_{3} \\
& =L_{L} s H_{351 ; \overline{126} ; 5}^{u} \\
2727351 & \rightarrow 16_{1} 10_{-2}^{144_{1} \rightarrow 1_{-5} \overline{5}_{-2} 5_{7} \rightarrow(1, \overline{2})_{-3}(1,1)_{0}(1,2)_{3}} \\
& =L_{L} \nu_{R}^{c} H_{351 ; 144 ; 5}^{u} \tag{A.7}
\end{align*}
$$

and the down-type Higgs fields $(1,2)_{-1 / 2}$ are given by

$$
\begin{align*}
& 272727 \rightarrow 16_{1} 16_{1} 10_{-2} \rightarrow 10_{-1} \overline{5}_{3} \overline{5}_{-2} \rightarrow(3,2)_{1}(\overline{3}, 1)_{2}(1,2)_{-3}+(1,1)_{6}(1, \overline{2})_{-3}(1, \overline{2})_{-3} \\
& =\left(Q_{L} d_{R}^{c} H_{27 ; 10 ; \overline{5}}^{d}+e_{R}^{c} \ell_{L} H_{27 ; 10 ; \overline{5}}^{d}\right) \\
& 272727 \rightarrow 10_{-2} 1_{4} 10_{-2} \rightarrow 5_{2} 1_{0} \overline{5}_{-2} \rightarrow(1,2)_{3}(1,1)_{0}(1, \overline{2})_{-3} \\
& =L_{R}^{c} s H_{27 ; 10 ; \overline{5}}^{d} \\
& 272727 \rightarrow 16_{1} 10_{-2} 16_{1} \rightarrow 10_{-1} \overline{5}_{-2} \overline{5}_{3} \rightarrow(1,1)_{6}(1, \overline{2})_{-3}(1, \overline{2})_{-3}+(3,2)_{1}(\overline{3}, 1)_{2}(1, \overline{2})_{-3} \\
& =\left(e_{R}^{c} L_{L} H_{27 ; 16 ; \overline{5}}^{d}+Q_{L} D_{R}^{c} H_{27 ; 16 ; \overline{5}}^{d}\right) \\
& 272727 \rightarrow 16_{1} 10_{-2} 16_{1} \rightarrow 1_{-5} 5_{2} \overline{5}_{3} \rightarrow(1,1)_{0}(1,2)_{3}(1, \overline{2})_{-3} \\
& =\nu_{R}^{c} L_{R}^{c} H_{27 ; 16 ; \overline{5}}^{d} \\
& 2727351 \rightarrow 16_{1} 16_{1} 10_{-2} \rightarrow 10_{-1} \overline{5}_{3} \overline{5}_{-2} \rightarrow(3,2)_{1}(\overline{3}, 1)_{2}(1,2)_{-3}+(1,1)_{6}(1, \overline{2})_{-3}(1, \overline{2})_{-3} \\
& =\left(Q_{L} d_{R}^{c} H_{351 ; 10 ; \overline{5}}^{d}+e_{R}^{c} \ell_{L} H_{351 ; 10 ; \overline{5}}^{d}\right) \\
& 2727351 \rightarrow 10_{-2} 1_{4} 10_{-2} \rightarrow 5_{2} 1_{0} \overline{5}_{-2} \rightarrow(1,2)_{3}(1,1)_{0}(1, \overline{2})_{-3} \\
& =L_{R}^{c} s H_{351 ; 10 ; \overline{5}}^{d} \\
& 2727351 \rightarrow 16_{1} 16_{1} \overline{126}_{-2} \rightarrow 10_{-1} \overline{5}_{3} \overline{45}_{-2} \rightarrow(3,2)_{1}(\overline{3}, 1)_{2}(1,2)_{-3}+(1,1)_{6}(1, \overline{2})_{-3}(1, \overline{2})_{-3} \\
& =\left(Q_{L} d_{R}^{c} H_{351 ; \overline{126} ; \overline{45}}^{d}+e_{R}^{c} \ell_{L} H_{351 ; \overline{126} ; \overline{45}}^{d}\right) \\
& 2727351 \rightarrow 10_{-2} 1_{4} \overline{126}_{-2} \rightarrow 5_{2} 1_{0} \overline{45}_{-2} \rightarrow(1,2)_{3}(1,1)_{0}(1, \overline{2})_{-3} \\
& =\left(L_{R}^{c} s H_{351 ; \overline{126} ; \overline{45}}^{d}\right) \\
& 2727351 \rightarrow 16_{1} 10_{-2} 144_{1} \rightarrow 1_{-5} 5_{2} \overline{5}_{3} \rightarrow(1,1)_{0}(1,2)_{3}(1, \overline{2})_{-3} \\
& =\nu_{R}^{c} L_{R}^{c} H_{351 ; 144 ; \overline{5}}^{d} \\
& 2727351 \rightarrow 16_{1} 10_{-2} 144_{1} \rightarrow 10_{-1} \overline{5}_{-2} \overline{5}_{3} \rightarrow(1,1)_{6}(1, \overline{2})_{-3}(1, \overline{2})_{-3}+(3,2)_{1}(\overline{3}, 1)_{2}(1, \overline{2})_{-3} \\
& =\left(e_{R}^{c} L_{L} H_{351 ; 144 ; \overline{5}}^{d}+Q_{L} D_{R}^{c} H_{351 ; 144 ; \overline{5}}^{d}\right) \\
& 2727351 \rightarrow 16_{1} 10_{-2} 144_{1} \rightarrow 1_{-5} 5_{2} \overline{45}_{3} \rightarrow(1,1)_{0}(1,2)_{3}(1, \overline{2})_{-3} \\
& =\nu_{R}^{c} L_{R}^{c} H_{351 ; 144 ; 45}^{d} \\
& 2727351 \rightarrow 16_{1} 10_{-2} 144_{1} \rightarrow 10_{-1} \overline{5}_{-2} \overline{45}_{3} \rightarrow(1,1)_{6}(1, \overline{2})_{-3}(1, \overline{2})_{-3}+(3,2)_{1}(\overline{3}, 1)_{2}(1, \overline{2})_{-3} \\
& =\left(e_{R}^{c} L_{L} H_{351 ; 144 ; \overline{45}}^{d}+Q_{L} D_{R}^{c} H_{351 ; 144 ; \overline{45}}^{d}\right) \tag{A.8}
\end{align*}
$$

A.2. BBP formula

We provide a generalization of formula (7a) from the paper by Bento, Branco and Parada [7] for an arbitrary number of heavy down type quarks.

The down quark mass matrix is

$$
\mathcal{M}_{d}=\left(\begin{array}{cc}
m_{d} & 0 \tag{A.9}\\
M_{C} & M_{R}
\end{array}\right)
$$

where we assume $M_{C} \in \mathbb{C}$ and $m_{d} \wedge M_{R} \in \mathbb{R}$ to have a real determinant. Furthermore, we put in a hierarchy $m_{d} \ll M_{C} \lesssim M_{R}$, which is reasonable identifying m_{d} with the SM down quarks, thus of the EW scale, while M_{C} and M_{R} contain GUT scale VEVs.

We follow the line of arguments of BBP and diagonalize the mass matrix

$$
U_{L}^{\dagger} \mathcal{M}_{d} U_{R}=\left(\begin{array}{cc}
\bar{m} & 0 \tag{A.10}\\
0 & \bar{M}
\end{array}\right)
$$

where $\bar{m}=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right)$ are the usual SM down quark masses and $\bar{M}=\operatorname{diag}\left(m_{D}, m_{S}, m_{B}\right)$ are the heavy quark masses denoted intuitively from lightest to heaviest. We write U_{L} in block form

$$
\left(\begin{array}{cc}
K & R \tag{A.11}\\
S & T
\end{array}\right)
$$

with K being the usual 3×3 CKM matrix. The unitarity of U_{L} has the following consequences

$$
\begin{align*}
U_{L} U_{L}^{\dagger} & =\left(\begin{array}{cc}
K K^{\dagger}+R R^{\dagger} & K S^{\dagger}+R T^{\dagger} \\
S K^{\dagger}+T R^{\dagger} & S S^{\dagger}+T T^{\dagger}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
U_{L}^{\dagger} U_{L} & =\left(\begin{array}{cc}
K^{\dagger} K+S^{\dagger} S & K^{\dagger} R+S^{\dagger} T \\
R^{\dagger} K+T^{\dagger} S & R^{\dagger} R+T^{\dagger} T
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \tag{A.12}
\end{align*}
$$

Where we will especially need

$$
\begin{align*}
K K^{\dagger}+R R^{\dagger} & =1 \tag{A.13}\\
K S^{\dagger}+R T^{\dagger} & =0 \tag{A.14}\\
K^{\dagger} K+S^{\dagger} S & =1 \tag{A.15}
\end{align*}
$$

From the bi-unitary diagonalization we know that

$$
\begin{equation*}
U_{L}^{\dagger} \mathcal{M}_{d} \mathcal{M}_{d}^{\dagger} U_{L}=\operatorname{diag}\left(\bar{m}^{2}, \bar{M}^{2}\right) \tag{A.16}
\end{equation*}
$$

which gives us the following four equations

$$
\begin{align*}
K^{\dagger} m_{d} m_{d}^{\dagger} K+S^{\dagger} M_{C} m_{d}^{\dagger} K+K^{\dagger} m_{d} M_{C}^{\dagger} S+S^{\dagger}\left(M_{C} M_{C}^{\dagger}+M_{R} M_{R}^{\dagger}\right) S & =\bar{m}^{2} \tag{A.17}\\
K^{\dagger} m_{d} m_{d}^{\dagger} R+S^{\dagger} M_{C} m_{d}^{\dagger} R+K^{\dagger} m_{d} M_{C}^{\dagger} T+S^{\dagger}\left(M_{C} M_{C}^{\dagger}+M_{R} M_{R}^{\dagger}\right) T & =0 \tag{A.18}\\
R^{\dagger} m_{d} m_{d}^{\dagger} K+T^{\dagger} M_{C} m_{d}^{\dagger} K+R^{\dagger} m_{d} M_{C}^{\dagger} S+T^{\dagger}\left(M_{C} M_{C}^{\dagger}+M_{R} M_{R}^{\dagger}\right) S & =0 \tag{A.19}\\
R^{\dagger} m_{d} m_{d}^{\dagger} R+T^{\dagger} M_{C} m_{d}^{\dagger} R+R^{\dagger} m_{d} M_{C}^{\dagger} T+T^{\dagger}\left(M_{C} M_{C}^{\dagger}+M_{R} M_{R}^{\dagger}\right) T & =\bar{M}^{2} \tag{A.20}
\end{align*}
$$

For convenience, we define $\left(M_{C} M_{C}^{\dagger}+M_{R} M_{R}^{\dagger}\right):=M^{2}$. The square just helps to remind that it counts as two powers of the high scales.

Now we reproduce Eqs. (5a)-(5d) from [7] by multiplying Equations (A.17) - (A.20) with components of U_{L} :

$$
\begin{array}{rll}
K(\mathrm{~A} .17)+R(\mathrm{~A} .19) & \longrightarrow & K \bar{m}^{2}=m_{d} m_{d}^{\dagger} K+m_{d} M_{C}^{\dagger} S \\
R(\mathrm{~A} .20)+K(\mathrm{~A} .18) & \longrightarrow & R \bar{M}^{2}=m_{d} m_{d}^{\dagger} R+m_{d} M_{C}^{\dagger} T \\
S(\mathrm{~A} .17)+T(\mathrm{~A} .19) & \longrightarrow & S \bar{m}^{2}=M_{C} m_{d}^{\dagger} K+M^{2} S \\
T(\mathrm{~A} .20)+S(\mathrm{~A} .18) & \longrightarrow & T \bar{M}^{2}=M_{C} m_{d}^{\dagger} R+M^{2} T \tag{A.24}
\end{array}
$$

Now we take

$$
\begin{equation*}
K^{\dagger}(\mathrm{A} .21) \quad \longrightarrow \quad K^{\dagger} K \bar{m}^{2}=K^{\dagger} m_{d} m_{d}^{\dagger} K+K^{\dagger} m_{d} M_{C}^{\dagger} S \tag{A.25}
\end{equation*}
$$

and argue, that for sufficient high scales M_{C} and M_{R}, K is approximately unitary and we can take $K^{\dagger} K=1+\mathcal{O}\left(m^{4} / M^{4}\right)$, where m / M denotes generic low scale over high scale suppression. The argument goes as follows: We know that by definition U_{L} is unitary, thus followed Equation (A.15)

$$
U_{L}^{\dagger} U_{L}=K^{\dagger} K+S^{\dagger} S=1
$$

We add some physical input, namely that if we let the high scales go towards infinity, the exotic particles become infinitely heavy and decouple from the SM. In that limit, there is no way of finding the exotic particles by e.g. flavor physics experiments because their appearance in loops is suppressed by their heavy masses. Therefore, we would measure a unitary CKM matrix in that limit. For the large hierarchy $m_{d} \ll M_{C} \lesssim M_{R}$ which we assumed, we can conclude, that $K^{\dagger} K$ is close to unity with corrections from $S^{\dagger} S$, which are suppressed by the high scales. Therefore, we can assume an approximate unitarity of
the CKM matrix K with corrections suppressed by m^{2} / M^{2}. And indeed, numerical checks provide

$$
\begin{equation*}
K^{\dagger} K=1+\mathcal{O}\left(m_{d}^{4} M_{C}^{2} / M_{R}^{6}\right) \tag{A.26}
\end{equation*}
$$

