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Preface

A doctoral thesis is by its definition required to advance science. It should contain an an-
swer to a previously unanswered scientific question. It is, however, common nowadays to
work in collaborations and possibly even to work at multiple projects during the timespan
of the thesis. The doctoral researcher grinding one question all by herself for three years
and then coming up with an answer is nowadays probably the minority. These projects
usually culminate in papers and therefore the proof that the doctoral researcher has con-
ducted scientific work and contributed to advance the field has already been given prior
to submitting the thesis. The same applies for this thesis. Since the scientific results are
already given in the papers, this renders the doctoral thesis as a proof of scientific work
obsolete. What the thesis, however, can do, is give insight in the very work the doctoral
researcher conducted, the ideas that inspired the work, the thoughts that led to the results.
In this sense, it can be more than a mere list of results of what the doctoral researcher has
done, but it can be a portrayal of the work that the researcher has done in the timespan of
the whole PhD. In my 3 years of PhD, I mainly worked on two different projects with sev-
eral collaborators. Both projects culminated in scientific papers. With Teppei Kitahara
and my advisor Ulrich Nierste, we investigated whether the present discrepancy of the
flavor observable ε′K/εK can be plausibly explained within the Minimal Supersymmetric
Standard Model (MSSM) [1]. With Jakob Schwichtenberg and Robert Ziegler, we investi-
gated whether an E6 Grand Unified Theory with spontaneously broken CP symmetry can
explain the absence of CP violation in the strong sector while still producing the Standard
Model at low energies [2].

The results have already been stated for everyone to read. I will therefore intend to write
this thesis the way I laid down above: as a portrayal not only of the results, but of the work
that we did in the collaborations, focusing on my part of the work where it is possible
to entangle it. As with discussions that lead to ideas and cross-checking calculations,
sometimes there is nothing to entangle but the work is a team effort.

In the end, a doctoral thesis is graded by the supervisor, and - having today’s collab-
orative environment in mind - I do feel that a doctoral student of physics should show
signs of understanding in her thesis rather than merely presenting the numbers. A thesis
should demonstrate that the student thought about physics at a level deeper than mere
application. In the end, it all comes down to what we expect from the PhD title. It is my
personal opinion that a person who holds a PhD in theoretical physics should aspire to
have broad knowledge of physics theory in general and most importantly be curious about
the concepts we can use to describe nature.
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An E6 Symmetric
Nelson-Barr Model 1

This chapter is based on our paper ”A Grand-Unified Nelson-Barr Model” [2]. The project
started with the following considerations.

The strong interaction Lagrangian does allow for a CP violating term of the form θ̄GG̃,
where G is the gluon field strength tensor and G̃ its dual - the contraction of G with
the four dimensional Levi Civita symbol. The term is allowed and there is no reason,
why its coupling parameter θ̄ should be zero. However, precision measurements of the
neutron dipole moment restrict θ̄ to 6 10−10 [3] [4]. This result can be interpreted in two
ways: either the parameter θ̄ is very small or zero because of some underlying reason. Or,
it could mean that there is something structurally misunderstood about certain parts of
Yang Mills theory and the term itself does not even arise. Either way, the smallness of θ̄
is known as the ’strong CP problem’. Formulated differently, why is the θ̄ parameter zero
or close to zero when it could have any value? What is the underlying reason? While in
the past decades the Axion solution enjoyed most dedication by phenomenologists, there
are also other solutions.

One particular attractive solution is to say that CP is a symmetry of the Lagrangian.
Then, θ̄ is naturally zero and the strong CP problem is solved. This, however, requires
one to explain where the well established CP violation in the weak sector comes from.
A very straight forward solution to this is to say that CP is a good symmetry at a high
scale, then it is spontaneously broken in a way which gives rise to weak CP violation while
the strong sector remains unaffected. While the strong sector is pretty much a paragon
of a Yang Mills theory, the weak sector is kind of a bad-boy anyway: mediating across
generations, having massive gauge bosons due to electroweak symmetry breaking, violating
P, violating CP. So why shouldn’t the CP violation be due to another symmetry breaking
where the strong sector keeps a clean sheet.

Combining this idea with a GUT seems like the reasonable next step. You break a GUT
group in a way that also breaks CP and you get all the nice features of GUTs for free.
There are some reasons why GUTs might be a good idea [5]: One of the reasons is that
you want the CP breaking scale rather high, otherwise you can easily get in trouble with
FCNCs thanks to flavor precision constraints. Another reason is that if you break CP at a
low scale, you might have to explain why there are no visible domain walls in the universe,
whereas when you go to a sufficient high scale, then inflation just blows them away.

The interesting perspective here is that historically people thought about spontaneous CP
breaking around the weak scale and had these kinds of problems with it. When they came

3



4 1. An E6 Symmetric Nelson-Barr Model

up with the idea to combine it with a GUT, most of the problems just vanished [5], which
is remarkable. Whenever an idea solves multiple problems at once, the idea usually has
something good to offer.

The next question is how to break a GUT in a way that CP is violated while the strong
sector remains unaffected? First of all, you generically break CP if your Higgs VEV is
complex.1 This way we obtain complex mass matrices and by diagonalizing them, your
diagonalization matrices become complex and upon forming the CKM matrix (and also
the PMNS matrix!), they give rise to a complex CKM (and PMNS) phase. So how could
this affect the strong sector? The key lies within the θ̄ parameter. The actual θ̄ parameter
in the Lagrangian is actually a sum of two parameters: θ̄ = θQCD+θF and usually denoted
with a bar over the symbol. The first contribution, θQCD, goes by the name ’vacuum angle’
and comes from the topological structure of the QCD Yang Mills vacuum. The second
contribution, θF , comes from the fermion sector of the theory and is the argument of the
determinant of the quark mass matrix2. How this comes to merge with a parameter of the
topology of the Yang Mills vacuum seems like a miracle at first - two sectors, which appear
to have nothing to do with each other - but does have a deeper reason. This reason has
something to do with the chiral anomaly and the very structure of quantum field theory
and is not only vastly interesting, but, as I think, a key progress to our understanding in
quantum field theory and how its different aspects work together to create the phenomena
we observe. Having seen, that θF gives rise to CP violation in the strong sector, the task
at hand in constructing a model of spontaneous CP breaking is then to ensure that this
determinant is real. This is most conveniently - and one could argue most naturally -
ensured by implementing the Barr criteria [6]. These criteria simply use the fact that a
determinant is a product of the entries of the matrix and then demand that only certain
entries may be complex while other, complementing entries have to be zero. This ensures,
that in the calculation of the determinant only real entries survive and the determinant
thus by construction has no phase. While this sounds somewhat arbitrary and artificial,
it will hopefully become clear in the following sections that this is merely a constraint on
the GUT group breaking VEVs: Only few of them can be complex, while some have to be
zero to arrive at a low energy theory with vanishing strong CP violation. After all, when
constructing a model one has to make certain choices, most obviously: we will only give
nonzero VEVs to scalar fields that do not break the Standard Model. Similarly here, we
only make VEVs complex that do not violate the strong CP conservation. In this sense,
the restriction from the Barr criteria can be interpreted as more of a guideline for which
VEVs to pick and which not to, in the very same way as the Standard Model gauge group
tells us which VEVs to pick and which not to.

This is a subtle point we would like to emphasize again: In phenomenological GUT model
building it is common sense to consider only breaking chains and thus values for VEVs
which reproduce the Standard Model. All the numerous other choices are discarded be-
cause they contradict what we measure. In the same way, starting with the ambition to
construct a GUT model which breaks CP spontaneously, the mere requirement that we
have to end up with the Standard Model which includes a CP invariant strong sector

1
To be specific, a combination of Higgs VEVs needs to differ in their complex phase, otherwise you can
just make it real by redefinition of the physical field.

2
θF is the argument of the determinant of the product of the up quark and down quark mass matrices.
It is often presented in a way that suggests it is only about the down quark mass matrix, but this
presentation assumes working in a basis where the up quark mass matrix is diagonal and thereby the
relevant misalignment is entirely transported into the down quark mass matrix.
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constrains the breaking chain and the VEVs. The term ’Barr criteria’ is just a label for
this.

This summarizes the approach we took and gives already an outline of our research ques-
tion: We take CP to be a symmetry of the Lagrangian to naturally have θQCD = 0.
Then we employ a GUT group and break it through a complex VEV in order to generate
weak CP violation. The obvious question is: is this possible? If so, is it reasonable? If
it turns out that the model is not reasonable, what can we learn from this? If it turns
out to be reasonable, what can we learn from that? The term ’reasonable’ differs from
person to person. There is, for example, some consensus in the community that overly
fine-tuned models are usually considered not very reasonable. On the other hand, a class
of something-phobic models emerged recently which seem to be widely accepted, yet I per-
sonally consider them not very reasonable. But in the end we have to judge for ourselves
what we consider reasonable and what we do not. As history tells us, the next successful
theory of nature will certainly be considered ’not reasonable’ by a large number of people
before it is verified by experiment.

I should mention, that the model turned out to be what we consider quite reasonable,
in that it is consistent to the extend we investigated it. It makes predictions and it is
falsifiable. It even turned out to be more reasonable than we had anticipated. These are
the kind of pleasant surprises one secretly hopes to encounter in model building.

5



6 1. An E6 Symmetric Nelson-Barr Model

1.1. Motivation: Essentials of the BBP Study & Barr Criteria

Why E6? This question is probably best answered by going back to the original question
we had when starting with the project: which GUT group to choose? In ’91, Bento
Branco and Parada (BBP) investigated [7] a simplified model that featured spontaneous
CP breaking by employing the Barr criteria. Their study was designed to be a minimalistic
realization of the Barr criteria and analyze some of the resulting phenomenology. On top
of the Standard Model (SM), they added one heavy vectorlike downtype quark3 (DL,R),
and a scalar, which obtained the complex VEV above the EW scale. In our model, we tried
to construct a predictive model by realizing that the core idea of BBP’s phenomenological
study can be implemented in a model when starting with an E6 GUT. The difference
we get is that we have three generations of exotic down type quarks, which seems more
natural than having just one. The Barr criteria then state that the complex coupling may
only appear in SM-DL,R couplings, while SM-SM couplings and DL,R-DL,R couplings need
to be real. The right handed SM down quarks dR thus couple via the complex VEV to the
exotic left handed down quark DL, while a dL-DR coupling cannot arise via the complex
VEV because of SU(2)L symmetry.

To clarify this point: Before EWSB, the left handed SM down type quarks dL are merely
gauge degrees of freedom in the left handed quark SU(2)L doublets QL and thus cannot
couple to the exotic quark DR, which is a SU(2)L singlet, via the exotic scalar. Any
coupling to the left handed quarks can thus only arise after EWSB, when the SU(2)L is
broken and the gauge degrees of freedom become physical. But since we need the exotic
quark to be heavy, the exotic scalar VEV needs to be far above the EW scale to generate
this mass term. This leaves only one option then: coupling the exotic quark DL to the right
handed SM down type quarks dR in a Yukawa coupling with the exotic scalar. Coupling
to up type quarks is out of question because the exotic quark has the same electric charge
as the SM down type quarks. To form an electrically neutral term with an SM up type
quark would require a charged VEV. Note that in the BBP model, the electric charge
assignment for the exotic quark is for convenience only. In a GUT model, these charges
- like all quantum numbers - are fixed by the GUT group. Also, unless the GUT group
unifies generations which up to today has not brought very satisfactory results, there will
be three copies of the GUT group field content, leading certainly to not one exotic quark
in total but one per generation. We will see this when we discuss our model in section 1.2.

The addition of one vectorlike quark effectively adds a 4th row and column to the down
quark mass matrix, where one part of the new off-diagonal entries are complex while
another part is zero. Diagonalizing this mass matrix then leads to complex rotation
matrices and subsequently to a complex CKM matrix. This gives rise to CP violation
in the weak sector. Meanwhile the Barr criteria ensure that ArgDet (MuMd) = 0 and thus
the θ̄ parameter is not generated through the quark mass matrix.

We see that the Barr criteria are two rules for VEVs in a GUT model, which ensure
ArgDet (MuMd) = 0 at tree level. The first one states, that all EW scale VEVs which
mix SM and exotic quarks must be zero. The second one states, that only those (GUT
scale) VEVs which mix SM and exotic quarks are allowed to be complex, all others must
be real.

3
Note that they only added one exotic vectorlike quark in total, not one per generation.
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1.1. Motivation: Essentials of the BBP Study & Barr Criteria 7

To explicitly show this, suppose we have a Lagrangian of the form

Ld = dLmddR +DLMCdR + dLmCDR +DLMRDR (1.1)

where the mass parameters md, MC , mC and MR are in general a Higgs VEV times
a Yukawa matrix. We can think of the dL,R as the SM down quarks and the DL,R as
some exotic quarks with the same quantum numbers. By introducing new fields that are
superpositions of the old fields, we can find the mass eigenstates. This is conveniently
done by writing the Lagrangian as a scalar product of vectors and matrices and then
diagonalizing these matrices. Generations have been suppressed for simplicity.

Ld =
(
dL DL

)(md mC

MC MR

)(
dR
DR

)
(1.2)

This defines the full down quark mass matrix Md. Now we want a complex mass matrix
in order to get a complex CKM matrix upon diagonalization, while retaining a real deter-
minant, not to spoil θ̄ = θQCD + ArgDet (MuMd) = 0. This is generically satisfied, if we
impose the Barr criteria:

mC = 0 MC ∈ Cn×n md ∧MR ∈ Rn×n (1.3)

This way, the determinant is trivially real: we demand that every complex entry is can-
celled by a zero in the calculation of the determinant. This is what the Barr criteria do.
We obtain a little more sophisticated and maybe more physical seeming version of that
statement when we remember that each of the mass parameters is the product of a Yukawa
matrix and a Higgs VEV. Then, the Barr criteria (1.3) translate into prescriptions on the
scalar VEVs: some of the VEVs mixing SM and exotic fields may become complex (those
contained in MC) while others have to be zero (those contained in mC). We will see this
explicitly when discussing the symmetry breaking scheme of our model where some VEVs
are required to be zero for exactly this reason.

As we already mentioned, this line of arguments also holds for an arbitrary number of
families. Bento Branco and Parada used three generations for the SM down quarks dL,R
while adding only one exotic quark DL,R. Since our model is based on an E6 gauge
symmetry, we naturally get one exotic down quark DL,R for every generation. Therefore,
the mass parameters above are all 3 × 3 matrices, consisting of combinations of Yukawa
matrices with Higgs VEVs.

So what do we learn from BBP and their simplified model? If we want to employ a similar
realization of the Barr criteria, then we need vectorlike exotic down quarks. And here is
where E6 comes around. E6 can provide us with a vectorlike down type quark DL,R, a
vectorlike lepton doublet LL,R and a SM singlet s, if we choose the right breaking chain.
And we get this once for each generation, which does seem more natural than adding
just one more field. The exotic downtype quarks transport CP violation into the CKM
matrix in the same fashion as in the BBP model. The fact that there are three exotic
quarks doesn’t alter this mechanism. The lepton doublets, interestingly, do the same in

7



8 1. An E6 Symmetric Nelson-Barr Model

the lepton sector, thereby generating CP violation in the PMNS matrix. This has not been
measured yet at the time of writing this thesis and therefore promises a solid prediction
already at this very conceptual level. Moreover, the quark CP phase and the lepton CP
phase are correlated through the GUT group. So apart from the exotic singlet, the new
particles predicted by the E6 GUT group fit just perfectly with the idea of breaking CP
spontaneously and employing the Barr criteria in the BBP manner. It turns out that even
the singlet s plays a crucial role in our model. Therefore all exotic particles that emerge
in our model matter and are actually necessary for the model to work out. There are no
superfluous exotic fermions flying around. The appeal of the traditional GUTs SU(5) and
SO(10) lies in the fact, that they contain just the SM and essentially nothing more. With
just any other GUT, you get additional particle and raise the question ’what are these
good for?’. Taking a large GUT like E6 and realizing that all the new particles are actually
useful and even needed to perform mechanisms in order to realize the original idea, is a
particularly attractive observation.

We will introduce our model in Section 1.2 by spelling out the breaking chain from E6 to
the SM. In this process we determine the fermion fields and the scalar VEVs. In Section
1.3 and Section 1.4.1 we examine the quark and the lepton sectors in some detail, showing
how the complex GUT VEV feeds into the low energy phenomenology. In Section 1.4.2 we
give a detailed treatment of the neutrino sector before we come to the results in Section
1.5.

1.1.1. RG survival of the complex phase

BBP showed in their paper [7], that the phase of the complex VEV that feeds into the
CKM matrix is in this particular setup suppressed only by a ratio of high scale VEVs.
Naively, one would assume a decoupling behaviour like EW scale over GUT scale. Formula
(7a) of [7] generalized to an arbitrary number of heavy exotic quarks, is given by

Km2K† = md

[
1−M †C(M2)−1MC +O(m4

dM
2
C/M

6
R)
]
m†d (1.4)

We give a detailed derivation in Appendix A.2. Here, md, MC and MR are defined
via the Lagrangian (1.1) and the conditions (1.3). M2 := MCM

†
C + MRM

†
R and m =

Diag(mb,ms,md) is the diagonal matrix of SM down type quark masses. K is the CKM
matrix, which is unitary up to corrections of O(m4

dM
2
C/M

6
R). We see from Equation (1.4)

that the complex phase residing in MC is essentially only suppressed by the scale of MR.
The scales MC and MR thus need to be close together, however, they may be arbitrarily
high - and are required to be sufficiently high to guarantee sufficient unitarity of the CKM
matrix.

In our model, MC is proportional to a SU(5) breaking VEV, while MR is proportional to
SO(10) and E6 breaking VEVs. The takeaway message here is that the survival of the
complex phase requires our GUT scales to be fairly near to each other, while the overall
position of the GUT scale w.r.t. the EW scale may be arbitrarily high. The lower bounds
here being flavor precision experiments which we would certainly contradict should the
corrections to the approximate unitarity of the CKM matrix become too large. The CKM
matrix is essentially VCKM = V SM

CKM +O(m2
EW /M

2
GUT ). The upper bound is the Planck

8



1.1. Motivation: Essentials of the BBP Study & Barr Criteria 9

scale from physical reasonability arguments of the effective theory and the lower bound
is proton decay. As we will see later, the neutrino sector expresses some preference here
if we want to obtain the correct mass range of the light neutrinos by means of a seesaw
mechanism. Interestingly enough, these requirements constrain the choices for the GUT
scales so heavily, that their order of magnitude is essentially fixed.

9



10 1. An E6 Symmetric Nelson-Barr Model

1.2. Field Content of our Model

The symmetry breaking pattern we chose to work with, is

E6 −→ SO(10) −→ SU(5) −→ SU(3)C × SU(2)L × U(1)Y (1.5)

The rank of the group SO(10) is lower than the rank of E6. This expresses itself in
an additional U(1) factor that is broken when E6 is broken. The same happens when
SO(10) breaks to SU(5). In the notation, we keep the U(1)SO(10) and U(1)SU(5) factors
as subscript as a consistency check of the decomposition. They are, however, not to be
interpreted as unbroken group factors.

This breaking pattern gives us suitable representations for the Barr criteria (the vectorlike
down quarks) and at the same time provides us with the possibility of having the GUT
scales close enough to ensure the complex phase is not suppressed. The Pati-Salam model,
to name an example, requires an amount of RGE running between the Pati-Salam scale
and the SO(10) scale to make the unification work, which would suppress the complex
phase way too much.

At the E6 scale, we have one single fermion field (coming in three generations), which
we will call 27. This is the fundamental representation of E6, analogous to a quark with
27 colours. The gauge bosons are in the adjoint representation 78, as dictated by gauge
theory. To employ symmetry breaking, we need scalar fields and we take a 27H and a
symmetric 351H .

The Yukawa Lagrangian above the E6 scale is

L = 27 27 (Y27 27H + Y351 351H) (1.6)

where we choose to work in a basis where the Yukawa matrix Y27 is diagonal. Y351 is
symmetric as a result of the E6 symmetry. The model is CP invariant at the E6 scale,
therefore the Yukawa matrices need to be real [8]. We thus have 3 + 6 = 9 Yukawa
parameters.

A word on the scalar fields

It is worthwhile to note, that 27× 27 = 27 + 351A + 351, where 351A is an antisymmetric
representation which we did not require to fit our model. This tensor product leaves room
for creativity: a bound state of two fermions in the 27 can decompose in exactly the scalar
representations required to break E6 to the SM. A rather appealing composite Higgs GUT
scenario. We will not follow this idea in this thesis. We just comment that from the
modern geometric perspective of gauge theories, fundamental scalar fields somewhat seem
not to fit in very well. To that end we quote from a review by Francois, Lazzarini and
Masson:

”In the early 1950s, while Yang and Mills proposed their idea of non-abelian gauge fields
(generalization of electromagnetism), Ehresmann developed the notion of connections on

10



1.2. Field Content of our Model 11

principal fiber bundles, which turns out to be the natural mathematical framework for Yang-
Mills field theories [...] Indeed, the C2-valued scalar field involved in the SSBM is, at the
same time, a section of a (suitable) associated vector bundle [...], and a boson, so that it is
an ”hybrid structure” [...]. Moreover, in this scheme, its scalar potential does not emerge
from a natural mathematical construction.” (taken from [9], page 2)

Coupled with the immense size of GUT scalar sectors which make it challenging to even
write them down, let alone make predictive statements from them, theory could really use
some fundamental work on the origin of scalar fields. Looking at the incredible precision we
reach in the determination of some Higgs decays, conceptual theory is nowadays threatened
to fall behind the impressive progress of phenomenology and experiment. The case of a
GUT, which seemingly offers to make the required scalar fields emergent through a bound
state of ’the fermion’ present in the theory sounds certainly appealing. Such attempts
have been followed in the past, e.g. [10], albeit with little success as a realistic theory.
Here we just write down the Yukawa Lagrangian with the side note that the scalar fields
may or may not originate from a fermionic bound state, and then focus on working out
the phenomenological consequences of the setup.

1.2.1. Fermion Fields

We start at the E6 scale with three copies of a fermion field in the 27.

All our fermion fields come from the 27 of E6, which is the fundamental representation.

Figure 1.1.: Sketch of the spectrum of our model.

11



12 1. An E6 Symmetric Nelson-Barr Model

The 27 decomposes under SO(10) into a 16, a 10 and a 1 of SO(10) (see sketch in Figure
1.1, which contains the takeaway message of this subsection). The Standard Model fermion
fields (plus a sterile neutrino w.r.t. the SM) are entirely contained in the 16 of SO(10),
while the 10 of SO(10) gives rise to new exotic fermions. We give a detailed list of
the fermion fields and their representations in Table 1.1 (We normalized the SM U(1)
hypercharge in a way that it represents the average electric charge of the multiplet)

E6 SO(10)× U(1)SO(10) SU(5)× U(1)SU(5) SU(3)C × SU(2)L × U(1)Y Label

27 161 10−1 (3, 2)1/6 + (3, 1)−2/3 + (1, 1)1 QL + ucR + ecR
27 161 53 (1, 2)−1/2 + (3, 1)1/3 `L + dcR
27 161 1−5 (1, 1)0 νcR
27 10−2 52 (1, 2)1/2 + (3, 1)−1/3 LcR +DL

27 10−2 5−2 (1, 2)−1/2 + (3, 1)1/3 LL +Dc
R

27 14 10 (1, 1)0 s

Table 1.1.: The fermion content of our model. U(1) charges are written as indices.

The superscript c denotes the charge conjugate which accounts for conjugates in the rep-
resentation and flipping the sign of the U(1) charges. It also flips the chirality of a field,
thus, since it only appears on right handed fields, we only deal with left handed fields here.
The label νcR is at this point merely a name. It is a SM singlet and has no relation to
chirality but we introduce the label here to point at its later use as partner of the SM left
handed neutrino νL.

The content of the SU(2) doublets is QL = (uL, dL), `L = (νL, eL), LL = (NL, EL) and
LcR = (EcR, N

c
R). Note the flip in the LcR multiplet compared to LL, which is due them

being charge conjugates. SM fields follow the usual notation, the capital letters (except for
the QL which is the SM left handed quark doublet) denote the exotic vectorlike fermions,
where the names are given with respect to their resemblance to the quantum numbers of
the respective SM fields.

1.2.2. GUT Breaking Scalar Fields

To find the VEVs which we can use to break the GUT groups to the SM, we work out
the scalar fields, which are singlets under the Standard Model gauge group. The relevant
scalar fields are (see Appendix A.1.1 for details) given in Table 1.2.

