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Abstract

Extracting quantitative descriptors from computed tomography scans of fibre
reinforced polymers is essential for modelling mechanical and thermal proper-
ties. The precision of CT-scanners has been improved significantly in recent
years and thus, images with an resolution below one micro meter can be acqui-
red. Modern age computers offer the opportunity to process those large data-
sets of volumetric image data and to extract significant statistics.
The present thesis deals with the quantification of microstructural features of
fibre reinforced polymers from CT-scans. Therefore, various algorithms have
been implemented and validated in order to determine the fibre orientation,
volume fraction, curvature and length. Furthermore, two approaches for the
evaluation of surface curvature have been compared.
Results show that some of the available methods for fibre orientation analysis
are very robust and thus, also very noisy and low contrast images can be pro-
cessed with sufficient accuracy. Fibre length distributions derived from fibre
tracking algorithms lead to very good correspondence compared with conven-
tional methods at a specimen size of up to 5 mm while data from larger samples
is less reliable.
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Kurzfassung

Die quantitative Beschreibung der Mikrostruktur von Faserverbundwerkstof-
fen ist elementar für die Modellierung von thermischen und mechanischen Ei-
genschaften. Durch die stetige Entwicklung der Computertomographie ist es
heute möglich dreidimensionale Bilddaten von Werkstoffen mit einer Auflös-
ung von unter einem Mikrometer zu erzeugen. Moderne Computersysteme
bieten ausreichend Rechenleistung um die resultierenden volumetrischen Bild-
daten automatisiert auszuwerten und relevante Statistiken zu erzeugen.
Die vorliegende Arbeit befasst sich mit der Quantifizierung von mikrostruk-
turellen Merkmalen von faserverstärkten Polymeren unter Verwendung von
computertomographischen Aufnahmen. Diverse Verfahren zur Bestimmung
von lokalen Faserorientierungen, -volumengehalt, -krümmungen und -längen
wurden implementiert und validiert. Des Weiteren wurden zwei Ansätze zur
Berechnung von lokalen Oberflächenkrümmungen zur Porositätsanalyse ver-
glichen.
Die Ergebnisse zeigen, dass einige der bereits verfügbaren Orientierungsanaly-
severfahren bereits sehr robust sind und auch mit stark verrauschten Aufnah-
men mit geringem Kontrast sehr gute Resultate erzielen. Faserlängenverteil-
ungen, die mittels Fasertrackingverfahren aus computertomographischen Auf-
nahmen extrahiert wurden lieferten nur bis zu einer Probengröße von 5 mm
verlässliche Faserlängenverteilungen und sind daher nur bedingt für die An-
wendung an langfaserverstärkten Polymeren geeignet.
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Symbols and Abbreviations

Abbreviations

ANTs Advanced Normaization Tools

APL Attenuation path length

ART Algebraic reconstruction techniques

CF Carbon fibre

CoDiCo Continuous-discontinuous

CT Computed tomography

DiCo Discontinuous

FLD Fibre length distribution

FOD Fibre orientation distribution

GF Glass fibre

IBOF Invariant-based optimal fitting

IDD Interaction direct derivative

IM Injection moulding

ITK Insight Segmentation and Registration Toolkit

LFRP Long fibre reinforced polymer

LFT Long-Fibre-Reinforced Thermoplastic
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Symbols and Abbreviations

ODF Orientation distribution function

PP Polypropylene

RVE Representative Volume Element

SC Self-consistent

SMC Sheet Moulding Compound

SVE Statistical Volume Element

SVR Support vector regression

TGA Thermogravimetric analyis

UD Unidirectional

UPPH Unsaturated polyester polyurethane resin

VTK Visualization Toolkit

Latin Letters - Scalars

FD Focus-Detector distance

FO Focus-Object distance

A,B,C,D,E Partial sums over image histogram

ai Angular deviation

c Coherence measure

cv Volume fraction

cw Weight fraction

Dx Filter mask for numerical derivative in x

Dy Filter mask for numerical derivative in y

EA Avergage over all global errors θgE of a set of test images
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Ec Error criterion for curvature

ET Tensor-based error

Ec,p Percentage error criterion for curvature

fl Fibre length distribution function

h Filter mask

I Input image

I0 Initial intensity

ID Remaining Intensity behind an object

L Fibre length

l Transmission length

NG Maximum grey value dependent on data type

Np Total number of projections aquired for a single scan

O Orientation space

p Set of material parameters

pi Weight function

R Fibre radius

r(·) Highest filter response of the anisotropic Gaussian filter

Rµ Relative attenuation

S Surface

sd Detector voxel size

si Voxel spacing

so Object voxel size

t Thresholding value

V Volume
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Symbols and Abbreviations

W Window for filter mask

w Weight

Latin Letters- Vectors

b Binormal vector

f Function of parametrized spatial curve

n Fibre orientation vector

ns Normal vector

t Tangent vector

v Eigenvector corresponding to the highest filter response

z Function of spatial curve parametrized in dependence of the
arc length

Latin Letters - 2nd Order Tensors

H Hessian matrix

J Structure tensor

N Orientation tensor

S Shape operator

Latin Letters - 4th Order Tensors

C Stiffness tensor
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N Orientation tensor

Greek Letters - Scalars

α Absorption coefficient

δ Dirac’s delta distribution

γ Directional accordance

κ Curvature

κG Gaussian curvature

κM Mean curvature

κmax Maximum curvature

κmin Minimum curvature

κn n-th principal curvature

λ Eigenvalues

λw Wavelength

µ Attenuation coefficient

µs Scatter coefficient

µt Quotient of partial sum for thresholding

ν Eigenvectors

φ Azimuth angle

ψ Orientation distribution function

ρ Density

Σ Covariance matrix

σ Standard deviation
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Symbols and Abbreviations

τ Torsion

θ Elevation angle

θE Angle between real and measured orientation

θgE Averaged θE over the entire image

Indizes

(·)ρ Second iteration of Gaussian filtering for calculation of the
structure tensor

(·)σ Gaussian filtered

(·)a Angular

(·)c Composite

(·)f Fibre

(·)I Input

(·)m Matrix

(·)O Output

(·)r Radial

(·)s Coefficient of the shape operator

(·)t Related to thresholding value

(·)tot Total

Image Operators

κ(·) Coherence measure
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H(·) Hessian matrix

J(·) Structure tensor

D(·) Numerical derivative

fcv(·) Circular voting filter

G(·) Gaussian filter

w(·) Medialness filter

Symbols

(·)> Transposed

(·)⊥ Normal direction

∗ Convolution

· Scalar product

∆ Difference

∇ Gradient

(·) Effective values

∂ Partial derivative
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1 Introduction

1.1 Motivation

Long fibre reinforced materials have gained importance in automotive and
aerospace industry in recent years. Discontinuous fibre reinforcements like
commonly used Sheet Moulding Compounds (SMC) enable to produce com-
plex geometries due to their good formability at low scrap rates. Moreover,
there are continuous fibre reinforced polymers which provide a high stiffness
and a controlled fibre alignment. Those materials are harder to process and
scrap rates can get high dependent on the application. A smart combination of
continuous and discontinuous fibre reinforced polymers (CoDiCo polymers)
provides advantages of both material systems. Complex geometries can be
produced from SMC material while load paths are reinforced locally by unidi-
rectional fibre tapes. Especially in automotive industries, mechanical proper-
ties of new materials have to be predictable using available mechanical models.
In order to design new safe cars that comply with modern security standards,
reliable static simulations are needed as well as crash simulations. Therefore,
the International research Training Group (GRK 2078) aims for an integrated
development of continuous-discontinuous long fibre reinforced polymers. All
aspects of the novel material systems from topology optimization over manu-
facturing to static and dynamic material testing are considered.

The thesis at hand addresses to a precise microstructure characterization and
description of CoDiCo polymers and their constituents based on X-Ray com-
puted tomography. Those investigations are crucial for mechanical models and
for the validation of simulations of the manufacturing process. Fibre orien-
tation distributions (FODs) are one of the most important characteristics es-
pecially for elastic modelling. Beside optical methods, FODs can be derived
three-dimensionally from volumetric images acquired by a computed tomog-
raphy system. Many algorithms have been developed to evaluate local orien-
tations ”voxel-based” from volumetric images, meaning that the orientation is
estimated in each image point by consideration of the local neighbourhood.
Even though there are many methods developed to evaluate this kind of data,
there is a lack of information about the precision that can be achieved. Also,
the performance of different algorithms on noisy and low contrast CT images
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1 Introduction

are not investigated yet. A further problem is the determination of local fibre
volume fractions from CT images. In fact, common threshold segmentation
methods are implemented in most image processing tools, but the algorithms
perform quite different on differing material combinations and fibre architec-
tures when e.g. fibres are separated as it can be seen in LFT material or if they
exist in bundles like in SMC. Fibre length distributions (FLDs) are usually de-
termined by incineration of the matrix material and subsequent separation and
optical measurement of the fibres. This conventional method has the disad-
vantage that fibres can break during the separation process. Furthermore, long
fibres are hard to separate in general as they can be very tangled. Using a fibre
tracking algorithm on high resolution image data enables to determine FLDs
non-destructively from CT data. Another major advantage of fibre tracking
algorithms is the opportunity to determine fibre curvatures from resulting spa-
tial curves, what is not possible with any other known method. Pores within
composite materials can influence the macroscopic mechanical properties sig-
nificantly due to notch effects. Methods for determination of the pore size,
sphericity and distribution within materials are already implemented in com-
mercial tools like VGStudio MAX or AVIZO. Within this thesis, two algorithms
for evaluating curvatures from voxel data are compared in order to describe
the geometry of pores and to detect sharp edges by a high curvature value.

1.2 Objectives

The aim of this thesis is to develop, evaluate and compare methods for charac-
terization of microstructures of continuous-discontinuous long fibre reinforced
polymers. Therefore, a robust and efficient algorithm for orientation analysis
on volumetric images has to be identified. In order to determine the fibre vol-
ume fraction of CT-scans properly, a technique has to be found which enables
for the evaluation of the fibre content for different microstructures. As there is
no accessible software for the non-destructive investigation of fibre lengths, a
tool has to be developed to derive FLDs from volumetric images. The imple-
mentation of a fibre tracking algorithm also enables for the evaluation of fibre
torsion and curvature using a parametrisation of the fibre path. For the charac-
terization of pores within composite materials, a reliable method for the deter-
mination of surface curvatures is useful for the detection of potential notches.
As a side benefit, the surface curvature can also be used to spot fibre ends.
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2 State of the Art

2.1 Preliminary Remarks

2.1.1 Notation

In most parts of this work, a direct tensor notation is used. Where applicable,
a component form of the tensor, i.e., index notation is used. Thus, a second
order tensor reads A = Aij . The Einstein summation convention is used which
implies a sum over repeated indices. Scalars are denoted by lower case letters
a and Vectors by bold lowercase letters a. Second and fourth order tensors are
written as bold capital A and doubled capital A letters. The scalar product and
the dyadic product are indicated by A ·B and A⊗B.

2.1.2 Representative and Statistical Volume Element

In long fibre reinforced polymers, the local microstructure can be very different
depending on manufacturing parameters and the flow conditions at the present
location. Due to this reason, it is not expedient to search for a representative
volume element (RVE) that describes the material on the macroscale. A RVE
is quite obvious for periodic microstructures where the smallest cell describes
the whole microstructure (Fig. 2.1). In this case, the micro-scale can easily be
linked to the macro scale. For the long fibre reinforced material used within
this contribution, the microstructure in a single part can be very different ac-
cording to the flow conditions and is not periodic. Thus, a description on the
mesoscale, which is located between the micro and the macroscale, is needed.
The description on this scale takes the statistics of a larger region into account
(Fig. 2.2) and is called statistical volume element (SVE) [1]. With increasing size
of the SVE, it becomes an RVE for an infinite region as it describes the overall
material properties.

3
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Figure 2.1: Periodic structures for continuous fibre reinforced materials.
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Figure 2.2: Example of a statistical volume element.

2.2 Computed Tomography

In recent years, computed tomography methods gained in image quality as
well as in resolution. Modern CT scanner with a resolution of 1µm and below
allows for the investigation of inner structures within various composite mate-
rials. This enables to derive characteristics of materials using a non-destructive
method, what was hardly possible a couple of years ago. The following section
gives a very basic insight into the mode of operation of computed tomography.
For a deeper understanding, Buzug describes the functionality of CT-scanners
very briefly in ”Computed Tomography” [2].

2.2.1 Principle

CT scanners are based on X-Rays and make use of the different attenuation co-
efficients of materials. X-Rays are generated within an X-Ray tube. Electrons
are accelerated by an acceleration voltage between the filament and the target.
The focussing and the displacement of the electron beam on the target is re-
alised by magnetic lenses around the beam tube. This regulation of the focus
spot is most important since it influences the blur in resulting high resolution
images significantly. When electrons hit the target, bremsstrahlung is gener-
ated in form of X-Rays which are used for investigations.

4
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FD
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Figure 2.3: Schematic layout of a commercial computed tomography system.

The object of interest is placed on a rotatable platform between focus spot and
detector. This platform and the detector can be moved in horizontal direction
to adjust the image region as well as the resolution. The physical voxel size in
the resulting image is given by

so =
FO

FD
· sd (2.1)

where so is the voxel size in the objects coordinate system, sd is the pixel size on
the detector, FO the focus object distance and FD the focus detector distance.

In commercial CT scanners, the image intensity is captured by a detector, which
consists of a scintillator in order to transform X-Rays into visible light and a
CMOS sensor that captures those light impulses. In common detectors, the
CMOS sensor is mounted directly on the scintillator plate, so the pixel spac-
ing on the detector is fixed. There are also detectors with optical lenses be-
tween scintillator and sensor like e.g. in X-Ray microscopes. This technology
enables to ”zoom” on the scintillator to get higher physical resolutions by using
a smaller region on the scintillator at the same resolution of the camera.

The general relation between attenuation coefficient, transmission length and
intensity is given by the law of Lambert-Beer

ID(l) = I0 · e
∫ l
0
−µ(t) dt. (2.2)

ID describes the remaining intensity at the detector after passing an object with
attenuation coefficient µ for a transmission length of l along the path t while
the initial intensity without an object is I0. The linear attenuation coefficient µ
is a combination of absorption coefficient α and scatter coefficient µs [2].

µ(x) = µs(x) + α(x). (2.3)
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2.2.2 Reconstruction

Using the set-up mentioned above, a certain number of two-dimensional pro-
jection images are acquired atNp rotation angles. As a rule of thumb, at least as
many images have to be acquired as the horizontal resolution of the resulting
image is mentioned to be in order to fulfil all requirements for a proper re-
construction [2]. Subsequently, a volumetric image can be derived from those
projections by the reconstruction. The Feldkamp algorithm is the most com-
monly used method up to now. It was developed by Feldkamp [3] in 1984 and
enables to reconstruct three-dimensional images from cone beam CT projec-
tion images. Nevertheless, this method is only an approximation for technical
investigations.

Using the Feldkamp reconstruction, X-ray radiation is assumed to be monochro-
matic. In reality, the attenuation coefficient is also dependent on the wave-
length µ(λw). Due to this circumstance, rays with a high wavelength (soft
beams) are absorbed much faster than low wavelength (hard) beams. Com-
monly used detectors are not energy dispersive, so the intensity at a certain
point is just a scalar and not the entire spectrum of the light. As this infor-
mation is missing, reconstruction methods also do not take the spectrum into
account and as a result, components made of dense materials are shown darker
in the centre than on the edge. Soft beams are absorbed near the surface of the
specimen and only the hard rays remain. This effect is called beam hardening.
Cupping is one example for an artefact that results from beam hardening. The
name was derived from its appearance as it is associated with a view into a
cup as dense circular regions are brighter on the edge than in the centre of the
object. Nowadays, there are also algebraic reconstruction techniques (ART) [4].
Those methods enable to handle beam hardening effects much better, but they
are computational very expensive. Nevertheless, with increasing computing
power, it is likely that those methods will get more common in future.

2.3 Image Processing

Methods described in the following are designed for processing volumetric im-
ages that are reconstructed from Np x-ray projection images from the CT. The
raw reconstructed image is a matrix I(x) including an integer value for every
point x. Implementations of the methods were carried out in MATLAB, the
Insight Segmentation and Registration Toolkit (ITK) and ImageJ.

MATLAB is a commercial tool by MathWorks for data analysis and algorithm
development using a direct expression of matrices and arrays within a graphi-
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cal user interface. It shows its advantages during debugging of new algorithms
since all variables are easily accessible.

ITK is an open-source cross-platform system. It provides most of the common
filters in a C++ development environment, where filters can be modified and
connected in form of a pipeline structure [5]. Thus, new methods can be im-
plemented easily and efficiently. Usually, ITK programs are designed for the
use on the command line, but it can also be used with the Visualization Toolkit
(VTK) [6] to develop a graphical user interface (GUI).

Composight is an open source project developed at IAM-WK [7] which in-
cludes most of the software introduced in this thesis. It provides small, problem-
specific application for viewing, filtering and segmentation of volumetric data
such as CT-scans. The implementation is based on ITK, VTK and Qt.

ImageJ is also an open-source software for scientific image analysis [8, 9]. It
is written in Java and provides a GUI so effects of filters can be seen directly.
Even distances, angles etc. can be measured using the inbuilt tools what is
a great advantage for the validation of algorithms. Fiji [10] is basically the
same programme as ImageJ, but it provides many useful plugins for 2D and
3D image processing initially.

2.3.1 Image Histogram

The image histogram is a crucial image feature derived from all grey values of
an image without information about the location. It shows the number of ap-
pearances of a certain value yi, where i stands for the grey value on the x-axis.
Figure 2.4 shows an example for the histogram of an 8-bit grey-scale image. As
it is bimodal, there are apparently two different phases in the image, where the
left peak in the histogram results from a darker area and the right wide peak
from a lighter area.

2.3.2 Fundamental Filters

Discrete Convolution

In order to apply filter masks to an image I(x), the discrete convolution [11]
can be utilized in the form

I ′(x, y, z) =

L∑
x′=−L

M∑
y′=−M

N∑
z′=−N

h(x′, y′, z′)I(x− x′, y − y′, z − z′) (2.4)
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Figure 2.4: Bimodal histogram of a grey-scale image.

where I ′(x, y, z) is the filtered image and h(x′, y′, z′) is a discrete filter mask
with a size of (2L + 1) × (2M + 1) × (2N + 1). Common filters that can be
implemented that way are e.g. the binomial filter or the Gaussian filter, where
the latter one is the most common. The model using a filter mask may be good
to illustrate how filters work in general, but they are relatively slow. Many
filters, especially those that can be separated, can be implemented as recursive
algorithm that processes the images line by line so that random accesses to the
memory are unnecessary.

Gaussian Filter

The Gaussian filter is essential for most of the following image processing tools.
For illustration, the filter is introduced as a simple filter mask with the Gaussian
function

G(x) =
1

σ
√

2π
e
−x2

2σ2 (2.5)

for the one-dimensional case with the blurring parameter σ. The Gaussian filter
can be applied to the image by creating a filter mask of certain size describing
a Gaussian function in two or three dimensions and convolving this mask with
the initial image I . The mask should be normed in order that the sum of all
included values results in one. There are many implementations of recursive
Gaussian filters available in open source projects, in this work we will use the
RecursiveGaussianImageFilter from ITK [12, 13].
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2.3 Image Processing

Image Gradient

The derivative of an image can be computed by a simple symmetric difference
quotient. The partial derivatives for a two-dimensional image can easily be
written as filter mask [11]

Dx =
1

2

[
1 0 −1

]
; Dy =

1

2

 1
0
−1

 (2.6)

while the gradient of the 2D image on a certain point x is

grad(I(x)) = ∇(I(x)) =

∂I(x)∂x
∂I(x)
∂y

 =

Dx

Dy

 . (2.7)

Derivatives of higher order may be built respectively. For computational ad-
vantages, the derivative can be combined with the Gaussian blur filter. A re-
cursive implementation GradientRecursiveGaussianImageFilter is already in-
cluded in ITK.

2.3.3 Segmentation of Images

Global Threshold

The aim of the thresholding procedure is to find a grey value 0 ≤ t ≤ NG,
which subdivides an image in two areas consisting of different materials with-
out considering the location of those voxels. t is called the threshold and NG
is the maximum grey value depending on the data type of the image. Many
methods have been developed in order to find a suitable global threshold for
the segmentation of images either in 2D or even for volumetric images. Im-
ageJ provides a couple of thresholding algorithms shown in the this section.
Niemistö gives a brief introduction for some of those thresholding techniques
within the documentation [14] of his open source project HistThresh toolbox
[15]. Also, the work of Glasbey from 1993 gives an overview of different thresh-
olding techniques. In his work, the following partial sums are introduced for a
better understanding of the different algorithms

Aj =

j∑
i=0

yi, Bj =

j∑
i=0

iyi, Cj =

j∑
i=0

i2yi (2.8)
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where i is the grey value of the histogram on the x-axis and yi is the number of
occurrences of this value.

Iterative Selection Method: This method was developed by Ridler and Cal-
vard in 1978 [16] and is the default method, also called IsoData, for global
thresholding in ImageJ. A starting point for the threshold is chosen e.g. as the
mean value of all pixels. Subsequently, all grey values higher and lower than
the initial threshold are averaged separately. From those two mean values, the
average is calculated and used as threshold for the next iteration. This proce-
dure is repeated until the change of the fractions becomes smaller than a chosen
residual value.

The Method by Huang [17] is based either on the Shannon’s entropy or the
Yager’s measure to minimize the fuzziness of the input image. The implemen-
tation in ImageJ makes use of the Shannon’s entropy. It is calculated as the ab-
solute value of difference between the grey value at each point of the histogram
and the average of the region where it belongs to. The threshold that minimizes
this function is set as the global threshold. This method is particularly suitable
for images with one sharp and another blurred peak in the histogram since it
enables to account for the connected fuzzy region.

Intermodes was developed by Prewitt and Mendelsohn [18]. It requires a bi-
modal histogram which is filtered by a mean filter with a width of three iter-
atively until only two local maxima on the curve remain. Subsequently, the
minimum value between those two maxima is used for segmentation. In Im-
ageJ, this method is also called ”Minimum”.

MaxEntropy by Kapur et al. [19] is one out of several thresholding techniques
based on the entropy. It makes use of the partial sums

Ej =

j∑
i=0

yi log(yi) for j = 0, 1, . . . , n ; n ≤ NG. (2.9)

Subsequently,

Ej
Aj
− log(Aj) +

En − Ej
An −Aj

− log(An −Aj) (2.10)

is evaluated for each point where the maximum value is used as threshold t
[20]. Other methods that are based on entropy measures are the RenyiEntropy,
which works just like MaxEntropy but is based on the Renyi Entropy [19],
which is an generalization of the Shannon’s Entropy. Furthermore, Shanbhag
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[21] implemented this method for bimodal histograms in 1994 which is a mod-
ified Version of Kapurs MaxEntropy. The method by Li from 1993 minimizes
the cross entropy.

