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A B S T R A C T

RAFM-steels such as Eurofer are considered as structural materials for breeding blankets in future fusion power
plants (DEMO). Some of these blankets e.g. HCLL, WCLL and DCLL, use flowing Pb–15.7Li as liquid breeding
material. In these concepts, the breeding material will be in direct contact to the structural material at opera-
tional temperatures of up to 550 °C. However, bare RAFM steels suffer from strong corrosion attack with cor-
rosion rates between 100 and 400 μm under these conditions. To protect bare RAFM steels from corrosion, Al-
based coatings are considered as corrosion barriers. Different coating processes were developed in the past, with
focus on electrochemical processes within the last decade. The currently most promising one is the so-called ECX
process. Based on the electrodeposition of aluminum from an ionic liquid, it produces smooth and uniform Al
enriched scales. These ECX coatings have already shown good short- to mid-term corrosion resistance in flowing
Pb–15.7Li for up to 4000 h.

In the current study, the long-term corrosion behavior of aluminum-based coatings on Eurofer made by ECX
process was investigated. Exposure times of up to 10,000 h in flowing Pb–15.7Li were reached under fusion
relevant conditions, i.e. 550 °C and a flow velocity of 0.1m/s. In comparison to bare Eurofer the corrosion attack
is drastically reduced while corrosion rates lay below 20 μm/a. Additionally, it was found that the corrosion
behavior is also superior to the corrosion behavior of Al-based barriers produced by the ECA process after long-
term exposure in Pb–15.7Li.

1. Introduction

The application of functional coatings, e.g. aluminum-based coat-
ings, is considered to show a beneficial impact on the performance of
different blanket concepts [1,2]. On one hand these coatings should
reduce the tritium permeation through the structural material, i.e. low
activation ferritic martensitic steels (RAFM steels), and on the other
hand, they should reduce the occurring safety concerns resulting from
the poor corrosion behavior of RAFM steels significantly. Especially in
the case of blanket designs such as HCLL, DCLL and WCLL, that use the
liquid metal alloy lead-lithium (Pb–15.7Li) as breeding material, RAFM
steels are supposed to be in direct contact with flowing Pb–15.7Li at
demanding operation temperatures of up to 550 °C [3,4]. Under these
conditions several corrosion studies revealed high corrosion rates for a
variety of RAFM steels e.g. Eurofer, MANET, F82H-mod., and CLAM in
the past [5–7]. In flowing Pb–15.7Li high corrosion rates between
80 μm per year and 400 μm per year were reported depending on flow
velocity and testing temperature [5,8,9]. Besides safety concerns
coming from the degradation of the structural material, risks and

operation instabilities may arise due to the occurrence of high amounts
of corrosion products that in turn could lead to the formation of pre-
cipitates. As a consequence, tubes and channels could be plugged inside
a blanket system [10].

To reduce these corrosion related effects, aluminum-based coatings
were identified to be able to protect RAFM steels from corrosion in
Pb–15.7Li [11,12]. In 2002, Glasbrenner et al. already showed the
potential of aluminum-based coatings produced by hot dip aluminiza-
tion (HDA) with a subsequent heat treatment, to protect coated RAFM
steels such as MANET and Eurofer from corrosion in flowing Pb–15.7Li
[13]. However, the HDA process showed some disadvantages e.g. a
relatively high thickness of the coatings (low activation criterion).

To fabricate thinner and more homogeneous aluminum-based
coatings, two electrochemical processes have been developed during
the last years [14]. The so called ECA is based on the electrodeposition
of aluminum from volatile, flammable organic solvents. Long-term
corrosion tests in flowing Pb–15.7Li revealed that these thinner coat-
ings are able to protect Eurofer from corrosion for up to 12,000 h at
550 °C and a flow velocity of 0.1 m/s [15]. However, despite of the
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sufficient ability to protect the underlying steel, coatings made by the
ECA process showed some inhomogeneous corrosion attack of the
coating itself [15]. Besides this, the variation of process parameters of
the ECA process is limited and safety restrictions are challenging due to
the high reactivity of the chemicals and aluminum compounds used in
this process [16].