E6 SO(10)× U(1)SO(10) SU(5)× U(1)SU(5) SU(3)C × SU(2)L × U(1)Y Label

27 14 10 (1, 1)0 φ27;1;1

351 1−8 10 (1, 1)0 φ351;1;1

27 161 1−5 (1, 1)0 φ27;16;1

351 16−5 15 (1, 1)0 φ351;16;1

351 126−2 110 (1, 1)0 φ351;126;1

351 544 240 (1, 1)0 φ351;54;24

351 1441 24−5 (1, 1)0 φ351;144;24

Table 1.2.: The SM singlet scalar fields and the progression of their representations through our breaking chain.
These fields can be used to break the GUT groups while leaving the SM intact.

The labels show the representations these fields live in in order to show which symmetry
groups are broken upon giving them a nonzero VEV. We have omitted the SM gauge group

12



1.2. Field Content of our Model 13

in the label since they all are singlets and leave the SM gauge group intact. For the SM
breaking scalar fields, we will use a different notation.

Using the above defined labels for fermions and GUT breaking scalars, the Yukawa La-
grangian which includes their interactions is given by

LGSM =Y27

(
`LL

c
R φ27;16;1 +DLd

c
R φ27;16;1 + LLL

c
R φ27;1;1 +DLD

c
R φ27;1;1

)
Y351

′

(
`LL

c
R φ351;144;24 +DLd

c
R φ351;144;24 + νcRν

c
R φ351;126;1

+ sνcR φ351;16;1 + LLL
c
R φ351;54;24 +DLD

c
R φ351;54;24 + ss φ351;1;1

)
(1.7)

We show the explicit decomposition of the Yukawa terms in Appendix A.1.1. Mind that
this is the SM language before EWSB, thus the left handed SM fields are still SU(2)
doublets `L (and QL although not appearing here), as are the (left and right) exotic
leptons LL and LcR.

We denote the VEVs of these fields 〈φ(E6;SO(10);SU(5))〉 by

〈φ(27;1;1)〉 ≡ v6,1

〈φ(351;1;1)〉 ≡ v6,2

〈φ(27;16;1)〉 ≡ v10,1

〈φ(351;16;1)〉 ≡ v10,2

〈φ(351;126;1)〉 ≡ v10,3

〈φ(351;54;24)〉 ≡ v5,1

〈φ(351;144;24)〉 ≡ v5,2 (1.8)

This encodes the important information, that is down to which group the VEV will break
the symmetry.

We so far ignored the Clebsch-Gordan coefficients since we were interested only in the
general structure. When we want to consider the mass matrices, we need to include them
however and do so in the next step. We express the scalar fields through the respective
VEVs and we will also expand the SM SU(2) doublets to explicitly show the form of the
Lagrangian after EWSB

LGSM = Y27

[ (
DLD

c
R + ELE

c
R +NLN

c
R

)
v6,1 +

(
DLd

c
R + eLE

c
R + νLN

c
R

)
v10,1

]
Y351

′

[
ss v6,2 + sνcR v10,2 + νcRν

c
R v10,3

+

(
DLD

c
R −

3

2
ELE

c
R −

3

2
NLN

c
R

)
v5,1 +

(
DLd

c
R −

3

2
eLE

c
R −

3

2
νLN

c
R

)
v5,2

]
(1.9)

13



14 1. An E6 Symmetric Nelson-Barr Model

1.2.3. Higgs Fields

By Higgs Fields we denote the scalar fields, which can do the Standard Model symmetry
breaking, that is break the electroweak symmetry in the standard way to the electromag-
netic U(1). From the representations 144, 126 and 10 of SO(10) we get via 45 and 5 of
SU(5) scalar fields that transform under the Standard Model symmetry group as (1, 2)−1/2

(we normalized the charge to the average electric charge of the multiplet, meaning we di-
vided the Slansky convention [11] by 6).

E6 SO(10)× U(1)SO(10) SU(5)× U(1)SU(5) SU(3)C × SU(2)L × U(1)Y Label

27 10−2 52 (1, 2)1/2 Hu
27;10;5

351 10−2 52 (1, 2)1/2 Hu
351;10;5

351 16−5 5−3 (1, 2)1/2 Hu
351;16;5

351 126−2 52 (1, 2)1/2 Hu
351;126;5

351 1441 57 (1, 2)1/2 Hu
351;144;5

Table 1.3.: SM Higgs fields with hypercharge +1/2. These can be used to generate EW mass terms e.g. for
up type quarks and neutrinos.

The up type Yukawa Lagrangian is thus

LY uk,SM,u = Y27 (QLu
c
R + `Lν

c
R + LLs)H

u
27;10;5

+ Y351

[
(QLu

c
R + `Lν

c
R + LLs)

(
Hu

351;10;5 +Hu
351;126;5

)
+LLν

c
RH

u
351;144;5 + `LsH

u
351;16;5

]
(1.10)

Where we colored the Higgs fields that can give masses to the SM up quarks.
We denote the VEVs of these Higgs fields in the following way

〈Hu
27;10;5〉 ≡ vu,1

〈Hu
351;10;5〉 ≡ vu,2

〈Hu
351;16;5〉 ≡ vu,3

〈Hu
351;126;5〉 ≡ vu,4

〈Hu
351;144;5〉 ≡ vu,5 (1.11)

Turning to the down type Higgs fields, we have

The down type Yukawa Lagrangian is thus

LY uk,SM,d =Y27

[
(LcRν

c
R + LLe

c
R +QLD

c
R)Hd

27;16;5 + (QLd
c
R + `Le

c
R + sLcR)Hd

27;10;5

]
+ Y351

[
(QLd

c
R + `Le

c
R + sLcR)

(
Hd

351;10;5 +Hd
351;126;45

)
+ (LcRν

c
R + LLe

c
R +QLD

c
R)
(
Hd

351;144;45 +Hd
351;144;5

)]
(1.12)

where we again colored the Higgs fields responsible for down quark mass generation.
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1.2. Field Content of our Model 15

E6 SO(10)× U(1)SO(10) SU(5)× U(1)SU(5) SU(3)C × SU(2)L × U(1)Y Label

27 10−2 5−2 (1, 2)−1/2 Hd
27;10;5

27 161 53 (1, 2)−1/2 Hd
27;16;5

351 10−2 5−2 (1, 2)−1/2 Hd
351;10;5

351 126−2 45−2 (1, 2)−1/2 Hd
351;126;45

351 1441 453 (1, 2)−1/2 Hd
351;144;45

351 1441 53 (1, 2)−1/2 Hd
351;144;5

Table 1.4.: SM Higgs fields with hypercharge -1/2. These can be used to generate EW mass terms e.g. for
down type quarks and electrons.

Again we denote the VEVs of these fields by

〈Hd
27;10;5〉 ≡ vd,1

〈Hd
27;16;5〉 ≡ vd,2

〈Hd
351;10;5〉 ≡ vd,3

〈Hd
351;126;45〉 ≡ vd,4
〈Hd

351;144;5〉 ≡ vd,5
〈Hd

351;144;45〉 ≡ vd,6
(1.13)

1.2.4. First Barr criterion: Complex VEVs

The full Yukawa Lagrangian responsible for the mass generation looks like

LY uk,mass = Y27

[ (
DLD

c
R + ELE

c
R +NLN

c
R

)
v6,1 +

(
DLd

c
R + eLE

c
R + νLN

c
R

)
v10,1

]
+ Y351

′

[
ss v6,2 + sνcR v10,2 + νcRν

c
R v10,3

+

(
DLD

c
R −

3

2
ELE

c
R −

3

2
NLN

c
R

)
v5,1 +

(
DLd

c
R −

3

2
eLE

c
R −

3

2
νLN

c
R

)
v5,2

]
+ Y27

[
uLu

c
R + νLν

c
R +NLs

]
vu,1

+ Y351

[
(uLu

c
R − 3νLν

c
R − 3NLs)

(
vu,2 + vu,4

)
+NLν

c
Rvu,5 + νLsvu,3

]
+ Y27

[
(N c

Rν
c
R + ELe

c
R + dLD

c
R) vd,2 + (dLd

c
R + eLe

c
R + sN c

R) vd,1

]
+ Y351

[
(dLd

c
R − 3eLe

c
R − 3sN c

R)
(
vd,3 + vd,4

)
+ (N c

Rν
c
R + ELe

c
R + dLD

c
R)
(
vd,5 + vd,6

) ]
(1.14)

We recognize the GUT breaking part in the first three lines and the SM breaking part
in the remaining four lines. So far, we have not specified which scalar fields acquire a
complex VEV. To this end, we need to employ the first Barr criterion, which tells us that
only VEVs which mix light and heavy fields may become complex, all others must be real.
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16 1. An E6 Symmetric Nelson-Barr Model

We look at the Yukawa Lagrangian before electroweak symmetry breaking, which consists
of the first three lines of Equation (1.14) with the SU(2)L doublets not disassembled. It
is given by

LY uk,noEWSB =
(
Y27v10,1 + Y351v5,2

)
DLd

c
R +

(
Y27v6,1 + Y351v5,1

)
DLD

c
R

+

(
Y27v10,1 −

3

2
Y351v5,2

)
`LL

c
R +

(
Y27v6,1 −

3

2
Y351v5,1

)
LLL

c
R

+ Y351v6,2 ss+ Y351v10,2 sν
c
R + Y351v10,3ν

c
Rν

c
R (1.15)

The first line is the down quark sector, the second line the lepton sector and the third line
a bunch of neutrino exclusive terms. The first Barr criterion tells us, that only v10,1 and
v5,2 may be complex. Since actually only their difference is required to be complex, it is
sufficient to have v5,2 complex while v10,1 remains real.

1.2.5. Second Barr Criterion: Electroweak Symmetry Breaking

The second Barr criterion says, that in order to get ArgDet (MuMd) = 0 at tree level,
we must not allow EWSB scale VEVs for scalar fields, which mix SM and exotic quarks.
These VEVs are colored red in the full Yukawa Lagrangian (1.14). This means

vd,2 = 0 vd,5 = 0 vd,6 = 0 (1.16)

Furthermore, since vd,3 + vd,4 and vu,2 + vu,4 only appear in their respective sum, we can
just set vu,2 = vd,3 = 0 without loss of generality. The Yukawa Lagrangian is then

LY uk,full = LY uk,u + LY uk,d + LY uk,e + LY uk,ν (1.17)

where

LY uk,u =
(
Y27vu,1 + Y351vu,4

)
uLu

c
R (1.18)

gives mass to the up quarks. There are no exotic fields affecting this sector. The term

LY uk,d =
(
Y27vd,1 + Y351vd,4

)
dLd

c
R +

(
Y27v10,1 + Y351v5,2

)
DLd

c
R

+
(
Y27v6,1 + Y351v5,1

)
DLD

c
R (1.19)

gives masses to the down quarks and exotic down quarks and will be the part of the
Lagrangian responsible for CKM CP violation. We will cover this in Section 1.3 in great
detail. The term

16



1.2. Field Content of our Model 17

LY uk,e =
(
Y27vd,1 − 3Y351vd,4

)
eLe

c
R +

(
Y27v10,1 −

3

2
Y351v5,2

)
eLE

c
R

+

(
Y27v6,1 −

3

2
Y351v5,1

)
ELE

c
R (1.20)

is essentially the leptonic counterpart of LY uk,d, yielding SM and exotic electron masses.
Together with the respective SU(2)L counterparts from the neutrino sector, these terms
will give rise to CP violation in the PMNS matrix. We will cover this in Section 1.4.

The last term

LY uk,ν = Y351v6,2 ss+ Y351v10,2 sν
c
R + Y351v10,3ν

c
Rν

c
R

+

(
Y27v10,1 −

3

2
Y351v5,2

)
νLN

c
R +

(
Y27v6,1 −

3

2
Y351v5,1

)
NLN

c
R

+
(
Y27vu,1 − 3Y351vu,4

)
(νLν

c
R +NLs) + Y351vu,3νLs+ Y351vu,5NLν

c
R

+
(
Y27vd,1 − 3Y351vd,4

)
sN c

R (1.21)

contains the Neutrino sector of our model, which we will also cover in Section 1.4, especially
in Section 1.4.2, where we discuss the emergence of the low energy neutrino masses.

1.2.6. Mass Matrices

We define new labels for the mass terms

MC =
(
Y27v10,1 + Y351v5,2

)
MR =

(
Y27v6,1 + Y351v5,1

)
MC2 =

(
Y27v10,1 −

3

2
Y351v5,2

)
MR2 =

(
Y27v6,1 −

3

2
Y351v5,1

)
Ms = Y351v6,2

Msν
c
R

= Y351v10,2

Mν
c
R

= Y351v10,3 → 0 (1.22)

where the indices C and R reflect that the matrix is complex or real, respectively. This
notation will turn out to be useful when tracking the complex phase in the low energy
regime. The neutrino sector mass matrices Ms, Msν

c
R

and Mν
c
R

are real.

We set v10,3 = 0 to reproduce acceptable neutrino masses for the light SM neutrinos. The
reason is the following: the s and νcR enter a seesaw mechanism where a Majorana term

17



18 1. An E6 Symmetric Nelson-Barr Model

for the νcR would lead to the lighter mass state becoming heavier. This lighter mass state
enters another seesaw with the SM neutrino. To obtain SM neutrino masses within the
experimentally acceptable region, its seesaw partner needs to have a Majorana mass of
order O(1016 GeV). The presence of the Mν

c
R

Majorana mass, set by a SO(10) scale VEV,
will cause the resulting state to become too heavy to fill this role. Switching off v10,3 causes
this ’effective right handed neutrino’ to emerge just at the appropriate scale to produce
viable and experimentally testable neutrino masses.

The Yukawa Lagrangian before EWSB becomes pretty compact with this notation

LY uk,noEWSB = MCDLd
c
R +MRDLD

c
R

+MC2`LL
c
R +MR2LLL

c
R

+Ms ss+Msν
c
R
sνcR (1.23)

We also define labels for the EWSB mass terms

mu =
(
Y27vu,1 + Y351vu,4

)
(1.24)

md =
(
Y27vd,1 + Y351vd,4

)
(1.25)

me =
(
Y27vd,1 − 3Y351vd,4

)
(1.26)

mν =
(
Y27vu,1 − 3Y351vu,4

)
(1.27)

and write down the electroweak sector of the mass Yukawa Lagrangian so that LY uk,full =
LY uk,noEWSB + LY uk,EW

LY uk,EW = muuLu
c
R +mddLd

c
R +meeLe

c
R

+mν (νLν
c
R +NLs) + Y351vu,3νLs+ Y351vu,5NLν

c
R +mesN

c
R (1.28)

which shows in the second line, that we are about to get some interesting neutrino phe-
nomenology in Section 1.4.2.

Next we take a look at the down quark sector and show how the complex VEV translates
into a complex CKM matrix.
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1.3. Quark Sector 19

1.3. Quark Sector

We work in Weyl spinor notation (two components). Note that the charge conjugate of a
right chiral spinor is a left chiral spinor: ψcR ≡ εψ

∗
R is a left chiral field, however not to be

confused with ψL! These are independent fields. We also suppress the spinor metric ε in
all inner products.
The up Quark sector looks exactly like the normal Standard Model up Quark sector

Lu = uTLmuu
c
R (1.29)

The down Quark sector contains an additional heavy vectorlike quark DL,R

Ld = dTLmdd
c
R +DT

LMCd
c
R +DT

LMRD
c
R (1.30)

where the mass matrices were given in Section 1.2.6. Recall, that MC is complex, while
MR and md are real. Note that we get exactly the structure for the full mass matrix which
we used to demonstrate the Barr criteria in Section 1.1.

Bob’s method

Before electroweak symmetry breaking (setting the light masses to zero), in the down
quark sector of the Yukawa Lagrangian we have

Ld = DT
LMCd

c
R +DT

LMRD
c
R (1.31)

We make an ansatz with undetermined coefficient matrices a, b, A,B to find the mass
eigenstates

dcR = a · d̃cR + b · D̃c
R Dc

R = A · d̃cR +B · D̃c
R (1.32)

Inserting this into the kinetic terms

Lkin ⊃ d
c†
Rσ

µ∂µd
c
R +Dc†

Rσ
µ∂µD

c
R (1.33)

and demanding normalized kinetic terms implies

d̃c†R

(
a†a+A†A

)
σµ∂µd

c
R

!
= d̃c†Rσ

µ∂µd
c
R

D̃c†
R

(
b†b+B†B

)
σµ∂µD

c
R

!
= D̃c†

Rσ
µ∂µD

c
R (1.34)

This is true and only true, if the ”kinetic normalization conditions”

a†a+A†A = 1 b†b+B†B = 1 (1.35)

are fulfilled. We also get two ”diagonalization conditions” from demanding that we do not
want any leftover mixed terms between the new eigenstates. After all, that was the whole
point of introducing them.
One comes from the kinetic terms

d̃c†R

(
a†b+A†B

)
σµ∂µD

c
R

!
= 0 (1.36)

giving
a†b+A†B = 0 (1.37)
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20 1. An E6 Symmetric Nelson-Barr Model

and the other one from the Yukawa terms

DT
L (MC · a+MR ·A) d̃cR

!
= 0 (1.38)

giving
MC · a+MR ·A = 0 (1.39)

We obtain the latter one once we insert the ansatz into the Yukawa Lagrangian (1.31) and
demand that all terms mixing DL and dcR vanish. Now we solve Equation (1.39) for A and
obtain

A = −Zq · a Zq := M−1
R MC (1.40)

We insert A into Equation (1.35) from the kinetic normalization and obtain

aa† =
(

1 + Z†qZq

)−1
(1.41)

where the root

aq :=
[
1 + Z†qZq

]−1/2
(1.42)

is well defined. We added the label q to distinguish it from its counterpart in the lepton
sector, which we will turn to in the next section. Note that aq = a†q is hermitian.

When we proceed to electroweak symmetry breaking, we can show that no additional
mixing between the left handed fields occurs. Using the same approach as above for the
dL and DL fields, we obtain trivial mixing coefficients. From a physical point of view, this
can be understood as follows: At the GUT scale, the states dcR and Dc

R mix to produce
mass eigenstates in the Lagrangian. Electroweak symmetry breaking introduces mixing
between dL and DL, however, the large hierarchy between the GUT scale and the EWSB
scale dictates a suppression of the EWSB effects of this mixing. To see this, introduce the
EWSB mixing term with a mass of zero. In this limit, nothing can happen to observables,
we just added a term that is zero. Now we can continuously increase the value of the mass,
the resulting change in observables needs to be continuously aswell, up to the limit where
the EWSB scale and the GUT scale are equal and in this case our approach of rotating
first the fields dcR and Dc

R will be completely altered by the introduction of the dL and DL

mixing terms since they are now at the same scale and thus of equal footing. This quick
argument makes clear, that the effect of the EWSB induced mixing between dL and DL is
suppressed by the scale of the dcR, Dc

R mixing, the GUT scale. The result that we obtain
exactly trivial mixing coefficients when using the same approach in the dL, DL case as
we did in the dcR, Dc

R case is naively suprising. We would expect corrections which are
suppressed by the high scale. But recall, that for this approach, we implied unitarity of the
CKM matrix, which however is only true up to corrections which in turn are suppressed
by the high scale. It is the absence of these corrections, that leads to trivial mixing in the
dL, DL case. The fortunate fact, that the dL, DL mixing is introduced only at the EWSB
scale is of course a result of the SM being a chiral theory: left handed SM quark fields are
SU(2)L doublets and thus cannot mix with the DL fields which are SU(2)L singlets.

Electroweak symmetry breaking generates EW mass terms with the mass matrices mu and
md for the SM quark fields. Inserting the mass eigenstates into the Lagrangian, we get for
the SM quark masses

Lquarks,SM = ũTLmuũ
c
R + d̃TLmd · aq︸ ︷︷ ︸

m
eff
d

d̃cR (1.43)
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1.3. Quark Sector 21

where the effective down quark mass matrix is given by

meff
d = md · aq (1.44)

Our original motivation was to construct a model where CP is broken spontaneously to
produce the observed CP violation in the weak sector of the SM. We see that aq involves
the quantities MR and MC , both being of comparable scale and the latter being complex,
thus aq in general has a sizable complex phase. At this point, we can explicitly check that
the first Barr criterion did its job:

ArgDet(mum
eff
d ) = Arg(Det(mu)(Det(md)Det(aq)) = 0 (1.45)

The last equality follows from mu and md being real and aq being hermitian, so all three
have real determinants. This shows that there is indeed no contribution from the quark
mass matrices to θ.
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22 1. An E6 Symmetric Nelson-Barr Model

1.4. Lepton Sector

In the lepton sector, we follow essentially the same approach as in the quark sector. Here,
however, it is not the conjugated right handed singlets which superpose, but the left handed
doublets.

We recall the leptonic part of the Yukawa Lagrangian before EWSB from Equation (1.23).
Since we want to obtain the correct form of the low energy mass matrices, it is important
that we write down the Lagrangian properly. To this end, we choose the LR convention
(left handed fields to the left of the mass matrix, right handed conjugate fields to the
right). We still suppress the spinor metric in inner products.

LY,` = `TLMC2L
c
R + LTLMR2L

c
R

+ sTMs s+ sTMsν
c
R
νcR (1.46)

We see that the lepton sector consists of two distinct parts: One part is the mixing between
the exotic neutrino fields s and νcR, while the other part contains the exotic and SM lepton
doublets. By decoupling arguments analogous to the quark sector, we can treat these parts
separately.

1.4.1. Lepton Doublets

We first turn towards finding the mass eigenstates of the lepton doublet part, the first line
of Equation (1.46).

Llep.dbl. = `TLMC2L
c
R + LTLMR2L

c
R (1.47)

Essentially, we just repeat the same procedure which we used in the quark sector. We
make an ansatz for the mass eigenstates

`L = a · ˜̀L + b · L̃L LL = A · ˜̀L +B · L̃L (1.48)

Inserting this into the kinetic terms and demanding proper normalization implies the
”kinetic normalization conditions”

a†a+A†A = 1 b†b+B†B = 1 (1.49)

and the ”kinetic diagonalization condition”.

a†b+A†B = 0 (1.50)
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1.4. Lepton Sector 23

Inserting the ansatz into the Yukawa Lagrangian (1.47) gives the ”Yukawa diagonalization
condition”

aT ·MC2 +AT ·MR2 = 0 (1.51)

We solve this equation for A and obtain

A = −Z` · a Z` := (M−1
R2 )TMT

C2 (1.52)

Note that MR2 and MC2 are symmetric matrices, so we can just drop the transpositions
on them. We insert A this into Equation (1.49) from the kinetic normalization and obtain

aa† =
(

1 + Z†`Z`

)−1
(1.53)

and subsequently the root, which is hermitian

a` :=
[
1 + Z†`Z`

]−1/2
(1.54)

where we added the subscript ` to distinguish it from its counterpart in the quark sector.
The state ˜̀, as defined above, is due to (1.50) a massless state, while L̃ is massive at the
GUT scale. When we switch on EWSB, the SM Higgs mass generation takes place: The
SU(2)L doublets fall apart and its components form Dirac type mass terms with their
SU(2)L singlet counterparts. For these light lepton masses we get

Lleptons,SM = eTLm
eff
e e

c
R + νTLm

eff
ν ν

c
R (1.55)

where

meff
ν = aT` ·mν

meff
e = aT` ·me (1.56)

The masses mν and me are generated through EWSB in the Lagrangian. The matrix a`
originated in the mixing of the SU(2)L doublets before EWSB, therefore it is the same
eL and νL after EWSB. Note that in the lepton sector, we get aT` from the left because
it is the SU(2)L doublets `L and LL which mix. In the quark sector we had aq from the
right because there, the SU(2)L singlets dcR and Dc

R were mixing. It all traces back to
the representations of the exotic quarks that emerge through the breakdown of the GUT
scales: vectorlike down quark singlets and vectorlike lepton doublets.

23



24 1. An E6 Symmetric Nelson-Barr Model

1.4.2. Neutrino Sector

The neutrino sector is by far the most involved part of our model. By ’neutrino’ we define
every field, which is a singlet under SU(3)C ×U(1)EM . There are five fields which qualify
and each comes in three generations. We will suppress the generations here, but keep
in mind that the mass parameters actually are combinations of VEVs and 3 × 3 Yukawa
matrices. We recall these fields

• s, the SO(10) singlet when the 27 of E6 breaks to SO(10)

• N c
R, the neutral part of the exotic conjugated right chiral lepton doublet LcR and

• NL, the neutral part of the exotic left chiral lepton doublet LL, both coming from
the 10 of SO(10)

• νcR, the SM singlet coming from the 16 of SO(10). The label stems from it forming
a Dirac mass term with νL.