Mean is a simple thresholding method, which is included in the overview of
Glasbey [20]. It uses the mean of the grey value distribution as threshold

t =
Bn
An

. (2.11)

This algorithm will show its weakness for not taking the shape of the distri-
bution of multiple modes in the histogram into account. Therefore, it does not
perform well e.g. on bimodal histograms where one peak is significantly larger
than the other one.

MinError(I) by Kittler and Illingworth [22] utilizes a Gaussian mixture model
for determining the threshold t. Therefore, it is assumed that the grey values
are distributed like a bimodal Gaussian distribution with different variances.
The statistics are defined as

pt =
At
An

, qt =
An −At
An

,

µt,1 =
Bt
At

µt,2 =
Bn −Bt
An −At

σ2
t,1 =

Ct
At
− µ2

t,1, σ2
t,2 =

Cn − Ct
An −At

− µ2
t,2

(2.12)

and are used in the function

pj log

(
σj,1
pj

)
+ qj log

(
σj,2
qj

)
(2.13)

while the value j, that minimizes the result is used for the threshold t.

The Moments method was introduced by Tsai in 1985 [23]. It computes the
grey-level moments of the input image and selects the threshold in a way that
the moments of the thresholded image remain the same. Using the notation of
Glasbey [20], the threshold is set to the grey value that is closest to x0, where

x0 =
1

2
−

Bn
An

+ x2

2√
x22 − 4x1

, x1 =
BnDn − C2

n

AnCn −B2
n

x2 =
BnCn −AnDn

AnCn −B2
n

, Dn =

n∑
i=0

i3yi

(2.14)
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Otsu [24] defines the means of the grey values in two classes using

µt,1 =
Bt
At
, µt,2 =

Bn −Bt
An −At

(2.15)

and the threshold is set to the value that maximizes

Aj(An −Aj)(µt,1 − µt,2)2. (2.16)

The variance between the classes are maximized while the variance in the class
is minimized.

The Percentile method introduced by Doyle in 1962 [25] takes a known object
fraction into account. As a standard method, the percentile is set to p = 50 %,
so t is set to the value of j, where

p =
Aj

An −Aj
· 100 %. (2.17)

While this approach does not make sense for unknown object fractions, it can
be helpful for the segmentation of images with known object fraction.

The Triangle method is a geometrical method by Zack et al. [26]. It was de-
veloped for histograms with a peak near to the upper or lower end of the his-
togram (Figure 2.5). From the peak value, a line is drawn to the other end of
the histogram. The histogram is normed, so the maximum value in y is 1.0 just
as the range from the peak to the end of the curve in x. The algorithm searches
for a line that is perpendicular to the first one and touches the histogram with
maximum distance. The corresponding value of i is used as threshold.

0 0.5 1 1.5 2
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Figure 2.5: Graphical solution of the triangle thresholding technique.
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2.3.4 Skeletonization

Skeletonization - also called binary thinning - refers to an image processing
technique that reduces any kind of structure to their centrelines. The crucial
idea of this method is to apply a symmetric erosion algorithm on a binary
image iteratively until only the skeleton of the object remains [27]. Hanno
Homann published an ITK based implementation of the thinning algorithm
introduced by Lee et al. [28] in 2007. The same method was also transferred to
the user friendly ImageJ plugin Skeletonize3D by Ignacio Arganda-Carreras in
2008 [29].

The algorithms of Lee [28] allows for a fast skeletonization of volumetric im-
ages by using an efficient decision tree structure instead of a simple lookup
table. This method is much faster than conventional methods that make use of
look-up tables for each configuration and enables to process volumetric images
in a reasonable time. During the thinning procedure, the 26 neighbourhood of
each voxel is taken into account in order to decide if the present point belongs
to a surface and if it can be deleted or not.

Figure 2.6: 26-neighbourhood of a voxel at a finished part of a skeleton (red).

This is an iterative procedure and is carried out repeatedly until the image does
not change anymore and the data is finally skeletonized. Figure 2.6 shows the
26-neighbourhood of a skeletonized fibre. Lee et al. showed that the developed
algorithm ensures the invariance of the Euler characteristic and thus, no holes
are created in the structure during thinning.

Arganda-Carreras also implemented the ImageJ plugin AnalyzeSkeleton to an-
alyse the resulting skeleton from the skeletonization. The plugin takes a skele-
tonized binary image as input. Since all lines have a thickness of only one
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Figure 2.7: Example of a skeletonization in 2D. Left: Initial image drawn with
a line thickness of 10 px. Middle: Image processed by the ImageJ
skeletonization by Arganda-Carreras. Right: Result from the An-
alyzeSkeleton-algorithm. End-points are illustrated in green, junc-
tion points in red and slab voxels in blue.

voxel, every voxel can be assigned to one of the following groups by observing
the 26-neighbourhood of each point (cf. Figure 2.7 right):

• Slab voxels: All voxels with exactly two neighbours

• Junction voxels: Voxels with three and more neighbours

• End point voxels: Voxels with less than two neighbours

Based on this data, a network of branches, junctions and end-points is built
for each independent skeleton and can be used for further analysis (see Fig.
2.8). Each branch consists of a certain number of slab voxels, depending on
its length. Furthermore, each branch is connected to exactly two vertex voxels,
where the branch is connected to a junction or an end-point. The junction class
also includes those vertex points as well as the connected branches and the
voxels that belong to the junction at hand since junctions can consist out of
many voxels that have more than two neighbours. End-points only include a
vertex voxel and the connected branch. Based on this graph, the results of the
AnalyzeSkeleton plugin is created, which outputs e.g. the number of branches
and junctions within a skeleton or the longest path throughout the skeletons.
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JunctionBranch

Junction

JunctionEnd-Point

Branch

Branch

Branch

End-Point

• Slab Voxels
• Vertex Points
• Junctions

• Vertex Points
• Branches
• Junction Voxels

• Vertex Point
• Branch

Figure 2.8: Exemplary graphical representation of a network that is built by the
AnalyzeSkeleton ImageJ plugin from previously skeletonized data
as shown in figure 2.7 [30].

2.4 Fibre Orientation Distribution

In the past decades, many methods for the determination of fibre orientations
were developed and evaluated. As there was no opportunity to acquire high
resolution volumetric images in the early days, some more or less simple ap-
proaches were used to calculate the orientation in fibre reinforced composites.
In this work, we will concentrate on methods using image processing. But there
are also ways to derive the FOD directly from physical characteristics like e.g.
the absorption of polarized microwaves passing the material under different
angles [31].

2.4.1 Methods for Orientation Determination from
Microscopic Images

Stereology

The term Stereology refers to the study of measuring three-dimensional geo-
metrical quantities from two-dimensional images [32]. Thereby, it is possible to
derive even three-dimensional properties if the shape of the inclusions in the
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material at hand is taken into account. As computed tomography was very
restricted to the computational possibilities until the 1990s, stereology was a
common way to extract information about the orientation from fibre reinforced
polymers. There are many publications about orientation analysis from two-
dimensional images. Underwood introduced procedures for the determina-
tion of 3D characteristics from two-dimensional images in 1972 [32]. Up from
that point, stereology measures have been used in various publications [33, 34,
35] in order to derive orientation distributions from microscopic images. Fibre
orientation is derived from a two-dimensional image plane through a fibre re-
inforced polymer. Figure 2.9 shows an image plane with a single fibre. The
orientation can be calculated by the principal axes of the resulting ellipsoid,
there the smaller value is the fibre radius. A common issue is, that the fibre
orientation is not unique. A fibre with angle of (θ, φ) shows the same ellipsoid
as with an angle of (θ, φ + π). In 1996, the method was extended by Davidson
in 1996 in order to derive real three-dimensional by grinding the sample down
for a couple of µm and registration of the new image [36].

Secant Plane

Fibre

Secant Plane Normal
(θ, ψ)

Fibre Direction
(θ, φ)

Figure 2.9: Cross section area of a secant plane through a fibre: Stereology
makes use of the ellipsoidal cross-section to calculate the fibre ori-
entation [35].
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2.4.2 Voxel-based Methods from 3D Images

Anisotropic Gaussian Filter

The anisotropic Gaussian filter for orientation analysis was introduced by Robb
et al. in 2007 [37] and extended by a new sampling method for discrete direc-
tions on the half-sphere by Wirjadi et al. in 2009 [38, 39]. The filter can be ap-
plied to binarized as well as to grey value images. It is based on an anisotropic
Gaussian filter which is described by the kernel

G(x) =
1

(2π)
3
2 det(Σ)

1
2

exp

(
−1

2
xtΣ−1x

)
(2.18)

for three-dimensional data, where Σ is the covariance matrix

Σ =
(
νi,1 νi,2 νi,3

)
·

λ1 0 0
0 λ2 0
0 0 λ3

 ·
νi,1νi,2
νi,3

 . (2.19)

The eigenvalues {λ1, λ2, λ3} of the covariance matrix define the actual shape of
the filter. For the orientation analysis of fibres, it is recommended to be chosen
to λ1 = λ2 = 1

2λ3 [38]. It results in a Gaussian filter mask that is isotropic in
the e1 − e2 plane and twice as wide in e3-direction. The normed eigenvectors
νi = {ν1 · · · νn} are given by n samples on a half-sphere, that are picked with
respect to the sphere partitioning algorithm developed by Fliege and Maier
in 1999 [40]. The multiplication with the eigenvector rotates the covariance
matrix to a new coordinate system, defined by {e′1, e′2, e′3} where the Gaussian
kernelG it is convoluted with the initial image I(x) for all sampled orientations.
Figure 2.10 depicts the principle of the filter. Since Fibre A is well aligned to the
anisotropic Gaussian filter, it leads to a high filter response. Fibre B shows a
high angular offset and results in a lower value. While calculating the filter
response for each sample, the image is transferred to the orientation space

O(x) = (r(x),v(x)). (2.20)

In orientation space, only the highest filter response

r(x) = maxν [G ∗ I](x) (2.21)
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and its corresponding eigenvector

v(x) =argmaxν [G ∗ I](x) (2.22)

is saved as result during processing. Once the image is filtered with all ori-
entations {ν1 · · · νn}, v(x) includes the eigenvector of the best corresponding
orientation in each voxel of the image and can be used for further statistics like
orientation tensors or histograms.
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Figure 2.10: Principle of the orientation analysis using the anisotropic Gaussian
Filter. The anisotropic Gaussian filter is rotated to a new coordinate
system defined by {e′1, e′2, e′3}. Fibre A is well aligned to the rotated
Gaussian kernel and leads to a high filter response for the currently
investigated orientation. Fibre B is badly aligned and leads to a
lower response.
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Hessian Matrix

In the case of image processing, the Hessian matrix is a square matrix of sec-
ond order partial derivative of the present image I(x). It was often used and
discussed in the past century in order to detect valleys and ridges in topology
what is of high interest for hydrology. Actually, the problem described e.g. by
Rothe in 1915 [41] can be used in the same way for 2D image analysis. Elbisch-
ger et al. [42] introduced an algorithm for orientation analysis for 2D images
and in 2006 Daniels et al. [43] implemented a method for the evaluation of lo-
cal orientations in volumetric images based on the three-dimensional Hessian
matrix

H(x) = ∇2Iσ(x)=̂



∂2Iσ
∂x2

∂2Iσ
∂x∂y

∂2Iσ
∂x∂z

∂2Iσ
∂y∂x

∂2Iσ
∂y2

∂2Iσ
∂y∂z

∂2Iσ
∂z∂x

∂2Iσ
∂z∂y

∂2Iσ
∂z2


. (2.23)

The Hessian matrix can be evaluated numerically in each voxel of the volu-
metric image, or every pixel in a 2D image, respectively. It is a measure of the
local curvature of the image. It is important to keep in mind that in first place
the curvature is not derived directly from geometrical objects within the image,
but from the grey values. Figure 2.11 shows this circumstance on two simple
examples of an one-dimensional line with grey values represented by a Gaus-
sian function on the left. On the right, there is a two-dimensional image which
is shown as a surface plot. It is derived from a line in order to imitate a fibre
that is filtered by a Gaussian blur. In the one-dimensional case there is only one
curvature κ. For a two-dimensional image, there are two curvatures κ1 and κ2.
An eigenanalysis of the Hessian matrix leads to the directions according to the
principle curvatures at a local point. Using the eigenvector that corresponds to
the smallest eigenvalue, the orientation of e.g. a fibre can be calculated since
there is only a very small curvature along the fibres (see κ1 in Figure 2.11). The
method in 3D works analogous but can hardly be depicted since there are three
principal curvatures. Generally speaking, the eigenvector to the smallest eigen-
value of the Hessian matrix results in a vector that points to the direction where
the gradient of the grey values is the lowest. This direction corresponds to the
fibre direction in volumetric images.
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Figure 2.11: Curvature in an one-dimensional line (left) and a two-dimensional
image (right). Red lines mark the curvatures of the grey values
evaluated in a certain point in both examples. In 1D, there is only
one curvature κ. For 2D images, the analysis leads to two curva-
tures κ1, κ2, where the smaller one can be found in direction of the
image structure.

Structure Tensor

Orientation analysis on three-dimensional images using the structure tensor is
briefly described by van Ginkel [44]. Krause et al. utilized the method in 2010 in
order to derive orientation data from CT images of fibre reinforced composites
[45]. The structure tensor is derived from only the first derivative of an image.
Figure 2.12 (a) depicts the gradients in a single cross-section of a plane and one
fibre. All gradients point from the dark background in fibre direction. In a first
step, the dyadic product of the image gradient with itself is evaluated in each
voxel (Eq. 2.24).

∇Iσ(x)⊗∇Iσ(x)=̂



(
∂Iσ
∂x

)2
∂Iσ
∂x

∂Iσ
∂y

∂Iσ
∂x

∂Iσ
∂z

∂Iσ
∂y

∂Iσ
∂x

(
∂Iσ
∂y

)2
∂Iσ
∂y

∂Iσ
∂z

∂Iσ
∂z

∂Iσ
∂x

∂Iσ
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∂Iσ
∂y

(
∂Iσ
∂z

)2


(2.24)

As an eigenanalysis of ∇Iσ(x)⊗∇Iσ(x) always result λ1 = λ2 = 0 and λ3 > 0,
the tensor can be visualized as a line in Figure 2.12 (b). These tensors are blurred
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with a Gaussian kernel with the blurring parameter ρ in order to receive the
structure tensor

Jρ(x) = G(∇Iσ(x)⊗∇Iσ(x), ρ). (2.25)

(a) Image gradients derived from scalar
grey value image.

(b) Tensor resulting from dyadic product
of gradient.

(c) Structure tensor: Blurred tensors
within an image region.

(d) Orientations derived from averaged
structure tensors.

Figure 2.12: Determining the fibre orientation using the structure tensor [46].

Since all the initial tensors are perpendicular to the surface of the fibre, the
graphical representation of the averaged structure tensor will be planar in an
idealized point of view (Figure 2.12 (c)). As one of the principal values of the
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tensor is much smaller for fibrous structures, the local orientation can be calcu-
lated by applying an eigenanalysis. The eigenvector to the smallest eigenvalue
describes the fibre orientation at a certain voxel. Figure 2.12 (d) shows the re-
sulting orientation of the algorithm.

2.4.3 Statistical Descriptors of Orientation

In the previous section, methods for the extraction of the local orientation in
CT images were described. For the sake of homogenisation of material prop-
erties like stiffness or thermal conductivity, it is necessary to build a statistic
for a larger region of the material. This can be done either for each cell of a
previously defined mesh or globally for the entire volume.

Orientation Histogram

A simple way to achieve a statistic of the orientation is to bin the orientation
of each voxel to a certain class. This is easy for two-dimensional images since
there is only one angle and bins can be allocated equidistantly on half of a
circle. Note that orientations that are not included in {φ ∈ R | 0 ≤ φ < π)}
are redundant and can be clustered to the opposing bin (Fig. 2.14 left). The
same statistic for a three-dimensional histogram creates some difficulties since
an equidistant partition on φ and θ does not result in surface patches of the
same area on the unit sphere. Thus, it would be necessary to introduce weight
factors related to its area for each field on the sphere. Another approach to
this issue is a partitioning method that generates fields of equal area like the
one introduced by Leopardi in 2006 [47]. It subdivides the sphere in N regions
where two of them are the pole caps of the sphere and the remaining N − 2
fields are separated with rectilinear lines in spherical polar coordinates (see
Fig. 2.13). Also, in this case, facing directions describe the same orientation
and can be summarized. Actually, a histogram without redundancy include a
half sphere without the negative area y < 0 of the x-y-plane and the negative
x-axis, where y = 0. Obviously it is also possible to include another area of the
x-y-plane as long as there is no redundancy (see Fig. 2.14).

Orientation Distribution Function

Another statistical description of orientations within a microstructure are ori-
entation distribution functions (ODF). Since the ODF is a probability density
function, the integral over all possible directions ψ(φ, θ) has to be 1 as every
voxel has any orientation [48]
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2.4 Fibre Orientation Distribution

Figure 2.13: Partitioning of the sphere in 60 fields of equal area using the algo-
rithm introduced and implemented by Leopardi [47].

∫ π

θ=0

∫ 2π

φ=0

sin(θ)ψ(φ, θ)dφdθ =

∮
ψ(n)dn = 1. (2.26)

A corresponding coordinate system including the unit vector n is depicted in
Figure 2.14. The ODF also has to be symmetric, because opposing direction
lead to the same orientation:

ψ(θ, φ) = ψ(π − θ, φ+ π) (2.27)

or in euclidean coordinates

ψ(n) = ψ(−n). (2.28)

Especially for fibre orientation distributions, many approaches have been de-
veloped in during the last decades. Mohaker et al. compared some of those
functions for different material symmetries [49]. They showed that simple ori-
entation distributions can be captured using the Mises-Fisher distribution [50],
the Watson ODF [51], a singular kernel ODF [52] and the de la Vallee Poussin
ODF [53]. If the orientation distribution gets more complicated, it is sufficient
to approximate it by a sum of axially symmetric ODFs with different modal

23



2 State of the Art

φ

θ

φ

e1 e1

e3e2

e2
n

n

Figure 2.14: Definition of orientation angles in 2D and 3D. Blue areas and vol-
umes are taken into account for the orientation distribution his-
togram while red areas are redundant due to the opposing direc-
tions.

vectors of one of functions mentioned before [49]. The fit of the resulting func-
tion can be carried out by an ordinary least-square fit e.g. on an orientation
histogram.

Orientation Tensors

With respect to Advani and Tucker [48], orientation tensors can also be uti-
lized to represent statistics about orientation data. They are often used to ho-
mogenise mechanical properties in a material. Hence, this work focusses on 2nd

and 4th order tensors as those are of high interest for this purpose. The tensors
can be derived from a known ODF as followed:

Nij =

∮
ninj ψ(n) dn (2.29)

Nijkl =

∮
ninjnknl ψ(n) dn (2.30)
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2.5 Fibre Length Distribution

In case of discrete data like it is derived from CT images or two-dimensional
images using stereological approaches, an empirical orientation tensor can be
derived by

N =
1∑M

i=1 w(i)

M∑
i=1

w(i) n⊗ n (2.31)

or

N =
1∑M

i=1 w(i)

M∑
i=1

w(i) n⊗ n⊗ n⊗ n (2.32)

whereM is the total number data points extracted from a region of interest.The
factor w(i) can be utilized in order to apply a different weight to each of the
data points, otherwise it is set to one.

2.5 Fibre Length Distribution

The fibre length distributions (FLD) play an important role for mechanical mod-
els that include damage mechanisms. Just as for orientation distributions, it can
be built in form of a histogram where fibres in defined intervals of length are
summed up, or as an analytical function fit fl(L) that is normed to an integral
value of one.

∫ ∞
0

fl(L) dL = 1 (2.33)

A common density function for fibre length distributions is the two-parameter
Weibull distribution [54, 55, 56, 57]

fl(L) =
m

n

(
L

n

)m−1
exp

[
−
(
L

n

)m]
;L > 0, (2.34)

where n and m are the scale and shape parameters and L is the fibre length.
Figure 2.15 shows an exemplary fibre length histogram with the corresponding
Weibull distribution.
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Figure 2.15: Weibull distribution. Blue: Discrete values, Red: Analytical distri-
bution function.

2.5.1 Destructive Methods for FLD Determination

FLDs derived by destructive methods require for the incineration of the sam-
ples. When the material is heated up to a certain temperature, the polymer
matrix is burnt while the glass or carbon fibres remain. Too high temperatures
should be avoided since glass fibres can get sintered. Also, if the heat up is too
abrupt, thermal stresses will occur on the fibres which can initiate fibre break-
age. Thus, a temperature profile has to be adjusted for each material system
in order to extract the fibres as carefully as possible. A standard procedure for
sample incineration with the purpose of measuring the fibre or filler content is
described in DIN EN ISO 1172 [58].

After incineration, the fibres have to be separated carefully. For that reason,
both of the following commercial methods scan the fibres within a fluid as the
preparation is gentler. The fibres from the incineration are given into a glass
with water and some additives like surfactants and glycerine to improve the
wetting of the fibres. Subsequently, the mixture is stirred carefully with a spoon
or a stick. When the fibres are separated, a representative part of the mixture
is given into another glass and diluted with water, so the density of fibres is
lowered. This is done multiple times until the number of fibres is low enough
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2.5 Fibre Length Distribution

to be measured by the FASEP or FIbreShape FiVer system and the mixture of
fluid and fibres is given into a Petri dish.

FASEP

The FASEP system [59, 60] scans fibres in a Petri dish with a inner diameter of
90 mm. The real optical resolution of the scanner is 1700 dpi what is equal to a
pixel size of 14.9µm. The fibre tracking is carried out by the ALF-algorithm,
which is an in-house development of the FASEP company.

FiberShape FiVer

The sample preparation for measuring fibre lengths using the IST AG Fibre-
Shape FiVer can be done similarly to the FASEP method. Both methods are
almost similar except for the higher real optical resolution of 8µm for the FiVer.
Thus, fibres in a range from 10µm up to 10 mm in diameter can be measured. Fi-
bre lengths can range from 30µm to 5 cm where the scanning area is 6 cm x 12 cm.
The results are conform with ISO 9276-1 and ISO 13322.

2.5.2 Non-Destructive Fibre Length Distributions from CT
Images using Fibre Tracking Approaches

Some algorithms for the determination of fibre lengths from CT images have
already been developed in the recent past. In 2011, Salaberger et al. [61] intro-
duced a method for the measurement of short fibre reinforced polymers. De-
spite the promising results for short fibre reinforced polymers, the algorithm
does not account for curved fibres and is thus not suitable for long fibre re-
inforced polymers. The method developed by Teßmann et al. [62] tracks the
centreline of fibres and treats curved fibres correctly. In the following section,
the most important information about both algorithms is shown.

Method by Teßmann et al.