Therefore, a second electrochemical process, i.e. the ECX process,
was developed. This process is based on the electrodeposition of alu-
minum from ionic liquids. Through the improved controllability of this
process, aluminum deposition rates of up to 25 μm/h could be reached.
Additionally, the uniformity and the achieved morphology of the de-
posited aluminum layer could be improved by applying pulse plating
techniques [16,17]. Coatings made by ECX process showed smooth and
fine grained surface structures that showed an improved behavior
during the mandatory heat treatment procedure compared to Al
coatings made by the ECA process [16]. During short-term corrosion
tests in flowing Pb–15.7Li aluminum-based coatings on Eurofer steel
obtained by ECX process have already proven their ability to reduce
corrosion rates drastically compared to bare Eurofer steel under fusion
relevant conditions, i.e. test temperature of 550 °C and a flow velocity
of 0.1m/s. Additionally, these coatings exhibited an improved corro-
sion behavior in comparison to ECA coated Eurofer for exposure times
of up to 4000 h [18].

In addition to this previous study, the current study presents results
for the long-term behavior in flowing Pb–15.7Li of thin aluminum-
based coatings on Eurofer fabricated by the electrochemical ECX pro-
cess with achieved exposure times of up to 10,000 h.

2. Experimental

2.1. Fabrication of Fe–Al coatings by the ECX process

The fabrication of aluminum-based coatings made by the ECX pro-
cess consists of two basic process steps: First, a pure aluminum layer is
electrodeposited from an ionic liquid (IL) on a RAFM steel substrate.
And second, a subsequent heat treatment (HT) including three different
stages is performed to form the desired protective Fe–Al scales.

2.1.1. Electrodeposition of aluminum from an ionic liquid
In this study pure aluminum layers were electrodeposited from

commercially available ionic liquid consisting of a mixture of 1-ethyl-3-
methyl-imidazolium chloride ([Emim]Cl) and AlCl3 (ratio 1:1.5). The IL
was delivered by BASF SE. The electrolyte was used without further
purification. As substrate standardized rod shaped Eurofer corrosion
test samples with a diameter of 8mm were used. The geometry was the
same as in previous corrosion test campaigns performed in PICOLO loop
[5,15,18].

The samples were carefully grinded with SiC (1000 grade) abrasive

paper. Afterwards they were electrochemically degreased and cleaned
in a sodium hydroxide-based electrolyte. Following this pretreatment,
the samples were transferred into a glove box which contained the set-
up for electrodeposition of aluminum. The electrodeposition was per-
formed in a glass beaker of approx. 300ml volume. During the elec-
trodeposition, the prepared Eurofer test samples acted as cathode and a
ring-shaped pure aluminum sheet (Puratronic 99.998%, Fa. Alfa Aesar)
as a dissolving anode. For controlling the electrochemical process, a
pure Al-wire was used as a quasi-reference electrode.

Prior to the Al deposition itself, the open circuit potential (OCP) was
measured and the sample was polarized anodically (ja= 10mA/cm²)
for 45 s in order to improve the reliability of the activation of the steel
substrate, and thus the coverage and adhesion of the applied aluminum
coating [19].

Similar to a previous study, pulse plating was used for aluminum
electrodeposition, with a current density of 40mA/cm² during the pulse
and 0mA/cm² during the off-phase of the pulse [18]. The on and off
duration was 0.5 s, respectively, and the theoretical mean current
density was 20mA/cm² accordingly. The complete deposition time was
30 min.

2.1.2. Heat treatment and characterization prior to the corrosion
experiment

The mandatory heat treatment was performed under argon atmo-
sphere in a tube furnace by applying the three-step HT procedure de-
veloped by Konys et al. [20]. In this procedure the first step is per-
formed at 640 °C for 4 h, followed by a step at 980 °C for 0.5 h and
finally a holding step at 760 °C for 1.5 h. This HT procedure was very
similar to the HT performed during fabrication of the ECX coatings used
for short-term corrosion tests in flowing Pb–15.7Li as reported in [18].
Fig. 1 depicts the appearance of coated Eurofer test samples after the
different fabrication steps.

