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Abstract

Complex data structures such as list, tree, and graph are mainly located on the
heap. Verifying programs with complex data structures against the properties
that constrain the configurations of the objects on the heap is particularly
important for safety-critical software systems with extensive heap manipula-
tions. Erroneous heap manipulations may cause loss or unauthorized access
to data, violate software security, and may eventually cause a system to crash.
Program verification techniques like bounded and deductive program ver-
ification, in general, are capable of verifying a program against a property
of complex data structures. However, there is always a trade-off between
the scope of their analyses, and their level of automation. Bounded program
verification techniques are fully automatic, but they only analyze a program
for a small scope. Deductive program verification, on the other hand, have no
restriction on the scope, but they often require users to provide auxiliary
specifications such as loop invariants and method contracts for sub-routines.

In this thesis, we present a verification infrastructure combing the benefits
of different program verification techniques. To verify a program with respect
to a specification—specifying a property that is expected to be satisfied by the
program, the envisioned verification process is as follow:

1. Bounded program verification. For gaining fast and initial confidence
in the correctness of the program regarding the expected property, we
first check whether the property holds for a small scope without provid-
ing any auxiliary specification. If a counterexample to the correctness
of the program is found, no further analysis is required. Otherwise, the
property holds—but only for the scope; thus a deductive verification—an
unbounded program verification, is still needed.

2. Abstraction. Construct a semantic slice of the program with respect to
the property. The semantic slice is an abstract program which contains
those statements of the original program that are relevant to the property.
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The remainder of the original program (i.e., the irrelevant statements) is
replaced by abstractions. Proving the correctness of slices requires less
auxiliary specifications as slices have less details.

3. Bounded verification of auxiliary specifications. Before continuing with
the deductive verification, we check whether the user-provided auxiliary
specifications hold in the slice using bounded program verification. If
a counterexample to the correctness of the specifications is found, an
inspection of the specification is needed. Otherwise, go to step 4.

4. Deductive program verification. Prove the correctness of the slice with
the bounded-verified auxiliary specifications. If the slice (i.e., the abstract
program) is proved, the original program satisfies the expected property
as well (by the construction of the slice), and the analysis terminates.
Otherwise, a counterexample to the slice is found, and thus go to step 5.

5. Refinement. Check whether the counterexample is valid for the original
program, i.e., it is also a counterexample to the original program. If it is
valid, a fault has been discovered, and the analysis terminates. Otherwise,
we refine the slice so that the invalid counterexample is eliminated. The
process then starts over at step 3.

This verification process is an instantiation of counterexample-guided abstrac-
tion refinement framework and forms the basis of our verification infrastruc-
ture. Though it still relies on user-provided specifications for deductive pro-
gram verification, it holds promise for efficiency. It allows only the necessary
parts of the program for the expected property to be analyzed in deductive
program verification, so it eases the burden of manually discovering useful
annotations. It guarantees fast and initial confidence in the correctness of
program and auxiliary specifications, hence avoids unnecessary attempts and
facilitates users to inspect the failed proofs in deductive program verification.

Our infrastructure repeatedly uses bounded program verification. To im-
prove its efficiency, we provide novel approaches for bounded program verifi-
cation. We provide an SMT-based encoding for bounded program verification
by exploiting the recent advances of satisfiability modulo theory solvers. The
encoding supports programs with complex data structures and specifications
with arbitrarily nested quantifiers and reachability expressions, and is used in
the rest approaches presented in this thesis. Besides, we provide a calculus
to compute suitable scopes for gaining a high code coverage at bounded
program verification. Finally, we study the effect of using various constraint
solving techniques on the time efficiency of symbol execution—a technique
used in program verification systems.
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CHAPTER 1

Introduction

Software failures in safety-critical systems (e.g., medical, automotive, aviation,
and nuclear engineering) may cause severe damage and cost lives. Forty years
ago, for example, Therac-25 (a software-controlled radiation therapy machine)
emitted more than 100 times radiations to its patients and that malfunction
resulted in severe injuries and three patients’ deaths [Dalal and Chhillar,
2013, 2012; Wallace and Kuhn, 2001]. An extensive investigation revealed
that Therac-25 calculated a wrong number of radiations due to unauthorized
access of data. Software engineering has made tremendous progress and
achievements, while software failures still remain a serious problem. For
example, in mid-2017, Fiat Chrysler Automobiles NV (FCA) claimed to recall
more than 1.25 million trucks worldwide to address a software error linked to
reports of one death and two injuries. We have to make greater efforts on the
road to success in software quality assurance.

1.1 Motivation

Complex data structures have been widely used to represent the complex data
relations in software systems with object-oriented design. Unlike simple data
structures (also known as primitive data types) such as int and boolean
that are stored on the stack, complex data structures such as list, tree,
graph, and user-defined classes are generally built upon primitive data types
and reference-based data types, and mainly located on the heap. We focus
on verifying programs with complex data structures against the properties
that constrain the configurations of the objects on the heap. The properties
of interest can be divided into two categories in program verification, i.e.,
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the properties of complex data structures and the properties of functions. A
property P (T ) of a complex data structure T (a class) has to be satisfied by
all instances of T whenever a function of T returns, even though the function
may not manipulate T . That is, the property P (T ) has to be preserved by any
function of T . A property of a class Set could be that, for example, each object
of Set contains distinct elements. On the other hand, a property P (F ) of a
function F is only expected to be satisfied by F when F returns. A property
of a function inserting elements to a set could be, for example, the set contains
new elements after the function returns, and the old elements are still in the
set. Unless specifically stated in the text, we use properties of complex data
structures to refer these two kinds properties, since a function, in any case, has
to satisfy the properties of its enclosing class.

Analyzing properties of complex data structures that constrain the config-
urations of the objects on the heap is particularly important for safety-critical
software systems with extensive heap manipulations. Erroneous heap ma-
nipulations may cause loss or unauthorized access to data, violate software
security, and eventually cause a system to crash. The properties of interest do
not have to be complex, but their corresponding specifications typically in-
volve arbitrarily nested quantifiers and reachability expressions. In spite of all
advances in software analysis, analyzing these properties is still a challenging
problem.

Traditional program verification techniques like deductive program verifi-
cation are capable of proving the correctness of a program with respect to a
specification—specifying a property that is expected to be satisfied by the
program. However, it is expensive to extend their application in practice, since
these techniques typically require user-provided annotations (also known as
auxiliary specifications) to construct a proof. Constructing useful annotations is
a tedious and error-prone effort, and renovating a failed proof needs more
efforts, e.g., to inspect the code and the annotations. Bounded program verifica-
tion techniques, on the other hand, exhaustively check a program regarding a
small scope and guarantee a fast and initial confidence in the correctness of
program if the bounded verification succeeds. It will be useful if we can bring
the advantages of bounded program verification to deductive program verifi-
cation. Compared to deductively verifying a program from scratch, proving a
bounded-verified program will reduce efforts in deductive verification. Un-
fortunately, existing bounded program verification techniques have issues in
scalability and code coverage. That is, they are only able to analyze a program
with a low code coverage on a domain with a few objects.

This thesis presents a verification infrastructure combing the benefits of
different program verification techniques. The infrastructure aims to verify a
program against a given specification (property). Figure 1.1 shows the struc-
ture of our infrastructure. To verify a program P with respect to a property Q,
the envisioned verification process is as follow:
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Fig. 1.1: Structure of our infrastructure. The highlighted boxes are the compo-
nents of our infrastructure, and refer to the principle contributions of the thesis
as well. The numbers at highlighted boxes indicate the order of envisioned
verification process.

1. Bounded program verification. First, check if the property Q holds for
a small scope B that limits the number of objects on the heap and the
number of loop iterations. If Q does not hold, a counterexample to the
correctness of P is found and the analysis terminates. Otherwise, the
property Q holds—but only with respect to the scope B; thus a deductive
verification—an unbounded program verification, is still needed.

2. Abstraction. Construct an abstract program (a semantic slice) A(P ) with
respect to the property Q based on the proof of invalidity of bounded
program verification. In the slice A(P ), the statements of the program P
that are irrelevant to the property Q are replaced by abstractions. The rest
of the program remain unchanged.

3. Bounded verification of auxiliary specifications. Before continuing with
the deductive verification, check whether the user-provided auxiliary
specifications I (e.g., loop invariants) hold in A(P ) using bounded pro-
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gram verification. If a counterexample to the correctness of I is found
(since A(P ) has been bounded verified), the inspection of I is needed.
Otherwise, go to step 4.

4. Deductive program verification. Prove the correctness of the abstract
program A(P ) with bounded-verified auxiliary specifications I for the
property Q. If A(P ) is verified, the analysis terminates, and the original
program P satisfies the property Q as well (by the construction of the
abstract program A(P )). Otherwise, a counterexample c to A(P ) is found,
and thus go to step 5.

5. Refinement. Check whether c is valid for the original program P using
bounded program verification, i.e., it is also a counterexample to the
original program. Meanwhile, a larger scope L(B) for bounded program
verification has been computed based on the counterexample c. If c is
valid, a fault has been discovered, and the analysis terminates. Otherwise,
we refine the slice A(P ) so that the invalid counterexample c is eliminated.
The process then starts over at step 3.

This verification process is an instantiation of Counterexample-Guided
Abstraction Refinement (CEGAR) [Clarke et al., 2000] framework and forms
the basis of our verification infrastructure. The construction of abstractions
is guided by the bounded proof provided by bounded program verification,
and the refinement of abstractions is guided by the counterexample detected
by deductive program verification. The novelty of our instantiation is that
it constructs (and refines) abstractions at the statement level and handles
properties of complex data structures. Though the infrastructure still relies
on user-provided specifications for deductive program verification, it holds
promise for efficiency. It allows only the parts of the program that are neces-
sary for checking the desired property to be analyzed in deductive program
verification, so it eases the burden of manually discovering useful annotations.
Besides, it guarantees fast and initial confidence in the correctness of program
and auxiliary specifications, hence avoids unnecessary attempts and facilitates
users to inspect the failed proofs in deductive program verification.

To consolidate the efficiency of the infrastructure, we exploit the recent
advances of Satisfiability Modulo Theory (SMT) solvers [Barrett et al., 2017]
(e.g., Yices [Dutertre, 2014], CVC4 [Deters et al., 2014], MathSAT5 [Sebas-
tiani and Trentin, 2015], and Z3 [de Moura and Bjørner, 2008]) and provide
novel approaches for the bounded program verification that has been heavily
used in our infrastructure. We provide an SMT-based encoding for bounded
program verification. The encoding supports Java programs with complex
data structures and Java Modeling Language (JML) [Leavens et al., 2006]
specifications with arbitrarily nested quantifiers and reachability expressions.
We use the encoding to translate programs and specifications into a quanti-
fied bit-vector formula (QBVF) [Wintersteiger et al., 2013] regarding a scope
of analysis, and check the satisfiability of the formula using an SMT solver.
QBVF allows to specify logical constraints that are structurally closer to the
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program and the specifications, thus facilitates understanding the models to
a satisfiable formula. The SMT solver can perform high-level simplifications
on QBVF before reasoning the formula in a basic logic, hence significantly
improves the scalability of bounded program verification. Besides, we pro-
vide an SMT-based calculus to compute suitable loop bounds based on class
bounds for gaining a good code coverage (and heap coverage) in bounded
program verification.

To improve the time efficiency of symbolic execution—a means of analyz-
ing programs that has been widely used in program verification and testing,
we provide an empirical study of symbolic execution using various constraint
solving techniques. The results of the study recommend to use incremental
SMT solvers to reduce the time cost of symbolic execution. An incremental
SMT solver can (re-)use the intermediate lemmas that it has learned in pre-
viously constraint solving as opposite to a common SMT solver that learns
lemmas from scratch each time it is invoked.

Though the overall thesis presents a verification infrastructure combing
the benefits of different program verification techniques, we design the compo-
nents of the infrastructure (i.e., the highlighted boxes in Fig. 1.1) as stand-alone
analyses so that they can be used in various contexts. We have implemented
the components in prototype tools and performed various experiments to
evaluate their benefits compared to alternatives. Overall, our tools provide
superior results.

1.2 State of the Art and Challenges

Bounded Program Verification

Bounded program verification techniques (also known as static scope-bounded
checking) have become an increasingly attractive choice for gaining confi-
dence in the correctness of software. Existing techniques (e.g., Jalloy [Vaziri-
Farahani, 2004], JForge [Dennis et al., 2006], TACO[Galeotti et al., 2013],
Miniatur[Dolby et al., 2007], Karun[Taghdiri, 2008], and MemSAT[Torlak
et al., 2010]) statically check functional properties of an unrolled program (in
which loops and recursions are unrolled based on loop bounds) with respect to
a bounded domain (in which the number of objects of each class is limited
based on class bounds). They encode the unrolled program and the property of
interest as a propositional logic formula and check the satisfiability of the for-
mula using a Boolean satisfiability (SAT) solver. These techniques provide an
attractive trade-off between automation and completeness. They exhaustively
analyze an unrolled program and thus guarantee to find any bug regarding
the analyzed property within the domain, but defects outside the domain will
be missed. Although these techniques have been successfully used to find
bugs in various programs, the encoding using propositional logic limits their
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scalability: they can check code with respect to only a few objects and loop
unrollings, especially when the code contains integer expressions and arrays.

Moreover, existing bounded program verification techniques typically
require users to provide class bounds and loop bounds as separate parameters.
These two kinds of bounds, however, have to be well matched for gaining
a good code and heap coverage. Many techniques have been proposed to
compute loop bounds, including the techniques used in the analysis of worst
case execution time (WCET), e.g., [Gulavani and Gulwani, 2008; Ermedahl
et al., 2007; Michiel et al., 2008; Thesing, 2004; Cullmann and Martin, 2007],
and bounded model checking techniques, e.g., [Milicevic and Kugler, 2011].
These techniques, however, either do not support programs with complex
data structures and structural loops, or requires users to provide annotations
for the loops before computation, e.g., loop invariants and loop structure
patterns. Further, they only compute the approximate loop bounds resulting
in the loops are unrolled more times than necessary and thus lots of code will
not be covered in the analysis.

With the improvement of the technique for solving satisfiability problems,
the extended static checker for Java (ESC/Java [Flanagan et al., 2013] and
ESC/Java2 [Cok and Kiniry, 2004]), translate a program and the specifications
into a first-order logic formula, and check the satisfiability of the formula
using SMT solvers such as Z3 and Yices. In particular, they translate the
program under analysis into Dijkstra’s guarded commands [Dijkstra, 1975],
encoding the intended property as an assert command. They then compute
weakest preconditions to generate verification conditions as predicates in
a first-order logic, and use several SMT solvers to resolve the constraints.
Failed proofs are turned into error messages and returned to the end user.
These techniques, however, use undecidable logics due to quantification
over infinite types. They sometimes report a counterexample that might,
with more effort, have been shown to be invalid and the solver may not
terminate with a conclusive outcome. It would be helpful if the encoding
of the bounded program verification supports programs with complex data
structures, generates decidable satisfiability formulas, and gains the advances
of SMT solvers as well.

Deductive Program Verification

The power of deductive program verification has increased in the last decades.
In contrast to bounded program verification that checks for errors in a pro-
gram regarding a small scope, deductive program verification systems (e.g.,
KeY [Ahrendt et al., 2016], VCC [Cohen et al., 2009], and PVS [Owre et al.,
1992]) aim to prove the correctness of a program. The KeY system, for example,
proves the correctness of a Java program for intended properties by perform-
ing symbolic execution [King, 1976] on the program. The symbolic execution
of simple statements is easy, whereas intensive auxiliary specifications are
required when loops or recursions are met. Writing necessary specifications
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is a creative activity, thus is a difficult and error-prone effort [see Bormer,
2014, Chapter 5] even for an expert of KeY. It is a considerable burden to
provide a good auxiliary specification, such that the specification should be
weak enough for its annotated sub-routine and strong enough for its invoking
procedures. A strong auxiliary annotation increases the difficulty to imple-
ment its sub-routine and it is error-prone to write such a specification. On the
other hand, a too weak auxiliary specification may cause the proof to fail and
hereafter, a costly inspection on the failed proof is indispensable. Therefore, it
is beneficial if we can reduce the efforts from the verification engineers in the
deductive program verification.

Counterexample-Guided Abstract Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) framework itera-
tively refines abstract models of a system using counterexamples. It was first
introduced by Kurshan [Kurshan, 1994], and then appeared in a number of
analysis techniques (e.g., [Balarin and Sangiovanni-Vincentelli, 1993; Lind-
Nielsen and Andersen, 1999; Clarke et al., 2000, 2003] that focus on checking
finite state systems. From this century CEGAR framework has been widely
used in program verification (e.g., [Ball et al., 2004; Chaki et al., 2004; Clarke
et al., 2005; Taghdiri and Jackson, 2007; Beyer et al., 2007; Gupta et al., 2011;
Abdulla et al., 2016]). These CEGAR instances construct abstractions of the
program under analysis, and refine the abstractions based on the spurious
counterexamples detected in the program verification. The on-demand itera-
tive nature of CEGAR framework guarantees that only as much information
about the program will be analyzed as is necessary to check the property
of interest. Proving abstract programs may require less auxiliary specifica-
tions in deductive program verification, since abstract programs have less
details. It will be beneficial if we apply CEGAR framework on deductive pro-
gram verification to ease the burden of manually discovering useful auxiliary
specifications. Existing CEGAR instances, however, construct abstractions
mostly at the predicate level (e.g., [Abdulla et al., 2016]) and rarely at the
function level (e.g., [Taghdiri and Jackson, 2007]). To check a program for
some property, they typically abstract the program as a Boolean program
using a given set of predicates, model checks the Boolean program, and dis-
cover additional predicates to refine the Boolean program. That is, only the
predicates of the code are replaced by abstractions if they are irrelevant to a
property of interest. The rest of the code (e.g., assignment statements) remains
unchanged, even if it is not relevant to the property at all. It is very likely
that such coarse abstracted programs are still very hard to be annotated by
verification engineers. Moreover, they mostly do not handle the properties
of complex data structures that our infrastructure targets. They have been
used to handle properties of a finite state machine or to check access violation
errors such as null-pointer dereference and array access out of bound.
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1.3 Contributions

The thesis presents an efficient verification infrastructure to verify a program
with complex data structures against the properties that constrain the config-
urations of program objects on the heap. In particular, we provide an efficient
bounded program verification to reduce the efforts of the verification engi-
neers in deductive program verification. We design the components of the
infrastructure as stand-alone analyses that can be used in a variety of contexts.
For gaining efficient analyses, we provide novel approaches for each compo-
nent by exploiting recent advances of SMT solvers. The concrete contributions
of this thesis are as follows:

1. An SMT-based encoding of programs and specifications for bounded
program verification.

Existing bounded program verification techniques typically translate
object-oriented programs and their specifications into a propositional
logic formula, and solve it using an SAT solver. Although they have
been successfully used to find bugs in various programs, such a direct
translation to SAT (also known as bit-blasting) limits their scalability:
they can check code regarding a few objects and loop unrollings—loops
are unrolled in the code, especially when the code also contains integer
expressions and array objects.

We provide a novel approach to bounded program verification that
exploits recent advances in SMT solvers to provide better scalability. We
introduce a translation of object-oriented programs and their specifica-
tions to quantified bit-vector formulas (QBVF), which can be solved ef-
ficiently using recent SMT solvers. Compared to SAT-based bounded
program verification techniques that only perform Boolean-level simpli-
fications (e.g., shared expression detection and symmetry breaking), an
SMT solver performs high-level reasoning and simplifications (such as
heuristic quantifier instantiation and template-based model finding), then
flattens the formula and analyzes it in a quantifier-free SMT logic, and
uses bit-blasting only as a last resort. This significantly improves the scal-
ability of the solver. Our SMT-based encoding supports Java programs
with complex data structures and JML specifications with arbitrary nested
quantifiers and reachability expressions.

We have implemented our approach in the prototype tool InspectJ
and compared it to JForge, an SAT-based bounded program verification
tool, using a large-scale implemented shortest-path algorithm. The results
show that InspectJ can analyze code for more objects and loop unrollings
than JForge. The average speedup that InspectJ obtained is ∼25x.

Chapter 3 presents the original work that has been published in [Liu
et al., 2012], and the contributions that have not been published yet. The
unpublished work consists of:
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• A verification graph to represent the control- and data-flow of a pro-
gram. It is essentially a labeled control-flow graph annotated by spec-
ifications. Compared to the computation graph (used in [Liu et al.,
2012]) that is designed for a program without loops, the verification
graph also supports the program with loops. Besides, it contains nodes
representing the desired properties at certain control point and rep-
resents the program and specifications in a single graph. Hence, it
facilitates the generation of formulas and the understanding of the
models to the satisfiable formulas. The graph is presented in Sec-
tion 3.1.

• An alternative approach to handle runtime exceptions. Compared to
the approach that has been published in [Liu et al., 2012], this new
approach reduces the number of SMT variables in the target formula,
thus makes the formulas easier for SMT solving. The new approach is
presented in Section 3.5.

• The rules that are used to translate the program into SMT formulas.
They are presented in Fig. 3.6.

2. A calculus to compute suitable scopes for bounded program verifica-
tion.

Bounded program verification techniques statically analyze a pro-
gram regarding a small scope. They typically require users to provide two
kinds of bounds to designate a scope: class bounds that limit the number
of objects of each class on the heap, and loop bounds that limit (by loop un-
rolling) the number of iterations of each loop. These two kinds of bounds,
however, are not independent and their intricate relations are scattered in
the code and specifications. Exhaustively enumerating all inputs to the
program to compute the exact loop bounds based on class bounds, how-
ever, is not practical. Therefore, it is a challenging problem to designate a
suitable scope for which all code of the unrolled program and objects of
the bounded domain will be covered in the bounded verification.

Our calculus computes suitable scopes for bounded program verifica-
tion by computing exact loop bounds (if they exist) based on class bounds.
We encode a loop of the program under analysis as an SMT formula, and
check the satisfiability of the formula using an SMT solver that can handle
optimization problems. If the formula is satisfiable, we get the loop bound
from the model of the formula. Otherwise, the analyzed loop is either
unreachable from the entry point of the analyzed program, or there are
inputs to the program for which the loop does not terminate. We can
distinguish these two kinds of cases by analyzing the proof of invalid-
ity generated by the solver. Our calculus supports arbitrarily complex
structural loops.

We have implemented our calculus in the prototype tool BoundJ and
compared it with an alternative approach that is used in bounded model
checking. In contrast to the alternative approach that either computes
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imprecise loop bounds or does not terminate, the results show that BoundJ
computes exact loop bounds for the given class bounds.

Chapter 4 presents the original work that has been published in [Liu
et al., 2017], and some discussions that have not been published yet. In
the discussions, we propose some alternative approaches to compute loop
bounds based on class bounds, and investigate the possibility to use these
approaches in bounded program verification. These discussions include:

• A discussion on computing loop bounds by exhaustively enumerating
all inputs to the analyzed program based on class bounds. For the
benchmark used in our experiments, we show the size of configura-
tions of the objects on the heap before calling the analyzed methods.
The discussion is presented in Section 4.2.

• A discussion on computing loop bounds using bounded model check-
ing (BMC) techniques. It is presented in Section 4.4.

In addition, we also investigate the related work to detect non-terminating
loops in scope-bounded code analysis in Section 4.3.

3. A verification-based program slicing technique for deductive program
verification.

Deductive program verification systems, e.g., KeY system, typically
require experienced verification engineers to write auxiliary specifica-
tions such as loop invariants and method contracts of sub-routines. The
engineers have to first identify the program slices that are relevant to
the property of interest. However, it is challenging for them to find such
program slices for a partial property—constraining parts of program be-
haviors, since usually only parts of the implementation are relevant to a
partial property. It would be very helpful if we can automatically find the
slices in deductive program verification.

We provide a verification-based program slicing technique to construct
a semantic slice (an abstract program) for a partial property. In the slice, the
parts of the program that are irrelevant to the partial property are replaced
by an abstraction, whereas the rest of the program (i.e., the relevant parts)
remains unchanged. In contrast to verifying the whole program against a
partial property, verifying a slice requires less auxiliary specifications, and
the correctness of the slice implies the correctness of the original program
(by the construction of abstractions). As a result, our program slicing
technique eases the burden of manually discovering the relevant slices
for a partial property and expedites the progress of deductive program
verification—less proof steps are needed for the slice.

The novelty of our technique stems from using bounded program
verification techniques to guide the construction of slices. Bounded pro-
gram verification techniques, requiring no auxiliary specification, trans-
late the analyzed program and its negated specification into a satisfiability
problem—an SMT formula consisting of a set of SMT constraints, and try
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to find a solution to that problem. If a solution to the problem is found,
then that is a counterexample to the correctness of the original program,
and no further analysis is required. If no solution is found (i.e., the formula
is unsatisfiable), the partial property holds for user-provided bounds, and
we obtain an unsatisfiable core (unsat core) by exploiting the recent ad-
vances of SMT solvers. An unsat core is a subset of SMT constraints that is
unsatisfiable on the information gained during the unsatisfiability proof.
Therefore, the statements of the program are irrelevant to the property of
interest when their target SMT constraints (by the bijective function that
translates statements to SMT constraints) are not in the unsat core. The
rest of the program is relevant to the property (by minimization of the
unsat core).

We have implemented our technique in the prototype tool AbstractJ
and evaluated the benefits of using our technique to prove some programs
that are interesting to deductive program verification The results show
that on average the verification using our technique requires only 1/2 of
the auxiliary specifications and calculus rules compared to proving it as
usual in deductive program verification.

Chapter 5 presents the original work that has been published in [Liu
et al., 2016], and further contributions that are not published yet. The
unpublished work consists of:

• An example to show the benefits of using our technique for proving
programs with linked data structures. Proving the correctness of pro-
grams with linked data structures, in general, is very difficult since it
typically requires verification engineers to provide non-trivial lemmas
for reasoning about sets of linked objects, e.g., what objects can be
reached from a source object following particular class fields. The
example is presented in Section 5.1.

4. An algorithm instantiating counterexample-guided abstraction refine-
ment framework for deductive program verification.

The Counterexample-Guided Abstraction Refinement (CEGAR) method-
ology provides an automatic framework that gradually refines abstract
models of a system and holds promise for scalability. Starting with an
initial abstract program with abstractions, it iteratively refines the abstrac-
tions based on spurious counterexamples. Many code analysis techniques
have instantiated the CEGAR framework for gaining a scalable analysis.
All instances of this framework, however, construct abstractions of the
code at the predicate level. That is, abstractions replace only the predicates
of the code that are irrelevant to the property of interest. The rest of the
code (e.g., assignment statements) remains unchanged, even though it is
not relevant to the property at all. Therefore, the abstract program does not
provide precise relevance between the program and the intended property.
Besides, they focus on checking properties of a finite state machine or
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access violation errors such as null-pointer dereferences and array access
out of bound.

We provide a CEGAR algorithm for deductive program verification.
The algorithm forms the basis of the envisioned process using our in-
frastructure. The novelty of our algorithm is that it handles properties of
complex data structures and construct abstractions at the statement level.
In particular, we use our verification-based program slicing technique
to construct and refine abstractions. The on-demand iterative nature of
the algorithm guarantees that only the necessary parts of the program
to check the property are analyzed in deductive program verification.
Therefore, our algorithm eases the burden of discovering useful auxiliary
specifications for deductive program verification.

We have implemented our algorithm in the prototype tool RefineJ
and evaluated the benefits of using our algorithm in deductive program
verification. Though in general the more refinements, the more auxiliary
specifications and calculus rules are needed in deductive program verifi-
cation. The results show using our algorithm in practice requires fewer
specifications and rules than proving a program as usual. Out of the total
21 verification tasks using our algorithm, 19 tasks require less auxiliary
specifications, and 13 tasks require fewer calculus rules compared with
proving as usual in KeY.

Chapter 6 presents the original work that has been published in [Liu
et al., 2016], and two contributions that are not published yet. The unpub-
lished work consists of:

• An SMT-based encoding of auxiliary specifications to check whether
the abstract program fulfills the auxiliary specifications. Bounded
program verification is fully automatic, and thus facilitates users to
amend their specifications before the deductive program verifica-
tion. It guarantees fast and initial confidence in the correctness of
user-provided specifications for deductive verification. Therefore, we
reduce the scope of inspection on a failed proof and avoid unnec-
essary attempts in deductive program verification. This encoding is
presented in Section 6.1.2.

• An experiment to evaluate the benefits of using our algorithm, and
particularly the benefits of using our refinement techniques in deduc-
tive program verification. It is presented in Section 6.2.

5. An efficient symbolic execution technique using incremental SMT
solvers.

Symbolic execution as a means of analyzing programs has been widely
used in program verification and testing. One important obstacle for ex-
panding the application of symbolic execution in practice is its high cost
of path condition solving. We present an efficient symbolic execution tech-
nique by exploiting the advances of incremental SMT solvers. Incremental
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SMT solvers learn lemmas during constraint solving, and these lemmas
can be later (re)used to solve similar, but not identical, constraints.

To the best of our knowledge, no research has studied incremental
SMT solving in symbolic execution. Thus it is particularly important to
evaluate this technique for symbolic execution. We have implemented
our technique in the prototype tool SymbolicJ and compared it with other
incremental constraint solving alternatives on a huge set of benchmarks
(400 programs analyzed, and each of them has 100 to 20000 lines of code)
and a variety of criteria such as the number of solved path conditions,
the speed of path exploration, and the number of feasible paths explored.
Overall, the results show that our technique provides the best efficiency.
In particular, the speedup obtained using incremental SMT solving is of
∼14.4x to an alternative incremental symbolic execution technique.

Chapter 7 presents the original work that has been published in [Liu
et al., 2014], and additional contributions that are not published yet. The
unpublished work consists of:

• A path exploration algorithm that has been used in our technique. It
is presented in Section 7.2.3.

• Evaluating the impacts of using different SMT solvers to the per-
formance of symbolic execution techniques. It is possible that the
experimental results are specific to an SMT solver. To address this
threat we performed an empirical study using three solvers: CVC4,
MathSAT5, and Z3, the modern SMT solvers that are widely used in
software and hardware analysis. Although these solvers show dif-
ferent time costs for the same constraint problems, the results still
show our technique is more efficient than the alternatives. This work
is presented in Section 7.3.3.

1.4 Outline

The thesis is divided into five parts. After introducing the context of the topic
in Part I, the thesis presents its contributions in the subsequent three parts,
where Part II is about bounded program verification, Part III about deductive
program verification, and Part IV about bounded symbolic execution. Part V
concludes the thesis.

Part I shows the topic of interest and state of art in Chapter 1 and the
technical foundations of its fundamental techniques in Chapter 2.

Part II begins with an SMT-based encoding for bounded program verifica-
tion in Chapter 3. The encoding aims to improve the scalability of bounded
program verification and has been used by the remaining contributions of
the thesis. Chapter 4 presents a calculus computing loop bounds based on
class bounds to increase the object coverage and code coverage in bounded
program verification.
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Part III discusses several possibilities to bring the advantages of bounded
program verification techniques to deductive program verification. As the first
chapter of Part III, Chapter 5 presents a program slicing technique that con-
structs abstractions of a program for gaining efficient deductive program veri-
fication. This chapter provides the motivation and the abstraction technique
for Chapter 6, which presents an algorithm instantiating counterexample-
guided abstraction refinement framework for deductive program verification.

Part IV provides an empirical study on incremental symbolic execution
techniques in Chapter 7.

Part V presents the related work in Chapter 8 and then ends with con-
clusions in Chapter 9. Nevertheless, each chapter also contains its relevant
related work and conclusion for the area that it concentrates.
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have been published in the following selected references.

1. Tianhai Liu, Michael Nagel, and Mana Taghdiri. Bounded Program
Verification Using an SMT Solver: A Case Study. In Giuliano Antoniol,
Antonia Bertolino, and Yvan Labiche, editors, Fifth IEEE International
Conference on Software Testing, Verification and Validation (ICST), Canada,
Proceedings. pages 101-110. IEEE, 2012.