The method of Teßmann et al. [62] traces fibres directly from the grey value im-
age. It accounts for the image gradient within the fibre and also takes the fibre
diameter into account, which is almost constant for glass fibres. In a first pre-
processing step, the original image is filtered by a morphological erode opera-
tor to enhance the dark spaces between the fibres. This procedure also enhances
the contrast between fibre and matrix. But on the other hand, some fibres that
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are very close will be merged. Supposedly, those fibres will be found in a later
pass since the original picture will be processed repeatedly. For the detection
of possible centre points of the fibres, a discrimination function developed by
Frangi et al. [63] was used. It is based on the eigenvalues of the Hessian ma-
trix, which was introduced for the sake of orientation analysis in section 2.4.2.
After this, the actual fibre tracing algorithm is applied. As the fibre diameter is
known, a cylinder approximation is used in order to trace along the fibres, start-
ing from a potential fibre point from the previous step. Thereby, the direction
derived from the Hessian matrix is used in order to find the next fibre point.
Every fibre that was detected with this method is deleted in the initial image,
so the algorithm runs until there are no more fibre-like structures left. Crossing
fibres are treated by a maximum change in the angle during each step during
tracing. Erroneously encountered gaps within the fibres are tried to resolve by
a binary image that includes all the detected fibre points up to that point. If
a traced fibre ends at a certain point and this point is already recognized as a
fibre in this image, it is marked as a critical point. If critical points of two fibres
match, it is assumed to be one fibre. The fibre length of fibre i is determined by
the number of fibre voxels ni and the voxel spacing si to

Li = nisi, (2.35)

assuming that fibres are aligned to any axis.

Method by Salaberger et al.

Salaberger et al. showed two different concepts of their algorithm for the ex-
traction of fibre lengths [61]. For improving the raw data in contrast and noise,
an anisotropic diffusion filter was used.
Concept 1 starts with a segmentation of fibre material from the matrix. For re-
producibility, they used the method by Otsu [24] - which is also described in
section 2.3.3 - to derive a suitable grey value threshold without an influence of
the user. Subsequently, binary thinning is applied to reduce all fibres to their
medial axis [28]. A cluster analysis introduced by Pfeifer [64] is carried out,
where Clusters are considered to be fibre voxels with more than two adjacent
white voxels that are detected by a morphological operator. As a last step, the
fibre tracing is applied. It uses the information of the cluster detection algo-
rithm in order to follow fibres to its end or until a cluster is reached. Short
branches below a certain length that do not end up in a cluster are considered
to be noise from image acquisition. As all segments are processed, the clus-
ters are analysed and the connecting fibres are re-assembled. Since the method
was designed for short fibre reinforced polymers, which can be assumed to
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2.6 Fibre Volume Content

be straight, it is sufficient to determine the start and endpoint of each fibre to
derive the fibre length by the Euclidean distance

Li =
√

(∆x)2 + (∆y)2 + (∆z)2, (2.36)

where ∆ is the difference between start and endpoint of the fibre.

The second concept considered works on grey value images and there is no
need of a binarization. The initial image is processed similar to the method by
Teßmann using the eigenvalues of the Hessian matrix. In every fibre point, the
grey values within a plane perpendicular to the fibre orientation are taken into
account. In an ideal case, those should show a peak in the middle of the fibre.
Thus, these points are set in a resulting binary image.

The applicability of this algorithm for short fibre reinforced polymers was proven
in another publication by Salaberger et al. [65] using different image resolutions
from 1µm to 3µm. Scans with a voxel size of 1µm and 2µm delivered almost
exact results while scans with 3µm decreased the mean value from originally
195.2µm to 178.4µm.

2.6 Fibre Volume Content

2.6.1 Specimen Incineration

A destructive method for the purpose of characterising fibre volume contents
is the incineration of the polymer matrix. Therefore, samples are heated up in
small ceramic melting pots, where the matrix material is burned off and only
the fibre material remains. The weight of the full sample and of the remaining
fibre material can be measured using a high precision scale. The fibre content
by weight is derived directly from those measured values

cw,f =
wf
wtot

(2.37)

where wf is the weight of the fibres and wtot is the total weight of the sample.
Including the density of the constituents and the fact that the weight of the
polymer is wm = wtot − wf , the fibre volume content is given by [66]

cv,f =

wf
ρf

wf
ρf

+ wm
ρm

. (2.38)
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2.6.2 Principle of Archimedes

In ”An introduction to composite materials” by Hull and Clyne [67], a method
for the determination of porosity within composites was described using the
principle of Archimedes. Therefore, the density of the composite has to be
known exactly. The same approach can be made for the fibre volume fraction
in absence of pores. As the volume and the density of a specimen can be mea-
sured using Archimedes’ principle, the fibre weight content can be calculated
through

cw,f =
ρc − ρm
ρf − ρm

, (2.39)

where ρf and ρm are the densities for of the fibres and the matrix and ρc is the
density of the composite measured using Archimedes’ principle.

2.6.3 X-Ray based Methods

Volumetric Images

Measuring fibre volume content from volumetric images is a great challenge
due to image blur. Using a grey value threshold for separation, the fibre vol-
ume content can be ”adjusted” in a wide range by choosing a higher or lower
value. In general, it is possible to use all of the thresholding techniques de-
scribed in section 2.3.3 for the segmentation of an image. But effects like beam
hardening can influence the image dependent on the arrangement of the fibres
so the methods do not necessarily work for all images acquired with the same
parameters.

Projection Images

In [68], a method for the use of X-ray projection images has been developed for
the purpose of in-line measurement of the local fibre content of SMC material
in a production line. A support vector regression (SVR) was utilized using
a dataset derived from 17 samples. Those samples were combined in stacks
of two with all possible permutations what results in a ground truth of 153
samples. The fibre volume content of the samples was measured subsequently
by incineration. The feature space was chosen to the attenuation path length
(APL) and the relative attenuation
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2.7 Porosity and Inclusion Analysis

Rµ(x) = − ln
ID(x)

I0(x)
(2.40)

in a certain point or region. Applying the law of Lambert-Beer (eq. 2.2), the at-
tenuation should be linear with the APL in a logarithmic diagram. But as there
are effects like beam hardening, the values are no longer linear dependent. For
that reason, a SVR was trained in order to fit a hyperplane which links the fea-
ture space to a certain fibre volume content. After training, the maximum er-
ror in fibre volume content using optimal parameters was 0.44 vol % for planar
specimen. Further tests with a corrugated sample resulted in an error of up to
4 vol % in areas where the penetration length was high. However, the SVR has
not been trained with specimen of a thickness up to that point so it is likely that
the method can be improved if the reference plates are adjusted to the range of
the penetration lengths that appear with the sample shape of interest.

2.7 Porosity and Inclusion Analysis

2.7.1 Descriptors for Morphology

Measures in order to describe the shape of pores are frequently used for the
characterization of foam structures. Elmoutaouakkil et al [69] introduced a
couple of descriptors for porous structures that can also be used for the sake
of characterizing pores in polymer structures. For this reason, the following
descriptors are of interest:

• Number of Pores

• Surface S

• Volume V

• Sphericity:
SP = 6V

√
π
S3 , gets equal to 1 for spherical pores

• Morphological Factor F :
is derived from the eigenvalues of a 3D inertia matrix that is determined
for a certain pore. The higher the ratio of the eigenvalues, the higher is
the elongation of a pore.

Lin and Miller [70] determined the sphericity of particles in volumetric images
by sampling a triangular mesh on the surface of each particle. They employed
the marching cubes algorithm [71] for improving of the extracted surface and
thereby the results of the sphericity.
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2.7.2 Surface Curvature

Despite the descriptors above, also local curvature information of pores can
be extracted. Therefore, the image has to be binarized in order to recognize the
edges of objects properly. Note that the algorithms will result in an erroneously
curvature for an incorrect segmentation since the object will appear eroded or
dilated. For two-dimensional images there is only one curvature, while two
principal curvatures can be derived from a three-dimensional image (Figure
2.16).

1
κ

κ1

κ2

Figure 2.16: Curvature on 2D an 3D structures.

From those principle curvatures for the three-dimensional case, some scalar
curvature measures can be derived:

• Gaussian Curvature is the product of both principal curvatures in 3D. As
one of the principal curvatures is zero, also the Gaussian curvature gets
zero.

κG = κ1 · κ2 (2.41)

• Mean Curvature is the average of the principal curvatures

κM =
1

2
(κ1 + κ2). (2.42)
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• Max Curvature is the highest of the principal curvatures

κmax = max({κ1, κ2}) (2.43)

• Min Curvature is the lowest of the principal curvatures

κmin = min({κ1, κ2}) (2.44)

In order to derive the surface curvatures from surface voxels in CT images, we
will investigate two different approaches. The first one is named the ”patch-
based method” since it runs on a specified surface patch of the local structure.
The second method is called the ”Hessian-based method” as the curvature is
derived directly from the Hessian matrix. Therefore, some definitions from dif-
ferential geometry are needed. A mathematical surface S2 in three-dimensional
space is a two-dimensional regular submanifold of R3 [72]. This surface can
also be described by a normal vector field in R3, where every surface normal
has its origin on a surface point p ∈ S and has the unit length. Those normal
vectors are expressed in a local coordinate system F with the Normal vector ns
and two perpendicular tangent vectors t1 and t2.

F = {ns, t1 =
ns⊥
‖ns⊥‖

, t2 = ns × t1} (2.45)

Note that the local coordinate system does not have to be aligned to the prin-
cipal curvatures of the surface. The Gaussian map, which takes part in both of
the following methods, makes use of the local vector field around a given point
as the change of those vectors is directly related to the curvature at a given
point [73].

Patch-based Method

This approach is implemented in the Advanced Normalization Tools (ANTs)
[74] and is based on the original paper of Avants and Gee from 2003 [73]. For
the evaluation, a patch size has to be chosen that specifies the radius of the local
neighbourhood taken into account at each voxel. In the ANTs implementation,
this parameter is called σ [75] for the command line tool. Using the Gaussian
map in the local frame, the derivative of the normal vector ns,u in u-direction,
which is perpendicular to ns - just like ns,v in v-direction - can be written as a
linear combination of the tangent vectors t1 and t2:

ns,u = at1 + ct2 (2.46)
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Figure 2.17: Illustration of Gauss map. n shows the normal vector to the surface
of an object for a certain point, where the Gaussian map is evalu-
ated. t1 and t2 illustrate the vectors of the corresponding plane
where the surface normal vectors derived from the image gradient
in a certain region are mapped to.

ns,v = bt1 + dt2 (2.47)

The Jacobian of dns(p) in the local coordinates u and v leads to the shape oper-
ator S

S =

[
as cs
bs ds

]
(2.48)

with the coefficients as, bs, cs, ds, where the local curvatures can be derived
from the eigenvalues of S and the principal directions from its eigenvectors.

Hessian-based Method

The implementation of this method is based on Hughes pubilication ”Differen-
tial Geometry of Implicit Surfaces in 3-Space - a Primer” [76], where he worked
out a recapitulation of Dombrowskis work from 1968 [77]. It was proven that
the surface curvature can be derived directly from a function that is defined
in R3, what enables to process volumetric images directly without using the
Gaussian map on local surface patches. Nevertheless, the shape operator - also
called ”Weingarten map” in the Hughes work - was also used for the derivation
of the following formulas. It was shown that the shape operator is independent
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of the path that was chosen on the surface. Therefore, we can also choose an
arbitrary orthonormal basis for the local tangents to calculate the eigenvalues
from the shape operator in matrix form

S =
1

‖∇I(p)‖

[
t1
tH(p)t1 t1

tH(p)t2
t2
tH(p)t1 t2

tH(p)t2

]
. (2.49)

The point p refers to all points on R3, where ‖∇I(p)‖ > 0. In case of a binarized
image, those are only points at the surface of an object. A detailed description
of the Gaussian map and the shape operator can be found in ”Differential ge-
ometry” by Tu [72].

2.8 Application in Homogenisation of Mechanical
Properties

A statistical description of the fibre orientation distribution is indispensable for
an accurate mechanical model of long fibre reinforced polymers.

Using discrete fibre orientations nα, homogenisation methods can be applied
to predict the homogenised effective stiffness tensor C̄ depending on the fibre
material parameters pf and the matrix material parameters pm

C̄ = f(pf , pm,nα). (2.50)

Herein, pf and pm contain additional information, such as volume fraction,
stiffness of both constituents and the aspect ratio of the fibres. Orientation his-
tograms (cf. Sec. 2.4.3) can be utilized to calculate effective material properties
for a pseudo grain model. For this purpose, the considered domain is divided
into subdomains containing fibres of a certain orientation. The resulting sub-
domains can be described by a pseudo-grain model. The advantage of such
an approach is to directly use a histogram for a certain orientation where the
volume percentage represents the fraction of a pseudo-grain domain within the
subdivided microstructure. Based on this, the elastic stiffness can be predicted
using e.g. the functionally graded interface model [78]. Effective thermoelas-
tic properties can be derived by the self-consistent scheme (SC), the interac-
tion direct derivative or a Hashin-Shtrikman based two-step method [79, 80].
Furthermore, the effective material properties can be determined by the fibre
orientation distribution function ψ(n)

C̄ = f(pf , pm, ψ(n)). (2.51)
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Orientation distribution functions can be obtained from fibre orientation ten-
sors and combined with the SC and the IDD method [81, 82] for a prediction
of the mechanical properties. Other homogenisation schemes, like the Mori-
Tanaka method [83] allow for the direct use of orientation tensors. Conse-
quently, the effective stiffness is calculated by

C̄ = f(pf , pm,N,N), (2.52)

using the empirical fibre orientation tensors of second and fourth order N and
N derived from volumetric images (cf. Sec. 2.4.3). The main advantage of
using fourth order tensors directly from CT data is that it is not necessary to
make further assumptions regarding closure approximations which influence
the orientation distribution. Brylka et al. [84] showed that e.g. the invariant-
based closure approximation (IBOF) [85] can lead to deviations in predicted
stiffness compared to the direct use of fourth-order orientation tensors. Herein,
for a 30 wt% glass fibre reinforced polypropylene composite the deviations in
predicted stiffness range up to 9.6 %.

2.9 Research Questions

Recent publications introduced within this chapter seem to be applicable for the
determination of local fibre orientations. Thus, the three introduced algorithms
based on an anisotropic Gaussian filter, the Hessian matrix and the structure
tensor are investigated and evaluated. Therefore, artificial microstructures have
to be used as well as real CT-scans of materials with known FOD in order to in-
vestigate the accuracy of those methods. Finally, the best performing algorithm
can be used to evaluate continuous-discontinuous long fibre reinforced mate-
rials to prove the applicability on materials of interest. For the estimation of
the accuracy of common image thresholding tools for the determination of fi-
bre volume fractions, available algorithms should be applied and compared
with values examined by conventional methods using specimen incineration.
Today, the standard procedure for the evaluation of FLDs is still the optical
measurement combined with sample incineration since available methods are
not accessible or they work only on straight fibres. Determinating FLDs by a
non-destructive method enables e.g. for the validation of fracture models us-
ing in-situ CT tests. Therefore, a fibre tracking algorithm has to be implemented
and applied on long fibre reinforced material. For validation of this method, it
has to be compared with conventional destructive optical methods. Using the
same data, fibre curvatures can be derived from spatial curves while the results
have to be validated manually due to the lack of an alternative method. While
the FLD of SMC material is known initially from the manufacturing process, the

36



2.9 Research Questions

fibre curvature is an interesting characteristic of this material system. Surface
curvatures of pores can be useful for the detection of potential notches within fi-
bre materials as those spots have a high curvature. Applying the same method
on fibres, it is possible to determine the fibre ends. For a precise determina-
tion of curvatures from volumetric images, both of the introduced methods for
the evaluation of surface curvatures based on the Hessian matrix and the fit of
a surface patch have to be compared on artificial volumetric images and real
structures of known curvature in order to find a fast and precise solution.
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3 Material

Figure 3.1: GRK 2078 Material. From bottom to top: Continuous carbon fibre
SMC, discontinuous glass fibre SMC, hybrid material made of both
bulk composites in a sandwich-design with the carbon fibre SMC on
the shell and the glass fibre SMC in the core.

All of the methods for microstructure characterization in the following are de-
veloped in order to investigate CoDiCo materials consisting of long fibre rein-
forced polymers (LFRP). For continuous fibre reinforcements, the fibre length
and orientation are generally known, but pores that appear between layers
are of high scientific interest. Discontinuous fibre reinforcements show a lo-
cally varying orientation distribution that depends on the flow conditions in
the manufacturing process which can be derived from CT-scans. Figure 3.1 il-
lustrates some of the material systems investigated during the first generation
of the GRK 2078. It shows a continuous carbon fibre (CF) reinforced plaque on
the bottom, a discontinuous glass fibre (GF) reinforced SMC in the middle and
a hybrid material made of a combination of both of them on top. For hybrid
materials, the position of interface between the bulk composites can be deter-
mined from CT-images.
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3.1 Long Fibre Reinforced Polymers (LFRP)

3.1.1 Sheet Moulding Compounds

The term sheet moulding compound (SMC) refers to the sheet-shaped semi-
finished product in the production chain. Those sheets are produced continu-
ously on a compounding machine, where chopped fibres fall on a film of un-
cured matrix material - also called the paste - that is applied on a thin polymer
foil. Cutting of the fibres is carried out in a chopper consisting of blades on
a roll that specifies the length of fibres. Subsequently, another foil with paste
is applied on the top of the dry fibres, forming a laminate of two plies of paste
and one ply of fibres that is calendered to induce the compaction, impregnation
and the wetting of the fibres. The resulting sheet is rolled on a coil and matured
for a specific period of time until it gets a leather-like, workable texture [86].

The final product is produced by compression moulding of the SMC. The sheets
are cut into pieces and fitted into the mould after removing the transport foil.
Thereby, the entire mould can be covered so the material does not flow during
pressing. This avoids the rearrangement of the fibres and the orientation distri-
bution is assumed to be almost planar isotropic. Usually, the SMC is put onto
a smaller region within the mould, the material will flow and the fibre orienta-
tion in the resulting part will be dependent on the material flow. This flow is
also beneficial for a low porosity as air pockets can leak during this process.

In microstructure characterization, the orientation analysis on SMC is most im-
portant for material that flowed during compression moulding. The FLD of
SMC material can be assumed to be known because fibres appear typically
in bundles that rarely break during the entire manufacturing process. This
fact justifies to use the fibre length set up in the fibre chopper as the approx-
imated fibre length. Pore analysis can be interesting for SMC materials espe-
cially for non-flow material where the manufacturing process is not optimized
very well.

Discontinuous GF SMC

Glass fibre reinforcements are most common in the SMC process. Usually, those
material systems are used in automotive industry including chalk filler mate-
rial to receive class A surfaces but a lower strength. The GRK 2078 aims to
develop an SMC material for structural parts, so the paste does not include
fillers resulting in a worse surface quality. Fibres are usually not separated in
SMC and remain as bundles in the finished parts.
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In CT-scans the fibres show a good visibility due to a high contrast in density
compared with the polymer matrix. On the other hand, pores are hardly visible
in a GF-composite. The visibility is not only dependent on the difference in
density, but also on the fibre architecture. Due to various CT artefacts, shadows
show up in less dense regions that are surrounded by dense objects. Figure 3.2
illustrates this issue on a woven glass fibre material. The pores in the dark area
between the fibre bundles have a very low contrast while the fibres can be seen
clearly.

Figure 3.2: CT scan of a woven glass fibre reinforced material with pores. Glass
fibres have a good visibility while the contrast of the pores (marked
by red circles) is very low.

The latter image is only for demonstration as there are no pores in the GF SMC
at hand. Nevertheless, the same effect can be expected for the GF SMC as the
fibres are bundled and thus there are shadowed areas between those bundles
(Figure 3.3). The matrix material is an unsaturated polyester polyurethane resin
(UPPH) from Aliancys and the glass fibres for the DiCo GF SMC came from
Johns Manville under the name GF Multistar 272.
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Figure 3.3: CT scan of a glass fibre reinforced SMC.
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Discontinuous CF SMC

Production of carbon fibre reinforced SMC corresponds widely to the GF SMC
process in the previous section. The matrix material is a UPPH-resin and the
fibres are called ”Panex 35” from Zoltek. Orientation analysis in CT images is
a challenging problem as the contrast between fibres and matrix is very low.
Figure 3.4 shows an carbon fibre reinforced SMC. The grey value of matrix
material and fibres is almost the same, but the orientation is still visible to the
naked eye. It is also apparent that there are no pores within the material since
they would be highly visible as it can be seen in Figure 3.10.

Figure 3.4: CT scan of a carbon fibre SMC. Carbon fibres can can not be sepa-
rated but the orientation can be seen.

Continuous CF SMC

Manufacturing of continuous carbon fibre reinforced polymer in a SMC pro-
cess is atypical but combined with other materials it enables to produce com-
plex parts with high stiffness and strength. The basis of the constituents is
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almost similar to those of DiCo CF SMC but with a slight adaption of the ma-
trix material to match the requirements of the new manufacturing process. The
production of the semi-finished product is different from the classic method.
Here, it was produced on a laboratory scale production line using a special B-
stage resin that is heated up using heating plates at the end of the line [87]. This
enables to cure the resin to the first of two steps and thus to get a workable but
flexible sheet that can be inserted to the mould just like a common SMC mate-
rial. Bulk continuous carbon fibre reinforced plaques are produced by covering
the entire mould with the semi-finished sheets to avoid material flow eventu-
ally resulting misalignments of the continuous fibres.

Figure 3.10 shows an example for a carbon fibre layup with pores. The image
quality is comparable to the CF SMC: The contrast between fibre and matrix is
low but the orientation is visible and pores show a high contrast.

3.1.2 Long Fibre Reinforced Thermoplastic

The most significant difference of long fibre reinforced thermoplastics (LFT) to
the SMC material is the thermoplastic matrix material. Therefore, the manufac-
turing process of the semi-finished product is quite different. The previously
compounded polymer matrix is mixed with the glass fibres straight from the
bobbin with in an twin-screw extruder [88]. The fibres are shortened just by
kneading in the extruder. The material mixture is extruded and cut to a specific
size corresponding to the volume of the building component, which is called
the plastificate. This semi-finished product can be processed just like the SMC
material in a compression flow moulding process. The initial fibre orientation
shows a more complicated distribution due to the kneading in the extruder.
Usually, all the fibres are separated and bundles are not present. Thus, the fi-
bre curvature is higher due to the reduced bending stiffness of the single fibres.
The fibre length distribution not that sharp as it is in SMC material because the
fibres are broken randomly in the extruder. Figure 3.5 shows a slice through a
glass fibre reinforced LFT material. The primary LFT material in this thesis is
made of a PP matrix with 10, 20 and 30 wt % glass fibres of type TufRov 4575.

3.1.3 Overview LFRP

All long fibre reinforced materials are listed in Table 3.1 for a better overview
throughout this thesis.
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Figure 3.5: CT scan of a glass fibre reinforced LFT material. Fibres have a high
contrast to the matrix an the curvature of the fibres is clearly notice-
able.