After the final heat treatment step, diameters of the test samples
were measured with a laser scanning device described in more detail in
[18]. The obtained diameters Di served as initial values for evaluating
the corrosion rates and the material losses of exposed ECX coated
samples after long-term exposure in flowing Pb–15.7Li in PICOLO loop.

2.2. Corrosion testing in flowing Pb–15.7Li

Identical to the previously published short-term corrosion testing
campaign on ECX coatings and bare RAFM steels, the long-term testing
was conducted in the PICOLO-loop as well, that is operated at KIT.
PICOLO loop is a non-isothermal forced convection loop with a max-
imum temperature of 550 °C within the test section and a minimum
temperature of around 350 °C in the cold leg of the loop. Main com-
ponents e.g. electromagnetic pump, flow meter and the magnetic trap

Fig. 1. Fabricated corrosion test samples of Eurofer after different fabrication
steps: As coated (1), after 1st HT step (2) and after the 3rd HT step (3). Fig. 2. Appearance of a ECX coated corrosion test sample prior (1) and a long-

term exposed sample after cutting (2) prior to the metallographic preparation.
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are part of the cold leg. Within the test section, the Reynolds number is
approx. 7700 and therefore the flow is in a transition regime with
tendency to turbulent flow. The flow velocity in the test section is
0.1 m/s and the overall flow rate in side of the loop is 55 l/h. Additional
characteristics of PICOLO loop are published elsewhere e.g. construc-
tional issues in [5,21,22] and temperature, flow conditions in [23–25].

The completion of this first long lasting campaign on ECX coated
Eurofer with exposure times of up to 10,000 h allows to directly com-
pare the long-term corrosion behavior of these ECX coatings with bare
RAFM steels [5] such as Eurofer and CLAM and additionally with ECA
coated Eurofer as well [15]. For all materials mentioned, the experi-
mental set up was kept constant i.e. a temperature of 550 °C in the test
section of PICOLO and a flow velocity of Pb–15.7Li of 0.1m/s inside the
gap between the inner wall of the test section and the rod-shaped
samples. As in previous test campaigns, twelve samples were screwed
together to one stack, which was immersed into the test section of PI-
COLO loop. The test section itself was located in a glove box system
containing argon as protecting gas to avoid / reduce oxygen access to
the liquid metal. After rather long exposure times of approx. 6000 h,
6800 h, 8000 h and 10,000 h, ECX coated Eurofer samples were re-
moved from the loop for analyzing their corrosion behavior.

2.3. Characterization after exposure to Pb–15.7Li

Disks of approx. 5 mm thickness were cut from the middle part of
the exposed samples, as depicted in Fig. 2. Afterwards, metallographic
cross-sections of these discs were prepared by standard metallographic
techniques like grinding and polishing.

After polishing a thin layer of gold was sputtered onto the cross-
section to allow SEM/EDS analysis. EDS line scans were performed for
each sample at four different positions (every 90°) to evaluate the
chemical composition of the Fe–Al coating after exposure.

After the SEM investigations, the gold layer was removed by pol-
ishing and the cross sections were chemically etched to develop the
microstructure. The etching was performed in a modified solution of
Vilella´s reagent consisting of ethanol, sulfuric acid and picronitric acid
for approx. 20 s. Subsequently the etched metallographic cross sections
were evaluated by optical microscopy and SEM/EDS.

The post exposure diameter Da was determined for each prepared
cross-section by moving the sample under the microscope laterally from
one side to the other with the help of a micrometer screw (accuracy of
approx. <1–2 μm). After each measurement, the sample was turned by
15° and the diameter measurement was repeated. This procedure was
iterated 12 times until a rotation by 180° was reached and 12 diameter
values were obtained for each sample, see [18]. The difference between
the initial diameter Di and the mean diameter Da from all 12 mea-
surements represented the total material loss. In addition, the radial

material loss (in μm) was determined and a radial corrosion rate C (in
μm/a) was derived with the equation given in [18].