2. Tianhai Liu, Mateus Araújo, Marcelo d’Amorim, and Mana Taghdiri. A
Comparative Study of Incremental Constraint Solving Approaches in
Symbolic Execution. In Eran Yahav, editor, Hardware and Software: Veri-
fication and Testing - 10th International Haifa Verification Conference (HVC),
Israel, Proceedings. volume 8855 of LNCS, pages 284–299. Springer, 2014.

3. Tianhai Liu, Shmuel S. Tyszberowicz, Mihai Herda, Bernhard Beckert,
Daniel Grahl, and Mana Taghdiri. Computing Specification-Sensitive
Abstractions for Program Verification. In Martin Fränzle and Deepak
Kapur and Naijun Zhan, editors, Dependable Software Engineering: Theories,
Tools, and Applications - Second International Symposium (SETTA), China,
Proceedings. volume 9984 of LNCS, pages 101–117. Springer, 2016.

4. Tianhai Liu, Shmuel S. Tyszberowicz, Bernhard Beckert, and Mana
Taghdiri. Computing Exact Loop Bounds for Bounded Program Veri-
fication. In Kim G. Larsen, Oleg Sokolsky, and Ji Wang, editors, Dependable
Software Engineering: Theories, Tools, and Applications - Third International
Symposium (SETTA), China, Proceedings. volume 10606 of LNCS, pages
147–163. Springer, 2017.



CHAPTER 2

Foundations

2.1 Satisfiability Modulo Theories

A Boolean Satisfiability (SAT) problem is a decision problem that can be ex-
pressed as a formula in propositional logic. An SAT formula (or an SAT instance),
that is represented either in Conjunctive Normal Form (CNF) or Disjunctive
Normal Form (DNF), consists of atoms (e.g., v, and ¬v), connectives (∧, ∨,
→, and↔), and parentheses. An SAT formula is tautology if it evaluates to
true for all interpretations, contradictory (or unsatisfiable) if always false, or
satisfiable if true for at least one interpretation.

A Satisfiability Modulo Theory (SMT) instance, in principle, is an SAT
instance with various theories that are expressed in classical first-order logic
(FOL) with equality. The theories of, for example, integers, bit-vectors, and
arrays are used to encode program variables and fields in SMT-based program
verification techniques. Each theory defines specific predicates and functions,
e.g., the theory of integers defines various arithmetic functions which facilitate
the modeling of arithmetic operations in the program code. SMT is a general-
ization of SAT with more expressive power than SAT. In contrast to SAT that
treats atoms as bitwise-level variables, SMT does it in word-level. The recent
SMT solvers typically first resolve an SMT formula using the theories involved
in the formula, before flattening the formula in propositional logic. SMT al-
lows logical constraints that are structurally closer to the original program
and specification, and can be significantly simplified via high-level reasoning.
For example, a Java conditional expression 0!=1 can be represented using
two 4-bits bit-vectors of [0,0,0,0] and [0,0,0,1], and translated into an
SAT formula using 8 Boolean variables as shown in Formula 2.1. Resolving
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the SAT formula needs to interpret the Boolean variables, while for an SMT
formula it compares two numbers directly using the theory of integers.

(x0 ∧ ¬x1 ∧ ¬x2 ∧ ¬x3)∧
(¬y0 ∧ ¬y1 ∧ ¬y2 ∧ ¬y3)∧
((x0 ∧ ¬y0) ∨ (x1 ∧ ¬y1) ∨ (x2 ∧ ¬y2) ∨ (x3 ∧ ¬y3))

(2.1)

SMT-LIB [Barrett et al., 2017] is a description language for SMT. It has been
proposed in 2003 and since then has been gaining force as a standard SMT
format and been supported by various SMT solvers such as Z3, Yices, CVC4,
MathSAT5, Boolector [Brummayer and Biere, 2009], veriT [Bouton et al., 2009],
SMTInterpol [Christ et al., 2012], AProVE [Giesl et al., 2017], and STP [Ganesh
and Dill, 2007].

The SMT logic is a many-sorted FOL. It is explained using the SMT-LIB 2.6
syntax where expressions are given in prefix notation. Here, we describe the
basic theories and the operators. Further SMT constructs will be explained
once they occur in the thesis. In circumstances where there is no ambiguity,
we use SMT to represent the SMT-LIB language in the thesis.

Core Theory.

In the Core theory, the unique sort Bool denotes the set {true, false} of
Boolean values. The instances of the Bool sort are connected using the basic
Boolean operators and, or, not, => (implies), and ite (if-then-else). Besides,
the keywords for universal (forall) and existential (exists) quantifiers
facilitate expressing complex formulas. The Core theory is implicitly used by
other theories; that is, its sort, operators and keywords are used by others.

Theory of Integers.

In the theory of Integers, the unique sort Int represents the mathematical
numerals. Besides the classical mathematical operations, e.g., +, -, and *, the
numerical relational operators >, <, >=, and <= can be used to encode the
arithmetic operations and conditional expressions of Java programs.

Theory of Bit-Vectors.

In the theory of Bit-Vectors, a sort is defined as (_ BitVec m) where m is
a numeral greater than 0 denoting the size of the bit-vectors (instances of
the m-bit sort). The expression (_ bvn m) denotes an instance (a numerical
n) of the m-bit sort. Bit-vectors of different sizes have different sorts in SMT.
This theory can be used to encode the precise semantics of unsigned and of
signed two-complements arithmetic. It supports a large number of logical
and arithmetic operations on bit-vectors. Examples include bvule (unsigned
less than or equal to), bvuge (unsigned greater than or equal to), bvadd
(addition), bvashr (arithmetic shift right), and bvshl (shift left).



2.2 Java Modeling Language 19

We can obtain a conclusive result of an SMT formula in a decidable SMT
logic with the theory of Bit-Vectors. The SMT logic with the theory of integers
is undecidable, hence it is possible that the underlying SMT solver outputs
‘unknown’.

SMT Commands.

The SMT command (declare-fun f (S1 .. Sn−1) Sn) declares an un-
interpreted function f : S1× ..×Sn−1 → Sn. Constants are functions that take
no arguments. Basic formulas are combined using the Boolean operators. Mul-
tiple SMT problems often share similar sets of declarations. An SMT solver
typically maintains an assertion stack to take advantage of such similarities.
SMT provides the commands push and pop to manipulate such stack. Each
stack frame stores an assertion set, which includes locally-scoped declarations
of functions, sorts, and logical formulas. The command (assert F) adds a
formula F in the current assertion set. The command (check-sat) checks if
all assertions sets in the stack are satisfiable. If the formula is satisfiable, the
SMT command (get-model) returns a satisfiable model that contains the
values of the variables, the interpretations of functions and predicates in the
analyzed formula. Otherwise, using the SMT command (get-unsat-core)
we can obtain the proof of unsatisfiability, an unsatisfiable SMT formula that
consists of a subset of assertions of original formula.

2.2 Java Modeling Language

Java Modeling Language (JML) is a behavioral interface specification lan-
guage for Java. It has been widely used in numerous software analysis tools.
Examples of tools for program verification are KeY, JForge, ESC/Java2, TACO,
and Sireum/Kiasan for Java [Deng et al., 2012]. Following the design by
contract paradigm [Meyer, 1997], JML allows one to formally describe the
expected behaviors of a Java module and to statically or dynamically check
whether an implementation fulfills the method contracts.

JML provides a rich set of specification facilities. Classical logical operators,
side-effect free Java expressions, and first-order constructs can be used in
specifications. Besides, JML provides additional clauses and keywords to
strengthen its expressiveness. Following is a short description of JML clauses
and keywords used in the thesis. Further JML constructs will be explained
when they occur.

A basic JML specification can be categorized by the two clauses requires
and ensures for the pre- and post-state of a method, respectively. The pre-
state of a method is the program state after passing parameters to the method
and before executing the method’s body. The post-state of a method is the
state of the program just before the method normally returns or throws an
exception. The requires clause denotes a method’s precondition that has
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to be satisfied in the pre-state of the method. The ensures clause specifies
a method’s postcondition, that has to hold in the post-state of the method.
Preconditions and postconditions may be violated when the specified method
is executing, while their evaluations must be done at the pre-state and the post-
state of the method, respectively. JML provides another clause, the invariant,
to denote a class invariant that has to be satisfied by all instances of the class
at both pre-state and post-state of the method1. In the thesis we suppose the
class invariant has been substituted by a pair of requires and ensures
clauses for simplicity. JML annotations are marked by //@ or /*@ (closed by
*/ ) in Java comments.

A JML formula consists of side-effect free expressions using standard logi-
cal operators, and universal (\forall) and existential (\exists) quantifica-
tion. An Boolean-valued expression of the form (\forall T v;D(v);F(v))

evaluates to true if for all instances of type T that satisfy the domain restric-
tion D, the formula (or relation) F is true. The universal quantification is
distinct from existential quantification (\exists T v;D(v);F(v)), which
only constrains that the formula (or relation) F holds for at least one instance
of the domain D. Note that, the quantifier range in the thesis includes only
those objects that have been created in the current heap state, in contrast to
that the range of JML quantifiers extends over all objects of the given variable
type, including objects that are not yet created [see Leavens et al., 2006, Chap-
ter 12 page 113]. To describe the properties of complex data structures, JML
provides a reflexive transitive clause \reach(T x, Field f) that denotes
the smallest set that contains x, and all instances of type T that are reachable
through the field f. Since this function only supports one field, we introduced
a Boolean-valued function \reach(Object x, Object y, FieldSet fs)

that returns true when y is in the reflexive transitive closure of x over any
field in the fs union of fields.

The JML specifications should avoid throwing exceptions. For example, the
expression x.f>0 will trigger NullPointerException if x is null. To avoid
exceptions in JML specifications, we suppose that all Java member fields, for-
mal parameters, and return values, by convention, are non-null in JML if the
nullable modifier is not used. For other cases such as array access operations
and arithmetic computation, it is JML user’s obligation to avoid exceptions
in the specifications. Otherwise, the verification results will be erroneous.
When an expression throws an exception in a requires (or ensures) clause,
it stops evaluating the rest parts of the clause, and immediately evaluates the
requires (or ensures) clause to be false, hence the analyzed program will
be trivially considered to be correct (or wrong). For example, the JML precondi-
tion/*@requires x/0==x/0 || true;@*/ is false since the sub-expression
x/0 will throw an ArithmeticException of divide-by-zero. Note that JML

1 Class invariants do not have to be preserved by the methods that are declared with
the helper modifier.
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adapts Java short-circuit evaluation, that is why the above expression is false
while the JML precondition /*@requires true || x/0==x/0;@*/ is true.

In addition to the properties specified in ensures clauses, there are two
kinds of properties that are important for the correctness of the analyzed
method: whether the method terminates and whether the method throws exceptions.
These two kinds of properties are difficult (or impossible) to be specified using
ensures clauses. Therefore, JML provides specific constructs for them. The
diverges false clause specifies that its annotated method has to terminate,
whereas diverges true disables the termination checking. If a method ter-
minates and throws an exception, it terminates exceptionally, otherwise it
terminates normally. In the thesis, we only check if the intended property
holds when its annotated method terminates normally. That is, no excep-
tion has been thrown is the prerequisite to check the ensures clause. We
handle exceptions runtime exceptions (e.g., NullPointerException, and
ArrayIndexOutOfBounds) as built-in properties of the analyzed method.
When an exception is thrown, a built-in property is violated, and a fault is
found. This property can be specified using the keyword normal_behavior.

Finally, JML allows specifying the heap locations that are allowed to be
updated in a method. Only the heap locations (represented by a set of fields)
of the assignable clause are allowed to be modified by a method, even if
they are just temporary modifications that fall back to original values after
the method invocation. The clause assignable \nothing denotes that the
annotated method does not modify heap locations, but it is allowed to allo-
cate objects; assignable \everything enables the method to modify any
heap location and to allocate objects. Compared to assignable \nothing
that allows object allocation, JML* [Weiß, 2011], a modified version of JML
used in KeY, provides the assignable \strictly_nothing that does not
allow to modify heap locations or to allocate objects. In the thesis, we also sup-
port the clause assignable \strictly_nothing for gaining a more accurate
specification.

2.3 Bounded Program Verification

Bounded program verification (also known as static scope-bounded check-
ing) has become an increasingly attractive choice for gaining confidence
in the correctness of software. Existing bounded program verification tech-
niques (e.g., JForge, Jalloy, MiniAtur, TACO, MemSAT [Torlak et al., 2010], and
Karun [Taghdiri, 2008]) statically and exhaustively check functional properties
of a program (in which loops and recursions are unrolled) with respect to a
bounded domain (in which the number of objects of each class is bounded).
They encode a bounded program and a property of interest into a logical
formula with respect to a bounded domain and check the satisfiability of
the formula using an SAT/SMT solver. They provide an attractive trade-off
between automation and completeness. They automatically exhaustively ana-
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lyze a program based on the bounds and thus guarantee to find within the
bounds any bug with respect to an intended property, but defects outside
bounds may be missed.

A bounded program verification process typically consists of i) the code
transformation that unrolls loops and recursions, ii) the translation of the pro-
gram and specification into a logical formula, and iii) the formula resolution
using a solver. The existing techniques typically require users to provide both
the loop bounds and the class bounds for the code transformation and trans-
lation. Loop bounds contain the number of unrollings for each loop in the
code transformation, and class bounds contain the maximal number of objects
of each class in the program translation. Specifically for the primitive type,
e.g., the Java int, the class bound denotes the number of bits to represent an
integer as a string of bits.

Bounded program verification is modular—it checks program methods
in isolation, against specifications—and focuses on data-related properties of
data-structure-rich programs—those that manipulate the configurations of the
objects on the heap. Such properties can also be verified by full verification
engines such as deductive software verification systems (e.g., KeY), SMT-
based proof engines (e.g., Boogie [Barnett et al., 2005]), and shape analyses
(e.g., TVLA [Lev-Ami and Sagiv, 2000]). Although such approaches provide
proofs, they either require users to add extensive annotations (e.g., loop
invariants), or do not support arbitrary data structures. Bounded program
verification techniques do not require auxiliary specifications.

Bounded program verification has similarities to bounded model check-
ers (e.g., CBMC [Clarke et al., 2004], SMT-CBMC [Armando et al., 2009],
LLBMC [Sinz et al., 2010], ESBMC [Cordeiro et al., 2012], VeriSoft [Godefroid,
2005]). They both perform a fully automatic and exhaustive analysis with
respect to the given bounds and require little intermediate annotations from
the user. However, model checkers focused on temporal safety properties
of entire programs, though recently some model checkers support modular
analysis and specifications.

2.4 Deductive Program Verification

Deductive program verification systems (e.g., KeY, VCC, and PVS) are very
effective to faithfully prove the correctness of programs with respect to non-
trivial properties. Typically, they translate a program and a specification into
a logical formula (proof obligation) and apply various deduction rules on
the formula to obtain a proof. They often require users to private auxiliary
specifications (e.g., method contracts and loop invariants).

The KeY system accommodates a range of techniques to prove or disprove
that a program satisfies given properties, e.g., interactive theorem proving,
abstract interpretation, modular specification, and counterexample genera-
tion. Program verification using KeY is usually done in auto-active style: the
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user interacts with the system only through provided auxiliary specifications.
The symbolic execution of simple statements is easy, whereas intensive aux-
iliary specifications are required when loops or recursions are met. Writing
necessary annotations is a creative activity, thus is a difficult and error-prone
effort even for an expert of KeY.

The KeY system uses Java Dynamic Logic (JavaDL) for reasoning Java
programs. The Java program and its intended specification are translated
into a JavaDL sequent (i.e., a JavaDL formula). JavaDL extends FOL with
(i) a type system whose signatures are based on Java’s (partial order) type
system, (ii) a program p, that describes the state changes of legal sequence
of Java statements, and (iii) the modalities 〈p〉φ (diamond) and [p]φ (box), in
which φ is a JavaDL formula. Intuitively, 〈p〉φ denotes total correctness, i.e., p
terminates and the formula φ holds in the final state, and [p]φ means partial
correctness: if p terminates then formula φ holds in the final state.

The common basis of KeY is a rule-based symbolic execution engine. It
symbolically executes a sequence of statements following the natural con-
trol flow and replaces each assignment statement by JavaDL expressions
that can effectively represent the state changes effected by the statement.
This replacement activity named as updates in KeY system. Considering, for
example, the following JavaDL Formula (2.2) that has been translated from
the program int foo(int x){x = x+1; return x;} with the pre- and
postcondition x>0.

∀ int x; (x > 0→
[x = x+ 1; ]x > 0)

(2.2)

In the updates phase, various KeY proof rules are used to substitute the pro-
gram statements. The Quantify Elimination rule, for example, eliminates the
quantifiers by replacing the quantified variable with a free variable in the
context. Applying the rule on Formula 2.2, the sequent becomes Formula (2.3),
in which x0 is a free variable.

(x0 > 0→
[x0 = x0 + 1; ]x0 > 0)

(2.3)

Symbolic execution explores the statement x0 = x0 + 1 in Formula (2.3) and
updates the sequent using the Assignment rule. A new sequent is generated,
as shown in Formula (2.4).

(x0 > 0→
x1 = x0 + 1; [ ]x0 > 0)

(2.4)

Finally, the empty box operator [ ] is discarded in Formula (2.4) and the final
sequent is generated, as shown in Formula (2.5) that can be easily proved (i.e.,
the proving goal to prove the sequent can be closed), hence the method foo
preservers the property x>0.
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x0 > 0→ x0 + 1 > 0 (2.5)

If the proving goal to prove a sequent can not be closed, i.e., a program
with provided auxiliary specifications are not verified, KeY tries to generate a
counterexample for the sequent in the goal. KeY translates the sequent into an
SMT formula with size-bounded SMT sorts. Users of KeY can specify the size
of the SMT sorts. Using heaps, location sets, and sequences would require
a very large size for these SMT sorts, thus in a preprocessing step, semantic
blasting is performed before the translation to SMT. During this step the
occurrences of some function and predicate calls are replaced with . Then the
translation is handed over to an SMT solver that will tries to find a model for
it. If a model is found, KeY presents it in a readable form to facilitate users in
the inspection of the failed proof.

KeY accepts JML* [Weiß, 2011], a modified version of JML, as the specifi-
cation language for Java programs. JML* implements most, but not all, JML
features and adds a few more. One example of the extension is the inter-
pretation of JML quantifiers. Like our interpretation of quantifiers 2.2, JML*
quantifiers range over the objects that have been created before evaluating
the quantifiers.
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CHAPTER 3

SMT-based Encoding for Bounded Program
Verification

In this chapter we present an SMT-based encoding of programs and speci-
fications for bounded program verification. Bounded program verification
techniques (e.g., Jalloy [Vaziri-Farahani, 2004], JForge [Dennis et al., 2006],
TACO[Galeotti et al., 2013], Miniatur[Dolby et al., 2007], Karun[Taghdiri,
2008], and MemSAT[Torlak et al., 2010]) typically translate object-oriented
programs and their specifications into a propositional logic formula, and
check the satisfiability of the formula using an SAT solver. In the translation,
the bit-blasting technique [Kroening and Strichman, 2016] is used to translate
the intermediate representation of programs and specifications into a Boolean
formula, as shown in Section 2.1. With the increase of the size of inputs (e.g.,
bit-width), bit-blasting will generate a huge amount of terms in the target
formula so that it is impossible to be handled by an off-the-shelf SAT solver.
Besides, bit-blasting disperses the high-level information (e.g., bit-vector level)
thus the target formula may contain terms that are unnecessary for SAT solv-
ing. Therefore, scalability is one of the issues for these bounded program
verification techniques using such a direct translation to SAT.

Our encoding exploits recent advances in SMT solvers to gain better scal-
ability in bounded program verification. We encode a Java program and its
JML specifications as a Quantified Bit-Vector Formula (QBVF) and check the
satisfiability of the formula using an SMT solver. QBVF allows logical con-
straints that are structurally closer to the original program and specification,
and high-level simplifications before being flattened in a basic logic. That is,
an SMT solver that supports the theory of bit-vectors (see Section 2.1) per-
forms high-level reasoning and simplifications (such as heuristic quantifier
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instantiation and template-based model finding), then flattens the formula
and analyzes it in a quantifier-free SMT logic, and uses bit-blasting only as a
last resort. The high-level preprocessing improves the scalability of the solver
significantly. The novelty of our encoding is to exploit the theory of bit-vectors
of recent SMT solvers for gaining efficient bounded program verification. We
use decidable theories of SMT logic (e.g., the theory of bit-vectors and the
core theory) in our encoding so we can always obtain conclusive answers
in bounded program verification. To our knowledge, this is the first attempt
to use an SMT solver to overcome the efficiency issue in bounded program
verification.

The process of translating a program and its specifications into an SMT
formula is divided into two stages. First, a labeled control-flow graph, called
verification graph, is constructed from the program and its specifications. Sec-
ond, the SMT formula is extracted from the graph. Given a program p that is
annotated by a requires clause req and an ensures clause ens, and a group
of class and loop bounds, let pre and post be the formulas encoding req and
ens, respectively; f and ex be the formulas encoding normal and exceptional
executions of p, respectively, we produce the Formula (3.1).

pre ∧ f ∧ (¬post ∨ ex) (3.1)

If Formula (3.1) is satisfiable, its model represents a counterexample to the
correctness of the program regarding the property of interest: a pre-state
that satisfies req, but its post-state either violates ens or causes an exception.
Otherwise, the correctness of the program p is guaranteed. Recall that in
bounded program verification, the loops of the analyzed program are unrolled
and the heap size is limited. The number of loop unrollings for a loop l is
given by the loop bound. The maximal number of objects of a class c is given
by the class bound. Therefore, we have obtained an initial confidence in the
correctness of the program. To obtain more confidence we can increase the
bounds for the bounded program verification. 1

We aim to provide a lightweight bounded program verification approach,
thus not all Java features are supported. We support a basic subset of Java
that does not include strings, real numbers, and concurrency. We support a
class hierarchy definition without interfaces and abstract classes. Figure 3.1
shows the grammar that is supported by our approach.

The rest of the chapter is organized as follows: Section 3.1 presents the
construction of a verification graph and the following five sections (Section 3.2
to Section 3.6) present the extraction of an SMT formula from the verification
graph; Section 3.7 shows the experiments to evaluate the benefits of using our
approach in bounded program verification; Section 3.8 presents the related
works and this chapter ends with conclusions in Section 3.9.

1 By Daniel Jackson’s small-scope hypothesis [Jackson, 2012], exhaustive checking
within small bounds can achieve good code coverage and kill most of the mu-
tants.
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Prog ::= ClassDcl*

ClassDcl ::= class Class [extends Class]{FieldDcl* ProcDcl*}
FieldDcl ::= Access Type Field
ProcDcl ::= Access (void | Type) Proc(ParDcl*){Stmt}
ParDcl ::= Type Var

Stmt ::= Var = Expr | Var[Expr] = Expr
| Expr.Field = Expr | [var =] Proc(Expr*)
| Var = new Class(Expr*) |new Class()[Expr]
| if (Expr) Stmt [else Stmt]
| while (Expr) Stmt | Return [Var]
| continue | break | Stmt; Stmt

Expr ::= Const | Var | Var[Expr] | Expr.Field
| Expr instanceof Class | (Class) Expr
| Expr BinOp Expr | !Expr

BinOp ::= + | - | * | / | >> | << | >>> | & | | | < | >
| == | != | && | ||

Const ::= null | true |false | 0 | 1 | -1 |...
Type ::= Class | boolean | int | Class[] | boolean[] | int[]
Access::= public | protected | private

Proc, Var, Class, Field ::= Identifier

Fig. 3.1: Abstract syntax of the supported Java programs, supposing that the
expressions have no side-effect.

3.1 Construction of a Verification Graph

The construction of a verification graph—essentially a labeled control-flow
graph—is divided into two stages. First, the analyzed program is transformed
into a program with annotation statements constructed during the code trans-
formations. Second, the verification graph is constructed from the transformed
program.

3.1.1 Source Code Transformations

To facilitate code transformation we use the JML assume and assert annota-
tion statements. These statements are enclosed in annotations and evaluated
at the program points where they appear—textual points in the code. The JML
assume Q; statement (Q is a Boolean expression) denotes that the predicate
Q always holds during program verification. An assert Q; statement, on the
other hand, denotes that the predicate Q is expected to be satisfied by the
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analyzed program, thus it has to be checked in the program verification. If Q
evaluates to false, the property specified by Q is violated, and the verification
fails; otherwise the property holds.

We unroll loops with respect to the user-provided loop bounds. Consider
a loop l with the loop condition cond has the loop bound x (x > 0). We
unroll the loop x times and add a statement assume !(cond); to ensure
the loop iterating at most x times. Similar to loop unrolling, a recursive
method can be unrolled by inlining the method at the method invocation
statements and by appending assume false; statements. Moreover, any
object allocation statement is decomposed. That is, an allocation statement
x = new Class(e1, .., en); is broken into two consecutive statements
x = new Class; x.init(e1, .., en); for object allocation and initial-
ization, respectively.

If called methods are annotated by method contracts, their associated
method invocation statements are substituted by the method contracts. In
particular, for a called method m that is annotated by a precondition pre and
a postcondition post, we add an assert pre; statement before the method
invocation statement, and an assume post; statement after the method invo-
cation. Otherwise, the called method will be inlined at the method invocations.
To facilitate the construction of the labeled control-flow graph, we replace the
pre- and post-conditions of the analyzed method (i.e., the top-level method in
the verification) by two annotation statements. We replace the precondition by
adding an assume pre; statement immediately after initializing the method
arguments, and replace the postcondition by adding an assume !(post);

(i.e., negate the postcondition) after the return statement of the code. We
handle loop invariants differently and elaborate on the details in Chapter 6.

Figure 3.2 shows the source code transformations performed on the
setAll method in Fig. 3.2(a). The setAll method traverses, starting with
the receiver, all entries of a singly linked list, and updates the data field of
each entry to the value of the d argument. The ensures clause (Fig. 3.2(a)
Line 5) denotes that all entries of the list contain a reference to d after setAll
returns. Figure 3.2(b) shows the transformed code with annotation statements.

3.1.2 Verification Graph

We construct a verification graph from the transformed program (using the
source code transformations presented in Section 3.1.1). A verification graph
is essentially a labeled control-flow graph. If it is constructed from a program
without loops, it is acyclic, otherwise cyclic. It has a single entry node and a
single exit node. A path through the graph from entry to exit represents an
execution of the program. Passing through a node in the path represents the
control reaches the program point that the node denotes; traversing an edge
represents either evaluation of the predicate of a conditional or annotation
statement, or the execution of a statement such as an assignment, return, or an
object allocation. Definition 3.1 presents the properties of a verification graph.
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1 class Entry {
2 /*@ nullable @*/ Data data;
3 /*@ nullable @*/ Entry next;
4

5 /*@ ensures(\forall Entry o;
6 @ \reach(this, o, next);
7 @ o.data == d);
8 @*/
9 void setAll(Data d){

10 Entry e = this;
11 while (e != null){
12 e.data = d;
13 e = e.next;
14 }
15 }
16 }
17 class Data{}

1 class Entry {
2 /*@ nullable @*/Data data;
3 /*@ nullable @*/Entry next;
4

5 void setAll(Data d){
6 Entry e = this;
7 if (e != null){
8 e.data = d;
9 e = e.next;

10 //@ assume e == null;
11 }
12 /*@ assume !(\forall Entry o;
13 @ \reach(this, o, next);
14 @ o.data == d);
15 @*/
16 }
17 }

(a) Original code (b) Transformed code

Fig. 3.2: Source code transformations. Given a code in Fig. 3.2(a) and loop
bound 1, we unroll the loop once and add an assume statement at Line 10
in the transformed code in Fig. 3.2(b) to ensure the loop to iterate at most
one time. The JML ensures clause in the original code is replaced by the
JML assume statement at Line 12 in the transformed code. For simplicity, the
transformed code has no assume true; since the precondition is trivial true.

Definition 3.1. A verification graph G = (V, E) is a finite set of graph nodes V with
a set of graph edges E of 2-subsets of V . It has the following properties:

• G is a directed graph;
• G is node-labeled, i.e., nodes are labeled by a sequence of numbers;
• G has a single entry node ventry and a single exit node vexit, and any node v ∈ V

is on a path from node ventry to node vexit.

Supposing G is constructed from a transformed program P without loops, G has the
relations to P :

• A node v ∈ V denotes a program point (i.e., textual point in the code) of P ;
• An edge e ∈ E denotes either a predicate test (i.e., to evaluate the predicate of a

branch or annotation statement) or an elementary statement (e.g., an assignment
statement) of P .

Figure 3.3 shows the construction of a verification graph from the trans-
formed code in Fig. 3.3(a). Figure 3.3(b) presents the constructed verification
graph. The numbers in the circles label the nodes. Edges are annotated by the
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branch conditions (or predicates of annotation statements) or by elementary
statements.

We rename variables (and fields) so that they are assigned at most once
along each path of the graph. The initial variables (and fields) are named
using the index 0, and the index increases when the variables or fields are
updated. Algorithm 1 presents the basic algorithm for renaming variables
and fields in an acyclic verification graph.

The process of renaming may introduce unspecified variables at the merg-
ing nodes. A merging node has multiple incoming edges in a verification
graph. For example, the node 5 in Fig. 3.3(b) is a merging node that has the
incoming edges E1,5 and E4,5. The field data is renamed to data0 and data1
on the paths [0, 1, 5] and [0, 1, 2, 3, 4, 5], respectively. Hence, data1 is unspec-
ified on the path [0, 1, 5, 6]. We add constraints (the highlighted expression)
to ensure that data1 equals to data0 when edge E1,5 is traversed. Though the
variable e is another unspecified variable on node 5, no additional constraint
is needed since e is not used on the path following node 5. The edge E5,6

represents the negation of the postcondition, thus any path of this graph
represents the execution of the program that violates the postcondition.

1 class Entry {
2 /*@ nullable @*/Data data;
3 /*@ nullable @*/Entry next;
4

5 void setAll(Data d){
6 Entry e = this;
7 if (e != null){
8 e.data = d;
9 e = e.next;

10 //@ assume e == null;
11 }
12 /*@ assume !(\forall Entry o;
13 @ \reach(this, o, next);
14 @ o.data == d);
15 @*/
16 }
17 }

0

1

2

3

4

5

6

e0 = this

e0 6= null

e0.data1 = d0

e1 = e0.next0

e1 == null

¬(∀o,Rnext(this, o) =⇒ o.data1 == d0)

e0 == null∧
data1 == data0

(a) The transformed code (b) A verification graph

Fig. 3.3: Construction of a verification graph. A verification graph of the trans-
formed code in Fig. 3.3(a) is shown in Fig. 3.3(b). The code in Fig. 3.3(a) is
identical to the one in Fig. 3.2(b). We replicate it for the purpose of visualiza-
tion.
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Algorithm 1 Renaming variables (and fields) in an acyclic verification graph.

1: G(V, E) := A verification graph with nodes V and edges E .

2: function TRAVERSE(e ∈ E)
3: for p ∈ the incoming edges of the source node of e do
4: if p.isTraversed == false then
5: TRAVERSE(p)
6: end if
7: end for

8: identifiers := Variable 7→ Identifier
9: identifiers← the identifiers of variables immediately before the statement of e

10: for v ∈ the variables used by the statement of e do
11: rename v to identifiers.get(v)
12: end for
13: for v ∈ the variables defined by the statement of e do
14: rename v to← identifiers.get(v) with suffix + 1;
15: end for
16: e.isTraversed = true
17: end function

Compared to a global-state encoding, the verification graph represents a
program state implicitly, as a collection of independent variables and fields.
That is, each update to a variable (or a field) triggers renaming that variable
(or field) only, without causing the whole global state of the program to be
renamed. Furthermore, using verification graphs allows one to encode the
control- and data-flow constraints separately, which prevents deeply-nested
formulas and helps produce more readable counterexamples.