Table 3.1: Primary continuous and discontinuous fibre reinforced materials

Material Matrix Fibre approx. fibre Fibre length
system system material weight content (%) (mm)

DiCo GF SMC UPPH GF 41 25.4
DiCo CF SMC UPPH CF 55 25.4

Co CF UPPH CF 60 -
LFT PP GF {10,20,30} unknown

3.2 Validation Materials

Even though the aim of this thesis is to characterize CoDiCo LFRP material,
which is described within this chapter, in many cases it makes sense to test
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and validate methods with other material systems. E.g. for orientation analysis
tasks, a known FOD is beneficial for validation which is not available for the
material at hand. In other cases, like for the fibre tracking method, it is not pos-
sible to process the necessary specimen size due to limited computational capa-
bilities. Hence, the fibre length distribution of LFRPs cannot be evaluated, but
the fibre tracking algorithm can still be used to determine fibre curvatures. As
the X-Ray absorption is almost constant throughout most polymers, the matrix
material is not a major concern. Even thermosets and thermoplastics are not
distinguishable from the reconstructed image. On the contrary, the fibre ma-
terial - carbon or glass - influences the contrast within the image significantly.
This circumstance justifies the use of alternate materials for the purpose of val-
idation.

3.2.1 Fibre Orientation Distributions

For validation of orientation analysis methods, a physical material with known
orientation distribution is needed. Thus, two different Material system includ-
ing carbon fibres and glass fibres are used for validation in the following.

3D-Printed Specimen

The first material is a 3D printed glass fibre reinforced ABS matrix with a fi-
bre content of 10 wt % [89]. Figure 3.7 (left) shows the high contrast between
glass and polymer. Thus, the fibres can be separated easily. The fused deposi-
tion modelling (FDM) process, which was used for manufacturing, affects the
fibres to be highly aligned to the printing path. A sample was produced with a
printing path aligned to the 0◦ direction (see Fig. 3.6) provoking a sharp fibre
orientation distribution.

Pultruded Carbon Fibre Rod

The second real image or validation of orientation analysis methods (Figure 3.7
(right)) shows the microstructure of a carbon fibre reinforced pultrusion rod.
The matrix material is epoxy, which contains four carbon fibre rovings which
consist of 1200 fibres each. The rod diameter is 4 mm. Carbon fibres show very
low contrast to the polymer and cannot be separated individually.
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4 50

6

Figure 3.6: 3D-printed GF reinforced sample. The in-plane printing path is
shown by the lines on top of the sample. The arrow on the left il-
lustrates the stacking direction of the single layers.

Figure 3.7: CT-Scan of 3D printed ABS GF 10 specimen (left) and the unidirec-
tional continuous carbon fibre reinforced specimen (right) [46].

3.2.2 Fibre Volume Content

Measurement of the fibre volume content from CT-scans requires a high con-
trast within matrix and fibre material. Hence, those methods are hardy appli-
cable using CFRP samples. As there are further no obvious restrictions to the
material system for the determination of fibre volume contents, LFRP material
was used directly for the validation of the image processing methods.
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Figure 3.8: Location of SMC samples on the originally manufactured plate.

DiCo GF SMC

Four discontinuous glass fibre reinforced SMC specimen with a size of 10 ×
10×3 mm3 were cut from different locations on a plate for validation of thresh-
olding techniques using CT images. Sample locations are illustrated in Figure
3.8 by red ellipses. The plate was manufactured with a fibre volume content of
41 wt %. The semi-finished product was placed over two quadrants of the plate
on position C and D and flowed in one direction to the sample positions A and
B. The matrix material is an unsaturated polyester polyurethane resin (UPPH)
with a density of 1.14 g/cm3. Glass fibres have a density of 2.5 g/cm3.

LFT

Using LFT material, three glass fibre reinforced samples made of polypropy-
lene (PP) with fibre contents of 10 wt %, 20 wt % and 30 wt % were investigated.
The samples were also cut to a size of 10 × 10 × 3 mm3. The densities of the
constituents are 0.95 g/cm3 for PP and 2.5 g/cm3 for glass fibres.
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3.2.3 Fibre Tracking and Fibre Length Distributions

The fibre tracking algorithm enables for the evaluation of FLDs and fibre curva-
tures. For validation of FLDs, the method can be compared with conventional
optical methods based on incineration. Thus, a LFT sample manufactured by
injection moulding was used as the average fibre length is short enough to cap-
ture it with state of the art CT-scanners. Nevertheless, the method was also
applied on a high-resolution scan of DiCo GF SMC in order to demonstrate the
applicability on materials with longer fibres even if the actual length of up to
25.4 mm cannot be captured.

IM-LFT

Squared LFT samples with an edge length of a were cropped from injection
moulded LFT plates of 4 mm thickness Fibre content by mass was determined
to 28.41 wt % in a plate which was manufactured with equal parameters as the
investigated sample. Four different sample sizes were cropped from the sample
with an edge length of a = {5, 10, 20, 40} mm.

SMC

As the FLD of SMC material is known from the manufacturing parameters and
the mean fibre length is much higher than the possible image size, fibres were
tracked from CT-images in order to explore the limits of the algorithm.

3.2.4 Surface Curvature

Validation structures of surface curvatures can easily be generated by any spher-
ical objects like bearing balls. Nevertheless, the surface curvature algorithm
was also applied to real pores within a CFRP. Note that this method is hardly
possible on GFRPs because of the relatively low contrast between matrix mate-
rial and air.

Reference Object made of Bearing Balls

In order to test the methods for determination of local surface curvatures on
real CT-scans, some balls of known diameter were picked from ball-bearings
and put into a film container as reference structure. Figure 3.9 illustrates the

49



3 Material

Figure 3.9: CT scan of balls extracted from ball-bearings for validation of cur-
vature analysis [90].

resulting image. The balls have diameters of 8 mm and 4 mm and the film con-
tainer has a diameter of 31 mm.

Pore Analysis on Continuous CFRP

In order to derive a local surface curvature from real pores, a porous continu-
ous CFRP-layup with PA6 matrix material shown in figure 3.10 was used. The
scanned volume has a physical size of 10× 10× 3.5 mm3.
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Figure 3.10: CT scan of a carbon fibre reinforced material with pores. Carbon fi-
bres can hardly be recognized while the pores show a high contrast
and sharpness.
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4 Development of Analytical
Methods

4.1 Fibre Orientation Distribution

4.1.1 Implementation of Voxel-Based Methods

Anisotropic Gaussian Filter

The method based on the anisotropic Gaussian filter was mostly implemented
in C++ using the ITK library. For the partition of the sphere, the original MAT-
LAB code by Leopardi [47] is used and imported using the MATLAB Engine
API for C/C++. The orientations of Leopardis sphere partitioning are saved
to an orientation table containing a sequential number and a corresponding
orientation. The initial input image is converted to a float image using the
itk:CastImageFilter. In section 2.4.2, the method was introduced assuming that
the filter mask of the anisotropic Gaussian filter will be rotated. Practically,
it is much faster to rotate the entire image since the recursive Gaussian filter
is much more efficient than a filter mask. Therefore, a padding is added to
the image so it can be rotated without cropping the edges. The rotation is ap-
plied using the itk:ResampleImageFilter. This transformed image is filtered by
an anisotropic Gaussian filter, using the itk:RecursiveGaussianImageFilter and
applying it for each direction with the blurring parameters λ1, λ2 and λ3 (see
section 2.4.2). The result is compared with an image that includes the highest
filter response and the corresponding orientation. This is carried out by the
MaxIntensityFilter, which writes the number of the orientation and with the
corresponding filter response to a vector image in orientation space iteratively
for all N orientations. Subsequently the orientation image can be saved either
as a vector valued or an integer image which includes the orientation in each
voxel as a normed vector or the number of the orientation from the orientation
table.

53



4 Development of Analytical Methods

InputFileName, λ1, λ2, λ3, N , OutputFileName

Discretisation of the
unit sphere

with N angles
(orientation table)

itk:CastImageFilter

itk:PadImageFilter

itk:ResampleImageFilter

itk:RecursiveGaussianImageFilter

Output Image in
orientation space O(x)

MaxIntensityFilter

i
if i

< N

itk:ImageFileWriter

if i = N

Figure 4.1: Program flow chart for the orientation analysis using the anisotropic
Gaussian Filter.

Hessian Matrix

Orientation analysis by the Hessian matrix starts with the itk:CastImageFilter,
where the input image is transformed to an image of type float. Subsequently,
the itk:HessianRecursiveGaussainImageFilter calculates the Hessian matrix in
each voxel and stores it in form of a symmetric second rank tensor. This step
also includes a Gaussian blur, which has to be given to the tool as an input
parameter. The orientation is derived by the ITK built in class-function for
eigen analysis itk:SymmetricSecondRankTensor.EigenAnalysis(). This function
returns the eigenvectors and eigenvalues in ascending order, so the first value
is used for the orientation in each point. In the last step, the vectors represent-
ing the orientation are restricted to one half of the unit sphere in order to avoid
redundancy. Furthermore, all vectors appearing on voxels where the original
input image is below a certain threshold t are set to zero simultaneously. Fi-
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InputFileName, σ, OutputImage

itk:CastImageFilter

itk:HessianRecursiveGaussianImageFilter
(includes blurring)

itk:SymmetricSecondRankTensor.EigenAnalysis()

Restrict orientations to one half of the sphere

itk:ImageFileWriter

Figure 4.2: Program flow chart for the orientation analysis using the Hessian
Matrix.

nally, a vector valued image including the orientation in each voxel is saved as
a meta image (.mhd or .mha) using the itk:ImageFileWriter.

Structure Tensor

In order to cast the input image to a data type of float, the implementation of
the structure tensor based method starts with the itk:CastImageFilter. Subse-
quently, the image gradient is derived using the itk:GradientImageFilter. The
dyadic product of the gradient (eq. 2.24) is calculated using the ITK built-in
iterator class itk:ImageRegionIterator and the structure tensor is generated by
itk:RecursiveGaussianImageFilter (eq. 2.25). The orientation is derived from
the structure tensor similarly to the Hessian matrix in the previous section
utilizing the class function SymmetricSecondRankTensor.EigenAnalysis(). The
orientations are restricted on one half on a sphere and voxels below a thresh-
old t in the input image are set to zero in the vector valued output image. The
itk:ImageFileWriter saves the result as in meta image format.
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InputFileName, σ, ρ, t, OutputFileName

itk:CastImageFilter

itk:GradientImageFilter (including Gaussian blur)

Build the structure tensor
itk:ImageRegionIterator

itk:RecursiveGaussianImageFilter

itk:SymmetricSecondRankTensor.EigenAnalysis()

Restrict orientations to
one half of the sphere

itk:ImageFileWriter

Figure 4.3: Flow chart for the structure tensor based orientation analysis.

4.1.2 Statistical Orientation Distributions

In order to derive statistical descriptors of the orientation from the vector-
valued images, the results from the orientation algorithms are imported to
MATLAB using the MetaImage format. MATLAB enables for an easy access to
the data as the vectors are stored in a four dimensional matrix and single val-
ues or tendencies can be checked easily during the evaluation. Vector valued
images are imported using the mha read volume function available on Math-
Works File Exchange is implemented by Dirk-Jan Kroon in his toolkit Read
Medical Data 3D. The image can be imported using the function

img = mha read volume(’FILENAME.mhd’);

Subsequently, the components of the voxel are accessible using

img(c,x,y,z),

where c is the component of the orientation vector at the spatial position x,y,z.
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Orientation Histograms

The discretization of the orientations on the half sphere is carried out by the tool
implemented by Leopardi [47]. Only even quantities of fields on the full sphere
are used since the assignment of orientations in the equator plane is not unique
if there is an odd number of fields. In general, N/2 fields of Leopardis algo-
rithm for the full sphere are used to generate the histogram. Furthermore, the
method results in configurations with and without centre points of the fields in
the equator plane. If that is the case and the number of orientations is chosen to
be very small, it is not possible to map all the orientations properly to the half
sphere as there is no centre point in the equator plane (see Fig. 4.4). This bias
is quite large for low numbers of fields like in the middle graph but goes down
for larger quantities of fields (e.g. with 150 in the right graph). Nevertheless,
only those N with centre points ending up in this equator plane are used for
the orientation histograms.

Figure 4.4: Partitions of the sphere created with the MATLAB tool of Leopardi.
From left to right: Six partitions with centre points in the equator
plane / Ten Partitions without centre points in the equator plane /
150 partitions without centre points in the equator plane.

In order to assign the orientations from the vector-valued images to the corre-
sponding fields of the histogram, every vector is compared with the boundaries
of each field subsequently. AsN is chosen as mentioned before, the assignment
of each direction is unique and the search can be skipped after a match to con-
tinue with the next vector. Once all voxels of the image are processed, the result
can be displayed either in an 3D hedgehog plot or a discrete polar plot. In this
contribution, the polar (Fig. 4.5) plot is preferred since it is two dimensional.
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Figure 4.5: Exemplary orientation histogram using a polar plot. Colour and
size of each point in the polar plot illustrate the volume fraction of
the corresponding orientation.

Orientation Tensors

Orientation tensors are generated across the entire sample or in a smaller re-
gion of interest. The MATLAB build in functions allow for a fast calculation
of orientation tensors by using the sum function in a certain region. E.g. Nij is
given by the sum of all products of the corresponding component of the vectors
resulting from the orientation analysis

OT2(n)=sum(sum(sum(img(i,:,:,:).*img(j,:,:,:))));

Due to the symmetries, only six of the 9 components have to be stored for the
2nd order tensor. To save those tensors efficiently, they are written to an ASCII
file in order

[a 11 a 12 a 13 a 22 a 23 a 33]

where each a ij is stored to the corresponding nth position to the array OT2(n).
Orientation tensors of 4th order can be fully described with 15 independent
components which are saved in order
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[a 3333 a 3332 a 3322 a 3222 a 2222 a 3331 a 3321 a 3221
a 2221 a 3311 a 3211 a 2211 a 3111 a 2111 a 1111]

and calculated similar to the 2nd order tensors.

4.1.3 Artificial Images and Error Criterion

The validation of orientation data from real CT-data acquired from fibre rein-
forced polymers it hardly possible as there is no non-destructible method to
analyse it with reasonable effort. For that reason, all algorithms were applied
to artificial images with known orientation in a first step in order to define error
criteria that allow for the evaluation of the algorithms used.

One and Two-Fibre Models

In a first simple approach, a tool was implemented in ITK to generate artificial
images of cylinders with certain angle θ and distance d. Figure 4.6 illustrates
the most important parameters. Further parameters that have to be specified
are the edge length of the image w, the fibre diameter D and two angles to
rotate the fibres within image in order to make sure that fibres are not aligned
to the regular image grid. All lengths and diameters are given in voxels.
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Figure 4.6: Left: Arrangement of the two-fibre models. Images are generated
with variable distance d, and angle α. Right: Error in orientation θE ,
which is calculated in each fibre voxel [46].

59



4 Development of Analytical Methods

The tool generates a binary image as well as a vector valued image that includes
the correct orientation in each white voxel of the binary image. The binary im-
age is used as input for all of the implemented algorithms mentioned in section
4.1.1 while the vector valued image provides the data to evaluate an error cri-
terion for each image. This error can be considered on various scales. Locally,
it is defined as the spatial angle between the real orientation and the one pro-
vided by the orientation algorithm in each voxel (Figure 4.6) and is noted as θE .
On a global scale for an entire image, θgE is specified as the average of all local
misalignments within an image

θgE(I(α, d)) =

N∑
i=1

θE,i
N

(4.1)

where N is the number of fibre voxels. I(α, d) refers to an image that is gener-
ated with the angle α and the distance d between two fibres. Note that the error
θE cannot be larger than 90◦ and thus, the global error is 0◦ ≤ ΘgE ≤ 90◦.

As this global measure only takes one configuration of α and d into account,
another value is introduced to respect for the fibre architecture. EA is the av-
erage of all global errors ΘgE for a certain set of configurations of the artificial
images

EA =

Nα∑
i=1

Nd∑
j=1

θgE(I(αi, dj))

Nα ·Nd
. (4.2)

Nα and Nd are the total number of angles and distances to investigate. This
method enables to estimate the performance of the algorithms for different fibre
architectures like unidirectional or isotropic distributed structures.

Orientation Tensors

Artificial microstructures based on orientation tensors were built with the com-
mercial tool GeoDict R©. It enables to generate microstructures based on orien-
tation tensors with or without periodic boundary conditions. The resulting im-
ages were processed with the methods for orientation analysis in section 4.1.1
and the orientation tensor was built from those results. As error measure, the
Frobenius norm of the difference of the input and output orientation tensor
(NI and NO) was divided by the Frobenius norm of the input orientation ten-
sor

ET =
‖NI −NO‖F
‖NI‖F

. (4.3)

This measure becomes zero for a result that matches the input tensor perfectly,
but it can become larger than one due to deviatoric components.
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4.1.4 Separation of different Microstructures

Using the local orientation information e.g. in form of orientation tensors, it
is possible to separate layers with different microstructures or orientation from
layups. Considering an orientation tensor of a planar isotropic material like
SMC, the eigenvalues of a local orientation tensor are nearly

λ1 ≈ λ2 ≈ 0.5, λ3 ≈ 0. (4.4)

The ideal orientation tensor for a unidirectional fibre architecture results in

λ1 ≈ 1, λ2 ≈ λ3 ≈ 0 (4.5)

so the transition between an SMC and any unidirectional reinforced material
can be found by investigating the eigenvalues of a hybrid specimen over thick-
ness in z-direction. For this purpose, the quadratic coherence measure is de-
fined as

c =

(
λ1 − λ2
λ1 + λ2

)2

, (4.6)

where λ1 and λ2 are the largest eigenvalues of the orientation tensor. The ori-
entation tensors are not evaluated in an isotropic region, but in a plane parallel
to the plate surface. This avoids an error resulting from the next layer. Using
this method, the area taken into account has to be large enough to includes
many fibre rovings of the SMC with different orientations to lower the coher-
ence measure c compared to adjacent UD layers.

The segmentation of UD layers with different orientations in a layup can be
separated by investigating the principal orientation of the orientation tensor in
each layer. Therefore, the eigenvector of the highest eigenvalue in each layer
is observed along the z-axis. In ideal case, the derivative of the planar angle -
which is derived from the eigenvector - shows a peak at the interface between
two layers.
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4.2 Fibre Tracking in CT-images

The methods for fibre tracking introduced in this section have been developed
in cooperation with fellow colleague Benjamin Bertram. The algorithms are
partially published in [30].

In order to derive fibre length distributions or the curvature of fibres from CT-
images, their centrelines have to be tracked. Raw high-resolution images of
glass fibre reinforced polymers show many touching points of the fibres. This
can be a problem since the algorithm can result in the wrong path and connect
branches that do not belong to the same fibre. Thus, a set of filters described
from section 4.2.1 to 4.2.4 was implemented or adapted to prevent incorrect
assignments.

4.2.1 Circular Voting Filter

The circular voting filter was implemented to gain the centrelines of cylindric
structures and to filter out noise and particles. It is used as a pre-filter for the
subsequent tracking algorithm. The basic idea of this method is to thin the
fibres of the initial image and thus rise the distance between them. Common
filters for improving fibrous structures, e.g. the anisotropic diffusion filter, need
a lot of input parameters that are not very user-friendly since they are based on
the differential equations of Fick’s method. In contrast to this, the circular vot-
ing filters most important input parameter is the fibre radius. Since the diam-
eter of glass fibres does not vary in a large range, we assume it to be constant.
Using it as an input for the filter, the parameter adjustment is easy since it can
be measured directly from the raw CT-image.

The circular voting filter is a combination of a surface normal overlap measure
w which takes the fibre radius into account, and a coherence measure κ that is
derived from the structure tensor. Both make only use of the first derivative of
the input image and are combined to the circular voting filter response fcw

fcv = κcmi · w1−cm
i . (4.7)

Surface Normal Overlap Measure

In order to gain the centreline of the fibres, a surface overlap measure w was
taken into account [91]. Figure 4.7 shows the principle of the filter. It is imple-
mented as a filter mask, which is evaluated in each voxel of the image. From
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each voxel, the known fibre radius R is combined with a Gaussian function
with the blurring factor σr.

wi = pi exp−
( |‖ri‖ −R|

σr

)2

(4.8)

Using this blurring function, also gradients that differ slightly from the real
radius are taken into account. Since only the gradients pointing towards the
centre point are of interest, the weight function pi was defined:

pi =

{
1 if ^(∇(xi), r) < 60

0 else
(4.9)

As the orientation of the fibre is not known initially, the filter is looking up a
spherical region around the present voxel, what is illustrated by the blurred
blue circular region in figure 4.7. If the angular deviation ai is small, the filter
responses a high value what leads to a sharp bright line in the middle of each
fibre if the entire image is taken into account.

w =
∑
i∈S

wi exp−
(
ai
σa

)2

‖∇(xi)‖ (4.10)

σ
r
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a
i
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Figure 4.7: Principle of the CircularVoting Filter.
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This filter is used as a medialness filter which returns a high response for every
voxel that is located in the centre of a fibre or a sphere. Actually, the response in
spherical inclusions will be even higher than in fibres if the radius of it is equal
the fibre diameter since all the gradients are pointing to the centre point.

Coherence Measure

Since the medialness measure w leads also to high values for spheres, it is com-
bined with the coherence measure derived from the structure tensor that was
defined in section 2.4.2. Therefore, the dyadic products of the image gradients
are weighted by the medialness measure to enhance the impact of voxels which
are likely to be fibre voxels.

J(W ) =
∑
i∈S

wi∇(xi)∇(xi)
> (4.11)

Subsequently, the eigen analysis is carried out in each voxel and the coherence
measure

κ(J) =
λ2

α+ λ3
(4.12)

is calculated from the eigenvalues of the structure tensor, where α is a infinite-
simal small number to prevent division by zero errors. The eigenvalues are in
order λ1 ≥ λ2 ≥ λ3.

4.2.2 Segmentation and Skeletonization

The pre-filtered image is binarized by an ordinary thresholding operation in
ImageJ. The threshold is adjusted by hand since a different choice of the fi-
bre radius in the CircularVoting step will influence the data in a way that it
is not possible to use a certain thresholding technique like those described in
section 2.3.3. For the binarization, the user has to pay attention that the thresh-
old is neither too high so that the fibre is no more connected nor too low so
that neighbouring fibres appear to be in contact to each other. The subsequent
skeletonization is carried out by the ImageJ plugin described in section 2.3.4.
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4.2.3 Tracking Algorithm

The algorithm used for fibre tracking is based on the open-source ImageJ plu-
gin AnalyzeSkeleton initially implemented by Arganda-Carreras [29] and was
modified in order to analyse fibre reinforced polymers. The original method
evaluates a skeleton and gives back a couple of characteristics like the number
of branches and junctions for each skeleton. As the algorithm is utilised to pro-
cess fibres that do not have any junctions, some changes had to be implemented
to the code. After the skeleton is labelled like described in section 2.3.4, every
junction of the skeleton is analysed and dissolved subsequently. Therefore, the
local orientation is taken into account. Each branch that is connected to the
present junction is followed for a certain number of voxels to calculate a vector
from this point to the vertex point. Subsequently, this vector of every adjacent
branch is normalised and multiplied with all of those of all other branches of
the present junction to get the scalar directional accordance γ.