We apply this to (A.25)

$$
\begin{equation*}
\bar{m}^{2}=K^{\dagger} m_{d} m_{d}^{\dagger} K+K^{\dagger} m_{d} M_{C}^{\dagger} S+\mathcal{O}\left(m_{d}^{4} M_{C}^{2} / M_{R}^{6}\right) \tag{A.27}
\end{equation*}
$$

Next we recall the ansatz, which we used earlier to parametrize the mixing with the heavy quarks in Section 1.3, which gave us an effective down quark mass matrix $m_{d}^{\text {eff }}=m_{d} \cdot a_{q}$ with $a_{q}=\left[1+Z_{q}^{\dagger} Z_{q}\right]$ and $Z_{q}=M_{R}^{-1} M_{C}$. This effective quark mass matrix is diagonalized by the CKM matrix, all this assuming CKM unitarity. Therefore

$$
\begin{equation*}
\bar{m}^{2}=K^{\dagger} m_{d}\left(1+Z^{\dagger} Z\right)^{-1} m_{d}^{\dagger} K+\mathcal{O}\left(m_{d}^{4} M_{C}^{2} / M_{R}^{6}\right) \tag{A.28}
\end{equation*}
$$

Taking these two equations we get

$$
\begin{equation*}
\left(1+Z^{\dagger} Z\right)^{-1}=1+M_{C}^{\dagger} S K^{\dagger}\left(m_{d}^{\dagger}\right)^{-1}+\mathcal{O}\left(m_{d}^{4} M_{C}^{2} / M_{R}^{6}\right) \tag{A.29}
\end{equation*}
$$

To extract an expression for $S K^{\dagger}$, we first rewrite $\left(1+Z^{\dagger} Z\right)^{-1}$. Starting with

$$
\begin{align*}
1+Z^{\dagger} Z & =1+M_{C}^{\dagger}\left(M_{R} M_{R}^{\dagger}\right)^{-1} M_{C} \\
& =M_{C}^{\dagger}\left(\left(M_{C}^{\dagger}\right)^{-1}+\left(M_{R} M_{R}^{\dagger}\right)^{-1} M_{C}\right) \\
& =M_{C}^{\dagger}\left(M_{R} M_{R}^{\dagger}\right)^{-1}\left(\left(M_{R} M_{R}^{\dagger}\right)\left(M_{C}^{\dagger}\right)^{-1}+M_{C}\right) \\
& =M_{C}^{\dagger}\left(M_{R} M_{R}^{\dagger}\right)^{-1}\left(\left(M_{R} M_{R}^{\dagger}\right)+M_{C} M_{C}^{\dagger}\right)\left(M_{C}^{\dagger}\right)^{-1} \\
& :=M_{C}^{\dagger}\left(M_{R} M_{R}^{\dagger}\right)^{-1} M^{2}\left(M_{C}^{\dagger}\right)^{-1} \tag{А.30}
\end{align*}
$$

We obtain the desired inverse $\left(1+Z^{\dagger} Z\right)^{-1}=M_{C}^{\dagger} M^{-2}\left(M_{R} M_{R}^{\dagger}\right)\left(M_{C}^{\dagger}\right)^{-1}$. We insert this into Equation (A.29) and for readability drop the higher order correction reminder for now

$$
\begin{equation*}
M_{C}^{\dagger} M^{-2}\left(M_{R} M_{R}^{\dagger}\right)\left(M_{C}^{\dagger}\right)^{-1}=1+M_{C}^{\dagger} S K^{\dagger}\left(m_{d}^{\dagger}\right)^{-1} \tag{A.31}
\end{equation*}
$$

rearranging this expression a little, we get

$$
\begin{equation*}
S K^{\dagger}=-\left(1-M^{-2}\left(M_{R} M_{R}^{\dagger}\right)\right)\left(M_{C}^{\dagger}\right)^{-1} m_{d}^{\dagger} \tag{А.32}
\end{equation*}
$$

Now we can rearrange $\left(1-M^{-2}\left(M_{R} M_{R}^{\dagger}\right)\right)$ a little, noting that $M^{2}=\left(M_{R} M_{R}^{\dagger}\right)+\left(M_{C} M_{C}^{\dagger}\right)$, we just call $\left(M_{R} M_{R}^{\dagger}\right)=: a$ and $\left(M_{C} M_{C}^{\dagger}\right):=b$, then

$$
\begin{align*}
& 1-(a+b)^{-1} a \\
= & (a+b)^{-1}(a+b)-(a+b)^{-1} a \\
= & (a+b)^{-1} b \tag{A.33}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\left(1-M^{-2}\left(M_{R} M_{R}^{\dagger}\right)\right)=M^{-2} M_{C} M_{C}^{\dagger} \tag{A.34}
\end{equation*}
$$

and putting this into Equation (A.32) we end up with

$$
\begin{equation*}
S K^{\dagger}=-M^{-2} M_{C} m_{d}^{\dagger} \tag{A.35}
\end{equation*}
$$

Now we take $K(\mathrm{~A} .27) K^{\dagger}$, use the approximate unitarity of the CKM matrix again and insert Equation (A.35).

$$
\begin{equation*}
K \bar{m}^{2} K^{\dagger}=m_{d}\left[1-M_{C}^{\dagger}\left(M^{2}\right)^{-1} M_{C}+\mathcal{O}\left(m_{d}^{4} M_{C}^{2} / M_{R}^{6}\right)\right] m_{d}^{\dagger} \tag{A.36}
\end{equation*}
$$

which is the final result of the derivation, as quoted in Section 1.1.1.

Appendix: A
 Supersymmetric Solution
 to $\epsilon_{K}^{\prime} / \epsilon_{K}$

B

In this section, we give the main parts of the explicit calculation of the gluino chromomagnetic penguin diagram (see Figures B. 1 and B.2). This calculation has been done it the literature, see e.g. [56] [57].

B.1. The Chromomagnetic Dipole Contribution

B.1.1. Formulae

Gordon Identity

Derivation according to [89]
With incoming momentum $p=i \partial$ and outgoing momentum $p^{\prime}=-i \partial$, we have the following Dirac equations:

$$
\begin{align*}
\not p \psi(p, m) & =m \psi(p, m) \\
\not p^{\prime} \psi\left(p^{\prime}, m^{\prime}\right) & =-m^{\prime} \psi\left(p^{\prime}, m^{\prime}\right) \\
\bar{\psi}(p, m) \not p & =-m \bar{\psi}(p, m) \\
\bar{\psi}\left(p^{\prime}, m^{\prime}\right) \not p^{\prime} & =m^{\prime} \bar{\psi}\left(p^{\prime}, m^{\prime}\right) \tag{B.1}
\end{align*}
$$

The (anti)commutator of gamma matrices is

$$
\begin{align*}
\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\} & =g^{\mu \nu} \\
\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] & =\sigma^{\mu \nu} \tag{B.2}
\end{align*}
$$

which gives

$$
\begin{align*}
\gamma^{\mu} \gamma^{\nu} & =\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\nu}\right\}+\frac{1}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
& =g^{\mu \nu}-i \sigma^{\mu \nu} \\
g^{\mu \nu} & =\gamma^{\mu} \gamma^{\nu}+i \sigma^{\mu \nu} \\
g^{\mu \nu} & =\gamma^{\nu} \gamma^{\mu}-i \sigma^{\mu \nu} \tag{B.3}
\end{align*}
$$

where in the last line, the symmetry of the metric and the antisymmetry of the sigma tensor has been used. Using the last two lines of equation (B.3), we can choose to write any momenta in the following form

$$
\begin{align*}
& p^{\mu}=p_{\nu} g^{\mu \nu} \\
&=p_{\nu}\left(\gamma^{\mu} \gamma^{\nu}+i \sigma^{\mu \nu}\right) \tag{B.4}\\
& p^{\mu \prime}=p_{\nu}^{\prime} g^{\mu \nu}
\end{align*}=p_{\nu}^{\prime}\left(\gamma^{\nu} \gamma^{\mu}-i \sigma^{\mu \nu}\right), ~ t
$$

adding these two lines, we have

$$
\begin{equation*}
\left(p^{\mu}+p^{\mu \prime}\right)=\gamma^{\mu} \not p+\not p^{\prime} \gamma^{\mu}+i \sigma^{\mu \nu}\left(p_{\nu}-p_{\nu}^{\prime}\right) \tag{B.5}
\end{equation*}
$$

Equation (B.5) does not make any assumptions about the momenta, nor has the Dirac equation been used so far, this is just a general Identity.

To obtain the Gordon Identity, we sandwich the result between the two spinors $u(p, m)$ and $\gamma_{5} \bar{u}\left(p^{\prime}, m^{\prime}\right)$ and obtain

$$
\begin{equation*}
\left(p^{\mu}+p^{\mu \prime}\right) \bar{u}\left(p^{\prime}, m^{\prime}\right) \gamma_{5} u(p, m)=\bar{u}\left(p^{\prime}, m^{\prime}\right)\left[\gamma^{\mu} \not p+\not p^{\prime} \gamma^{\mu}+i \sigma^{\mu \nu}\left(p_{\nu}-p_{\nu}^{\prime}\right)\right] \gamma_{5} u(p, m) \tag{B.6}
\end{equation*}
$$

Now we use the fact, that we want p to be an incoming momentum and p^{\prime} to be an outgoing one, namely use the Dirac equations (B.1). Remember the anticommuting relation $\left\{\gamma_{5}, \gamma^{\mu}\right\}$, we get (suppressing the arguments of the spinors)

$$
\begin{equation*}
\left(p^{\mu}+p^{\mu \prime}\right) \bar{u} \gamma_{5} u=-m \cdot \bar{u} \gamma^{\mu} \gamma_{5} u+m^{\prime} \cdot \bar{u} \gamma^{\mu} \gamma_{5} u+\left(p_{\nu}-p_{\nu}^{\prime}\right) i \bar{u} \sigma^{\mu \nu} \gamma_{5} u \tag{B.7}
\end{equation*}
$$

rearranging this expression, we obtain the Gordon Identity with γ_{5}

$$
\begin{equation*}
\bar{u}\left[\left(p^{\mu}+p^{\mu \prime}\right)-i \sigma^{\mu \nu}\left(p_{\nu}-p_{\nu}^{\prime}\right)\right] \gamma_{5} u=\bar{u} \gamma^{\mu} \gamma_{5} u \cdot\left(m^{\prime}-m\right) \tag{B.8}
\end{equation*}
$$

where $\bar{u}=\bar{u}\left(p^{\prime}, m^{\prime}\right)$ and $u=u(p, m)$ with p incoming and p^{\prime} outgoing.

Looking at the momentum flow through the diagrams, we have $\bar{s}(p)$ and $d(p-q)$ and thus the Gordon Identity becomes

$$
\begin{equation*}
(2 p-q)^{\mu} \bar{s} \gamma_{5} d=i \bar{s} \sigma^{\mu \nu} \gamma_{5} d q_{\nu}+\bar{s} \gamma^{\mu} \gamma_{5} d \cdot\left(m_{s}-m_{d}\right) \tag{B.9}
\end{equation*}
$$

Colour

$$
\begin{equation*}
T_{\alpha \beta}^{a} f_{a b c} T_{\beta \gamma}^{b}=i \frac{3}{2} T_{\alpha \gamma}^{c} \tag{B.10}
\end{equation*}
$$

Field Strength Tensor

$$
\begin{equation*}
G_{\alpha \beta}=\partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha} \pm i g_{3}\left[A_{\alpha}, A_{\beta}\right] \tag{B.11}
\end{equation*}
$$

is through colour algebra, $A_{\mu}=T^{a} A_{\mu}^{a}$ and $G_{\mu \nu}=T^{a} G_{\mu \nu}^{a}$ equivalent to

$$
\begin{equation*}
G_{\alpha \beta}^{a}=\partial_{\alpha} A_{\beta}^{a}-\partial_{\beta} A_{\alpha}^{a} \mp g_{3} f^{a b c} A_{\alpha}^{b} A_{\beta}^{c} \tag{B.12}
\end{equation*}
$$

NB: the non-abelian term comes from the $s g \rightarrow d g$ penguin diagram

Squark Vertex Mixing

$$
\begin{align*}
Z_{D}^{I i} & =\Gamma_{D L}^{i I} \\
Z_{D}^{(I+3) i} & =\Gamma_{D R}^{i I} \\
Z_{U}^{I i} & =\Gamma_{U L}^{i I *} \\
Z_{U}^{(I+3) i} & =\Gamma_{U R}^{I I *} \tag{B.13}
\end{align*}
$$

B.1.2. Diagram 1: Gluon Attached to the Gluino Line

Figure B.1.: The gluino gluon chromomagnetic penguin, gluon attached to the gluino line.