• νL, the observed SM neutrino

Before EWSB, the fields residing in SU(2)L doublets cannot mix with the SU(2)L singlets.
There is just no way to form a singlet from combining a doublet and a singlet. Recall the
Yukawa Lagrangian (1.46) from the previous section

LY,` = `TLMC2L
c
R + LTLMR2L

c
R

+ sTMs s+ sTMsν
c
R
νcR (1.57)

We dealt with the first line in the last section, deriving its influence on the low energy
mass terms of the SM neutrino and the charged lepton. Now we will investigate the second
line before SU(2)L is broken. EWSB will introduce terms mixing the fields of both lines,
but the large hierarchy between the GUT scale and the EW scale will again allows us to
treat these sectors separately.

Seesaw 1

We look at the second line of LY,`, cf. Equation (1.57). What we find is a seesaw scenario

Lseesaw 1 = sTMs s+ sTMsν
c
R
νcR

=
(
νcTR sT

)( 0 MT
sν
c
R

Msν
c
R

Ms

)(
νcR
s

)
(1.58)

Due to the Majorana nature of these states, the construction of the mass matrix involves
considering all combination of states. Also the transposed Dirac mass term exists, since
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1.4. Lepton Sector 25

no notion of chirality exists here, despite the misleading label νR. We diagonalize the mass
matrix using a Takagi decomposition [12] to achieve the form

Lseesaw 1 = (ν̃cR)TMlightν̃
c
R + s̃TMheavy s̃ (1.59)

and find the new eigenstates parametrized by δ 'Msν
c
R
/Ms � 1 [13].

Thus

ν̃cR ' ν
c
R + δ · s

s̃ ' s+ δ · νcR (1.60)

and we can simply ignore the mixing of states. The new masses are given by [14] [15]

Mlight ' −Msν
c
R
M−1
s MT

sν
c
R

Mheavy 'Ms (1.61)

where again corrections of O(δ) are involved. Neglecting δ � 1, we find to a very good
approximation

Lseesaw 1 = νcTR

(
−Msν

c
R
M−1
s MT

sν
c
R

)
νcR + sTMs s (1.62)

After the seesaw, we have a heavy state s and a light state νcR. Funny as it may sound,
we here refer to O(1013 GeV) as ’light’.

Seesaw 2

After EWSB, a Dirac type mass term is generated for νL and νcR. Recall from Section
1.4.1, that we constructed a massless state ν̃L (the neutral part of the doublet ˜̀). Once
we express νL through ν̃L and ÑL, we obtain Dirac mass terms between ν̃L and νcR and
between ÑL and νcR. We can ignore the latter since the involved states both come with
GUT scale masses and this mixing term is of the electroweak order and subsequently will
lead to highly suppressed corrections to the states and their masses. The former is the
interesting term which we shall consider now. We recall the masses for the states ν̃L and
νcR by writing down the relevant terms of the Lagrangian.

Lseesaw 2 = ν̃TLa
T
` mνν

c
R + (νcR)T

(
−Msν

c
R
M−1
s MT

sν
c
R

)
νcR (1.63)

Here, a` was the mixing coefficient between νL and ν̃L, derived in Section 1.4.1, mν is the
Dirac mass matrix containing electroweak VEVs, and the mass matrix between the νcR
states resulted from the sνcR seesaw which was described above.
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26 1. An E6 Symmetric Nelson-Barr Model

From the section above we know, that for largely separate scales, the seesaw mechanism
changes the states only in a negligible fashion. We can thus safely apply the seesaw
mechanism between ν̃L and νcR without having to worry about the possibility of large
mixing induced elsewhere by changing the states in this part of the Lagrangian. Note
that we could also apply the seesaw between νL and νR first and afterwards calculate the
mixing between νL and NL with the effective approach of Section 1.4.1. The result is the
same.

Applying the seesaw formula to Equation (1.63), we obtain the following Lagrangian

Lseesaw 2 = ν̃TL

(
−(aT` mν)

(
−Msν

c
R
M−1
s MT

sν
c
R

)−1
(aT` mν)T

)
ν̃L + (νcR)T

(
−Msν

c
R
M−1
s MT

sν
c
R

)
νcR

= ν̃TLm
SM
ν ν̃L + (νcR)T

(
−Msν

c
R
M−1
s MT

sν
c
R

)
νcR (1.64)

where

mSM
ν = aT` mν

(
Msν

c
R
M−1
s MT

sν
c
R

)−1
mT
ν a` (1.65)

is the Majorana mass matrix for the left handed Standard Model neutrino. Here we can
clearly see how the GUT scales affect the low energy neutrino mass: Recall from Section
1.2.6, that Msν

c
R

contains an SO(10) VEV, Ms an E6 VEV and mν an electroweak VEV.
Moreover, a` is O(1) and complex, thus causing the SM neutrino mass matrix to become
complex. Diagonalizing this effective SM mass matrix via a singular value decomposition
gives predictions for SM neutrino masses, as well as a generally CP violating PMNS matrix.

To obtain realistic neutrino masses, the seesaw scale for νL and νcR needs to be of O(1012−
1014) [16]. Since the νcR mass term is generated through another seesaw mechanism with
the heavy SO(10) singlet s, we can determine the scale of the mass parameter of s to be
O(1017 − 1019) when taking into account that the GUT scale is required to be & 4 · 1015

by current proton decay bounds [17].

We will turn to the predictions in the next section.
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1.5. Results 27

1.5. Results

The model we presented here differs from the final version in our paper [2] in a few aspects.
The E6 VEV which enters in the mass term of the heavy SO(10) singlet s has to be just
below the Planck scale, as argued in Section 1.4.2. To avoid this, we broke SO(10) in
the paper directly to the Standard Model through an adjoint scalar representation, which
allows us to break the accompanying U(1)5 factor at a lower scale than the SO(10) scale.
This serves to change the part in the Lagrangian that contains the high scale seesaw
between s and νcR from a seesaw scenario to Majorana mass terms by neglecting mixing
terms proportional to the U(1)5 VEV. In this way, the E6 Majorana mass VEV for s can
be lowered comfortably below the Planck scale without impacting the low energy neutrino
phenomenology through seesaw dependence. Personally, I prefer the version of the model
presented in this thesis. A VEV just below the Planck scale is merely an input parameter
of the effective theory. We do not speculate about Transplanckian dynamics and therefore
a VEV just below the Planck scale is no conceptual problem. It is only a matter of personal
philosophy.

The fitting results and thus the low energy predictions are unaffected by this. In fact,
we performed the entire fit in the model we presented in this thesis before we altered the
model to the version presented in the paper.

1.5.1. Fitting the Standard Model Observables

We take a moment to count the degrees of freedom we have in our model. In the beginning
of this section we noted that we have 3 + 6 parameters coming from the diagonal Y27 and
the symmetric Y351, respectively. We started with 18 VEVs, where 7 were SM singlet
GUT breaking VEVs, 5 were ’up-type’ Higgs and 6 were ’down-type’ Higgs VEVs. The
first Barr criterion told us that only v5,2 and v10,1 may become complex and since we only
needed a relative complex phase between them, we could leave v10,1 to be real so that v5,2

is the only complex VEV of our model, adding only 1 complex phase to the number of
parameters. The second Barr criterion dictated that three of the Higgs VEVs need to be
zero not to generate a possibly large θ̄ through a complex determinant of the quark mass
matrix. Additionally, we could discard vd,3 and vu,2 because they appeared exclusively
in combination with vd,4 and vu,4, respectively, and therefore do not add anything new.
Finally we set the VEV v10,3 generating a Majorana mass for νcR to zero, which we require
to make the seesaw structure of the neutrino sector work.

Counting the VEVs we retained, we find 11 real numbers: v5,1, |v5,2|, v10,1, v10,2, v6,1, v6,2,
vu,1, vu,4, vd,1, vd,4 and Arg v5,2.

This gives us in total 9 + 11 = 20 real parameters. We can eliminate two more parameters
by realizing that the Yukawa matrices and the VEVs always come together. We can thus
absorb two VEVs into the definition of the Yukawa matrices. As a consequence of that, we
find that only VEV ratios are important for the fit. Upon close inspection, we find that two
more VEVs turn out to be unimportant in the fit. We carried out this reparametrization
explicitly in our paper [2] and give explicit numbers for our best fit point. We will forbear
from doing so in this thesis because it is not very illuminating. The structure of our model is
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28 1. An E6 Symmetric Nelson-Barr Model

Fit result at the electroweak scale µ = MZ

fit pull fit pull

md(MeV) 3.44 −2.4 ∆12(eV2) 7.39× 10−5 0.63

ms(MeV) 50.4 1.4 ∆13(eV2) −0.76× 10−3 −0.19
mb(GeV) 2.85 0.27 sin θq12 0.225 0.56
mu(MeV) 1.32 −0.08 sin θq23 0.0414 0.1
mc(GeV) 0.63 −0.07 sin θq13 0.0035 1.1

mt(GeV) 171.58 0.08 sin2 θl12 0.302 0.37

me(MeV) 0.486 0.15 sin2 θl23 0.405 1.5

mµ(MeV) 102.76 −0.61 sin2 θl13 0.022 −0.26
mτ (GeV) 1.746 −0.04 δCKM 1.13 1.5

Table 1.5.: Result of the fitting procedure, as described in the text, as appeared in our paper [2].

much clearer in the way we presented it in the previous sections and the reparametrization
is only a technical detail required for the numerical fitting procedure. The fit therefore
contains 16 parameters which have to match 18 Standard Model observables.

As a measure of error, we gathered statistics on repeated fits where we allowed a total χ2

of . 160, corresponding to χ2/dof . 10. This gives us a measure of sensitivity of the best
fit point on the input variables. This range then expresses itself as error range for our
predictions in the Neutrino observables. The statement is: Should one of the predicted
observables be measured outside of the quoted range in Table 1.7, the χ2 per degree of
freedom of our fit will rise above χ2/dof > 10.

We performed the fit by choosing random input variables at the GUT scale and then
evolved them to the electroweak scale by solving the Yukawa RGE numerically using
REAP [18]. As measure of quality for our fit is given by

χ2 =

n∑
i=1

(
Oexp
i −Ofit

i

σexp
i

)2

(1.66)

where Oexp
i denotes the experimental value of observable Oi with experimental error σexp

i .

Ofit
i is the obtained fitting value. The pull of a fit value Ofit

i is defined as pull(Ofit
i ) =(

Oexp
i −Ofit

i

)
/σexp

i and encodes a weighted measure of distance and direction from the

experimental value. We give the fit results in Table 1.5 and collected the experimental
values in Table 1.6.

The final result gave a best fit point with total χ2 ≈ 15. Taking into account, that we have
16 degrees of freedom (dof) which are relevant for the fit, we obtain χ2/dof ≈ 0.9. The
quality of the fit is quite surprising, considering that we fit 16 parameters on 18 targets
(see Table 1.6). The success of the fit implies that there are two relations among SM
observables hidden within our model. Unfortunately, we were not able to find them.
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Fermion observables at the electroweak scale µ = MZ

md(MeV) 2.75± 0.29 ∆12(eV2) (7.50± 0.18)× 10−5

ms(MeV) 54.3± 2.9 ∆31(eV2) (2.52± 0.04)× 10−3

mb(GeV) 2.85± 0.03 sin θq12 0.2254± 0.0007
mu(MeV) 1.3± 0.4 sin θq23 0.0421± 0.0006
mc(GeV) 0.627± 0.019 sin θq13 0.0036± 0.0001

mt(GeV) 171.7± 1.5 sin2 θl12 0.306± 0.012

me(MeV) 0.4866± 0.0005 sin2 θl23 0.441± 0.024

mµ(MeV) 102.7± 0.1 sin2 θl13 0.0217± 0.0008
mτ (GeV) 1.746± 0.002 δCKM 1.21± 0.05

Table 1.6.: The SM input parameters at the electroweak scale we used for the fit, as appeared in our paper
[2]. We took quark and lepton masses as well as the quark mixing parameters from Ref. [19],
and and the neutrino mixing parameters from Ref. [20] for Normal Ordering (NO). We use a 0.1%
uncertainty for the charged lepton masses to make sure the fit does not give undue preference to
these observables. To simplify the fitting procedure, we used for all observables the arithmetic
average of the errors when not symmetric.

1.5.2. Predictions

The configuration of parameters we obtained from the best fit gives us predictions for the
neutrino masses and PMNS Dirac phase δ and Majorana phases ϕ1 and ϕ1. The different
mass observables are defined as follows:

Neutrinoless double beta decay experiments like GERDA [21], EXO-200 [22] or KamLAND-
Zen [23] measure the effective Majorana mass

m0νββ =
∣∣∣∑U2

eimi

∣∣∣ . (1.67)

Experiments like KATRIN [24], MARE [25], Project 8 [26], or ECHo [27] measure

mβ =
√∑

|Uei|
2m2

i . (1.68)

Cosmology neutrino experiments like PLANCK [28] probe the sum of the neutrino masses

Σ =
∑

mi (1.69)

We collected our predictions for these observables and their respective current bounds in
Table 1.7.

mβ [meV] Σ [meV] m0νββ [meV] δ [◦] ϕ1 [◦] ϕ2 [◦]

Prediction 8.8± 0.5 59± 3 1.8± 0.1 157± 3 187± 4 159± 5

Current Bound . 2000 [29] . 230 [29, 28] 200 [30, 31] - - -

Table 1.7.: Predicted values and current bounds for the neutrino observables, as appeared in our paper [2].
The current bounds were taken from Ref. [32]. As explained in the text, the ranges shown here
correspond to perturbations of the best fit point with χ

2
/dof . 10.
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30 1. An E6 Symmetric Nelson-Barr Model

Discussion of θF

The Barr criteria ensure θF = ArgDet (MuMd) is zero at tree level and arises only at the
loop level. The suppression of one-loop effects has been discussed at length in the literature
[33] [7] [34] and was found to be small enough in this type of models. Possible two-loop
effects are sufficiently suppressed by loop factors and the large mass of the exotic gauge
bosons [2] [33]. The leading order value for θF is in principle calculable and therefore can
be a prediction in these models. In our model, however, the leading order loop calculation
of θF depends on the unknown specifics of the scalar spectrum. The low energy sector is
insensitive to these parameters and therefore they are not fixed by our fit.

1.5.3. Summary and Conclusion

We investigated a Nelson-Barr type model based on the GUT group E6. The symmetry
breaking chain E6 → SO(10)→ SU(5)→ GSM turned out to produce exactly the required
representations to realize the Barr criteria and obtain the observed weak CP violation
analogous to the effective model of [7]. We break the CP symmetry through a complex
SU(5) VEV, which gets transported into the quark and lepton sectors via mixing between
SM and exotic fermions to produce complex CKM and PMNS matrices. The phase of the
complex VEV is not suppressed by the GUT scale. This has been shown by BBP [7] for a
single vectorlike quark and we generalized this formula to matrix structures (cf. Equation
(1.4)) to incorporate an arbitrary number of vectorlike quarks.

We performed a fit with a best fit point of in total χ2 ≈ 15 while fitting 16 input variables
on 18 Standard Model targets. The surprising quality of the fit with less parameters
than the Standard Model implies two hidden relations among Standard Model observables
within our model. We predict a PMNS Dirac phase, which is correlated with the CKM
phase via the complex SU(5) VEV, as well as PMNS Majorana phases and Neutrino
masses. These predictions are collected in Table 1.7 and can be tested in the near future.
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A Supersymmetric
Solution to ε′K/εK 2

2.1. Motivation: Recent Lattice Results

This chapter is based on our paper ”Supersymmetric Explanation of CP Violation in
K → ππ Decays” [1].

A recent lattice QCD analysis [35] revealed a correction in the prediction for direct CP
violation in Kaon decays (ε′K/εK), making it deviate largely from the measured value.

ε′K
εK

=

{
(16.6± 2.3)× 10−4 (PDG [29])

(1.0± 4.7± 1.5± 0.6)× 10−4 (SM-NLO)
(2.1)

The first uncertainty in the theory prediction stems from the non-perturbative lattice
computation. The second one stems from higher order corrections and the third one
stems from isospin violating terms [36] [37]. The experimental values essentially stem
from measurements from 1999 by KTeV [38] and NA48 [39] collaborations and have not
changed since then.

The Standard Model theory prediction consists of two separate parts: One part is the
perturbative calculation of the Wilson Coefficients, which encode the high energy physics.
This has been done at next-to-leading order (NLO) [40] [41] [42] [43]. The other part is
the calculation of the hadronic matrix elements, which encode the low energy physics and
therefore cannot be treated with perturbation theory. These non-perturbative calculations
have been done in various methods like 1/NC [44], chiral perturbation theory (χPT ) [45]
and lattice QCD [35] [46].

The theory prediction has always been plagued by uncertainties in the non-perturbative
quantities, so that more or less only an order of magnitude prediction was possible. In
retrospective, with (ε′K/εK)1/Nc

= (8.6± 3.2)× 10−4 [42], the 1/Nc approach has actually
been closer to the now established lattice value than to the experimental value, but people
were cautious to believe their own results. After all, these non-perturbative estimation
methods rely on some kind of confidence in the applicability of the method in the case
at hand, and thus it was always a possibility, that the 1/Nc limit would receive large
corrections and thus be a poor estimate. Additionally, another non-perturbative method
- chiral perturbation theory - happened to predict (ε′K/εK)χPT = (19± 11)× 10−4 [45], a
value apparently in perfect agreement with experiment. This made it hard to believe that
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32 2. A Supersymmetric Solution to ε′K/εK

there is much room for new physics in ε′K/εK . In the end, even the 1/Nc value was still
substantially far away from today’s lattice value, requiring to cut the relevant parameter

B
(1/2)
6 nearly by half1. This naively suggests that 1/Nc got lucky landing between exper-

iment and the lattice value, rather than being overly precise in the prediction. Doubling
the same parameter would increase the prediction so far that it would even overshoot the
experimental result. Ironically, χPT had the bad luck of landing right on the experimen-
tal value, which seemed to give a lot of credibility to the method. To be fair, without
sufficient accuracy, ε′K/εK is an incredibly ungrateful observable to predict because of the
large cancellation between the amplitudes A0 and A2

2. Every expert knew fully well that
as long as the full range between zero and the experimental value is comfortably within
the theoretical possibility, the actual number is more like an experts opinion than a real,
reliable prediction.

2.2. New Physics in ε′K

Talking about ε′K/εK rather than ε′K is just a historical convention that somehow still
made it up to today. We thus talk about ε′K/εK whenever we refer to actual numbers,
calculations or measurements, and ε′K , when it comes to talking about the physics behind
the numbers and calculations. ε′K labels direct CP violation in Kaon decay. Dividing
it by εK is just convenient for calculating numbers since the phases of both quantities
accidentally coincide, making the ratio a real number.

If we take the discrepancy between the experimental value and the lattice prediction for
ε′K/εK serious and want to think about how to satisfy it with new physics, we actually
need a contribution that is larger than the Standard Model value. This naively seems
impossible without fine tuning because of the following argument:

The parameters which govern ε′K also govern εK . The latter, however, is measured to great
accuracy and the theory predictions comply with these measurements, leaving hardly any
room for new physics contributions.

The important quantities are τ ∼ VtdV
∗
ts, which is a combination of CKM elements involv-

ing the CKM phase3, and the mass of the W -Boson. These give a measure of likelihood
of CP violation and a weak interaction process taking place, respectively. Thus, together,
these are the essential quantities when talking about CP violation in Kaon processes (ε′K
and εK).

1
The hadronic matrix element 〈Q6〉0 can be parametrized in the following way: 〈Q6〉0 =

−4
√

3
2

[
m

2
K

ms+md

]2
Fπ
κ
B

(1/2)
6 , where B

(1/2)
6 = 1 corresponds to the vacuum insertion approximation.

mK , ms and md are the Kaon, strange quark and down quark masses, respectively. κ = Fπ/(FK −Fπ),
where FK and Fπ are the Kaon and Pion decay constants, respectively [40]. The lattice results of

Reference [35] imply B
(1/2)
6 = 0.57± 0.19 [47].

2
For a definition of the amplitudes A0 and A2 see Section 3.2.6. For their relation to ε

′
K/εK see Sections

3.2.9 and 3.2.10.
3
Which CKM elements involve the complex phase depends on the convention used in the CKM matrix.
Should one choose another convention, rendering the combination VtdV

∗
ts real, another combination of

CKM elements inevitably becomes complex. The point is, that ε
′
K and εK contain several combinations

of CKM elements in such a way that they are invariant under the CKM convention change.
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dL uR

sL uR

g̃

g̃

ŨQ̃

dL dR

sL dR

g̃

g̃

D̃Q̃

Figure 2.1.: Trojan penguins [48] [49]: Gluino boxes contributing to ε
′
K/εK

The Standard Model (SM) prediction ε′SM
K is proportional to Im τ/M2

W , involving one
strange-top vertex and one W -Boson propagator. εSM

K is proportional to Im τ2/M2
W ,

involving two strange-top vertices and two W -Boson propagators, whereas one of the
latter is cancelled in the process of the loop integration.

If we want new physics (NP) to contribute to ε′K , we will likely have the same Feynman
diagram structure, but with a new parameter δ encoding the CP violation at the vertices,
and a new mediator with mass M taking on the role of the W -Boson. We thus get
ε′NP
K ∝ Im δ/M2 and εNP

K ∝ Im δ2/M2.

Now we expect M �MW and thus require Im δ � Im τ to obtain Im τ/M2
W ≈ Im δ/M2

to have ε′SM
K and ε′NP

K in the same order of magnitude.

Taking into account, that we need ε′NP
K at least as large as ε′SM

K (implying ε′NP
K /ε′SM

K ≥ 1)
and that εSM

K has barely any room for new physics, implying εNP
K /εSM

K < 1, we can estimate

1 ≤ ε′NP
K

ε′ SM
K

<
ε′NP
K

ε′ SM
K

εSM
K

εNP
K

= O

(
Im δ/M2

Im τ/M2
W

· Im τ2/M2
W

Im δ2/M2

)
= O

(
Re τ

Re δ

)
(2.2)

Thus we need Re δ < Re τ if we want a large ε′NP
K while keeping a small εNP

K compared
to the respective SM part. At the same time, we need Im δ � Im τ to obtain a large
enough ε′NP

K to resolve the discrepancy. This implies we need a largely imaginary δ. In
other words, Arg δ would need to be finetuned very close to π

2 . Therefore, if we do not
want to finetune our model, it naively seems impossible to noticeably enhance ε′K without
overshooting the bound for εK . In the following, we will show that this assumption turns
out to be too naive and that it is possible to construct a supersymmetric model that can
satisfy ε′K while staying within the εK bounds without any finetuning [1].

2.3. ε′K in the MSSM

Any NP contribution to ε′K can simply be added to the SM value since ε′K , as an amplitude
level quantity, is linear in the effective operators. The contributions we are interested in
come from gluino boxes like Figure 2.1.

These boxes contribute to both, the A0 and the A2 amplitude at about equal magnitude.
While A0 is dominated by QCD penguins, the gluino box contribution is numerically
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34 2. A Supersymmetric Solution to ε′K/εK

unimportant there. In A2, however, which is dominated by electroweak penguins, the
gluino boxes are numerically comparable because of the larger coupling of the strong
interaction. Hence the witty name Trojan Penguins [48]: they are strong box processes
which kind of infiltrate the domain of electroweak penguins. It was shown [48] [49], that
these contributions can become large. In the calculation of ε′K , the CP violating part of the
amplitude A2 gets enhanced by the ratio of the CP conserving parts of A0 and A2. This
ratio is known as ∆I = 1/2 rule and experimentally turns out to be roughly 22 [50]. Thus,
it numerically boosts all the processes contributing to A2, including the gluino boxes, by
a significant amount.

dL sL,R

sL dL,R

g̃

g̃

Q̃, D̃Q̃

dL sL,R

sL dL,R

g̃

g̃

Q̃, D̃Q̃

Figure 2.2.: Suppression of diagrams contributing to εK : For mg̃ = 1.5MS , the diagrams with outgoing left
chiral quarks cancel exactly. The diagrams with outgoing right chiral quarks vanish in the limit of
negligible mixing among right chiral squarks.