γ = ni · nj (4.13)

If γ results in -1, the branches outward in the opposite directions and it is likely
that the branches belong to each other. If it is 1, the branches go off in the same
direction and it is unlikely that they belong to the same fibre. The directional
accordance is taken as a criterion to connect two segments of a fibre that were
erroneously subdivided due to a touching point in the thresholded image. If
more than two branches are connected to a junction, the two segments with the
lowest directional accordance are assigned first by giving them a consecutive
number for each fibre. This is subsequently done for all remaining branches
until none of them remain unassigned. In case there is a residual single branch
after all other segments are assigned, it is assumed to be a new independent
fibre that accidentally ended on another one. Figure 4.8 shows the algorithm
on an minimal example. Sub-figure (a) shows apparently 3 fibres that are con-
nected in 2D. The junctions are marked with red dots and an italic number
from one to three. In a first step, those branches with the lowest directional
accordance are connected by giving them the same label. The label is a se-
quential number while all segments with the same number belong to the same
fibre. On the first crossing, the straight segments show the lowest γ and are
labelled with one. The remaining branches are assigned to fibre two. Since all
segments on junction one are satisfied, the algorithm proceeds with the second
one (Figure 4.8 (c)). Again, the straight fibres show the lowest directional cor-
respondence, but in this case one of the branches is already labelled. Thus, the
related branch is given the same number. Both remaining branches are labelled
with three. As the algorithm processes the third and last junction (Figure 4.8
(d)), the most matching branches are marked with different numbers. Hence,
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4 Development of Analytical Methods

Table 4.1: Exemplary output file for three dimensional fibre paths extracted
from a volumetric image by the modified ImageJ plugin Ana-
lyzeSkeleton.

Fibre No. 1
x y z
100 200 300
101 200 300
102 200 300
103 200 300
...

Fibre No. 2
x y z
100 250 300
101 250 300
...

one of the branches - No. 3 in the example - has to be relabelled. Also, all the
other segments belonging to fibre 3 have to be re-labelled in order to connect
them. The last remaining segment on the third junction is assumed to be an
independent fibre and is labelled with a new sequential number. Once all the
segments are assigned to particular fibres, all the voxels of the centrelines are
written to an output file. The file has the format shown in Table 4.1 and can be
used in order to fit parametrized spatial curves in a further step.

4.2.4 Parametrization of Spatial Curves

Using the fibre voxels and the information about the connectivity of the fibre
tracking algorithm, the fibres can be described by a parametrized curve

t 7→ f(t) ∈ R3, a ≤ t ≤ b (4.14)

along the fibre axis, where t ∈ [a, b] can be understood as time. In general, there
are infinite possibilities to define the same spatial curve with varying velocity.
Those curves are fitted to the centre points of fibres derived in the previous
section by B-spline functions. Therefore, the MATLAB built-in function spap2
is used. To receive continuous functions for the curvature of the splines on the
transition points, a function of at least third order has to be applied. It is also
necessary to ensure that the splines can be approximated to the voxel paths
sufficiently but are not over-fitted. If the interval of each B-spline fit is chosen
too short, the splines can get wavy due to quantification on the voxel pattern.
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Figure 4.8: Minimum example for additional added method for fibre tracking
[30].

Experience has shown that a segment length of twenty voxels produces good
results with B-splines of third order. Figure 4.9 shows an exemplary fit of a
twelve voxel long fibre. The upper picture shows a fit with a fitting interval
of 20 points while the B-splines of the image below are fitted to only 3 points.
As the voxel size is only 3µm, the curvature appearing in the latter fit is pretty
high because it follows the quantification errors resulting from noise and the
voxel grid.
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4 Development of Analytical Methods

Figure 4.9: B-spline fit of a 13 voxel long fibre. Blue cubes depict the skele-
tonized fibre with a voxel size of 3µm. Above: B-spline interval of
20 points. Below: Same B-spline fit with an interval of only 3 points.
The fibre is clearly over-fitted.

For easier handling, the resulting curves are converted in a parametrization in
dependence of the arc length

s 7→ z(s) ∈ R3, 0 ≤ s ≤ L, (4.15)

where

‖z′(s)‖2 = 1. (4.16)

Using this parametrization, z(s) is defined from 0 to the fibre length L (Fig.
4.10).
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4.2 Fibre Tracking in CT-images

4.2.5 Fibre Length Distribution from Spatial Curves

The length of a single fibre can be extracted either from the raw B-splines by
integrating over time t

L =

∫ b

a

‖ḟ(t)‖2dt (4.17)

or directly by using the length L from curves parametrized by arc length. How-
ever, the length is determined, the lengths of each fibre is saved to a list with
N entries, where N is the number of fibres within the image region. On that
basis, the FLD can be created by summing up fibres with a length belonging to
specified bins (see section 2.5).

4.2.6 Fibre Orientation Tensors from Spatial Curves

Assuming the diameter of the fibres to be constant, the resulting length weighted
orientation tensor should be nearly the same as the volume weighted from
voxel-based methods. For a spatial curve z(s) parametrized by the arc length,
length weighted orientation tensors of second order can be calculated by inte-
grating the dyadic product of the tangent vector along the fibre axis s

Nij =
1

La

N∑
α=1

[∫ Lα

0

z′α,i(s) · z′α,j(s)ds
]

(4.18)

and fourth order orientation tensors by

Nijkl =
1

La

N∑
α=1

[∫ Lα

0

z′α,i(s) · z′α,j(s) · z′α,k(s) · z′α,l(s)ds
]
. (4.19)

The subscript α refers to a certain fibre out of the total number of fibresN in the
entire image. La is the accumulated length of all fibres and is used to normalize
the resulting orientation tensor.

4.2.7 Fibre Curvature and Torsion from Spatial Curves

Another formulation of parametrized spatial curves used in the following are
the Frenet-Serret equations:

dt

ds
= κns (4.20)
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dns
ds

= −κt + τb (4.21)

db

ds
= −τns (4.22)

t

ns

z(s)

b

z(L)

z(0)

e1

e2

e3

Figure 4.10: Parametrization of spatial curves. The moving coordinate system
used in the Frenet-Serret equations is defined by the tangent unit
vector t, the binormal unit vector b and the normal unit vector ns.

Those equations enable to describe a spatial curve only by its curvature κ and
torsion τ using a local moving coordinate system (Fig. 4.10) defined by the
tangent unit vector t, the binormal unit vector b and the normal unit vector
ns. As this kind of parametrization results in κ(s) and τ(s), the curvature and
torsion over length can be used to calculate an average, maximum or minimum
value or even to build histograms for the region at hand.
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4.3 Porosity and Inclusion Analysis

4.3 Porosity and Inclusion Analysis

4.3.1 Segmentation and Volume Fraction

Segmentation of pores or inclusions from the base material can be achieved
using thresholding techniques as introduced in 2.3.3. In some cases, it can also
be necessary to segment e.g. touching particles. If they are nearly spherical,
a distance transform combined with the watershed filter can be used. Figure
4.11 shows an example of this algorithm. The distance transform is applied
on the image that includes the touching objects. It sets the grey value of each
voxel to the shortest distance to leave the same. Hence, values in the middle
of the object will be high while the values on the edges will decrease to zero
(Figure 4.11 (b)). Subsequently, the watershed filter is applied. The 2D image
can be imagined as a 3D surface plot with the grey values on the z-axis. In a
first step, the image resulting from the distance transform has to be inverted
as otherwise the centre points of the objects have the highest values. Now the
image is ”flooded” virtually by increasing the grey value. Fig. 4.12 illustrates
this method for the one-dimensional case. The structures can be separated on
the points where the virtual fluid touches first while flooding. Actually, there
will be touching lines in 2D images (Fig. 4.11 (d)) and touching surfaces in 3D
images.

4.3.2 Determination of Surface Curvature

Surface curvature allows for a detailed description of pores and inclusions.
Within this thesis, two methods are compared on artificial data as well as on
real CT-scans in order to rate the performance.

Implementation of Patch-based Method

Implementation of the patch-based algorithm is adopted from the Advanced
Normalization Tools (ANTs) with respect to the method explained in section
2.7.2. As the patch-based evaluation requires a binary image, the input data
has to be segmented previously for an exact localization of the surfaces within
the image. Once the principal curvatures are determined, the output can be
chosen as Gaussian, mean, minimal or maximal curvature.
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(a) Initial binary image (b) Distance transform

(c) Inverted distance transform (d) Segmentation line on the front of
the flood that is touching initially

Figure 4.11: Example of the distance transform and the watershed filter for seg-
menting binary images.
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Figure 4.12: Watershed segmentation illustrated on an one dimensional exam-
ple.
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Implementation of Hessian-based Method

Curvature analysis using the Hessian matrix is carried out on the grey value
image. In a first step, the image is filtered by a Gaussian blur using the in-
put parameter σ. Subsequently, the Hessian matrix is calculated in each image
point in order to derive the shape operator (eq. 2.49). Therefore, an arbitrary
orthonormal basis is derived from the image gradient by calculating its cross
product with an arbitrary vector. Principal curvatures are derived from the
eigenvalues of the shape operator. Finally, the entire image is masked by an
edge detection on the initial image to delete all curvatures from none-surface
voxels.

Artificial Images and Error Criterion

To validate and compare the methods introduced in section 2.7.2, artificially
generated structures were used in a first step. The ITK library was used for
building volumetric images including spheres with a specified diameter and
thus known curvature. Input parameters for the tool are the edge length of the
image w and the sphere diameter d.

As curvatures from artificial test images are known, a local error can be calcu-
lated on each surface point. Thus, the difference of the curvature in each point
is subtracted and divided by the number of surface voxels Ns.

Ec =
1

Ns

N∑
i=1

(
κi −

1

R

)
(4.23)

In order to calculate the percentage error, Ec can be divided by the real curva-
ture, what leads to

Ec,p =
R

Ns

N∑
i=1

(
κi −

1

R

)
∗ 100 %. (4.24)
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5.1 CT-Scanners

5.1.1 YXLON CT Precision

Unless expressly stated otherwise, CT-scans shown within this thesis are ac-
quired using an YXLON CT Precision computed tomography system (Fig. 5.1).
It is an cone-beam industrial CT system with a maximum resolution of 1µm.
The built in FeinFocus tube is an open system which enables to swap the tube-
head from a reflection to a transmission tube. The maximum acceleration volt-
age is 225 kV. The power of the tube is up to 10 W using the transmission and
up to 200 W with the refection tube head. The detector was manufactured by
PerkinElmer and has an edge length of 409.6 mm at 2048 pixels. Its surface is
protected by a plate of carbon fibre reinforced polymer.

Figure 5.1: YXLON CT Precision computed tomography system.
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5.1.2 Zeiss Xradia 520 Versa

The Zeiss Xradia 520 Versa is an X-ray microscope, which combines computed
tomography with an optical magnification allowing for the acquisition of high
resolution images even with larger samples. The maximum spatial resolution
is 0.7µm. Its X-ray source is a sealed transmission tube with an acceleration
voltage of 30-160 kV and a maximum power of 10 W. It provides many built-in
filters mounted on an automated filter charger and offers the possibility of lab-
scale phase contrast measurements, which lead to a higher contrast between
materials of the same density like e.g. carbon fibre reinforced polymers.

5.2 Fibre Orientation Distribution

5.2.1 Artificial Images

Artificial data with only one or two short fibres with an aspect ratio of 8 were
generated as described in section 4.1.1 in order to optimize input parameters
for the implemented orientation analysis approaches and to compare those
approaches with each other. Short fibres are used because the aim of this in-
vestigation is to provoke critical areas and the fibre ends are most sensitive to
misalignments resulting from analysis. In a first step, an artificial single fibre of
80 voxels length and 10 voxels diameter was evaluated with each method within
an image with an edge length of 100 voxels. For investigations with two fibres,
two configurations have been carried out: The first one with a fibre diameter
of 5 voxels, fibre length of 40 voxels and an image size of 50 voxels. The second
configuration included fibres of 10 voxels diameter, a length of 80 voxels and an
edge length of 100 voxels. For fibre distances and angles (cf. 4.6) an experi-
mental table was created to model the error for a isotropic fibre distribution.
Angles were varied from 0◦ to 90◦ in steps of 10◦. Fibre distances were chosen
from zero for touching fibres to one fibre diameter in 6 steps. To avoid a positive
influence of the alignment of fibres to the voxel grid, the first fibre was rotated
by 20◦ about the x and the y axis. The rotation of the second fibre started from
the new coordinate system. Figure 5.2 shows the output of the implemented
tool in 3D. Binary images were generated for all previously mentioned config-
urations and processed using one out of the three tools for orientation analysis
introduced in section 4.1.1.

From the resulting data, the fibre architecture dependent error (eq. 4.2) was
calculated. Input parameters for each method were modified and tested with
an exhaustive grid search to find the optimum in dependence of the fibre di-
ameter. Table 5.1 shows the modified input parameters for each method. The
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5.2 Fibre Orientation Distribution

Figure 5.2: Artificially generated images of two fibres with certain distance and
angle.

Table 5.1: Variable input parameters for orientation analysis tools for optimiza-
tion.

Anisotropic Gaussian filter α, σ
Hessian matrix σ

Structure tensor ρ, σ

eigenvalues λ1, λ2 and λ3 of the anisotropic Gaussian filter are simplified by the
aspect ratio α and the eigenvalue of the smaller principal axis of the ellipsoid
σ. The minimum error of each method using those optimized parameters was
taken for a first comparison of the orientation analysis algorithms.

In a further investigation, artificial fibre architectures were built with GeoDictr.
Those images were generated using two different orientation tensors: A first
one NU representing a unidirectional orientation distribution and another one
called NI .

NU =̂

1 0 0
0 0 0
0 0 0

 , NI=̂

0.25 0 0
0 0.25 0
0 0 0.5

 . (5.1)

Figure 5.3 illustrates the resulting structures in 3D with a fibre volume content
of 5 vol %. All fibres have a diameter of 5 voxels and an aspect ratio of α =40. For
validation of orientation analysis tools, the following structures were used:

• One unidirectional structure with 5 vol %
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• Three structures using orientation tensor NI with 5 vol %, 13 vol % and
20 vol %.

• One structure with randomly curved fibres consisting of multiple straight
segments with a length of 5 voxels and the orientation tensor NI with
5 vol %.

The fibre content by mass changes with the density of the constituents. Nev-
ertheless, assuming a matrix density of 1 g/cm3 and glass fibres with a density
of 2.6 g/cm3, the fibre content by mass will result in approximately 12 wt %,
28 wt % and 39 wt % at the investigated fibre volume fractions of 5 vol %, 13 vol %
and 20 vol %. The orientation tensors derived from those artificial volumetric
images are used to calculate an error based on the error criterion ET in section
4.1.3 for the evaluation of the orientation analysis methods. Therefore, input
parameters were chosen as follows:

• Gaussian filter: σ = 3 voxels

• Hessian matrix: σ = 3 voxels

• Structure tensor: σ = 0.8 voxels, ρ = 3 voxels

5.2.2 Real Images with known Orientation

For validation of the introduced methods on real images, materials introduced
in section 3.2.1 were used. Those materials have an almost unidirectional fibre
orientation distribution and thus, the evaluated orientation tensor should result
in NU . As error criterion, ET is calculated for each structure using the three
orientation analysis methods introduced in chapter 4.

3D-Printed Specimen

The image of the 3D-printed specimen was acquired using the parameters shown
in table 5.2. As the contrast between fibre and matrix material is high, it is pos-
sible to separate both phases and apply the statistics for the orientation tensor
only on the fibre material (cf. Fig. 3.7 right).For investigations regarding fibre
orientation, the input parameters were set to:

• Anisotropic Gaussian filter: σ = 2 voxels

• Hessian matrix: σ = 2 voxels

• Structure tensor: σ = 0.2 voxels, ρ = 2 voxels
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5.2 Fibre Orientation Distribution

Figure 5.3: Artificial images generated with GeoDict R©. Left: Unidirectional fi-
bres (NU ). Right: Fibre architecture with straight fibres and orien-
tation tensor NI . Bottom: Fibre architecture with curved fibres and
orientation tensor NI [46].

Table 5.2: Image acquisition parameters for 3D-printed glass fibre reinforced
ABS sample.

Tube head Transmission tube
Target Tungsten

Acceleration Voltage 100 kV
Tube current 0.02 mA

Focus-object distance 25.64 mm
Focus-detector distance 849.90 mm

Voxel size 5.87µm
Integration Time / Pixel binning 1000 ms / 2
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Pultruded Carbon Fibre Rod

The validation of the orientation analysis methods on the pultruded carbon
fibre rod was carried out to investigate the accuracy on low-contrast images.
Note that the fibres could not be separated from the matrix material and thus
every voxel was taken into account in order to determinate the orientation ten-
sors (cf. Fig. 3.7 right). Image acquisition parameters are listed in Table 5.3 and
the parameters for the orientation analysis were chosen as follows:

• Gaussian filter: σ = 1 voxels

• Hessian matrix: σ = 2 voxels

• Structure tensor: σ = 0.2 voxels, ρ = 4 voxels

Table 5.3: Image acquisition parameters for carbon fibre reinforced pultrusion
rod.

Tube head Transmission tube
Target Tungsten

Acceleration Voltage 120 kV
Tube current 0.03 mA

Focus-object distance 17.64 mm
Focus-detector distance 849.84 mm

Voxel size 4.04µm
Integration Time / Pixel binning 1000 ms / 2

5.2.3 LFRP Material

In order to proof the applicability of orientation analysis methods on the Co-
DiCo materials mentioned in chapter 3, an orientation analysis was carried out
on every LFRP material system listed in Table 3.1.

The glass fibre reinforced SMC used for orientation analysis was scanned in a
region of 10× 10× 3 mm3 and was manufactured with an fibre mass content of
41 wt −%. Furthermore, a discontinuous carbon fibre reinforced SMC plaque
with a size of 15 × 15 × 3 mm3 (55 wt −% CF) and a glass fibre reinforced
LFT with an edge length of 10× 10× 3 mm3 (30 wt −% GF) were investigated
(cf. Table 3.1). In order to test the layer segmentation method introduced in
section 4.1.4, a hybrid material consisting of DiCo GF SMC shell layers and
unidirectional CF SMC core with an edge length of 10 × 10 × 3.3 mm3 was
examined. The corresponding image acquisition parameters for all scans are
shown in table 5.4 trough 5.7.
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Table 5.4: Image acquisition parameters for GF SMC sample
Tube head Transmission tube

Target Tungsten
Acceleration Voltage 100 kV

Tube current 0.05 mA
Focus-object distance 21.16 mm

Focus-detector distance 723.93 mm
Voxel size 5.6µm

Integration Time / Pixel binning 600 ms / 1

Table 5.5: Image acquisition parameters for CF SMC sample
Tube head Transmission tube

Target Tungsten
Acceleration Voltage 100 kV

Tube current 0.04 mA
Focus-object distance 33.15 mm

Focus-detector distance 712.01 mm
Voxel size 8.6µm

Integration Time / Pixel binning 500 ms / 1

Table 5.6: Image acquisition parameters for Hybrid sample
Tube head Transmission tube

Target Tungsten
Acceleration Voltage 100 kV

Tube current 0.07 mA
Focus-object distance 21.07 mm

Focus-detector distance 724.97 mm
Voxel size 5.4µm

Integration Time / Pixel binning 500 ms / 1
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Table 5.7: Image acquisition parameters for GF LFT sample
Tube head Transmission tube

Target Tungsten
Acceleration Voltage 100 kV

Tube current 0.04 mA
Focus-object distance 29.40 mm

Focus-detector distance 669.74 mm
Voxel size 5.4µm

Integration Time / Pixel binning 900 ms / 2

Table 5.8: Image acquisition parameters for LFT samples
Tube head Transmission tube

Target Tungsten
Acceleration Voltage 100 kV

Tube current 0.05 mA
Focus-object distance 20.53 mm

Focus-detector distance 725.68 mm
Voxel size 5.3µm

Integration Time / Pixel binning 500 ms / 1

5.3 Fibre Volume Fraction

The following tests aim for the investigation of the suitability of thresholding
methods on CT scans in order to determine the fibre volume fraction of samples
described in section 3.2.2. Therefore, a thermogravimetric analysis (TGA) was
applied on each sample to determine the exact fibre mass fraction with respect
to equation 2.37. Knowing the density of fibre and matrix material, the fibre
volume content is derived from the TGA analysis using equation 2.38.

5.3.1 Thresholding Techniques for CT Images

Image Acquisition

CT scans of the LFT material were acquired using the transmission tube head
with the parameters listed in table 5.8 and table 5.9.
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Table 5.9: Image acquisition parameters for SMC samples
Tube head Transmission tube

Target Tungsten
Acceleration Voltage 100 kV

Tube current 0.05 mA
Focus-object distance 21.01 mm

Focus-detector distance 749.93 mm
Voxel size 5.4µm

Integration Time / Pixel binning 500 ms / 1

Evaluation

The images were cropped close to the sample surface. Special attention was
paid to cut a small amount of the sample to avoid to include air, which falsifies
the evaluation. Subsequently, all thresholding methods introduced in section
2.3.3 were applied on the global grey value histogram. This enables to calculate
the overall fibre volume fraction directly from the histogram by dividing the
quantity of fibre voxels by the total amount of voxels.

5.3.2 Thermogravimetric Analyis (TGA)

Fibre volume fraction was measured by a thermogravimetric analysis using
a Leco TGA701 device. The SMC specimen were heated up to 550 ◦C with a
heating rate of 37 K/min. This temperature was held for two hours.

LFT samples were incinerated using a heating ramp from 25 ◦C to 100 ◦C at
a heating rate of 15 ◦C/min where the temperature was held for 6 h. Subse-
quently, the temperature was raised to 430 ◦C with a heating rate of 2 ◦C/min
and held for another 20 h.

5.4 Fibre Length Distribution and Fibre Tracking

The fibre length distribution of GF SMC material and unidirectional reinforced
material can be assumed to be known initially from the manufacturing param-
eters. Nevertheless, a high-resolution scan was investigated in order to explore
the limits of the fibre tracking method since the bundled fibres are hardly dis-
tinguishable by image processing tools. Furthermore, an injection moulded
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GF reinforced LFT material was investigated for validation of the fibre track-
ing method. The fibre lengths of the IM-LFT were measured using an optical
method on incinerated samples and subsequently separated fibres. Those re-
sults are used to validate FLDs examined by the method introduced in section
4.2. Furthermore, the resulting parametrized spatial curves were used to derive
orientation tensors and to compare them with voxel-based methods.

5.4.1 FibreShape FiVer

Investigation with FibreShape FiVer was carried out on LFT samples with re-
spect to section 2.5.1 by the ”Faserinstitut Bremen (FIBRE)”. Samples with an
edge length of 5 mm and 10 mm were investigated in a whole and only few
fibres were lost. For larger samples, only a subset of the fibres, which was sep-
arated by a thinning process, was processed.

5.4.2 FASEP

The FASEP system was used to determine FLDs from the same fibres separated
from LFT samples for measurement with FibreShape FiVer in order to compare
both systems without an influence of the sample preparation. Therefore, the
fibres were stored in small glasses and transported from Bremen to the Fraun-
hofer ICT in Pfinztal where the fibres were a subsample of the fibres was put
back into a Petri dish for image acquisition after another thinning process.