Feynman Rules

Using Feynman rules [52] on the diagram and denoting the vertex mixing matrices by [54]

$$
\begin{equation*}
Z_{D}^{I i}=\Gamma_{D L}^{i I} \quad \text { and } \quad Z_{D}^{(I+3) i}=\Gamma_{D R}^{i I} \tag{B.14}
\end{equation*}
$$

we obtain

$$
\begin{align*}
i \mathcal{M}= & \bar{s}_{\alpha}\left[i g_{3} \sqrt{2} T_{\alpha \beta}^{a}\left(-\Gamma_{D L}^{I 2 *} P_{R}+\Gamma_{D R}^{I 2 *} P_{L}\right)\right] \\
& \left(i \frac{(-1) \gamma^{\lambda}(p+k)_{\lambda}+m_{\tilde{g}}}{(p+k)^{2}-m_{\tilde{g}}^{2}}\right)\left(-g_{3} f_{a b c} \gamma^{\mu}\right)\left(i \frac{(-1) \gamma^{\epsilon}(p-q+k)_{\epsilon}+m_{\tilde{g}}}{(p-q+k)^{2}-m_{\tilde{g}}^{2}}\right) \\
& {\left[i g_{3} \sqrt{2} T_{\beta \gamma}^{b}\left(-\Gamma_{D L}^{I 1} P_{L}+\Gamma_{D R}^{I 1} P_{R}\right)\right] d_{\gamma}\left(i \frac{1}{k^{2}-m_{\tilde{d}_{I}}}\right) \epsilon_{\mu}^{* c}(q) } \tag{B.15}
\end{align*}
$$

rearranging this expression a bit while taking only the Dirac structure with two γ-matrices and discarding the rest, we obtain

$$
\begin{equation*}
i \mathcal{M}=(-1)^{2} i^{5} 2 g_{3}^{3} \cdot T_{\alpha \beta}^{a} f_{a b c} T_{\beta \gamma}^{b} \cdot \epsilon_{\mu}^{* c}(q)\left(D_{V}^{(1), \lambda \mu} I_{V, \lambda}^{(1)}+D_{V}^{(2), \mu \epsilon} I_{V, \epsilon}^{(2)}\right) \tag{B.16}
\end{equation*}
$$

with Integrals $I_{V, \alpha}^{(i)}$ and fermion chains $D_{V}^{(i), \alpha}$

Dirac Structure

The Dirac structure is in both cases given by

$$
\begin{equation*}
D_{V}^{(i), \alpha \beta}=\bar{s}_{\alpha}\left(-\Gamma_{D L}^{I 2 *} P_{R}+\Gamma_{D R}^{I 2 *} P_{L}\right) \gamma^{\alpha} \gamma^{\beta}\left(-\Gamma_{D L}^{I 1} P_{L}+\Gamma_{D R}^{I 1} P_{R}\right) d_{\gamma} m_{\tilde{g}} \tag{B.17}
\end{equation*}
$$

where $\gamma^{\alpha} \gamma^{\beta}=\gamma^{\lambda} \gamma^{\mu}$ for $D_{V}^{(1), \lambda}$ and $\gamma^{\alpha} \gamma^{\beta}=\gamma^{\mu} \gamma^{\epsilon}$ for $D_{V}^{(2), \epsilon}$

This can be simplified [90] to

$$
\begin{equation*}
D_{V}^{(i), \alpha \beta}=-\frac{1}{2} m_{\tilde{g}}\left[\Gamma^{+} \bar{s}_{\alpha} \gamma^{\alpha} \gamma^{\beta} d_{\gamma}+\Gamma^{-} \bar{s}_{\alpha} \gamma^{\alpha} \gamma^{\beta} \gamma_{5} d_{\gamma}\right] \tag{B.18}
\end{equation*}
$$

with

$$
\begin{equation*}
\left(\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1} \pm \Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1}\right)=: \Gamma^{ \pm} \tag{B.19}
\end{equation*}
$$

Integrals: Expansion in small momenta

We use the following Taylor expansion

$$
\begin{equation*}
\frac{1}{(p+k)^{2}-m^{2}}=\frac{1}{k^{2}-m^{2}}-2 \frac{k \cdot p}{\left(k^{2}-m^{2}\right)^{2}}+\mathcal{O}\left(p^{2}\right) \tag{B.20}
\end{equation*}
$$

the first denominator turns into

$$
\begin{align*}
\mathrm{I}^{\lambda} & =\frac{(p+k)^{\lambda}}{(p+k)^{2}-m_{\tilde{g}}^{2}} \frac{1}{(p-q+k)^{2}-m_{\tilde{g}}^{2}} \frac{1}{k^{2}-m_{\tilde{d}}^{2}} \\
& =(p+k)^{\lambda}\left[\frac{1}{k^{2}-m_{\tilde{g}}^{2}}-2 \frac{k \cdot p}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}}\right]\left[\frac{1}{k^{2}-m_{\tilde{g}}^{2}}-2 \frac{k \cdot(p-q)}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}}\right] \frac{1}{k^{2}-m_{\tilde{d}}^{2}}+\mathcal{O}\left(p^{2}\right) \\
& =\frac{(p+k)^{\lambda}}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}\left(k^{2}-m_{\tilde{d}}^{2}\right)}-2 \frac{k^{\lambda}(k \cdot p+k \cdot(p-q))}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{3}\left(k^{2}-m_{\tilde{d}}^{2}\right)} \\
& =\frac{k^{\lambda}}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}\left(k^{2}-m_{\tilde{d}}^{2}\right)}+p^{\lambda} \frac{1}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}\left(k^{2}-m_{\tilde{d}}^{2}\right)}-(4 p-2 q)_{\rho} \frac{k^{\lambda} k^{\rho}}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{3}\left(k^{2}-m_{\tilde{d}}^{2}\right)} \tag{B.21}
\end{align*}
$$

Integrating over k gives

$$
\begin{align*}
\mathrm{I}^{\lambda} & =p^{\lambda} C_{0}-2(2 p-q)_{\rho} D_{0}^{\lambda \rho} \\
& =p^{\lambda} C_{0}-2(2 p-q)_{\rho} g^{\lambda \rho} D_{0, T} \\
& =p^{\lambda} C_{0}-2(2 p-q)^{\lambda} D_{0, T} \tag{B.22}
\end{align*}
$$

where the arguments of the C and D Passarino-Veltman functions [91] are $C_{0}\left(m_{\tilde{g}}, m_{\tilde{g}}, m_{\tilde{d}}\right)$ and $D_{0, T}\left(m_{\tilde{g}}, m_{\tilde{g}}, m_{\tilde{g}}, m_{\tilde{d}}\right)$.
We proceed analogously for the second denominator

$$
\begin{align*}
\mathrm{I}^{\epsilon} & =\frac{(p-q+k)^{\epsilon}}{(p+k)^{2}-m_{\tilde{g}}^{2}} \frac{1}{(p-q+k)^{2}-m_{\tilde{g}}^{2}} \frac{1}{k^{2}-m_{\tilde{d}}^{2}} \\
& =(p-q+k)^{\epsilon}\left[\frac{1}{k^{2}-m_{\tilde{g}}^{2}}-2 \frac{k \cdot p}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}}\right]\left[\frac{1}{k^{2}-m_{\tilde{g}}^{2}}-2 \frac{k \cdot(p-q)}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}}\right] \frac{1}{k^{2}-m_{\tilde{d}}^{2}}+\mathcal{O}\left(p^{2}\right) \\
& =\frac{(p-q+k)^{\epsilon}}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}\left(k^{2}-m_{\tilde{d}}^{2}\right)}-2 \frac{k^{\epsilon}(k \cdot p+k \cdot(p-q))}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{3}\left(k^{2}-m_{\tilde{d}}^{2}\right)} \\
& =\frac{k^{\epsilon}}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}\left(k^{2}-m_{\tilde{d})}^{2}\right)}+(p-q)^{\epsilon} \frac{1}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{2}\left(k^{2}-m_{\tilde{d}}^{2}\right)}-(4 p-2 q)_{\rho} \frac{k^{\epsilon} k^{\rho}}{\left(k^{2}-m_{\tilde{g}}^{2}\right)^{3}\left(k^{2}-m_{\tilde{d}}^{2}\right)} \tag{B.23}
\end{align*}
$$

Integrating over k gives

$$
\begin{align*}
\mathrm{I}^{\epsilon} & =(p-q)^{\epsilon} C_{0}-2(2 p-q)_{\rho} D_{0}^{\epsilon \rho} \\
& =(p-q)^{\epsilon} C_{0}-2(2 p-q)_{\rho} g^{\epsilon \rho} D_{0, T} \\
& =(p-q)^{\epsilon} C_{0}-2(2 p-q)^{\epsilon} D_{0, T} \tag{B.24}
\end{align*}
$$

Combining Dirac Structure and Integral Solutions

We take only the axial part of the Dirac structure and rename the summation index $\epsilon \rightarrow \lambda$. The piece proportional to $D_{0, T}$ is

$$
\begin{align*}
D_{V}^{(1), \lambda \mu} I_{V, \lambda}^{(1)}+D_{V}^{(2), \mu \epsilon} I_{V, \epsilon}^{(2)}= & -2(2 p-q)_{\lambda} D_{0, T}\left(-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} \bar{s}_{\alpha} \gamma^{\lambda} \gamma^{\mu} \gamma_{5} d_{\gamma}\right) \\
& -2(2 p-q)_{\lambda} D_{0, T}\left(-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} \bar{s}_{\alpha} \gamma^{\mu} \gamma^{\lambda} \gamma_{5} d_{\gamma}\right) \\
= & m_{\tilde{g}}(2 p-q)_{\lambda} D_{0, T} \Gamma^{-}(\bar{s}_{\alpha} \underbrace{\left(\gamma^{\lambda} \gamma^{\mu}+\gamma^{\mu} \gamma^{\lambda}\right)}_{2 g^{\lambda \mu}} \gamma_{5} d_{\gamma})) \\
= & 2 m_{\tilde{g}}(2 p-q)^{\mu} D_{0, T} \Gamma^{-} \bar{s}_{\alpha} \gamma_{5} d_{\gamma} \tag{B.25}
\end{align*}
$$

The Integral function is given by

$$
\begin{align*}
D_{0, T}\left(m_{\tilde{g}}, m_{\tilde{g}}, m_{\tilde{g}}, m_{\tilde{d}}\right) & =\frac{i}{16 \pi^{2}}\left(-\frac{1}{8}\right) \frac{1}{m_{\tilde{d}}^{2}} \underbrace{\frac{3-4 x+x^{2}+2 \log x}{(x-1)^{3}}}_{2 F_{3}[x]} \\
& =\frac{i}{16 \pi^{2}}\left(-\frac{1}{4}\right) \frac{1}{m_{\tilde{d}}^{2}} F_{3}[x] \tag{B.26}
\end{align*}
$$

The piece proportional to C_{0} is

$$
\begin{align*}
D_{V}^{(1), \lambda \mu} I_{V, \lambda}^{(1)}+D_{V}^{(2), \mu \epsilon} I_{V, \epsilon}^{(2)} & =(p-q)^{\lambda} C_{0}\left(-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} \bar{s}_{\alpha} \gamma^{\mu} \gamma^{\lambda} \gamma_{5} d_{\gamma}\right) \\
& +p^{\lambda} C_{0}\left(-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} \bar{s}_{\alpha} \gamma^{\lambda} \gamma^{\mu} \gamma_{5} d_{\gamma}\right) \\
& =-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} C_{0}\left[(p-q)^{\lambda} \bar{s}_{\alpha} \gamma^{\mu} \gamma^{\lambda} \gamma_{5} d_{\gamma}+p^{\lambda} \bar{s}_{\alpha} \gamma^{\lambda} \gamma^{\mu} \gamma_{5} d_{\gamma}\right] \tag{B.27}
\end{align*}
$$