3. Results and discussion

3.1. Long-term corrosion behavior of ECX coated Eurofer samples

The examined cross-sections of long-term exposed ECX coated
Eurofer samples showed very good corrosion resistance against flowing
lead-lithium in all cases even after exposure times of up to 10,000 h. For
all examined cross-sections the aluminum-based scales made by ECX
process withstood the corrosive environment and protected the un-
derlying Eurofer steel from corrosion. As depicted in Fig. 3, the coatings
remained homogeneous and smooth around the rod-shaped Eurofer
substrates without local failures such as delamination, or obvious
cracks after exposure times of 6000 h and 10,000 h respectively. The
overall thickness of the Fe–Al coatings was determined to be above
50 μm in all cross-sections.

The surfaces of the long-term exposed coatings as shown in Fig. 4,
were not roughened, which is similar to ECX coatings after short ex-
posure times [18]. Even in comparison to cross-sections in the state as-
fabricated, as shown in [18], the surface appeared almost unaffected
after exposure times of up to 10,000 h. These findings differed clearly
from the appearances of cross-sections of aluminum-based coatings
fabricated by other processes like HDA and ECA. After long-term ex-
posure to flowing Pb–15.7Li, these coatings showed partly in-
homogeneous corrosion attack [15, 22].

The evaluation of the material loss by measuring the “shrinkage” of
the samples diameter as described in section 2.3, revealed radial ma-
terial losses between 1 and 14 μm for the long-term exposed samples as
depicted in Fig. 5. The picture also includes the determined radial
material losses after short-term exposure (<4000 h) as given in [18].
More or less all measured radial material losses lay within a scattering
band of around 6 μm ± 4 μm indicating on average a rather stable
corrosion behavior even during long-term exposure to flowing
Pb–15.7Li. The distribution of material loss values beyond the observed
scattering band can be traced back to slightly different surface condi-
tions prior to exposure caused by the batchwise execution of the heat
treatment, i.e. the examined samples have not been processed together
in a single heat treatment procedure.

The corresponding radial corrosion rates for the long-term exposed
samples >6000 h, also depicted in Fig. 5, varied between 1 μm/a and
17 μm/a. Even when taking the scattering of the radial material loss
values and the deviations in the calculated corrosion rates into account,
a slight decrease was observed depending on the exposure time. The
corresponding determined corrosion rates ranged between 5 and
12 μm/a after an exposure time of approx. 10,000 h, which is roughly

Fig. 3. Cross-sections of ECX coated Eurofer samples after different exposure times in flowing Pb–15.7Li (0.1m/s, 550 °C): 6026 h (left) and 10,022 h (right).
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half the values estimated after the short-term exposure [18]. This is
mainly due to the rather constant radial material loss measured at all
exposure times. A similar behavior was observed for the long-term
corrosion behavior of ECA coated Eurofer samples in flowing Pb-15.7-Li
in the past [15].

3.2. Microstructure after the long-term exposure to Pb–15.7Li

As depicted in the light microscopic images of etched cross-sections
in Fig. 4, the observed microstructures of the coatings were similar to
cross-sections after shorter exposure times (<4000 h) as published in
[18]. The large columnar grains of the Fe–Al/Fe(α) layer and the un-
derlying typical RAFM / Eurofer microstructure could be clearly iden-
tified. In SEM/EDS analyses, the observed sharp boundary between
coating and Eurofer matrix corresponded to the point when aluminum
is detectable in the EDS line scans. In principle, the average EDS line

scans that are depicted in Fig. 6 (see also Section 2.3), showed the ty-
pical slopes of decreasing aluminum concentrations in dependence on
the distance from the surface. The recorded slopes after long-term ex-
posure of ECX coatings were comparable to reported ones after short
exposure to flowing Pb–15.7Li [18]. Derived from the average EDS line
scans, the overall coating thicknesses were above 50 μm for all samples,
which corresponded to values obtained with the optical microscope.