5.4.3 µCT Investigations

Experiments on LFRPs are carried out on an injection moulded GF LFT and a
DiCo GF SMC with respect to section 3.2.3. While the IM-LFT is used for the
validation of the FLD, DiCo GF SMC is processed only to prove the applicabil-
ity.

IM-LFT

For CT investigations, samples with an edge length of only 5 mm and 10 mm
were processed using the method based on volumetric images since the resolu-
tion of larger samples is not sufficient. Table 5.10 and table 5.11 show the image
acquisition parameters of conducted scans.
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Table 5.10: Image acquisition parameters for injection moulded LFT samples
with an edge length of 5 mm

Tube head Transmission tube
Target Tungsten

Acceleration Voltage 100 kV
Tube current 0.02 mA

Focus-object distance 12.39 mm
Focus-detector distance 746.66 mm

Voxel size 3.32µm
Integration Time / Pixel binning 1000 ms / 2

Table 5.11: Image acquisition parameters for injection moulded LFT samples
with an edge length of 10 mm

Tube head Transmission tube
Target Tungsten

Acceleration Voltage 100 kV
Tube current 0.02 mA

Focus-object distance 21.69 mm
Focus-detector distance 746.42 mm

Voxel size 5.81µm
Integration Time / Pixel binning 1000 ms / 2
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Table 5.12: Input parameters for the circular voting filtering of the IM-LFT sam-
ples with an edge length of 5 mm

Radius R 3 voxels
Window Radius m 5 voxels
Radial blurring σr 1 voxel

Angular blurring σa 1 voxel

Table 5.13: Input parameters for the circular voting filtering of the IM-LFT sam-
ples with an edge length of 10 mm

Radius R 1 voxel
Window Radius m 3 voxels
Radial blurring σr 1 voxel

Angular blurring σa 1 voxel

The circular voting filter and the fibre tracking procedure introduced in 4.2 was
applied to each scan. Fibre diameters were measured from the raw grey value
images in order to use derive the radius as input parameter for the circular
voting filter. The window radius was set approximately to the fibre diameter.
The input parameters for the investigated sample geometries are listed in table
5.12 and table 5.12 (cf. 4.7). Subsequently, the images were skeletonized using
AnalyzeSkeleton 2D/3D and the modified AnalyzeSkeleton tool in ImageJ (cf.
section 4.2.3). Resulting centre lines were saved as an ASCII file and imported
in MATLAB for B-spline fitting.

SMC

As the fibres exist in bundles, a scan with a very high image resolution is neces-
sary. Thus, this scan was acquired at the ”Faserinstitut Bremen (FIBRE)” using
a Zeiss Xradia 520 Versa X-Ray microscope. Image acquisition parameters are
depicted in table 5.14. The image processing was carried out similar to the IM-
LFT samples with the filter parameters shown in Table 5.15.

Fibre Length Analysis

The length of each fibre within a dataset was determined by integrating the
B-spline curve numerically with respect to equation 4.17. Each fibre length is
saved to a list which forms the basis for the fibre length distribution.
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Table 5.14: Image acquisition parameters for FLD sample of DiCo GF SMC. The
scan was carried out by the Zeiss Xradia 520 Versa X-Ray micro-
scope.

Tube head Transmission tube
Target Unknown

Acceleration Voltage 80 kV
Tube current 0.088 mA

Focus-object distance 20.01 mm
Focus-detector distance 40 mm

Optical magnification 4 x
Voxel size 2.45µm

Integration Time / Pixel binning 1000 ms / 2

Table 5.15: Input parameters for the circular voting filtering of the DiCo GF
SMC samples with an edge length of 2.5 mm

Radius R 2.5 voxels
Window Radius m 4 voxels
Radial blurring σr 1 voxel

Angular blurring σa 1 voxel

Curvature Analysis

Fibre curvatures were determined by re-parametrising the B-spline curves. There-
fore, the Frenet-Serret equations 4.20 through 4.22 were applied to derive the
local curvature κ(s) directly from the parametrization. Subsequently, a weight
related histogram is generated to depict the mean curvature of all fibres within
the image. For The LFT-Material, a second diagram is shown to visualize the fi-
bre curvature over fibre length. This makes only sense for the IM-LFT material
since all of the SMC fibres are already cropped by the sample preparation.

Fibre Orientation Tensors

In order to compare the fibre tracking approach with voxel-based orientation
analysis methods, orientation tensors of second order were derived from spa-
tial curves using equation 4.18. The result was compared to the structure tensor
based method by evaluating the error ET with respect to equation 4.3.
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Figure 5.4: Artificially generated sphere for validation of curvature analysis
[90].

5.5 Surface Curvature Analysis

5.5.1 Artificial Images

Artificial images of spheres were generated as mentioned in section 4.3.2 for
parameter optimization and error estimation of both algorithms investigated.
Figure 5.4 shows an example of an artificial sphere in 3D. Those structures were
generated with diameters from 2 voxels trough 20 voxels in steps of 2 voxels
to investigate the influence of the radius of the structure. Subsequently, the
method based on the Hessian matrix was applied with blurring parameter of
σ = {0.6, 0.8, 1, 2, 4, 6} voxels. The patch-based method was applied on images
with the same radius using a patch size of ρ = {1, 2, . . . , 10} voxels and blurring
parameter σ = {0.6, 0.8, 1, 2, 4, 6} voxels.

5.5.2 Real Images with known Curvature

As a reference sample for validating surface curvature algorithms, steel balls
from a ball bearing were scanned (cf. Fig. 3.9).The CT scan was acquired with
the reflection head and the parameters shown in table 5.16.
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5.5 Surface Curvature Analysis

Table 5.16: Image acquisition parameters for steel balls extracted from ball-
bearings

Tube head Reflection tube
Target Tungsten

Acceleration Voltage 180 kV
Tube current 0.11 mA

Focus-object distance 60.98 mm
Focus-detector distance 799.86 mm

Voxel size 14.77µm
Integration Time / Pixel binning 600 ms / 1

Table 5.17: Image acquisition parameters for porous CFRP-layup shown in fig-
ure 3.10

Tube head Transmission tube
Target Tungsten

Acceleration Voltage 110 kV
Tube current 0.02 mA

Focus-object distance 24.89 mm
Focus-detector distance 803.6 mm

Voxel size 6.19µm
Integration Time / Pixel binning 1000 ms / 2

5.5.3 Pore Analysis on Continuous CFRP

In order to derive a local surface curvature from pores, a continuous CFRP-
layup made of a PA6 matrix shown in figure 3.10 was scanned and evaluated
using the method based on the Hessian matrix with an blurring parameter of
σ = 2 voxels.
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6 Results

6.1 Fibre Orientation Distribution

The results regarding orientation analysis within this chapter have partially
been published in NDT&E International [46].

Within this chapter, results from three investigated orientation analysis meth-
ods based on the anisotropic Gaussian filtering, the Hessian matrix and the
structure tensor are presented. Each method was evaluated on artificial images
with only one or two fibres, artificial microstructures from GeoDictr and two
real µ-CT-scans for validation.

6.1.1 Artificial Images with One and Two Fibres

Anisotropic Gaussian Filter

First tests on single fibres with a diameter of 10 voxels using the anisotropic
Gaussian filter with varying aspect ratio α and blurring parameter σ show a
decreasing error θgE (cf. Eq. 4.1) for increasing aspect ratios (Fig.6.1) Also a
high blurring parameter σ lowers the error to 5.21◦ at α = σ = 10 voxels.

The aspect ratio for anisotropic Gaussian filtering was α = 2 for the following
investigations. Figure 6.2 (left) depicts the error measure using an artificial im-
age with two fibres of 10 voxels in diameter. The minimum error of EA = 8.19◦

is located at a blurring parameter of σ = 6 voxels. At a fibre diameter of 5 voxels,
Fig. 6.2 (right) shows that best results with an error of EA = 8.42◦ can be
achieved using a blurring parameter σ = 3 voxels.
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Figure 6.1: Anisotropic Gaussian filter: Error measure EA over aspect ratio α
and blurring parameter σ on an artificial single fibre of 10 voxels di-
ameter [46].
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Figure 6.2: Anisotropic Gaussian filter: Fibre architecture dependent error EA
over blurring parameter σ on an artificial image with two fibres.
Left: Fibres with 10 voxels in diameter. Right: Fibres with 5 voxels in
diameter [46].
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6.1 Fibre Orientation Distribution

Hessian Matrix

Figure 6.3 trough 6.4 show curves of the error EA using the Hessian matrix
based method on single fibres of diameters of 5, 10 and 15 voxels. While the
curve for a diameter of 5 voxels shows a steadily falling graph, there is a peak
at a blurring parameter of σ =3 voxels in the curve for a fibre diameter of
10 voxels. A similar peak is located at σ =4 voxels investigation a fibre diam-
eter of 15 voxels.
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Figure 6.3: Hessian matrix: Error measure EA over blurring parameter σ for
an artificial single fibre of 5 voxels in diameter (left) and 10 voxels
(right).
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Figure 6.4: Hessian matrix: Error measure EA over blurring parameter σ for an
artificial single fibre of 15 voxels in diameter.
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The error achieved with the Hessian matrix on images with two fibres are
shown in Fig. 6.5 for a fibre diameter of 10 voxels. The curve shows a peak
at σ =3 voxels and drops to a minimum value of 10.2◦ at σ =6 voxels. Up from
that point, the error increases with σ.
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Figure 6.5: Hessian matrix: Fibre architecture dependent error EA over blur-
ring parameter σ on artificial images with two fibres of 10 voxels in
diameter [46].

For fibre diameters of 5 voxels, the minimum fibre architecture dependent er-
ror of is located at σ =3 voxels with 10.31◦ (Fig. 6.6 left). For higher blurring
parameters σ, the error rises to a maximum of 17.48◦ at σ =8 voxels, where it
starts to fall slightly to σ =10 voxels, which is the last point investigated. Be-
cause of the sharp minimum, results are shown in Fig. 6.6 on the right with a
finer resolution within a range of 2.5 ≤ σ ≤ 3.5. In the higher resolution graph,
the lowest error of EA =10.31◦ at σ =2.9 voxels.
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Figure 6.6: Hessian matrix: Fibre architecture dependent error EA over blur-
ring parameter σ on artificial images with two fibres of 5 voxels in
diameter. Left: Coarse sampling. Right: Fine sampling on the same
input data at the interesting range of σ [46].
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Structure Tensor

Tests with single fibres are illustrated in Figure 6.7. The errorEA shows no local
minimum in the investigated interval and decreases to 0.36◦ at σ =1 voxel and
ρ =10 voxels.
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Figure 6.7: Structure tensor: Error measure EA over blurring parameters σ and
ρ on an artificial single fibre of 5 voxels diameter.

Artificial images with two fibres and a diameter of 10 voxels lead to a minimum
at σ =1 voxel and ρ =6 voxels. Figure 6.8 shows the resulting function in an
contour plot. The point with optimal parameters is marked by a red dot. The
fibre architecture dependent error is EA =1.66◦.
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Figure 6.8: Structure tensor: Error measure EA over blurring parameters σ and
ρ on artificial images with two fibres of 10 voxels diameter [46].

As the optimal parameters are located on the edge in Figure 6.8, a smaller range
of the parameter space was examined using a higher resolution. Figure 6.9
shows that there is a local minimum at σ =0.8 voxels and ρ =5.6 voxels leading
to an error of EA=2.18◦.

5.4 5.8 6.2 6.6 7
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

ρ [px]

σ
[p

x]

1.71
2.00
2.29
2.57
2.86
3.15
3.43
3.72
4.01
4.30

E
A

[◦
]

Figure 6.9: Structure tensor: Error measure EA over blurring parameters σ and
ρ on artificial images with two fibres of 10 voxels diameter with high
resolution [46].

Similar investigations on fibres with a diameter of 5 voxels and a length of
40 voxels show an optimum at σ =0.8 voxels and ρ =3 voxels(Fig. 6.10). The
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error EA is 1.60◦ on this point. Increasing the fibre length to 80 voxels leads
to Figure 6.11. The minimum is located at the same set of parameters and the
error drops slightly to 1.23◦. Also rotating the same fibre configurations to an
initial angle of 45◦ instead of 20◦ for the other investigations results in the same
optimal parameters but an error of 2.01◦ (Figure 6.12).
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Figure 6.10: Structure tensor: Error measureEA over blurring parameters σ and
ρ on artificial images with two fibres of 5 voxels diameter [46].
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Figure 6.11: Structure tensor: Error measure EA over blurring parameters σ
and ρ on artificial images with two fibres of 5 voxels diameter and
80 voxels length.
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Figure 6.12: Structure tensor: Error measureEA over blurring parameters σ and
ρ on artificial images with two fibres of 5 voxels diameter.

Considering fibres of 15 voxels in diameter results in the error surface shown
in Figure 6.13. Optimal parameters are found at σ =0.8 voxels and ρ =8 voxels
with EA =1.95◦.
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Figure 6.13: Structure tensor: Error measureEA over blurring parameters σ and
ρ on artificial images with two fibres of 15 voxels diameter.
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6.1.2 Evaluation of GeoDict R© Structures

Investigations on artificial fibre architectures generated by GeoDict R© lead to
an tensor-based error ET listed in table 6.1 and visualised in Figure 6.14. The
structure tensor results in the lowest error for most of the configurations us-
ing straight fibres except for a fibre volume content of 13 %, where the method
based on the anisotropic Gaussian filter shows a slightly better performance.
Anisotropic Gaussian filtering and the Hessian matrix lead to a relatively high
error for structures with a high volume content of 20 %. Investigations on
curved fibres result in the highest error using the anisotropic Gaussian filter
and the most precise evaluation with the Hessian matrix.
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Figure 6.14: Error ET resulting from artificial GeoDict R© images.

Computation times and memory consumption for the artificial structures with
a size of 5003 voxels and a bit depth of 16 bit are listed in table 6.2. For larger
images, time scales nearly linear with the image size. Calculations were carried
out on a 16-core Intel Xeon E5-2620 v4 workstation with 256 GB RAM.
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Table 6.1: Error ET of artificial images from GeoDict R©.
Method UD-Fibres Straight Straight Straight Curved

Fibres Fibres Fibres Fibres
5 vol % 5 vol % 13 vol % 20 vol % 5 vol %

Anisotropic
Gaussian filter 0.0110 0.0614 0.0248 0.1116 0.1920

Hessian matrix 0.0417 0.0277 0.0500 0.2122 0.0050
Structure tensor 0.0014 0.0033 0.0377 0.0430 0.0238

Table 6.2: Computation times and memory consumption for artificial images
with a size of 5003 voxels and a bit depth of 16 bit.

Method Computation time Memory consumption
Anisotropic Gaussian Filter 16 min 40 s 6 GB

Hessian matrix 1 min 58 s 8 GB
Structure tensor 2 min 2 s 8 GB

6.1.3 Real Images with known Orientation

Orientation analysis using the three investigated methods on real CT-scans of
3D printed fibre reinforced polymers resulted in orientation tensors shown in
Table 6.3. All investigated methods result in orientation tensors with a Nxx

component that is close to one.

Table 6.3: Orientation Tensors derived from 3D-printed glass fibre reinforced
specimen.

Anisotropic Gaussian filter NG

0.9204 0.0106 0.0036
0.0106 0.0360 0.0001
0.0036 0.0001 0.0436

Hessian matrix NH

0.9270 −0.0013 0.0145
−0.0013 0.0311 0.0006
0.0145 0.0006 0.0419

Structure tensor NST

0.9658 −0.0019 0.0207
−0.0019 0.0069 0.0002
0.0207 0.0002 0.0273

Investigations on unidirectional carbon fibre reinforced polymers are illustrated
in Table 6.4. Assessing the trace of the tensors, the methods based on the
anisotropic Gaussian filter and the Hessian matrix show no preferred orien-
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tation. The algorithms based on the structure tensor leads to an orientation
tensor with Nxx close to one.

Table 6.4: Orientation Tensors derived from unidirectional carbon fibre rein-
forced polymer rod.

Anisotropic Gaussian filter NG

0.3460 −0.0003 −0.0072
−0.0003 0.3572 −0.0024
−0.0072 −0.0024 0.2968

Hessian matrix NH

0.2588 0.0002 0.0000
0.0002 0.3720 0.0052
0.0000 0.0052 0.3693

Structure tensor NST

0.9977 −0.0039 0.0009
−0.0039 0.0011 0.0002
0.0009 0.0002 0.0012

6.1.4 LFRP Material

GF SMC

Figure 6.15 shows an orientation analysis on a sample made of glass fibre rein-
forced SMC material. The upper image depicts the raw grey level image while
the lower one shows the orientations in HSV colour space.

CF SMC

An orientation analysis on carbon fibre reinforced SMC is shown in figure 6.16.
As the grey value threshold for fibre segmentation was set to zero, there is an
orientation calculated in every voxel.

GF LFT

Long fibre reinforced thermoplastics with glass fibres are shown in figure 6.17.
Most fibre rovings are fallen apart and there are more single fibres within the
image.
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2mm

(a) Raw Data

2mm

(b) Orientation Analysis

Figure 6.15: Orientation Analysis on GF SMC material using the structure ten-
sor based method. Fibre orientations are coded by colour in HSV
colour space.
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2mm

(a) Raw Data

2mm

(b) Orientation analysis

Figure 6.16: Orientation analysis on CF SMC material using the structure ten-
sor based method. Fibre orientations are coded by colour in HSV
colour space.

104



6.1 Fibre Orientation Distribution
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(b) Orientation analysis

Figure 6.17: Orientation analysis on GF LFT material using the structure ten-
sor based method. Fibre orientations are coded by colour in HSV
colour space.
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Hybrid Sample

The hybrid sample was processed using the structure tensor first. Subsequently,
the coherence measure was carried out in order to separate GF SMC material
from CF UD material. Orientation analysis on the SMC looks similar to the
bulk material, that was investigated. The carbon fibre reinforced material in-
cludes some fixation strings made of glass fibres for holding the carbon fibres
in place during the manufacturing process. Those fibres are aligned 90 degree
to the CF fibre direction and are clearly visible within the scan (Fig. 6.19 (a)).
The side view of the same image illustrates the fibre orientations through the
layers: The SMC shell shows different rovings with arbitrary orientation while
the unidirectional carbon fibre reinforced core appears mainly in red due to its
x-alignment. Note that it is not possible to separate the matrix material from
the fibres because of the low contrast between carbon fibre and matrix while
the contrast to glass fibre is very high. Figure 6.18 shows the results of the co-
herence measure (cf. section 4.1.4) over thickness direction. The curve is very
noisy but it shows a significantly higher signal at the core layer made of the
unidirectional material.
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Figure 6.18: Coherence measure over plate thickness direction for layer seg-
mentation.
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2mm

(a) Raw Data
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(b) Orientation analysis
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(c) Side view of orientation analysis

Figure 6.19: Orientation analysis on hybrid specimen within the unidirectional
CF including fixation strings made from glass fibres region using
the structure tensor based method. Fibre orientations are coded by
colour in HSV colour space (b). Note that the colours of the side
view correspond to the colour wheel in the top view.
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6.2 Fibre Volume Fraction

The following chapter illustrates results from fibre mass and fibre volume mea-
surements using conventional methods like TGA and thresholding techniques
on µCT images. Mass fractions of TGA investigations are converted to volume
fractions for a better comparability.

6.2.1 Thermogravimetric Analyis (TGA)

Fibre mass contents for SMC material examined by TGA are shown in Table
6.5. The fibre distribution is almost homogeneous expect for sample 2B 90 2,
which was cropped from the edge of a plate (cf. Fig. 3.8).

Table 6.5: Fibre content of SMC samples determined by TGA.
2A 0 1 2B 0 1 2C 90 2 2D 90 2

Fibre weight Content 45.33 wt % 40.85 wt % 44.82 wt % 43.70 wt %
Fibre volume Content 27.44 vol % 23.95 vol % 27.03 vol % 26.14 vol %

(calculated)

Table 6.6 shows fibre mass fractions for investigated LFT samples. The devia-
tion of the mass fraction up to 2.6 % for LFT with 10 % glass fibres with respect
to the specification of the manufacturer. This deviation gets smaller for higher
fibre mass fractions at 20 % and 30 %.

Table 6.6: Fibre content of LFT samples determined by TGA.
PP LFT PP LFT PP LFT
10 % GF 20 % GF 30 % GF

Fibre weight Content 12.6 wt % 21.68 wt % 28.84 wt %
Fibre volume Content 5.19 vol % 9.52 vol % 13.35 vol %

(calculated)

6.2.2 Thresholding Techniques on CT Images

Application of thresholding methods on LFT samples lead to the fibre volume
contents shown in Fig. 6.20. The methods of Shanbhag and IIntermodes lead
to a significant underestimation of the fibre volume and Minimum did not con-
verge. Percentile, which should show values of 50 vol %, resulted in 47 vol % to
54 vol %. Triangle, MinError, Mean, Li and Huang led to an overestimation of
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6 vol % to 12 vol %. Renyi Entropy and MaxEntropy are close to the real fibre
volume fractions with an maximum error of 3.5 vol %. Latter methods did not
result in a general over or underestimation. The methods IJ IsoData, Moments
and Otsu predicted the most precise data with a deviation lower than 1.1 vol %,
where Otso and IJ IsoData showed an almost constant overestimation.

Results of thresholding investigations on SMC material are illustrated in Figure
6.21. Triangle, MinError, Mean, Li, Intermodes and Huang resulted in a signifi-
cant over-prediction of fibre volume content. Percentile, which should result in
a volume fraction of 50 vol %, had a maximum deviation of 0.6 vol %. Methods
by Shanbhag and MaxEntropy tend to under-predict the volume fraction of GF
SMC. IJ IsoData, Minimum and Otsu led to values around 5 vol % higher than
the reference measures. Renyi Entropy ended up in the right range, but the vol-
ume fractions of the samples are almost random within this interval. Moments
offered the closest results on GF SMC material with an maximum deviation of
1.2 vol %.
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Figure 6.20: Fibre volume fractions of GF LFT determined by different his-
togram based thresholding techniques. Dashed lines illustrate ref-
erence values from TGA measurements.
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Figure 6.21: Fibre volume fractions of GF SMC determined by different his-
togram based thresholding techniques. Dashed lines illustrate ref-
erence values from TGA measurements.
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6.3 Fibre Length Distribution

6.3.1 FibreShape FiVer

Fibre length analysis examined by FiVer are illustrated in Figure 6.22 for LFT
samples of different sizes cut from the IM-LFT plate. Both curves for samples
with an edge length of 5 mm and 10 mm show their peak value at 0.65 mm while
the 10 mm curve is shifted slightly to the right at higher fibre lengths. Measure-
ments on samples with an edge length of 20 mm lead to a peak at 0.85 mm and
samples of 40 mm to 0.65 mm. Both curves for larger samples are significantly
shifted to higher fibre lengths while the 20 mm curve remains on the right of
the 40 mm curve for most of the progression.
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Figure 6.22: Fibre length distribution for samples of all sizes from the IM-LFT
plate measured by FiVer.