We use the relation $\gamma^{\mu} \gamma^{\nu}=g^{\mu \nu}-i \sigma^{\mu \nu}$ and exploit the antisymmetry of $\sigma^{\mu \nu}$

$$
\begin{align*}
& \begin{aligned}
&=-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} C_{0}\left[(p-q)^{\lambda} \bar{s}_{\alpha} g^{\mu \lambda} \gamma_{5} d_{\gamma}-i(p-q)^{\lambda} \bar{s}_{\alpha} \sigma^{\mu \lambda} \gamma_{5} d_{\gamma}\right. \\
&\left.+p^{\lambda} \bar{s}_{\alpha} g^{\lambda \mu} \gamma_{5} d_{\gamma}-i p^{\lambda} \bar{s}_{\alpha} \sigma^{\lambda \mu} \gamma_{5} d_{\gamma}\right] \\
&=-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} C_{0}\left[(p-q)^{\mu} \bar{s}_{\alpha} \gamma_{5} d_{\gamma}+p^{\mu} \bar{s}_{\alpha} \gamma_{5} d_{\gamma}\right. \\
&\left.\quad-i(p-q)^{\lambda} \bar{s}_{\alpha} \sigma^{\mu \lambda} \gamma_{5} d_{\gamma}+i p^{\lambda} \bar{s}_{\alpha} \sigma^{\mu \lambda} \gamma_{5} d_{\gamma}\right] \\
&=-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} C_{0}\left[(2 p-q)^{\mu} \bar{s}_{\alpha} \gamma_{5} d_{\gamma}+i q^{\lambda} \bar{s}_{\alpha} \sigma^{\mu \lambda} \gamma_{5} d_{\gamma}\right]
\end{aligned} \$.
\end{align*}
$$

Using the Gordon Identity in reverse on the second part, we obtain

$$
\begin{equation*}
-m_{\tilde{g}} \Gamma^{-} C_{0}(2 p-q)^{\mu} \bar{s}_{\alpha} \gamma_{5} d_{\gamma} \tag{B.29}
\end{equation*}
$$

(We omitted the $\frac{i}{16 \pi^{2}}$ factor so far for readability)
The whole expression for the integral and Dirac structure combined is then

$$
\begin{align*}
D_{V}^{(1), \lambda \mu} I_{V, \lambda}^{(1)}+D_{V}^{(2), \mu \epsilon} I_{V, \epsilon}^{(2)}= & -\frac{1}{2} \frac{i}{16 \pi^{2}} m_{\tilde{g}} \Gamma^{-} \\
& {\left[(2 p-q)^{\mu} \frac{1}{m_{\tilde{d}}^{2}} F_{3}[x] \bar{s}_{\alpha} \gamma_{5} d_{\gamma}+2 C_{0}(2 p-q)^{\mu} \bar{s}_{\alpha} \gamma_{5} d_{\gamma}\right] } \tag{B.30}
\end{align*}
$$

We find that $C_{0}(m, m, M)$ can be expressed as

$$
\begin{equation*}
C_{0}(m, m, M)=1 / M^{2}\left(-F_{4}[x]-F_{3}[x]\right) \tag{B.31}
\end{equation*}
$$

with $x=\frac{m^{2}}{M^{2}}$, this leads to

$$
\begin{equation*}
D_{V}^{(1), \lambda \mu} I_{V, \lambda}^{(1)}+D_{V}^{(2), \mu \epsilon} I_{V, \epsilon}^{(2)}=-\frac{1}{2} \frac{i}{16 \pi^{2}} m_{\tilde{g}} \Gamma^{-}\left[(2 p-q)^{\mu} \frac{1}{m_{\tilde{d}}^{2}}\left(F_{3}[x]-2 F_{3}[x]-2 F_{4}[x]\right) \bar{s}_{\alpha} \gamma_{5} d_{\gamma}\right] \tag{B.32}
\end{equation*}
$$

Rearranging these terms a little, the final expression is

$$
\begin{equation*}
D_{V}^{(1), \lambda \mu} I_{V, \lambda}^{(1)}+D_{V}^{(2), \mu \epsilon} I_{V, \epsilon}^{(2)}=\frac{1}{2} \frac{i}{16 \pi^{2}} \frac{m_{\tilde{g}}}{m_{\tilde{d}}^{2}} \Gamma^{-}(2 p-q)^{\mu} \bar{s}_{\alpha} \gamma_{5} d_{\gamma}\left[F_{3}[x]+2 F_{4}[x]\right] \tag{B.33}
\end{equation*}
$$

The $F_{4}[x]$ piece is cancelled by the self energy diagrams and thus we can discard it in the following steps.

Putting the pieces together

The matrix element is given by

$$
\begin{equation*}
i \mathcal{M}=(-1)^{2} i^{5} 2 g_{3}^{3} \cdot T_{\alpha \beta}^{a} f_{a b c} T_{\beta \gamma}^{b} \cdot \epsilon_{\mu}^{* c}(q)\left(\frac{1}{2} \frac{i}{16 \pi^{2}} m_{\tilde{g}} \Gamma^{-}(2 p-q)^{\mu} \frac{1}{m_{\tilde{d}}^{2}} F_{3}[x] \bar{s}_{\alpha} \gamma_{5} d_{\gamma}\right) \tag{B.34}
\end{equation*}
$$

The color factor is given by

$$
\begin{equation*}
T_{\alpha \beta}^{a} f_{a b c} T_{\beta \gamma}^{b}=i \frac{3}{2} T_{\alpha \gamma}^{c} \tag{B.35}
\end{equation*}
$$

Next, we use the Gordon-Identity (Equation (B.9)) to substitute

$$
\begin{equation*}
(2 p-q)^{\mu} \bar{s} \gamma_{5} d=i \bar{s} \sigma^{\mu \nu} \gamma_{5} d q_{\nu}+\bar{s} \gamma^{\mu} \gamma_{5} d \cdot\left(m_{s}-m_{d}\right) \tag{B.36}
\end{equation*}
$$

To obtain the appropriate form for the operator, we also revert the Feynman rules for the polarization vector and the (outgoing) momentum q

$$
\begin{equation*}
q_{\nu} \rightarrow-i \partial_{\nu} \quad \epsilon_{\mu}^{* c}(q) \rightarrow A_{\mu}^{c} \tag{B.37}
\end{equation*}
$$

We also use $g_{3}^{2}=\alpha_{s} 4 \pi$. Now plugging all this in, we get

$$
\begin{align*}
i \mathcal{M} & =(-1)^{2} i^{5} 2 g_{3} \alpha_{s} 4 \pi \cdot i \frac{3}{2} T_{\alpha \gamma}^{c} \cdot A_{\mu}^{c}\left(\frac{1}{2} \frac{i}{16 \pi^{2}} m_{\tilde{g}} \Gamma^{-} \frac{1}{m_{\tilde{d}}^{2}} F_{3}[x]\left(i \bar{s} \sigma^{\mu \nu} \gamma_{5} d\left(-i \partial_{\nu}\right)\right)\right) \\
& =(-1)^{3} i^{9} 6 g_{3} \alpha_{s} \pi \cdot T_{\alpha \gamma}^{c} \cdot\left(\frac{1}{16 \pi^{2}} m_{\tilde{g}} \Gamma^{-} \frac{1}{m_{\tilde{d}}^{2}} F_{3}[x] \bar{s} \sigma^{\mu \nu} \gamma_{5} d \partial_{\nu} A_{\mu}^{c}\right) \tag{B.38}
\end{align*}
$$

We obtain the gluon field strength tensor by

$$
\begin{align*}
\sigma^{\mu \nu} \partial_{\nu} A_{\mu}^{c} & =-\sigma^{\nu \mu} \partial_{\nu} A_{\mu}^{c} \\
& =-\sigma^{\mu \nu} \partial_{\mu} A_{\nu}^{c} \\
& =-\frac{1}{2} \sigma^{\mu \nu}\left(\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}\right) \\
& =-\frac{1}{2} \sigma^{\mu \nu} G_{\mu \nu}^{c} \tag{B.39}
\end{align*}
$$

Where we used the antisymmetry of $\sigma^{\mu \nu}$ and renamed the summation indices. The field strength tensor then arises when we include the non-abelian part coming from the ($s g \rightarrow$ $d g)$ penguin.

Inserting this into the matrix element, we obtain

$$
\begin{equation*}
i \mathcal{M}=(-1)^{4} i^{9} 3 g_{3} \alpha_{s} \pi \cdot T_{\alpha \gamma}^{c} \cdot\left(\frac{1}{16 \pi^{2}} m_{\tilde{g}} \Gamma^{-} \frac{1}{m_{\tilde{d}}^{2}} F_{3}[x] \bar{s} \sigma^{\mu \nu} \gamma_{5} d G_{\mu \nu}^{c}\right) \tag{B.40}
\end{equation*}
$$

Rearranging the terms, we can identify the chromomagnetic operator $Q_{g}^{-}[92]$

$$
\begin{equation*}
i \mathcal{M}=-i 3 \alpha_{s} \pi \Gamma^{-} \underbrace{\left(-\frac{g_{3}}{16 \pi^{2}} \bar{s} \sigma^{\mu \nu} \gamma_{5} T^{c} d G_{\mu \nu}^{c}\right)}_{Q_{g}^{-}} \frac{m_{\tilde{g}}}{m_{\tilde{d}}^{2}} F_{3}[x] \tag{B.41}
\end{equation*}
$$

With $\mathcal{H}=-\mathcal{M}$, the final result for this diagram is

$$
\begin{equation*}
\mathcal{H}=3 \alpha_{s} \pi\left(\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1}-\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1}\right) \frac{m_{\tilde{g}}}{m_{\tilde{d}}^{2}} F_{3}[x] Q_{g}^{-} \tag{B.42}
\end{equation*}
$$

Therefore, the contribution to the Wilson Coefficient is

$$
\begin{equation*}
C_{g}^{-}=3 \alpha_{s} \pi\left(\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1}-\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1}\right) \frac{m_{\tilde{g}}}{m_{\tilde{d}}^{2}} F_{3}[x] \tag{B.43}
\end{equation*}
$$

B.1.3. Diagram 2: Gluon Attached to the Squark Line

Figure B.2.: The gluino gluon chromomagnetic penguin, gluon attached to the squark line.

Feynman Rules

Like with the first diagram, we use Feynman rules [52] on the diagram with the Γ notation for the vertex mixing matrices [54]

$$
\begin{equation*}
Z_{D}^{I i}=\Gamma_{D L}^{i I} \quad \text { and } \quad Z_{D}^{(I+3) i}=\Gamma_{D R}^{i I} \tag{B.44}
\end{equation*}
$$

This gives us

$$
\begin{align*}
i \mathcal{M}= & \bar{s}_{\alpha}\left[i g_{3} \sqrt{2} T_{\alpha \beta}^{a}\left(-\Gamma_{D L}^{I 2 *} P_{R}+\Gamma_{D R}^{I 2 *} P_{L}\right)\right] \\
& \left(i \frac{\gamma^{\lambda} k_{\lambda}+m_{\tilde{g}}}{k^{2}-m_{\tilde{g}}^{2}} \delta_{a b}\right)\left[i g_{3} \sqrt{2} T_{\delta \gamma}^{b}\left(-\Gamma_{D L}^{I 1} P_{L}+\Gamma_{D R}^{I 1} P_{R}\right)\right] d_{\gamma} \\
& \left(i \frac{1}{(p+k)^{2}-m_{\tilde{d}_{I}}^{2}}\right)\left(i \frac{1}{(p-q+k)^{2}-m_{\tilde{d}_{I}}^{2}}\right)\left[-i g_{3}(2 p-q+2 k)^{\mu} T_{\beta \delta}^{c}\right] \epsilon_{\mu}^{* c}(q) \tag{B.45}
\end{align*}
$$

Rearranging this expression a bit while taking only the scalar Dirac structure and discarding the rest, we obtain

$$
\begin{equation*}
i \mathcal{M}=(-1) i^{6} 2 g_{3}^{3} \cdot T_{\alpha \beta}^{a} T_{\beta \delta}^{c} T_{\delta \gamma}^{a} \cdot \epsilon_{\mu}^{* c}(q) \cdot D_{S} I_{S}^{\mu} \tag{B.46}
\end{equation*}
$$

with Integral I_{S}^{μ} and fermion chain D_{S}

Dirac Structure

The Dirac structure is given by

$$
\begin{align*}
D_{S} & =\bar{s}_{\alpha}\left(-\Gamma_{D L}^{I 2 *} P_{R}+\Gamma_{D R}^{I 2 *} P_{L}\right)\left(-\Gamma_{D L}^{I 1} P_{L}+\Gamma_{D R}^{I 1} P_{R}\right) d_{\gamma} m_{\tilde{g}} \\
& =\bar{s}_{\alpha}\left(-\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1} P_{R}-\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1} P_{L}\right) d_{\gamma} m_{\tilde{g}} \\
& =-m_{\tilde{g}}\left[\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1} \bar{s}_{\alpha} P_{R} d_{\gamma}+\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1} \bar{s}_{\alpha} P_{L} d_{\gamma}\right] \\
& =-\frac{1}{2} m_{\tilde{g}}\left[\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1} \bar{s}_{\alpha}\left(1+\gamma_{5}\right) d_{\gamma}+\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1} \bar{s}_{\alpha}\left(1-\gamma_{5}\right) d_{\gamma}\right] \\
& =-\frac{1}{2} m_{\tilde{g}}[\underbrace{\left(\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1}+\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1}\right)}_{\Gamma^{+}} \bar{s}_{\alpha} d_{\gamma}+\underbrace{\left(\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1}-\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1}\right)}_{\Gamma^{-}} \bar{s}_{\alpha} \gamma_{5} d_{\gamma}] \\
& =-\frac{1}{2} m_{\tilde{g}}\left[\Gamma^{+} \bar{s}_{\alpha} d_{\gamma}+\Gamma^{-} \bar{s}_{\alpha} \gamma_{5} d_{\gamma}\right] \tag{B.47}
\end{align*}
$$

where only the axial part contributes to the chromomagnetic operator and we can therefore discard the first term