The parameters, which have the potential to make Trojan Penguin contribution to ε′K large
in supersymmetric models, also feed into εK . To see this, all we need to do is to change
the outgoing states in any ε′K gluino box (either dd or uu) into sd. The resulting diagrams
contribute to εK and contain the flavor-changing parameter which mediates the s̃L-d̃L
mixing twice. The very same parameter, which governs the ε′K contribution. This was
the argument around Equation (2.2), naively forbidding significant NP contributions to
ε′K . But here a remarkable property of the gluinos comes in. They are Majorana fermions
and thereby allow the constructions of diagrams with crossed boxes like Figure 2.2. These
diagrams come with a minus sign with respect to the uncrossed boxes. The suppression
of the Trojan penguin contribution to εK differs depending on chirality, therefore it is
instructive to present the cases sL ≡ PLs and sR ≡ PRs separately. The authors of [51]
showed, that for the diagram with outgoing left chiral quarks (LL), the two diagrams in
Figure 2.2 cancel exactly for mg̃ = 1.5MS . The cancellation becomes imperfect thereafter,

behaving like [m2
g̃ − (1.5MS)2]/m4

g̃ and is depicted in Figure 2.3. At around mg̃ ' 2.5MS ,
the largeness of the gluino mass starts to dominate and numerically suppresses the whole
process. In the case of outgoing right chiral quarks (LR), the diagrams vanish on their
own in the limit of negligible mixing among right chiral squarks. In the case of ε′K , the LR
diagrams do not vanish since no mixing on the squark line is needed (see Figure 2.1). For
these LR diagrams, there is no cancellation with the crossed boxes. The reason lies with the
QCD color factors, which are different when coupled to ’left chiral’ or ’right chiral’ squarks,
resulting in different numerical factors that do not cancel. The dominant diagrams are
shown in Figure 2.1. These diagrams come with opposite signs, we therefore also require
mass splitting between the right handed up and down squarks for these diagrams not to
cancel.

We therefore can have large LL mixing allowing a potentially large ε′NP
K while εNP

K remains
sufficiently small without having to fine-tune our model.
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Figure 2.3.: The behaviour of the gluino box contribution to ε
NP
K normalized to the SM value. The blue (red)

shading represents the regions which are excluded at 95 % confidence level by εK measurements,
if the exclusive (inclusive) value for |Vcb| is taken for the SM prediction. See section 2.5 for
a discussion of the exclusive and inclusive values of |Vcb|. The left plot shows the behaviour
according to the approximate formula given in the text, while the right plot is taken from our
paper [1] and shows the exact numerical behaviour. There, the red line corresponds to gluino box
contribution while the blue line corresponds to the sum of the box contributions with one or two
winos.

2.3.1. Explicit Calculation of the Gluino Box Diagram

In this section, we show an exemplary calculation of a gluino box diagram, namely the left
diagram of Figure 2.1. Applying Feynman rules [52] [53] to this diagram, we obtain the
matrix element

iM =s̄α

[
ig3

√
2T aαβ

(
−ΓI2∗DLPR + ΓI2∗DRPL

)](
i
(−1)γµ(ps + k)µ +mg̃

(ps + k)2 −m2
g̃

)[
ig3

√
2T aδσ

(
−ΓJ1

ULPL + ΓJ1
URPR

)]
uσ

·ūρ
[
ig3

√
2T bρδ

(
−ΓJ1∗

ULPR + ΓJ1∗
URPL

)](
i
(−1)γν(pd − k)ν +m2

g̃

(pd − k)2 −mg̃

)[
ig3

√
2T bβγ

(
−ΓI1DLPL + ΓI1DRPR

)]
dγ

·

(
i

k2 −m2
d̃I

)(
i

(ps − pu + k)2 −m2
ũJ

)
(2.3)

where integration over the loop momentum k is implied. ΓIiDL denotes the mixing matrix
at the vertex of a down type quark-squark mixing (first subscript), left handed current
(second subscript), of a squark generation I with quark of generation i. The translation
to the convention used in [52] is given by [54]

ΓiIDL = ZIiD ΓiIDR = Z
(I+3)i
D ΓiIUL = ZIi∗U ΓiIUR = Z

(I+3)i∗
U (2.4)

We focus on the part of the calculation with incoming left chiral quark fields and outgoing
right chiral quark fields. The other combinations of chirality proceed in the same way and
lead to subleading operators. We will give the results at the bottom of this section. Note
that for conjugate spinors taking a right chiral projector leads to a left chiral conjugate
field: sL = sPR. Due to the properties of the projectors PL and PR, the choice of
the L → R transition eliminates the tensor and vector integral structures (after we sent
external momenta to zero) and leaves us with only the scalar integral to be evaluated.
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36 2. A Supersymmetric Solution to ε′K/εK

We rearrange the expression we obtained from evaluating the Feynman rules

iM =(−1)2i84g4
3T

a
αβT

a
δσT

b
ρδT

b
βγ

(
ΓI2DL

)∗ (
ΓI1DL

)(
ΓJ1
UR

)∗ (
ΓJ1
UR

)
(s̄L,αuR,σ)(ūR,ρdL,γ)

·m2
g̃

∫
d4k

(2π)4

(
1

(ps + k)2 −m2
g̃

)(
1

(pd − k)2 −m2
g̃

)(
1

k2 −m2
d̃I

)(
1

(ps − pu + k)2 −m2
ũJ

)
(2.5)

The color structure evaluates to∑
a

T aαβT
a
δσ

∑
b

T bρδT
b
βγ =

1

36
δαγδσρ +

7

12
δασδγρ (2.6)

For the loop integral, all masses are of the order of the SUSY scale, while the external
momenta correspond to the Kaon scale, thus pi � mj for all external momenta pi and all
masses mj involved. The diagram remains finite when we take all external momenta to

zero and with τd,uI := m2
d̃I ,ũI

/m2
g̃ we obtain for the scalar integral IS :

IS = m2
g̃

∫
d4k

(2π)4

(
1

(ps + k)2 −m2
g̃

)(
1

(pd − k)2 −m2
g̃

)(
1

k2 −m2
d̃I

)(
1

(ps − pu + k)2 −m2
ũJ

)
pi→0
=

1

m2
g̃

∫
d4k

(2π)4

(
1

k2 − 1

)(
1

k2 − 1

)(
1

k2 − τdI

)(
1

k2 − τuJ

)
=

1

m2
g̃

i

16π2F (τdI , τ
u
J ) (2.7)

The loop function F (τdI , τ
u
J ) is given by [54]

F [x, y] = − x lnx

(x− y)(x− 1)2 −
y ln y

(y − x)(y − 1)2 −
1

(x− 1)(y − 1)
(2.8)

For convenience, we also give the loop function G(τdI , τ
u
J ), which will appear later

G[x, y] =
x2 lnx

(x− y)(x− 1)2 +
y2 ln y

(y − x)(y − 1)2 +
1

(x− 1)(y − 1)
(2.9)

Inserting this into the amplitude, we get

iM = i4α2
s

1

m2
g̃

(
ΓI2DL

)∗ (
ΓI1DL

)(
ΓJ1
UR

)∗ (
ΓJ1
UR

)
F (τdI , τ

u
J )

·
[

1

36
(s̄L,αuR,β)(ūR,βdL,α) +

7

12
(s̄L,αuR,α)(ūR,βdL,β)

]
(2.10)

To get to the traditional operator basis, we use the following Fierz transformation [55]

(siPRuk)
(
ulPLdj

)
= −1

2

(
siγ

µPLdj
) (
ulγµPRuk

)
(2.11)

so the two types of fermion chains we have turn into

(s̄L,αuR,β)(ūR,βdL,α) = (s̄αPRuβ)(ūβPLdα)

= −1

2
(s̄αγ

µPLdα)
(
ūβγµPRuβ

)
:= −1

8
(sd)V−A(uu)V+A := −1

8
Q′,u1 (2.12)
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and

(s̄L,αuR,α)(ūR,βdL,β) = (s̄αPRuα)(ūβPLdβ)

:= −1

8
(sαdβ)V−A(uβuα)V+A := −1

8
Q′,u2 (2.13)

We insert this into the amplitude along with 1 = GF√
2

√
2

GF
, then read off −M = H

H =
GF√

2

[
α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DL

)∗ (
ΓI1DL

)(
ΓJ1
UR

)∗ (
ΓJ1
UR

)
F (τdI , τ

u
J )

[
1

18
Q′,u1 +

7

6
Q′,u2

]]
(2.14)

and with the definition H∆S=1 = GF√
2
·
∑

i ciQi, we can read up the contributions of this

diagram to the Wilson Coefficients c′,u1 and c′,u2 .

The crossed diagram contributes with the loop function G(τdI , τ
u
J ) and a different coefficient

due to the color structure. The calculation, however, proceeds in the same manner as
above. Summing up all contributing diagrams, we end up with the full contributions of
the gluino boxes to the coefficients c′,u1 and c′,u2 :

c′,u1 =
α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DL

)∗ (
ΓI1DL

)(
ΓJ1
UR

)∗ (
ΓJ1
UR

)[ 1

18
F (τdI , τ

u
J )− 5

18
G(τdI , τ

u
J )

]
c′,u2 =

α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DL

)∗ (
ΓI1DL

)(
ΓJ1
UR

)∗ (
ΓJ1
UR

)[7

6
F (τdI , τ

u
J ) +

1

6
G(τdI , τ

u
J )

]
(2.15)

The coefficients c′,d1 and c′,d2 can easily be obtained by replacing the up type squark with

a down type squark by simply switching τuJ → τdJ and ΓU → ΓD in the above expres-
sions. These coefficients belong to the numerically largest matrix elements within the A2

amplitude - Q7 and especially Q8 in the notation of the traditional SM basis [40] - and
thus constitute the largest contribution to ε′K/εK in our model. Calculating the remaining
gluino box diagrams with L→ L, R→ L and R→ R chiral transitions, we obtain the con-
tributions to the remaining operators. The operator basis and the effective Hamiltonian
are given in our paper [1]. The result for the Wilson coefficients complies with [49].

c′,u3 =
α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DL

)∗ (
ΓI1DL

)(
ΓJ1
UL

)∗ (
ΓJ1
UL

)[
−5

9
F (τdI , τ

u
J ) +

1

36
G(τdI , τ

u
J )

]
c′,u4 =

α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DL

)∗ (
ΓI1DL

)(
ΓJ1
UL

)∗ (
ΓJ1
UL

)[1

3
F (τdI , τ

u
J ) +

7

12
G(τdI , τ

u
J )

]
c̃′,u1 =

α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DR

)∗ (
ΓI1DR

)(
ΓJ1
UL

)∗ (
ΓJ1
UL

)[ 1

18
F (τdI , τ

u
J )− 5

18
G(τdI , τ

u
J )

]
c̃′,u2 =

α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DR

)∗ (
ΓI1DR

)(
ΓJ1
UL

)∗ (
ΓJ1
UL

)[7

6
F (τdI , τ

u
J ) +

1

6
G(τdI , τ

u
J )

]
c̃′,u3 =

α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DR

)∗ (
ΓI1DR

)(
ΓJ1
UR

)∗ (
ΓJ1
UR

)[
−5

9
F (τdI , τ

u
J ) +

1

36
G(τdI , τ

u
J )

]
c̃′,u4 =

α2
s

2
√

2GF

1

m2
g̃

(
ΓI2DR

)∗ (
ΓI1DR

)(
ΓJ1
UR

)∗ (
ΓJ1
UR

)[1

3
F (τdI , τ

u
J ) +

7

12
G(τdI , τ

u
J )

]
(2.16)
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2.4. Results

For definiteness, we use the following set of input parameters. These mainly serve to
constrain the large parameter space of the MSSM and thereby to show that our results do
not depend on specifically tuned choices of MSSM parameters.

The input parameters we used are

• SUSY scale: Universal mass of the left handed squark doublet, the right handed
down squark and the higgsino mass parameter: mQ = mD = µSUSY = MS

• Universal gaugino masses at the GUT scale MG ∼ 1016

• mg̃/MS = 1.5

• No trilinear SUSY terms: Aq = 0

• tanβ = 10

• Squark mass matrix offdiagonal elements for LL mixing ∆Q,12,13,23 = 0.1 exp (−iπ/4),
all others zero

As mentioned above, this choice of parameters is mainly for simplification as to only include
the sources of the mechanism we wished to show. To this end, we need the mixing in the
left handed squark mass matrix, which we chose as a 10 % effect of the diagonal elements,
together with a phase choice which maximizes the CP phase in εK , the hardest constraint
on our model. In this way, we showed that our solution is not finetuned in the CP phase
but even persists for the maximal choice. The right handed squark mixing needs to be
absent (or at least O(. 10−5) for the εK suppression to work. The mg̃/MS = 1.5 relation
is the prime spot for the εK suppression, although a ratio > 1.5 also works, as discussed
above.

The essential result of our investigation is that under reasonable assumptions it is possible
to resolve the ε′K/εK tension within the MSSM. Of course, the term ’reasonable assump-
tions’ is our own interpretation of things and since we were the people conducting the
analysis, this could be viewed as biased by others. So what did we view as ’reasonable
assumptions’ here, under which conditions can the MSSM resolve the ε′K/εK tension?

The main result is collected in Figure 2.4. The plot shows in which region of mU and
MS the ε′K/εK discrepancy can be resolved together with satisfying the εK bounds. mU

is the right handed up squark mass while MS is the universal SUSY mass, including
the right handed down squark mass. The dark green (light green) region resolves the
ε′K/εK discrepancy at 1σ (2σ). The red shaded region between the dashed red lines is
excluded through εK using the inclusive Vcb measurement. In the case of the exclusive
Vcb measurement, εK even asks a small contribution from new physics (see Figure 2.3).
The region between the blue dashed lines depicts the area, where the contribution to εK
resolves its discrepancy.

We deliberately chose the phase of ∆Q,12 (the squark mass matrix element which mediates
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Figure 2.4.: Contour plot of the supersymmetric contributions to ε
′
K/εK in 10

−4
as appeared in our paper [1].

The dark (light) green bands resolve the ε
′
K/εK discrepancy at 1σ (2σ). The red shaded region is

the 95% exclusion region of εK in case of an inclusive Vcb; the region between the two blue dashed
lines is the favored region of εK in case of an exclusive Vcb.

the s − d transition) to be −iπ/4 to maximize the CP phase in the K0 − K
0

mixing
amplitude. This way we show that our suppression of εK is not finetuned at all. Flipping
the sign of this phase, εK does not change, while ε′K/εK flips its sign, indicated by the two
green branches in Figure 2.4.

The dominant contribution comes from gluino-gluino box diagrams like the one we cal-
culated in Section 2.3.1. The next largest contribution likely comes from gluon gluino
chromomagnetic penguins [56] [57] (an explicit calculation of the Wilson coefficients is
attached in Appendix B.1). However, the hadronic matrix element is poorly known with a
BG parameter of BG = 1±3, which makes a precision calculation of the perturbative parts
practically useless until non-perturbative methods improve. This amounts to an uncer-
tainty in the contribution of the chromomagnetic penguin of about an order of magnitude.
For that reason, we excluded the chromomagnetic penguin contribution from Figure 2.4.
Note that it is easy to reproduce this plot for any given value of the matrix element of
the chromomagnetic penguin. The statement stays the same, just the allowed areas could
shift a bit to even higher squark masses in case the hadronic matrix element turns out to
be large.

Very recently, a new calculation of the relevant matrix element for the chromomagnetic
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Figure 2.5.: All contributions to ε
′
K/εK as appeared in our paper [1]. The dark (light) green bands resolve the

ε
′
K/εK discrepancy at 1σ (2σ).

penguin in the dual-QCD approach has been performed [58]. The authors come to the con-
clusion, that the parameter is small and hence the chromomagnetic penguin contribution
to ε′K in our analysis is subleading.

Additional subleading contributions

Apart from the gluino-gluino boxes and the gluino chromomagnetic penguin, we also cal-
culated gluino-neutralino boxes, gluon, photon and Z penguin diagrams involving a gluino
in the loop and Z penguins with charginos and neutralinos in the loop. All these various
diagrams turned out to be subleading and have little effect as shown in Figure 2.5.

The black dashed lines show the gluino-gluino box contributions formŨ/mD̃ = 0.5, 2.0, 0.8,
1.2 from top to bottom. The yellow band shows the contribution from the chromomagnetic
penguin for a BG parameter of BG = 1−4. The solid black line shows the gluino-gluino box
contribution in case of degenerate masses mŨ = mD̃, in which case the various diagrams
mostly cancel (see Figure 2.1. Only in this degeneracy limit, together with a BG . 1, the
various subleading contributions become meaningful for our choice of parameters. Note
that gluino-photon (red line) and chargino-Z penguin (blue line) have opposite signs and
almost cancel. We neglected gluino-W penguin and chargino box contributions which
contribute at most O(10−5) to ε′K/εK .

2.5. A word on the status of Vcb

The calculation of ε′K/εK and εK involves many different CKM elements. εK is measured
so precisely [29] that it is beneficial to express the CKM matrix elements with larger
uncertainties through the use of CKM unitarity by others with smaller uncertainties.
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Especially Vtd and Vts are hard to measure precisely [59]. We can express the imaginary
part of λt = VtdV

∗
ts, which is essential for the determination of εK and ε′K/εK (see Section

3.2.10), through Im λt = |Vub||Vcb| sin γ [50]. In the case of ε′K/εK , the errors of the
hadronic matrix elements are presently so large, that such a tradeoff would avail to nothing.
In this subsection, we would like to give a brief overview on the status of the matrix element
Vcb.

The current status of Vcb is [60] [29]

|V excl.
cb | = (39.2± 0.7)× 10−3

|V incl.
cb | = (42.2± 0.8)× 10−3 (2.17)

The exclusive value is extracted from B → D(∗)`ν decays, while the inclusive value sums
over final states in B → Xc`ν.

While the inclusive Vcb measurement is in perfect agreement with the SM value for εK , it
does allow for a NP contribution of about 20% the size of the SM value. The exclusive
measurement on the other hand actually disfavors the SM value at 95% confidence level
and asks for a small, positive NP contribution of about 15% to 40% of the SM value.
In a general analysis from 2014, Crivellin and Pokorski [61] come to the conclusion that
the discrepancy between the inclusive and exclusive measurements cannot be explained
by new physics and thus must stem from underestimated uncertainties. Of course, one
can construct specifically tailored models to account for this discrepancy, but they usually
require absurd assumptions (like most something-phobic models) in order not to violate
one of the numerous other experimental bounds that include the same elementary processes
but do not show discrepancies.

Recently [62] [63], a reparametrization of the form factor using new Belle data pushed the
exclusive Vcb value to perfect accordance with the inclusive value, possibly putting an end
to the conundrum by giving

|V excl.
cb | = (41.9± 2)× 10−3 [29]

This should be taken with a grain - or rather a truckload - of salt since the current situation
is very biased. It remains to be seen whether this development is further solidified and
subsequently reveals a flaw in the use of the old parametrization or goes away with further
data and leaves us stuck with the former conundrum that the results of two established
and theoretically well-founded methods exclude each other.
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Theoretical Background 3
In this chapter we review the concepts and the formalism of weak CP violation in Kaon
decays with a focus on direct CP violation. The content of this chapter is entirely common
knowledge in the field and subject to a vast amount of reviews, lectures and books. Most
formulae appear in most reviews and thus the citations are often meant exemplary and in
no way exhausting.

3.1. Theory of Weak CP Violation

Weak CP violation in the Standard Model manifests itself in a single complex phase of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [64]. The CKM matrix describes the
misalignment between up-type and down-type quarks. Experimental evidence of neu-
trino mixing angles imply that neutrinos have mass [29]. The addition of a mass term
to the Standard Model Lagrangian leads to a misalignment matrix between charged and
neutral leptons in the same way as in the quark sector. The misalignment matrix is de-
noted Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [65] and can in general contain
complex phases. In the same way as in the quark sector, this can lead to CP violating
phenomenology. In this chapter we will review how the CKM matrix and the PMNS ma-
trix appear as misalignment matrices between the upper and lower component of their
respective SU(2)L doublet after the electroweak symmetry has been broken.

3.1.1. The CKM matrix

After electroweak symmetry breaking (EWSB), mass terms for the matter fields are gen-
erated via the Higgs VEV 〈φ〉. The quark mass matrices are then combinations of the
3× 3 Yukawa matrices and the Higgs VEV Mu := 〈φ〉Yu and Md := 〈φ〉Yd.

Lq,Mass = ūLMuuR + d̄LMddR (3.1)

u and d are triplets of the up-type and down-type quarks in generation space. We diago-
nalize the mass matrices by singular value decomposition [66].
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Mdiag
u := diag (mu,mc,mt) = UuMuV

†
u Mdiag

d := diag (md,ms,mb) = UdMuV
†
d

(3.2)

With Uq and Vq unitary, we can rewrite the Yukawa Lagrangian in the following way

LY = ūLU
†
u︸ ︷︷ ︸

˜̄uL

UuMuV
†
u︸ ︷︷ ︸

M
diag
u

VuuR︸ ︷︷ ︸
ũR

+ d̄LU
†
d︸ ︷︷ ︸

˜̄dL

UdMdV
†
d︸ ︷︷ ︸

M
diag
d

VddR︸ ︷︷ ︸
d̃R

(3.3)

Where we defined the mass eigenstates of the quark fields.

ũL = UuuL

ũR = VuuR

d̃L = UddL

d̃R = VddR (3.4)

The charged current interaction term for the left handed quarks is not invariant under this
transformation. Using (3.4), we can express it in terms of mass eigenstates q̄L = ˜̄qLUq

LW,q =
g√
2

(
W+
µ ūLγ

µdL +W−µ d̄Lγ
µuL

)

LW,q =
g√
2

W+
µ ˜̄uLγ

µ UuU
†
d︸ ︷︷ ︸

=:VCKM

d̃L +W−µ
˜̄dL UdU

†
u︸ ︷︷ ︸

=:V
†
CKM

γµũL

 (3.5)

There is no equivalent for the right handed quarks because they do not take part in
the SU(2)L interaction, hence this term is absent. The fact that the charged current
interaction is not invariant is not suprising. The weak interaction mediates between the
components of the SU(2)L doublet QL. After EWSB this interaction gets suppressed by
the energy of the breaking scale, which we express through the mass of the W boson. In
this way, the CKM matrix becoming physical is a remnant of the left handed quark fields
being correlated by originating from a SU(2)L doublet.

We interprete the CKM matrix as the misalignment matrix between down quark mass
eigenstates and flavor eigenstates.

dL = VCKMd̃L (3.6)

We note that we could equally well have attributed the CKM matrix to the up type quarks.
Attributing it to the down type quarks is just a convention. In the neutrino sector, the
corresponding matrix is attributed to the upper part of the SU(2)L doublet, the neutrinos.
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3.1.2. The PMNS matrix

In the lepton sector, we have to distinguish two cases. If there is a Majorana term present,
we need to treat the mass matrix in a little more general and complicated way. If no
Majorana term is present, we can proceed in exactly the same way as we did in the quark
sector. The Lepton mass Lagrangian then is

L`,Mass = ν̄LMν,DνR + l̄LMllR (3.7)

νL and l are triplets in generation space, containing the neutral leptons (in the following
just called neutrinos) and charged leptons, respectively. This is the same form as the quark
mass Lagrangian (3.1) and the procedure is exactly the same as in the quark sector. We
diagonalize the mass matrices,

ν̄LMννR = ν̄LU
†
νUνMνV

†
ν VννR

= ˜̄νLM
diag
ν ν̃R

l̄LMllR = l̄LU
†
l UlMlV

†
l VllR

= ˜̄lLM
diag
l l̃R (3.8)

thus the mass eigenstates are

˜̄lL = l̄LU
†
l ←→ lL = U †l l̃L

˜̄νL = ν̄LU
†
ν ←→ νL = U †ν ν̃L (3.9)

and the charged currents look like

LW,` =
g√
2

(
W+
µ ν̄Lγ

µlL +W−µ l̄Lγ
µνL

)

LW,` =
g√
2

W+
µ ˜̄νLγ

µ UνU
†
l︸ ︷︷ ︸

=:UPMNS

l̃L +W−µ
˜̄lL UlU

†
ν︸ ︷︷ ︸

=:U
†
PMNS

γµν̃L

 (3.10)

This allows us to define the PMNS matrix as the misalignment matrix between the neutrino
mass eigenstates and flavor states

νL = U †PMNSν̃L (3.11)

Note the Hermitian conjugate on the PMNS matrix, which is purely conventional. In this
convention, the PMNS matrix is defined in line with the CKM matrix, such that they are
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without Hermitian conjugate when interpreted as mixing matrices of the lower component
of the SU(2)L doublet (dL and lL, respectively) or with Hermitian conjugate when they
are interpreted as mixing matrices of the upper component of the SU(2)L doublet (uL and
νL).