The verification graph is a modified version of the computation graph [Vaziri-
Farahani, 2004]. It inherits the benefits of the computation graph such as im-
plicit program state encoding. In contrast to the computation graph that only
represents the control- and data-flow of the program, the verification graph
also represents the specifications, e.g., method contracts and loop invariants.

3.2 Encoding Types

We encode Java types using the bit-vectors theory (see Section 2.1). Handling
the complete Java’s type system requires encoding Object class. If the ana-
lyzed program and its specifications do not use Object class or the member
methods of Object class, a formula encoding Object class will impose an
unnecessary overhead on the SMT solver. Therefore, we do not encode the
Object class unless the analyzed code or specifications explicitly use the
Object class or the member methods of Object class.
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We treat a Java class whose declaration does not contain the Java extends
or implements keywords as a top-level class. A top-level class A is en-
coded using a bit-vector sort SA in the form of (_ BitVec m), where
m = dlog(n + 1)e and n is the class bound of A. The instances of the sort
SA can be represented using their integer values as follows:

nullA, 1, 2, . . . , lastA︸ ︷︷ ︸
valid range of A

, . . . , n, . . . , 2m − 1.

We use an SMT constant nullA to denote the null value of class A and
an SMT variable lastA to denote the most recently allocated object of A.2

All bit-vectors whose integer values belong to A’s valid range of [1, .., lastA]
represent the allocated objects of A. For example, we constrain the receiver
object to be allocated using the following SMT assertion, in which bvule is
the unsigned less than operation for bit-vectors. The SMT (assert expr)
command constrains that the Boolean expression expr evaluates to true in
the SMT solving.

(assert (and (not (= this null_A))(bvule this last_A)))

Figure 3.4(a) illustrates the SMT encoding of Java types when the analyzed
program does not involve class hierarchies and Object class. Instead of
encoding the Java constant null as a single value that is compatible with
all classes, our encoding ensures that each top-level class has a distinct SMT
null value.

We encode a superclass and its subclasses using a single SMT sort and
constrain the subtyping relation in the encoding. Consider a class hierarchy
where classes A and B extend class C. Given class bounds m, n, and w (all
instances of the subclasses are instances of the superclass, thus m + n ≤ w)
for A, B, and C, respectively, we encode all three classes using the bit-vector
sort SC of size c = dlog(w + 1)e. This allows us to treat instances of a subclass
as an instance of its superclass. All three classes share one null value. An
SMT variable last of is used to represent the last allocated object of each type.
Instances of subclasses are represented by the values of non-overlapping
sub-ranges. In our example, the allocated objects of types A, B, and C are
given by the sub-ranges [1, .., lastA], [m+1, .., lastB ], and [m+n+1, .., lastC ],
respectively, where last constants are defined in the following SMT formula:

(declare-fun last_A () (_ BitVec c))
(declare-fun last_B () (_ BitVec c))
(declare-fun last_C () (_ BitVec c))
(assert (bvule last_A m))

2 Using the identifiers of SMT variables directly in the text impedes the readability,
since SMT variables may have long names. For ease of convenience, we use, for
example, nullA in the text and null_A in the SMT formulas. Both nullA and
null_A denotes the same variable. We keep using this naming method in the rest
of the thesis.



3.3 Encoding Control-flow 35

Sort Bool

int booleanClass A Class B Class . . .

null null null

(a) SMT encoding of Java types
without class hierarchies and Object

class.

Sort Bool

Object int boolean

Class A

Class B Class C Class . . .

null

(b) SMT encoding of Java types with
class hierarchies and the Object

class.

Fig. 3.4: Two kinds of SMT encoding of Java types. The instances (i.e., bit-
vectors with fixed-size) of the built-in meta-sort Sort encode Java types and
the SMT built-in sort Bool encodes Java boolean type. Each class in Fig. 3.4(a)
has a distinct null value.

(assert (or (and (bvule last_B (bvadd m n))
(bvugt last_B m))

(= idxB (_ bv0 c))))
(assert (or (and (bvule last_C w)

(bvugt last_C (bvadd m n)))
(= idxC (_ bv0 c))))

The valid ranges of A and B are [1, .., lastA] and [1,m+1, .., lastB ], respectively.
The valid range of C includes also the valid ranges for A and B, and is defined
as [1, .., lastA,m+ 1, .., lastB ,m+ n+ 1, .., lastC ].

The Java expression (o instanceof T) evaluates to true if o is not
null, and is in the valid range of T. Typecasting an object obj to a class T
is allowed if obj == null or (obj instanceof T) holds. Overridden
methods and fields are resolved via a sequence of nested tests on the actual
object type using Java instanceof keyword.

Similar to the encoding of reference types, we encode primitive types also
using bit-vectors. That is, we encode Java int as a bit-vector. The size of the
bit-vector is the user-provided class bound of int. For simplicity, we encode
Java boolean type as the SMT built-in Bool sort. The integer operations are
modeled using the SMT bit-vector operations.

3.3 Encoding Control-flow

We encode the control-flow of the analyzed program as an SMT formula that
captures the partial order of the edges in the verification graph traversal.
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Definition 3.2 provides the encoding of control-flow based on the verification
graph. It constrains that (i) if a control-flow formula is satisfied, at least one of
the entry edges has to be traversed, (ii) if one of the incoming edges of node j
is traversed, at least one of j’s outgoing edges will be traversed, and (iii) the
control-flow formula is a conjunction of the implications. The control-flow
formula alone does not prevent unfeasible paths (e.g., both outgoing edges
of a branch node can be taken). We encode the data-flow of the verification
graph to guarantee that exactly one of the outgoing edges is traversed.

Definition 3.2. Let G = (V, E) be a verification graph, Ei,j (i, j ∈ V, Ei,j ∈ E)
be an edge from node i to node j, a ∈ V be an entry node, thus the control-flow is
encoded as a formula: ∨

a,b∈V,
a 6=b

Ea,b

 ∧ ∧
i,j∈V,
i6=j

Ei,j =⇒
∨

j,k∈V,
j 6=k

Ej,k


Figure 3.5 presents the SMT formula encoding the control-flow of the

verification graph shown in Fig. 3.3(b). We use an SMT Boolean variable
E_i_j to represent the edge from node i to node j. The data-flow formula is
presented in Fig. 3.7.

(assert E_0_1)
(assert (=> E_0_1 (or E_1_2 E_1_5)))
(assert (=> E_1_2 E_2_3))
(assert (=> E_2_3 E_3_4))
(assert (=> E_3_4 E_4_5))
(assert (=> E_4_5 E_5_6))
(assert (=> E_1_5 E_5_6))

Fig. 3.5: Control-flow formulas for the verification graph in Fig. 3.3(b).

3.4 Encoding Data-flow

We encode the data-flow of a verification graph as a formula to capture
program behaviors. That is, if an edge of a verification graph is traversed, its
associated state transitions are performed or branch conditions are evaluated.
Definition 3.3 presents the data-flow encoding of a verification graph.

Definition 3.3. Let G = (V, E) be a verification graph, Ei,j (i, j ∈ V, Ei,j ∈ E) be
an edge from node i to node j, then the data-flow is encoded as a formula:∧

i,j∈V,
i6=j

(Ei,j =⇒ T (stmt, i, j))
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where stmt denotes a program statement associated with edge Ei,j and T is a
translation function for stmt.

The translation function T (stmt, i, j) translates a program statement stmt
into an SMT formula, where i and j are the source and target nodes of the
directed edge Ei,j , respectively. In the rest of this chapter we also use i and
j to denote the program states at nodes i and j, respectively, for the ease of
convenience. In a verification graph any program variable (and class field)
is assigned only once on a single path. If a variable v is updated during
the state transition from state i to state j, we denote v in the states i and j
as vi and vj , respectively. Figure 3.6 presents the translation rules for the
translation function T (stmt, i, j). In particular, translation rules R1 – R7 are
used for the encoding of program statements, R8 – R18 for expressions, and
R19 – R22 for variables and fields. The translation rules for the expressions
such as (o instanceof T), o1 = (T)o2, and reach(o$_1$, o$_2$, f)

will be explained later in the chapter.

Fields

Fields are translated into uninterpreted functions over bit-vectors. A field f
of type B declared in a class A is encoded as follows:

(declare-fun f ((_ BitVec m)) (_ BitVec n)),

where (_ BitVec m) and (_ BitVec n) denote the SMT sorts for A and
B, respectively, and m and n are the length of two sorts.

To ensure that the configurations of the objects on the heap are valid, the
encoding of fields has to fulfill the following properties:

• If B is a reference type, then for any object o of class A in the pre-state of
the analyzed program, o.f refers to null or to an object of B;

• If field f of an object o of class A is updated, f fields of the other objects
of A remain unchanged.

We encode the first property using an SMT assertion as follows:

(assert (forall (o (_ BitVec m)) (=>
(and (not (= o null_A)) (bvule o last_A))
(bvule (f o) last_B))))

Both last_A in SMT formula and lastA in the text denote the same variable.
As stated in Section 3.2, we use this kind of naming method in the text to
avoid terms with long names.

We encode the second property by maintaining the mappings from the
domain to the range of SMT uninterpreted functions. Each update to a field
requires a new function to represent the result. R3 is the translation rule for
assigning a field. It denotes that, at state j, field f replicates its values at state
i except for the object o. Read accesses to the fields are encoded as computing
images of the uninterpreted functions. R2 is the translation rule for using a
field.
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R1: T (v = e;, i, j) := (= E(v, j) E(e, i))

R2: T (v = o.f;, i, j) := (= E(v, j) (E(f, i) E(o, i)))

R3: T (o.f = e;, i, j) := (forall ((x T(o))) (ite (= x o)
(= (E(f, j) x) E(e, i))
(= (E(f, j) x) (E(f, i) x)))

R4: T (v = a[k];, i, j) := (= E(v, j) (E(h, i) E(a, i) E(k, i)))

R5: T (a[k] = e;, i, j) := (forall ((x int)) (ite (= x k)
(= (E(f, j) E(a, i) x) E(e, i))
(= (E(f, j) a x) (E(f, i) a x)))

R6: T (T o = new T;, i, j) := (and (bvult E(lastT , i) (_ bvs m))
(= E(o, j) (bvadd E(lastT , i) (_ bv1 m)))

R7: T (T[] a = new T[k];, i, j) := (and (bvult E(lastT [], i) (_ bvs m))
(= E(a, j) (bvadd E(lastT [], i) (_ bv1 m)))
(forall ((x int)) (=> (and
(bvsge x(_ bv0 m))(bvslt x(_ bvk m)))
(= (f a x) nullT))))

R8: E(e1 == e2, i) := (= E(e1, i) E(e2, i))
R9: E(e1 != e2, i) := (not (= E(e1, i) E(e2, i)))
R10: E(e1 > e2, i) := (bvsgt E(e1, i) E(e2, i))
R11: E(e1 < e2, i) := (bvslt E(e1, i) E(e2, i))
R12: E(e1 >= e2, i) := (bvsge E(e1, i) E(e2, i))
R13: E(e1 <= e2, i) := (bvsle E(e1, i) E(e2, i))
R14: E(e1 + e2, i) := (bvadd E(e1, i) E(e2, i))
R15: E(e1 - e2, i) := (bvsub E(e1, i) E(e2, i))
R16: E(e1 × e2, i) := (bvmul E(e1, i) E(e2, i))
R17: E(e.f, i) := (E(f, i) E(e, i))
R18: E(a[e], i) := (E(f, i) E(a, i)) E(e, i))
R19: E(o, i) := oi

R20: E(a, i) := ai

R21: E(v, i) := vi

R22: E(f, i) := fi

Fig. 3.6: Translation rules for the translation from program statements to a
data-flow formula. The translation function T is used for program statements,
and E for expressions. The i and j in T (stmt, i, j) denote, respectively, the
program states before and after the execution of the statement stmt. A variable
v at state i is denoted as vi. o and a correspondingly represent an object
and an array. The SMT function T(o) returns the SMT sort of o. The SMT
variable lastT (or lastT []) denotes the most recent allocated instance of T (or
T[]) immediately before the execution of object (array) allocation statement.
Furthermore, f stands for a member field or the array accessor. Note that these
rules are based on the assumption that the expressions have no side-effect,
e.g., they do not raise an exception. The exception handling is explained in
Section 3.5.
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Arrays

An array refers to its elements using the array accessor field. We encode the
array accessor field using an uninterpreted function with two arguments. An
array accessor field is declared as follows:

(declare-fun RefA (SA[] Sint) SA),

where SA, Sint, and SA[] are the corresponding SMT sorts for class A, int, and
array type A[]. Though it is more convenient to encode the array accessor
field using the theory of arrays, our encoding using uninterpreted functions
is still suitable for the SMT solvers that do not support the theory of arrays.
R4 and R5 are the translation rules for program statements that read and
write arrays, respectively. Using R5, an assignment statement a[i] = e, for
example, is translated into an SMT assertion as follows:

(assert (forall ((x int)) (ite (= x i)
(= (RefA_1 a x) e)
(= (RefA_1 a x) (RefA a x)))))

This assertion ensures that RefA1 is a copy RefA in which the indexes a
and i are mapped to the element e they have identical elements on the rest
indexes.

Allocation

Recall that a bit-vector lastA denotes the most recent allocated object of class
A. It also denotes the number of allocated objects of A. For the allocation
statement, we use a new bit-vector with the same sort of lastA to denote the
object to be allocated. The integer value of the new bit-vector is larger than
the value of lastA, while it does not exceed the bound of class A. Encoding an
allocation statement A a = new A, for example, results a formula as follows:

lastA,k < BA ∧ lastA,k+1 = lastA,k + 1.

lastA,k and lastA,k+1 respectively represent the number of allocated A objects
before and after the allocation, and BA represents the class bound of A. R6

is the translation rule for object allocation statement. It guarantees that the
expression lastA,k+1 does not overflow and that the number of allocated
objects (lastA,k+1) does not exceed the class bound of A.

The array length is initialized upon the array allocation and remains
unchanged. We encode the array length using an uninterpreted function
mapping from array to integers. To encode the array allocation statement
A[] a = new A[length], we declare and initialize the length of the array
as follows:

(declare-fun lengthA[] (S_A[]) S_int)
(assert (= (lengthA[] a) length))
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S_A[] and S_int are the SMT sorts for the type A[] and int, respectively.
When an array is allocated, it is filled up by the default elements. In particular,
an integer array will be filled up with zeros, an Boolean array by false, and
an reference-type array by null. R7 is the translation rule for array allocation.

Figure 3.7 shows the SMT formula encoding the data-flow of the verifica-
tion graph in Fig. 3.3(b). The SMT (reach_next this o) function encodes
the reachability relation. It evaluates to true if the object o is in the reflexive
transitive closure of the receiver object (this) over the next relation (field).
Details of this function are to be explained in Section 3.6.

(assert (=> E_0_1 (= e_0 this)))
(assert (=> E_1_2 (not (= e_0 null_Entry))))
(assert (=> E_2_3 (forall ((o Entry)) (ite (= o e_0)

(= (data_1 o) d_0) (= (data_1 o) (data_0 o))))))
(assert (=> E_3_4 (= e_1 (next_0 e_0))))
(assert (=> E_4_5 (= e_1 null_Entry)))
(assert (=> E_1_5 (= e_0 null_Entry)))
(assert (=> E_1_5(forall ((o Entry))(=(data_1 o)(data_0 o)))))
(assert (=> E_5_6 (not (forall ((o Entry))

(=> (reach_next this o) (= (data_1 o) d_0))))))

Fig. 3.7: Data-flow formulas of the verification graph in Fig. 3.3(b).

3.5 Handling Runtime Exception

We check two kinds of runtime exceptions: null-pointer dereference and array
index out of bounds. We use a global Boolean variable exc that is initialized
to false and updated at any location of the code when an exception may
be thrown, i.e., at the statements that read/write fields or arrays. That is,
when an exception is thrown, exc is replicated and the new exc evaluates to
true, and false otherwise. When a program terminates normally, i.e., no
exception has been thrown, all copies (but with distinct names) of exc have
to be false.3 In particular, to check whether an expression o.f raises a null-
pointer dereference exception, we add a condition o 6= null before evaluating
the expression. Handling exceptions of an array access expression a[k], for
example, requires two conditions: a 6= null and 0 <= k ∧ k < a.length.
Figure 3.8 shows the formula to handle the null-pointer exception. The first
four assertions encode the control- and data-flow, and the last assertion will
be satisfied when an exception has been thrown. To reduce the overhead of
SMT solvers, we statically resolve the exception conditions by propagating
constants along the paths in the verification graph. In Fig. 3.3(b), e0 is assigned

3 An constraint specifies that at most one of the exc variables evaluates to true.
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by the receiver object at node 1. Therefore we do not need to check exceptions
on the nodes 2 and 3.

(assert (=> E_2_3 (or E_3_4 exc_0)))
(assert (=> E_2_3 (= exc_0 (= e_0 null_Entry))))
(assert (=> E_3_4 (or E_4_5 exc_1)))
(assert (=> E_3_4 (= exc_1 (= e_0 null_Entry))))
(assert (=> E_5_6 (not (and (not exc_0) (not exc_1)))))

Fig. 3.8: Control- and data-flow formula for handing runtime exceptions. The
formula is translated from the verification graph in Fig. 3.3(b).

3.6 Encoding JML Expressions

Many JML constructs, e.g., logical operators, arithmetic operators, and condi-
tional operators, use Java semantics thus encoding them using bit-vectors is
straightforward.

We encode the JML universal \forall and existential \exists quantifiers
using SMT forall and exists quantifiers, respectively. The range of values
for a quantified variable of a reference type may include references to the
objects that are not constructed by the analyzed program [see Leavens et al.,
2006, Chapter 12 page 113]. Those objects that are created in the annotations,
e.g., Object o = new Object();, are in the range. Actually, an object created
in the annotations does not exist on the program’s heap. Recall that out
encoding is based on the the assumption that the Java and JML expressions
have no side-effect. In our encoding, the JML quantifier range includes only
the objects on the heap that the program manipulates. Let SA be the SMT
sort of class A and lastA be the number of T objects on the heap, E be the
translation function for JML expressions, the JML expression (\forall A o;

R(o); Q(o)) is translated into a formula as follows:

(forall (o SA) (=> (and (not (= o null)) (bvule o
lastA)) (=> E(R(o)) E(Q(o))))).

Reachability

The JML reachability construct \reach(Object x, Field f) only supports
one field (see Section 2.2). To express properties of complex data structures,
e.g., a tree with the fields left and right, we introduced into JML a ternary
Boolean-valued function\reach(Object x, Object y, FieldSet fs) that
returns true when y is in the reflexive transitive closure of x over any field in
the union fs of fields.
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Transitive closure (the reachability construct) over arbitrary domains can
not be axiomatized in pure first-order logic [Lev-Ami et al., 2009]. For finite
domains, however, an axiomatization has been given by Claessen [Claessen,
2008]. Inspired by his approach, we introduce the following axioms to com-
pute the transitive closure of a (homogeneous) field f of type A declared in
a class A. For a more concise syntax, we pretend that f is a function of type
A→ A.

(assert (forall ((x A) (y A)) (= (= (f x) y) (= (P x y) 1))))
(assert (forall ((x A) (y A) (z A)) (=> (and (> (P x y) 0)

(> (P y z) 0)) (> (P x z) 0))))
(assert (forall ((x A) (y A)) (=> (> (P x y) 1)
(exists (w A) (and (= (P x w)1) (= (P x y)(+ 1 (P w y))))))))

The auxiliary function P : A×A→ int is defined to represent the smallest
number of steps required to reach from one object to another (via f ). Therefore,
\reach(x, y, f) evaluates to true iff x = y or (P x y) > 0. The first con-
straint sets P (x, y) to 1 if and only if x.f = y. The second constraint ensures
transitivity, and the third constraint defines a partial order over all the objects
reachable from a single source. The third constraint is crucial for soundness
when f is cyclic. Converting the axioms to use uninterpreted functions and
bit-vectors is straightforward. It should be noted that the maximum value of
P is the number of objects of A. Therefore, in converting to bit-vectors, the int
type used in the declaration of P above can use the same number of bits as
needed to declare A. Furthermore, the addition operator must be constrained
not to overflow.

3.7 Evaluation

We have implemented our technique in the prototype tool InspectJ that uses
the Jimple, 3-address intermediate representation of Java Bytecode provided
by the Soot optimization framework [Lam et al., 2011], to preprocess Java
Bytecode, the Common JML Tools package (ISU) [Leavens et al., 2006] to parse
JML specifications, and Z3 [de Moura and Bjørner, 2008] as the underlying
SMT solver. Furthermore, we have compared InspectJ against JForge [Dennis
et al., 2006], a well-known SAT-based bounded verification tool that can
handle Java programs with complex data structures and has been used in
several other projects (e.g., [Shao et al., 2009, 2010; Galeotti et al., 2013]). All
the experiments are performed on an Intel Xeon 2.53 GHz with 16 GB of RAM
using Linux 64bit. We used SAT4J 2.3.0 and Z3 3.2.

Object of Analysis

We have checked a large-scale implementation of Dijkstra’s shortest path algo-
rithm that forms the basis of several optimized routing algorithms in graphs
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with millions of nodes. This algorithm computes single-source shortest paths
in graphs with non-negative edge weights. The optimized version [Delling,
2009] that we target makes heavy use of a priority queue backed by a bi-
nary heap. It is is written in C++ and has been manually ported to Java code
using mostly syntactic conversions. The target code [Nagal, 2013] consists
of 7 classes with a total of 37 methods and 346 Java source lines, excluding
whitespace and specifications. To our knowledge, all previous verification of
Dijkstra algorithm were performed on either a very abstract, or a very basic
implementation [Mange and Kuhn, 2007; Klasen et al., 2010]. Our target code
optimizes the memory layout and cache effects through sophisticated inter-
connections of data structures. The specifications of the analyzed methods
consist of 27 lines and mostly constrain the internal integrity of the binary
heap data structure. Properties include, for example, the min-heap property
that the value of each node is greater than or equal to the value of its parent,
thus the minimum-value element is the root. JML specifications are converted
to JFSL [Yessenov, 2009] that JForge expects. This conversion required only
simple syntactic changes. Apart from different specification languages, both
JForge and InspectJ operate on the same inputs. We set both tools to inline
called methods in all the experiments, and increased the bounds until both
tools timed out.

Results of Bug Detection

We have checked 10 out of a total of 19 public methods. The remaining 9
methods are not expected to fulfill the desired properties and they are called
by the analyzed methods. Both InspectJ and JForge revealed three previously-
unknown bugs in the Java implementation of the binary heap data structure,
two of which represented the same problem in two different methods. All
bugs required small bounds (maximum 3 for class bounds and loop bounds).

The first bug (repeated twice) was introduced when the C++ code was
ported to Java. Assigning a struct in C++ copies all of its fields by value,
while assigning an object in Java only copies it by reference. The bug and
its fix are shown in Listing 1. The JML specification that caught the bug is
also given. It constrains the keys of the elems array to match the keys of the
heap array. The code at lines 5–6 modifies the single object heap[index1]
(key and val are integer values) due to Java copy-by-reference. However, the
original C++ code [Delling, 2009] modifies a fresh copy of heap[index1].
This unintended modification to heap causes inconsistencies between heap
and elems which causes the specification to fail.

The second bug was present in the original C++ code that was already
heavily tested. It involved a memory location that was freed, but under certain
conditions was referenced again. This results in undefined behavior in C++
but went undetected as it usually worked. InspectJ detected this as a null
pointer exception since the Java code marks freed locations by null. The
bug and its fix are shown in Listing 2. Line 2 removes the last element of
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1 /*@ ensures (\forall int i; 0 <= i && i < heap.length ==>
2 @ elems[heap[i].value].key == heap[i].key)
3 @*/
4 // VERSION WITH BUG
5 heap[index2] = heap[index1];
6 heap[index2].key = k;
7
8 // VERSION WITHOUT BUG
9 heap[index2].key = heap[index1].key;

10 heap[index2].value = heap[index1].value;
11 heap[index2].key = k;

Listing 1: Invalid Copy Semantics

the heap, but Line 3 accesses the first element without checking whether the
heap has become empty (heap[0] is a dummy element). Swapping Lines 2
and 3 produces the intended behavior and fixes the bug in this case. We have
already reported the problem, and it has been fixed by the original developers.

1 // VERSION WITH BUG
2 dropHeap();
3 x = heap[1];
4 ....
5
6 // VERSION WITHOUT BUG
7 x = heap[1];
8 dropHeap();
9 ....

Listing 2: Invalid Memory Access

Runtime Evaluation

We compared the time cost of InspectJ with JForge. All the bugs previously
described were fixed prior to this comparison. The evaluation results are
given in Table 3.1. The Bits, Objs, and Loop columns contain the bounds on
the size of integer, objects of each class, and loop iterations, respectively. The
time cost of each tool is given in seconds and is split into the time spent in the
encoding phase (denoted by Encode), in which the code and its specifications
are translated into SAT or SMT formulas, and in the solving phase, which is
performed by the underlying solver. By default, JForge uses an old version
of SAT4J which we replaced with its most recent version 2.3.0. Furthermore,
for a fair comparison, we also used Z3 (in SAT solving mode) as the back-end
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solver for JForge. The Total column gives the sum of the encoding time and
the best solving time. Any runtime beyond our threshold of 600 seconds is
denoted by TO (timeout).

The methods insert, decreaseKey, and deleteMin provide the main
functionality of the binary heap. They are used to insert, update, and delete
heap elements, respectively. The method minElement returns the root el-
ement of the heap. Verifying these methods returns UNSAT, meaning that
the solver cannot find a counterexample, and thus the specifications hold
for the given bounds. We also experimented with some satisfiable cases by
underspecifying the run method, against some specifications denoting partial
properties (and the built-in exception checking which is present in both tools).
The run method is the functional entry point of the Dijkstra code. Calling this
method typically involves calling all the above methods multiple times.

As shown in Table 3.1, when checking some methods with respect to very
small bounds (see first rows for deleteMin, insert, and minElement),
InspectJ is slower than JForge. This is caused by the slow startup of the Soot
and ISU libraries used in InspectJ encoding phase, which becomes a bottleneck
if total runtime is low. However, in all other cases InspectJ is significantly
faster, and is capable of checking bounds that JForge cannot.

An interesting case is minElement for which the runtime of InspectJ is
independent of the bounds. This is because InspectJ only makes a few passes
over the input program and specification to generate the SMT formulas and
the SMT solver can deduce unsatisfiability of the formula using high-level
simplifications. Increasing the bounds beyond 10 in this case causes an internal
error in JForge due to the big sizes of the formulas. JForge encoding generates
Boolean formulas through bit-blasting. It incorporates low-level optimization
such as symmetry breaking and sharing detection, and thus depends on the
analyzed bounds.

During the experiments, we noticed that InspectJ covers some paths in
the code that JForge does not. For example, deleteMin removes the root of
the heap and restructures the resulting tree to remain balanced. Covering all
distinct cases requires at least five tree nodes, but JForge times out in that
scope and thus cannot analyze certain paths of the code.

Our tool scales much better it takes less time to create a more compact for-
mula. As a result, one can increase the scope far beyond what is possible with
JForge. In certain cases, for example the minElement method, our tool shows
constant runtime independent of the analyzed bounds. Because minElement
is a pure method, the SMT solver can quickly find a contradiction due to the
equality feature of the theory of Core. An SAT solver cannot employ this high
level semantic.

Although more scalable than JForge, InspectJ still does not deliver required
scalability in all cases. The run method, for example, cannot be checked
beyond two loop iterations due to its complexity (nested loops with various
method calls).
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Table 3.1: Results of Bounded Program Verification

Method Bits Objs Loop JForge InspectJ
Encode SAT4J Z3 Total Result Result Encode Z3 Total

3 3 3 0.6 TO 61.8 62.4 unsat unsat 1.5 0.4 1.9
4 4 4 0.7 TO 82.5 83.2 unsat unsat 1.5 8.7 10.3

decreaseKey 5 5 5 1.8 TO TO TO - unsat 1.5 31.3 32.8
6 6 6 8.7 TO TO TO - unsat 1.5 117.1 118.6
7 7 5 63.5 TO TO TO - unsat 1.5 357.6 359.1
7 7 6 66.0 TO TO TO - unsat 1.6 507.5 509.1
3 3 3 0.5 3.4 0.6 1.1 unsat unsat 1.7 0.2 1.9

deleteMin 4 4 4 1.5 414.8 36.4 37.9 unsat unsat 1.7 3.4 5.0
5 5 5 4.8 TO TO TO - unsat 1.7 52.5 54.2
6 6 6 29.5 TO TO TO - unsat 1.7 133.4 135.1
3 3 3 0.5 1.6 0.5 1.0 unsat unsat 1.6 0.4 1.9
4 4 4 0.8 69.8 14.8 15.6 unsat unsat 1.6 5.4 7.0

insert 5 5 5 2.1 TO 409.8 411.9 unsat unsat 1.6 86.8 88.4
6 6 6 11.3 TO TO TO - unsat 1.6 110.0 111.6
7 7 6 71.2 TO TO TO - unsat 1.6 311.4 313.0
4 4 4 0.5 0.3 0.2 0.7 unsat unsat 1.4 0.0 1.4
6 6 6 6.4 19.5 6.9 13.3 unsat unsat 1.4 0.0 1.4
7 7 7 49.5 70.0 16.6 66.1 unsat unsat 1.4 0.0 1.4

minElement 8 8 8 TO - - TO - unsat 1.4 0.0 1.4
10 10 10 TO - - TO - unsat 1.4 0.0 1.4
11 11 11 FAIL - - - - unsat 1.4 0.0 1.4
3 3 1 9.6 1.5 2.2 11.8 sat sat 3.2 0.7 3.9
4 4 1 16.7 9.5 4.3 21.0 sat sat 3.2 6.9 10.0

run 7 7 1 371.1 TO 299.0 TO - sat 3.2 0.2 3.4
10 10 1 TO - - TO - sat 3.2 2.4 5.6
3 3 2 TO - - TO - sat 5.0 52.7 57.7

3.8 Related Work

SAT-based Encoding

Many bounded program verification approaches (e.g., Jalloy [Vaziri-Farahani,
2004], JForge [Dennis et al., 2006], TACO[Galeotti et al., 2013], Miniatur[Dolby
et al., 2007], Karun[Taghdiri, 2008], and MemSAT[Torlak et al., 2010]) have
been developed to check programs with complex data structures. Jalloy [Vaziri-
Farahani, 2004] analyzes Java programs by translating the code into an Al-
loy [Jackson, 2012] formula and checking it against a property, also expressed
in Alloy, using an SAT solver. Alloy is a first-order relational logic with
transitive closure that makes it well-suited for specifying complex data struc-
ture properties, e.g., the properties of linked lists and trees. Similar to our
technique, its translation to SAT requires bounding the number of loop itera-
tions and the program’s heap size. Consequently, Jalloy analysis provides a
bounded verification: it exhaustively checks a program within the analyzed
bounds, but cannot guarantee anything beyond that. Other techniques (e.g.,
JForge and TACO) have been developed to improve the translation of Java
programs into Alloy formulas, thus resulting in more compact SAT formulas
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that can be handled more efficiently by existing SAT solvers. The technique
presented in [Dennis et al., 2006] applied Alloy-based program verification
to check the JML specifications of KOA [Kiniry et al., 2006], a platform for
e-voting experimentation. Unlike our technique, all these techniques use
propositional logic (via a relational logic) with only local simplifications at
Boolean level. We, on the other hand, translates the code and specifications
into an SMT logic to allow high-level simplifications.