Integral

The Integral is given by

$$
\begin{equation*}
I_{S}^{\mu}=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(2 p-q+2 k)^{\mu}}{k^{2}-m_{\tilde{g}}^{2}} \frac{1}{(p+k)^{2}-m_{\tilde{d}}^{2}} \frac{1}{(p-q+k)^{2}-m_{\tilde{d}}^{2}} \tag{B.48}
\end{equation*}
$$

Expanding the denominators in small momenta (which is the same as in diagram one but with the gluino mass and the squark mass interchanged), we get

$$
\begin{align*}
I_{S}^{\mu} & =\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{(2 p-q+2 k)^{\mu}}{\left(k^{2}-m_{\tilde{d}_{I}}^{2}\right)^{2}} \frac{1}{k^{2}-m_{\tilde{g}}^{2}}-2 \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{k_{\lambda}(2 p-q)^{\lambda}}{\left(k^{2}-m_{\tilde{d}_{I}}^{2}\right)^{3}} \frac{(2 p-q+2 k)^{\mu}}{k^{2}-m_{\tilde{g}}^{2}}+\mathcal{O}\left(p^{2}\right) \\
& =(2 p-q)^{\mu} \underbrace{\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-m_{\tilde{d}_{I}}^{2}\right)^{2}} \frac{1}{k^{2}-m_{\tilde{g}}^{2}}}_{=\frac{i}{16 \pi^{2}} C_{0}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right)}+2 \underbrace{\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{k^{\mu}}{\left(k^{2}-m_{\tilde{d}_{I}}^{2}\right)^{2}} \frac{1}{k^{2}-m_{\tilde{g}}^{2}}}_{\rightarrow 0 \text { because of symmetry }} \\
& -2(2 p-q)^{\lambda}(2 p-q)^{\mu} \underbrace{\left.\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{k^{\lambda}}{\left(k^{2}-m_{\tilde{d}_{I}}^{2}\right.}\right)^{2}}_{\rightarrow 0 \text { because of symmetry }} \frac{1}{k^{2}-m_{\tilde{g}}^{2}}
\end{aligned} \underbrace{}_{=\frac{i}{16 \pi^{2} D_{0}^{\lambda \mu}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right)}} \begin{aligned}
& \text { (B.49)} \\
& \tag{B.49}\\
& =\frac{i}{16 \pi^{2}}(2 p-q)^{\mu}(C_{0}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right)-4 D_{0, T}(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}^{\left.\left.\int \frac{d^{4} k}{(2 \pi)^{4}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right)\right)} \underbrace{\left.k^{2}-m_{\tilde{d}_{I}}^{2}\right)^{2}} \frac{1}{k^{2}-m_{\tilde{g}}^{2}}
\end{align*}
$$

where we defined $D_{0, T}$ by

$$
\begin{equation*}
D_{0}^{\lambda \mu}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right)=g^{\lambda \mu} D_{0, T}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right) \tag{B.50}
\end{equation*}
$$

These integral functions are given by

$$
\begin{align*}
C_{0}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right) & =\frac{1}{m_{\tilde{d}_{I}}^{2}} \frac{-1+x-x \log x}{(1-x)^{2}} \\
D_{0, T}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right) & =\frac{1}{8} \frac{1}{m_{\tilde{d}_{I}}^{2}} \frac{1-4 x+3 x^{2}-2 x^{2} \log x}{(x-1)^{3}} \tag{B.51}
\end{align*}
$$

with

$$
\begin{equation*}
x=\frac{m_{\tilde{g}}^{2}}{m_{\tilde{d}_{I}}^{2}} \tag{B.52}
\end{equation*}
$$

The difference appearing in the full expression is then

$$
\begin{equation*}
C_{0}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right)-4 D_{0, T}\left(m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{d}_{I}}, m_{\tilde{g}}\right)=-\frac{1}{m_{\tilde{d}_{I}}^{2}} \underbrace{\frac{x^{2}-1-2 x \log x}{2(x-1)^{3}}}_{F_{4}[x]} \tag{B.53}
\end{equation*}
$$

Putting the pieces together, we obtain the final expression for the integral

$$
\begin{equation*}
I_{S}^{\mu}=-\frac{1}{m_{\tilde{d}_{I}}^{2}} \frac{i}{16 \pi^{2}}(2 p-q)^{\mu} F_{4}[x] \tag{B.54}
\end{equation*}
$$

with the integral function

$$
\begin{equation*}
F_{4}[x]=\frac{x^{2}-1-2 x \log x}{2(x-1)^{3}} \tag{B.55}
\end{equation*}
$$

Putting the pieces together

The matrix element is given by

$$
\begin{equation*}
i \mathcal{M}=(-1) i^{6} 2 g_{3}^{3} \cdot T_{\alpha \beta}^{a} T_{\beta \delta}^{c} T_{\delta \gamma}^{a} \cdot \epsilon_{\mu}^{* c}(q) \cdot\left(-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} \bar{s}_{\alpha} \gamma_{5} d_{\gamma}\right)\left(-\frac{1}{m_{\tilde{d}_{I}}^{2}} \frac{i}{16 \pi^{2}}(2 p-q)^{\mu} F_{4}[x]\right) \tag{B.56}
\end{equation*}
$$

The color factor is given by

$$
\begin{equation*}
T_{\alpha \beta}^{a} T_{\beta \delta}^{c} T_{\delta \gamma}^{a}=\left(\frac{1}{2} \delta_{\alpha \gamma} \delta_{\delta \beta}-\frac{1}{6} \delta_{\alpha \beta} \delta_{\delta \gamma}\right) T_{\beta \delta}^{c}=\frac{1}{2} \delta_{\alpha \gamma} T_{\beta \beta}^{c}-\frac{1}{6} T_{\alpha \gamma}^{c} \tag{B.57}
\end{equation*}
$$

The first part vanishes because $S U(N)$ generators are traceless.
Next, we use the Gordon-Identity (Equation (B.9)) to substitute

$$
\begin{equation*}
(2 p-q)^{\mu} \bar{s} \gamma_{5} d=i \bar{s} \sigma^{\mu \nu} \gamma_{5} d q_{\nu}+\bar{s} \gamma^{\mu} \gamma_{5} d \cdot\left(m_{s}-m_{d}\right) \tag{B.58}
\end{equation*}
$$

To obtain the form of the chromomagnetic operator, we also revert the Feynman rules for the polarization vector and the (outgoing) momentum q

$$
\begin{equation*}
q_{\nu} \rightarrow-i \partial_{\nu} \quad \epsilon_{\mu}^{* c}(q) \rightarrow A_{\mu}^{c} \tag{B.59}
\end{equation*}
$$

We also use $g_{3}^{2}=\alpha_{s} 4 \pi$. Now plugging all this in and rearranging the terms, the matrix elements becomes

$$
\begin{align*}
i \mathcal{M} & =(-1) i^{6} 2 g_{3}^{3} \cdot\left(-\frac{1}{6} T_{\alpha \gamma}^{c}\right) \cdot A_{\mu}^{c} \cdot\left(-\frac{1}{2} m_{\tilde{g}} \Gamma^{-} i \bar{s}_{\alpha} \sigma^{\mu \nu} \gamma_{5} d_{\gamma}\left(-i \partial_{\nu}\right)\right)\left(-\frac{1}{m_{\tilde{d}_{I}}^{2}} \frac{i}{16 \pi^{2}} F_{4}[x]\right) \\
i \mathcal{M} & =(-1)^{5} i^{9} \frac{2}{3} \alpha_{s} \pi \Gamma^{-} \cdot\left(\frac{g_{3}}{16 \pi^{2}} \bar{s}_{\alpha} \sigma^{\mu \nu} \gamma_{5} T_{\alpha \gamma}^{c} d_{\gamma} \partial_{\nu} A_{\mu}^{c}\right)\left(\frac{m_{\tilde{g}}}{m_{\tilde{d}_{I}}^{2}} F_{4}[x]\right) \tag{B.60}
\end{align*}
$$

Now we exploit the antisymmetry of $\sigma^{\mu \nu}$ in the following way

$$
\begin{align*}
\sigma^{\mu \nu} \partial_{\nu} A_{\mu}^{c} & =\frac{1}{2}\left(\sigma^{\mu \nu} \partial_{\nu} A_{\mu}^{c}+\sigma^{\nu \mu} \partial_{\mu} A_{\nu}^{c}\right) \\
& =\frac{1}{2}\left(\sigma^{\mu \nu} \partial_{\nu} A_{\mu}^{c}-\sigma^{\mu \nu} \partial_{\mu} A_{\nu}^{c}\right) \\
& =\frac{1}{2} \sigma^{\mu \nu}\left(\partial_{\nu} A_{\mu}^{c}-\partial_{\mu} A_{\nu}^{c}\right) \\
& =-\frac{1}{2} \sigma^{\mu \nu}\left(\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c}\right) \tag{B.61}
\end{align*}
$$

With the non-abelian term coming from the $s g \rightarrow d g$ penguin, we can identify the gluon field strength tensor

$$
\begin{equation*}
\partial_{\mu} A_{\nu}^{c}-\partial_{\nu} A_{\mu}^{c} \rightarrow G_{\mu \nu}^{c} \tag{B.62}
\end{equation*}
$$

The matrix element becomes

$$
\begin{equation*}
i \mathcal{M}=(-1)^{6} i^{9} \frac{1}{3} \alpha_{s} \pi \Gamma^{-} \cdot\left(\frac{g_{3}}{16 \pi^{2}} \bar{s}_{\alpha} \sigma^{\mu \nu} \gamma_{5} T_{\alpha \gamma}^{c} d_{\gamma} G_{\mu \nu}^{c}\right)\left(\frac{m_{\tilde{g}}}{m_{\tilde{d}_{I}}^{2}} F_{4}[x]\right) \tag{B.63}
\end{equation*}
$$

Putting the squark mixing terms explicitly back in, taking away the i and suppressing fundamental color indices, with $\mathcal{M}=-\mathcal{H}$ we find

$$
\begin{equation*}
\mathcal{H}=\frac{1}{3} \alpha_{s} \pi\left(\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1}-\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1}\right) \frac{m_{\tilde{g}}}{m_{\tilde{d}_{I}}^{2}} F_{4}[x] \underbrace{\left(-\frac{g_{3}}{16 \pi^{2}} \bar{s} \sigma^{\mu \nu} \gamma_{5} T^{c} d G_{\mu \nu}^{c}\right)}_{Q_{g}^{-}} \tag{B.64}
\end{equation*}
$$

and thereby the contribution from this diagram is given by

$$
\begin{equation*}
C_{g}^{-}=\frac{1}{3} \alpha_{s} \pi\left(\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1}-\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1}\right) \frac{m_{\tilde{g}}}{m_{\tilde{d}_{I}}^{2}} F_{4}[x] \tag{B.65}
\end{equation*}
$$

B.1.4. Final Result

Putting the contributions from both diagrams together, see Equations (B.43) and (B.65), the final result for the Wilson coefficient of the chromomagnetic operator is given by

$$
\begin{equation*}
C_{g}^{-}=\frac{\alpha_{s} \pi}{3}\left(\Gamma_{D L}^{I 2 *} \Gamma_{D R}^{I 1}-\Gamma_{D R}^{I 2 *} \Gamma_{D L}^{I 1}\right) \frac{m_{\tilde{g}}}{m_{\tilde{d}}^{2}}\left(9 F_{3}[x]+F_{4}[x]\right) \tag{B.66}
\end{equation*}
$$

with $x=m_{\tilde{g}} / m_{\tilde{d}}$.