Presence of a Majorana mass term - Takagi diagonalization

In presence of a Majorana mass term, the left and right handed fields obtain separate
masses. To treat this, we switch to two component spinor notation in LR convention. The
mass Lagrangian for the leptons then looks like

L`,Mass = νTLMν,Dν
c
R + lTLMllR + νTLMν,MνL (3.12)

We obtain the full neutrino mass matrix Mν in the following way [12]

Mν =

(
νL
νcR

)T (
Mν,M Mν,D

MT
ν,D 0

)(
νL
νcR

)
(3.13)

Here, νL and νcR are still triplets and the matrix (3.13) is really a 6 × 6 matrix. When
trying to diagonalize this matrix via a SVD, a subtle problem arises: The matrix Mν

is symmetric and this leaves an arbitrariness in the determination of the phases of the
diagonalization matrices Uν and Vν :

UνMνV
†
ν = Mdiag

ν = Mdiag,T
ν = V ∗νM

T
ν U

T
ν = V ∗νMνU

T
ν (3.14)

where we explicitly used the symmetry of Mν in the last step. The symmetry of Mν thus
allows us to identify

Uν = V ∗ν (3.15)

which corresponds to a choice of the phases, making the diagonalization matrices unique.
We find the Takagi diagonalization [12]

UνMUTν = Mdiag
ν (3.16)

or equivalently

V ∗νMV †ν = Mdiag
ν (3.17)

Note that this only applies to complex symmetric matrices. Real symmetric matrices are
considered hermitian and an eigenvalue decomposition gives the correct results.
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3.2. Phenomenology of Weak CP Violation in the Kaon System

The raison d’être of phenomenology is to make the connection between theory and exper-
iment. This means to extract and calculate observables from a given theory and compare
these theory predictions with existing measurements. This connection is where the scien-
tific statement is made, whether a theory coincides with measurements and thus establishes
more and more confidence in its power to model a part of nature, or whether it is falsified,
contradicting measurements.

Phenomenology does thus play a crucial role in modern day physics, where theories are
most of the time so complex that it requires a lot of dedicated work by well-trained
specialists to make the connection to experiment. Without phenomenology, statements like
’our model contains a complex phase in the quark mixing matrix’ and ’neutral long living
Kaons decay occasionally to two Pions instead of three’ would stand each for themselves
without the crucial connection that this part of the theory actually manifests itself in
exactly this measurement. Each statement for itself does not hold scientific value, it is
only in connecting them that there is scientific value, that there is science, that there
actually is theory and experiment. Without the connection to experiment, theory are
just random ideas. Without the connection to theory, experiment is just playing games.
Throwing an apple becomes an experiment when you try to investigate Newtonian gravity,
otherwise you just throw an apple.

3.2.1. Qualitative discussion

Kaon CP Violation History

In 1964, Christenson, Cronin, Fitch and Turlay measured [67] a KL decay to 2π and
thereby found experimental evidence for CP violation in the neutral Kaon system. How
does that show CP violation? To see this, we first look at how the Kaon flavor states
behave under CP transformation. With |K0〉 = |s̄d〉 and |K̄0〉 = |sd̄〉 we get

CP|K0〉 = |K̄0〉
CP|K̄0〉 = |K0〉 (3.18)

where the CP transformation introduces an unobservable phase factor to the Kaon state
which we just set to 1. We know that the weak force can mediate flavor transitions and
thus there is a probability for the transition shown in figure 3.1. The two quarks exchange
two W bosons and what initially was a K0 (K̄0) is now a K̄0 (K0). At the level of the
theory of mesons, we talk about it in a language like ’particles which are identical in all
conserved quantum numbers can mix’. Once we go to the levels of the theory of quarks,
we can actually model the dynamics which underlie this mixing via the diagram shown in
figure 3.1.

The Kaon oscillation period is determined by the mass splitting of the mass eigenstates
and can be measured to be ∆m/2π ≈ 1.2× 10−9s [29]. From this experimental result we
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d s

s̄ d̄

WW

u, c, t

ū, c̄, t̄

Figure 3.1.: Feynman diagram representing the transition of a K
0

into a K̄
0

by the exchange of two W bosons.

can qualitatively conclude that we should expect on average around 40-50 oscillations in
the lifetime of the long lived Kaon mass eigenstate KL with τL ≈ 0.5× 10−7s. Although a
classical picture, it is similar to flipping a coin where we have no possibility of tracking the
number of flips but expecting several flips midair. We have to go with a 50/50 heads/tails
expectation value. Hence we take a superposition of the Kaon flavor states. In the end,
we want the expectation value for finding a K0 or a K̄0 in the final state. Should the
weak interaction, which is responsible for the oscillation diagrams, couple equally to the
constituent quarks of K0 and K̄0 (and as such not differentiate between particle and
antiparticle), we take superpositions with even weights.

|KCP+〉 =
1√
2

[
|K0〉+ |K̄0〉

]
|KCP−〉 =

1√
2

[
|K0〉 − |K̄0〉

]
(3.19)

These happen to be CP eigenstates with eigenvalues +1 and −1 as we can easily verify.

Kaons decay via the weak interaction into Pions. The only possible Pion final states are
(ππ) and (πππ) since four Pions would exceed the Kaon rest mass. A single Pion is a CP
eigenstate with eigenvalue −1, thus the (ππ) state has CP eigenvalue (−1)(−1) = +1 while
the (πππ) state has CP eigenvalue (−1)(−1)(−1) = −1. This dictates KCP+ → (ππ) and
KCP− → (πππ) as the only possibilities.

The decay into a three Pion final state has a very small phase space because the production
of three Pions take nearly all the energy of the Kaon rest mass. This results in a large
difference in lifetime between the two physical Kaon states of ∼ 600. Hence the experi-
mentally observed Kaon states were labelled KS for the short lived state, to be identified
with the KCP+ state, and KL for the long lived state, to be identified with KCP−.

This large difference in lifetime is unique to the Kaon system (as opposed to the B and
Bs meson systems for example). It presents a great opportunity to test the assumption
we made about whether the weak interaction actually treats the constituents of the K0

equally to the constituents of the K̄0 - whether it treats particles and antiparticles in the
same way. If we were to prepare a Kaon beam and waited a sufficient amount of time of
the order of the KL lifetime, we would expect all KS to have decayed long ago. Hence only
KL particles remain, which by CP conservation can only decay into three Pions. Should
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we observe a two Pion final state, we found that CP is not conserved.

This is what Christenson, Cronin, Fitch and Turlay found in 1964. Thus the weak interac-
tion does not conserve CP, albeit the violation is very tiny as can be seen by the smallness
of the fraction of KL which decay to two Pions, which is only about 0.3 % of all decaying
KL. Nevertheless, the CP violation is there. In our line of arguments, there are two spots
where we assumed CP invariance of the weak interaction.

CP violation in mixing

First we assumed that the mixing via the box diagrams would be equally weighed because
the exchange of the weak bosons would not differentiate between particle and antiparticle.
This turns out to be not quite right, one seems to be slightly favored over the other, leading
to slightly uneven weights in the superposition [68].

|KS〉 ∼ (1 + ε̃)|K0〉+ (1− ε̃)|K̄0〉
|KL〉 ∼ (1 + ε̃)|K0〉 − (1− ε̃)|K̄0〉 (3.20)

both having a slightly larger portion of K0 than K̄0. The proportionality is just a nor-
malization factor. Therefore ε̃ is a measure of CP violation in mixing. The states KL and
KS are not orthogonal anymore as a result of this [69]

〈KS |KL〉 =
2 Re ε̃

1 + |ε̃|2
≈ 2 Re ε̃ = 2 Re εK (3.21)

ε̃ is not convention independent and the above picture is valid only in a certain class of
conventions which we will assume from now on. These are the so called ’physical phase
conventions’ [70] which assume Arg A0 � 1 [71] which implies ε̃ is a small parameter. We
will define the convention independent observable called εK in Section 3.2.4. The relation
between these quantities is given by εK = ε̃+i ImA0/ReA0 [72] [29], where A0 is a Kaon to
Pion isospin amplitude to be defined in Section 3.2.6. The quantities A0 and A2 depend on
the phase convention chosen for the strange quark state and it is possible to make either
of them real [29]. For example, the Wu Yang convention is defined by ImA0 = 0 [71],
which is the choice that gives ε̃ = εK . Neverthless, the real parts of ε̃ and εK are identical
and measure the non-orthogonality of the physical Kaon states, as indicated by equation
(3.21). The normalization factor is negligible since |ε̃| ∼ O(10−3).

We note, that the non-orthogonality of the Kaon mass eigenstates can be measured via
the semileptonic charge asymmetry [29]

AL =
Γ
(
KL → π−`+ν

)
− Γ

(
KL → π+`−ν

)
Γ
(
KL → π−`+ν

)
+ Γ

(
KL → π+`−ν

) =
2Re ε̃

1 + |ε̃|2
(3.22)
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and was found to be [29]

AL = (3.32± 0.06)× 10−3 (3.23)

therefore Re εK ≈ 1.6×10−3. Compared with the measurements of |εK | = 2.228±0.011×
10−3, this implies an imaginary part of roughly Im εK ≈ 1.5 × 10−3 or a phase of about
Arg εK ≈ 44◦.

CP violation in decay

Second we assumed that the decay was only possible from states of a certain CP parity
to states of the same CP parity, meaning CP were conserved in the decay. So even if we
retained a negative CP eigenstate, that is were to project the KL state on its KCP− part,
the CP (−1) Kaon state could only decay into the CP (−1) (πππ) state. However, also
being mediated through the weak interaction, this does not hold. There is a slight chance
to go from a definite CP initial state to a different CP final state through a weak decay.
This is more clearly shown in charged Kaon decays, where mixing is absent and hence the
only source of CP violation is CP violation in the decay.

3.2.2. Constructing Observables - η00 and η+−

We now know that we have CP violation when we observe a KL decay into two Pions. As
phenomenologists, we want to construct observables that can be calculated and compared
with the experimental numbers. The central observables in the neutral Kaon system are
the amplitude ratios [68]

η00 =
〈π0π0|Heff |KL〉
〈π0π0|Heff |KS〉

η+− =
〈π+π−|Heff |KL〉
〈π+π−|Heff |KS〉

(3.24)

We want to take some time to address some central questions about these quantities which
are usually glossed over in technical reviews. Like: ’why do we take amplitude ratios? I
can’t measure amplitudes, can I?’, ’why is KL normalized to KS? How much sense does
that make?’ or to rephrase that a little ’what do the magnitudes of these η’s mean, how
much CP violation do I have if they are 3, 10−3 or 10.000?’. Clarifying questions like that
is essential to understand the results.

The η FAQ

On the theory side, we take ratios of amplitudes to discriminate ’direct CP violation’
and ’indirect CP violation’.
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We can calculate the amount of the probability amplitude that comes from decay type
diagrams (direct CP violation) and the amount that comes from mixing type diagrams
(indirect CP violation). If we can combine the experimental observables in such a way
that we can compare the measured numbers with our Standard Model calculations, we can
obtain values for these amplitude level quantities. As it turns out, this is indeed possible
as we will see later.

Since ’direct CP violation’ and ’indirect CP violation’ are concepts defined at amplitude
level, it is most convenient to work with amplitudes which we can formally just separate
into a sum of these parts.

On the experimental side, we can access these combinations of amplitudes because
it is a ratio which has a common final state. We can take a ratio of decay rates and see
that the phase space dependence cancels and all that remains is the ratio of amplitudes.

Γ
(
KL → π0π0

)
Γ
(
KS → π0π0

) =
|〈π0π0|H|KL〉|

2

|〈π0π0|H|KS〉|
2 = |η00|

2 (3.25)

The parameters εK and ε′K correspond to ’indirect CP violation’ and direct ’CP viola-
tion’, respectively. Barring coefficients, they are

εK ∼ η+− + η00

ε′K ∼ η+− − η00 (3.26)

We will discuss these relations in Section 3.2.4 in more detail and derive the coefficients
explicitly in Appendix C.3. Here we can understand them qualitatively as follows: The
amplitudes η+− and η00 only differ in their final states, which means that the mixing parts
of the amplitudes, which have no business with those final states, are the same and cancel
in the difference. Hence, if the difference of the η’s is nonzero it is a measure of direct CP
violation.

We should mention that according to [72], while ”a nonzero ε′K is an unambiguous indi-
cation of direct CP violation [...] However, even if the theory has direct CP violation, ε′K
may still be zero. This occurs if the two CP-violating phases are equal.” ([72], p.1115)
Experiments did measure a nonzero ε′K and thereby established direct CP violation in the
SM.

Why exactly the sum of the ηs is proportional only to indirect CP violation is not that
easy to answer. We hope to clarify that by the end of Section 3.2.4. Let’s consent ourselves
for the moment with the limit in which the ηs are equal and hence identical to εK . This
may make sense because this is the limit in which the final states contribute not at all
(or equally for that matter). We see from experiment, that |η+−| ≈ |η00| is sufficiently
fulfilled, therefore we can say |εK | ≈ |η+−| ≈ |η00|. In this limit, we neglected direct CP
violation |ε′K | ≈ 0. But |ε′K | � |εK | anyway and in this limit, we get a very clear picture
and a more accessible and even not that inaccurate measure of |εK |.
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”How much CP violation do we have if |η00| = 2× 10−3?”

Phrases like ’CP violation is small. It’s 10−3’ are very common. Yet, that statement in
itself is without meaning. We need a standard against which we can define something as
’small’ or ’large’. Would 5 · 10−3 be a lot of CP violation? Would 104 be? Or would these
numbers also be considered ’small’? So what is the standard against which ’small’ and
’large’ are defined? And to give this standard meaning, we need most of all a context that
allows us to grasp these concepts.

We give this context by starting with branching ratios. We laid out in section 3.2.1 in
detail why observing a KL decay into two Pions means that CP is violated in the process.
Branching ratios give us a very accessible idea on what we can define as ’small’ and ’large’.
They tell us how many percent of all decays of a given initial state decay to this specific
final state. For the KL, there are two possible final states for the pair of Pions, namely
|π+π−〉 and |π0π0〉. We can thus define the question how much CP violation we talk about
through the sum of the CP violating decays

BR
(
KL → π+π−

)
+ BR

(
KL → π0π0

)
6= 0 (3.27)

It is actually possible to relate the sum of the branching ratios to the ηs if we take some
minor approximations of the order of neglecting the difference of the ηs. Hence, we have
|η00| ≈ |η+−| ≈ |εK | as argued above. We end up with

BR
(
KL → π+π−

)
+ BR

(
KL → π0π0

)
≈ τL/τS · |εK |

2 (3.28)

we give an explicit derivation of this formula in Appendix C.1. This formula is actually also
used in the original paper by Christenson et al [67], although they seem to have accidentally
multiplied the lifetimes instead of taking the ratio. Also, compare with equation (8.26)
of [73], where the ratio of total widths has not been replaced by the inverse ratio of the
lifetimes. Otherwise, its this equation.

The nonlinear relation and the lifetime factor suggests that the branching ratios and the
ηs are only by accident numerically similar. However, there are often deeper connections
in such accidents and it may be that such a connection here merely escaped us. In any
case, we find that if the sum of the branching ratios was 10% or even 50% - so by all means
large - the ηs would be η ≈ 1.32 × 10−2 and η ≈ 2.96 × 10−2 where the latter had to be
interpreted as a large number!
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3.2.3. Mixing Formalism - εK

Working in the well known two state formalism for mixing and propagation for neutral
mesons, we start with the Schroedinger equation [74]

i~
∂

∂t

(
|K0〉
|K̄0〉

)
= H

(
|K0〉
|K̄0〉

)
(3.29)

which governs the time evolution of the two state system. The two state Hamiltonian is
given by

H = M − i

2
Γ =

(
M11 M12

M∗12 M11

)
− i

2

(
Γ11 Γ12

Γ∗12 Γ11

)
(3.30)

with hermitian matrices M and Γ and M22 = M11 and Γ22 = Γ11 from assuming CPT
invariance.

The Kaon mass states can be expressed via the weak interaction states in the following
way

|KS〉 = p|K0〉+ q|K̄0〉
|KL〉 = p|K0〉 − q|K̄0〉 (3.31)

where the connection to the formulation via ε̃ is given by ε̃ = 1−q/p
1+q/p or q

p = 1−ε̃
1+ε̃ .

The Bell-Steinberger relation [75] links the loss of probability caused by the anti-hermitian
part Γ to the Kaon decay amplitudes. Based on physical intuition, this does make a lot
of sense: Whatever amount of probability we loose in the oscillating Kaon system must
correspond to Kaons which have decayed. This relation ties the mass and decay matrix of
the quantum mechanical mixing formalism to the field theoretic amplitudes for mixing and
decay. Its success gives credit to the Bell-Steinberger relation, although it is not derived
on strict mathematical grounds. The physical idea behind it is solid enough that it should
hold to a good approximation. We should, however, be cautious to conclude that it holds
to arbitrary precision. This has been discussed in the literature, see e.g. [76] for a recent
discussion and references therein. Especially CPT tests based on formalisms involving the
Bell-Steinberger relation are criticized as to possibly be problematic.

We find [77]

(
q

p

)2

=
M∗12 − i

2Γ∗12

M12 − i
2Γ12

(3.32)

Note that this is not an absolute square. We can then express the element of the two state
Hamiltonian through the mixing matrix element computable by quantum field theory [78]
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H12 = M12 −
i

2
Γ12 = 〈K0|Heff |K̄

0〉 (3.33)

Putting all this together, we can express the deviation from orthogonality of the mass
eigenstates KL and KS from equation (3.21) in the following way [74]

2 Re εK ≈ 〈KL|KS〉 =
1− |q/p|2

1 + |q/p|2
(3.34)

where the approximation made is that 1 + |ε̃|2 ≈ 1 holds, as already mentioned in section
3.2.1.

3.2.4. Decay Formalism - ε′K

The formalism for ε′K has been developed in more than 50 years of science. Having been
improved at many stages depending on the necessities of that time, it carries some nowa-
days impractical and outdated formalism. We try to give a comprehensive review here,
although trying to keep a slightly more modern perspective than most standard literature.
The following is largely based on the reviews [78] and [69].

The focal point for our construction of an observable is the decay from a Kaon CP eigen-
state with eigenvalue −1 to a (ππ) final state. We take this as the definition of direct
CP violation. [79]

ε̃′f :=
〈f |Heff |KCP−〉
〈f |Heff |KCP+〉

(3.35)

where f = {(π+π−), (π0π0)}. We normalized the expression to the amplitude of the CP
+1 eigenstate for convenience. How can we relate this to experimental observables?

First, we express the CP eigenstates through flavor eigenstates (cf. Equation (3.19)) and
choose the CP phase to be trival

ε̃′f =
〈f |Heff |K

0〉 − 〈f |Heff |K̄
0〉

〈f |Heff |K
0〉+ 〈f |Heff |K̄

0〉
=:

1− gf/hf
1 + gf/hf

(3.36)

We defined gf := 〈f |Heff |K
0〉 and hf := 〈f |Heff |K̄

0〉. In the standard literature, these

quantities are often denoted Af and Āf . Note that ε̃′f depends on the final state, whereas
for mixing, there was trivially just one such quantity ε̃. In this CP phase convention, the
form (3.36) again shows clearly why this quantity is related to CP violation: it is zero if
there is no difference between K0 and its antiparticle K̄0 in the decay to a certain final
state.
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We now define the amplitude ratio ηf for the physical Kaon states [78]

ηf :=
〈f |Heff |KL〉
〈f |Heff |KS〉

=
1− qgf/phf
1 + qgf/phf

(3.37)

which can be determined experimentally. This is the definition for the aforementioned
η+− and η00, now explicitly using the definitions for the mixing and decay coefficients q,
p, hf and gf , given in Equations (3.31) and (3.36). The task at hand is to entangle gf and
hf from q and p and at the same time construct phase convention independent quantities
from then. Through a gruesome calculation we get (see Appendix C.2 for details. The
authors of [78] sarcastically comment on this ”it is not difficult to show, that ηf can be
rewritten as: ([78], p.2)”)

ηf =
aε̃ + aε̃′f

+ iaε̃+ε̃′f
2 + aε̃aε̃′f

+ aε̃ε̃′f
(3.38)

where the as are constructed to be phase convention independent. They are given by [78]

aε̃ =
1− |q/p|2

1 + |q/p|2
=

2 Re ε̃

1 + |ε̃|2

aε̃′f
=

1− |gf/hf |
2

1 + |gf/hf |
2 =

2 Re ε̃′f

1 + |ε̃′f |
2

aε̃+ε̃′f
=

−4 Im
(
qgf/phf

)(
1 + |gf/hf |

2
)(

1 + |q/p|2
) =

2 Imε̃
(

1− |ε̃′f |
2
)
− 2 Imε̃′f

(
1− |ε̃|2

)
(

1 + |ε̃′f |
2
)(

1 + |ε̃|2
)

aε̃ε̃′f
=

4 Re
(
qgf/phf

)(
1 + |gf/hf |

2
)(

1 + |q/p|2
) − 1 =

4 Im ε̃ Im ε̃′f − 2
(
|ε̃′f |

2 + |ε̃|2
)

(
1 + |ε̃′f |

2
)(

1 + |ε̃|2
) (3.39)

We know experimentally that CP violation is small and we work in a physical phase con-
vention which reflects this (|ε̃′f |, |ε̃| � 1). Therefore we can safely neglect terms quadratic

in |ε̃′f | and |ε̃|. We then get

aε̃ ≈ 2 Re ε̃ =: 2 Re εK

aε̃′f
≈ 2 Re ε̃′f =: 2 Re ε′f

aε̃+ε̃′f
≈ 2 Im ε̃+ 2 Im ε̃′f ≡ 2 Im εK + 2 Im ε′f

aε̃ε̃′f
≈ 0 (3.40)

As already shown in the last section, aε̃ purely measures indirect CP violation. In the
case that the final states are CP eigenstates (which is the case for K → ππ decays we are
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interested in), aε̃′f
purely measures direct CP violation. aε̃+ε̃′f

purely measures interference

CP violation [78]. With the approximation that CP violation is small, we recover here
that the imaginary parts of ε̃ and ε̃′f indicate interference type CP violation, while the real
parts are measures of mixing and decay type CP violation, respectively. Note that while
aε̃+ε̃′f

is convention independent, Im ε̃ and Im ε̃′f themselves are not, as already mentioned

for ε̃ in Section 3.2.1. Hence, the convention dependence of Im ε̃ and Im ε̃′f must cancel in

the sum. Re ε̃ and Re ε′f are both convention independent, thus we symbolically removed
the tildes in equation (3.40) to indicate that we ended up with convention independent
quantities.

We write ηf with this approximation [78]

ηf =
aε̃ + aε̃′f

+ iaε̃+ε̃′f
2 + aε̃aε̃′f

+ aε̃ε̃′f
≈ Re εK + Re ε′f + i Im εK + i Im ε′f = εK + ε′f (3.41)

As we already mentioned, the convention dependence must cancel in the sum of the imagi-
nary parts, hence we can identify it with the sum of the imaginary parts of the observables.
Here we see very clearly that the experimentally accessible amplitude ratio measuring CP
violation gets split into two parts: One part, εK , is independent of the final state and thus
contains mixing type CP violation while the other part, ε′f , depends on the final state and
thus contains decay type CP violation.

So for the two Pion final states in neutral Kaon decays, we have

η+− = εK + ε′+− η00 = εK + ε′00 (3.42)

In the next section we will relate ε′00 to ε′+−. This leaves us with two unknowns in two
equations (3.42) and allows us to express εK and ε′K through the experimental quantities
η+− and η00.

There can be only one ε′K

When you get a chance to quote Christopher Lamberts most famous role (rivaling his
appearance as thundergod in ’Mortal Kombat’), you should generally do it. The reason
why there is only one ε′K instead of two - which we ended up with in the last section - is,
that they are related by CPT invariance [69]. In Appendix C.3 we calculate ε′+− and ε′00

explicitly and obtain

ε′+− = ε̃′K
1

1 + ω/
√

2

ε′00 = −2ε̃′K
1

1−
√

2ω
(3.43)

as found in [69] [80]. This gives us the relation
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ε′00 = −1

2

(
1−
√

2ω

1 + ω/
√

2

)
ε′+− (3.44)

ω is the parameter of the ”poorly understood ([69], p.2)” ∆I = 1/2 rule, for a definition
see Section 3.2.7.