3.3. Comparison of the long-term corrosion behavior of ECA and ECX
coated and bare Eurofer

As the applied experimental conditions i.e. test temperature 550 °C
and a flow velocity of 0.1m/s were similar to previous corrosion test
campaigns in PICOLO loop, the corrosion data can be compared to
published data for long-term corrosion experiments with ECA coated
Eurofer and bare RAFM steels such as Eurofer. Fig. 7 shows the

Fig. 4. Cross-sections of ECX coated Eurofer samples after different exposure times in flowing Pb–15.7Li (0.1m/s; 550 °C): 6026 h (left) and 10,022 h (right) at higher
magnification.

Fig. 5. Radial material loss (left) and corrosion rates (right) of ECX coated Eurofer test samples in dependence on exposure time to flowing Pb–15.7Li.

Fig. 6. Average EDS line scans of the cross-sections of ECX coated Eurofer samples after exposure times of 6026 h and 10,022 h in flowing Pb–15.7Li at 550 °C.
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corrosion rates of bare Eurofer as reported by Konys et al. [5] and ECX
coated Eurofer in dependence on exposure time. The short-term data of
the ECX coatings with exposure times up to 4000 h was previously
published in [18]. Obviously, the corrosion rates could be reduced by
applying aluminum-based coatings with the ECX process in comparison
to bare Eurofer steel tested under the same conditions. In case of
samples that underwent long-term exposure of over 6000 h the corro-
sion rates were reduced by a factor of up to 20.

When comparing the corrosion behavior of coatings made by ECA
[15] and ECX process [18, this study], differences in the corrosion
behavior could be observed. As reported by Krauss et al., ECA coatings
showed an inhomogeneous corrosion behavior of the Al-based coatings
after long-term exposure experiments in flowing Pb–15.7Li [15] and the
average corrosion rates of ECA coated Eurofer ranged from about
30 μm/a to 12.5 μm/a after approx. 6000 h and 10,000 h, respectively.
In contrast, a reduction of corrosion rate by a factor 1.5 to 3 was ob-
served for Al-based coatings made by ECX process in the current study.
This difference confirms the deviations in the corrosion rates between
coatings made by ECA and ECX process after short-term experiments
(<4000 h) as reported in [18]: Corrosion rates for ECX coatings were 2
times lower than for ECA coatings. Probably the improved surface
quality of the ECX coatings after the electrodeposition of Al and also
after the three-step heat treatment was the reason for this improvement
in the corrosion behavior [16,18].

4. Conclusion

Long-term corrosion experiments in flowing Pb–15.7Li under fusion
relevant conditions (550 °C, 0.1m/s), revealed a high corrosion re-
sistance of aluminum-based coatings made by the ECX process even for
exposure times of up to 10,000 h. The evaluated mean corrosion rates
for long-term exposed samples were about or even below 10 μm/a. This
implied a reduction in corrosion rate after long-term exposure by a
factor of up to 20 compared to bare Eurofer and even a significant re-
duction with respect to ECA coated Eurofer was determined. In

addition, the surface structure of the aluminum-based coatings fabri-
cated by ECX process remained smooth and homogeneous after the
exposure; in contrast to the inhomogeneous long-term corrosion beha-
vior of ECA coated Eurofer observed in the past.

This encouraging outcome of this study shows the potential of the
electrochemical ECX process based on the electrodeposition of alu-
minum from ionic liquids. The advantageous corrosion properties
promise a significant reduction of precipitation risks in liquid breeder
blanket systems and a reliable operation in the future.

Nevertheless, more data and research is needed not only on T/D
permeation and thermal cycling behavior of aluminum-based coatings
made by the ECX process but also on the observed scattering of the
material losses that suggest small deviations in the fabrication, pre-
sumably during the mandatory heat treatment procedure.
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