Appendix: Theoretical Background

C.1. Derivation of relation between the branching ratios of $K_{L} \rightarrow\left\{\pi^{0} \pi^{0}, \pi^{+} \pi^{-}\right\}$and ϵ_{K}

We want to derive the relation (3.28), that is relate the sum

$$
\begin{equation*}
\operatorname{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)+\mathrm{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \neq 0 \tag{C.1}
\end{equation*}
$$

which is an intuitive measure of CP violation to the $\eta \mathrm{s}$ and ϵ_{K}. These quantities are central observables in the phenomenology of Kaon CP violation, as discussed in Section 3.2.2.

The experimentally measured branching ratios for K_{L} and K_{S} to $\pi \pi$ final states are [29]

$$
\begin{align*}
& K_{L} \rightarrow \pi^{+} \pi^{-} \approx(1.967 \pm 0.010) \times 10^{-3} \\
& K_{L} \rightarrow \pi^{0} \pi^{0} \approx(0.864 \pm 0.006) \times 10^{-3} \\
& K_{S} \rightarrow \pi^{+} \pi^{-} \approx(0.6920 \pm 0.0005) \\
& K_{S} \rightarrow \pi^{0} \pi^{0} \approx(0.3069 \pm 0.0005) \tag{C.2}
\end{align*}
$$

We observe two things: the ratio decaying to two charged Pions versus two neutral Pions is nearly the same for K_{L} and K_{S}

$$
\begin{equation*}
\frac{\mathrm{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)}{\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)} \approx \frac{\mathrm{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \approx \frac{7}{3} \tag{C.3}
\end{equation*}
$$

and next to all K_{S} decay into $\pi \pi$

$$
\begin{equation*}
\mathrm{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)+\mathrm{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right) \approx 1 \tag{C.4}
\end{equation*}
$$

we can use these two approximations to express the sum of the K_{L} to $\pi \pi$ branching ratios (3.27) only in decays to $\pi^{0} \pi^{0}$. We could also choose $\pi^{+} \pi^{-}$instead, but this will yield the same result. The approximations we made so far levelled the difference between η_{00} and η_{+-}, which is fulfilled to good accuracy.

$$
\begin{align*}
& \operatorname{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)+\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \\
= & \frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \cdot \operatorname{BR}\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)+\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \\
= & \frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \cdot\left(1-\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)\right)+\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \\
= & \frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \tag{C.5}
\end{align*}
$$

The ratio of the total decay width of K_{L} and K_{S} is just the ratio of their lifetimes $\frac{\Gamma\left(\sum_{f} K_{L} \rightarrow f\right)}{\Gamma\left(\sum_{f} K_{S} \rightarrow f\right)}=\frac{\tau_{S}}{\tau_{L}}$. It follows for the branching ratio

$$
\begin{equation*}
\frac{\operatorname{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\operatorname{BR}\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}=\frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) / \Gamma\left(\sum_{f} K_{L} \rightarrow f\right)}{\Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right) / \Gamma\left(\sum_{f} K_{S} \rightarrow f\right)}=\frac{\tau_{L}}{\tau_{S}} \cdot \frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)} \tag{C.6}
\end{equation*}
$$

We noted before, that K_{S} and K_{L} have nearly equal masses and when decaying to the same final state, all integration constants in the computation of the decay rate are equal so only the matrix element remains to be calculated. Everything cancels in the ratio and we remain with

$$
\begin{equation*}
\frac{\Gamma\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)}{\Gamma\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)}=\frac{\left.\left|\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}\right| K_{L}\right\rangle\left.\right|^{2}}{\left.\left|\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}\right| K_{S}\right\rangle\left.\right|^{2}} \tag{C.7}
\end{equation*}
$$

we define the ratios of these amplitudes as η

$$
\begin{align*}
\eta_{00} & =\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}\left|K_{S}\right\rangle} \\
\eta_{+-} & =\frac{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}\left|K_{S}\right\rangle} \tag{C.8}
\end{align*}
$$

Remember from Section 3.2.2, that $\left|\epsilon_{K}\right| \approx\left|\eta_{00}\right| \approx\left|\eta_{+-}\right|$. So in the end we have produced Equation (3.28)

$$
\mathrm{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)+\mathrm{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \approx \tau_{L} / \tau_{S} \cdot\left|\epsilon_{K}\right|^{2}
$$

we could have done the same line of arguments with η_{+-}but since we have neglected the difference between the charged and neutral Pion final states in Equation (C.3), by assumption $\eta_{+-}=\eta_{00}$.

From the measurements [29]

$$
\begin{align*}
\mathrm{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right) & =(1.967 \pm 0.010) \times 10^{-3} \\
\mathrm{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) & =(0.864 \pm 0.006) \times 10^{-3} \tag{C.9}
\end{align*}
$$

we get

$$
\begin{equation*}
\mathrm{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)+\mathrm{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right) \approx 2.831 \times 10^{-3} \tag{C.10}
\end{equation*}
$$

with [29]

$$
\begin{equation*}
\tau_{L}=5.116 \times 10^{-8} \quad \tau_{S}=8.954 \times 10^{-11} \tag{C.11}
\end{equation*}
$$

we have $\tau_{L} / \tau_{S} \approx 571$. The formula predicts $\left|\epsilon_{K}\right| \approx\left|\eta_{00}\right| \approx\left|\eta_{+-}\right| \approx 2.226 \times 10^{-3}$.
Measurements give [29]

$$
\begin{gather*}
\left|\eta_{00}\right|=(2.220 \pm 0.011) \times 10^{-3} \quad\left|\eta_{+-}\right|=(2.232 \pm 0.011) \times 10^{-3} \tag{C.12}\\
\left|\epsilon_{K}\right|=(2.228 \pm 0.011) \times 10^{-3} \tag{C.13}
\end{gather*}
$$

The essential information we were after is Equation (3.28)

$$
\begin{equation*}
\left|\epsilon_{K}\right| \approx\left|\eta_{00}\right| \approx\left|\eta_{+-}\right| \approx \sqrt{\tau_{S} / \tau_{L}} \cdot \sqrt{\mathrm{BR}\left(K_{L} \rightarrow \pi^{+} \pi^{-}\right)+\mathrm{BR}\left(K_{L} \rightarrow \pi^{0} \pi^{0}\right)} \tag{C.14}
\end{equation*}
$$

which relates the η s to the CP violating branching ratios and is accurate to $<1 \%$.

C.2. Explicit calculation of $\boldsymbol{\eta}_{\boldsymbol{f}}$ in terms of observables

In this section we will expand on Reference [78] and show how they manage to express

$$
\begin{equation*}
\eta_{f}=\frac{\langle f| H_{e f f}\left|K_{L}\right\rangle}{\langle f| H_{e f f}\left|K_{S}\right\rangle}=\frac{1-q g / p h}{1+q g / p h} \tag{C.15}
\end{equation*}
$$

by phase convention independent quantitites, cf. Equation (3.39). First we define the shorthand $r:=q g / p h$ so that

$$
\begin{equation*}
\eta_{f}=\frac{1-r}{1+r}=\frac{1-\operatorname{Re} r-i \operatorname{Im} r}{1+\operatorname{Re} r+i \operatorname{Im} r} \tag{C.16}
\end{equation*}
$$

we expand to make the denominator real

$$
\begin{equation*}
\eta_{f}=\frac{1-\operatorname{Re} r-i \operatorname{Im} r}{1+\operatorname{Re} r+i \operatorname{Im} r} \cdot \frac{1+\operatorname{Re} r-i \operatorname{Im} r}{1+\operatorname{Re} r-i \operatorname{Im} r}=\frac{1-|r|^{2}-2 i \operatorname{Im} r}{1+2 \operatorname{Re} r+|r|^{2}} \tag{C.17}
\end{equation*}
$$

now we split $|r|^{2}=|q / p|^{2} \cdot|g / h|^{2}$ and use the hint given in [78] to use the algebraic relation $(1 \pm a b)=1 / 2[(1+a)(1 \pm b)+(1-a)(1 \mp b)]$ for $a=|q / p|^{2}$ and $b=|g / h|^{2}$

$$
\begin{align*}
\eta_{f} & =\frac{1-|r|^{2}-2 i \operatorname{Im} r}{1+2 \operatorname{Re} r+|r|^{2}} \\
& =\frac{\left(1+|q / p|^{2}\right)\left(1-|g / h|^{2}\right)+\left(1-|q / p|^{2}\right)\left(1+|g / h|^{2}\right)-4 i \operatorname{Im} r}{\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)+\left(1-|q / p|^{2}\right)\left(1-|g / h|^{2}\right)-4 \operatorname{Re} r} \tag{C.18}
\end{align*}
$$

Expanding by $\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)$

$$
\begin{align*}
\eta_{f} & =\frac{\left(\frac{\left(1+|q / p|^{2}\right)\left(1-|g / h|^{2}\right)}{\left(1+q /\left.q\right|^{2}\right)\left(1+g /\left.g\right|^{2}\right)}\right)+\left(\frac{\left.(1-\mid q / p)^{2}\right)\left(1+\mid g / h h^{2}\right)}{\left(1+q /\left.q\right|^{2}\right)\left(1+g /\left.h\right|^{2}\right)}\right)+\left(\frac{-4 i \operatorname{Im} r}{\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)}\right)}{\left(\frac{\left(1+q /\left.p\right|^{2}\right)\left(1+|g / h|^{2}\right)}{\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)}\right)+\left(\frac{\left(1-|q / p|^{2}\right)\left(1-|g / h|^{2}\right)}{\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)}\right)+\left(\frac{-4 \operatorname{Re} r}{\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)}\right)} \\
& =\frac{\frac{\left(1-|g / h|^{2}\right)}{\left(1+|g / h|^{2}\right)}+\frac{\left(1-|q / p|^{2}\right)}{\left(1+|q / p|^{2}\right)}+\frac{-4 i \operatorname{Im} r}{\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)}}{1+\frac{\left(1-|q / p|^{2}\right)\left(1-|g / h|^{2}\right)}{\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)}+\frac{-4 \operatorname{Re} r}{\left(1+|q / p|^{2}\right)\left(1+|g / h|^{2}\right)}} \tag{C.19}
\end{align*}
$$

and thereby we found with the definitions given in Equation (3.39) the result of [78]

$$
\begin{equation*}
\eta_{f}=\frac{a_{\tilde{\epsilon}_{f}^{\prime}}+a_{\tilde{\epsilon}}+i a_{\tilde{\epsilon}+\tilde{\epsilon}_{f}^{\prime}}}{2+a_{\tilde{\epsilon}} a_{\tilde{\epsilon}_{f}^{\prime}}+a_{\tilde{\epsilon} \tilde{\epsilon}_{f}^{\prime}}} \tag{C.20}
\end{equation*}
$$

C.3. Relating $\tilde{\epsilon}_{+-}^{\prime}$ and $\tilde{\epsilon}_{00}^{\prime}$

In this section, we derive the relation between $\tilde{\epsilon}_{+-}^{\prime}$ and $\tilde{\epsilon}_{00}^{\prime}$. To this end, we use the following notation

$$
\begin{align*}
\tilde{\omega} & =\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{C P+}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{C P+}\right\rangle}=e^{i\left(\delta_{2}-\delta_{0}\right)} \cdot \frac{\operatorname{Re} a_{2}}{\operatorname{Re} a_{0}} \\
\tilde{\epsilon}_{0}^{\prime} & =\frac{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{C P-}\right\rangle}{\left\langle(\pi \pi)_{0}\right| \mathcal{H}_{e f f}\left|K_{C P+}\right\rangle}=i \frac{\operatorname{Im} a_{0}}{\operatorname{Re} a_{0}} \\
\tilde{\epsilon}_{2}^{\prime} & =\frac{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{C P-}\right\rangle}{\left\langle(\pi \pi)_{2}\right| \mathcal{H}_{e f f}\left|K_{C P+}\right\rangle}=i \frac{\operatorname{Im} a_{2}}{\operatorname{Re} a_{2}} \\
\tilde{\epsilon}_{+-}^{\prime} & =\frac{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{C P-}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|K_{C P+}\right\rangle}=\frac{\tilde{\epsilon}_{0}^{\prime}+\tilde{\epsilon}_{2}^{\prime} \tilde{\omega} / \sqrt{2}}{1+\tilde{\omega} / \sqrt{2}} \\
\tilde{\epsilon}_{00}^{\prime} & =\frac{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{C P-}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|K_{C P+}\right\rangle}=\frac{\tilde{\epsilon}_{0}^{\prime}-\tilde{\epsilon}_{2}^{\prime} \sqrt{2} \tilde{\omega}}{1-\sqrt{2} \tilde{\omega}} \tag{C.21}
\end{align*}
$$

together with the mixing parameter $\tilde{\epsilon}$ which parametrizes the admixture of the 'wrong' CP state in the K_{L} and K_{S} states. We work in the physical phase conventions, such that the phase dependence of $\tilde{\epsilon}$ is given by $\epsilon_{K}=\tilde{\epsilon}+\tilde{\epsilon}_{0}^{\prime}$, with the above definitions. The convention independent quantities which we want to derive carry the same labels but without a tilde.