With Equation (3.42) we find

η+− = εK + ε̃′K
1

1 + ω/
√

2

η00 = εK − 2ε̃′K
1

1−
√

2ω
(3.45)

For completions sake, we give the widely used standard approximations, which correspond
to discarding higher orders in ω (Note that ε′K includes one power of ω). We then have

ε′K ≈ ε
′
+− ≈ −1/2 ε′00 (3.46)

and subsequently get [29] [68] the famous Wu Yang triangle relations [81]

η+− = εK + ε′+− ≈ εK + ε′K η00 = εK + ε′00 ≈ εK − 2 ε′K (3.47)

and thereby

εK ≈
2η+− + η00

3
ε′K ≈

η+− − η00

3
(3.48)

which are commonly used in relating the ηs to εK and ε′K .
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3.2.5. The Ratio ε′K/εK

It is very convenient to normalize ε′K to εK . On the one hand, the phases of the two
quantities coincide [68] and

∣∣ε′K/εK∣∣ ≈ Re(ε′K/εK). On the other hand, the ratio is histor-
ically particularly accessible to experiment [82] [83]. We work with the Wu Yang triangle
relations, see Equation (3.47), which means neglecting higher powers of ω.

Through the relations (3.47) between η00, η+− and ε′K , εK , we can write the ratio of the
ηs as

η00

η+−
=
εK − 2 ε′K
εK + ε′K

=
1− 2 ε′K/εK
1 + ε′K/εK

(3.49)

Then taking the absolute square

∣∣∣∣ η00

η+−

∣∣∣∣2 =

∣∣∣∣1− 2 ε′K/εK
1 + ε′K/εK

∣∣∣∣2 =
1− 2

(
ε′K/εK + (ε′K/εK)∗

)
+ 4 |ε′K/εK |

2

1 + ε′K/εK + (ε′K/εK)∗ + |ε′K/εK |
2 (3.50)

We now use ε′K/εK+(ε′K/εK)∗ = 2 Re
(
ε′K/εK

)
and because of |ε′K/εK | � 1 (which implies

Re
(
ε′K/εK

)
� 1 ) we can restrict ourselves to linear terms and get

∣∣∣∣ η00

η+−

∣∣∣∣2 ≈ 1− 4 Re
(
ε′K/εK

)
1 + 2Re

(
ε′K/εK

) ≈ (1− 4 Re
(
ε′K/εK

)) (
1− 2Re

(
ε′K/εK

))
(3.51)

where we used the geometric series 1
1−q = 1 + q +O(q2) with q < 1. We thus find

∣∣∣∣ η00

η+−

∣∣∣∣2 ≈ 1− 6 Re
(
ε′K/εK

)
(3.52)

up to corrections of order O(|ε′K/εK |
2). This is a form often quoted in the literature [29]

[83] [82]

We want to go one step further here, because connecting abstract quantities to quantities
which most people have an intuition for is what nurtures understanding. In the ratio of
decay rates to the same final state, the phase space dependence cancels and thus we have

∣∣∣∣ η00

η+−

∣∣∣∣2 =

∣∣∣∣ 〈π0
π

0|Heff |KL〉
〈π0

π
0|Heff |KS〉

∣∣∣∣2∣∣∣∣ 〈π+
π
−|Heff |KL〉

〈π+
π
−|Heff |KS〉

∣∣∣∣2
=

(
Γ
(
KL→π

0
π

0
)

Γ
(
KS→π

0
π

0
)
)

(
Γ
(
KL→π

+
π
−
)

Γ
(
KS→π

+
π
−
)
) =

(
BR
(
KL→π

0
π

0
)

BR
(
KS→π

0
π

0
)
)

(
BR
(
KL→π

+
π
−
)

BR
(
KS→π

+
π
−
)
) (3.53)
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where we used that the lifetime factor drops out in this expression and we can therefore
express it directly via branching ratios.

We thus find

(
BR
(
KL→π

0
π

0
)

BR
(
KS→π

0
π

0
)
)

(
BR
(
KL→π

+
π
−
)

BR
(
KS→π

+
π
−
)
) ≈ 1− 6 Re

(
ε′K/εK

)
(3.54)

up to corrections of order O(|ε′K/εK |
2) and O(|ω|2) due to the ansatz.

Now recall that the phases for ε′K and εK coincide. Therefore Im
(
ε′K/εK

)
≈ 0 and

Re
(
ε′K/εK

)
≈ |ε′K/εK | ≈ ε

′
K/εK . This gives us

ε′K
εK
≈ 1

6

1−

(
BR
(
KL→π

0
π

0
)

BR
(
KS→π

0
π

0
)
)

(
BR
(
KL→π

+
π
−
)

BR
(
KS→π

+
π
−
)
)
 (3.55)

This way we connect ε′K/εK directly to Kaon to Pion branching ratios.
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3.2.6. Isospin Amplitudes

To investigate Kaon CP violation, it is very useful to switch to the Pion isospin basis.
We have yet to find a clear statement about the interpretation of these isospin states.
Most authors are very conservative about this and just state that the decomposition is
possible and useful. Mathematically, it is just a change of basis, but while we have clear
interpretations of the Kaon bases in terms of propagating mass states, interacting flavor
states or CP states that we need to define CP violation, we have found no comment about
the physical interpretation of the isospin states.

The two Pion final states we find in the detector are |π+π−〉 and |π0π0〉. Using standard
methods for the addition of two spin-1 states, we can obtain the strong isospin states of
the two Pion systems

|π0π0〉 =

√
1

3
|(ππ)I=0〉 −

√
2

3
|(ππ)I=2〉

|π+π−〉 =

√
2

3
|(ππ)I=0〉+

√
1

3
|(ππ)I=2〉 (3.56)

Solving for the isospin eigenstates |(ππ)I=0〉 and |(ππ)I=2〉, we get

|(ππ)I=0〉 =

√
2

3
|π+π−〉+

√
1

3
|π0π0〉

|(ππ)I=2〉 =

√
1

3
|π+π−〉 −

√
2

3
|π0π0〉 (3.57)

There is no I = 1 state in the two Pion system because the Pion wave function is bosonic
and does not allow an odd state.

We use the following notation for the amplitudes AI := 〈(ππ)I |Heff |K
0〉 and the CP

conjugates ĀI := 〈(ππ)I |Heff |K̄
0〉. Through Watson’s theorem [84], the strong phases δI

which correspond to strong elastic rescattering of the Pions can be extracted explicitly.
Assuming CPT conservation, the amplitudes can be written with explicit phases [68]

AI = aIe
iδI = |aI |e

iφIeiδI

ĀI = a∗Ie
iδI = |aI |e

−iφIeiδI (3.58)

The ’strong phases’ δI are defined as not to flip sign when transformed under CP, while
the ’weak phases’ φI by definition do change sign under CP.
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3.2. Phenomenology of Weak CP Violation in the Kaon System 61

3.2.7. ∆I = 1/2 rule: Omega

The amplitude ratio ω is constructed from the KS → (ππ)I amplitudes. These decays are
CP allowed and with CP violation being as small as it is, it can usually be neglected in
this quantity, taking KL and KS as CP eigenstates by q/p = 1.

ω :=
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

=
A2 + q

pĀ2

A0 + q
pĀ0

≈ei(δ2−δ0)a2 + a∗2
a0 + a∗0

=ei(δ2−δ0) Re a2

Re a0
(3.59)

This form is found e.g. in [85]. Therefore we can take |ω| ≈ Re a2/Re a0 and Arg ω ≈
δ2 − δ0.

The KS → {π
0π0, π+π−} branching ratios

We can use this notation to show explicitly that the ratio of observed branching ratios in
KS decays to two Pions is an expression of the ∆I = 1/2 rule. We start by taking the
ratio of branching ratios

BR
(
KS → π0π0

)
BR

(
KS → π+π−

) =
Γ
(
KS → π+π−

)
Γ
(
KS → π0π0

)
=

∣∣∣∣∣ 〈π
0π0|Heff |KS〉

〈π+π−|Heff |KS〉

∣∣∣∣∣
2

(3.60)

where we assumed that the phase space for both two Pion final states is sufficiently identi-
cal. The normalization of decay rates in the branching ratio drops out in the ratio because
we have the same initial states. Next, we decompose the Pion final states into Pion isospin
states (see equation (3.57)):
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∣∣∣∣∣ 〈π
0π0|Heff |KS〉

〈π+π−|Heff |KS〉

∣∣∣∣∣
2

=

∣∣∣∣∣〈(ππ)0|Heff |KS〉+
√

2〈(ππ)2|Heff |KS〉√
2〈(ππ)0|Heff |KS〉 − 〈(ππ)2|Heff |KS〉

∣∣∣∣∣
2

=
1

2

∣∣∣∣∣∣
1 +
√

2
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

1− 1√
2

〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

∣∣∣∣∣∣
2

=
1

2

∣∣∣∣∣1 +
√

2ω

1− 1√
2
ω

∣∣∣∣∣
2

(3.61)

where we put in our definition for ω as amplitude ratio of the KS to the two Pion isospin
final states.

At this point, we can insert the experimental numbers for ω and basically replace the
question of why the branching ratios to the interaction final states of the two Pion system
have the observed value by the question why the ratio of the isospin amplitudes have a
certain value. This looks like no gain, and indeed the value of ω is poorly understood
and coined ∆I = 1/2 rule (see e.g. [86] for a discussion of technical aspects), where the
word ’rule’ is the usual quantum mechanics jargon for not knowing the mechanics at work.
Nevertheless, although we do not know why the value of ω is what it is, the above form
helps a lot to understand about the formalism used in Kaon CP violation. The factor
in brackets often appears and makes derivations look complicated. Here, we saw that it
consists of Clebsch Gordan coefficients originating in the transition from interaction final
states and isospin final states of the two Pion system, as well as ω itself, which expresses
the preference of the KS state to decay into the (ππ)0 state or the (ππ)2 state. The
experimentally determined smallness of |ω| ≈ 1/22 ≈ 0.045 [80] means KS largely prefers
to decay into (ππ)0 and is often exploited by expanding in |ω|.

Separating ω in phase and absolute value, we can use the approximations Arg ω ≈ −π/4
[80] and |ω| � 1 and get

1

2

∣∣∣∣∣1 +
√

2ω

1− 1√
2
ω

∣∣∣∣∣
2

≈ 1

2
(1− 3|ω|) ≈ 3

7
(3.62)

We thus find for the branching ratios

BR
(
KS → π0π0

)
BR

(
KS → π+π−

) ≈ 3

7
(3.63)

which reflects the experimental numbers [29]
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BR
(
KS → π0π0

)
≈ (0.3069± 0.0005)

BR
(
KS → π+π−

)
≈ (0.6920± 0.0005) (3.64)

to a very good degree.

From the point of symmetry, we can thus view these numbers in the following way. In the
limit |ω| → 0, the KS state would only decay to the (ππ)0 final state. We can view this as
an exact symmetry, which is broken by the small parameter ω. In the limit of vanishing
ω we would have

BR
(
KS → π0π0

)
BR

(
KS → π+π−

)
∣∣∣∣∣∣
ω=0

≈ 1

2
(3.65)

With the input that KS decays to pretty much nothing else than these two states, we get
subsequently

BR
(
KS → π0π0

)∣∣∣
ω=0

≈ 0.3̄

BR
(
KS → π+π−

)∣∣∣
ω=0
≈ 0.6̄ (3.66)

which shows that the effect of ω is up to 10% in the branching ratios and far away
from the quoted experimental errors. Nevertheless, the main effect on the split between
the two interaction final states comes from Clebsch Gordan coefficients. In all the fuss
about ω, this shouldn’t be swept under the carpet. The split between the observed
branching ratios for KS to π+π− and π0π0 is 90% due to Clebsch Gordan coefficients.
The picture is then following: The values of the branching ratios from KS to π+π−

and π0π0 are due to the ∆I = 1/2 rule, which says: KS mostly decays to the (ππ)0

isospin state, while the transition to the (ππ)2 state is suppressed by the small parameter
ω = 〈(ππ)2|Heff |KS〉/〈(ππ)0|Heff |KS〉 ≈ 0.045 · exp (−iπ/4). [86] [87]
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3.2.8. Isospin expressions for η+−, η00, εK and ε′K

To find the final form for ε′K/εK which we used in our analysis, we first express η00 and
η+− through isospin amplitudes (3.56) and use the definition (3.59) for ω

η+− =
〈π+π−|Heff |KL〉
〈π+π−|Heff |KS〉

=

√
2〈(ππ)0|Heff |KL〉+ 〈(ππ)2|Heff |KL〉√
2〈(ππ)0|Heff |KS〉+ 〈(ππ)2|Heff |KS〉

=

√
2〈(ππ)0|Heff |KL〉+ 〈(ππ)2|Heff |KL〉

〈(ππ)0|Heff |KS〉
[√

2 +
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

]
=

[〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

+
1√
2

〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

](
1

1 + ω√
2

)
(3.67)

η00 =
〈π0π0|Heff |KL〉
〈π0π0|Heff |KS〉

=
〈(ππ)0|Heff |KL〉 −

√
2〈(ππ)2|Heff |KL〉

〈(ππ)0|Heff |KS〉 −
√

2〈(ππ)2|Heff |KS〉

=
〈(ππ)0|Heff |KL〉 −

√
2〈(ππ)2|Heff |KL〉

〈(ππ)0|Heff |KS〉
[
1−
√

2
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

]
=

[〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

−
√

2
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

](
1

1−
√

2ω

)
(3.68)

εK - Recall from equation (3.48) that εK = (2η+− + η00)/3

3 εK = 2η+− + η00

=
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

[
2

1 + ω/
√

2
+

1

1−
√

2ω

]
+
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

[ √
2

1 + ω/
√

2
−

√
2

1−
√

2ω

]

= 3
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

[
1− ω/

√
2

(1 + ω/
√

2)(1−
√

2ω)

]
− 3
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

[
ω

(1 + ω/
√

2)(1−
√

2ω)

]

= 3
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

[
1 + ω2 +O(ω3)

]
− 3
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

[
ω +

ω2

√
2
O(ω3)

]
(3.69)

And with
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

=
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

〈(ππ)2|Heff |KS〉
〈(ππ)2|Heff |KS〉

= ω
〈(ππ)2|Heff |KL〉
〈(ππ)2|Heff |KS〉

we have
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εK =
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

[
1 +O(ω2)

]
(3.70)

ε′K - Recall from equation (3.48) that ε′K = (η+− − η00)/3

3 ε′K = η+− − η00

=
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

[
1

1 + ω/
√

2
− 1

1−
√

2ω

]
+
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

[ √
2

1 + ω/
√

2
+

√
2

1−
√

2ω

]

=
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

[
−3ω/

√
2

(1 + ω/
√

2)(1−
√

2ω)

]

+
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

〈(ππ)2|Heff |KS〉
〈(ππ)2|Heff |KS〉

[
1√
2

3

(1 + ω/
√

2)(1−
√

2ω)

]
=

[〈(ππ)2|Heff |KL〉
〈(ππ)2|Heff |KS〉

−
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

]
3

1√
2
ω

[
1

(1 + ω/
√

2)(1−
√

2ω)

]
(3.71)

Expanding in ω we find

ε′K =
1√
2

[〈(ππ)2|Heff |KL〉
〈(ππ)2|Heff |KS〉

−
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

][
ω +

ω2

√
2

+O(ω3)

]
(3.72)

To find an often used expression, we push the amplitudes around a little

(〈(ππ)2|Heff |KL〉
〈(ππ)2|Heff |KS〉

−
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

)
ω

=
〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

[〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KL〉

−
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

]
(3.73)

and insert εK

ε′K =
1√
2
εK

[〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KL〉

−
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

] [
1 +

ω√
2

+O(ω2)

]
(3.74)

Ignoring subleading contributions in ω, we recover

ε′K
εK
≈ 1√

2

[〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KL〉

−
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

]
(3.75)

see e.g. [88].
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3.2.9. Final Formula for ε′K/εK

We will now cast this into a different form with explicit dependence on the isospin ampli-
tudes

√
2
ε′K
εK

=
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KS〉

·
(〈(ππ)0|Heff |KL〉
〈(ππ)0|Heff |KS〉

)−1

−
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

=
〈(ππ)2|Heff |KL〉
〈(ππ)0|Heff |KL〉

−
〈(ππ)2|Heff |KS〉
〈(ππ)0|Heff |KS〉

=
A2 − (q/p)Ā2

A0 − (q/p)Ā0

− ω

= ei(δ2−δ0)

(
·a2 − (q/p)a∗2
a0 − (q/p)a∗0

− Re a2

Re a0

)
= ei(δ2−δ0) ·

(
Re a2 + i Im a2 − (q/p) Re a2 + i(q/p) Im a2

Re a0 + i Im a0 − (q/p) Re a0 + i(q/p) Im a0
− Re a2

Re a0

)
= ei(δ2−δ0) ·

(
(1− q/p) Re a2 + i(1 + q/p) Im a2

(1− q/p) Re a0 + i(1 + q/p) Im a0
− Re a2

Re a0

)
= ei(δ2−δ0) ·

(
ε̃ Re a2 + i Im a2

ε̃ Re a0 + i Im a0
− Re a2

Re a0

)
= ei(δ2−δ0) ·

(
Re a2

Re a0
·
ε̃+ i Im a2

Re a2

ε̃+ i Im a0
Re a0

− Re a2

Re a0

)

= ei(δ2−δ0) ·

(
Re a2

Re a0
·
ε̃+ i Im a0

Re a0
− i Im a0

Re a0
+ i Im a2

Re a2

ε̃+ i Im a0
Re a0

− Re a2

Re a0

)

= ei(δ2−δ0) ·

(
Re a2

Re a0
·
εK − i

Im a0
Re a0

+ i Im a2
Re a2

εK
− Re a2

Re a0

)

= ei(δ2−δ0) ·

(
Re a2

Re a0
·
−i Im a0

Re a0
+ i Im a2

Re a2

εK

)

= −iei(δ2−δ0−φεK ) |ω|
|εK |

·
(

Im a0

Re a0
− Im a2

Re a2

)
(3.76)

We find

ε′K
εK

= −iei(δ2−δ0−φεK ) 1√
2

|ω|
|εK |

·
(

Im a0

Re a0
− Im a2

Re a2

)
(3.77)

as found in e.g. [85], [29] and [79]. We used ω = ei(δ2−δ0) ·(Re a2/Re a0) as defined in equa-

tion (3.59), φεK := Arg εK , ε̃ = 1−q/p
1+q/p from section 3.2.3 and the relation εK = ε̃ + i Im a0

Re a0

from section 3.2.1. Note that the prefactor experimentally evaluates as −iei(δ2−δ0−φεK ) ≈ 1
[68]. This is a numerical accident, causing the ratio ε′K/εK to be approximately real.
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In practice, we take the phase factor to be unity, take |ω| and |εK | from experiment, as
well as the real parts of the amplitudes Re a0 and Re a2.

3.2.10. Calculating Im a0 and Im a2

We are left to calculate the imaginary parts Im a0 and Im a2. The full determination
of ε′K/εK is quite involved. It requires calculating the hadronic matrix elements by non-
perturbative methods like lattice QCD [35], as well as performing a matching calculation
of the perturbative Wilson coefficients [40]. The latter capture the high energy effects and
as such the appearance of new physics particles in virtual intermediate states. These parts
need to be connected through a renormalization proceedure [43] which correctly converts
the high energy expectation values to the low energy scale at which the decay or reaction
in question actually takes place in experiment.

The formulae for the isospin amplitudes are given by [40]

aI = 〈(ππ)0|Heff |K
0〉 =

GF√
2
VudV

∗
us

10∑
i=1

[
(zi(µ)− τyi(µ)) 〈(ππ)0|Q

|1/2−I|
i (µ)|K0〉

]
(3.78)

where τ = −VtdV
∗
ts/VudV

∗
us and yi(µ) = vi(µ)−zi(µ). Because we are ultimately interested

in Im aI , the relevant part is Im τ . In the standard parametrization of the CKM matrix
[29], Vud and Vus are both real and the complex CKM phase, from which all weak CP
violation in the Standard Model originates, causes Im VtdV

∗
ts ≡ Im λt 6= 0 and thereby in

general ε′K/εK 6= 0.

The Wilson Coefficients zi and yi in Equation (3.78) are given by [40]

~z(µ) = Û3(µ,mc)~z(mc)

~v(µ) = Û3(µ,mc)McÛ
4(mc,mb)MbÛ

5(mb,mW )~C(mW ) (3.79)

Here, 〈(ππ)0|Q
|1/2−I|
i (µ)|K0〉 ≡ {〈Q1/2〉, 〈Q3/2〉} are the nonperturbative hadronic matrix

elements. Ûf (µ1, µ2) is the evolution matrix between µ2 and µ1 for f active flavor. Mq is

the threshold matrix for the quark threshold q. ~C(mW ) and ~z(mc) are Wilson Coefficients
that can be obtained from a matching calculation at the corresponding scale. The next-
to-leading order values for all these objects as well as detailed technical discussions can be
found in [40] and [42].

ε′/ε is an amplitude level quantity, hence it is linear in the operators. Therefore, New
Physics (NP) contributions can just be added to the Standard Model value. We calculate
new Wilson Coefficients wi, which encode the high energy physics, at the NP scale µNP
and evolve them to the Kaon scale µ by

~w(µ) = Û3(µ,mc)Mc . . . ~w(µNP ) (3.80)

including all necessary thresholds and evolution matrices that lie between the NP scale
µNP and the Kaon scale µ.
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Appendix: An E6

Symmetric Nelson-Barr
Model A

A.1. Symmetry Breaking Pattern

The E6 Yukawa Lagrangian, as given in Section 1.2, is

L = 27 27 (Y27 27H + Y351 351H) (A.1)

The relevant representations decompose to SO(10), from there to SU(5) and finally to
SU(3)× SU(2)× U(1) according to [11]. U(1) charges are denoted as subscripts.

E6→ SO(10)× U(1)

27→ 161 + 10−2 + 14

351→ 1441 + 126−2 + 544 + 16−5 + 10−2 + 1−8 (A.2)

SO(10)→ SU(5)× U(1)

10→ 52 + 5−2

16→ 10−1 + 53 + 1−5

54→ 240 + 15−4 + 154

126→ 502 + 45−2 + 15−6 + 106 + 52 + 110

144→ 453 + 40−1 + 24−5 + 15−1 + 10−1 + 57 + 53 (A.3)
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70 A. Appendix: An E6 Symmetric Nelson-Barr Model

SU(5)→ SU(3)× SU(2)× U(1)

5→ (1, 2)3 + (3, 1)−2

10→ (3, 2)1 + (3, 1)−4 + (1, 1)6

15→ (6, 1)−4 + (3, 2)1 + (1, 3)6

24→ (8, 1)0 + (3, 2)5 + (3, 2)−5 + (1, 3)0 + (1, 1)0

40→ (6, 2)1 + (8, 1)6 + (3, 3)−4 + (3, 1)−4 + (3, 2)1 + (1, 2)−9

45→ (8, 2)3 + (6, 1)−2 + (3, 2)−7 + (3, 1)8 + (3, 3)−2 + (3, 1)−2 + (1, 2)3

50→ (8, 2)3 + (6, 1)8 + (6, 3)−2 + (3, 2)−7 + (3, 1)−2 + (1, 1)−12 (A.4)

We spot the SM Higgs field (1, 2)3 emerge from a 5 of SU(5) (and the conjugate field
(1, 2)−3 consequently from the conjugate 5). Please note, that this is Slanksy’s convention
[11] for the U(1) charges, which is very practical for model building since it only involves
integer numbers. The frequently used convention for SM purposes, which normalizes
hypercharge as the average electric charge, is related to Slanksy’s convention by a factor
of 6.