SMT-based Encoding

The extended static checker for Java (ESC/Java [Flanagan et al., 2013] and
ESC/Java2 [Cok and Kiniry, 2004]) checks Java programs with respect to
functional properties. ESC/Java handles loops by unrolling them a finite num-
ber of times, and replaces procedures calls with user-provided specifications.
Users express both the property and the intermediate annotations in JML.
ESC/Java translates the given program to Dijkstra’s guarded commands [Di-
jkstra, 1975], encoding the property as assert commands. It then computes
weakest preconditions to generate verification conditions as predicates in a
first-order logic, and uses several theorem provers (e.g., Z3 [de Moura and
Bjørner, 2008] and Yices [Dutertre, 2014]) to prove the verification conditions.
Failed proofs are turned into error messages and returned to the user. These
techniques, however, either have undecidable logic due to quantification over
infinite types, or require user-interactions to produce sufficiently precise in-
variants due to their loop invariant inference schemes. Therefore, it sometimes
reports a counterexample that might, with more effort, have been shown to
be invalid and the solver may not terminate with a conclusive outcome.

JML Encoding

In our encoding, a JML quantifier ranges over the objects of a given class on
the heap that the analyzed program manipulates. This interpretation has been
used in various program verification tools, e.g., WHY3 platform [Bobot and
Paskevich, 2011], TACO [Galeotti et al., 2013], PVS [van den Berg and Jacobs,
2001], KeY [Ahrendt et al., 2016], and Isabelle [Klein and Nipkow, 2006]. Such
an interpretation encodes the Java semantics more precise compared to a
classical one [see Leavens et al., 2006, Chapter 12 page 113] that quantifies also
the objects that are constructed by the specifications. It is possible to obtain
our quantifier semantics in JML by introducing predicates to omit the objects
created in the annotations. The approach presented in [Beckert and Platzer,
2006] applied the range predicate \created(o) that specifies whether the
object o has been created on the heap or not. Another alternative proposed
in [Ahrendt et al., 2009] avoided the existential quantifiers by introducing
an instance variable of Boolean type to Java classes to indicate each object
created or not.
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3.9 Conclusion

We have presented an SMT-based encoding of object-oriented programs and
specifications into bounded program verification. Our approach translates a
Java program and a JML specification into a Quantified Bit-Vector Formula
(QBVF), and solves it using an SMT solver. The novelty of our approach is
exploiting the theory of quantified bit-vectors of recent SMT solvers, which
allows logical constraints that are structurally closer to the original program
and specification as well as, and high-level simplifications before being flat-
tened into a basic logic. We aim to provide a lightweight bounded program
verification approach, thus not all Java features are supported. Our encoding
supports a basic subset of Java that does not include strings, real numbers,
and concurrency. We support a class hierarchy definition without interfaces
and abstract classes.

We have implemented our approach in the prototype tool InspectJ and
compared it to JForge—a compatible SAT-based engine, on a large-scale imple-
mentation of the Dijkstra’s shortest path algorithm. The results were encourag-
ing; we found 3 previously-unknown bugs, and witnessed significantly better
scalability over JForge. Checking programs with respect to bigger bounds
allowed us to cover some execution paths that JForge could not cover. Thus
it seems a viable approach to verify Java programs by translating the source
code into SMT formulas and solving them, as it increases performance com-
pared to other approaches and allows users to check more complex, high-level
specifications within a greater scope.

Bounded program verification checks the correctness of a program with
respect to user-provided class bounds and loop bounds. These two kinds of
bounds, however, are not independent—their intricate relations are spread
among the code and specifications, and have to be chosen carefully. When
the bounds are not well chosen, it causes dead code or unused objects on the
heap, thus resulting in a bad code coverage or heap coverage. In Chapter 4
we will investigate the relations between the bounds and present a calculus to
compute the exact loop bounds based on class bounds for further improving
the efficiency of bounded program verification technique.



CHAPTER 4

Computing Loop Bounds based on Class Bounds for
Bounded Program Verification

Bounded program verification techniques (e.g., Jalloy [Vaziri-Farahani, 2004],
JForge [Dennis et al., 2006], TACO[Galeotti et al., 2013], Miniatur[Dolby et al.,
2007], Karun[Taghdiri, 2008], MemSAT[Torlak et al., 2010], and InspectJ pre-
sented in Chapter 3) check the correctness of a program against a property
for a small scope. They use (i) loop bounds—the bounds on the number of
loop iterations, and (ii) class bounds—the bounds on the number of class in-
stances on the heap, as the determining factors of the scope of analysis. 1

These techniques typically require the users to provide these bounds. These
two kinds of bounds, however, are not independent—their intricate relations
are spread among the code and specifications, and have to be chosen carefully.
Consider a loop boundBl ∈ Z∗ (Z∗ denotes non-negative integers) and a class
bound CT ∈ Z∗ are provided to a program that has a loop l and a class T .
The program will be transformed into a new program by unrolling the loop
Bl times.2 The new program (called the unrolled problem) is to be verified
in bounded program verification with respect to the class bound CT . When
the bounds are not well chosen, either the unrolled program has dead code,
e.g., the parts of program executions that violate the class bound, or the heap
has unused objects, i.e., the objects that are not used in any execution, thus
resulting in a bad code or heap coverage in bounded program verification. In
the worst cases, (i) when a loop is unrolled too many times, the dead code

1 The integer values are not uncommon to be limited in bounded program verification.
In the thesis the range of integers is bounded regarding the number of bits in the
two’s complement integer representation.

2 Figure 3.2 presents an example of loop unrolling.
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impedes the performance of the underlying solver so that the verification
process may fail due to the solver being overloaded and the reason to the
failed verification is unclear for the users; (ii) when a loop is unrolled too
few times so that none of the program executions that reach the loop will be
valid in the unrolled program, thus any property concerning the loop will
vacuously hold in all runs.

Before we continue with this chapter we explain, for the ease of under-
standing, the concepts (e.g., loop termination and loop sharp upper bounds)
involved in this chapter in Definition 4.1 and Definition 4.2.

Definition 4.1. Let P be a Java program, l be a loop in P , X be the inputs to P
that are consistent with class bounds and preconditions, headl : X 7→ Boolean
be a function denoting whether the first statement of l is executed for an input,
taill : X 7→ Boolean be a function denoting whether a statement immediately
succeeding l is to be executed for an input in X . Then:

• Reachable loop. Loop l is reachable if

∃x ∈ X,headl(x),

otherwise is unreachable.
• Total termination. Loop l total-terminates and l is a finite loop (i.e., l terminates

for all inputs) if
∀x ∈ X, reachl(x) =⇒ taill(x),

otherwise l non-terminates and l is an infinite loop (i.e., does not terminate for
any input).

• Partial termination. Loop l partial-terminates and l is a terminating loop (i.e.,
l terminates for partial inputs) if

∃x ∈ X, reachl(x) ∧ taill(x),

otherwise l is unreachable or l non-terminates.
• Terminating inputs / executions. The executions of P that cause the termina-

tion of l are named terminating executions, and their corresponding inputs are
terminating inputs.

• Non-terminating inputs / executions. The executions of P that cause the non-
termination of l are named non-terminating executions, and their corresponding
inputs are non-terminating inputs.

Definition 4.2. Let P be a Java program, l be a loop in P , X be the inputs to P that
lead l to terminate, iterl : X 7→ Z∗ be a function with domain X and non-negative
integers Z∗ as range denoting the number of iterations of l for an input. Then:

• Loop upper bound. UB_l is the loop upper bound of the loop l if

∀x ∈ X, iterl(x) ≤ UBl.
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• Loop sharp upper bound. UB]
l is the loop sharp upper bound of the loop l if

∀x ∈ X, iterl(x) ≤ UBl ∧ ∃x ∈ X,UB]
l = iterl(x).

The loop (sharp) lower bounds are defined analogously, with replacing the rela-
tional operator ≤ by ≥. In this chapter the loop lower and sharp lower bounds of loop
l are denoted as LBl and LB]

l , respectively.

Several techniques have been proposed to compute loop upper bounds,
including worst-case execution time (WCET) analysis techniques ([Thesing,
2004; Ermedahl et al., 2007; Cullmann and Martin, 2007; Gulavani and Gul-
wani, 2008; Michiel et al., 2008]), pattern-based loop bounds computation
techniques (e.g., [Gulwani et al., 2009]), and bounded model checking tech-
niques (e.g., [Milicevic and Kugler, 2011]). These techniques, however, either
handle only loops with simple structures, e.g., no conditional statements or
branching statements, or require user-provided annotations on loops, e.g.,
loop invariants or loop variants. They cannot compute loop sharp upper
bounds for loops with arbitrary structures, and none of them compute loop
sharp lower bounds.

BMC-based Loop Bound Computation. A simple alternative to compute loop
upper bounds can be used in NBIS [Günther and Weissenbacher, 2014]—an
incremental bounded model checker. Starting from an initial upper bound,
it unrolls a loop and performs sanity-checks whether the loop condition still
holds after the last iteration. If so, it unrolls the loop for a new upper bound
candidate (e.g., new bound = old bound x 2), and does sanity checking again.
This approach may work in the presence of concrete inputs; however, it is
imprecise with only class bounds—unknown but finite number of objects on
the heap. It may compute upper bounds that are higher than the sharp upper
bound, thus many unreachable paths arise in the unrolled program, and the
verification may fail. The reason of the failure, however, is unclear for the
user. To overcome this potential failure, the user may restart verification with
smaller class bounds. Thus the confidence in the correctness of the code is
reduced, as the number of relevant objects is smaller. Moreover, this approach
does not compute bounds when the loops partial-non-terminate. A loop
partial-non-terminates when it does not terminate for at least one input while
it may terminate for other inputs. This is inconsistent with bounded program
verification techniques, which do analyze the terminating executions (see
Definition 4.1) of a method and ignore non-terminating runs.

In this chapter we provide an SMT-based calculus to compute loop sharp
bounds for bounded program verification. It computes the loop sharp upper
and loop sharp lower bounds based only on class bounds. The calculus can
be used as a preprocessing phase in bounded program verification. It exhaus-
tively checks all possible runs of a loop and computes the sharp bounds for
the analyzed loop. Our calculus can therefore provide the user with an in-
sight on what loop bounds to consider in bounded program verification, and
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enhances the confidence in the program correctness with respect to the class
bounds. When a method contract exists, we consider only the precondition
and ignore the postcondition. In addition to a numerical bound, we also out-
put a concrete inputs at the pre-state of the method call and an execution trace
that witnesses each computed bound, which guarantees that the computed
bound is feasible. We produce loop sharp bounds even for a non-terminating
loop (see Definition 4.1), provided that the loop has at least one terminating
execution. This is consistent with bounded program verification. Besides, we
can detect unreachable loops by analyzing the results of bound computation.

We compute loop sharp upper and loop sharp lower bounds for a Java
program annotated in JML [Leavens et al., 2006]. We encode a program, its
precondition, and its sub-routines’ specifications (if they exist) as an SMT
formula. Each loop is encoded as a recursive uninterpreted function that takes
the loop iterations as inputs. The formula is solved for the sharp upper and
lower bounds for each loop. This is achieved by calling an SMT solver that
is able to solve optimization problems. Given a formula f and an optimiza-
tion objective o, the SMT solver finds a model for f to achieve the goal o.
Several off-the-shelf SMT solvers have been extended to solve optimization
problems, e.g., Z3 [de Moura and Bjørner, 2008] with νZ [Bjørner et al., 2015]
and SYMBA [Li et al., 2014], MathSAT5 [Cimatti et al., 2013] with OptiMath-
SAT [Sebastiani and Trentin, 2015]. Besides, some SMT-based algorithms for
solving optimization problems have been developed, e.g., the authors of [Ma
et al., 2012] integrated an SMT solver with a classical incremental solving
algorithm to solve generic optimization problems, and an algorithm in [Sebas-
tiani and Tomasi, 2012] aims to solve linear arithmetic problems. Our calculus
explores the advances of SMT solvers. The logic used in our encoding is
undecidable, i.e., it is possible for the underlying solver to output “unknown”.

We have implemented our calculus in the prototype tool BoundJ, and
compared BoundJ with our Java implementation of BMC-based Loop Bound
Computation called UnrollJ. Our experiments reveal that in the cases that
UnrollJ computes approximate loop bounds BoundJ gave sharp bounds. On
the other hand, UnrollJ has a good scalability. It can produces loop bounds
with the increased class bounds, while BoundJ returns “unknown” for large
class bounds. However, for the small class bounds generally used in bounded
program verification, the solver returns definite answers.

4.1 Our Calculus

The process of the calculus is divided into two stages. First, the analyzed pro-
gram with loops is translated into an SMT formula. Second, the SMT formula
is solved using an SMT solver and the outcomes of the solver contain the value
of loop sharp bound for the loop of interest. Except to unroll loops, all code
transformations presented in Chapter 3 are performed on the program in the
first stage. Our calculus does not require any user-provided specifications or
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annotations; the user only provides bounds on the number of objects of each
class. Nevertheless, if the precondition of the analyzed method is provided,
our analysis will take them into account.

Given a transformed program p, a set C of class bounds, and optionally
a requires clause req for the analyzed method of p, let pre be the formula
encoding req, Nl be the number of evaluating loop conditions (= 1 + the
number of loop iterations), and f be the formula encoding the terminating
executions of p, we produce the Formula 4.1 in the encoding stage.

pre ∧ f ∧Nl > 0 (4.1)

When the formula is satisfiable, a model to the formula represents an
execution trace: a pre-state that satisfies req, loop l is reached and iterates
Nl−1 times, and both loop l and method m terminate. When the formula is
unsatisfiable, it means that for the set C of class bounds the l loop either does
not terminate for all inputs or l is an unreachable loop.3 We can distinguish
these potentials by analyzing the outcomes of the SMT solver. To compute
the loop upper bound for loop l, we use the SMT (maximize Nl) command
to instruct the SMT solver to find a model where Nl is the largest compared
to the values in other models. The LB]

l is computed similarly to sharp upper
bound computation, using the command minimize instead of maximize.

We use integers to encode loop iterations. Compared to bit-vectors whose
values remain in a static range, integers are convenient to represent the num-
ber of loop iterations, since (i) a loop may not terminate, and (ii) even for
terminating loops, the number of iterations is not known and thus cannot be
bounded apriori. It is possible for the solver to output “unknown” because our
logic is undecidable due to quantifying over integers, and then our analysis
terminates with no conclusive outcome.

Given a transformed program p, a set C of class bounds, and optionally
a requires clause req for the analyzed method of p, we (i) compute the loop
sharp upper bound (UB]

l ) and the loop sharp lower bound (LB]
l ) for each top-level

loop l that is not nested in any loop in the transformed program, (ii) unroll
each top-level loop based on its UB]

l , and (iii) compute loop sharp bounds
for the remaining top-level loops (if they exist) in the unrolled program. The
process terminates when no loop exists in the unrolled program. In order to
analyze only valid executions, we consider the whole code in each computa-
tion. The output of each computation contains a sharp bound, a witnessing
pre-state of the analyzed method, and an execution trace representing a valid
execution of the program.

3 The unsatisfiability of the Formula 4.1 could be caused by a corner case in which
the specifications are over-specified (e.g., the precondition req is trivial false.)
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4.1.1 Encoding Loop Control-flow

We use the verification graph (see Definition 3.1) to represent the control- and
data-flow of programs with loops. In contrast to our bounded program ver-
ification approach (see Chapter 3) that unrolls loops and thus the graph is
acyclic, we preserve loops, and the graph is cyclic. For ease of convenience,
we name some specific edges and nodes in a loop and present the naming in
Definition 4.3:

Definition 4.3. Let G = (V, E) be a cyclic verification graph that is constructed
from a program with a loop l, nodes Vl ∈ V be the control points in loop l, and node
y ∈ Vl represents the control points immediately before evaluating the loop condition,
thus:

• Entry nodes / edges. Node x ∈ V is the entry node of l if

x ∈ V\Vl ∧ ∃Ex,y ∈ E .

Edge Ex,y is an entry edge of l if x is the entry node of l.
• Exit nodes / edges. Node x ∈ V is an exit node of l if

x ∈ V\Vl,∃Ey,x ∈ E .

Edge Ey,x is an exit edge of l if x is an exit node of l.
• Head nodes / edges. Node x ∈ V is a head node of l if

x ∈ Vl,∃Ey,x ∈ E .

Edge Ey,x is a head edge of l if x is a head node of l.
• Tail nodes / edges. Node x ∈ V is a tail node of l if

x ∈ Vl,∃Ex,y ∈ E .

Edge Ex,y is a tail edge of l if x is a tail node of l.

In Fig. 4.1 we present the cyclic verification graph constructed from a Java
setAll method that sets the data field of all list elements to the input value,
provided that the input value is not null. In the graph, the nodes 0, 4, 2, and
3 are called entry, exit, head, and tail nodes, respectively, and the edges E0,1,
E1,4, E1,2 and E3,1 are called entry, exit, head, and tail edges, respectively.

Bounded program verification techniques typically encode (acyclic) control-
flow using simple Boolean variables. Our approach, on the other hand, en-
codes (cyclic) control-flow using uninterpreted functions in the SMT logic.
More precisely, similarly to our previous approach presented in Chapter 3,
when an edge from node x to node y does not belong to a loop, we encode
it using a Boolean variable Ex,y, whose value denotes whether the edge is
traversed or not. A edge traversed denotes either a statement has been exe-
cuted, or a predicate evaluates to true and a branching occurred. When an
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1 class Entry {
2 /*@nullable*/ Data data;
3 /*@nullable*/ Entry next;
4

5 void setAll(Data d){
6 Entry e = this;
7 while (e != null){
8 e.data = d;
9 e = e.next;

10 }
11 }
12 }
13 class Data{}
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el,0(i+ 1) = el,1(i)∧

datal,0(i+ 1) = datal,1(i)

e1 = null∧
e1 = el,0(Nl,1)

(a) A Java program (b) Verification graph with loops

Fig. 4.1: Construction of a cyclic verification graph. Figure 4.1(b) shows the ver-
ification graph that is constructed from the Java setAll method in Fig. 4.1(a).
Variables and fields that are updated in the loop are renamed with the loop ID
and numbers. The variable Nl,0 represents the number of times that the loop
condition has been checked, and it is renamed to Nl,1 when loop condition
evaluates to false.

edge belongs to a loop, the encoding must clarify in which loop iterations the
edge is traversed. Therefore, (i) when an edge from x to y belongs to a top-level
loop l (i.e., l is not nested in any loops), we encode it using a Boolean-valued,
uninterpreted function Ex,y : N→Boolean (N denotes natural numbers). The
expression Ex,y(il) evaluates to true if the edge is traversed in the (il)

th it-
eration of l. The exit edge of l is traversed once the loop condition is not
fulfilled for the (Nl)

th iteration of the loop. We encode the exit edge of l as
an expression Ex,y(Nl), where Nl > 0 and Nl = 1 + Kl, where Kl is the
number of iterations of the loop l in one run. (ii) When a loop l2 is nested in
a loop l1, the iterations of l2 depend on the iterations of l1. We encode the
edge Ex,y that belongs to l2 using a Boolean-valued, uninterpreted function
Ex,y : N × N→Boolean. The expression Ex,y(il1 , il2) evaluates to true if the
edge is traversed in the (il2)

th iteration of l2 while in the (il1)
th iteration of

l1. We encode the exit edge of l2 as an expression Ex,y(il1 , Nl2), and Nl2 − 1
is the number of iterations of l2 in the (il1)

th iteration of l1. That is, the edge
variables encoding the control-flow of inner loop will get an additional pa-
rameter corresponding to the iteration number of the outer loop. It works the
same way for any depth of nesting.

Definition 4.4 presents the rules to encode control-flow of a top-level loop.
In particular, if i is the node that represents the control points immediately
before evaluating the loop condition, then (i) if an entry edge of the loop
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is traversed, either the first iteration starts or the loop exits before the first
iteration, (ii) if a tail edge at the ith iteration of the loop is traversed, then
either the (i+ 1)th iteration starts or the loop exits before that iteration, and
(iii) if an edge the belongs to the loop is traversed, one of the outgoing edges
of its target node will be traversed as well.

Definition 4.4. Let G = (V, E) be a cyclic verification graph, l be a top-level loop
in G, nodes Vl ∈ V be the nodes belonging to loop l, l also has entry edge Eentry,
exit edge Eexit, head edge Ehead, and tail edge Etail, the control-flow of the loop l is
encoded as a conjunction of the following formulas:

Eentry =⇒ Ehead(1) ∨ Eexit(1)

∀il ∈ N, Etail(il) =⇒ Ehead(il + 1) ∨ Eexit(il + 1)∧
x,y∈Vl,

x 6=y

(∀il ∈ N, Ex,y(il) =⇒
∨

y,z∈Vl,
y 6=z

Ey,z(il))

Figure 4.2 presents the formula encoding the control-flow of the verifi-
cation graph of Fig. 4.1(b). For readability, we express the formula using
first-order logic constructs. For example, the term E0,1 denotes the SMT vari-
able E_0_1 and E1,2(il) denotes the SMT uninterpreted function (E_1_2
i_l). We keep using this simplification in the following sections when it
does not cause ambiguity. In this example, E0,1 is a Boolean variable, while
E1,2, E2,3, E3,1, and E1,4 are Boolean-valued functions. For each loop l in the
verification graph with loops, we introduce a variable Nl ∈ N to represent
the number of times that the loop condition has been checked for a loop l. In
particularly, we use two variables Nl,0 and Nl,1 to represent the values before
and after executions of loop l.

E0,1

E0,1 =⇒ E1,2(1) ∨ (E1,4(Nl,1) ∧Nl,1 = 1)

∀il ∈ N, E1,2(il) =⇒ E2,3(il)

∀il ∈ N, E2,3(il) =⇒ E3,1(il)

∀il ∈ N, E3,1(il) =⇒ E1,2(il + 1) ∨ (E1,4(Nl,1) ∧Nl,1 = il + 1)

Fig. 4.2: Control-flow formulas for the verification graph in Fig. 4.1.

4.1.2 Encoding Loop Data-flow

We use the type encoding shown in Section 3.4 to encode Java classes and
integers. In particular, we encode classes that are involved in the analyzed
code using SMT bit-vectors. If the class bound for a Java class T is n, we
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encode T as a bit-vector of size dlog(n + 1)e. In the following description,
we use ST to represent the SMT sort of a class T and express the data-flow
formula using first-order logic constructs to make reading easier.

In an acyclic verification graph, all variables and fields of the program are
renamed so that they are assigned at most once along each path of the graph.
Since our computation graphs can be cyclic, renaming cannot be achieved
by enumerating all paths. We rename variables and fields of the program
assuming that each loop constructs a separate naming context (similar to a
called method, for example). This separates the naming of variables (fields)
in one loop from the others, which makes it easier to support complex loop
structures. More precisely, renaming variables (fields) involves the following
steps.

1. Starting from the innermost loop l, we give an initial name to any variable
(field) that may be updated by l, and then perform renaming within the
body of l as for an acyclic computation graph.

2. We collapse the cycle (loop) l of the computation graph into a single node,
denoting the initial and the final names of the variables updated in l.

3. We repeat step 1, considering the collapsed loops.

Hence, any time a collapsing node is visited, adequate conditions are pro-
duced to ensure that the variables (fields) of the current context hold the same
values as the initial/final variables (fields) of the collapsed loop. In Fig. 4.1(b),
d0, Nl,0, Nl,1, e0, e1, and next0 belong to the outer context, whereas el,0, el,1,
datal,0, and datal,1 belong to the loop context. Since the loop does not update
the next0 field and the constants, e.g., this and null, both contexts share them.

Similar to our previous approach that is described in Section 3.4, data
accesses outside loops are encoded as follows: A variable v of type T is
encoded as an SMT variable v : ST , and a field f of type B declared in a class
A is encoded as a function f : SA → SB . However, if a variable or a field are
updated within a loop, one needs to know the updates performed in each
loop iteration. A variable vl of type T that may be modified within a loop l
is encoded as a function vl : N→ ST , where N denotes natural numbers and
vl(il) denotes the value of v in the (il)

th iteration of l. Similarly, a field f of
type B declared in a class of type A that may be modified within a loop l, is
encoded as a function fl : N× SA → SB , where fl(il, o) denotes the value of
o.f in the (il)

th iteration of the loop. The highlighted expressions in Fig. 4.1(b)
represents the state transitions or predicate tests. Figure 4.3 presents the data-
flow formulas for the code in Fig. 4.1(b). The first 2 formulas correspond to
the edges outside the loop and the last 3 ones encode the data-flow in each
loop iteration.

As discussed in Section 3.1, unspecified variables or fields may exist when
the verification graph has merging nodes. Suppose two paths p1 and p2 merge
on a node (called merging node), and a variable v is updated (and renamed)
to vi on path p1 and it remains unchanged on path p2. When the path p2
is traversed, there is no state transition that transforms v to vi and then vi
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E0,1 =⇒ e0 = this ∧Nl,0 = 0

E1,4(Nl,1) =⇒ e1 = nullEntry

∀il ∈ N, E1,2(il) =⇒ el,0(il) 6= nullEntry

∀il ∈ N, o : T,E2,3(il) =⇒ (o = el,0(il) =⇒ datal,1(il, o) = d0)∧
(o 6= el,0(il) =⇒ datal,1(il, o) = datal,0(il, o))

∀il ∈ N, E3,1(il) =⇒ el,1(il) = next0(el,0(il))

Fig. 4.3: Data-flow formulas for the verification graph of Fig. 4.1.

is unspecified. When the merging node belongs to a loop, e.g., node 1 in
Fig. 4.1(b), all variables (and fields) that may be updated in the loop will be
left unspecified on each iteration.

We provide formulas for the merging edges to mimic some implicit state
transitions and thus ensure that the variables on the merging nodes have
the correct value. The unhighlighted expressions in Fig. 4.1(b) represents
these constraints and they are translated into SMT formulas in Fig. 4.4. These
constraints mimic, before the first iteration a state transition from [e0, data0]
to [el,0(1), datal,0(1)], after the last iteration a transition from [el,0(Nl,1)] to
[e1], and in each new iteration i+ 1 a state transition from [el,1(i), datal,1(i)]
to [el,0(i+ 1), datal,0(i+ 1)].

E0,1 =⇒ el,0(1) = e0

∀o : T,E0,1 =⇒ datal,0(1, o) = data0(o)

E1,4(Nl,1) =⇒ e1 = el,0(Nl,1)

∀il ∈ N, E3,1(il) =⇒ el,0(il + 1) = el,1(il)

∀il ∈ N, o : T,E3,1(il) =⇒ datal,0(il + 1, o) = datal,1(il, o)

Fig. 4.4: Formulas to specify the variables (and fields) of Fig. 4.1.

If a loop l2 is nested in a loop l1, the iterations of l2 depend on the iterations
of l1. Therefore, we encode those variables that are updated in the inner
loop l2 by adding an additional iteration parameter to the SMT functions
that represent those variables. That is, if a variable v of type T is modified
within l2, we declare an SMT function vl1,l2 : N× N→ ST , where vl1,l2(i1, i2)
denotes the value of v in the (i2)

th iteration of l2 while in the (i1)
th iteration

of l1. Updated fields are encoded in a similar way by adding an additional
parameter.
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4.1.3 Checking Formulas

We ensure the SMT variable Nl to represent the number of evaluating loop
conditions using the formula Nl>0 =⇒ Eexit(Nl). The formula denotes that if
the loop l is reached then the loop condition evaluates to false before the exact
N th

l iteration. To ensureNl is the sharp bound on the number of loop iterations,
we trigger the solver to find a model where Nl has the maximal assignment.
We check the satisfiability of a formula F that conjuncts the control-flow
formula, the data-flow formula, and the formula presented in Fig. 4.5. If the
formula F is satisfiable, Nl will be interpreted by the solver: (i) Nl=0 denotes
l is not reachable, and (ii) Nl>0 denotes the loop l is reachable and its sharp
upper bound UB]

l=Nl−1. If formula F is unsatisfiable and solver returns
Nl=∞4, thus loop l non-terminates regarding the provided class bounds,
otherwise either the user-provided class bounds are not large enough or
the user-provided precondition evaluates to false. We can distinguish these
potentials by analyzing the proof of invalidity provided by the solver.

(push)
(assert (=> (> Nl,1 0) (E1,4 Nl,1)))
(maximize Nl,1)
(check-sat)
(get-model)
(pop)

Fig. 4.5: The formula to ensureNl is the sharp bound for the loop l of Fig. 4.1(b).
Recall that the SMT maximize command instructs the underlying solver to
produce a model that maximizes the value of Nl,1.

Due to either method invocations or that a loop is nested in another
loop, multiple occurrences of a loop exist in the verification graph. Algo-
rithm 2 is used to compute the loop sharp bounds for each loop occur-
rence in the graph. The two functions, computeLoopSharpUpperBound
and computeLoopSharpLowerBound, take a cyclic verification graph and
a top-level loop as inputs and compute the loop sharp upper and lower
bounds for the loop, respectively. The function unrollLoops transforms the
verification graph to a new graph by unrolling all top-level loops in the old
verification graph. When the algorithm terminates, all loops of the verification
graph have been unrolled with respect to the computed sharp upper bounds
and bounded program verification techniques can directly extract the formula
from the graph.

4 Different SMT solvers may represent the infinite number using different symbols.
The symbol∞ is used in Z3 solver.
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Algorithm 2 Compute Loop Sharp Upper/Lower Bounds.

1: G(V, E) := A cyclic verification graph with nodes V and edges E .

2: function COMPUTELOOPSHARPBOUNDS(G)
3: loopSharpBounds ← ∅

4: while G has loops do
5: for each loop l ∈ G do
6: if l is a top-level loop then
7: UB]

l ← COMPUTELOOPSHARPUPPERBOUND(G, l)
8: LB]

l ← COMPUTELOOPSHARPLOWERBOUND(G, l)
9: loopSharpBounds ← loopSharpBounds ∪ (l 7→ {UB]

l ,LB]
l})

10: end if
11: end for
12: G ← UNROLLLOOPS(G, loopSharpBounds)
13: end while

14: return loopSharpBounds
15: end function

4.2 Evaluation

We have implemented our technique in a prototype tool BoundJ that uses Z3
as the underlying SMT solver. We have also considered an approach used
in NBIS [Günther and Weissenbacher, 2014] to evaluate the precision of our
approach. Since NBIS targets C code, and does not consider specifications or
class bounds, we implemented its approach in a prototype tool (UnrollJ) that
targets Java and accepts the same inputs that BoundJ does. We have used a
collection of benchmarks, selected from the literature in program verification,
e.g., KeY and InspectJ, OpenJDK, and TPDB (Termination Programs Data
Base) [Frohn, 2014]. All the experiments have been performed on an Intel
Core 2.50 GHz with 4 GB of RAM using Linux 64bit.

The results are shown in Table 4.1. The Method column shows the names
of the entry methods of the analyzed programs. In total 6 programs have
been analyzed. To increase the complexity of the specifications, we also added
method contracts for the sub-routines (if exist). The method deleteMin of
the class BinaryHeap (4 methods, 109LOC) effectively extracts the minimum
element in a min heap5 and restores the data structure properties of min
heap. The removeDups method of the class KeYList (4 methods, 33LOC)
removes the duplicate elements from a queue and preserves the remaining
elements to be singly linked. The add method (3 methods, 39LOC) is the
classical List implementation in JDK 1.7. All those methods have complex
preconditions, i.e., quantifiers have been involved. The add method also uses
5 A min heap is a binary heap where the values that are stored in the children nodes

are greater than the value stored in the parent node.
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JML reachability expressions to constrain the configurations of objects on the
heap. The copy method copies elements from a list to another list when the
elements contain data that fulfills some requirements .

In addition to these data-structure-based benchmarks, we have also used
benchmarks that involve only primitive types. Such benchmarks are typical
for the loop bound computation and the non-termination detection communi-
ties. Those methods (fibonacci and gauss) do not have any specification
and there are around 10LOC in average in each method. We have selected
these benchmarks for the following two reasons: (i) The number of iterations
for the loops in those two methods is non-linearly distributed. Therefore,
computing their loop bounds is particularly challenging in many existing
approaches; (ii) To validate that our approach indeed computes loop bounds
for the methods that contain at least one terminating path. For each ana-
lyzed program, we have exploited each tool to compute ∼4 loop sharp upper
bounds for different class bounds, and in total 25 computations for loop sharp
upper bounds have been done using each tool. Besides, we also used BoundJ
to compute the loop sharp lower bounds. Thus in total we have done 75 loop
bounds computations.