From Equation (3.40), we have the following relations between convention dependent and independent quantities. For the real parts, we have

$$
\begin{align*}
\operatorname{Re} \tilde{\epsilon} & =\operatorname{Re} \epsilon_{K} \\
\operatorname{Re} \tilde{\epsilon}_{+-}^{\prime} & =\operatorname{Re} \epsilon_{+-}^{\prime} \\
\operatorname{Re} \tilde{\epsilon}_{00}^{\prime} & =\operatorname{Re} \epsilon_{00}^{\prime} \tag{C.22}
\end{align*}
$$

From these we could directly derive the CPT relation of [69] between the real parts by explicitly calculating the real part of the convention dependent quantities. For the imaginary parts, cf. Equation (3.40), we have

$$
\begin{align*}
\operatorname{Im} \tilde{\epsilon}_{+-}^{\prime}+\operatorname{Im} \tilde{\epsilon} & =\operatorname{Im} \epsilon_{+-}^{\prime}+\epsilon_{K} \\
\operatorname{Im} \tilde{\epsilon}_{00}^{\prime} & +\operatorname{Im} \tilde{\epsilon} \tag{C.23}
\end{align*}=\operatorname{Im} \epsilon_{00}^{\prime}+\epsilon_{K}
$$

Using, that the phase convention dependence of $\tilde{\epsilon}$ within the class of physical phase conventions is given by $\epsilon_{K}=\tilde{\epsilon}+\tilde{\epsilon}_{0}^{\prime}$, we find that

$$
\begin{align*}
\operatorname{Im} \epsilon_{+}^{\prime} & =\operatorname{Im} \tilde{\epsilon}_{+-}^{\prime}-\operatorname{Im} \tilde{\epsilon}_{0}^{\prime} \\
\operatorname{Im} \epsilon_{00}^{\prime} & =\operatorname{Im} \tilde{\epsilon}_{00}^{\prime}-\operatorname{Im} \tilde{\epsilon}_{0}^{\prime} \tag{C.24}
\end{align*}
$$

From Equation (C.21), we see that $\tilde{\epsilon}_{0}^{\prime}$ is purely imaginary, thus we can summarize the Conditions (C.22) and (C.24) by

$$
\begin{align*}
\epsilon_{+-}^{\prime} & =\tilde{\epsilon}_{+-}^{\prime}-\tilde{\epsilon}_{0}^{\prime} \\
\epsilon_{00}^{\prime} & =\tilde{\epsilon}_{00}^{\prime}-\tilde{\epsilon}_{0}^{\prime} \tag{C.25}
\end{align*}
$$

The appearance of $\tilde{\epsilon}_{0}^{\prime}$ in the imaginary parts forces the relation between the imaginary parts of ϵ_{+-}^{\prime} and ϵ_{00}^{\prime} to be different than that of the real parts. The explicit expressions are

$$
\begin{align*}
\epsilon_{+-}^{\prime} & =\tilde{\epsilon}_{+-}^{\prime}-\tilde{\epsilon}_{0}^{\prime} \\
& =\frac{\tilde{\epsilon}_{0}^{\prime}+\tilde{\epsilon}_{2}^{\prime} \tilde{\omega} / \sqrt{2}}{1+\tilde{\omega} / \sqrt{2}}-\tilde{\epsilon}_{0}^{\prime} \\
& =\frac{1}{\sqrt{2}} \tilde{\omega}\left(\tilde{\epsilon}_{2}^{\prime}-\tilde{\epsilon}_{0}^{\prime}\right) \frac{1}{1+\tilde{\omega} / \sqrt{2}} \tag{C.26}
\end{align*}
$$

and

$$
\begin{align*}
\epsilon_{00}^{\prime} & =\tilde{\epsilon}_{00}^{\prime}-\tilde{\epsilon}_{0}^{\prime} \\
& =\frac{\tilde{\epsilon}_{0}^{\prime}-\tilde{\epsilon}_{2}^{\prime} \sqrt{2} \tilde{\omega}}{1-\sqrt{2} \tilde{\omega}}-\tilde{\epsilon}_{0}^{\prime} \\
& =-2 \frac{1}{\sqrt{2}} \tilde{\omega}\left(\tilde{\epsilon}_{2}^{\prime}-\tilde{\epsilon}_{0}^{\prime}\right) \frac{1}{1-\sqrt{2} \tilde{\omega}} \tag{C.27}
\end{align*}
$$

Which is constructed to be convention independent, hence $\left(\tilde{\epsilon}_{2}^{\prime}-\tilde{\epsilon}_{0}^{\prime}\right)$ has to be convention independent. We identify

$$
\begin{equation*}
\tilde{\epsilon}_{K}^{\prime}=\frac{1}{\sqrt{2}} \tilde{\omega}\left(\tilde{\epsilon}_{2}^{\prime}-\tilde{\epsilon}_{0}^{\prime}\right) \tag{C.28}
\end{equation*}
$$

and thereby find

$$
\begin{align*}
\epsilon_{+-}^{\prime} & =\tilde{\epsilon}_{K}^{\prime} \frac{1}{1+\tilde{\omega} / \sqrt{2}} \\
\epsilon_{00}^{\prime} & =-2 \tilde{\epsilon}_{K}^{\prime} \frac{1}{1-\sqrt{2} \tilde{\omega}} \tag{C.29}
\end{align*}
$$

Which gives the relation

$$
\begin{equation*}
\epsilon_{00}^{\prime}=-\frac{1}{2}\left(\frac{1-\sqrt{2} \tilde{\omega}}{1+\tilde{\omega} / \sqrt{2}}\right) \epsilon_{+-}^{\prime} \tag{C.30}
\end{equation*}
$$

Acknowledgements

First and foremost, I would like to thank Ulrich Nierste for giving me the opportunity to do a PhD in the fascinating world of theoretical physics, for his support during my time at the TTP, many invaluable discussions as well as a very enjoyable collaboration. Secondly, I would like to thank Matthias Steinhauser for unhesitatingly agreeing to review my thesis and valuable feedback on the final draft. I would like to thank Teppei Kitahara for his patient and profound advice on many technical aspects of the ϵ^{\prime} calculations and a very enjoyable collaboration. Furthermore, I am grateful to Robert Ziegler for our enjoyable collaboration and many helpful discussions. Special thanks go to Jakob Schwichtenberg for proofreading parts of this thesis, countless helpful advice and making science fascinating, fun and meaningful at the same time. I am grateful for all the people that made my time at the institute enjoyable. It is only through colleagues that you can talk to, that you can discuss with, that you can have fun with and that you can share the occasional frustration with, that work can become a balanced, nurturing and positive experience. And I believe that it is only this way, that work can produce something good.

I would like to thank my fiancée, Ivana Herrmann, for proofreading parts of this thesis as well as always supporting me, no matter what. You're the best. Finally, I would like to thank my parents for their support and raising me free from the pressure to perform and thereby allowing me, instead of being driven to do so by fear of failure, to find my motivation to work on what I consider meaningful.