A.1.1. SM singlet scalar fields

The SM singlet scalar fields introduced in Section 1.2.2 used in our model. In the Y27 we
have the following terms with respective patterns

27 27 27→ 10−210−214 → 5−25210 → (1, 2)−3(1, 2)3(1, 1)0 + (3, 1)2(3, 1)−2(1, 1)0

= (LLL
c
R +Dc

RDL)φ27;1;1

27 27 27→ 16110−2161 → 53521−5 → (1, 2)−3(1, 2)3(1, 1)0 + (3, 1)2(3, 1)−2(1, 1)0

= (`LL
c
R + dcRDL)φ27;16;1 (A.5)

and in the Y351 we have

27 27 351→ 16110−21441 → 535224−5 → (1, 2)−3(1, 2)3(1, 1)0 + (3, 1)2(3, 1)−2(1, 1)0

= (`LL
c
R + dcRDL)φ351;144;24

27 27 351→ 161161126−2 → 1−51−5110 → (1, 1)0(1, 1)0(1, 1)0

= νcRν
c
R φ351;126;1

27 27 351→ 10−210−2544 → 5−252240 → (1, 2)−3(1, 2)3(1, 1)0 + (3, 1)2(3, 1)−2(1, 1)0

= (LLL
c
R +Dc

RDL)φ351;54;24

27 27 351→ 1611416−5 → 1−51015 → (1, 1)0(1, 1)0(1, 1)0

= νcRsφ351;16;1

27 27 351→ 14141−8 → 101010 → (1, 1)0(1, 1)0(1, 1)0

= ssφ351;1;1 (A.6)
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A.1.2. SM breaking scalars (Higgs fields)

The up-type Higgs fields (1, 2)1/2 arise as follows

27 27 27→ 16116110−2 → 10−110−152 + 531−552 → (3, 2)1(3, 1)−4(1, 2)3 + (1, 2)−3(1, 1)0(1, 2)3

=
(
QLd

c
RH

u
27;10;5 + `Lν

c
RH

u
27;10;5

)
27 27 27→ 10−21410−2 → 5−21052 → (1, 2)−3(1, 1)0(1, 2)3

= LLsH
u
27;10;5

27 27 351→ 16116110−2 → 10−110−152 + 531−552 → (3, 2)1(3, 1)−4(1, 2)3 + (1, 2)−3(1, 1)0(1, 2)3

=
(
QLd

c
RH

u
351;10;5 + `Lν

c
RH

u
351;10;5

)
27 27 351→ 10−21410−2 → 5−21052 → (1, 2)−3(1, 1)0(1, 2)3

= LLsH
u
351;10;5

27 27 351→ 1611416−5 → 53105−3 → (1, 2)−3(1, 1)0(1, 2)3

= `Lν
c
RH

u
351;16;5

27 27 351→ 161161126−2 → 10−110−152 + 531−552 → (3, 2)1(3, 1)−4(1, 2)3 + (1, 2)−3(1, 1)0(1, 2)3

=
(
QLd

c
RH

u
351;126;5 + `Lν

c
RH

u
351;126;5

)
27 27 351→ 10−214126−2 → 5−21052 → (1, 2)−3(1, 1)0(1, 2)3

= LLsH
u
351;126;5

27 27 351→ 16110−21441 → 1−55−257 → (1, 2)−3(1, 1)0(1, 2)3

= LLν
c
RH

u
351;144;5 (A.7)
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and the down-type Higgs fields (1, 2)−1/2 are given by

27 27 27→ 16116110−2 → 10−1535−2 → (3, 2)1(3, 1)2(1, 2)−3 + (1, 1)6(1, 2)−3(1, 2)−3

=
(
QLd

c
RH

d
27;10;5 + ecR`LH

d
27;10;5

)
27 27 27→ 10−21410−2 → 52105−2 → (1, 2)3(1, 1)0(1, 2)−3

= LcRsH
d
27;10;5

27 27 27→ 16110−2161 → 10−15−253 → (1, 1)6(1, 2)−3(1, 2)−3 + (3, 2)1(3, 1)2(1, 2)−3

=
(
ecRLLH

d
27;16;5 +QLD

c
RH

d
27;16;5

)
27 27 27→ 16110−2161 → 1−55253 → (1, 1)0(1, 2)3(1, 2)−3

= νcRL
c
RH

d
27;16;5

27 27 351→ 16116110−2 → 10−1535−2 → (3, 2)1(3, 1)2(1, 2)−3 + (1, 1)6(1, 2)−3(1, 2)−3

=
(
QLd

c
RH

d
351;10;5 + ecR`LH

d
351;10;5

)
27 27 351→ 10−21410−2 → 52105−2 → (1, 2)3(1, 1)0(1, 2)−3

= LcRsH
d
351;10;5

27 27 351→ 161161126−2 → 10−15345−2 → (3, 2)1(3, 1)2(1, 2)−3 + (1, 1)6(1, 2)−3(1, 2)−3

=
(
QLd

c
RH

d
351;126;45 + ecR`LH

d
351;126;45

)
27 27 351→ 10−214126−2 → 521045−2 → (1, 2)3(1, 1)0(1, 2)−3

=
(
LcRsH

d
351;126;45

)
27 27 351→ 16110−21441 → 1−55253 → (1, 1)0(1, 2)3(1, 2)−3

= νcRL
c
RH

d
351;144;5

27 27 351→ 16110−21441 → 10−15−253 → (1, 1)6(1, 2)−3(1, 2)−3 + (3, 2)1(3, 1)2(1, 2)−3

=
(
ecRLLH

d
351;144;5 +QLD

c
RH

d
351;144;5

)
27 27 351→ 16110−21441 → 1−552453 → (1, 1)0(1, 2)3(1, 2)−3

= νcRL
c
RH

d
351;144;45

27 27 351→ 16110−21441 → 10−15−2453 → (1, 1)6(1, 2)−3(1, 2)−3 + (3, 2)1(3, 1)2(1, 2)−3

=
(
ecRLLH

d
351;144;45 +QLD

c
RH

d
351;144;45

)
(A.8)
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A.2. BBP formula

We provide a generalization of formula (7a) from the paper by Bento, Branco and Parada
[7] for an arbitrary number of heavy down type quarks.

The down quark mass matrix is

Md =

(
md 0
MC MR

)
(A.9)

where we assume MC ∈ C and md ∧MR ∈ R to have a real determinant. Furthermore,
we put in a hierarchy md � MC . MR, which is reasonable identifying md with the SM
down quarks, thus of the EW scale, while MC and MR contain GUT scale VEVs.

We follow the line of arguments of BBP and diagonalize the mass matrix

U †LMdUR =

(
m 0

0 M

)
(A.10)

wherem = diag(md,ms,mb) are the usual SM down quark masses andM = diag(mD,mS ,mB)
are the heavy quark masses denoted intuitively from lightest to heaviest. We write UL in
block form

(
K R
S T

)
(A.11)

with K being the usual 3 × 3 CKM matrix. The unitarity of UL has the following conse-
quences

ULU
†
L =

(
KK† +RR† KS† +RT †

SK† + TR† SS† + TT †

)
=

(
1 0
0 1

)

U †LUL =

(
K†K + S†S K†R+ S†T

R†K + T †S R†R+ T †T

)
=

(
1 0
0 1

)
(A.12)

Where we will especially need

KK† +RR† = 1 (A.13)

KS† +RT † = 0 (A.14)

K†K + S†S = 1 (A.15)

From the bi-unitary diagonalization we know that

73
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U †LMdM
†
dUL = diag(m̄2, M̄2) (A.16)

which gives us the following four equations

K†mdm
†
dK + S†MCm

†
dK +K†mdM

†
CS + S†(MCM

†
C +MRM

†
R)S =m̄2 (A.17)

K†mdm
†
dR+ S†MCm

†
dR+K†mdM

†
CT + S†(MCM

†
C +MRM

†
R)T =0 (A.18)

R†mdm
†
dK + T †MCm

†
dK +R†mdM

†
CS + T †(MCM

†
C +MRM

†
R)S =0 (A.19)

R†mdm
†
dR+ T †MCm

†
dR+R†mdM

†
CT + T †(MCM

†
C +MRM

†
R)T =M̄2 (A.20)

For convenience, we define (MCM
†
C + MRM

†
R) := M2. The square just helps to remind

that it counts as two powers of the high scales.

Now we reproduce Eqs. (5a)-(5d) from [7] by multiplying Equations (A.17) - (A.20) with
components of UL:

K(A.17) +R(A.19) −→ Km̄2 = mdm
†
dK +mdM

†
CS (A.21)

R(A.20) +K(A.18) −→ RM̄2 = mdm
†
dR+mdM

†
CT (A.22)

S(A.17) + T (A.19) −→ Sm̄2 = MCm
†
dK +M2S (A.23)

T (A.20) + S(A.18) −→ TM̄2 = MCm
†
dR+M2T (A.24)

Now we take

K†(A.21) −→ K†Km2 = K†mdm
†
dK +K†mdM

†
CS (A.25)

and argue, that for sufficient high scales MC and MR, K is approximately unitary and we
can take K†K = 1 + O(m4/M4), where m/M denotes generic low scale over high scale
suppression. The argument goes as follows: We know that by definition UL is unitary,
thus followed Equation (A.15)

U †LUL = K†K + S†S = 1

We add some physical input, namely that if we let the high scales go towards infinity, the
exotic particles become infinitely heavy and decouple from the SM. In that limit, there
is no way of finding the exotic particles by e.g. flavor physics experiments because their
appearance in loops is suppressed by their heavy masses. Therefore, we would measure a
unitary CKM matrix in that limit. For the large hierarchy md � MC . MR which we
assumed, we can conclude, that K†K is close to unity with corrections from S†S, which
are suppressed by the high scales. Therefore, we can assume an approximate unitarity of
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the CKM matrix K with corrections suppressed by m2/M2. And indeed, numerical checks
provide

K†K = 1 +O(m4
dM

2
C/M

6
R) (A.26)

We apply this to (A.25)

m2 = K†mdm
†
dK +K†mdM

†
CS +O(m4

dM
2
C/M

6
R) (A.27)

Next we recall the ansatz, which we used earlier to parametrize the mixing with the heavy
quarks in Section 1.3, which gave us an effective down quark mass matrix meff

d = md · aq
with aq =

[
1 + Z†qZq

]
and Zq = M−1

R MC . This effective quark mass matrix is diagonalized

by the CKM matrix, all this assuming CKM unitarity. Therefore

m2 = K†md(1 + Z†Z)−1m†dK +O(m4
dM

2
C/M

6
R) (A.28)

Taking these two equations we get

(1 + Z†Z)−1 = 1 +M †CSK
†(m†d)

−1 +O(m4
dM

2
C/M

6
R) (A.29)

To extract an expression for SK†, we first rewrite (1 + Z†Z)−1. Starting with

1 + Z†Z = 1 +M †C(MRM
†
R)−1MC

= M †C

(
(M †C)−1 + (MRM

†
R)−1MC

)
= M †C(MRM

†
R)−1

(
(MRM

†
R)(M †C)−1 +MC

)
= M †C(MRM

†
R)−1

(
(MRM

†
R) +MCM

†
C

)
(M †C)−1

:= M †C(MRM
†
R)−1M2(M †C)−1 (A.30)

We obtain the desired inverse (1 + Z†Z)−1 = M †CM
−2(MRM

†
R)(M †C)−1. We insert this

into Equation (A.29) and for readability drop the higher order correction reminder for now

M †CM
−2(MRM

†
R)(M †C)−1 = 1 +M †CSK

†(m†d)
−1 (A.31)

rearranging this expression a little, we get

SK† = −
(

1−M−2(MRM
†
R)
)

(M †C)−1m†d (A.32)
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Now we can rearrange
(

1−M−2(MRM
†
R)
)

a little, noting thatM2 = (MRM
†
R)+(MCM

†
C),

we just call (MRM
†
R) =: a and (MCM

†
C) := b, then

1− (a+ b)−1a

= (a+ b)−1(a+ b)− (a+ b)−1a

= (a+ b)−1b (A.33)

Therefore

(
1−M−2(MRM

†
R)
)

= M−2MCM
†
C (A.34)

and putting this into Equation (A.32) we end up with

SK† = −M−2MCm
†
d (A.35)

Now we take K(A.27)K†, use the approximate unitarity of the CKM matrix again and
insert Equation (A.35).

Km2K† = md

[
1−M †C(M2)−1MC +O(m4

dM
2
C/M

6
R)
]
m†d (A.36)

which is the final result of the derivation, as quoted in Section 1.1.1.
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Appendix: A
Supersymmetric Solution

to ε′K/εK B
In this section, we give the main parts of the explicit calculation of the gluino chromo-
magnetic penguin diagram (see Figures B.1 and B.2). This calculation has been done it
the literature, see e.g. [56] [57].

B.1. The Chromomagnetic Dipole Contribution

B.1.1. Formulae

Gordon Identity

Derivation according to [89]

With incoming momentum p = i∂ and outgoing momentum p′ = −i∂, we have the follow-
ing Dirac equations:

/pψ(p,m) = mψ(p,m)

/p
′ψ(p′,m′) = −m′ψ(p′,m′)

ψ̄(p,m)/p = −mψ̄(p,m)

ψ̄(p′,m′)/p
′ = m′ψ̄(p′,m′) (B.1)

The (anti)commutator of gamma matrices is

1

2
{γµ, γν} = gµν

i

2
[γµ, γν ] = σµν

(B.2)

77



78 B. Appendix: A Supersymmetric Solution to ε′K/εK

which gives

γµγν =
1

2
{γµ, γν}+

1

2
[γµ, γν ]

= gµν − iσµν

gµν = γµγν + iσµν

gµν = γνγµ − iσµν

(B.3)

where in the last line, the symmetry of the metric and the antisymmetry of the sigma
tensor has been used. Using the last two lines of equation (B.3), we can choose to write
any momenta in the following form

pµ = pνg
µν = pν(γµγν + iσµν)

pµ′ = p′νg
µν = p′ν(γνγµ − iσµν)

(B.4)

adding these two lines, we have

(pµ + pµ′) = γµ/p+ /p
′γµ + iσµν(pν − p

′
ν) (B.5)

Equation (B.5) does not make any assumptions about the momenta, nor has the Dirac
equation been used so far, this is just a general Identity.

To obtain the Gordon Identity, we sandwich the result between the two spinors u(p,m)
and γ5ū(p′,m′) and obtain

(pµ + pµ′)ū(p′,m′)γ5u(p,m) = ū(p′,m′)
[
γµ/p+ /p

′γµ + iσµν(pν − p
′
ν)
]
γ5u(p,m) (B.6)

Now we use the fact, that we want p to be an incoming momentum and p′ to be an out-
going one, namely use the Dirac equations (B.1). Remember the anticommuting relation
{γ5, γ

µ}, we get (suppressing the arguments of the spinors)

(pµ + pµ′)ūγ5u = −m · ūγµγ5u+m′ · ūγµγ5u+ (pν − p
′
ν)iūσµνγ5u (B.7)

rearranging this expression, we obtain the Gordon Identity with γ5

ū
[
(pµ + pµ′)− iσµν(pν − p

′
ν)
]
γ5u = ūγµγ5u · (m

′ −m) (B.8)

78



B.1. The Chromomagnetic Dipole Contribution 79

where ū = ū(p′,m′) and u = u(p,m) with p incoming and p′ outgoing.

Looking at the momentum flow through the diagrams, we have s̄(p) and d(p− q) and thus
the Gordon Identity becomes

(2p− q)µs̄γ5d = is̄σµνγ5dqν + s̄γµγ5d · (ms −md) (B.9)

Colour

T aαβfabcT
b
βγ = i

3

2
T cαγ (B.10)

Field Strength Tensor

Gαβ = ∂αAβ − ∂βAα ± ig3

[
Aα, Aβ

]
(B.11)

is through colour algebra, Aµ = T aAaµ and Gµν = T aGaµν equivalent to

Gaαβ = ∂αA
a
β − ∂βA

a
α ∓ g3f

abcAbαA
c
β (B.12)

NB: the non-abelian term comes from the sg → dg penguin diagram

Squark Vertex Mixing

ZIiD = ΓiIDL

Z
(I+3)i
D = ΓiIDR

ZIiU = ΓiI∗UL

Z
(I+3)i
U = ΓiI∗UR (B.13)
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B.1.2. Diagram 1: Gluon Attached to the Gluino Line

s d

g

q̃

g̃g̃

Figure B.1.: The gluino gluon chromomagnetic penguin, gluon attached to the gluino line.

Feynman Rules

Using Feynman rules [52] on the diagram and denoting the vertex mixing matrices by [54]

ZIiD = ΓiIDL and Z
(I+3)i
D = ΓiIDR (B.14)

we obtain

iM =s̄α

[
ig3

√
2T aαβ

(
−ΓI2∗DLPR + ΓI2∗DRPL

)]
(
i
(−1)γλ(p+ k)λ +mg̃

(p+ k)2 −m2
g̃

)
(−g3fabcγ

µ)

(
i
(−1)γε(p− q + k)ε +mg̃

(p− q + k)2 −m2
g̃

)
[
ig3

√
2T bβγ

(
−ΓI1DLPL + ΓI1DRPR

)]
dγ

(
i

1

k2 −md̃I

)
ε∗cµ (q) (B.15)

rearranging this expression a bit while taking only the Dirac structure with two γ-matrices
and discarding the rest, we obtain

iM = (−1)2i52g3
3 · T

a
αβfabcT

b
βγ · ε

∗c
µ (q)

(
D

(1),λµ
V I

(1)
V,λ +D

(2),µε
V I

(2)
V,ε

)
(B.16)

with Integrals I
(i)
V,α and fermion chains D

(i),α
V
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Dirac Structure

The Dirac structure is in both cases given by

D
(i),αβ
V = s̄α

(
−ΓI2∗DLPR + ΓI2∗DRPL

)
γαγβ

(
−ΓI1DLPL + ΓI1DRPR

)
dγmg̃ (B.17)

where γαγβ = γλγµ for D
(1),λ
V and γαγβ = γµγε for D

(2),ε
V

This can be simplified [90] to

D
(i),αβ
V = −1

2
mg̃

[
Γ+s̄αγ

αγβdγ + Γ−s̄αγ
αγβγ5dγ

]
(B.18)

with

(
ΓI2∗DLΓI1DR ± ΓI2∗DRΓI1DL

)
=: Γ± (B.19)

Integrals: Expansion in small momenta

We use the following Taylor expansion

1

(p+ k)2 −m2 =
1

k2 −m2 − 2
k · p

(k2 −m2)2 +O(p2) (B.20)

the first denominator turns into

Iλ =
(p+ k)λ

(p+ k)2 −m2
g̃

1

(p− q + k)2 −m2
g̃

1

k2 −m2
d̃

= (p+ k)λ
[

1

k2 −m2
g̃

− 2
k · p

(k2 −m2
g̃)

2

][
1

k2 −m2
g̃

− 2
k · (p− q)
(k2 −m2

g̃)
2

]
1

k2 −m2
d̃

+O(p2)

=
(p+ k)λ

(k2 −m2
g̃)

2(k2 −m2
d̃)
− 2

kλ (k · p+ k · (p− q))
(k2 −m2

g̃)
3(k2 −m2

d̃)

=
kλ

(k2 −m2
g̃)

2(k2 −m2
d̃)

+ pλ
1

(k2 −m2
g̃)

2(k2 −m2
d̃)
− (4p− 2q)ρ

kλkρ

(k2 −m2
g̃)

3(k2 −m2
d̃)

(B.21)

Integrating over k gives
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82 B. Appendix: A Supersymmetric Solution to ε′K/εK

Iλ = pλC0 − 2(2p− q)ρD
λρ
0

= pλC0 − 2(2p− q)ρg
λρD0,T

= pλC0 − 2(2p− q)λD0,T (B.22)

where the arguments of the C and D Passarino-Veltman functions [91] are C0(mg̃,mg̃,md̃)
and D0,T (mg̃,mg̃,mg̃,md̃).
We proceed analogously for the second denominator

Iε =
(p− q + k)ε

(p+ k)2 −m2
g̃

1

(p− q + k)2 −m2
g̃

1

k2 −m2
d̃

= (p− q + k)ε
[

1

k2 −m2
g̃

− 2
k · p

(k2 −m2
g̃)

2

][
1

k2 −m2
g̃

− 2
k · (p− q)
(k2 −m2

g̃)
2

]
1

k2 −m2
d̃

+O(p2)

=
(p− q + k)ε

(k2 −m2
g̃)

2(k2 −m2
d̃)
− 2

kε (k · p+ k · (p− q))
(k2 −m2

g̃)
3(k2 −m2

d̃)

=
kε

(k2 −m2
g̃)

2(k2 −m2
d̃)

+ (p− q)ε 1

(k2 −m2
g̃)

2(k2 −m2
d̃)
− (4p− 2q)ρ

kεkρ

(k2 −m2
g̃)

3(k2 −m2
d̃)

(B.23)

Integrating over k gives

Iε = (p− q)εC0 − 2(2p− q)ρD
ερ
0

= (p− q)εC0 − 2(2p− q)ρg
ερD0,T

= (p− q)εC0 − 2(2p− q)εD0,T (B.24)

Combining Dirac Structure and Integral Solutions

We take only the axial part of the Dirac structure and rename the summation index ε→ λ.
The piece proportional to D0,T is

D
(1),λµ
V I

(1)
V,λ +D

(2),µε
V I

(2)
V,ε = −2(2p− q)λD0,T

(
−1

2
mg̃Γ

−s̄αγ
λγµγ5dγ

)
− 2(2p− q)λD0,T

(
−1

2
mg̃Γ

−s̄αγ
µγλγ5dγ

)

= mg̃(2p− q)λD0,TΓ−

s̄α (γλγµ + γµγλ
)

︸ ︷︷ ︸
2g
λµ

γ5dγ


= 2mg̃(2p− q)

µD0,TΓ−s̄αγ5dγ (B.25)
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B.1. The Chromomagnetic Dipole Contribution 83

The Integral function is given by

D0,T (mg̃,mg̃,mg̃,md̃) =
i

16π2

(
−1

8

)
1

m2
d̃

3− 4x+ x2 + 2 log x

(x− 1)3︸ ︷︷ ︸
2F3[x]

=
i

16π2

(
−1

4

)
1

m2
d̃

F3[x] (B.26)

The piece proportional to C0 is

D
(1),λµ
V I

(1)
V,λ +D

(2),µε
V I

(2)
V,ε = (p− q)λC0

(
−1

2
mg̃Γ

−s̄αγ
µγλγ5dγ

)
+ pλC0

(
−1

2
mg̃Γ

−s̄αγ
λγµγ5dγ

)
= −1

2
mg̃Γ

−C0

[
(p− q)λs̄αγ

µγλγ5dγ + pλs̄αγ
λγµγ5dγ

]
(B.27)

We use the relation γµγν = gµν − iσµν and exploit the antisymmetry of σµν

= −1

2
mg̃Γ

−C0

[
(p− q)λs̄αg

µλγ5dγ − i(p− q)
λs̄ασ

µλγ5dγ

+pλs̄αg
λµγ5dγ − ip

λs̄ασ
λµγ5dγ

]
= −1

2
mg̃Γ

−C0

[
(p− q)µs̄αγ5dγ + pµs̄αγ5dγ

−i(p− q)λs̄ασ
µλγ5dγ + ipλs̄ασ

µλγ5dγ

]
= −1

2
mg̃Γ

−C0

[
(2p− q)µs̄αγ5dγ + iqλs̄ασ

µλγ5dγ

]
(B.28)

Using the Gordon Identity in reverse on the second part, we obtain

−mg̃Γ
−C0(2p− q)µs̄αγ5dγ (B.29)

(We omitted the i

16π
2 factor so far for readability)

The whole expression for the integral and Dirac structure combined is then
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84 B. Appendix: A Supersymmetric Solution to ε′K/εK

D
(1),λµ
V I

(1)
V,λ +D

(2),µε
V I

(2)
V,ε =− 1

2

i

16π2mg̃Γ
−[

(2p− q)µ 1

m2
d̃

F3[x]s̄αγ5dγ + 2C0(2p− q)µs̄αγ5dγ

]
(B.30)

We find that C0(m,m,M) can be expressed as

C0(m,m,M) = 1/M2(−F4[x]− F3[x]) (B.31)

with x = m
2

M
2 , this leads to

D
(1),λµ
V I

(1)
V,λ +D

(2),µε
V I

(2)
V,ε = −1

2

i

16π2mg̃Γ
−
[

(2p− q)µ 1

m2
d̃

(F3[x]− 2F3[x]− 2F4[x]) s̄αγ5dγ

]
(B.32)

Rearranging these terms a little, the final expression is

D
(1),λµ
V I

(1)
V,λ +D

(2),µε
V I

(2)
V,ε =

1

2

i

16π2

mg̃

m2
d̃

Γ−(2p− q)µs̄αγ5dγ
[
F3[x] + 2F4[x]

]
(B.33)

The F4[x] piece is cancelled by the self energy diagrams and thus we can discard it in the
following steps.