The Class Bound column shows the bounds on the number of objects of each
class and on the size of the integer bit-width. For a bound n, the analyses of
deleteMin, removeDups, and copy methods have to explore data spaces
of size (n + 1)11 ∗ 29n, (n + 1)9 ∗ 2n, and (n + 1)5 ∗ 2n, respectively.6 The
columns LB] and UB] represent the computed loop sharp lower bounds and
sharp upper bounds, respectively. When a method contains more than one
loop, the bounds are shown as a sequence of numbers separated by commas.
The symbol X denotes that the loop is not reachable from the method. The
question mark ? means that no conclusive answer has been achieved after the
timeout limit of 20 minutes. We observe that:

1. BoundJ computed sharp loop lower and upper bounds for all data
structure-rich methods. A careful inspection of the code reveals that all
computed loop bounds are exact the sharp bounds.

2. UnrollJ does not always compute precise loop bounds as BoundJ does.
Since UnrollJ does not consider the whole code in loop bounds compu-
tation, on average its computed loop bounds are 4.2 times (median 4,
maximum 13) greater than the ones BoundJ computed. In addition, Un-
rollJ failed to compute the loop bounds for the non-terminating methods
copy and fibonacci because of timeout, while BoundJ still produced
the loop sharp upper bounds for all program executions that terminate.

3. UnrollJ can compute loop upper bounds with increased class bounds,
while BoundJ timeouts for 2 (out of 25) cases. For the rest 23 cases, BoundJ
always produces loop sharp bounds based on the user-provided class
bounds.

6 The numbers are calculated based on the number of accessed classes, fields, and
parameters. Computations are given soon.
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Method Class Bound LB] (BoundJ) UB] (BoundJ) UB] (UnrollJ)
3 X X 3

BinaryHeap. 4 1 1 4
deleteMin 5 1 1 5

6 1 2 6
4 5, 0 5, 0 7, 1

KeYList. 5 5, 0 6, 0 15, 2
removeDup 6 5, 0 7, 1 31, 3

7 5, 0 8, 2 63, 4
8 5, 0 9, 3 127, 5
3 0, 0 3, 1 ?, ?

OurList. 4 0, 0 4, 1 ?, ?
copy 5 0, 0 5, 2 ?, ?

6 0, 0 6, 2 ?, ?
3 1, 1 1, 2 1, 2

OpenJDKList. 4 1, 1 3, 4 3, 4
add 5 1, 1 7, 8 7, 8

7 1, 1 21, ? 21, 32
10 1, 1 ?, ? 175, 256

3 0 9 ?
NonTerm. 4 0 10 ?
fibonacci 5 0 10 ?

6 0 10 ?
6 0 63 63

NonTerm. 7 0 ? 127
Gauss 9 0 ? 508

Table 4.1: Results of computing sharp loop bounds using BoundJ and UnrollJ.
LB] denotes loop sharp lower bound and UB] denotes loop sharp upper
bound.

Complexity of Our Benchmark

Given the class bound 3 for each type that is involved in the analyzed program,
there are at most 4 values (null and 3 objects) for each class, for the domain
of the fields, and for the range of the fields of non-primitive types in the
analyzed program. For the range of the fields of primitive types, i.e., int,
23 potential assignments exist as the bit-width is 3. Each array has up to 23

elements. Consider the case that the methods of the class BinaryHeap are
analyzed using the scope 3. There are 3 classes used and are total of nine fields
involved in the implementation: the BinaryHeap has two array fields, and
the BinaryHeapElement and BinaryHeapIndexKey each has two fields
of primitive types. The configurations of all inputs consist of the assignments
of all fields, that is, the number of the configurations is (4∗4∗23)2 ∗ (4∗23)7 =
249. Given a scope n for the class BinaryHeap, the number of configurations
of inputs is (n+ 1)11 ∗ 29n. The OpenJDK List has 3 classes (LinkedList,
Entry and Value), 4 fields of non-primitive types (header, prev, next,
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and elem), and 1 field of primitive type (size). Given a class bound n for
OpenJDK List, the number of configurations of inputs is (n+ 1)9 ∗ 2n. The
size is so large that it is impractical to enumerate them. Our approach employs
the advances of an SMT solver to explore the space much more sufficiently.

4.3 Related Work

Computing Loop Sharp Upper Bounds

Worst case execution time (WCET) analysis of programs crucially depends on
the number of loop iterations. State-or-the-art WCET analysis tools, e.g., [Gula-
vani and Gulwani, 2008; Ermedahl et al., 2007; Michiel et al., 2008; Thesing,
2004; Cullmann and Martin, 2007], either reply on user-provided program
assertions describing loop iterations (e.g., [Gulavani and Gulwani, 2008])
or compute an interval of loop bounds. The techniques that are described
in [Blanc et al., 2010; Gulavani and Gulwani, 2008; Shkaravska et al., 2010],
for example, instrument each loop with an iteration counter and symbolically
execute them with well-chosen loop inputs. The number of iterations of each
loop is then represented as a function based on the loop inputs. To compute
more precise loop upper bounds, the technique presented in [Lokuciejewski
et al., 2009] uses a combination of abstract interpretation, inter-procedural pro-
gram slicing, and inter-procedural data-flow analysis. All these approaches,
however, focus on numerical loops; some of them (e.g., [Blanc et al., 2010;
Cullmann and Martin, 2007]) even require well-structured loops with no
branches inside them. Our approach can work on complex loops and target
data-structure-rich programs.

To compute upper bounds for complex loops in C++ code, SPEED [Gul-
wani et al., 2009] generates computational complexity bound functions that
contain well-implemented abstract data structures. For loops that access data
structures, it generates symbolic bound expressions in terms of numerical
properties of the data structures and user-defined quantitative functions
which describe the effects of object member methods on the numerical prop-
erties of that data structure (such as the length of a list or the depth of a tree).
Finally it generates symbolic bounds depending on the generation of loop
invariants by using heuristic pattern matching. SPEED, however, requires
user-provided specifications and does not support complex heap configura-
tions (e.g., transitive reachability) of the analyzed method, and in some cases
outputs only an approximate loop bound functions.

Similar to our approach, the bounded model checking approach [Milicevic
and Kugler, 2011] encodes loops recursively using SMT theory of lists. In
the encoding, each program state is represented as an element of a list, that
models an unbounded search path. In order to find a path to an error state,
it constraints the first element to be a valid initial state, and two consecutive
elements stand for a state transition, finally the error state is represented
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by the last element. This approach, however, aims at model checking safety
properties of programs, and cannot be used for loop bounds computation.

The incremental bounded model checker NBIS [Günther and Weissenbacher,
2014] can be adapted to compute loop upper bounds. It instruments every
loop in a given C/C++ code with an unrolling assertion that checks whether
the loop can iterate beyond the current loop bound. The formula that encodes
the code (up to the end of each loop) along with the unrolling assertions is
checked for satisfiability. A model to the formula denotes an execution trace
in which a loop iterates more times than its current bound. That loop is then
unrolled according to the newly-found bound and the process starts over.
However, such an approach does not terminate in case of non-terminating
loops, or does not return the sharp upper bounds, since the execution trace
corresponding to a model stops the execution when exiting the loop with a
new bound, hence the code and any constraint following the loop are ignored.
Consider a case where each iteration of the loop allocates one instance of class
A and the code after the loop allocates two objects of type A. If bound(A) = 5,
no valid execution of the code (with respect to the class bound) can iterate
the loop more than three times, whereas the computed upper bound will be 5
when ignoring the code after the loop. Preventing the trace from stopping is
not possible, since it requires an encoding that does not depend on the loops
being unrolled (since the needed number of unrolling is unknown prior to
invoking the satisfiability procedure).

An alternative is to check whether the trace is valid with respect to the
class bounds by executing (symbolically or dynamically) the whole code.
Invalidity of the current instance, however, does not necessarily mean that the
newly-found loop bound is impossible; it may still be that another satisfying
instance can be valid and gives a higher loop bound. Thus, in the worst case,
such a validity check requires enumerating all possible satisfying instances,
which makes the approach impractical.

Detecting Non-terminating Loops

Various techniques (e.g., [Velroyen and Rümmer, 2008; Brockschmidt et al.,
2011]) have been developed to detect non-terminating programs with no
concern for bounded domains. Similar to our approach, JForge [Dennis et al.,
2006]—a bounded program verification system, checks non-termination with
respect to bounded domains. Its primary goal is to check a given method with
respect to user-provided specifications using an SAT solver. JForge detects
what program statements were involved in checking the specification. If the
program is verified in the bounded domain, JForge analyzes the unsatisfiable
core returned from the solver and maps the core back to statements of the
analyzed method. Statements that were not involved are marked as “missed”
statements. If the missed-statements include the whole loop body but the loop
condition is not missed, JForge warns the user about non-termination. This
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approach only supports simple loops and cannot handle arbitrary ones. Be-
sides, since its non-termination detection is a by-product of bounded program
verification, it requires the user to provide a carefully considered postcondi-
tion that is fulfilled by the analyzed method and describes the behaviors of
the loop in question, thus its non-termination detection cannot be invoked
directly.

Bounded model checkers such as Java PathFinder [Visser et al., 2003] and
JPF-SE [Anand et al., 2007b] backtrack the symbolic execution path when the
current abstract state is equal to one of the states in the path. Thus they can
be used to detect non-terminating loops. Unlike our approach that requires
type bounds, these checkers require a bound on the size of inputs and/or the
search depth.

4.4 Discussion

We discuss two alternative approaches to compute loop upper bounds for the
loops that always terminate.

For loops that always terminate, one complementary approach for CBMC
is to (symbolically) check the feasibility of the extracted pre-state on the
program. If the pre-state is feasible, we can get the number m of the loop
iterations and start over the computation of loop upper bounds of CBMC
with unrolling the loop m times. Otherwise, we instrument the negation
of the pre-state into the BMC instance and try to get another pre-state by
invoking the satisfiability procedure, and check its feasibility. In the worst
case this approach exhaustively searches all configurations of inputs based
on the bounded domain, which may cause tens of thousands of invocations
of the satisfiability procedure, and the size of the BMC instance will increase
dramatically. Another approach for handling loops that always terminate is
to first unroll the loops based on the loop bounds N calculated by CBMC,
then to check whether a feasible pre-state exists to pass through the N th loop
iteration and to exit from the loop. If such a pre-state does not exist, we check
whether a feasible pre-state exists to pass through the (N − 1)th loop iteration
and then exit from the loop. If the pre-state exists, we give the number of the
latest checked loop iteration as the loop upper bound. However, this approach
may cause lots of invocations of the satisfiability procedure if nested loops
occur in the method. Both approaches depend on the condition that the loops
always terminate, otherwise, CBMC will have infinite loop unrolling and
cannot calculate the loop bounds.

Besides the problems that have been mentioned in Section 4.3, all above
approaches reduce the necessary confidence in the correctness of the analyzed
code. The overestimated loop upper bounds result in many unreachable paths
after loop unrolling. Hence, the formulas that are translated from the unreach-
able paths may overload the underlying solver and cause the verification
process to fail. It might be due to the computed upper bound of the loop that
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is too high or that the user-provided class bounds are too high. When the
verification engineer uses smaller class bounds than those in the previous
run to recompute the loop upper bounds, the new loop upper bounds still
may be too high since the computation ignores the code and specifications
following the loop under consideration. If the engineer arbitrarily selects
smaller loop upper bounds, not all inputs concerning the class bounds are
completely analyzed, thus the correctness of the code is not guaranteed for
the class bounds. Consequently, although this iterative approach is successful
for terminating loops in the absence of class bounds and specifications, it is
not applicable in the context of bounded program verification since the class
bounds are necessary and the confidence cannot be guaranteed for the class
bounds.

4.5 Conclusion

We have presented a calculus for computing sharp upper and lower loop
bounds based on class bounds. Such an analysis is particularly useful for
bounded program verification in which the user has to provide bounds on
both the number of objects of each class and the number of loop iterations.
Determining feasible loop bounds with respect to class bounds is still a critical
problem for bounded program verification. When the bounds are not well
chosen, either the unrolled program has dead code—the parts of program
executions that violate the class bound, or the heap has unused objects—the
objects that are not used in any execution, thus resulting in a bad code or heap
coverage in bounded program verification.

Our calculus provides the user with an insight on what loop bounds to
consider and enhances the confidence in the correctness of the analyzed pro-
grams. We focus on programs with complex data structures and support
arbitrary configurations of the objects on the heap. We translate Java code and
JML specifications (excluding the postconditions of the entry method) into an
SMT formula and solve it using an SMT solver that can solve optimization
problems. If the formula is satisfied, a model to the formula represents an exe-
cution trace that satisfies the preconditions, reaches the loop under analysis,
and leads the method to terminate. The loop sharp bounds can be obtained
from the model. Otherwise, it denotes that the loop does not terminate, or the
provided class bounds (or specifications) are inconsistent.

We have implemented our calculus in the prototype tool BoundJ and
compared with an alternative approach that incrementally unrolls a loop and
sanity-checks whether the loop condition still holds after the last iteration.
Experiments show that our technique indeed produces the sharp bounds,
whereas not necessarily the sharp ones. Our approach can assist the bounded
program verification engineers to obtain more confidence in the verification
process. Although our analysis is not guaranteed to produce a conclusive
outcome (due to the undecidability of our logic), our experiments show that
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in practice the unknown outcome occurs for higher input bounds and not for
the small bounds that are typically used in bounded program verification.





Part III

Efficient Deductive Program Verification





CHAPTER 5

Verification-based Program Slicing for Deductive
Program Verification

Deductive program verification systems, e.g., KeY, typically require verifi-
cation engineers to write auxiliary specifications, e.g., loop invariants and
method contracts of called methods, with respect to the specification. To dis-
cover useful annotations that are fulfilled by the called methods and also
meet the requirements of the calling methods is, unfortunately, a complicated
and error-prone effort. To ease the burden, verification engineers routinely
decompose a complex specification (the whole property) into a conjunction of
less complex specifications (each of them specifies a partial property—a part of
the whole property), and then prove the partial properties separately instead
of having a single verification concerning to the whole property. Then, usually,
only parts of the implementation are relevant for proving a partial property
and only partial and less complex auxiliary specifications are needed.

Before writing auxiliary specifications, the verification engineers have to
identify the slices of the implementation relevant to the partial properties.
However, it is a considerable burden to manually discover such slices in pro-
grams with complex data structures regarding properties that constrain the
configurations of program objects on the heap. Usually, this kind of programs
have sophisticated interconnections of data structures, and the relationship
between the implementation and the property is obscure. When the slices are
not well identified, more effort from the verification engineers are needed in
the process of deductive program verification. For example, lack of annota-
tions for the relevant program parts may cause the proof to fail, and hereafter,
a costly inspection on the failed proof is indispensable. Besides, annotations of
the irrelevant parts require more proof steps and may overload the deductive
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verification systems. It would be very helpful if we can automatically find
such slices for deductive program verification.

The main contribution of this chapter is a verification-based program slic-
ing technique to construct a program slice for deductive program verification.
Given a program annotated by a specification and the scope of analysis (desig-
nated by class / loop bounds), we construct a semantic slice (see Definition 5.1)
with respect to the slicing criteria, i.e., the specification and the scope of anal-
ysis. In the slice, the parts of the program that are irrelevant to the slicing
criteria are replaced by abstractions (i.e., they are not completely removed),
whereas the rest of the program (i.e., the relevant parts) remains unchanged.
Verifying slices requires less auxiliary specifications (as the abstractions have
less details), and their correctness—by construction—implies the correctness
of the original program concerning the specification. As a result, our pro-
gram slicing technique is capable of liberating the verification engineers from
finding the relevant program slices manually, and expediting the progress of
deductive verification: less proof steps are needed.

Definition 5.1. Let P be a program, Q be a specification for P , then

• Relevant to Q. A statement in P is relevant to Q if its behavior affects the
evaluation results of Q, vice versa.

• Irrelevant to Q. A statement of P is irrelevant to Q if its behavior does not
affect the evaluation results of Q, vice versa.

Thus, a semantic slice that is constructed regarding the slicing criteria Q consists
of all relevant statements to Q and the abstractions that overestimate the behavior of
the irrelevant statements to Q.

The core idea is to use the bounded program verification technique pre-
sented in Chapter 3 to guide the construction of slices. The bounded program
verification technique does not require auxiliary specifications. It translates
the analyzed program and its negated specification into an SMT formula F
with respect to the class / loop bounds, and solves F using an SMT solver.
If a model to F is found (i.e., F is satisfiable), then that is a counterexample
to the correctness of the original program as well, and no further analysis is
required. If no model is found (i.e., F is unsatisfiable), the partial property
holds for the scope of analysis. The computation is based on the unsatisfiable
core (unsat core)—a sub-formula Fcore of F that is still unsatisfiable. The unsat
core is produced by an SMT solver that can provide the proof of invalidity. If
a program statement is translated into SMT formulas f and f are not in the
unsat core, then the statement is irrelevant to the property. For each irrelevant
statement, we construct an abstraction that overestimates its behaviors. Fi-
nally, we generate a semantic slice by replacing irrelevant statements using
the constructed abstractions.

The semantic slice is generated based on a particular bounded proof con-
structed by bounded program verification. Therefore it (i) may be too abstract
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and thus deductive verification is not possible, and (ii) may exclude unneces-
sary, yet helpful details, hence deductive verification may require more effort.
To handle the first problem, we provide an algorithm to refine the abstractions
as presented in Chapter 6. To handle the second problem, we optimize the
semantic slices to include those helpful details for the deductive verification.
We have implemented our technique in a prototype tool and evaluated the
benefits of using our technique in deductive program verification. The results
show in practice the constructed slices are sufficiently precise.

5.1 Motivating Examples

To demonstrate outcomes of our program slicing technique we use three exam-
ples. In these examples, we use programs with different data structures. These
data structures are in turn integers, arrays, and a singly linked list. To simplify
verification, we use diverges true to disable loop termination checking
and assignable \everything to allow arbitrary heap manipulations in the
analyzed program, but the program has to fulfill its ensures clause.

Figure 5.1(a) shows an example to construct abstractions of a program
manipulating integers. The numberOfPrime method computes the number
of prime numbers between two given integers x and y (exclusive). The JML
\result construct refers to the value returned by the method. The first line
denotes that if the number of prime numbers is larger than 0, then x < y.
Carefully inspecting the code, a verification engineer will notice that the
ensures clause becomes false only when x >= y. In that case, the outer loop
(Fig. 5.1(a), Lines 6–17) is never executed and the variable size remains equal
to 0. However, using traditional static slicing techniques, all program state-
ments (Fig. 5.1(a), Lines 5–21) will be relevant with respect to the variables
x, y, and size at the return statement. Thus loop invariants are required
for the two loops. We choose 3 as the class bound1, that is there are at most 3
objects of each class, and the bit-width of the integer is 3. Based on the class
bound, we compute the loop sharp upper bounds using our technique pre-
sented in Chapter 4. With these two kinds of bounds, our technique generates
an abstract program as shown in Fig. 5.1(b). The two native methods at
lines 24 and 26 are the constructed abstractions. Their annotations denote
that they return unspecified values of the appropriate type, hence they over-
estimate the behavior of the irrelevant statements to the desired property.
In the abstract program, the outer loop body (Fig. 5.1(a), Lines 7–16) and
the branch (Fig. 5.1(a), Lines 18–20) are replaced by abstractions. Thus, it
becomes easier to write loop invariants for the outer loop, and no loop in-
variant is needed for the inner loop. KeY proved the original program with
1 In bounded program verification the range of integers is bounded regarding the

number of bits in the two’s complement integer representation. Thus the class
bound 3 is the smallest bound we can choose in order to represent the integer
2 ∈

[
−22, 22 − 1

]
in the loop branching statement at Line 8 in Fig. 5.1(a).
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1 /*@ ensures \result>0 ==> x<y;
2 @ diverges true;
3 @ assignable \everything;*/
4 int numberOfPrime(int x,int y){
5 int size = 0;
6 for(int i=x; i<y; i++){
7 boolean isPrime = true;
8 for(int j=2; j<i; j++){
9 if(i%j==0){

10 isPrime = false;
11 break;
12 }
13 }
14 if(isPrime){
15 size++;
16 }
17 }
18 if(size > 0){
19 int[] a = new int[y-x];
20 }
21 return size;
22 }

1 /*@ ensures \result>0 ==> x<y;
2 @ diverges true;
3 @ assignable \everything;*/
4 int numberOfPrime(int x,int y){
5 int size = 0;
6 for(int i=x; i<y; i++){
7 size = pure_int();
8

9

10

11

12

13

14

15

16

17 }
18 pure_allocArrayInt();
19

20

21 return size;
22 }
23 //@ assignable \strictly_nothing;
24 native int pure_int();
25 //@ assignable \nothing;
26 native int[] pure_intArray();

(a) Original program (b) Abstract program

Fig. 5.1: Semantic slicing a program manipulating integers. The
numberOfPrimes method computes the number of prime numbers between
two integers. The empty lines in the abstract program are left deliberately for
an intuitive comparison.

26 auxiliary specifications using 5802 proof rules (counted as the number of
JML constructs and logical connectors), the abstract program with provided 8
auxiliary specifications using 646 proof rules.

Figure 5.2 shows example of constructing abstractions for a program
manipulating arrays. It provides a map data type implemented using asso-
ciative arrays. Keys and values are recorded in separate arrays, keys and
values, respectively, and have the same index in the arrays. The method
put(k,v) invokes the method getIndexOf to check whether k already
exists in the map. If it exists, the old value is replaced by v; otherwise, the
methods addKey and addValue reallocate the arrays keys and values,
and add k and v to the new arrays. The ensures clause guarantees that the
value v is in this map (using the \exists quantifier). By default, referenced
variables are not null, thus we use the nullable clause that enables also the
null value. The constructed abstract program is shown in Fig. 5.2(b), where
the method invocation statements (Fig. 5.2(a), Line 11 and Line 15, respec-
tively) are replaced by abstractions, thus no loop invariants are needed for the
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1 class Key {}
2 class Value {}
3 class Map {
4 /*@ nullable */ Key[] keys;
5 /*@ nullable */ Value[] values;
6 /*@ ensures(\exists int i;0<=i&&
7 @ i<values.length;values[i]==v);
8 @ diverges true;
9 @ assignable \everything; */

10 void put(Key k, Value v){
11 int pos = getIndexOf(k);
12 if (pos>=0){
13 values[pos] = v;
14 } else {
15 addKey(k);
16 addValue(v);
17 }
18 }
19 int getIndexOf(Key k){
20 int r = -1;
21 for(int i=0;i<keys.length;i++){
22 if (keys[i] == k){
23 r = i;
24 }
25 }
26 return r;
27 }
28 void addKey(Key k){
29 Key[] oldKs = keys;
30 keys = new Key[keys.length+1];
31 keys[keys.length - 1] = k;
32 for (int i=0;i<oldKs.length;i++){
33 keys[i] = oldKs[i];
34 }
35 }
36 void addValue(Value v){
37 Value[] oldVs = values;
38 values=new Value[values.length+1];
39 values[values.length - 1] = v;
40 for (int i=0;i<oldVs.length;i++){
41 values[i] = oldVs[i];
42 }
43 }
44 }

1 class Key {}
2 class Value {}
3 class Map {
4 /*@ nullable */ Key[] keys;
5 /*@ nullable */ Value[] values;
6 /*@ ensures (\exists int i;0<=i&&
7 @ i<values.length;values[i]==v);
8 @ diverges true;
9 @ assignable \everything; */

10 void put(Key k, Value v){
11 int pos = pure_int(k);
12 if(pure_boolean()){
13 values[pos] = v;
14 } else {
15 impure_keys(k);
16 addValue(v);
17 }
18 }
19 void addValue(Value v){
20 Value[] oldVs = values;
21 values=new Value[values.length+1];
22 values[values.length - 1] = v;
23 for (int i=0;i<oldVs.length;i++){
24 values[i] = pure_Value();
25 }
26 }
27 //@ assignable \strictly_nothing;
28 native int pure_int();
29 //@ assignable \strictly_nothing;
30 native boolean pure_boolean();
31 //@ assignable this.keys;
32 native void impure_keys();
33 //@ assignable \strictly_nothing;
34 native/*@nullable*/Value pure_Value();
35 }

(a) Original program (b) Abstract program

Fig. 5.2: Semantic slicing a program manipulating arrays. The put method
puts a key and a value to a map.

methods getIndexOf and of the addKey. For the loop (Fig. 5.2(b), Line 23)
of addValue method, the required loop invariant does not need to constrain
all details of the loop body. It is very likely that manually discovering these
facts requires non-trivial efforts. KeY has proved the original program anno-
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tated needed only 14 auxiliary specifications and 14684 proof rules, while the
abstract program with 4 auxiliary specifications using 3879 proof rules.

1 class Node {
2 /*@ nullable */ Node next;
3 /*@ requires this.next!=null;
4 @ ensures this.next!=null;
5 @ diverges true;
6 @ assignable \everything;*/
7 void add(Node p){
8 Node e = this;
9 while (e.next != null){

10 e = e.next;
11 }
12 e.next = p;
13 }
14 }

1 class Node {
2 /*@ nullable */ Node next;
3 /*@ requires this.next!=null;
4 @ ensures this.next!=null;
5 @ diverges true;
6 @ assignable \everything;*/
7 void add(Node p){
8 Node e = pure_Node();
9 e.next = p;

10 }
11 /*@ assignable \strictly_nothing; */
12 native/*@nullable*/Node pure_Node();
13 }

(a) Original program (b) Abstract program

Fig. 5.3: Semantic slicing a program manipulating a singly linked list. The
add method puts a node to the end of a list.

Figure 5.3 shows an example that constructs abstractions of a program
manipulating a singly linked list. The method add(p) in Fig. 5.3(a) appends
a node p at the end of the list. The method is expected to fulfill the property
that appending a node to a non-empty list still results in a non-empty list. The
abstract program is shown in Fig. 5.3(b), where all program statements except
the last one (Fig. 5.3, Line 12) are replaced by an abstraction. KeY has proved
the abstract program without any auxiliary specifications using 50 proof rules.
We did not manage to prove the original program with a reasonable effort.
That is because deductive program verification in general requires non-trivial
lemmas or reasoning about sets to specify linked data structures, e.g., what
objects can be reached from a source object following particular fields.

5.2 Our Technique

The process of constructing a semantic slice from a program with respect to a
property is divided into four stages. First, the analyzed program is verified
using bounded program verification. Second, the parts of the code which
are relevant to the property are extracted from the outcomes of the bounded
verification. Third, the abstractions are constructed from the relevant code
parts. Fourth, the semantic slice is constructed using the abstractions.
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5.2.1 Bounded Program Verification

The bounded program verification approach (see Chapter 3) translates a pro-
gram P into an SMT formula F , i.e., a set of SMT assertions and declarations,
and solves F using an SMT solver. In the source code transformation phase
(see Section 3.1.1), program P is transformed into an unrolled program P † by
unrolling the loops (and by inlining the called methods) of P with respect to
the loop bounds. Thus, each program statement of P appears at least once in
program P †. We use stmtloc to denote a statement at the program point loc of
P and stmt†loc to denote each of stmtloc’s appearances in P †. After the code
transformation, each stmt†loc is translated into at least one SMT assertion, e.g.,
a branch statement is translated into two SMT assertions. Therefore, there
exists a many-to-one relationship between the SMT assertions and the original
program statements.

We construct a formula map M := {F 7→ S} to represent the many-to-one
relationship between the set F of SMT assertions and the original program
statements S. Figure 5.4 presents the principle rules used for constructing the
formula map.

R1: T (v = e;, i, j) → M := M ∪ {f
stmt

†
loc
7→ stmtloc}

R2: T (v = o.f;, i, j) → M := M ∪ {f
stmt

†
loc
7→ stmtloc}

R3: T (v = a[k];, i, j) → M := M ∪ {f
stmt

†
loc
7→ stmtloc}

R4: T (T o = new T;, i, j) → M := M ∪ {f
stmt

†
loc
7→ stmtloc}

R5: T (T[] a = new T[k];, i, j) → M := M ∪ {f
stmt

†
loc
7→ stmtloc}

R6: T (o.f = e;, i, j) → M := M∪
{( =⇒ Ei,j (= (E(f, j) o) E(e, i))) 7→ stmtloc}

R7: T (a[k] = e;, i, j) → M := M∪
{( =⇒ Ei,j (= (E(f, j) E(a, i) o) E(e, i))) 7→ stmtloc}

Fig. 5.4: Construction rules for the formula map M . The functions T and E
(see Section 3.4) are respectively used to translate program statements and
expressions into SMT formulas. The stmtloc denotes a program statement at
the program point loc in the original program, while stmt†loc denotes each
of stmtloc’s appearances in the unrolled program. The symbols i and j in
T (stmt†loc, i, j) denote the program states before and after the execution of the
statement stmt†loc, respectively. The fstmt†loc

denotes the SMT formula that is

translated from statement stmt†loc using the translation rules shown in Fig. 3.6.
The arrow→ is read as: when the translation on its left-hand side ends, the
formula map is updated as shown on its right-hand side.
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Basically, for each assignment statement stmt†loc of P † that does not mod-
ify class fields and arrays, as shown in R1– R5, there exists a mapping
fstmt†loc

7→ stmtloc in the formula map M , where stmtloc ∈ S denotes the

original statement of stmt†loc, and fstmt†loc
∈ F represents the SMT formula

that is translated from stmt†loc using the translation rules shown in Fig. 3.6.
For the assignment statements that change the field values or the array values,
as shown in R6– R7, the formula map M contains only the entities whose keys
encode the changed values. For example, the statement o.f = e is translated
into a formula with two clauses, o.f ′ = e and ∀T x, x 6= o =⇒ x.f ′ = x.f ,
where T represents the type of o and f ′ denotes the field f after the statement
execution. Thus, only the former clause is used to update the formula map.

The branch statements are handled a bit different. The branch state-
ment if (cond) stmt; else stmt; is translated into two SMT formu-
las, Etrue =⇒ E(cond) and Efalse =⇒ ¬E(cond), where Etrue and Efalse

are edge variables. For each formula, the formula map contains an entity that
links the formula to the branch statement.

5.2.2 Extracting Relevant Code

When the target SMT formula F—a set of SMT assertions and declarations—is
unsatisfiable, an SMT solver capable of generating proofs is used to find a
proof of invalidity,2 i.e., an unsatisfiable core (unsat core) Fcore ⊆ F . More
concisely, given an unsatisfiable SMT formula with SMT declarations and
assertions, if there exists an SMT formula Fcore such that Fcore ⊆ F and Fcore

is unsatisfiable, then Fcore is called an unsat core of the original formula F .
To the best of our knowledge, the unsat core provided by the solver is not
guaranteed to be minimal. That is, removing an assertion from Fcore does not
guarantee Fcore becomes satisfiable.

To facilitate the extraction of relevant code, we minimize the unsat core
Fcore to ensure it is local minimal, i.e., removing any assertion from Fcore

renders it satisfiable. Algorithm 3 minimizes an unsat core by exhaustively
checking the assertions. of the unsat core. If the unsat core remains unsatisfi-
able when deactivating (negating) the constraint of an assertion, the assertion
is not necessary for the unsat core. The algorithm traverses the verification
graph of P † in the depth-first order, and for each statement stmt†loc it meets
deactivates all the assertions that are linked to stmtloc in the formula map M .

A local minimal unsat core Fcore has the following properties:

• Removing any assertion from Fcore causes Fcore to be satisfiable.
• F remains unsatisfiable when removing any assertion f ∈ (F\Fcore) from
F .