Bibliography

[1] Teppei Kitahara, Ulrich Nierste, and Paul Tremper. Supersymmetric Explanation of CP Violation in $K \rightarrow \pi \pi$ Decays. Phys. Rev. Lett., 117(9):091802, 2016.
[2] Jakob Schwichtenberg, Paul Tremper, and Robert Ziegler. A Grand-Unified NelsonBarr Model. 2018. https://arxiv.org/abs/1802.08109.
[3] J. M. Pendlebury et al. Revised experimental upper limit on the electric dipole moment of the neutron. Phys. Rev., D92(9):092003, 2015.
[4] Ettore Vicari and Haralambos Panagopoulos. Theta dependence of $\mathrm{SU}(\mathrm{N})$ gauge theories in the presence of a topological term. Phys. Rept., 470:93-150, 2009.
[5] Hai-Yang Cheng. The Strong CP Problem Revisited. Phys. Rept., 158:1, 1988.
[6] Stephen M. Barr. Solving the Strong CP Problem Without the Peccei-Quinn Symmetry. Phys. Rev. Lett., 53:329, 1984.
[7] Luis Bento, Gustavo C. Branco, and Paulo A. Parada. A Minimal model with natural suppression of strong CP violation. Phys. Lett., B267:95-99, 1991.
[8] W. Grimus and H. Kuhbock. A renormalizable $\mathrm{SO}(10)$ GUT scenario with spontaneous CP violation. Eur. Phys. J., C51:721-729, 2007.
[9] Jordan Franois, Lazzarini Serge, and Masson Thierry. Gauge field theories: various mathematical approaches. 2014. https://arxiv.org/abs/1404.4604.
[10] Taichiro Kugo and Joe Sato. Dynamical symmetry breaking in an E(6) GUT model. Prog. Theor. Phys., 91:1217-1238, 1994.
[11] R. Slansky. Group Theory for Unified Model Building. Phys. Rept., 79:1-128, 1981.
[12] Hahn, Thomas. Routines for the diagonalization of complex matrices. http://www. feynarts.de/diag/manual.pdf.
[13] G. Senjanovic. Neutrino mass: From LHC to grand unification. Riv. Nuovo Cim., 34:1-68, 2011.
[14] R. N. Mohapatra et al. Theory of neutrinos: A White paper. Rept. Prog. Phys., 70:1757-1867, 2007.
[15] Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astrophysics. 2007.
[16] Stefano Bertolini, Luca Di Luzio, and Michal Malinsky. Intermediate mass scales in the non-supersymmetric $\mathrm{SO}(10)$ grand unification: A Reappraisal. Phys. Rev., D80:015013, 2009.
[17] K. Abe et al. Search for proton decay via $p \rightarrow e^{+} \pi^{0}$ and $p \rightarrow \mu^{+} \pi^{0}$ in 0.31 megatonyears exposure of the Super-Kamiokande water Cherenkov detector. Phys. Rev., D95(1):012004, 2017.
[18] Stefan Antusch, Jörn Kersten, Manfred Lindner, Michael Ratz, and Michael Andreas Schmidt. Running neutrino mass parameters in see-saw scenarios. JHEP, 03:024, 2005.
[19] Stefan Antusch and Vinzenz Maurer. Running quark and lepton parameters at various scales. JHEP, 11:115, 2013.
[20] Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Thomas Schwetz. Updated fit to three neutrino mixing: exploring the acceleratorreactor complementarity. JHEP, 01:087, 2017.
[21] M. Agostini et al. Results on Neutrinoless Double- β Decay of ${ }^{76} \mathrm{Ge}$ from Phase I of the GERDA Experiment. Phys. Rev. Lett., 111(12):122503, 2013.
[22] J. B. Albert et al. Search for Majorana neutrinos with the first two years of EXO-200 data. Nature, 510:229-234, 2014.
[23] A. Gando et al. Limit on Neutrinoless $\beta \beta$ Decay of ${ }^{136}$ Xe from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in ${ }^{76}$ Ge. Phys. Rev. Lett., 110(6):062502, 2013.
[24] A. Osipowicz et al. KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent. 2001.
[25] A. Monfardini et al. The Microcalorimeter arrays for a Rhenium experiment (MARE): A Next-generation calorimetric neutrino mass experiment. Nucl. Instrum. Meth., A559:346-348, 2006.
[26] Benjamin Monreal and Joseph A. Formaggio. Relativistic Cyclotron Radiation Detection of Tritium Decay Electrons as a New Technique for Measuring the Neutrino Mass. Phys. Rev., D80:051301, 2009.
[27] K. Blaum et al. The Electron Capture ${ }^{163}$ Ho Experiment ECHo. In The Future of Neutrino Mass Measurements: Terrestrial, Astrophysical, and Cosmological Measurements in the Next Decade (NUMASS2013) Milano, Italy, February 4-7, 2013, 2013.
[28] P. A. R. Ade et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594:A13, 2016.
[29] C. Patrignani et al. Review of Particle Physics. Chin. Phys., C40(10):100001, 2016.
[30] Francesco Capozzi, Eleonora Di Valentino, Eligio Lisi, Antonio Marrone, Alessandro Melchiorri, and Antonio Palazzo. Global constraints on absolute neutrino masses and their ordering. Phys. Rev., D95(9):096014, 2017.
[31] A. Gando et al. Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen. Phys. Rev. Lett., 117(8):082503, 2016. [Addendum: Phys. Rev. Lett.117,no.10,109903(2016)].
[32] Heinrich Päs and Werner Rodejohann. Neutrinoless Double Beta Decay. New J. Phys., 17(11):115010, 2015.
[33] Ann E. Nelson. Calculation of θ Barr. Phys. Lett., 143B:165-170, 1984.
[34] Luca Vecchi. Spontaneous CP violation and the strong CP problem. JHEP, 04:149, 2017.
[35] Z. Bai et al. Standard Model Prediction for Direct CP Violation in K Decay. Phys. Rev. Lett., 115(21):212001, 2015.
[36] V. Cirigliano, G. Ecker, H. Neufeld, and A. Pich. Isospin breaking in K -i pi pi decays. Eur. Phys. J., C33:369-396, 2004.
[37] V. Cirigliano, A. Pich, G. Ecker, and H. Neufeld. Isospin violation in epsilon-prime. Phys. Rev. Lett., 91:162001, 2003.
[38] A. Alavi-Harati et al. Observation of direct CP violation in $K_{S, L} \rightarrow \pi \pi$ decays. Phys. Rev. Lett., 83:22-27, 1999.
[39] V. Fanti et al. A New measurement of direct CP violation in two pion decays of the neutral kaon. Phys. Lett., B465:335-348, 1999.
[40] Andrzej J. Buras, Matthias Jamin, and Markus E. Lautenbacher. The Anatomy of $\epsilon^{\prime} / \epsilon$ beyond leading logarithms with improved hadronic matrix elements. Nucl. Phys., B408:209-285, 1993.
[41] Marco Ciuchini, E. Franco, G. Martinelli, and L. Reina. The Delta $S=1$ effective Hamiltonian including next-to-leading order QCD and QED corrections. Nucl. Phys., B415:403-462, 1994.
[42] Andrzej J. Buras, Martin Gorbahn, Sebastian Jäger, and Matthias Jamin. Improved anatomy of $\epsilon^{\prime} / \epsilon$ in the Standard Model. JHEP, 11:202, 2015.
[43] Teppei Kitahara, Ulrich Nierste, and Paul Tremper. Singularity-free next-to-leading order $\Delta \mathrm{S}=1$ renormalization group evolution and $\epsilon_{K}^{\prime} / \epsilon_{K}$ in the Standard Model and beyond. JHEP, 12:078, 2016.
[44] Andrzej J. Buras and Jean-Marc Grard. Upper bounds on $\epsilon^{\prime} / \epsilon$ parameters $\mathrm{B}_{6}^{(1 / 2)}$ and $\mathrm{B}_{8}^{(3 / 2)}$ from large N QCD and other news. JHEP, 12:008, 2015.
[45] Vincenzo Cirigliano, Gerhard Ecker, Helmut Neufeld, Antonio Pich, and Jorge Portoles. Kaon Decays in the Standard Model. Rev. Mod. Phys., 84:399, 2012.
[46] T. Blum et al. K to $\pi \pi$ Decay amplitudes from Lattice QCD. Phys. Rev., D84:114503, 2011.
[47] Andrzej J. Buras. Kaon Flavour Physics Strikes Back. J. Phys. Conf. Ser., 800(1):012001, 2017.
[48] Yuval Grossman, Matthias Neubert, and Alexander L. Kagan. Trojan penguins and isospin violation in hadronic B decays. JHEP, 10:029, 1999.
[49] Alexander L. Kagan and Matthias Neubert. Large Delta $I=3 / 2$ contribution to epsilon-prime / epsilon in supersymmetry. Phys. Rev. Lett., 83:4929-4932, 1999.
[50] Andrzej J. Buras, Fulvia De Fazio, and Jennifer Girrbach. $\Delta I=1 / 2$ rule, $\varepsilon^{\prime} / \varepsilon$ and $K \rightarrow \pi \nu \bar{\nu}$ in $Z^{\prime}(Z)$ and G^{\prime} models with FCNC quark couplings. Eur. Phys. J., C74(7):2950, 2014.
[51] Andreas Crivellin and Momchil Davidkov. Do squarks have to be degenerate? Constraining the mass splitting with Kaon and D mixing. Phys. Rev., D81:095004, 2010.
[52] Janusz Rosiek. Complete set of Feynman rules for the MSSM: Erratum. 1995. https: //arxiv.org/abs/hep-ph/9511250.
[53] Jorge C. Romao and Joao P. Silva. A resource for signs and Feynman diagrams of the Standard Model. Int. J. Mod. Phys., A27:1230025, 2012.
[54] Jennifer Girrbach. Flavourverletzung in supersymmetrischen vereinheitlichten Theorien. PhD thesis, KIT, Karlsruhe, Dept. Phys., 2011.
[55] C. C. Nishi. Simple derivation of general Fierz-like identities. Am. J. Phys., 73:11601163, 2005.
[56] J. M. Gerard, W. Grimus, and Amitava Raychaudhuri. Gluino Penguins and $\epsilon^{\prime} / \epsilon$. Phys. Lett., 145B:400-406, 1984.
[57] S. A. Abel, W. N. Cottingham, and I. B. Whittingham. Gluon and gluino penguins and the charmless decays of the b quark. Phys. Rev., D58:073006, 1998.
[58] Andrzej J. Buras and Jean-Marc Grard. $K \rightarrow \pi \pi$ and $K-\pi$ Matrix Elements of the Chromomagnetic Operators from Dual QCD. 2018. https://arxiv.org/abs/1803. 08052.
[59] K. A. Olive et al. Review of Particle Physics. Chin. Phys., C38:090001, 2014.
[60] Y. Amhis et al. Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016. Eur. Phys. J., C77(12):895, 2017.
[61] Andreas Crivellin and Stefan Pokorski. Can the differences in the determinations of $V_{u b}$ and $V_{c b}$ be explained by New Physics? Phys. Rev. Lett., 114(1):011802, 2015.
[62] Dante Bigi, Paolo Gambino, and Stefan Schacht. $R\left(D^{*}\right),\left|V_{c b}\right|$, and the Heavy Quark Symmetry relations between form factors. JHEP, 11:061, 2017.
[63] Benjamin Grinstein and Andrew Kobach. Model-Independent Extraction of $\left|V_{c b}\right|$ from $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$. Phys. Lett., B771:359-364, 2017.
[64] Makoto Kobayashi and Toshihide Maskawa. CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys., 49:652-657, 1973.
[65] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model of elementary particles. Prog. Theor. Phys., 28:870-880, 1962. [,34(1962)].
[66] Nierste, Ulrich. Einführung in die Flavourphysik. University Lecture, 2013.
[67] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay. Evidence for the 2π Decay of the K_{2}^{0} Meson. Phys. Rev. Lett., 13:138-140, 1964.
[68] K. Anikeev et al. B physics at the Tevatron: Run II and beyond. In Workshop on B Physics at the Tevatron: Run II and Beyond Batavia, Illinois, September 23-25, 1999, 2001.
[69] M. S. Sozzi. On the direct CP violation parameter ' ϵ. Eur. Phys. J., C36:37-42, 2004.
[70] M. Hayakawa and A. I. Sanda. Searching for T, CP, CPT and Delta S = Delta Q rule violations in the neutral K meson system: A Guide. Phys. Rev., D48:1150-1166, 1993.
[71] Giancarlo D'Ambrosio and Gino Isidori. CP violation in kaon decays. Int. J. Mod. Phys., A13:1-94, 1998.
[72] Bruce Winstein and Lincoln Wolfenstein. The Search for direct CP violation. Rev. Mod. Phys., 65:1113-1148, 1993.
[73] Gustavo C. Branco, Luis Lavoura, and Joao P. Silva. CP Violation. Int. Ser. Monogr. Phys., 103:1-536, 1999.
[74] Ikaros I.Y. Bigi. CP violation: An Essential mystery in nature's grand design. Surveys High Energ.Phys., 12:269-336, 1998.
[75] J. S. Bell and J. Steinberger. Weak interactions of kaons. In Gauge models of CP violation, pages 195-222, 1966. [,42(1990)], http://inspirehep.net/record/302233/ files/Oxford-1965-195.pdf.
[76] K. Urbanowski. Studying the Bell-Steinberger relation. Eur. Phys. J., C37(2):233240, 2004.
[77] Dan-di Wu. The Rephasing Invariants and CP. Phys. Rev., D33:860, 1986.
[78] W. F. Palmer and Y. L. Wu. Rephase invariant CP violating observables and mixings in the B0, D0 and K0 systems. Phys. Lett., B350:245-251, 1995.
[79] M. S. Sozzi and I. Mannelli. Measurements of direct CP violation. Riv. Nuovo Cim., 26N3:1-110, 2003.
[80] A. Pich. CP violation. 1993. [ICTP Ser. Theor. Phys.10,14(1994)].
[81] K. Kleinknecht. CP Violation and K0 Decays. Ann. Rev. Nucl. Part. Sci., 26:1-50, 1976.
[82] M. Banner, J. W. Cronin, C. M. Hoffman, B. C. Knapp, and M. J. Shochet. Measurement of eta00/eta+-. Phys. Rev. Lett., 28:1597-1601, 1972.
[83] Yee B. Hsiung. Latest results on the direct CP violation measurements - epsilon-prime / epsilon. In Lepton - hadron scattering: Proceedings, 19th SLAC Summer Institute on Particle Physics (SSI 91), Stanford, Calif., 5-16 Aug 1991, pages 0467-491, 1992.
[84] Kenneth M. Watson. The Effect of final state interactions on reaction cross-sections. Phys. Rev., 88:1163-1171, 1952.
[85] Andrzej J. Buras. Weak Hamiltonian, CP violation and rare decays. In Probing the standard model of particle interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches, France, July 28-September 5, 1997. Pt. 1, 2, pages 281-539, 1998.
[86] Andrzej J. Buras, Jean-Marc Grard, and William A. Bardeen. Large N Approach to Kaon Decays and Mixing 28 Years Later: $\Delta I=1 / 2$ Rule, \hat{B}_{K} and ΔM_{K}. Eur. Phys. J., C74:2871, 2014.
[87] V. Antonelli, S. Bertolini, M. Fabbrichesi, and E. I. Lashin. The Delta I = $1 / 2$ selection rule. Nucl. Phys., B469:181-201, 1996.
[88] Ulrich Nierste. Theoretical status of epsilon-prime / epsilon. Nucl. Phys. Proc. Suppl., 86:329-338, 2000. [,329(1999)].
[89] Palash B. Pal. Representation-independent manipulations with Dirac spinors. 2007. https://arxiv.org/pdf/physics/0703214.pdf.
[90] V. I. Borodulin, R. N. Rogalev, and S. R. Slabospitsky. CORE: COmpendium of RElations: Version 2.1. 1995. https://arxiv.org/abs/hep-ph/9507456.
[91] Mühlleitner, Margarete. Theoretische Teilchenphysik 2. University Lecture, 2012.
[92] A. J. Buras, G. Colangelo, G. Isidori, A. Romanino, and L. Silvestrini. Connections between epsilon-prime / epsilon and rare kaon decays in supersymmetry. Nucl. Phys., B566:3-32, 2000.

[^0]: ${ }^{1}$ To be specific, a combination of Higgs VEVs needs to differ in their complex phase, otherwise you can just make it real by redefinition of the physical field.
 ${ }^{2} \theta_{F}$ is the argument of the determinant of the product of the up quark and down quark mass matrices. It is often presented in a way that suggests it is only about the down quark mass matrix, but this presentation assumes working in a basis where the up quark mass matrix is diagonal and thereby the relevant misalignment is entirely transported into the down quark mass matrix.

[^1]: ${ }^{3}$ Note that they only added one exotic vectorlike quark in total, not one per generation.

[^2]: ${ }^{1}$ The hadronic matrix element $\left\langle Q_{6}\right\rangle_{0}$ can be parametrized in the following way: $\left\langle Q_{6}\right\rangle_{0}=$ $-4 \sqrt{\frac{3}{2}}\left[\frac{m_{K}^{2}}{m_{s}+m_{d}}\right]^{2} \frac{F_{\pi}}{\kappa} B_{6}^{(1 / 2)}$, where $B_{6}^{(1 / 2)}=1$ corresponds to the vacuum insertion approximation. m_{K}, m_{s} and m_{d} are the Kaon, strange quark and down quark masses, respectively. $\kappa=F_{\pi} /\left(F_{K}-F_{\pi}\right)$, where F_{K} and F_{π} are the Kaon and Pion decay constants, respectively [40]. The lattice results of Reference [35] imply $B_{6}^{(1 / 2)}=0.57 \pm 0.19$ [47].
 ${ }^{2}$ For a definition of the amplitudes A_{0} and A_{2} see Section 3.2.6. For their relation to $\epsilon_{K}^{\prime} / \epsilon_{K}$ see Sections 3.2.9 and 3.2.10.
 ${ }^{3}$ Which CKM elements involve the complex phase depends on the convention used in the CKM matrix. Should one choose another convention, rendering the combination $V_{t d} V_{t s}^{*}$ real, another combination of CKM elements inevitably becomes complex. The point is, that ϵ_{K}^{\prime} and ϵ_{K} contain several combinations of CKM elements in such a way that they are invariant under the CKM convention change.