6.3.2 FASEP

Results from fibre length measurements on the injection moulded LFT material
using the FASEP system are depicted in Figure 6.23. Peak values for samples
with a size of 5 mm are at 0.7 mm and 0.8 mm for the 10 mm sample, where the
smaller sample size led to another lower peak value at 0.2 mm. Results of larger
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6.4 Fibre Tracking in CT Images

samples with an edge length of 20 mm and 40 mm, where only a subset of the
fibres was investigated, ended up at the same peak value of 0.8 mm. The 20 mm
sample shows a higher fibre mass percentage between the peak and approxi-
mately 3 mm fibre length while the mass fraction of longer fibres is higher for
the 40 mm sample.
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Figure 6.23: Fibre length distribution for samples of all sizes from the IM-LFT
plate measured by FASEP.

6.4 Fibre Tracking in CT Images

The following section shows results that are derived from fibre tracking al-
gorithms and comparing measurements from conventional methods if avail-
able.

6.4.1 Fibre Length Analysis

IM-LFT

Fibre length measurements on the injection moulded LFT material are depicted
in Figure 6.24 for a sample size of 5 mm and 10 mm. All histograms are weighted
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by mass and are built with a bin width of 0.1 mm using 100 samples to 10 mm.
The peak values of the length distribution is 0.7 mm for the sample with an
edge length of 5 mm and 0.5 mm for the 10 mm specimen. Long fibres up from
2 mm occur more frequently in the smaller sample size, while more short fibres
were found in the 10 mm sample.
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Figure 6.24: Fibre length distributions of two samples cropped from the IM-LFT
plate with an edge length of 5 mm and 10 mm.

DiCo GF SMC

Fibre length analysis on the DiCo GF SMC sample with a scanned size of only
2.5 mm shows many very short fibres of approximately 0.1 mm length. Two
more peaks can be found at a length of 1.75 mm and 2.25 mm before the curve
drops to almost zero at 2.5 mm.
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Figure 6.25: Fibre length distributions of the DiCoGF SMC sample with a
scanned size of 2.5 mm.

6.4.2 Curvature Analysis

IM-LFT

Figure 6.26 shows the bending radius of each fibre over length as a dot in a
heat map for the IM-LFT sample with an edge length of 5 mm. The point cloud
underlying this heat map is very scattered for smaller fibre lengths and gets
sharper for higher values. Very long fibres up from 5 mm seem to converge
against a bending radius of around one.

Building a mass-weighted curvature histogram from the same data leads to Fig.
6.27. The peak value for the bending radius is found at 1.45 mm. Furthermore,
there is a small peak at small bending radius of 0.15 mm.

DiCo GF SMC

Figure 6.28 shows the fibre curvature histogram of an the DiCo GF SMC sample
with an edge length of 2.5 mm.
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Figure 6.26: Heatmap of fibre bending radius over fibre length including all fi-
bres within the IM-LFT sample with an edge length of 5 mm.
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Figure 6.27: Mass percentage over fibre curvatures of the IM-LFT sample.
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Figure 6.28: Mass percentage over fibre curvatures of the DiCo GF SMC sample
with an scanned size of 2.5 mm.

6.4.3 Fibre Orientation Tensors

Fibre orientation tensors derived from spatial curves Nsc and from voxel-based
methods Nvol are listed in the following for the IM-LFT sample with an edge
length of 5 mm.

Nvol =

 0.0318 0.0267 −0.0050
0.0267 0.6926 −0.0123
−0.0050 −0.0123 0.2756

 ,Nsc =

 0.0222 0.0255 −0.0047
0.0255 0.6940 −0.0140
−0.0047 −0.0140 0.2838


The evaluated tensors lead to a tensor-based Error of ET = 0.0174. The same
procedure on the IM-LFT sample with an edge length of 10 mm results in an
error of ET = 0.0397 derived from the orientation tensors

Nvol =

 0.0403 −0.0115 −0.0032
−0.0115 0.2738 −0.0658
−0.0032 −0.0658 0.6860

 ,Nsc =

 0.0324 −0.0084 −0.0024
−0.0084 0.2947 −0.0562
−0.0024 −0.0562 0.6729


.
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6 Results

6.5 Surface Curvature Analysis

The outcomes presented here have partially been published at the EuroHybrid
Conference in 2016 [90].

6.5.1 Artificial Images

Errors resulting from the Hessian matrix based measure of surface curvatures
on artificial images of spheres with variable radius are depicted in Figure 6.29.
The error is around 10 % on spheres of 2 voxels radius using a small blurring
parameter σ lower than one voxel. For radii larger than 4 voxels, the error is
lower than 2 % for the whole investigated range 0.6 ≤ σ ≤ 6
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Figure 6.29: Percentage error of surface curvature Ec,p examined from spheres
of various radius using the Hessian based curvature analysis tool
[90].

Investigations with the patch-based method are shown in 6.30. Two different
patch sizes ρ = {2, 10} are plotted in the graph. Actually, ten steps were evalu-
ated from ρ = 1 . . . 10, but the difference from three to ten resulted in surfaces
between ρ = 2 and ρ = 10 in the graph while a patch size of one voxel did not
lead to reasonable curvatures. Using a patch size of ρ = 2 and higher, the error
starts at 50 % for small spheres and decreases constantly with rising radii. The
blurring parameter σ shows a very little effect on the results.
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Figure 6.30: Percentage error of surface curvature Ec,p examined from spheres
of various radius using the patch based curvature analysis tool [90].

6.5.2 Real Images for Validation

Investigations on a real scan of bearing balls of known radius are shown in
Figure 6.31 for the method based on the Hessian matrix using blurring pa-
rameters of σ = {3, 10, 20, 30} voxels. Calculation of the curvature in voxels
using the ball diameters and the image resolution leads to 0.0075 1/voxels and
0.015 1/voxels for balls with a physical radius of 4 mm and 2 mm. All investi-
gated parameters lead to almost the correct peak values while the sharpness of
the regions rises with σ. From a value of σ =20 voxels and higher, the function
starts to become asymmetric around the peak values and forms a plateau at
smaller curvatures.

Figure 6.32 illustrates examinations on the same structure using the patch-
based method. It was tested with a wide range of parameters. All configu-
rations resulted in plausible peak values. σ =1 voxel and ρ =10 voxels lead to a
symmetric function, while σ =10 voxel and ρ =3 voxels shows a sharper peak at
the same values. Setting σ to a value of 20, the histogram becomes asymmetric
in the peak regions and a plateau forms on the left end of the diagram.

Evaluation of the spheres after segmentation by a distance transform and the
watershed filter are shown in Figure 6.33 for both methods. The Hessian matrix
based method was evaluated with σ =20 voxels. Parameters of the patch-based
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Figure 6.31: Global curvature histogram of steel balls calculated from the sur-
face curvature analysis tool based on the Hessian matrix [90].
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Figure 6.32: Global curvature histogram of steel balls calculated from the sur-
face curvature analysis tool based on the patch method [90].
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6.5 Surface Curvature Analysis

algorithm were set to σ =20 voxel and ρ =6 voxels. Dark grey dashed lines
illustrate the theoretical values calculated from the physical sphere radius.
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Figure 6.33: Global orientation histogram on steel balls separated by a distance
transform and the watershed filter. Dashed lines show the theoret-
ical surface curvature derived from the physical sphere diameter
[90].
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6 Results

6.5.3 Pore Analysis on Continuous CFRP

Figure 6.34 shows a curvature analysis on a real porous structure within a CFRP
layup. All pores are aligned in fibre direction of the corresponding layer. The
image depicts the mean curvature, where the ends of the elongated pores have
a higher curvature than the cylindrical part of the pore.

18 1
mm0

Figure 6.34: Mean curvature analysis on a porous CFRP layup using the Hes-
sian matrix based method. Pore surfaces are coloured with respect
to the local curvature.
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7 Discussion

7.1 Fibre Orientation Distribution

In the following, the performance of fibre analysis tools is discussed briefly con-
sidering results of real and artificial image data in section 6.1. This includes also
results of the orientation analysis using parametrized fibres from fibre tracking
in section 6.4.3.

7.1.1 Experiments on Artificial Fibres

One and Two Fibre models

Anisotropic Gaussian Filter

Investigations on models using only one or two fibres within an image offered
good results in order to determine an optimal parameter set-up in dependence
of the fibre diameter for separable high contrast CT images. For reasons men-
tioned earlier in section 4.1.1, the anisotropic Gaussian filter was limited to an
aspect ratio of two. Considering larger aspect ratios, the resulting angular error
decreases constantly (Fig. 6.1). Nevertheless, a high aspect ratio could cause is-
sues for curved fibres within real microstructures so the recommendation of the
developers [38] was followed throughout this contribution.

Results from the fibre architecture dependent error, which averages the global
misalignments over a set of configurations of two fibre models, were used to
find an optimal blurring parameter σ. The diagram resulting from an image set
with a fibre diameter of 10 voxels led to an minimum at 6 voxels. The same eval-
uation on fibres with a diameter of 5 voxels resulted in an optimum at 3 voxels.
Taking both batches into account, the optimal parameter set is exactly σ = 3

5r,
where r is the fibre radius measured from the binary image. This differs slightly
from the original paper [37], where it is recommended to set the σ = 0.5r.

Figure 7.1 shows the cross-section area of an image with two touching fibres
processed by the anisotropic Gaussian filter as glyph image where each dash
represents its orientation. The blurring parameter used for this evaluation was
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σ =6 voxels. The angle between the fibres is 70◦. There are many misaligned
voxels in the area that influenced by the other fibre. Also, the fibre ends show
many dashes that are not aligned in fibre direction. The reason for errors us-
ing this method are quite obvious: The orientation is determined by finding
the best fitting direction of the ellipsoid over all orientations in every point. At
fibre end points and intersection areas, the ellipsoid covers more white area by
rotating it out of the fibre direction. Thus, the misaligned angle is recognized
as fibre orientation. Because of the significant misalignments at the intersection
and the fibre ends, the method is only accurate for low volume fractions and
long fibres. Nevertheless, this method can be a good alternative to the struc-
ture tensor if the working memory is limited, but only at the cost of higher
computation times.

Figure 7.1: Cross section area of two touching fibres with an angle of 70◦ and
a diameter of 10 voxels processed by the anisotropic Gaussian filter
[46].

Hessian Matrix

Investigations on a single fibre with a diameter of 5 voxels, 10 voxels or 15 voxels
using the orientation analysis based on the Hessian matrix does not lead to an
optimum. The error decreases constantly with increasing blurring parameter
σ. Nevertheless, for a fibre diameter of 10 voxels and 15 voxels, there is a peak
of the error at around σ = 1

3r.

Experiments with two fibres and a fibre diameter of 10 voxels showed that the
peak value at a third of the fibre diameter is also present for those models. The
optimal value for this diameter was found at 6 voxels. Evaluation of fibres with
5 voxels in diameter did not show this singularity. The minimum error can be
found at σ = 2.9 voxels.

All investigations using the Hessian matrix suggest that the optimal blurring
parameter can be estimated by σ = 1

2r. This could cause problems as the peak
appears nearby this value at one third of the fibre radius. For an inconvenient
choice of σ or for structures including fibres with various diameter, it is likely
to end up in the peak error mentioned above.
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7.1 Fibre Orientation Distribution

Figure 7.2 shows a slice through two touching fibres with an relative angle of
70◦. The blurring parameter σ was 6 voxels. The influence of the second fibre
is very high as the dashes are not aligned to the fibre direction in this region.
Also, the orientation on the fibre ends is not estimated correctly. On straight fi-
bre areas without surrounding objects, the orientation estimation is quite good.
In summary, the Hessian matrix based method will offer good results on long
fibres with low fibre content as there are only few fibre ends and intersection
points on binarized data. As fibre reinforced materials for technical applica-
tions usually have a fibre mass content of 30 % and more, this method is not
applicable with appropriate precision. Since the structure tensor led to much
better results with the same memory consumption and almost the same pro-
cessing time, it is the better choice for orientation analysis.

Figure 7.2: Cross section area of two fibres with an angle of 70◦ and a diameter
of 10 voxels processed by the method based on the Hessian matrix
[46].

Structure Tensor

Artificial images with only one fibre showed that there is no clear minimum,
but the error gets lower for small σ and large ρ (Fig. 6.7). Considering the
fibre architecture dependent error with two fibres, there is a local minimum
at σ =0.8 voxels and ρ =5.6 voxels on fibres of 10 voxels in diameter. Further
investigations showed that the optimum of σ remains at the same value for all
configurations. The second blurring parameter that is used for the averaging
of the tensors within a certain image region is dependent on the fibre diameter.
On fibres with a diameter of 5 voxels, it can be found at 3 voxels (Fig. 6.10) and
for a diameter of 15 voxels, it is located at 8 voxels (Fig. 6.13). Thus, the optimal
parameter ρ is slightly larger than half the diameter. An initial rotation (Fig.
6.12) or doubling of the aspect ratio of the fibres (Fig. 6.11) does not have an
influence on the optimal parameter set.

An image plane of the cross section of two fibres is depicted in Fig. 7.3. The
relative angle between the fibres is 70◦. Process parameters for the structure
tensor were σ =1 voxel and ρ =6 voxels Fibres are well aligned in fibre direc-
tion. Actually, there is a small misalignment of the dashes that is not visible in

125



7 Discussion

the first graph. Figure 7.4 shows the same data tilted 20◦ about the x-axis to il-
lustrate this issue. In the area of differently aligned touching fibres, orientation
goes over from one fibre direction to the other steadily. Nevertheless, this error
is low compared to the anisotropic Gaussian filter or the Hessian matrix based
method which result in an orientation that points towards the centre line of the
disturbing fibre.

Figure 7.3: Cross section area of two fibres with an angle of 70◦ and a diameter
of 10 voxels processed by the method based on the structure tensor
[46].

Figure 7.4: Cross section area of two fibres with an angle of 70◦ and a diameter
of 10 voxels processed by the method based on the structure tensor.
The slice was rotated 20◦ about the x-axis to visualize misaligned
glyphs on the intersection.

Table 7.1 sums up the errors of artificial images of pairwise fibres. While the
Hessian matrix did not show a dependency on the fibre diameter, the error
of the structure tensor and the anisotropic Gaussian filter is smaller for a fibre
diameter of 10 voxels. The structure tensor based method resulted in the highest
precision followed by the anisotropic Gaussian filter.

In the following, the impact of the error criterion EA on mechanical models
used for engineering applications is investigated. Therefore, the elastic stiffness
tensor of an unidirectional long fibre reinforced polymer was calculated by a di-
rect Mori-Tanaka [92] homogenisation scheme using the orientation tensors of
2nd and 4th order (cf. e.g. [93]). The method was applied on a unidirectional re-
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7.1 Fibre Orientation Distribution

Table 7.1: Fibre architecture dependent error EA resulting from investigated
methods with different fibre diameters.

Method 10 voxels diameter 5 voxels diameter
Anisotropic Gaussian filter 8.19◦ 8.48◦

Hesse matrix 10.31◦ 10.31◦

Structure tensor 1.68◦ 2.18◦

inforced material because it shows the highest anisotropy in stiffness. Young’s
modulus and Poisson’s ratio of the matrix material were set to EM = 3.4 GPa
and νM = 0.22, respectively. The fibres were assumed to be made of glass with
an Young’s modulus of EF =73 GPa and a Poisson’s ratio of νF = 0.385. The
aspect ratio of the fibres was chosen to α = 250. Due to the unidirectional fibre
architecture, the fibre orientation tensors of 2nd and 4th order read

N=̂

1 0 0
0 0 0
0 0 0

 , N=̂


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (7.1)

The orientation-dependent effective Young’s modulus Ē is calculated by

Ē(d) = (d⊗ d · C̄−1[d⊗ d])−1, (7.2)

where C̄ is the effective stiffness tensor and d is parametrized in spherical co-
ordinates. Figure 7.5 depicts Ē(d) in the x-y plane (cf. [94]). Table 7.1 sums
up the error EA in dependence of the fibre architecture for fibre diameters of
5 voxels and 10 voxels for each of the three investigated methods. In order to
evaluate the impact of this error criterion on the effective stiffness predicted by
the previously described Mori-Tanaka model, the error of each method is plot-
ted into Fig. 7.5 by coloured dashed lines. The Young’s modulus at an angle of
0◦ is 18.73 GPa. This value is the reference for further investigations. Consid-
ering the error of the Hessian based method at an angle of 10.31◦, the Young’s
modulus is only 15.19 GPa which is equivalent to a percentage error of 18.9 %.
The algorithm based on the anisotropic Gaussian filter leads to an error of 13 %.
Using the method based on the structure tensor, the percentage error decreases
to only 0.6 % at a value of 18.61 GPa.
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Figure 7.5: Polar plot of the Young’s modulus of a unidirectional glass fibre re-
inforced polymer [46].

7.1.2 Artificial Fibre Architectures

Figure 6.14 shows that the analysis of tensor based errors resulting from ar-
tificial images lead to relatively high errors using the Hessian matrix based
method or the anisotropic Gaussian filter. The anisotropic Gaussian filter does
also not show a constant trend with increasing fibre volume fraction. Hessian
matrix and the structure tensor based method result in a constantly increasing
error with fibre content, where the error of the structure tensor is significantly
lower. Considering curved fibres the Hessian matrix showed the best perfor-
mance, but the data is not that firm as the real orientation tensor was derived
by an approximation from GeoDict R©.

The results match the investigations on one and two fibre models in the pre-
vious section very well. The Hessian matrix based method shows the worst
performance in most cases. Considering the microstructure with straight fibres
and a fibre fraction of 5 vol %, it results in a lower error than the anisotropic
Gaussian filter. This results from the fact that the fibres are very sparse and
there are no touching points so the Hessian matrix can perform well. The
anisotropic Gaussian filter can only result in discrete orientations that are cho-
sen by a orientation table initially. Thus, it cannot match orientations that are
not listed within this table perfectly. Those are reasons why the anisotropic
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Gaussian filter performs better than the Hessian matrix for higher fibre con-
tents. The Hessian matrix is negatively affected by the touching fibres and thus,
the resulting error gets larger than the influence of the misalignment caused by
the quantification of the anisotropic Gaussian filter (cf. Fig. 7.1 and Fig 7.2).

Considering 2D slices and 3D rendered data of processed images, misaligned
areas can be spotted. Figures 7.6 through 7.8 show those images for the three
methods investigated. The 2D slice cropped from the image processed by the
anisotropic Gaussian filter shows a different orientation in the centre of each
fibre than on its edge. This effect appears especially in regions of high fibre
density. The rendered 3D representation of the same data shows not many dif-
ferent colours on the surface what means that the orientation does not change
very much. Most of the surface appears in a purple colour. The method based
on the Hessian matrix is illustrated in figure 7.7 and shows the same effect. The
fibre orientation changes over the fibre cross-section and the 3D representation
is dominated by a purple colour. The orientation analysis using the structure
tensor in figure 7.8 shows a constant orientation within each fibre in 2D and
a very colourful representation on the surface in 3D, where each fibre bundle
can be recognised. This indicates that this method does not produce significant
edge effects. The same circumstance was already observed on the two fibre
models in figures 7.1 through 7.4. Also, the effect of misalignments on the edge
where fibres are very close was clearly visible in those images. Comparing the
colour of single fibres in the images processed by the Hessian matrix and the
structure tensor, the base colours are very similar for most of the structure. In
contrast to that, the image resulting from the anisotropic Gaussian filter shows
a slightly different colour in most of the fibres what is an effect of the quantifica-
tion. Most of the exact orientations are not available in the table of orientations
used for the evaluation.

7.1.3 Real Images with known Orientation

Scans of real CT-scans of known orientations offered important new findings
about the applicability of the investigated orientation analysis tools. The orien-
tation analysis on the glass fibre reinforced 3D-printed sample led to good re-
sults for all of the three methods. The Nxx-component of all the orientation ten-
sors is higher than 0.92, what indicates a high x-alignment of the fibres. Those
very good results are caused by the high contrast between glass and polymer
matrix and the low fibre content of only 10 %. Thus, the fibres are very sparse
distributed throughout the material. The average fibre length is 0.2 mm and
the fibre radius is around 13µm so the aspect ratio is approximately 15.4. The
fibres are long enough to keep the influence of the fibre ends small. Neverthe-
less, there is a little impact of fibre ends and neighbouring fibres which caused
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(a) 2D slice (b) 3D rendered Image

Figure 7.6: Fibre orientation analysis on artificial image with 20 vol % glass fi-
bres using the method based on anisotropic Gaussian filtering. Fibre
orientation is coded by colour using the HSV colour space.

(a) 2D slice (b) 3D rendered Image

Figure 7.7: Fibre orientation analysis on artificial image with 20 vol % glass fi-
bres using the method based on the Hessian matrix. Fibre orienta-
tion is coded by colour using the HSV colour space.
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(a) 2D slice (b) 3D rendered Image

Figure 7.8: Fibre orientation analysis on artificial image with 20 vol % glass fi-
bres using the method based on the structure tensor. Fibre orienta-
tion is coded by colour using the HSV colour space.

a small difference between the methods at hand. Even though the correct fibre
orientation tensor is not known, it is most likely that the structure tensor is most
precise with Nxx=0.97. The methods based on the anisotropic Gaussian filter
and the Hessian matrix suffer from their typical errors described previously
and lead to values of Nxx=0.92 and Nxx=0.93.

Further validation using a continuous carbon fibre reinforced rod show the
weaknesses of the methods. The contrast is very low what is typical for car-
bon fibre reinforced polymers. Thus, it is not possible to separate fibres from
matrix material and the fibre orientation analysis has to be carried out over the
entire volume. The methods based on the anisotropic Gaussian filter and the
Hessian matrix result in an orientation tensor that is almost isotropic. Further
investigations with various parameter sets were carried out in order to opti-
mize those methods for the data at hand, but none of them was working. The
structure tensor led to a highly anisotropic orientation tensor with Nxx=0.998.
Note that the input parameters for this method are chosen differently to the
recommendations in section 7.1.1. As the fibres cannot be separated, the mask
size for the averaging of the tensors was set to ρ =4 in order to integrate over a
larger region and make the method more robust against image noise.
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7.1.4 Orientation Tensors derived from Spatial Curves

Deriving the orientation tensor from spatial curves is different to voxel-based
methods regarding the method to achieve those tensors. While voxel-based
methods result in a volume weighted tensor, the calculation from spatial curves
according to equation 4.18 leads to a tensor weighted by its fibre length. For
constant fibre diameters, both approaches result in exactly the same tensor. In-
vestigations on high resolution scans of LFT material in section 6.4 showed that
orientation tensors derived from spatial curves result in almost the same ten-
sors calculated by voxel based methods. For the two scans with a resolution of
3.32µm/voxel, the bias between both methods is ET =0.017 and ET =0.027.
Using larger image regions with a resolution of 5.85µm/voxel, the error in-
creases to ET =0.04 for both methods. It is noteworthy that this error is still
lower than most results of voxel based methods on artificial data (cf. section
6.1.2). The conclusion is that voxel-based methods do not cause a large discrep-
ancy due to quantification errors caused by the voxel grid.