2 We use the clause selector technique [Cimatti et al., 2007] to enable the SMT solver to
reuse the lemmas learned in previous solving.



5.2 Our Technique 79

Algorithm 3 Minimize an unsat core
1: C: unsatisfiable SMT constraints;

2: function TRAVERSE(C)
3: C+ ← ∅ // local minimal unsat core.
4: C− ← ∅ // unnecessary constraints.

5: for c ∈ C do
6: if c /∈ C− then
7: if (C − c) \ C− is UNSAT then
8: C+ ← UNSATCORE((C − c) \ C−)
9: C− ← C− ∪ ((C − c) \ C+)

10: end if
11: end if
12: end for

13: return C+
14: end function

Supposing the unrolled program P † is translated into a set FP † of SMT
assertions, and the requires and ensures clauses of the analyzed pro-
gram are translated into the SMT assertions, freq and fens, respectively,
F = (FP † ∪ {freq} ∪ {fens}), and Fcore is local minimal. We discuss the fol-
lowing three cases, and the third one is used for extracting relevant code.

• If freq /∈ Fcore, fens /∈ Fcore, and FP † ∩ Fcore 6= ∅, then there is no valid
execution for the unrolled program P †: the provided class or loop bounds
might be not large enough.

• If freq ∈ Fcore, fens ∈ Fcore, and FP † ∩ Fcore = ∅, then either the pre-
/post-condition conflict with each other, or the precondition evaluates to
false, or the postcondition evaluates to true (the postcondition is negated
in bounded program verification).

• If fens ∈ Fcore and FP †∩Fcore 6= ∅, then the program statements Fcore×M
are relevant to the property, where M is the formula map. The rest of the
program is irrelevant to the property.

5.2.3 Constructing Abstractions

The original program statements that are relevant to the property of interest
are called mustHave statements, and the remaining statements are called
mayHave statements: they are not necessary for checking the property in
bounded program verification, but may be helpful in the deductive program
verification. We use S+ to denote the set of mustHave statements, S− to denote
the set of mayHave statements, and S+ = S\S−, where S denotes all original
program statements.
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We construct abstractions for the mayHave statements. According to the
behavior of mayHave statements, we construct three kinds of abstractions
(methods with annotations) as shown in Fig. 5.5. In particular, for each may-
Have statement stmtloc ∈ S−, we construct an abstraction as follows:

• If stmtloc has no side effects and does not create objects, we construct
a totalPure_T method with assignable \strictly_nothing (List-
ing 3), where T represents an appropriate type that will be talked soon.

• If stmtloc has no side effects but creates objects, e.g., the statement
T o = new T(); creates a T instance while the class T{} has no
fields, we construct a partialPure_Tmethod with assignable \nothing
(Listing 4).

• If stmtloc has side effects, e.g., the method call this.func(e) changes
fields or global variables in the called (or nested called) method, e.g.,
the method declaration void func(e){this.f=e;e.g[0]=null;},
we construct an impure_T method annotated by assignable FieldSet

(Listing 5), where FieldSet denotes a collection of fields (or arrays) that
may be changed by the called method, e.g., assignable this.f, e.g[*];.
We compute FieldSet by propagating variables on the verification graph
and construct a chain of field dereferences.

These three kinds of methods and their annotations are auto-generated, and
their method calls will return unspecified, yet distinct, values of an appropriate
type.

5.2.4 Constructing Semantic Slice

We construct a semantic slice using the abstractions. In particular, for each
mayHave statement stmt− ∈ S−, if stmt− is a branch statement, we replace
its branch condition expression by the constructed abstraction, and if stmt−

is an assignment statement, we replace its right-hand side expression by
its abstraction. Figure 5.5 shows the rules used to transform the code to a
semantic slice.

Optimizing Semantic Slice

The constructed abstract programs contain less details and in general the
efforts of verification engineers in writing auxiliary specifications are reduced
using them. However, they may exclude unnecessary, yet helpful details,
hence deductive verification may require more effort in the process of proving.
Typically, a deductive program verification system, e.g., KeY, symbolically
executes a program and applies various calculus rules to make a proof. During
symbolic execution, the program states of the original program are very likely
have more details than those of the abstract program. Therefore, the symbolic
execution paths which are invalid for the concrete programs can be valid
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1 /*@ assignable \strictly_nothing; @*/
2 native /*@ nullable @*/ T totalPure_T();

Listing 3: Total pure abstraction.

1 /*@ assignable \nothing; @*/
2 native /*@ nullable @*/ T partialPure_T();

Listing 4: Partial pure abstraction

1 /*@ assignable FieldSet; @*/
2 native T impure_T();

Listing 5: Impure abstraction

Fig. 5.5: The constructed three kinds of abstractions. T represents an ap-
propriate type required by the original statement, and the pure method
returns an unspecified value of T which includes null as well. The Java
keyword native is used to avoid implementations of the methods. The JML
assignable \nothing clause denotes that the annotated method has not
modified heap locations, but may have allocated objects; The assignable
\strictly_nothing denotes the annotated method neither changed heap

locations nor created objects; assignable FieldSet denotes the a collection
FieldSet of fields may have been changed by the annotated method.

for the abstract programs. Furthermore, symbolic execution of an abstract

R1: AJT v = e;K → T v = totalPure_T();
R2: AJv = e;K → v = totalPure_T();
R3: AJe.f = e;K → e.f = totalPure_T();
R4: AJif (e)K → if (totalPure_T())
R5: AJwhile (e)K → while (totalPure_T())
R6: AJreturn e;K → return totalPure_T();

R7: AJT o = new T(e);K → T o = partialPure_T();
R8: AJT a = new T[k];K → T a = partialPure_T();
R9: AJv = invokeFun(e);K → v = impure_T(e);

Fig. 5.6: The rules used to process the mayHave statements using the abstrac-
tions shown in Fig. 5.5. The transformation is denoted by A. These rules are
based on the assumption that the expression e is side-effect free. The arrow→
should be read as: the mayHave statement on the left-hand side is transformed
into the statement on the right-hand side.
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statement may require more rules due to the applications of case split proof
rule. Therefore, we provide optimizations of abstractions as follow.

Collapsing a group of consecutive mayHave statements. When possible, we ab-
stract a group S− of mayHave statements into one single statement, thus
reducing the number of abstract statements. This is available for any two
nodes m and n in the verification graph, where m dominates 3 n, n post-
dominates 4 m, and all the statements in S− whose edges are in the paths
from m to n are mayHave statements. The new abstract statement invokes the
impure_T method shown in Listing 5.

Keeping helpful details of the code. We treat the statements that are unnecessary
for bounded program verification, yet helpful for the deductive program
verification, as mustHave statements in the abstract program. An assignment
statement with a right-hand expression such as object allocation, numbers,
and constants, is considered to be mustHave if another mustHave statement
uses its defined variable.

5.2.5 Handling Runtime Exceptions

Typically, whenever a functional property—provided by ensures clause—is
proved to hold for the analyzed program, the built-in property that no run-
time exception is thrown holds as well. Thus, when more than one functional
property to be verified, the proof steps for checking runtime exceptions have
to be redone. We handle the built-in property and the functional property
separately to ease the verification progress, and assist users to concentrate on
discovering useful auxiliary specifications for functional properties. We first
check whether the built-in property holds in the analyzed program, and then
verify whether the program fulfills the functional property with the assump-
tion that no exception is thrown in the program. In the latter verification a
statement v = o.f, for example, is translated into o 6= null ∧ o′ = o.f , rather
than (o 6= null =⇒ o′ = o.f) ∨ (o = null =⇒ exc), where exc denotes that
a runtime exception is thrown. In the former verification, we suppose the
functional specifications are trivially satisfied, e.g., requires true; and
ensures true;. We inject guards into the code, such that if a guard passes
an exception is thrown. Furthermore, we treat the possible exception types
separately. That is, we aim to provide a single semantic slice for each exception
type.

For handling runtime exceptions, the code in Fig. 5.1(a) is transformed into
the code in Listing 6. We insert a guard (Lines 20–23) which sets to true the
flag NASE in the class RTE if a NegativeArraySizeException is about
to be thrown (Line 24). Thus, when the program in Listing 6 preserves the
3 In a cyclic verification graph, a node m dominates a node n if every path from the

entry node to node n has to pass through node m.
4 In a cyclic verification graph, a node m post-dominates a node n if every path from

node n to the exit node has to pass through node m.
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value of this exception flag, no NegativeArraySizeException is thrown
in the original program, as the guard is checking the statement at line 20. All
program parts not relevant to whether the exception is thrown are abstracted.
In our approach, when there is no runtime exception and the functional
properties have been fulfilled by the analyzed abstract programs, the original
program is also verified. The decomposition of handling runtime exceptions
from functional properties breaks a complex specification into a conjunction
of partial specifications, thus eases the burden of program verification.

1 /*@ requires RTE.NASE = false;
2 @ ensures RTE.NASE = false;
3 @ diverges true;
4 @ assignable \everything;*/
5 int numberOfPrime(int x, int y) {
6 int size = 0;
7 for(int i=x; i<y; i++){
8 boolean isPrime = true;
9 for(int j=2; j<i; j++){

10 if(i%j==0){
11 isPrime = false;
12 break;
13 }
14 }
15 if(isPrime){
16 size++;
17 }
18 }
19 if (size>0){
20 if (y-x < 0) {
21 RTE.NASE = true;
22 return;
23 }
24 this.a = new int[y-x];
25 }
26 return size;
27 }

Listing 6: Code with injected guards

5.3 Evaluation

The verification-based program slicing technique that we have presented
(i) liberates verification engineers from finding the relevant program slices
manually, (ii) reduces the proof complexity especially for partial properties, for
which most of the program slices are irrelevant, and (iii) assists the developers
to understand their program behaviors according to the properties of interest.
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We have implemented our technique in the prototype tool AbstractJ. We
use KeY as the deductive program verification tool. Recall that the KeY system
performs symbolic execution of sequential Java programs, using various
proof rules. Program verification with KeY is usually done in auto-active
style: the user interacts with the system only through provided auxiliary
specifications, while the proof result is obtained automatically. The number
of rule applications is our primary measure of proof complexity. We have
used 5 benchmark programs, all taken from the related program verification
literature and the KeY repository. Each program has 2 to 6 partial properties
to be verified. We have also considered two other approaches to evaluate
the effectiveness of our approach (abstraction) in program verification. One
approach, baseline, proves the original programs using KeY as usual. The other
approach, highlight, is similar to the abstraction approach, but it only highlights
the relevant program statements and retains the irrelevant statements rather
than abstracting them. We have completed 21 verification tasks using each
approach, and in total we have completed 63 (= 21 ∗ 3) verification tasks
in our experiments. We have written the auxiliary specifications as compact
as possible and measured the auxiliary specifications as the number of the
operands of JML expressions, JML constructs, and logical connectors, e.g.,
loop_invariant, assignable, forall, &&, etc.5 We used the SMT solver Z3
to compute the unsat cores. All experiments have been performed on an Intel
Core i5-2520M CPU with 2.50 GHz running on a 64-bit Linux.

To evaluate the effect of the abstraction approach on reducing the com-
plexity of programs, we have compared the number of Java statements of
the original and abstract programs. The results are shown in Table 5.1. The
column method shows the Java class and its entry method to be verified; the
verified properties are listed in the column properties where the nullPointer,
indexBounds, and negSize represent the runtime exceptions NullPointer,
ArrayIndexOutOfBounds, and NegativeArraySize, respectively. The
other properties are functional ones; following is a explanation.

• List.merge(list). When the merge method returns normally, the re-
ceiver list contains less or equal amount of elements than before invoking
the method (denoted by leElems), and all elements in the receiver list were
in the old receiver list or exist in the list parameter (denoted by subset).

• Map.put(key,value). When the put method returns normally, the
property oldKey denotes that the receiver map contains value if it has the
key, the sameValues property denotes that the put method did not modify
the map entries whose keys are distinct from the input key parameter,
and the property kvMatched means that wherever the key is stored in

5 Different engineers may write different auxiliary specifications for the same pro-
grams. We have asked an experienced KeY engineer to prove the original programs
and a relatively inexperienced KeY user to prove the abstract programs. They care-
fully inspected and ensured that the specifications are compact enough concerning
the requirement specifications.
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Table 5.1: Results of deductive program verification with abstractions

origin baseline highlight abstractionmethod properties bounds stmts specs rules specs rules stmts specs rules
List. nullPointer (3,3,3) 27 22 3578 12 3046 4 0 196
merge(list) indexBounds (3,3,3) 43 59 4641 46 4434 33 46 3717

negSize (3,3,3) 31 13 4316 14 2723 16 6 1188
leElems (3,3,3) 22 14 2962 14 2962 13 6 1715
subset (3,3,3) 22 82 6299 56 5715 15 52 4404

Map. nullPointer (4,4,4) 32 28 4485 14 3780 9 0 512
put(key,value) indexBounds (4,4,4) 48 61 6154 54 5557 48 54 5488

negSize (4,4,4) 32 17 4084 12 3753 16 0 654
oldKey (4,4,4) 26 30 4295 30 4295 11 22 1725
sameValues (4,4,4) 26 27 9823 34 8494 12 26 4647
kvMatched (4,4,4) 26 50 7327 50 7327 26 50 8814

LRS. nullPointer (4,4,3) 39 11 3022 8 2818 9 0 673
doLRS() indexBounds (4,4,3) 43 44 5006 14 4545 30 14 4502

posLen (4,4,3) 26 32 4155 14 2908 17 10 1255
Set. nullPointer (3,4,4) 48 23 10937 18 10226 22 4 4124
intersect(set) negSize (3,4,4) 38 17 14555 14 9963 7 0 899

indexBounds (3,4,4) 58 57 19715 33 12287 51 33 6714
emptySet (3,4,4) 33 94 64807 46 13557 14 21 3001
subset (3,4,4) 33 142 RO 60 136225 16 52 11211

Graph. sameNodes (3,3,3) 54 78 RO 60 14985 6 0 923
remove(nodes) sameEdges (3,3,3) 54 119 RO 83 RO 18 67 12334

keys array, the corresponding value in the associated values array is
the input value.

• LRS.doLRS(): The method doLRS searches the longest repeated sub-
string from an arbitrary string. Property posLen denotes that if such a
sub-string is found, the length of the sub-string should be greater than 0.

• Set.intersect(set). The method intersect returns the intersec-
tions of two sets. Property emptySet denotes that the returned set is
empty if any input set is empty, and property subset denotes that the
returned set is subset of any of input sets.

• Graph.remove(nodes). The method remove recursively removes nodes
from a graph. Properties sameNodes and sameEdges denote that any
node not being in nodes and any edge whose nodes are not in nodes
will remain unchanged when the remove method returns normally.

The bounds column shows the class and loop bounds that we used in the
bounded program verification tool. In particular, the bounds for each run of
bounded verification is denoted by a ternary (x, y, z) where x, y, and z denote
the class bounds, the size of the integer (i.e., bitwidth), and the loop bounds.
For each experiment, the abstract program has been generated in less than 10
seconds. The origin stmts column displays the number of the original program
statements. The injected guard statements (see Section 5.2.5) are treated as
original statements when handling runtime exceptions. The column stmts
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shows the number of program statements that have been generated by the
abstraction approach. On average, 49.5% (median 50%, maximum 85.2%) of
statements in the original programs have been abstracted by the abstraction
approach. For 2 properties (indexBounds, and kvMatched the method put)
the approach abstraction seems to has no effect since the abstract and original
programs have same lines of code. A careful inspection reveals that one single
concrete statement is abstracted. From the results it can be seen, the abstract
programs contain less, yet enough details for partial properties. The more
partial the verified property, the fewer details the abstract programs have.
Conservatively speaking, even in the case where the abstract programs are
identical to the original programs, the abstraction approach assists verification
engineers at exploring the relevant statements—all program statements that
have not been abstracted are necessary for the properties under consideration.
The highlight approach shows to the verification engineers the relevant pro-
gram statements, while the abstraction approach provides additional benefits:
(i) automatic generation of auxiliary specifications for the irrelevant program
statements, and (ii) possible reduction of proof complexity for partial proper-
ties. Besides, the abstraction can increase users confidence in the correctness of
their programs, before starting deductive verification.

For a fair comparison of the amount of manually written auxiliary specifi-
cations, the highlight approach reused the auxiliary specifications that have
been written manually in the abstraction approach (shown in the column specs
of the column abstraction in Table 5.1). The abstraction approach generates spec-
ifications for the unnecessary program slices, however, the highlight approach
does not generate specifications and thus the verification engineers need to
write specifications for the unnecessary slices. On average, 37.2% (median
26.7%) of specifications for the highlighted programs have been automatically
generated by the abstraction approach.

All properties in the table have been proved using the abstraction approach
for the chosen bounds. When using the approaches highlight and baseline,
several properties are improvable. The column rules provides the number of
rule applications. Any rule application beyond our threshold of 20000006 is
denoted by RO. For 18 properties that have been proved by all approaches, the
abstraction approach needed only 50.1% (median 55.2%) of the rules required
by the highlight approach. It is not guaranteed that the abstraction approach
requires fewer rule applications than the other two approaches for arbitrary
properties. Besides the reasons explained in Section 5.2.3, KeY creates branches
for each abstract statement, to check its pre-/post-conditions.7 The abstraction
approach requires fewer rules than other approaches, assuming they use same
auxiliary specifications, only when the rule cost introduced by the abstract
statements is lower than the cost of symbolic execution of the irrelevant

6 The time cost and memory consumption grow exponentially based on the rule
applications. It required ∼30 min and more than 4 GB memory for 2000000 rules.

7 The trivial pre-/post-conditions of each abstract statement requires ∼20-100 rules.
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original statements. In other words, the more partial the verified property, the
less complex is the proof of the abstract programs. The property kvMatched is
an example for a less partial property.

Although we used small bounds for AbstractJ in the experiments, all
properties have been proved using our approach. On the other hand, the
verification engineers are free to provide larger bounds for AbstractJ. Given
the same input formula, Z3 may find an unsat core that is different from the
core found by other SMT solvers. AbstractJ may generate different abstract
programs using other SMT solver, but the abstract programs will still expose to
the verification engineers the relevant program parts for the desired property.

5.4 Related Work

Several methods have been proposed to split the program under analy-
sis for particular concerns. Traditional program slicing techniques (e.g.,
static/dynamic slicing) generate a group of accessible statements (a slice)
concerning variables of interest at particular locations. Due to the complex-
ity of the specification expressions and various complex data structures in
the analyzed programs, it is challenging to find specification-sensitive slices
correctly.

Conditioned slicing techniques [Fox et al., 2004; da Cruz et al., 2010;
Chebaro et al., 2012; Comuzzi and Hart, 1996; Chung et al., 2001; Barros
et al., 2012] have been widely applied to simplify programs with respect to the
specifications. Comuzzi et al. [Comuzzi and Hart, 1996] introduced predicates
as a slicing criterion; the slice contains the statements affecting the predicates.
That idea has been extended by introducing preconditions [Chung et al., 2001],
symbolic execution [Barros et al., 2012], and program verification [da Cruz
et al., 2010] into conditioned slicing techniques. Typically, conditioned slic-
ing produces a program slice based on the specification using the symbolic
execution with the inputs generated by a solver. The pre-/post-conditions
(generally formulas of first-order logic) are expressed in terms of the (input)
variables at program locations of interest. However, intensive human inter-
action is required to guide the symbolic execution by choosing a suitable
criterion. Moreover, when a conditioned slice is not proved, it is not clear
whether the original program is incorrect or the slice overestimates the pro-
gram. For program comprehension, GamaSlicer [da Cruz et al., 2010] verifies
the program with respect to specifications before generating semantic-based
slices. Nevertheless, it may not terminate with a conclusive result since it
targets an undecidable logic. Our approach ensures that the soundness of
the proof depends only on the deductive verification. Besides, we do not
remove the statements that are not in the slice but abstract them. This way it
is guaranteed that if the abstracted program fulfills the specification so does
the original program. Finally, these approaches cannot handle programs with
complex data structures and specifications.
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The following three approaches tried to improve the verification process
using bounded analysis. Bormer et al. [Bormer, 2014] claim that verifying pro-
grams using the bounded model checker LLBMC [Merz et al., 2012] facilitates
proving with VCC [Cohen et al., 2009]. Annotations written in VCC’s specifi-
cation language are translated into assertions that can be checked by LLBMC.
Unlike our approach, it still requires the user to write auxiliary specifications
for the unnecessary statements. We believe that our approach can comple-
ment Bormer et al.’s approach. The authors of [Ghazi et al., 2014] try to verify
Alloy programs using deductive verification, after the Alloy analyzer [Jack-
son, 2012]—based on bounded analysis, fails in finding a counterexample in
bounds dictated by the machine. Donaldson et al. [Donaldson et al., 2011]
combine k-induction and inductive invariant method to facilitate program
verification using significantly weaker annotations. These above approaches
do not claim to reduce the overhead of writing specifications. However, the
k-induction often allows using weaker loop invariants that are required by the
inductive invariant approach. Unlike our approach that reduces annotation
overhead for called methods and loops, Kroening’s approach only reduces
writing loop invariants overhead. Our approach can reduce the burden of
specifications not only for loops. Our approach helps software developers
to understand their code with respect to the requirement specification and
provides abstract programs that contains less details.

5.5 Conclusion

Deductive program verification systems typically require experienced veri-
fication engineers to write auxiliary specifications, e.g., loop invariant and
method contracts. To discover useful auxiliary specifications that are fulfilled
by the sub-routines and also meet the requirements of the calling procedures,
the engineers have to identify the parts of the program that are relevant to the
intended property. It is very likely that such program parts are challenging
to find regarding a property (called a partial property) that is only relevant to
small parts of the program.

We provide a verification-based program slicing technique to construct a
semantic slice (an abstract program) with respect to a partial property. In the
abstract program, the program parts that are irrelevant to the partial property
are replaced by an abstraction (i.e., they are not completely removed), whereas
the rest of the program (i.e., the relevant parts) remains unchanged. In con-
trast to verifying the whole program, verifying slices requires less auxiliary
specifications (as the abstractions have less details), and their correctness—by
their construction—implies the correctness of the original program concern-
ing the partial property. Therefore, our technique liberates the verification
engineers from identifying the relevant slice and eases the deductive verifi-
cation progress: fewer proof steps are needed. The construction of the slice
is based on the bounded program verification. If a property holds for the
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analyzed program in the bounded verification, we extract the relevant code
to the property using the unsatisfiable core (unsat core) provided by the SMT
solver. We construct the abstractions for the relevant code and finally build
the semantic slice by transforming the irrelevant code into abstract statements
with the abstractions.

We have implemented our technique in a prototype tool, AbstractJ, and
performed several experiments to evaluate the benefits of using our technique.
The results show that 50% of the user’s workload in writing auxiliary specifi-
cations were taken off using our technique compared to proving programs as
usual.

If the abstract program is not proved, the analysis terminates with no con-
clusive answer since the slice may be too abstract thus deductive verification
is impossible. To find the root causes of the failed proof is, unfortunately,
unusually difficult since the scope of inspection on the failed proof is larger
than usual. To ease the burden of inspecting the failed proof, we provide an
algorithm that uses counterexamples to refine the abstractions. We present
the algorithm in the next chapter (Chapter 6).





CHAPTER 6

Counterexample-Guided Abstraction Refinement for
Deductive Program Verification

An abstraction-based deductive program verification has been explored in
the previous chapter, in this chapter we present its refinement techniques.
The verification-based program slicing technique presented in Chapter 5 con-
structs a semantic slice of the analyzed program with respect to the desired
specifications (and also the scope of analysis). If the slice with required auxil-
iary specifications is proved in deductive program verification, the specifica-
tions are fulfilled by the original program as well. Otherwise, the correctness
of the original program is vague. The deductive verification may fail in two
major cases: i) the user-provided annotations are not consistent with the pro-
gram or the desired specifications, i.e., the annotations do not hold for the
program or do not satisfies the specifications, and ii) the slice may be too
abstract and thus deductive program verification is not possible. The burden
of inspecting the failed proof is considerable in both cases. Besides, each ab-
straction of the slice corresponds to a collection of implementations that are
irrelevant to the specifications, and then in the second case it is obscure to
manually renovate the failed proof, i.e., to only reveal the relevant program
parts that have been replaced by abstractions.

Counterexample-Guided Abstraction Refinement (CEGAR) [Kurshan,
1994] methodology provides an automatic framework that gradually refines
abstract models of a system. Many code analysis techniques, e.g., [Lind-
Nielsen and Andersen, 1999; Clarke et al., 2000, 2003; Ball et al., 2004; Chaki
et al., 2004; Clarke et al., 2005; Beyer et al., 2007; Gupta et al., 2011; Abdulla
et al., 2016], have instantiated the CEGAR framework for gaining an efficient
code analysis. All instances of this framework, however, construct (and refine)
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abstractions of the code at the predicate level. That is, the predicates of the
code that are irrelevant to the property of interest are replaced by abstractions.
The rests of the code (e.g., assignment statements) remains unchanged, even
though they are not relevant to the property at all. It is very likely that writing
annotations for such coarse abstracted programs are very hard. Moreover, they
do not handle the properties of complex data structures that our algorithm
targets. They have been used to handle properties of a finite state machine
or to check access violation errors such as null-pointer dereference and array
access out of bound.

We present an algorithm instantiating the CEGAR framework for de-
ductive program verification. Starting with an initial abstract program, we
iteratively refine the abstractions of the program based on its counterexamples
that are found by the deductive verification. The novelty of our algorithm
is that it handles properties of complex data structures and refines the ab-
stractions at the statement level. That is, for each abstraction that replaces
a collection S of program statements in the abstract program, in the new
abstract program the abstraction will be replaced by: i) the statements S+⊆S
that are relevant to the specifications concerning the counterexamples, and
ii) new abstractions that are constructed for the rest of S (i.e., the irrelevant
parts S− = S\S+). The on-demand iterative nature of the algorithm guaran-
tees that only as much information about the program will be analyzed as
is necessary to check the property of interest. Therefore, our algorithm eases
the burden of manually renovating the failed proofs in deductive program
verification. The core idea is using bounded program verification to guide the
refinement of the abstractions. Figure 6.1 shows the structure of our algorithm.
The fundamental algorithm is as follows.

1. Initial abstractions. To verify a program P with respect to a property Q,
construct an abstract program A(P ) that overestimates P by replacing the
parts of P that are irrelevant to Q by an abstraction.

2. Checking auxiliary specifications. Check whether the provided auxiliary
specifications I hold in A(P ) using bounded program verification. If a
counterexample is found, the inspection of I is needed. Otherwise, go to
step 3.

3. Proving. Prove the abstract program A(P ) with bounded-verified auxil-
iary specifications I in deductive program verification. If A(P ) is proved,
the overall analysis terminates, and program P satisfies the property
Q as well (by the construction of the abstract program). Otherwise, a
counterexample c to A(P ) is found, and thus go to step 4.

4. Checking validity of counterexamples. Check whether the counterexam-
ple c is valid for the original program P . If c is valid, a fault of P has been
discovered, and the analysis terminates. Otherwise, go to step 5.

5. Refinement. Refine A(P ) so that the spurious counterexample c is elimi-
nated, and thus go to step 2.
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Fig. 6.1: Structure of our algorithm.

This algorithm forms the basis of all CEGAR-based techniques. Our algo-
rithm, however, differs from all the existing ones in that the abstract program
is not necessary a finite-state program. That is, A(P ) is an abstract program
where loops and recursions are allowed. Bounded program verification is
fully automatic and thus is heavily used to facilitates the verification engi-
neers to renovate the program and the annotations. We use bounded program
verification to check whether the property Q holds for the program P at the
step 2, and to check whether the auxiliary specifications I hold for the pro-
gram P and also fulfill the property Q at the step 5. Therefore, we guarantee
an initial confidence in the correctness of the abstract program and auxiliary
specifications with respect to the desired property, and thus avoid unneces-
sary attempts in deductive verification and reduces the scope of inspection
on a failed proof.

Our algorithm ensures that it is totally dependent the deductive pro-
gram verification to guarantee the correctness of the analyzed program. The
bounded program verification techniques improve the process of deductive
program verification, but they are not responsible for providing the certifi-
cation of the final program quality. Besides, bounded program verification
techniques are usually not capable of checking the properties such as the
termination of the analyzed program (see Definition 4.1). 1 For example, the
refinements of the abstractions are guided by the counterexamples provided
by the deductive program verification. When a counterexample causes the

1 The calculus presented in Chapter 4 is capable of checking the termination of the
analyzed program regarding the class bounds, however, its logic is undecidable
and thus it does not guarantee to give conclusive answers.
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analyzed program non-terminating, the algorithm can not check the validity
of the counterexample due to the statically loop unrolling. Therefore, the
premise of our algorithm is that the analyzed program total-terminates, i.e.,
the program terminates for all inputs.

6.1 Our algorithm

We describe the steps of our algorithm in the section. We mainly describe
how we check auxiliary specifications using bounded program verification,
check validity of the counterexamples, and refine abstractions based on the
counterexamples. Besides, we show the counterexample generation in the KeY
system. Details of programs and specifications that our algorithm supports
can be found in Chapter 3.

6.1.1 Initial Abstractions

The initial abstractions substitute the parts of the analyzed program that are
irrelevant to the desired property. Our algorithm does not rely on a specific
program abstraction technique to construct the initial abstractions. The ab-
stractions of the code can be constructed at different levels, e.g., at the function
level [Taghdiri and Jackson, 2007], at the predicate level [Abdulla et al., 2016],
or the statement level (see Chapter 5). However, to obtain an efficient CEGAR
instantiation, we use the verification-based program slicing technique to con-
struct the initial abstractions at the statement level since the technique also
supports the predicate and function levels and thus constructs more accurate
abstractions.

Given a program P annotated by a specification (a property Q), the
verification-based program slicing technique constructs an abstract program
AB(P ) from program P with respect to the scope of analysis B (designated by
a collection of class/loop bounds). In the construction of the program AB(P ),
the parts of program P (e.g., the method calls, the predicates, and the expres-
sions on the right-hand side of the assignment statements) are transformed
into abstractions if they are irrelevant to the property Q, whereas the rest of
the program (i.e., the relevant parts) is trivially replicated in AB(P ). Recall
that the abstractions are constructed based on a particular bounded proof
provided by bounded program verification. The program AB(P ) may exclude
the code that becomes relevant when the scope of the analysis is larger than B,
and thus it is not possible to be proved using deductive program verification.
In the following sections, we present the techniques to recompute the scope
of analysis and then to renovate failed proofs by refining the abstractions.

6.1.2 Checking Auxiliary Specifications

Before continuing with the deductive verification, we check whether the user-
provided auxiliary specifications hold for their annotated program constructs
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and also satisfy the expectations from their contexts regarding the specification
of the analyzed method. Given an abstract program A(P ), a specification
Q that annotates A(P ), and a user-provided auxiliary specification q that
annotates a program construct p (e.g., a loop or a method call in A(P )), we
produce an SMT formula and check the satisfiability of the formula using
an SMT solver. Recall that the program A(P ) has been verified with respect
to the specification Q using bounded program verification beforehand, 2 If
a model to the formula is found (i.e., the formula is satisfiable), then the
specification q is not consistent with program A(P ) or specification Q. That is,
the specification q either does not hold for its annotated program construct p:
q may overestimate the behavior of p, or does not fulfill the expectations from
the specification Q: q may underestimate the behavior of p. This two possible
cases can be trivially distinguished by analyzing the model to the formula. If
no model is found (i.e., the formula is unsatisfiable), then the specification q is
verified with respect to the chosen scope of analysis.

We use the SMT encoding presented in Chapter 3 to encode the program
and its specifications. We have handled checking method calls with method
contracts and elaborated on the details in Section 3.1.1. In this section we
will present the details of the SMT encoding for checking loop invariants in
bounded program verification.