Putting the pieces together

The matrix element is given by

iM = (−1)2i52g3
3 · T

a
αβfabcT

b
βγ · ε

∗c
µ (q)

(
1

2

i

16π2mg̃Γ
−(2p− q)µ 1

m2
d̃

F3[x]s̄αγ5dγ

)
(B.34)

The color factor is given by

T aαβfabcT
b
βγ = i

3

2
T cαγ (B.35)

Next, we use the Gordon-Identity (Equation (B.9)) to substitute

(2p− q)µs̄γ5d = is̄σµνγ5dqν + s̄γµγ5d · (ms −md) (B.36)
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B.1. The Chromomagnetic Dipole Contribution 85

To obtain the appropriate form for the operator, we also revert the Feynman rules for the
polarization vector and the (outgoing) momentum q

qν → −i∂ν ε∗cµ (q)→ Acµ (B.37)

We also use g2
3 = αs4π. Now plugging all this in, we get

iM = (−1)2i52g3αs4π · i
3

2
T cαγ ·A

c
µ

(
1

2

i

16π2mg̃Γ
− 1

m2
d̃

F3[x] (is̄σµνγ5d (−i∂ν))

)

= (−1)3i96g3αsπ · T
c
αγ ·

(
1

16π2mg̃Γ
− 1

m2
d̃

F3[x]s̄σµνγ5d∂νA
c
µ

)
(B.38)

We obtain the gluon field strength tensor by

σµν∂νA
c
µ = −σνµ∂νA

c
µ

= −σµν∂µA
c
ν

= −1

2
σµν

(
∂µA

c
ν − ∂νA

c
µ

)
= −1

2
σµνGcµν (B.39)

Where we used the antisymmetry of σµν and renamed the summation indices. The field
strength tensor then arises when we include the non-abelian part coming from the (sg →
dg) penguin.

Inserting this into the matrix element, we obtain

iM = (−1)4i93g3αsπ · T
c
αγ ·

(
1

16π2mg̃Γ
− 1

m2
d̃

F3[x]s̄σµνγ5dG
c
µν

)
(B.40)

Rearranging the terms, we can identify the chromomagnetic operator Q−g [92]

iM = −i3αsπΓ−
(
− g3

16π2 s̄σ
µνγ5T

cdGcµν

)
︸ ︷︷ ︸

Q
−
g

mg̃

m2
d̃

F3[x] (B.41)

With H = −M, the final result for this diagram is
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H = 3αsπ
(

ΓI2∗DLΓI1DR − ΓI2∗DRΓI1DL

) mg̃

m2
d̃

F3[x]Q−g (B.42)

Therefore, the contribution to the Wilson Coefficient is

C−g = 3αsπ
(

ΓI2∗DLΓI1DR − ΓI2∗DRΓI1DL

) mg̃

m2
d̃

F3[x] (B.43)
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B.1. The Chromomagnetic Dipole Contribution 87

B.1.3. Diagram 2: Gluon Attached to the Squark Line

s d

g

g̃

q̃q̃

Figure B.2.: The gluino gluon chromomagnetic penguin, gluon attached to the squark line.

Feynman Rules

Like with the first diagram, we use Feynman rules [52] on the diagram with the Γ notation
for the vertex mixing matrices [54]

ZIiD = ΓiIDL and Z
(I+3)i
D = ΓiIDR (B.44)

This gives us

iM =s̄α

[
ig3

√
2T aαβ

(
−ΓI2∗DLPR + ΓI2∗DRPL

)]
(
i
γλkλ +mg̃

k2 −m2
g̃

δab

)[
ig3

√
2T bδγ

(
−ΓI1DLPL + ΓI1DRPR

)]
dγ(

i
1

(p+ k)2 −m2
d̃I

)(
i

1

(p− q + k)2 −m2
d̃I

)[
−ig3(2p− q + 2k)µT cβδ

]
ε∗cµ (q) (B.45)

Rearranging this expression a bit while taking only the scalar Dirac structure and discard-
ing the rest, we obtain

iM = (−1)i62g3
3 · T

a
αβT

c
βδT

a
δγ · ε

∗c
µ (q) ·DSI

µ
S (B.46)

with Integral IµS and fermion chain DS
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88 B. Appendix: A Supersymmetric Solution to ε′K/εK

Dirac Structure

The Dirac structure is given by

DS = s̄α

(
−ΓI2∗DLPR + ΓI2∗DRPL

)(
−ΓI1DLPL + ΓI1DRPR

)
dγmg̃

= s̄α

(
−ΓI2∗DLΓI1DRPR − ΓI2∗DRΓI1DLPL

)
dγmg̃

= −mg̃

[
ΓI2∗DLΓI1DRs̄αPRdγ + ΓI2∗DRΓI1DLs̄αPLdγ

]
= −1

2
mg̃

[
ΓI2∗DLΓI1DRs̄α(1 + γ5)dγ + ΓI2∗DRΓI1DLs̄α(1− γ5)dγ

]

= −1

2
mg̃

(ΓI2∗DLΓI1DR + ΓI2∗DRΓI1DL

)
︸ ︷︷ ︸

Γ
+

s̄αdγ +
(

ΓI2∗DLΓI1DR − ΓI2∗DRΓI1DL

)
︸ ︷︷ ︸

Γ
−

s̄αγ5dγ


= −1

2
mg̃

[
Γ+s̄αdγ + Γ−s̄αγ5dγ

]
(B.47)

where only the axial part contributes to the chromomagnetic operator and we can therefore
discard the first term

Integral

The Integral is given by

IµS =

∫
d4k

(2π)4

(2p− q + 2k)µ

k2 −m2
g̃

1

(p+ k)2 −m2
d̃

1

(p− q + k)2 −m2
d̃

(B.48)

Expanding the denominators in small momenta (which is the same as in diagram one but
with the gluino mass and the squark mass interchanged), we get

IµS =

∫
d4k

(2π)4

(2p− q + 2k)µ

(k2 −m2
d̃I

)2

1

k2 −m2
g̃

− 2

∫
d4k

(2π)4

kλ(2p− q)λ

(k2 −m2
d̃I

)3

(2p− q + 2k)µ

k2 −m2
g̃

+O(p2)

= (2p− q)µ
∫

d4k

(2π)4

1

(k2 −m2
d̃I

)2

1

k2 −m2
g̃︸ ︷︷ ︸

= i

16π
2C0(md̃I

,md̃I
,mg̃)

+2

∫
d4k

(2π)4

kµ

(k2 −m2
d̃I

)2

1

k2 −m2
g̃︸ ︷︷ ︸

→0 because of symmetry

− 2(2p− q)λ(2p− q)µ
∫

d4k

(2π)4

kλ

(k2 −m2
d̃I

)2

1

k2 −m2
g̃︸ ︷︷ ︸

→0 because of symmetry

−4(2p− q)λ
∫

d4k

(2π)4

kλkµ

(k2 −m2
d̃I

)2

1

k2 −m2
g̃︸ ︷︷ ︸

= i

16π
2D

λµ
0 (md̃I

,md̃I
,md̃I

,mg̃)

=
i

16π2 (2p− q)µ
(
C0(md̃I

,md̃I
,mg̃)− 4D0,T (md̃I

,md̃I
,md̃I

,mg̃)
)

(B.49)
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where we defined D0,T by

Dλµ
0 (md̃I

,md̃I
,md̃I

,mg̃) = gλµD0,T (md̃I
,md̃I

,md̃I
,mg̃) (B.50)

These integral functions are given by

C0(md̃I
,md̃I

,mg̃) =
1

m2
d̃I

−1 + x− x log x

(1− x)2

D0,T (md̃I
,md̃I

,md̃I
,mg̃) =

1

8

1

m2
d̃I

1− 4x+ 3x2 − 2x2 log x

(x− 1)3 (B.51)

with

x =
m2
g̃

m2
d̃I

(B.52)

The difference appearing in the full expression is then

C0(md̃I
,md̃I

,mg̃)− 4D0,T (md̃I
,md̃I

,md̃I
,mg̃) = − 1

m2
d̃I

x2 − 1− 2x log x

2(x− 1)3︸ ︷︷ ︸
F4[x]

(B.53)

Putting the pieces together, we obtain the final expression for the integral

IµS = − 1

m2
d̃I

i

16π2 (2p− q)µF4[x] (B.54)

with the integral function

F4[x] =
x2 − 1− 2x log x

2(x− 1)3 (B.55)

Putting the pieces together

The matrix element is given by

iM = (−1)i62g3
3 · T

a
αβT

c
βδT

a
δγ · ε

∗c
µ (q) ·

(
−1

2
mg̃Γ

−s̄αγ5dγ

)(
− 1

m2
d̃I

i

16π2 (2p− q)µF4[x]

)
(B.56)
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The color factor is given by

T aαβT
c
βδT

a
δγ =

(
1

2
δαγδδβ −

1

6
δαβδδγ

)
T cβδ =

1

2
δαγT

c
ββ −

1

6
T cαγ (B.57)

The first part vanishes because SU(N) generators are traceless.

Next, we use the Gordon-Identity (Equation (B.9)) to substitute

(2p− q)µs̄γ5d = is̄σµνγ5dqν + s̄γµγ5d · (ms −md) (B.58)

To obtain the form of the chromomagnetic operator, we also revert the Feynman rules for
the polarization vector and the (outgoing) momentum q

qν → −i∂ν ε∗cµ (q)→ Acµ (B.59)

We also use g2
3 = αs4π. Now plugging all this in and rearranging the terms, the matrix

elements becomes

iM = (−1)i62g3
3 ·
(
−1

6
T cαγ

)
·Acµ ·

(
−1

2
mg̃Γ

−is̄ασ
µνγ5dγ (−i∂ν)

)(
− 1

m2
d̃I

i

16π2F4[x]

)

iM = (−1)5i9
2

3
αsπΓ− ·

(
g3

16π2 s̄ασ
µνγ5T

c
αγdγ∂νA

c
µ

)(
mg̃

m2
d̃I

F4[x]

)
(B.60)

Now we exploit the antisymmetry of σµν in the following way

σµν∂νA
c
µ =

1

2

(
σµν∂νA

c
µ + σνµ∂µA

c
ν

)
=

1

2

(
σµν∂νA

c
µ − σ

µν∂µA
c
ν

)
=

1

2
σµν

(
∂νA

c
µ − ∂µA

c
ν

)
= −1

2
σµν

(
∂µA

c
ν − ∂νA

c
µ

)
(B.61)

With the non-abelian term coming from the sg → dg penguin, we can identify the gluon
field strength tensor

∂µA
c
ν − ∂νA

c
µ → Gcµν (B.62)

The matrix element becomes
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iM = (−1)6i9
1

3
αsπΓ− ·

(
g3

16π2 s̄ασ
µνγ5T

c
αγdγG

c
µν

)(
mg̃

m2
d̃I

F4[x]

)
(B.63)

Putting the squark mixing terms explicitly back in, taking away the i and suppressing
fundamental color indices, with M = −H we find

H =
1

3
αsπ

(
ΓI2∗DLΓI1DR − ΓI2∗DRΓI1DL

) mg̃

m2
d̃I

F4[x]

(
− g3

16π2 s̄σ
µνγ5T

cdGcµν

)
︸ ︷︷ ︸

Q
−
g

(B.64)

and thereby the contribution from this diagram is given by

C−g =
1

3
αsπ

(
ΓI2∗DLΓI1DR − ΓI2∗DRΓI1DL

) mg̃

m2
d̃I

F4[x] (B.65)

B.1.4. Final Result

Putting the contributions from both diagrams together, see Equations (B.43) and (B.65),
the final result for the Wilson coefficient of the chromomagnetic operator is given by

C−g =
αsπ

3

(
ΓI2∗DLΓI1DR − ΓI2∗DRΓI1DL

) mg̃

m2
d̃

(9F3[x] + F4[x]) (B.66)

with x = mg̃/md̃.

91





Appendix: Theoretical
Background C

C.1. Derivation of relation between the branching ratios of
KL → {π0π0, π+π−} and εK

We want to derive the relation (3.28), that is relate the sum

BR
(
KL → π+π−

)
+ BR

(
KL → π0π0

)
6= 0 (C.1)

which is an intuitive measure of CP violation to the ηs and εK . These quantities are
central observables in the phenomenology of Kaon CP violation, as discussed in Section
3.2.2.

The experimentally measured branching ratios for KL and KS to ππ final states are [29]

KL → π+π− ≈ (1.967± 0.010)× 10−3

KL → π0π0 ≈ (0.864± 0.006)× 10−3

KS → π+π− ≈ (0.6920± 0.0005)

KS → π0π0 ≈ (0.3069± 0.0005) (C.2)

We observe two things: the ratio decaying to two charged Pions versus two neutral Pions
is nearly the same for KL and KS

BR
(
KL → π+π−

)
BR

(
KL → π0π0

) ≈ BR
(
KS → π+π−

)
BR

(
KS → π0π0

) ≈ 7

3
(C.3)

and next to all KS decay into ππ

BR
(
KS → π+π−

)
+ BR

(
KS → π0π0

)
≈ 1 (C.4)
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we can use these two approximations to express the sum of the KL to ππ branching ratios
(3.27) only in decays to π0π0. We could also choose π+π− instead, but this will yield the
same result. The approximations we made so far levelled the difference between η00 and
η+−, which is fulfilled to good accuracy.

BR
(
KL → π+π−

)
+ BR

(
KL → π0π0

)
=

BR
(
KL → π0π0

)
BR

(
KS → π0π0

) · BR
(
KS → π+π−

)
+ BR

(
KL → π0π0

)

=
BR

(
KL → π0π0

)
BR

(
KS → π0π0

) · (1− BR
(
KS → π0π0

))
+ BR

(
KL → π0π0

)

=
BR

(
KL → π0π0

)
BR

(
KS → π0π0

) (C.5)

The ratio of the total decay width of KL and KS is just the ratio of their lifetimes
Γ(
∑
f KL→f)

Γ(
∑
f KS→f)

= τS
τL

. It follows for the branching ratio

BR
(
KL → π0π0

)
BR

(
KS → π0π0

) =
Γ
(
KL → π0π0

)
/Γ
(∑

f KL → f
)

Γ
(
KS → π0π0

)
/Γ
(∑

f KS → f
) =

τL
τS
·

Γ
(
KL → π0π0

)
Γ
(
KS → π0π0

) (C.6)

We noted before, that KS and KL have nearly equal masses and when decaying to the
same final state, all integration constants in the computation of the decay rate are equal
so only the matrix element remains to be calculated. Everything cancels in the ratio and
we remain with

Γ
(
KL → π0π0

)
Γ
(
KS → π0π0

) =
|〈π0π0|H|KL〉|

2

|〈π0π0|H|KS〉|
2 (C.7)

we define the ratios of these amplitudes as η

η00 =
〈π0π0|H|KL〉
〈π0π0|H|KS〉

η+− =
〈π+π−|H|KL〉
〈π+π−|H|KS〉

(C.8)

Remember from Section 3.2.2, that |εK | ≈ |η00| ≈ |η+−|. So in the end we have produced
Equation (3.28)
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0π0, π+π−} and εK95

BR
(
KL → π+π−

)
+ BR

(
KL → π0π0

)
≈ τL/τS · |εK |

2

we could have done the same line of arguments with η+− but since we have neglected
the difference between the charged and neutral Pion final states in Equation (C.3), by
assumption η+− = η00.

From the measurements [29]

BR
(
KL → π+π−

)
= (1.967± 0.010)× 10−3

BR
(
KL → π0π0

)
= (0.864± 0.006)× 10−3 (C.9)

we get

BR
(
KL → π+π−

)
+ BR

(
KL → π0π0

)
≈ 2.831× 10−3 (C.10)

with [29]

τL = 5.116× 10−8 τS = 8.954× 10−11 (C.11)

we have τL/τS ≈ 571. The formula predicts |εK | ≈ |η00| ≈ |η+−| ≈ 2.226× 10−3.

Measurements give [29]

|η00| = (2.220± 0.011)× 10−3 |η+−| = (2.232± 0.011)× 10−3 (C.12)

|εK | = (2.228± 0.011)× 10−3 (C.13)

The essential information we were after is Equation (3.28)

|εK | ≈ |η00| ≈ |η+−| ≈
√
τS/τL ·

√
BR

(
KL → π+π−

)
+ BR

(
KL → π0π0

)
(C.14)

which relates the ηs to the CP violating branching ratios and is accurate to < 1%.
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C.2. Explicit calculation of ηf in terms of observables

In this section we will expand on Reference [78] and show how they manage to express

ηf =
〈f |Heff |KL〉
〈f |Heff |KS〉

=
1− qg/ph
1 + qg/ph

(C.15)

by phase convention independent quantitites, cf. Equation (3.39). First we define the
shorthand r := qg/ph so that

ηf =
1− r
1 + r

=
1− Re r − i Im r

1 + Re r + i Im r
(C.16)

we expand to make the denominator real

ηf =
1− Re r − i Im r

1 + Re r + i Im r
· 1 + Re r − i Im r

1 + Re r − i Im r
=

1− |r|2 − 2i Im r

1 + 2 Re r + |r|2
(C.17)

now we split |r|2 = |q/p|2 · |g/h|2 and use the hint given in [78] to use the algebraic relation
(1± ab) = 1/2 [(1 + a)(1± b) + (1− a)(1∓ b)] for a = |q/p|2 and b = |g/h|2

ηf =
1− |r|2 − 2i Im r

1 + 2 Re r + |r|2

=
(1 + |q/p|2)(1− |g/h|2) + (1− |q/p|2)(1 + |g/h|2)− 4i Im r

(1 + |q/p|2)(1 + |g/h|2) + (1− |q/p|2)(1− |g/h|2)− 4 Re r
(C.18)

Expanding by (1 + |q/p|2)(1 + |g/h|2)

ηf =

(
(1+|q/p|2)(1−|g/h|2)

(1+|q/p|2)(1+|g/h|2)

)
+
(

(1−|q/p|2)(1+|g/h|2)

(1+|q/p|2)(1+|g/h|2)

)
+
(

−4i Im r

(1+|q/p|2)(1+|g/h|2)

)
(

(1+|q/p|2)(1+|g/h|2)

(1+|q/p|2)(1+|g/h|2)

)
+
(

(1−|q/p|2)(1−|g/h|2)

(1+|q/p|2)(1+|g/h|2)

)
+
(

−4 Re r

(1+|q/p|2)(1+|g/h|2)

)
=

(1−|g/h|2)

(1+|g/h|2)
+ (1−|q/p|2)

(1+|q/p|2)
+ −4i Im r

(1+|q/p|2)(1+|g/h|2)

1 + (1−|q/p|2)(1−|g/h|2)

(1+|q/p|2)(1+|g/h|2)
+ −4 Re r

(1+|q/p|2)(1+|g/h|2)

(C.19)

and thereby we found with the definitions given in Equation (3.39) the result of [78]

ηf =
aε̃′f

+ aε̃ + iaε̃+ε̃′f
2 + aε̃aε̃′f

+ aε̃ε̃′f
(C.20)
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C.3. Relating ε̃′+− and ε̃′00

In this section, we derive the relation between ε̃′+− and ε̃′00. To this end, we use the
following notation

ω̃ =
〈(ππ)2|Heff |KCP+〉
〈(ππ)0|Heff |KCP+〉

= ei(δ2−δ0) · Re a2

Re a0

ε̃′0 =
〈(ππ)0|Heff |KCP−〉
〈(ππ)0|Heff |KCP+〉

= i
Im a0

Re a0

ε̃′2 =
〈(ππ)2|Heff |KCP−〉
〈(ππ)2|Heff |KCP+〉

= i
Im a2

Re a2

ε̃′+− =
〈π+π−|Heff |KCP−〉
〈π+π−|Heff |KCP+〉

=
ε̃′0 + ε̃′2ω̃/

√
2

1 + ω̃/
√

2

ε̃′00 =
〈π0π0|Heff |KCP−〉
〈π0π0|Heff |KCP+〉

=
ε̃′0 − ε̃

′
2

√
2ω̃

1−
√

2ω̃
(C.21)

together with the mixing parameter ε̃ which parametrizes the admixture of the ’wrong’ CP
state in the KL and KS states. We work in the physical phase conventions, such that the
phase dependence of ε̃ is given by εK = ε̃+ ε̃′0, with the above definitions. The convention
independent quantities which we want to derive carry the same labels but without a tilde.

From Equation (3.40), we have the following relations between convention dependent and
independent quantities. For the real parts, we have

Re ε̃ = Re εK

Re ε̃′+− = Re ε′+−

Re ε̃′00 = Re ε′00 (C.22)

From these we could directly derive the CPT relation of [69] between the real parts by ex-
plicitly calculating the real part of the convention dependent quantities. For the imaginary
parts, cf. Equation (3.40), we have

Im ε̃′+− + Im ε̃ = Im ε′+− + εK

Im ε̃′00 + Im ε̃ = Im ε′00 + εK (C.23)

Using, that the phase convention dependence of ε̃ within the class of physical phase con-
ventions is given by εK = ε̃+ ε̃′0, we find that
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98 C. Appendix: Theoretical Background

Im ε′+− = Im ε̃′+− − Im ε̃′0

Im ε′00 = Im ε̃′00 − Im ε̃′0 (C.24)

From Equation (C.21), we see that ε̃′0 is purely imaginary, thus we can summarize the
Conditions (C.22) and (C.24) by

ε′+− = ε̃′+− − ε̃′0

ε′00 = ε̃′00 − ε̃′0 (C.25)

The appearance of ε̃′0 in the imaginary parts forces the relation between the imaginary
parts of ε′+− and ε′00 to be different than that of the real parts. The explicit expressions
are

ε′+− = ε̃′+− − ε̃′0

=
ε̃′0 + ε̃′2ω̃/

√
2

1 + ω̃/
√

2
− ε̃′0

=
1√
2
ω̃
(
ε̃′2 − ε̃

′
0

) 1

1 + ω̃/
√

2
(C.26)

and

ε′00 = ε̃′00 − ε̃′0

=
ε̃′0 − ε̃

′
2

√
2ω̃

1−
√

2ω̃
− ε̃′0

= −2
1√
2
ω̃
(
ε̃′2 − ε̃

′
0

) 1

1−
√

2ω̃
(C.27)

Which is constructed to be convention independent, hence
(
ε̃′2 − ε̃

′
0

)
has to be convention

independent. We identify

ε̃′K =
1√
2
ω̃
(
ε̃′2 − ε̃

′
0

)
(C.28)

and thereby find

ε′+− = ε̃′K
1

1 + ω̃/
√

2

ε′00 = −2ε̃′K
1

1−
√

2ω̃
(C.29)
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Which gives the relation

ε′00 = −1

2

(
1−
√

2ω̃

1 + ω̃/
√

2

)
ε′+− (C.30)
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[91] Mühlleitner, Margarete. Theoretische Teilchenphysik 2. University Lecture, 2012.

[92] A. J. Buras, G. Colangelo, G. Isidori, A. Romanino, and L. Silvestrini. Connections
between epsilon-prime / epsilon and rare kaon decays in supersymmetry. Nucl. Phys.,
B566:3–32, 2000.

108

https://arxiv.org/pdf/physics/0703214.pdf
https://arxiv.org/abs/hep-ph/9507456

	An E6 Symmetric Nelson-Barr Model
	Motivation: Essentials of the BBP Study & Barr Criteria
	RG survival of the complex phase

	Field Content of our Model
	Fermion Fields
	GUT Breaking Scalar Fields
	Higgs Fields
	First Barr criterion: Complex VEVs
	Second Barr Criterion: Electroweak Symmetry Breaking
	Mass Matrices

	Quark Sector
	Lepton Sector
	Lepton Doublets
	Neutrino Sector

	Results
	Fitting the Standard Model Observables
	Predictions
	Summary and Conclusion


	A Supersymmetric Solution to epsilon prime/epsilon
	Motivation: Recent Lattice Results
	New Physics in epsilon prime
	Epsilon prime in the MSSM
	Explicit Calculation of the Gluino Box Diagram

	Results
	A word on the status of Vcb

	Theoretical Background
	Theory of Weak CP Violation
	The CKM matrix
	The PMNS matrix

	Phenomenology of Weak CP Violation in the Kaon System
	Qualitative discussion
	Constructing Observables - eta00 and eta+-
	Mixing Formalism - epsilon
	Decay Formalism - epsilon prime
	The Ratio epsilon prime / epsilon
	Isospin Amplitudes
	Delta I = 1/2 rule: Omega
	Isospin expressions for eta+-, eta00, epsilon and epsilon prime
	Final Formula for epsilon prime / epsilon
	Calculating Im a0 and Im a2


	Appendix: An E6 Symmetric Nelson-Barr Model
	Symmetry Breaking Pattern
	SM singlet scalar fields
	SM breaking scalars (Higgs fields)

	BBP formula

	Appendix: A Supersymmetric Solution to epsilon prime/epsilon
	The Chromomagnetic Dipole Contribution
	Formulae
	Diagram 1: Gluon Attached to the Gluino Line
	Diagram 2: Gluon Attached to the Squark Line
	Final Result


	Appendix: Theoretical Background
	Derivation of relation between the branching ratios of K long to pi pi and epsilon
	Explicit calculation of eta f in terms of observables
	Relating epsilontilde prime +- and epsilontilde prime 00