7.1.5 LFRP Material

The structure tensor gave the best performance with respect to the precision
and robustness in previous investigations. Thus, only this method was applied
on the materials of interest.

GF SMC

Glass fibre reinforced SMC shows a high contrast between glass fibres and poly-
mer matrix but most of the fibres exist in bundles what makes it difficult to
separate them one by one. Nevertheless, the fibre bundles can be separated
from the matrix. Assuming that the error resulting from an over-segmentation
influences each bundle in the same way, the statistical orientation approaches
should work fine. Figure 6.15 shows clearly that the orientation analysis works
well in most regions. Only some small parts of the bundles show misalign-
ments if there is another neighbouring bundle in the next image slice. However,
those erroneous evaluations are quite small compared to the entire sample and
can be neglected.

CF SMC

SMC material with carbon fibres is more demanding to the algorithm as the
contrast is very low. It is not possible to separate fibres from the matrix material
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7.1 Fibre Orientation Distribution

and thus, the threshold for the fibre analysis is set to zero. This causes, that
the algorithm evaluates orientations also on positions under absence of fibres.
Assuming that the influence of neighbouring fibre bundles has the same effect
on the orientation analysis that is carried out on the bulk matrix material, it
will still be a good approximation of the real distribution function. Figure 6.16
shows clearly that most of the areas within the image are evaluated correctly.

GF LFT

Considering orientation analysis tasks, glass fibre reinforced LFT material is
very similar to the GF SMC material. Fibres have a high contrast to the matrix
but in most of the regions they can be separated one by one because they do not
exist in bundles. High shear deformation in the extruder forces the initial fibre
bundles to drift apart during the manufacturing process. Figure 6.17 shows the
corresponding orientation analysis where most of the fibres are separated.

Hybrid Sample

As the hybrid sample consists of discontinuous GF SMC and continuous car-
bon fibre reinforced material, the evaluation should work well because both
materials systems have been investigated before. Nevertheless, trying to sep-
arate the different microstructures by the coherence measure (cf. 6.18) causes
some issues. Even though the three regions can be recognized by the naked eye,
it is hardly possible to separate them automatically. Considering a sample size
of only 10× 10× 3.3 mm3, there is a high possibility that there are some image
slices in thickness direction of the SMC material that are almost unidirectional.
Thus, there are slices with a coherence measure higher than 0.3 within the SMC
regions. Also the region consisting of continuous CFRP material shows two
significant low points with a coherence measure below 0.2. Those points are
caused by the fixation strings made of glass fibre which are used to keep the
carbon fibres in position during the manufacturing process. These two reasons
make it difficult to separate the microstructures in the present case. Neverthe-
less, the method can be used if there are no fixation strings within the contin-
uous fibre reinforced regions or if the image region is large enough that the
probability for a unidirectional area in the SMC material gets low.
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7.2 Fibre Volume Fraction

Fibre volume fractions calculated by a threshold on the grey value must be
treated with caution as image histograms differ with the reconstruction method,
material system, fibre architecture and image resolution. In the following, re-
sults of investigations on GF SMC and GF LFT in section 6.2 are discussed.

GF LFT Material

Global image histograms of the LFT samples investigated are shown in figure
7.9 for a fibre volume content of 10 wt %, figure 7.10 for 20 wt % and figure 7.11
for 30 wt %. First of all, is is noteworthy that none of the LFT images shows a
bimodal histogram (cf. Fig. 2.4). Thus, the Minimum method did not converge
as there is no local minimum within the histogram. The number of voxels at the
peak value decrease with increasing fibre content and more values are classified
in values up to about 200. Due to the sharp peak at lower values, it is hardly
possible to binarize 50 % of the image using the Percentile method. Actually,
it is only possible to separate at natural numbers and thus, there are only 255
possibilities to set a threshold on an 8bit image. the higher the slope of the his-
togram, the higher is the possible quantification step in volume fraction. Thus,
the probability is not that low to get the same results for two different meth-
ods. Nevertheless, higher values at a lower slope are more interesting for the
material at hand as the fibre content is relatively low. Picking the best thresh-
olding grey value by hand with respect to the fibre volume fraction derived
from TGA measurements leads to a grey value of 65 on the 10 wt % specimen,
69 with 20 wt % and 58 with 30 wt % glass fibres. The values are marked by a
red dot in the histograms. Considering LFT material with the parameters at
hand, Otsu and IJ IsoData provided the most reliable data as it resulted in a
relatively small and almost constant over-prediction.
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Figure 7.9: Global image histogram of 10 % GF LFT sample. The red dot il-
lustrates the correct threshold for segmentation with respect to the
TGA measurements.
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Figure 7.10: Global image histogram of 20 % GF LFT sample. The red dot il-
lustrates the correct threshold for segmentation with respect to the
TGA measurements.
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Figure 7.11: Global image histogram of 30 % GF LFT sample. The red dot il-
lustrates the correct threshold for segmentation with respect to the
TGA measurements.

GF SMC Material

Investigation of fibre volume fraction on SMC material resulted in a very dif-
ferent result as on LFT Material. The image histogram of sample 2B 0 1 is il-
lustrated in figure 7.12. Histograms of other SMC samples look very similar.
The optimum threshold with respect to TGA experiments is at a grey value of
71 leading to a fibre volume content of 23.96 vol %. Segmentation techniques
on SMC samples tend to recognize the little spaces between the fibres within a
bundle as fibre material. Thus, more methods resulted in an over-estimation of
the fibre content. Percentile showed did not deviate more than 0.6 vol % what
is caused by the relatively low slope compared to the LFT samples. The best
performance on SMC Material was provided by the Moments algorithm with
an maximum error of 1.2 vol %.

Summed up, the evaluation of fibre volume content can be used for relative in-
vestigations but not for absolute values. Also, the thresholding method should
be chosen with respect to the material system at hand in order to obtain good
approximations. Nevertheless, the average percentage error on SMC material
is around 4 %, what is quite high depending on the application of the data.
Considering e.g. the fibre volume fraction over thickness of a sample for me-
chanical models, it is recommendable to norm the overall fibre content by a
known value.
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Figure 7.12: Global image histogram of GF SMC sample B 0 1. The red dot il-
lustrates the correct threshold for segmentation with respect to the
TGA measurements.

7.3 Fibre Length Distribution

7.3.1 Optical Methods

FiVer

Fibre length distributions from specimen incineration and optical measurements
using FiVer show a tendency for rising x-values of the peaks for increasing
specimen sizes. Nevertheless, both investigated batches have their peak value
at 0.8 mm for 5 mm and 10 mm samples. For those sample sizes, all fibres within
the specimen were measured while only a subset of fibres was extracted from
the samples with an edge length of 20 mm and 40 mm. Small samples show
a constant FLD while the curves of larger specimens are less consistent. The
thinning process that is necessary to extract a subset of fibres could possibly
influence the results as smaller fibres could get lost and thus peaks are shifted
to the right-hand side.
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FASEP

Even if there is an additional smaller peak in the FLD of the IM-LFT-5mm sam-
ple, the positions of the peak values on the length axis are very close with
FASEP and FiVer. It is especially noticeable that the resulting FASEP curves
appear ”noisy”. This results from a lower quantity of fibres that were inves-
tigated and is not necessarily a measure for the quality of the FLD. Table 7.2
shows the number of fibres that were investigated by the different systems for
each sample.

Table 7.2: Number of investigated fibres by FASEP and FiVer for each sample.

FASEP FiVer
IM-LFT 5mm 6346 49567

IM-LFT 10mm 6563 205668
IM-LFT 20mm 5073 42172
IM-LFT 40mm 5053 78636

Even though there are small deviations in the FLDs using FASEP and FiVer,
both methods seem to indicate plausible data. Nevertheless, based on the avail-
able data, it is not possible to give a statement about the quality of both meth-
ods. There are too many factors, like the sample preparation or the transport
of the fibres from one device to the other, which can possibly influence the re-
sults. Summed up, both methods seem to offer FLDs with sufficient accuracy
for injection moulded LFTs.

7.3.2 FLD derived from CT-Images

Fibre length measurements on LFT material with PP matrix (identifier LFT) are
depicted in Figure 7.13 for a sample size of 5 mm and in Figure 7.14 for a sample
size of 10 mm. All histograms are weighted by mass and built with a bin width
of 0.1 mm using 100 samples to 10 mm. Results of specimen with an edge length
of 5 mm are very similar to those from the measurements using optical methods
like FiVer or FASEP. All peaks are at a fibre length of 0.7 mm.

Measurements on 10 mm samples show a bias between the methods where the
curve resulting from the fibre tracking algorithm is shifted slightly to the left.
Peak values are at 0.7 mm for results from both optical methods and 0.5 mm de-
rived the CT-data even if the curve from FASEP includes slightly more long fi-
bres. Obviously, the fibre tracking method did not work properly on the image
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Figure 7.13: Fibre length distribution of the IM-LFT sample with an specimen
size of 5 mm.

with lower resolution. The image data of the smaller sample has a resolution of
3.32µm in contrast to the large one with only 5.81µm. The glass fibres used in
the material have a diameter of around 13µm and thus, a fibre has a diameter
of around 4 voxels in the high resolution but only slightly more than 2 voxels in
the image with lower resolution. The pre-processing introduced in section 4.2.1
cannot perform very well on small diameters as the surface of the fibre is too
small to cause enough image gradients that enable to gain the grey value of the
centre line. Consequently, it is not possible to separate fibres at touching points
and many intersections have to be resolved in the fibre tracking algorithm (Fig.
4.8). If intersections get to large, what happens quite often for in resolution im-
ages, it is no longer possible to assign connecting fibres correctly. Furthermore,
fibre paths get interrupted due to a low resolution since the circular voting filter
generates a less constant grey value along the centre line and thus, gaps appear
after thresholding .
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Figure 7.14: Fibre length distribution of the IM-LFT sample with an specimen
size of 10 mm.

7.4 Fibre Curvature

IM-LFT

In section 6.4.2, statistics about fibre curvature of the 5 mm IM-LFT are shown.
Most of the fibres within the sample have a bending radius of 1 mm. There is
also a very small peak at a radius of 0.15 mm. Fibres with such a small bending
radius are most likely over-fitted because the fibres break at a bending radius
of around 0.132 mm. The spline fitting algorithm uses a 3rd degree polynomial
function for a length of twenty voxels. However, if a fibre is e.g. only three
voxels long, the same cubic function is not well defined and can lead to ex-
tremely high curvatures (cf. Fig. 4.9). Unfortunately, there is no alternative
method than computed tomography to derive fibre curvatures from compos-
ite materials in order to acquire data for validation. Furthermore, there is no
other image processing tool to evaluate fibre curvatures at the current state of
research. Thus, spline fits of a random subset of curved fibres longer than 4 mm
with a bending radius between 0.5 mm and 1.5 mm were plotted in figure 7.15
to estimate the quality of the achieved data. All fibres have random colours to
distinguish between different objects easily. All plotted fibres within the graph
show a high curvature and length. Most of them seem to be tracked correctly
except the blue fibre on the left, where two fibre ends were connected erro-
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7.4 Fibre Curvature

neously. Figure 7.16 shows a subset of fibres with a length of more than 0.7 mm
and a bending radius larger than 3 mm.

Compared to the estimation of fibre length distributions from tracked fibres,
the curvature is less critical as a lost fibre does not necessarily result in a wrong
value. Curvature can also be evaluated on many smaller fibre snippets while
the connectivity of the entire fibre is essential for the determination of fibre
length distributions. Thus, curvature can also be derived with slightly lower
image resolutions.
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Figure 7.15: Plot of a random subset of fibres longer than 4 mm and a mean
bending radius of 0.5 mm ≤ r ≤ 1.5 mm derived from the IM-LFT
sample with a size of 5 mm.
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Figure 7.16: Plot of a random subset of fibres longer than 0.7 mm and a mean
fibre bending radius r ≥ 3 mm derived from the IM-LFT sample
with a size of 5 mm.

DiCo GF SMC

The fibre curvature histogram shown in Figure 6.28 shows a lot of fibres with
very high curvature. It is likely that those fibres are tracked erroneously as the
fibre radius within the material was not perfectly constant and consequently,
the CircularVoting filter could not perform very well in order to gain the centre
axis of the material. Nevertheless, there is another less sharp peak at 7.5 mm
and reaches to curvatures up to a bending radius of 30 mm. For SMC mate-
rial, those values are plausible because the fibres exist in bundles and thus, the
bending stiffness of the fibres is much higher. As they are flat within the mate-
rial, it is easier to bend them over the lower principal axis of their cross-section
it is easier for them to bend in plate thickness direction. Hence, the fibre cur-
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7.4 Fibre Curvature

vature cannot be seen on materials with transparent matrix materials. Figure
7.17 shows a subset of fibres with a length of more than 0.5 mm and a bend-
ing radius higher than 2 mm tracked from the DiCo GF SMC material with an
scanning size of 2.5 mm.
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Figure 7.17: Plot of a random subset of fibres longer than 0.5 mm and a mean
bending radius higher than 2 mm derived from the DiCo GF SMC
sample with a size of 2.5 mm.

Those fibres were found near the centre of the plate in two different roving
with high curvature. The green fibre on the left is tracked erroneously as two
fibres are connected. Considering the same structure with fibre radii higher
than 2 mm, there are many more fibres because most of them in SMC material
have a low curvature.

Summed up, the curvature analysis of LFRP materials seems to be plausible,
even if there is no proof of correctness. Obviously, the data is less accurate for
low resolution images. But as the curvature is less dependent on the connec-
tivity of voxels, it is possible to use smaller samples with higher resolution for
this kind of characterization.
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Figure 7.18: Plot of a random subset of fibres longer than 0.5 mm and a mean
fibre bending radius lower than 2 mm derived from the DiCo GF
SMC sample with a size of 2.5 mm.
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7.5 Surface Curvature Analysis

7.5 Surface Curvature Analysis

7.5.1 Surface Curvature Analysis on Artificial Images

Results from artificial images of spheres showed that there is no optimum for
the blurring parameter σ using the Hessian matrix based method. Neverthe-
less, the error is lower than 2 % for σ ≥ 2 voxels and a sphere radius up to
20 voxels. Computing times are almost independent of parameter σ due to
the efficient implementation by a separable recursive filter. The patch based
method results in an error of around 5 % using a high patch diameter of ρ =
10 voxels while the blurring parameter σ did not affect the precision signifi-
cantly. On the downside, the large patch size affects the computation time con-
siderably. Furthermore, the algorithm leads to relatively high errors on small
pores. It falls below 10 % at a sphere radius of around 10 voxels.

7.5.2 Surface Curvature Analysis on Real Images for
Validation

Evaluations of the CT scan of ball bearings shows a good correspondence of the
curvature calculated by both algorithms and the images. On the entire struc-
ture, both methods lead to an asymmetric function if the blurring parameter σ
is chosen too high (cf. Figure 6.31 and 6.32). Nevertheless, a higher value leads
to sharper peaks in the curvature histogram. Figure 7.19 shows the surface cur-
vature evaluated by the Hessian matrix in a two-dimensional slice through the
structure for a blurring parameter of σ of 3 voxels and 10 voxels. Apparently, the
curvature gets smoother with higher σ, but also the influence of neighbouring
objects increases. Using small σ, a slight speckle pattern appears on the struc-
ture. This leads to a wider peak in the surface curvature histogram in Figure
6.31. On touching points, the curvature turns from a small positive value into
a high negative value. Those highly negative curvatures can be seen in Fig-
ure 7.20 by the red circles on the touching points, while the spheres appear in
yellow where the intensity illustrates the curvature. The transition of the cur-
vatures between structures of different radii is the reason for the plateau areas
which appear between the peaks and also on the left-hand side of the left peak.
As the curvature fades slowly from one value to the other, all values in between
are also existent within the image.
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Figure 7.19: Curvature derived from the CT-scan of bearing balls by the
Hessian-based method.
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Figure 7.20: 3D representation of curvature derived from the CT-scan of bearing
balls by the Hessian-based method with σ=10 voxels.
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7.5 Surface Curvature Analysis

The patch-based method shows a very related behaviour for with respect to the
blurring parameter σ. Higher values cause a smoother curvature distribution
on the surface with growing transition zones between different radii. Figure
7.21 shows that using a large patch size offers also a good result and keeps the
transition zones small but as mentioned before, the computation times increase
significantly with ρ.

Separation of the spheres by a watershed filter results in a histogram where
peaks are not connected by a plateau. The histogram shown in 6.33 was gen-
erated by a superposition of the curvatures of the single spheres which were
processed one by one. Thus, blurring parameters can be chosen larger without
influencing neighbouring objects. The dashed lines in the histogram illustrate
the real curvature of the objects derived from the physical radius. Converted
to the radius, the Hessian based method leads to peak values of 3.87 mm and
1.91 mm. The patch-based method results in 3.89 mm and 1.89 mm.

Methods for determination of surface curvature can be used for the local de-
scription of pores or inclusions. High curvatures within a microstructure usu-
ally come along with high notch factors and could be used in order to find hot
spots in strain. Furthermore, fibre ends cause a high Gaussian curvature (eq.
2.41). This circumstance can also be seen on the pore analysis of the CFRP-
layup in figure 6.34, where the ends of the elongated pores show a high mean
curvature. Assuming a volumetric image with straight fibres, areas on the shell
of the fibres have theoretically a Gaussian curvature of zero as one of the prin-
cipal curvatures is zero. Hence, the shell appears very dark while the fibre
ends show bright dots in the resulting image. Nonetheless, the algorithms can
be used for the analysis of foams since the curvature correlates with the pore
diameter.
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Figure 7.21: Curvature derived from the CT-scan of bearing balls by the patch-
based method.
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8 Conclusion

Investigations have been made in order to evaluate different approaches for
orientation analysis on volumetric images. Therefore, artificial binary data of
single and pairwise fibres with certain angle, diameter and distance have been
investigated in order to determine optimal parameter sets for each algorithm.
The algorithms have been applied to binary images artificial microstructures
generated by GeoDict R© in order to calculate the tensor-based error ET . Re-
sults showed that the structure tensor based method leads to the most precise
data on most of the structures investigated. It was also observed that the struc-
ture tensor based orientation analysis leads to an assessable error for higher
fibre volume contents where the methods based on the Hessian matrix and the
anisotropic Gaussian filter had outliers considering the error over fibre volume
fraction. Investigations on real images like a short fibre reinforced 3D printed
bar with known fibre orientation led to good results with all three orientation
analysis tools as the fibres have a high contrast and are separable from the ma-
trix material. Evaluation of a carbon fibre reinforced pultruded rod resulted
in almost isotropic orientation tensors for the methods based on the Hessian
matrix and the anisotropic Gaussian filter. The contrast of carbon fibres on
polymer is too low to separate fibres from matrix material. Only the structure
tensor based method provides good results on those low-contrast images. As
the structure tensor was the only method that has satisfied all requirements for
a precise and robust orientation analysis, it was applied on LFRPs including
carbon and glass fibre reinforced SMC as well as unidirectional carbon fibre
reinforced material. Image slices through the volumetric images were shown
which illustrate the planar orientation in HSV colour space. Those pictures
show a very good correspondence of calculated orientations and the local struc-
ture described by the CT scan. The coherence measure was introduced to sep-
arate continuous from discontinuous layers within a lay-up. It was shown that
the method works in general, but as there are fixation strings made of glass fibre
90◦ to the unidirectional fibres, this method is applicable for this material.

The fibre architecture dependent errorEA was used to estimate the influence of
a misalignment caused by the fibre orientation analysis on an elastic mechanical
model. The stiffness tensor for a unidirectional glass fibre reinforced polymer
was calculated using a homogenisation scheme with respect to Mori-Tanaka. It
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8 Conclusion

was shown that the error resulting from the structure tensor leads to a deviation
of only 0.6 % in stiffness.

Fibre volume fractions were calculated by common grey value thresholding
techniques. For validation, samples of glass fibre reinforced LFT and SMC has
been incinerated in a thermogravimetric analysis device in order to derive the
fibre mass fraction. Using the density of the constituents, results were con-
verted to the fibre volume fraction. Results of thresholding methods on volu-
metric images of both material systems showed that there is no universally ap-
plicable procedure. Many of the methods investigated led to a significant over-
estimation of fibre volume content and can be excluded from the list of suitable
thresholding procedures. Most promising methods were Otsu, Moments and
IJ IsoData. While Otsu and IJ IsoData work pretty good on separated glass fi-
bres within LFT materials, the Moments method provides best results on the
SMC material with bundled fibres.

A fibre tracking algorithm has been introduced in order to evaluate fibre length
distributions, orientation tensors and statistics about fibre curvature. The cir-
cular voting filter was used as a pre-filter to separate glass fibres by gaining
the centre lines by a surface overlap measure. It was shown that the pre-filter
is able to improve the raw data for the use for thresholding and skeletoniza-
tion. An algorithm was introduced to resolve remaining crossings in the re-
sulting fibre network and connect fibre segments with matching orientations.
The voxel data of the centre lines was used to fit spatial curves by B-splines
and to parametrize those curves using the Frenet-Serret equations. Using this
parametrization, a mean curvature was evaluated for each fibre. This enables
to construct statistics describing e.g. curvature over fibre length or to localize
curved or straight fibres. Spatial curves integrated to derive orientation ten-
sors of 2nd order and compare them with voxel-based methods investigated
preciously. Resulting errors were approximately in the same range as those of
the structure tensor on artificial structures and thus it can be stated that the vol-
ume averaged and the length averaged orientation tensor can be assumed to be
equal in glass fibre reinforced polymers. Theoretically, this is only true for con-
stant fibre diameters. The small deviation of the diameter of glass fibres seems
not to influence the statistic significantly. Furthermore, same spatial curves
were used for the determination of fibre length distributions which were vali-
dated by conventional measurements using data from IST AG FibreShape FiVer
and FASEP. Comparison shows very good agreement of FLDs using specimen
with an edge length of 5 mm. Larger samples showed a bias of the curve where
the data derived from CT-scans ends in shorter fibres. Statistical approaches
could help to solve the problem of limited sample size using computed tomog-
raphy in order to evaluate FLDs. The introduced method enables to use a lot
of data like curvature, fibre length and orientation distributions which can be
utilized for statistics. Furthermore, cut fibres can be localized on the edge of
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the specimen to build a statistic about the quantity of fibres cut once, twice, or
not at all.

Surface curvature has been calculated by to different approaches based on the
Hessian matrix and on a surface patch of variable size utilizing the Gaussian
map. Tests on artificial data showed that the method based on the Hessian
matrix works much better on small pores or inclusions at lower computation
times. Investigations on real images of balls with known diameter confirmed
the applicability of both methods on CT-data. Surface curvature can be used
as an indicator for notches as a high curvature causes a high notch factor. This
information can be used in in-situ tests in order to predict spots for crack initi-
ation. As cracks have a very high curvature, the algorithm could also be used
to locate the crack root and thus to keep track of its growth.
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[87] David Bücheler. ”Locally Continuous-fiber Reinforced Sheet Moulding
Compounds“. PhD thesis. KIT, 2017.
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