Deductive program verification techniques typically translate a program
and its specifications into a logical formula in particular logic, e.g., Java Dy-
namic Logic (JavaDL; see Section 2.4), and apply various proof rules on the
formula to construct the verification conditions using the symbolic execution.
Unlike bounded program verification techniques that construct a finite-state
program by unrolling loops (and recursions) regarding the loop bounds and
thus provide a scope-bounded proof, deductive program verification tech-
niques require loop invariants and provide a proof that is valid for any loop
iterations.

A loop invariant denotes a property that holds for its annotated loop and
also fulfills the expectations of the program construct where it is included. For
example, we add a loop invariant for the abstract program 3 of the Fig. 6.2(a).
This loop invariant (Line 7) has to be satisfied by its annotated loop (Line 11)
at some specific program points (will be talked soon) and also has to satisfy
the expectations from the numberOfPrimes method regarding to its post-
condition (Line 1). If any of these two requirements are not met, the deductive
verification fails and the verification engineers have to find a reason to it—
inspecting (and renovating) failed proofs is a complicated and error-prone
effort.

2 The verification-based program slicing technique constructs the abstractions based
on a bounded proof of the analyzed program that is provided by the bounded
program verification.

3 The abstract program of Fig. 6.2(a) is constructed from the program of Fig. 5.1(a).
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Checking whether a loop invariant holds for its annotated loop

When the symbolic execution reaches a loop in deductive program verification,
the loop invariant rule shown in Definition 6.1 is used for the loop. The rule
denotes that a loop can be replaced by its loop invariant (and its negated loop
condition) if the loop invariant is satisfied at the following program points.

1. on entry into the loop,
2. immediately before each execution of the loop body,
3. immediately after each execution of the loop body,
4. on exiting from the loop.

When the loop condition expression has no side-effect, we omit the loop
invariant checking at two kinds of program points. The program point (2) is
skipped since the loop invariant obviously holds if it holds at program points
(1) or (3). Besides, we exclude the program point (3) when it is on the last loop
iteration since the loop invariant will be checked on exiting from the loop.

Definition 6.1. A loop invariant invl holds for a while loop l if

{Cond ∧ invl} stmts {invl}
{invl} while(Cond)stmts {¬Cond ∧ invl}

We treat the loop invariant as a property that has to be satisfied at three
kinds of program points, those that are denoted by i), iii), and iv) above. Given
a loop invariant invl for a loop l, we add JML assert ¬invl; annotation state-
ments (see Section 3.1.1) at these program points in the abstract program and
construct an acyclic verification graph from the abstract program. Figure 6.2(b)
shows an acyclic verification for an abstract program. the first four and the
last one highlighted expressions are used to check whether the loop invariant
is satisfied by the loop. Note that the second and third highlighted expressions
can be omitted since the loop condition expression is side-effect free. We keep
them in the graph to facilitate illustration.

The JML assignable FieldSet; clause denotes the variables or the fields
that may been changed by its annotated program construct. To check whether
the loop satisfies the assignable clause, we trivially check whether the vari-
ables or the fields referred by FieldSet have been renamed by the loop in the
verification graph. In the verification graph of Fig. 6.2(b) we check whether the
size variable is renamed on the paths [3, 9] or [3, 4, 5, 6, 7, 8, 9] regarding the
assignable size; clause (Fig 6.2(a), Line 9). Figure 6.3 shows the formula
fragment for checking the loop invariant. Except the second to last formula,
the formulas are for checking whether the loop invariant holds for the loop.

Checking whether a loop invariant fulfills the expectations of its context

If a loop satisfies its loop invariant, the loop invariant specifies a condition
on the program state after the execution of the loop. In deductive program
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1 /*@ ensures \result>0 ==> y>x;
2 @ diverges true;
3 @ assignable \everything;
4 @*/
5 int numberOfPrime(int x,int y){
6 int size = 0;
7 /*@ loop_invariant
8 @ (i>=y&&size==0)||y>x;
9 @ assignable size;

10 @*/
11 for(int i=x; i<y; i++){
12 size = pure_int();
13 }
14 pure_allocArrayInt();
15 return size;
16 }
17 /*@ assignable
18 @ \strictly_nothing;
19 @*/
20 native int pure_int();
21 //@ assignable \nothing;
22 native int[] pure_intArray();
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size0 = 0

i0 = x

invl,0 = ¬((i0 ≥ y ∧ size0 = 0) ∨ y > x)

i0 < y

invl,1 = ¬((i0 ≥ y ∧ size0 = 0) ∨ y > x)

size1 = $int

i1 = i0 + 1

invl,2 = ¬((i1 ≥ y ∧ size1 = 0) ∨ y > x)

i1 ≥ y

invl,3 = ¬((i1 ≥ y ∧ size1 = 0) ∨ y > x)

(i1 ≥ y ∧ size2 = 0) ∨ y > x

$int[] 6= null

¬(post ∧ ¬invl,0 ∧ ¬invl,1 ∧ ¬invl,2 ∧ ¬invl,3)

i0 ≥ y∧
size1 = size0∧
i1 = i0

(a) Abstract program (b) Acyclic verification graph

Fig. 6.2: The acyclic verification graph (loop bound is 1) for the abstract
program with a loop invariant. If the loop invariant is violated, the Boolean
variable invl evaluates to true, otherwise false. The variables $int and $int[]
denote the unspecified results of the methods pure_int (Fig. 6.2(a), Line 21)
and pure_intArray (Fig. 6.2(a), Line 22), respectively. For readability, in
the last highlighted expression we use post to represent the postcondition of
the numberOfPrime method.

verification the symbolic execution of the code following the loop continue
with this program state, and the concrete program behavior of the loop will
be ignored. Therefore, the concrete program behavior of the loop is replaced
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E2,3 =⇒ E3,4 ∨ E3,9 ∨ invl,0

E4,5 =⇒ E5,6 ∨ invl,1

E7,8 =⇒ E8,9 ∨ invl,2

E9,10 =⇒ E10,11 ∨ invl,3

E2,3 =⇒ invl,0 = ¬((i1 ≥ y ∧ size1 = 0) ∨ y > x)

E4,5 =⇒ invl,1 = ¬((i1 ≥ y ∧ size1 = 0) ∨ y > x)

E7,8 =⇒ invl,2 = ¬(i1 ≥ y ∧ size1 = 0) ∨ y > x)

E9,10 =⇒ invl,3 = ¬((i1 ≥ y ∧ size1 = 0) ∨ y > x)

E10,11 =⇒ (i1 ≥ y ∧ size2 = 0) ∨ y > x

E12,13 =⇒ ¬((size2 > 0 =⇒ y > x) ∧ ¬invl,0 ∧ ¬invl,1 ∧ ¬invl,2 ∧ ¬invl,3)

Fig. 6.3: Formula fragment for checking the loop invariant of Fig. 6.2(a) using
bounded program verification. If the loop invariant for loop l is violated at
a program point i, the Boolean variable invl,i evaluates to true, otherwise
false. The second to last formula is for checking whether the loop invariant
satisfies the expectations from its context regarding the postcondition of the
numberOfPrimes method. Except the second to last formula, the formulas
are for checking whether the loop invariant holds for the loop.

by the loop invariant. It may happen that a method with a loop satisfies
its method contracts, but the deductive verification fails to prove that since
the loop invariant of the loop does not provide sufficient property. To check
whether a loop invariant satisfies the method contracts, we add a JML assume
invl; annotation statement immediately after the last assert statement of

loop l. To avoid using the concrete loop behavior in bounded program veri-
fication, in the expression of loop invariant condition the variables (and the
fields) that are annotated by the assignable clause are renamed, i.e., get
unspecified values. In the verification graph of Fig. 6.2, the fifth highlighted
expression is used to check whether the loop invariant fulfills the postcon-
dition (Fig. 6.2(a), Line 7) of numberOfPrime method. The variable size is
renamed in the assume statement it is annotated in the assignable size;

clause (Fig 6.2(a), Line 9). The second to last formula in Fig. 6.3 is for checking
whether the loop invariant satisfies the expectations from its context regarding
the postcondition of the numberOfPrimes method.

6.1.3 Proving

The KeY system (see Section 2.4) is used as the deductive program verification
system in our algorithm. Recall that KeY translates the generated abstract
program and the property of interest into formulas in JavaDL and applies
various proving rules on the formulas in the symbolic execution [King, 1976].
In contrast to proof obligation generators, which usually produce very large
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first-order logic problems from programs/specifications and try to discharge
them using fully automated off-the-shelf theorem provers, all reasoning is
completely integrated into the KeY prover.

When a proof goal cannot be closed, KeY tries to generate a counterexam-
ple to the JavaDL formula in that goal. The formula is negated and translated
into SMT formula. The JavaDL constructs, e.g., heaps, locations sets, and
sequences, are translated into SMT definitions using semantic blasting [Herda,
2014]. Bounded SMT sorts are used in the SMT formula to guarantee decid-
ability of the formula. The SMT formula is handed over to an SMT solver
which tries to find a model for it. If the SMT solver succeeds in finding a
model, the counterexample generator presents it in a readable form, showing
the value of each constant and the contents of all heaps, location sets and
sequences.

Let A(P ) be an abstract program, m be the analyzed method of A(P ), ce
be a counterexample generated by the deductive program verification for the
program A(P ), thus ce provides following information:

• A program state prem,ce before invoking method m, i.e., the pre-state of
m. This state contains:

– a collection args(prem,ce) of arguments of m,
– a collection consts(prem,ce) of constants,
– a collection objs(prem,ce) of program objects on the heap,
– a configuration of the objects on the heap.

That is, for each object on the heap, its fields refer to other objects or
constants, e.g., null and constant numbers.

• A program state postce for which the proof fails, i.e., a property q is
violated at state postce. The state contains:

– a collection consts(postce) of constants,
– a collection objs(postce) of program objects on the heap,
– a configuration of the objects on the heap.

• A symbolic execution path path(A(P ), ce). It contains a sequence of pro-
gram points that lead the program A(P ) to the program point qloc where
q evaluates to false and the proof fails.

For each counterexample, KeY generates a test case for the analyzed pro-
gram. When executing the program with the test case as the input, the above
information can be obtained from the trace of the program execution. When
the analyzed program does not terminate for the test case, our algorithm
requires that the analyzed program has to total-terminate (see Definition 4.1).

6.1.4 Checking Validity of Counterexamples and Refinement

To check the validity of a counterexample, larger class bounds are required
since the abstract program, the specification that annotates the program, and
the auxiliary specifications are consistent (verified) for the old bounds. We
compute new class bounds as shown in Definition 6.2.
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Definition 6.2. Let A(P ) be an abstract program, ce be a counterexample to A(P ),
C be a class that is involved in A(P ), postce be the program state where the proof
fails, objs(postce) be a collection of program objects on the heap at state postce, thus
the new class bound for C is the number of C objects in objs(postce).

New loop bounds can be obtained directly by tracing the execution of the
analyzed program with the generated test case. For other loops, the calculus
presented in Chapter 4 is used to compute the new loop upper bounds based
on the new class bounds. However, the calculus may return the ‘unknown’
due to its undecidable logic. If the calculus failed to compute a loop bound,
we heuristically provide a loop bound. Instead of negating the loop condition
on the last iteration (e.g., as shown in Fig. 3.2), to compute new loop unrolls,
we transform a loop

while(cond){stmts;} to

if(cond){stmts; if(!cond)var=var;},

where var is a variable that is modifiable in stmts. This transformation pre-
vents unrolling the loops that are irrelevant for the program correctness. Our
technique generates a new SMT formula that is the conjunction of the transla-
tion of the counterexample and the translation of the original program for the
new bounds. When the formula is satisfiable, then either the counterexample
is valid, or the loop requires further iterations if the loop condition is still
true after traversing the last iteration. In the latter case, we double the loop
bounds and repeat the validity check.

If the formula is unsatisfiable, we find the statements with respect to
the counterexample using the verification-based program slicing technique
as shown in Chapter 5. In the unrolled program, we highlight a mayHave
statement as a mustHave statement (see Section 5.2.3) when the statement is in
the newly found statements.

6.2 Evaluation

In this chapter we presented an algorithm instantiating the CEGAR frame-
work for deductive program verification. The algorithm eases the burden of
manually discovering useful auxiliary specifications and inspecting the failed
proofs. In contrast to the program slicing technique presented in Chapter 5,
our algorithm iteratively refines the abstractions and guarantees that only
as much information about the program will be analyzed as is necessary to
check the desired property.

We have implemented our algorithm in the prototype tool RefineJ. We use
AbstractJ, our verification-based program slicing tool shown in the previous
chapter—as the abstraction constructor and KeY as the deductive program
verification system.
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We have used benchmarks that are used in the experiment of AbstractJ
(see Section 5.3). In this section, we investigate the cases when refinements
are needed for the initial abstract programs, and evaluate the benefits of
using our algorithm in the deductive verification. In total, we have proved
16 programs that were not proved before. We used the same environment as
testing AbstractJ. That is, the SMT solver Z3 is used to compute the unsat cores,
and all experiments have been performed on an Intel Core i5-2520M CPU with
2.50 GHz running on a 64-bit Linux. In this environment, each run of RefineJ
can be completed within 10 seconds. For a fair evaluation of the benefits of
using RefineJ in the deductive verification, when the auxiliary specifications
that have been used in the experiment of AbstractJ are feasible for the refined
programs, they are reused. When the existing auxiliary specifications are not
feasible, we have written the auxiliary specifications as compact as possible.
We use abstraction to denote the approach used in AbstractJ, refinement the
refinement approach presented in this chapter, and baseline to denote proving
the original programs as usual.

We pose the following research questions.
RQ1. How much effort required to refine the abstract programs?
RQ2. How baseline and the CEGAR instantiation compares?

RQ1. How much effort required to refine the abstract programs?

To evaluate the effort to refine abstract programs, we first find the cases
when the abstract programs generated by the abstraction approach are not
proved. The abstraction approach requires class bounds and loop bounds. We
have carefully chosen the class bounds to guarantee that the specifications
do not trivially evaluate to false due to lacking necessary program objects.
Based on the class bounds, we have computed the loop sharp upper bounds
using the BoundJ tool (see Chapter 4). Therefore, the abstraction and refinement
approaches have a complete code coverage in their analyses. The chosen (and
computed) bounds are presented in Table 6.1. The bounds columns show the
class and loop bounds that we used in abstraction and refinement. In particular,
the bounds used in each verification task is denoted by a ternary tuple (x, y, z)
where x, y, and z denote the class bounds, the size of the integer (i.e., bitwidth),
and the loop bounds. The columns methods and properties denote the entry
method of the analyzed program and its desired property, respectively. If the
initial abstract programs generated by the abstraction approach are not proved,
we apply refinements on the abstract programs. Otherwise, no refinements
are required, and we denote these cases using the symbol X.

We observed that, the initial abstract program are needed to be refined
in most of the verification tasks. From the result, ∼76.2% verification tasks
require the process of abstraction refinements. In particular, out of the total
21 initial abstract programs, 16 programs require refinements to complete
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Table 6.1: Results of deductive program verification with abstraction refine-
ments

methods properties origin
stmts

baseline abstraction refinement
specs rules bounds stmts specs rules bounds stmts specs rules

List.
merge(list)

nullPointer 27 22 3578 (1,1,0) 4 0 196 (2,2,1) 4 0 196

indexBounds 43 59 4641 (1,1,0) 8 0 195
(1,2,1) 21 13 2342
(1,3,3) 26 37 2768
(3,3,3) 33 46 3717

negSize 31 13 4316 (1,1,0) 2 0 140 (1,2,1) 8 0 276
(2,2,1) 16 6 1188

leElems 22 14 2962 (3,2,1) 11 2 1809 (3,3,3) 13 6 1715
subset 22 82 6299 (3,2,1) 13 10 1872 (3,3,3) 15 52 4404

Map.
put(key,value)

nullPointer 32 28 4485 (1,2,1) 30 12 1779 (2,3,3) 30 4 512
indexBounds 48 61 6154 (1,2,1) 23 6 1080 (2,3,3) 48 54 5488
negSize 32 17 4084 (1,2,1) 15 0 1435 (2,3,3) 16 0 654
oldKey 26 30 4295 (1,2,1) 11 0 582 (2,3,3) 11 22 1725
sameValues 26 27 9823 (1,2,1) 10 0 582 (2,3,3) 12 26 4647
kvMatched 26 50 7327 (1,2,1) 10 0 582 (2,3,3) 26 50 8814

LRS.
doLRS()

nullPointer 39 11 3022 (1,3,3) 9 0 673 X X X X
indexBounds 43 44 5006 (1,3,3) 30 14 4502 X X X X
posLen 26 32 4155 (1,3,3) 15 0 RO (3,3,3) 17 10 1255

Set.
intersect(set)

nullPointer 48 48 10937 (1,2,1) 10 0 480 (3,2,1) 22 4 4124
negSize 38 38 14555 (1,2,1) 7 0 456 (3,2,1) 7 0 899
indexBounds 58 58 19715 (3,2,1) 25 16 RO (3,3,3) 51 33 6714
emptySet 33 94 64807 (3,2,1) 14 21 3001 X X X X
subset 33 142 RO (3,2,1) 16 52 11211 X X X X

Graph.
remove(nodes)

sameNodes 54 78 RO (3,2,1) 6 0 923 X X X X
sameEdges 54 119 RO (3,2,1) 13 20 6060 (3,3,3) 18 67 12334

the verification tasks. 4 Besides, using refinement approach helps a lot with
renovating failed proofs: with only a few of refinements the verification tasks
can be completed. Out of the total 16 unproved initial abstract programs, only
3 programs require maximal 3 times of refinements, and the remaining 13
programs need the refinement only once.

In 19 (of 21) verification tasks, the code size in the abstract programs in-
creases as applications of the refinement process increase and each refinement
require verification engineers to provide more auxiliary specifications with
respect to the newly revealed code. This observation meets our expectations of
the refinements since we gradually refine the abstractions. There are also two
exceptional cases due to the optimizations on the abstractions. (i) In verifying
the method List.merge(list) against the nullPointer property, the
initial and refined abstract programs have same code size. A careful inspec-
tion reveals that the refinement approach replaced the abstracted statements
by the original ones. (ii) In verifying the method Map.put(key, value)
against the nullPointer property, it requires less auxiliary specifications
after the abstraction refinement. An inspection on the code reveals that in the

4 The remaining 5 programs were trivially proved without refinements. It shows
that our verification-based program slicing technique can reveal all the relevant
program parts to the intended properties even with very small bounds.
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initial abstract program a loop contains an allocation statement that requires
a larger class bound, while in the refined abstract program that the allocation
statement has been replaced by an abstraction since a larger class bound is
computed and used in the refinement.

RQ2. How the CEGAR instantiation and the baseline approach compares?

For ease of comparison, the column baseline in Table 6.1 shows the same data
as the column baseline in Table 5.1, i.e., the number of required auxiliary speci-
fications and the number of used proof rules in KeY. We copy the data here
for the purpose of comparison. From the results, the CEGAR instantiation
gradually requires more auxiliary specifications in deductive program veri-
fication. Even counting the total number of required auxiliary specification,
it still requires less specifications than using the baseline approach in some
cases: 19 (of 21) verification tasks require less auxiliary specifications than
using baseline in the deductive verification and 8 (of 21) tasks require zero
auxiliary specifications. Moreover, we calculated the total number proof steps
required to complete each verification task using our algorithm. The results
show that, out of the total 21 verification tasks, 13 tasks require less proof
rules than using the baseline approach.

In our experiments, before proving the abstract program with auxiliary
specifications in KeY, we check whether the abstract program is consistent
with the auxiliary specifications and also the desired specifications. All coun-
terexamples provided by KeY denote that either the class bounds or the loop
bounds are small and the newly computed bounds are still practical for our
algorithm.

6.3 Related Work

Counterexample-guided abstraction refinement (CEGAR) framework itera-
tively refines abstract models of a system using counterexamples. It was first
introduced by Kurshan [Kurshan, 1994], and then appeared in a number of
analysis techniques (e.g., [Balarin and Sangiovanni-Vincentelli, 1993; Lind-
Nielsen and Andersen, 1999; Clarke et al., 2000, 2003] that focus on checking
finite state systems. Clarke, et al. [Clarke et al., 2000, 2003], for example,
used CEGAR framework to check programs represented by labeled Kripke
structures (a form of finite state machines) against properties expressed in
temporal logic. The initial abstraction partitions the variables of the Kripke
structure against the given property. If a spurious counterexample is found,
the abstraction is refined by partitioning one of the equivalence classes. This
technique has been implemented in NuSMV [Cimatti et al., 2002] and used to
check a Fujitsu IP core design.

From this century CEGAR framework has been widely used in program
verification (e.g., [Ball et al., 2004; Chaki et al., 2004; Clarke et al., 2005; Taghdiri
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and Jackson, 2007; Beyer et al., 2007; Gupta et al., 2011; Abdulla et al., 2016]).
To the best of our knowledge, these CEGAR algorithms construct abstractions
mostly at the predicate level (e.g., [Abdulla et al., 2016]) and rarely at the func-
tion level (e.g., [Taghdiri and Jackson, 2007]). To check a program for some
property, they typically abstract the program as a Boolean program using
a given set of predicates, model checks the Boolean program, and discover
additional predicates to refine the Boolean program. Phi Diep, et al. [Abdulla
et al., 2016], on the other hand, use variable slicing techniques to obtain an
abstract program. To check a concurrent program, Phi Diep, et al. construct
an abstraction of the concurrent program by only keeping track of a subset
of variables. If a counterexample to the abstraction is spurious, Phi Diep, et
al. refine the abstraction by decreasing the set of omitted variables. Variable
slicing is one of the verification-guided approaches that are able to address
the state-space exposing problem. In contrast with these algorithms, our algo-
rithm constructs the abstractions of the original program at the statement level.
By the observation that the more detailed the program, the more complicated
the required auxiliary specifications are, our algorithm can assist verification
engineers to efficiently discover the exact parts of a program that are relevant
to an intended property.

CEGAR framework mostly has been used in automatic program verifi-
cation techniques (e.g., [Taghdiri and Jackson, 2007]) that focus on checking
finite state programs. These techniques require no user-guidance at all and
hold promise for scalability using CEGAR framework. To our knowledge,
the software model checker SLAM [Ball et al., 2004] is the first system that
has applied the CEGAR framework to a program with an infinite number
of states. SLAM checks a given C program with respect to a temporal safety
property without requiring any user-provided intermediate annotations. It
performs the analysis by iteratively refining a predicate abstraction of the
code to eliminate spurious counterexamples. Since verifying temporal safety
properties of an arbitrary piece of code is undecidable, SLAM is not guaran-
teed to terminate. Like SLAM, our algorithm focuses on checking infinite state
programs as well. Our algorithm has been applied on KeY system, a deduc-
tive program verification system, that proves Java programs where loops and
recursions are allowed. Unlike SLAM, our algorithm can handle properties
of complex data structures that constrain the configurations of the objects on
the heap of a program. Analyzing these kinds of properties is particularly
important for safety-critical software systems with extensive heap manipu-
lations. Besides, our verification-based program slicing technique provides
a decidable logic and guarantees to construct abstract programs regarding
the small scope of analysis. By the small-scope hypothesis [Jackson, 2012], if an
abstract program does not satisfy its specifications, in many cases that will
be detected and reported during the bounded verification before the run of
deductive verification. Finally, our algorithm guarantees that the accuracy
of the program verification result is completely dependent on the deductive
program verification.
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6.4 Conclusion

In this chapter we present a CEGAR algorithm for deductive program verifi-
cation. The novelty of our algorithm is that it handles properties of complex
data structures and constructs abstractions of a program at the statement level.
That is, the program parts that are irrelevant to the property of interest are
replaced by abstractions. The rest of the program (the relevant parts) remains
unchanged. The on-demand iterative nature of the algorithm guarantees that
only as much information about the program will be analyzed as is necessary
to check the property of interest. Therefore, our algorithm eases the burden of
manually discovering useful auxiliary specifications for deductive program
verification. We construct and refine abstractions by exploiting the benefits
of bounded program verification techniques. Bounded program verification
does not require auxiliary specifications and can guarantee fast and initial
confidence of the correctness of the program and provided auxiliary speci-
fications, and thus eases the burden of inspecting the failed proofs for the
deductive program verification.

We have implemented the abstraction refinement in the prototype tool Re-
fineJ, and evaluated the benefits of using RefineJ in the deductive verification.
We considered various programs that are taken from published literature in
the area of program verification. We have used RefineJ to refine the abstrac-
tions of the semantic slices constructed by AbstractJ—our verification-based
program slicing tool presented in Chapter 5. From the results, RefineJ grad-
ually reveals the code that are relevant to the desired property and helps a
lot with renovating failed proofs: with only a few of refinements the failed
verification tasks can be completed. Besides, compared to the common way
to prove programs, using RefineJ reduces the number of auxiliary specifica-
tions: out of the total 21 verification tasks, using RefineJ 19 tasks requires less
auxiliary specifications and 13 tasks requires less proof rules compared to the
common way.
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CHAPTER 7

Bounded Symbolic Execution Using Incremental
Constraint Solving

In the four previous chapters (Chapters 3–6), we have present SMT-based
approaches to improve the efficiency of program verification. In this chapter
we continue to investigate the impact of using incremental SMT solvers in
symbolic execution, a well-known technique that has gained a significant
momentum in recent years.

Symbolic execution as a means of analyzing programs has been widely
used in program testing [Kapus and Cadar, 2017; Braione et al., 2017], veri-
fication condition generation [Ahrendt et al., 2016; Jacobs et al., 2011; Jaffar
et al., 2012; Nguyen et al., 2017], and program verification [Harris et al., 2010;
McMillan, 2010; Alberti et al., 2012; Jaffar et al., 2009; Pasareanu and Visser,
2004]. It typically takes a parametrized program P (−→x ) as input and con-
structs a symbolic Boolean expression (called path condition) that encodes the
conditions on the inputs in order to follow one particular path through the
program. When a path condition evaluates to true (using constraint solving,
for example), its related path is feasible, otherwise it is infeasible. To check
whether a property holds for the program, Symbolic execution explores the
paths for the desired property by proving that all paths to certain error nodes
are infeasible (i.e., the property is violated if an error node is reachable).

Unfortunately, one important obstacle for gaining high code coverage is
the high cost of path condition solving [Visser et al., 2012; Yang et al., 2013;
Borges et al., 2014; Cadar et al., 2008a]. To the best of our knowledge, existing
symbolic execution tools invoke the constraint solver multiple times along
one single execution path and each time a new solving starts from scratch
even though the constraint has been resolved previously.



110 7 Bounded Symbolic Execution Using Incremental Constraint Solving

Incremental constraint solving (cache-based) approaches have been pro-
posed (e.g., KLEE [Cadar et al., 2008a] and GREEN [Visser et al., 2012]) to
optimize path condition solving in order to improve time efficiency of sym-
bolic execution. They only solve the “changed parts” of the constraint, that
is to solve problems related to the changes between any two constraints that
symbolic execution consecutively generates. For example, consider that the
symbolic execution produces the constraint pc1 : a>b ∧ x<y for which the
solver outputs the following solution [a=2, b=1, x=3, y=4]. To compute the
solution for the next constraint pc2 : a>b ∧ x≥ y this approach proceeds as
follows: It invokes the solver to solve only the changed part of the constraint,
namely x≥ y, which is a simpler problem, and combines the new solution
[x=4, y=3] with the already-computed solution [a=2, b=1]. The combined
solution clearly satisfies pc2 . This idea works under the assumption that the
symbolic execution explores similar paths in order (e.g., using depth-first
search) and that not all expressions are dependent (see Definition 7.1). An
optimized alternative builds on the observation that the approach discussed
above could be generalized to build on the solutions of all previously visited
path constraints as opposed to only the last one visited. It caches solutions of
every independent expression observed in every path constraint. Considering
the previous example, a global cache stores solutions to the expressions a>b,
x<y, and x≥ y which appeared independently in the two individual path
constraints pc1 and pc2. Despite the overhead in memory and time consump-
tion related to caching (to store, lookup, and combine solutions), it has been
observed that this optimization is beneficial. Popular symbolic execution tools,
such as KLEE, CREST [Burnim and Sen, 2008], PEX [Tillmann and de Halleux,
2008], and SPF [Pasareanu and Rungta, 2010], use similar features.

Definition 7.1. Let pc = (E ,V) be a path condition with Boolean-valued expressions
E and variables V , var(e) (e ∈ E) be the set of variables used in expression e, thus

An expression x ∈ E and an expression y ∈ E (x 6= y) are dependent, if

∃v ∈ V, v ∈ var(x) ∧ v ∈ var(y),

otherwise x and y are independent.

Unfortunately, these cache-based approaches cannot help in a scenario
where the paths that a symbolic execution explores become long. The longer
the path explored, the less the independent expressions since the number of
input variables is limited. It may be necessary to spawn a completely new
search to solve a constraint even if only one of the clauses in this conjunct is
new. For example, the cached solution [x=3, y=2] to the constraint x>y will
not help to solve the constraint x>y ∧ x>3.

In this chapter we present an incremental SMT solving (stack-based) ap-
proach for symbolic execution. Our approach represents the program under
analysis in a decision graph with respect to the loop bounds. A decision graph
is essentially a compact version of the acyclic verification graph (see Sec-
tion 3.1.2). Unlike the verification graph, a decision graph does not label its
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nodes and each edge represents a predicate test (i.e., a branch decision or an
annotation statement; see Section 3.1.1) and the basic code block immediately
following the branch. Thus, it is very likely that the decision graph has less
nodes and edges than the verification graph representing a same program.
Exploring paths through the graph in depth-first order, our approach creates a
new frame on the assertion stack of an SMT solver when reaching a new edge
(i.e., a branching decision), and fills the frame with an SMT assertion that is
translated from a branch condition with respect to the given class bounds.

Our approach improves the time efficiency of symbolic execution by ex-
ploiting the recent advances of incremental SMT solvers to solve similar path
conditions. An incremental SMT solver reuses the intermediate lemmas that
it has learned in previously constraint solving, in contrast to a common SMT
solver that learns lemmas from scratch each time when it is invoked. For the
scenario where cache-based approaches can not help, modern incremental SMT
solvers, such as CVC4 [Deters et al., 2014], MathSAT5 [Cimatti et al., 2013],
Yices [Dutertre, 2014], and Z3 [de Moura and Bjørner, 2008] can help: during
constraint solving these tools learn lemmas, which can be later (re)used to
solve similar, but not identical, constraints. Unlike the cache-based approach
that invokes a solver for both current branch condition and previous path
conditions that are mutually-dependent, our approach only lets an SMT solver
check the current branch condition. Using an incremental SMT solver in path
exploration, however, requires to update states on program assignment state-
ments and load states on branching points to generate fresh constraints. That
is even worse for those paths traversed multiple times. Our approach repre-
sents a program state implicitly as a collection of independent variables and
has path conditions constructed before path exploration. It not only reduces
the cost of path exploration, but also reduces the size of path conditions by
eliminating the common sub-expressions in path condition.

We have implemented our approach in the prototype tool SymbolicJ. To the
best of our knowledge no existing symbolic execution tool uses incremental
SMT solving for symbolic execution. There is no clear reason why incremental
SMT solving support has not been explored more intensively, although more
research is needed to combine these two complementary approaches. Hence,
it is important to evaluate how helpful this alternative can be. We compared
SymbolicJ with various implementations of cache-based approaches in reduc-
ing the time cost of constraint solving in symbolic execution. Overall, our
evaluation indicate that SymbolicJ provides superior results.

7.1 Background

Symbolic execution has two components: path condition generation and path
condition solving. A path condition is a symbolic boolean expression that
encodes the conditions on the inputs to follow one particular path through
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the program. Path condition solving serves to check path feasibility and to
generate concrete inputs for P . We explain each of them below.

When symbolic execution evaluates a branch instruction in path explo-
ration, it needs to decide which branch of the control flow to select. In a regular
execution with concrete inputs the evaluation of a boolean expression is either
true or false so only one branch of the conditional can be taken. In contrast,
in symbolic execution the evaluation of a boolean expression is a symbolic
value so both branches can be taken resulting in different paths to be explored
in the program. Symbolic execution characterizes each path it explores with
a path condition over the input variables −→x . This condition is defined with a
conjunction of boolean expressions pc(−→x ) =

∧
i>0 bi. Each boolean expression

bi denotes a branching decision made during the execution of a distinct path
in the program under test. Symbolic execution terminates when it explores
all paths corresponding to the different combinations of decisions (e.g., for
software testing), or terminates when it finds a feasible path that leads to
violation of the desired property (e.g., for program verification). Programs
with loops and recursion may result in an infinite number of paths; in those
cases, one needs to define a bound on the number of iterations of loops.

Symbolic execution uses constraint solving in two cases: (i) to check path
feasibility, and (ii) to generate counterexamples to the desired property (or
test inputs). In the first case, symbolic execution checks if the current path
is feasible by checking if its path condition is satisfiable. Exploration of one
path is interrupted if the path condition becomes unsatisfiable. In the second
case, symbolic execution uses a constraint solver to solve constraints associ-
ated with complete paths. The solutions to these constraints correspond to
counterexamples (or test inputs) for achieving high path coverage.

7.2 Our Approach

Our approach can be used in the verification mode to check whether the desired
property holds for a program, or in the testing mode to generate test inputs.
Given as input a parametrized program (annotated by specifications), the class
bounds, and the loop bounds, our approach explores the program in depth-
first order and checks the path conditions using an incremental SMT solver. In
the verification mode, our approach terminates either when it finds a program
input that leads the program to satisfies the negated specifications (i.e., a
counterexample to the specifications), or when all paths have been explored.
In the testing mode, our approach ignores the specifications and terminates
when it explores all paths corresponding to the different combinations of
decisions. Our symbolic execution approach is divided into three steps. First,
the decision graph is constructed from the analyzed program. Second, path
conditions are constructed from the decision graph. Third, path conditions
are solved using an incremental solver in path exploration.
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7.2.1 Construction of the Decision Graph

A central part of our approach is the construction of a decision graph—a com-
pact version of the verification graph—to support path condition generation
and path exploration. We build this graph from an acyclic verification graph
which is constructed from the analyzed program as shown in Section 3.1. In
addition to the code transformations used in the construction of the verifica-
tion graph, our approach uses heuristics to detect loops with concrete (i.e.,
non-symbolic) conditionals. For example, it identifies that the following loop
iterates exactly K times for(int i=0; i<K; i++). In addition, constants
are unfolded and unreachable code is removed. Using constant (and null-
value) propagation, we avoid adding unnecessary exceptional branches. For
example, there is no need to prepend an exceptional branch on x.f=y; when
the object x is known to be not null at the field access. On the other hand, if
x is known to be null on the current statement, we replace this statement by
an edge that targets one error/exit node of the decision graph. Note that as
the decision graph is acyclic, each variable definition is dynamically unique,
i.e., we can treat them as constants. It is important to note that our approach
performs all these transformations and the path condition generation (to be
shown in Section 7.2.2) before path exploration.

Figure 7.1 shows a decision graph for the add function in Fig. 7.1(a). The
code of function add is only for illustrative purpose; the decision graph in
Fig. 7.1(b) is constructed from the add function, where new variables (b1 and
b2) are introduced and each variable is defined only once similar to SSA [Rosen
et al., 1988]. It is important to note that similar effect can be obtained without
applying this transformation, e.g., by hashing the assignment statements.

1 //@ ensures \result >= 0;
2 void add(int a, int b) {
3 if (a < 0) {
4 b = a + b;
5 }
6 if (b < 0) {
7 b = -b;
8 }
9 return b;

10 }

a < 0
b1 = a+ b

a ≥ 0
b1 = b

b1 < 0
b2 = 0− b1

b1 ≥ 0
b2 = b1

¬(b2≥0)

(a) A simple code (b) Decision graph

Fig. 7.1: A decision graph in (b) for the code in (a). Its edges contain the branch
conditions and the basic code block (highlighted).
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7.2.2 Path Condition Generation

It is well known that sharing of structurally equal expressions can reduce
space and time requirements in constraint solving, especially when dealing
with large constraints. Modern SMT solvers identify the sharing automatically,
but there is cost associated with it and the mechanism to identify sharing is
non-optimal for the analyzed programs. Aware of that, we construct the path
conditions in a representation that facilitates the identification of the sharing.
In particular, we translate the branch conditions and assignment statements on
the edges of the decision graph into SMT assertions and variable definitions,
respectively, using the rules presented in Fig. 3.6. In contrast to constructing a
single long path condition over the program arguments for each branch, we
treat the variables defined in the assignment statements as the references to
the common sub-expressions (i.e., to the expressions on the right-hand side of
the statements), and use them to construct many short path conditions.

Our representation of path conditions brings the information of code
level to facilitate the elimination of common sub-expressions in SMT solving.
Consider, for example, the code fragment if(.)a=x+y;if(a+z>10){.}.
With traditional symbolic execution, the path corresponding to the traversal of
the true branches is denoted by the constraint ... x+y+z > 10. Our approach,
however, translates this constraint into ... a1 = x0 + y0 ∧ a1 + z0 > 10 as it
identifies that the expression denoted by a1 can be reused in other contexts.
The use of such representation increases space requirements, i.e., it increases
the number of variables and conjuncts in the constraint. On the other hand,
it helps the constraint solver by letting it associate information with newly
defined symbols (in this case, a1).

A constraint solver does not admit destructive state updates; symbols that
have been defined in the stack cannot be reassigned. For that reason, to enable
the use of incremental solving it is necessary to use a functional program
representation (e.g., an SSA-like program representation) whose variables
can be assigned only once. This can be obtained explicitly in constructing the
decision graph, by transforming the program into a functional representation,
or implicitly, by renaming symbols on-the-fly during state-space exploration.
In our approach, each sub-expression that is reused triggers the definition of
a new frame in the assertion stack. Symbolic execution restores state when
backtracking by selectively dropping frames from the assertion stack.

Figure 7.2 shows side-by-side the SMT formulas produced with this op-
timization disabled (Stack) and enabled (SymbolicJ) for the add method pre-
sented in Fig. 7.1(a). In contrast to Stack, that generates fresh constraints
on decision points, SymbolicJ reuses expressions. For example, in Fig. 7.2(b),
SymbolicJ renames variable b_1 in query 1 to refer to a + b, and uses it in
queries 2 and 4. Later in this chapter we evaluate how such transformation
can speedup stack-based constraint solving.
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(a) Stack

(declare-fun a () Int)
(declare-fun b () Int)
(push) ; query 1
(assert (< a 0))
(check-sat) ; sat
(push) ; query 2
(assert (< (+ a b) 0))
(check-sat) ; sat
(push) ; query 3
(assert (not (>= (- 0 (+ a b)) 0)))
(check-sat) ; unsat
(pop)
(pop)
(push) ; query 4
(assert (>= (+ a b) 0))
(check-sat) ; sat
(push) ; query 5
(assert (not (>= (+ a b) 0)))
(check-sat) ; unsat
(pop)
(pop)
(pop)
(push) ; query 6
(assert (>= a 0))
(check-sat) ; sat
(push) ; query 7
(assert (< b 0))
(check-sat) ; sat
(push) ; query 8
(assert (not (>= (- 0 b) 0)))
(check-sat) ; unsat
(pop)
(pop)
(push) ; query 9
(assert (>= b 0))
(check-sat) ; sat
(push) ; query 10
(assert (not (>= b 0)))
(check-sat) ; unsat
(pop)
(pop)
(pop)
(exit)

(b) SymbolicJ

(declare-fun a () Int)
(push) ; query 1
(assert (< a 0))
(check-sat) ; sat
(define-fun b_1 () Int (+ a b))
(push) ; query 2
(assert (< b_1 0))
(check-sat) ; sat
(define-fun b_2 () Int (- 0 b_1))
(push) ; query 3
(assert (not (>= b_2 0)))
(check-sat) ; unsat
(pop)
(pop)
(push) ; query 4
(assert (>= b_1 0))
(check-sat) ; sat
(define-fun b_2 () Int b_1)
(push) ; query 5
(assert (not (>= b_2 0)))
(check-sat) ; unsat
(pop)
(pop)
(pop)
(push) ; query 6
(assert (>= a 0))
(check-sat) ; sat
(define-fun b_1 () Int b)
(push) ; query 7
(assert (< b_1 0))
(check-sat) ; sat
(define-fun b_2 () Int (- 0 b_1))
(push) ; query 8
(assert (not (>= b_2 0)))
(check-sat) ; unsat
(pop)
(pop)
(push) ; query 9
(assert (>= b_1 0))
(check-sat) ; sat
(define-fun b_2 () Int b_1)
(push) ; query 10
(assert (not (>= b_2 0)))
(check-sat) ; unsat
(pop)
(pop)
(pop)
(exit)

Fig. 7.2: The SMT-LIB scripts expressing path conditions of the Java add
method presented in Fig. 7.1(a). They are generated using stack-based ap-
proaches for the verification of the add method. Modern SMT solvers provide
an assertion stack to incrementally solve the problems that share similar sets
of definitions and assertions. SMT-LIB provides push and pop commands to
manipulate such stack. Each stack frame stores an assertion set, which includes
locally-scoped functions and logical formulas. The command (check-sat)
returns sat if the conjunction of all assertions sets in the stack is satisfiable, or
unsat otherwise. The SMT comments, i.e., the texts following the semicolon
mark “;”, indicate what happens during exploration.
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7.2.3 Path Exploration

Our technique takes as input the root of the decision graph, an initial model
(i.e., a concrete input vector), and an optional time-budget for exploring the
program state space. To facilitate illustration we omit the time-budget and
define our path exploration as a recursive depth-first search (DFS) through the
decision graph. It explores the edges of the decision graph according to the
decisions from the current model. By construction, it elaborates a satisfiable
stack of assertions as it drives execution towards a feasible path. Consequently,
it only explores a new path when execution hits a dead-end. In that case, either
the desired property holds for the explored path (using the verification mode),
or a new test case is generated (using the testing mode). Then our approach
backtracks exploration to the last unvisited path in the decision graph.

Algorithm 4 shows the algorithm of path exploration. We use the following
functions to support our definition.

• genTest produces a test case for the input model;
• pushContext and popContext are wrappers for SMT-LIB commands
push and pop, respectively;

• loadDefsAndAsserts augments the logical context of the solver with
definitions and assertions passed as argument;

• check-sat-and-get-model returns a feasible model if the set of asser-
tions passed as argument is satisfiable; it returns null otherwise;

• hasSyntheticAsserts indicates if the edge has the assertion intro-
duced in the loop unrolling. It returns true if the argument edge associates
to the branch of the bound-hit iteration of the loop;

• eval checks if the decision associated to a branch is satisfied with concrete
input.

• terminates denotes the overall symbolic execution terminates.

7.3 Evaluation

This section presents the experiments we have conducted to evaluate vari-
ous techniques for symbolic execution. We aim to understand the extent to
which constraint solving can be optimized. Our hypothesis is that two factors
are important to determine efficiency of symbolic execution: (i) the use of
incremental solving (since many path constraints from symbolic execution
are similar), and (ii) the use of common sub-expressions elimination (since
clause sharing plays an important role in constraint solving).

7.3.1 Experimental Setup

We considered five techniques to evaluate the effectiveness of the cache-based
and stack-based approaches to incremental solving, and to investigate the
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Algorithm 4 Path Exploration Algorithm

1: function TRAVERSE(node, model)
2: if model == null then
3: return
4: end if
5: if node.hasNoChildren then
6: GENTEST(model)
7: if isVerificationMode then
8: // in the verification mode of our approach
9: TERMINATES()

10: else
11: // in the testing mode of our approach
12: return
13: end if
14: end if

15: leftEdge← node.leftEdge, rightEdge← node.rightEdge
16: reachLeft← EVAL(leftEdge, model)
17: covered← reachLeft ? leftEdge : rightEdge
18: uncovered← reachLeft ? rightEdge : leftEdge

19: // explore the covered edge
20: PUSHCONTEXT()
21: LOADDEFSANDASSERTS(covered)
22: if covered.hasSyntheticAsserts ∧ !EVAL(covered, model) then
23: model← CHECK-SAT-AND-GET-MODEL()
24: end if
25: TRAVERSE(covered.targetNode, model)
26: POPCONTEXT()

27: // explore the uncovered edge
28: PUSHCONTEXT()
29: LOADDEFSANDASSERTS(uncovered)
30: model← CHECK-SAT-AND-GET-MODEL()
31: TRAVERSE(uncovered.targetNode, model)
32: POPCONTEXT()
33: end function

benefit of using common sub-expressions elimination in symbolic execution.
All techniques have been implemented in the same infrastructure. We have
implemented the infrastructure in Java in ∼20KLOC. We used InspectJ to
perform source code transformation and to construct verification graphs.
The infrastructure generates constraints in SMT so it can interface with any
compliant solver. For example, Z3 is called directly through its programmatic
interface to create corresponding Z3 expressions. The infrastructure supports
both theories of integers and bit-vectors to assess the impact of various options
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of incremental solving to speedup symbolic execution. The infrastructure
reuses the created objects to reduce the time and also memory allocation
in constraint generation. We briefly describe these techniques below and
illustrate them in the rest of this section.

Baseline is the technique that does not use incremental solving. It produces
a path condition whose conjuncts correspond to the control decisions on
symbolic input variables reached along an execution path. This technique
makes an independent call to a solver on each query issued from symbolic
execution. Figure 7.3(a) shows an example of SMT formulas generated using
this technique.

Caching refers to the cache-based technique that uses the independent clauses
optimization. In the cases that symbolic variables are independent, this op-
timization is helpful since its individual query to a solver is potentially sim-
pler and therefore conceptually cheaper. It incurs in overhead to partition
constraints, lookup, and update the cache. Figure 7.3 shows SMT formulas
produced with this optimization disabled (Baseline in Fig. 7.3(a)) and enabled
(Caching in Fig. 7.3(b)) for the code shown in Fig. 7.1(a). Caching issues each
query with the construction of variables and terminates with the destruction
of the solver context. For each query, only dependent constraints reach the
solver; solutions are cached to avoid redundant queries.

Partitioning optimizes Caching by partitioning constraints incrementally. It
keeps in memory the set of partitions and corresponding variables for the pre-
viously explored constraint. When reaching a control decision, it obtains new
partitions by merging all partitions that have variables in common, consider-
ing the new variables involved in the decision. Consider the path constraint
PC=

∧
Ci(Vi), where Ci is a partition of dependent clauses in PC involving

only symbolic variables Vi. When reaching a control decision C(V ), a new
partition will be constructed. If the symbolic variables V are not involved in
PC , the new partition is equal to C(V ), otherwise the new partition is the
union of Ci(Vi) and C(V ), because Vi and V have shared symbolic variables.
It incurs in additional overhead to merge partitions. The SMT formulas gener-
ated by this technique are the same as generated by Caching, e.g., the script in
Fig. 7.3(b).

Stack refers to the technique that creates a new frame on the assertion stack of
an SMT solver when reaching a new control decision. An example of the SMT
formulas generated by Stack can be found in Fig. 7.2(a). In this technique, the
solver context that are evolved as new assertions are added to the stack and
survives across the symbolic execution of different paths. Note that learned
lemmas created on a stack frame are destroyed upon a pop of that frame.

SymbolicJ refers to our technique (and also the tool) that optimizes Stack by
eliminating common sub-expressions. It replaces the common sub-expressions
by fresh variables. That increases expression sharing to improve the speed
and memory usage of constraint generation, and also facilitates the solver to
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identify the constraints associated to the symbolic variables. Besides, it builds
path conditions prior to path exploration. That improves time and space
efficiency of path exploration. Figure 7.2(b) contains the SMT-LIB formulas
generated by SymbolicJ.

7.3.2 Objectives of Analysis

We used two sets of programs in our evaluation. The first set includes pro-
grams collected from the benchmark of KLEE [Cadar et al., 2008a], an open-
source static symbolic execution tool for C programs. The second set includes
programs automatically generated with RUGRAT [Breech et al., 2008], a
grammar-based Java program generator that has been proposed to support
empirical evaluation of testing and analysis techniques. 1

The KLEE Coreutils benchmark used in [Cadar et al., 2008a] contains 96
Unix core programs (4.5 KLOC together). The tool handles C programs that
our infrastructure does not support. Instead, we ran KLEE on the benchmark,
collected path conditions produced by the tool, and analyzed them in order,
i.e., consecutive constraints in the list reflect exploration order and are similar.
We set the time budget for the symbolic execution of KLEE to 30 seconds2 and
used the default configuration for running KLEE. We confirmed, as expected,
that KLEE spends most of its time budget (90%=∼27s/30s) in constraint
solving.

RUGRAT produces Java programs based on weights associated to gram-
mar production rules. We considered three options for the program size: 5, 10,
and 20 KLOC. We generated a total of 300 programs, 100 programs for each
program size.

The independent variables of our experiments are the time budget for
symbolic execution, the size of the program, the form of constraint solving,
and the choice of SMT solver. We used various dependent variables, e.g., the
number of path conditions generated, the number of program states explored,
and the number of test inputs generated. These variables are standard metric
to assess effectiveness of symbolic execution. In principle, the higher this
number is the higher the chances symbolic execution will reveal a bug.

We used several SMT solvers (e.g., Z3 [de Moura and Bjørner, 2008],
CVC4 [Deters et al., 2014], and MathSAT5 [Sebastiani and Trentin, 2015])
for solving constraints and bounded depth-first search for exploring paths
(i.e., loops are unrolled for a limited number). Even though the results are

1 A practical challenge for these kinds of generators is to construct realistic programs.
However, an empirical study [Hussain et al., 2012] that compared real and generated
programs with 78 existing software metrics indicates that it is statistically impossible
for a program analysis technique to differentiate a program written by a human
from one that the tool generates.

2 It is very time-consuming to process huge text files. In our environment, KLEE
generates constraint files with the average file size ∼500 megabytes per program in
30 seconds, and the file size grows exponentially over time.
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(a) Baseline

(declare-fun a () Int) ; query 1
(assert (< a 0))
(check-sat) ; sat
(exit)
(declare-fun a () Int) ; query 2
(declare-fun b () Int)
(assert (and (< a 0) (< (+ a b) 0)))
(check-sat) ; sat
(exit)
(declare-fun a () Int) ; query 3
(declare-fun b () Int)
(assert (and (< a 0) (< (+ a b) 0)

(not (>= (- 0 (+ a b)) 0))))
(check-sat) ; unsat
(exit)
(declare-fun a () Int) ; query 4
(declare-fun b () Int)
(assert (and (< a 0) (>= (+ a b) 0)))
(check-sat) ; sat
(exit)
(declare-fun a () Int) ; query 5
(declare-fun b () Int)
(assert (and (< a 0) (>= (+ a b) 0)

(not (>= (- 0 (+ a b)) 0))))
(check-sat) ; unsat
(exit)
(declare-fun a () Int) ; query 6
(assert (>= a 0))
(check-sat) ; sat
(exit)
(declare-fun a () Int) ; query 7
(declare-fun b () Int)
(assert (and (>= a 0) (< (+ a b) 0)))
(check-sat) ; sat
(exit)
(declare-fun a () Int) ; query 8
(declare-fun b () Int)
(assert (and (>= a 0) (< (+ a b) 0)

(not (>= (- 0 (+ a b)) 0))))
(check-sat) ; unsat
(exit)
(declare-fun a () Int) ; query 9
(declare-fun b () Int)
(assert (and (>= a 0) (>= (+ a b) 0)))
(check-sat) ; sat
(exit)
(declare-fun a () Int) ; query 10
(declare-fun b () Int)
(assert (and (>= a 0) (>= (+ a b) 0)

(not (>= (- 0 (+ a b)) 0))))
(check-sat) ; unsat
(exit)

(b) Caching

(declare-fun a () Int) ; query 1
(assert (< a 0))
(check-sat) ; sat
(get-value (a)) ; [a]:=[-1]
(exit)
(declare-fun a () Int) ; query 2
(declare-fun b () Int)
(assert (and (< a 0) (< (+ a b) 0)))
(check-sat) ; sat
(get-value (a b)) ; [a, b] := [-1, 0]
(exit)
(declare-fun a () Int) ; query 3
(declare-fun b () Int)
(assert (and (< a 0) (< (+ a b) 0)

(not (>= (- 0 (+ a b)) 0))))
(check-sat) ; unsat
(exit)
(declare-fun a () Int) ; query 4
(declare-fun b () Int)
(assert (and (< a 0) (>= (+ a b) 0)))
(check-sat) ; sat
(get-value (a b)) ; [a, b] := [-1, 1]
(exit)
(declare-fun a () Int) ; query 5
(declare-fun b () Int)
(assert (and (< a 0) (>= (+ a b) 0)

(not (>= b 0))))
(check-sat) ; unsat
(exit)
(declare-fun a () Int) ; query 6
(assert (>= a 0))
(check-sat) ; sat
(get-value (a)) ; [a]:=[0]
(exit)
(declare-fun b () Int) ; query 7
(assert (< b 0))
(check-sat) ; sat
(get-value (b)) ; [b]:=[-1]

; cache hit: [a>=0]
(exit)
(declare-fun a () Int) ; query 8
(declare-fun b () Int)
(assert (and (>= a 0) (< (- 0 b) 0)

(not (>= (- 0 b) 0))))
(check-sat) ; unsat
(exit)
(declare-fun a () Int) ; query 9
(declare-fun b () Int)
(assert (>= b 0))
(check-sat) ; sat
(get-value (b)) ; [b]:=[0]

; cache hit: [a>=0]
(exit)
(declare-fun a () Int) ; query 10
(declare-fun b () Int)
(assert (and (>= a 0) (>= b 0)

(not (>= b 0))))
(check-sat) ; unsat
(exit)

Fig. 7.3: The SMT-LIB scripts expressing path conditions of the Java add
method presented in Fig. 7.1(a). They are generated using Baseline and Caching
techniques to verify the add method against the specification. Each query ter-
minates with the sequence of commands check-sat and get-value which
indicate whether the constraint was satisfied or not. The solver context, that
maintains the lemmas learned in previous computations, is destroyed with
the command exit. Comments indicate what happens during exploration.
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deterministic, we ran our scripts multiple times to confirm that environmental
changes did not introduce noise in our measurements. We used an Intel Xeon
E5-2670 CPU with 2.60GHz clock running on a 64-bit Linux, and set 8GB as
the max heap size for one symbolic execution.

7.3.3 Results and Analysis

We pose the following research questions.

RQ1. How cache-based and stack-based techniques compare?
RQ2. What is the benefit of using common sub-expression elimination?
RQ3. Where is each technique spends most time?
RQ4. How sensible different solvers are to the techniques?

RQ1. How cache-based and stack-based approaches compare?

To answer this research question we compared the effectiveness of the tech-
niques on the KLEE and RUGRAT benchmarks. We only considered variants
without applying common sub-expression elimination in this experiment.

The KLEE benchmark

Figure 7.4 shows the speedup that the technique Stack obtains compared
to the technique Partitioning. The table in the right-top corner shows the time
of solving each path condition. 3 Considering the 96 analyzed programs the
median speedup of Stack over Partitioning was ∼5x. In absolute terms Stack
analyzed all path conditions of a program in 0.14s in the best case and 72.36s
in the worst case, with a median cost of 6.3s and an average cost of 7.53s. For
92 of the 96 programs Stack has solved all path conditions of each program
under 10s. 2 programs were solved under 30s and for only 2 programs it
required more time: 54.9s and 72.36s.

This gain of faster constraint solving is evidenced by: when symbolic
execution proceeds along one single path, the Stack approach pushes new
clauses onto the constraint stack whenever exploration observes a new control
decision. At that point exploration proceeds if the solver responds positively to
the checking of satisfiability of the constraint in the stack (feasibility checking)
and a new stack frame is created. In contrast, the technique Baseline does not
save solver context; hence the solver needs to perform the search from scratch
whenever reaching a control decision.

The RUGRAT benchmark

Figure 7.5 and Fig. 7.6 show results of various techniques for programs
that are generated by RUGRAT. We fixed the time budget to 10 minutes for
depth-first path exploration.
3 We did not evaluate SymbolicJ in this experiment as that would require post-

processing KLEE-generated constraints and result in unfair comparisons.
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Fig. 7.4: Speedup of stack-based constraint solving over the best other tech-
niques using Z3 on KLEE constraint files. The table in the right-top shows the
solving time per path condition using various techniques.

5K 10K 20K
Number of path conditions / second
Baseline 92.1 27.0 15.5
Caching 109.6 13.5 8.1
Partitioning 187.9 30.6 12.8
Stack 1319.0 518.9 298.0
SymbolicJ 3672.4 1443.9 862.0

5K 10K 20K
Total number of path conditions (x 1000)
Baseline 52 15 8
Caching 63 7 4
Partitioning 107 17 7
Stack 812 341 186
SymbolicJ 2156 834 485

Fig. 7.5: Speed of path condition solving on RUGRAT benchmarks in 10
minutes.
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Figure 7.5 shows the average speed of solving path conditions using each
technique and the total number of path conditions solved. The average speed
of solving path conditions is the total path condition solving time divided by
the number of path conditions within a 10m time slot. The results indicate
that the use of incremental SMT solving (i.e., Stack and SymbolicJ) is beneficial.
This is consistent with the plots from Fig. 7.6.
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Fig. 7.6: Average number of complete paths explored (i.e., tests generated) for
different options of program size using Z3. Time budget is set to 10 minutes.

Each datapoint in Fig. 7.6 indicates the number of explored complete
paths, i.e., the number of test cases generated, for a pair of the technique
and the point in time. These plots show progress of different techniques.
Notice from the Y-axis that as the size of programs grows the number of
explored complete paths decreases. We observed that as size of programs
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grows, constraint solving also becomes much more expensive; this justifies
the decrease in number of complete paths explored on longer programs.

All plots from Fig. 7.6 show a linear X-Y relationship, indicating that the
cost of exploring one path remains nearly the same during symbolic execution.
Note that results are averaged across several programs. This linear behavior
is surprising. In principle, it would be justified when feasible complete paths
are uniformly distributed across the exploration tree and the cost of exploring
one path is constant. A close inspection of the results revealed that this indeed
occurs many times although not always. However, as many subjects are
considered, a linear behavior emerged in the averaged plots.

It should be noted that the constraints from the RUGRAT benchmark build
on the theory of integers whereas the constraints from the KLEE benchmark
build on the theory of bit-vectors. We compared the techniques using different
theories and obtained some evidence that the stack-based techniques we
presented are effective for the two relevant theories.

RQ2. What is the benefit of using common sub-expression elimination?

Analyzing Fig. 7.6 it can be seen that SymbolicJ performs remarkably well.
In contrast to the Stack approach, this approach does not appear to degrade
performance as the size of programs and constraints increase. The reason for
this is justified. 1) On reaching each branch decision, SymbolicJ reuses the
constraints constructed before the path exploration while Stack constructs
new constraints when the variables involved in the branch condition were
updated in the path leading to this branch. This is evidenced in Fig. 7.7, in
which Stack has a notable overhead in path exploration. 2) To save search
space and time, most modern SMT solvers map structure-equal expressions
to a singleton to construct a compact problem. While modern solvers detect
shared expressions at the formula level, SymbolicJ introduces intermediate
variables as macros to shared expressions at the code level. Figure 7.7 also
shows that Stack spends notably more time in building logical context than
SymbolicJ.

RQ3. Where is each technique spends most time?

Figure 7.7 shows the time breakdown of the techniques considering 4 sources
of runtime cost: path exploration, Z3 expression construction, Z3 constraint
solving, and the residuals. Path exploration time includes the time of path
condition generation, e.g., storing / restoring states and constructing symbolic
expressions. We divide the constraint solving to Z3 expression construction and
Z3 solving. The Z3 expression construction refers to build the logical context in
Z3, that is to create and add Z3 assertions to the logical stack. The Z3 expression
construction time includes the time of creating Z3 expressions (we used Z3’s
programmatic interface (i.e., API) for that). The Z3 solving is the phase to
check satisfiability of the logical problem. The Z3 solving time includes actual
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Fig. 7.7: Average time breakdown of different techniques using Z3 in 10
minutes.

solving and caching time, and the residuals include the remaining parts, for
example, the time of performing code transforms.

The following observations are made:

• Baseline spends more time in Z3 expression construction compared to other
techniques. This happens because Baseline needs reconstruct all Z3 expres-
sions for a new query, while Caching reduces the amount of constraints
issued to the solver and consequently also reduces this cost.

• Stack spends more time in path exploration compared to other techniques.
This happens because Stack needs to update states on assignment state-
ments and load states on decision points to generate fresh constraints,



126 7 Bounded Symbolic Execution Using Incremental Constraint Solving

while SymbolicJ has constraints constructed before path exploration. That
is even worse for those paths traversed multiple times; Stack will reload
the states and recompute the constraints for each traversing, while Sym-
bolicJ has constraints constructed prior to the path exploration.

• All caching techniques and SymbolicJ spent most time on solving con-
straints and at least 70% of the time is spent in constraint solving in this
phase.

• Stack spent less time in Z3 solving compared to other techniques, while it
can solve more constraints than any other technique except SymbolicJ.

• SymbolicJ spent more time in residuals than other techniques. This hap-
pens because SymbolicJ has a code transformation to rename variables,
while this is not done by other techniques.

Construction of Decision Graphs. We construct the decision graph before the
path exploration. The construction of the decision graph requires a sequence of
source code transformations. For example, unroll loops according to the loop
bounds, inline methods on each method invocation statement, and renaming
variables (and fields) to make sure each variable (and field) is defined at most
once on each program path.
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Fig. 7.8: Average percentage of code transformation cost. For example, the
average cost of linearization for a 20K program configured to unroll loops at
most 3 times is approximately 34s(=(1.9/100)*30*60s)

We evaluated how costly these code transformations can be relative to
the other costs. We observed that the linearization procedure (i.e., inlining
methods and unrolling loops) is significantly more expensive compared to
renaming variables and fields. But still linearization has relatively low cost.
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Figure 7.8 shows how each of these operations scales with program size and
bound of loop unrollings. 60 subjects have been checked with a timeout 30
minutes. The scale of the Y-axis is the percentage of a 30m time budget. The
results are averaged across all subjects considered for that size. In the worst
case, linearization of 20K programs with 20 loop unrollings takes roughly
2m24s (=144s=8% of 30m). Note that the 20K linearization plot shows an
exponential increase in cost. Previous works (e.g., [Jackson, 2012]) indicate
that exhaustive testing within small bounds can achieve high statement and
branch coverage and kill most of the mutants. Thus small bounds are often
sufficient to find most errors.

RQ4. How sensible different solvers are to the techniques?

Figure 7.9 shows the number of states explored using various SMT solvers. We
used the pipeline-based interfaces of the solvers since the API-based interfaces
are missed for CVC4 and MathSAT5.
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Fig. 7.9: Average number of states explored from 5K subjects using CVC4,
MathSAT and Z3 in 30 min.

7.3.4 Threats to Validity

As usual, it is possible that results do not generalize much beyond our subject
set. To mitigate this threat we used a set of 300 automatically-generated Java
programs and a set of 96 real C programs from the GNU operating system.
Besides, it is possible that results are specific to Z3. To address this threat
we considered other solvers, namely CVC4 and MathSAT5. Although these
solvers show different costs for different constraint problems, we observed a
similar behavior on these solvers for the techniques we analyzed.

Another threat to validity is the possibility of errors in our implemen-
tation. We carefully inspected our code and the consistency of our results.
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Nevertheless, additional experiments are necessary to assess generality of our
results.

7.4 Related Work

Symbolic execution is a technique for systematic test-input generation that
has gained significant momentum in recent years [Cadar et al., 2011]. Several
tools have been proposed to support symbolic execution, including Bogor/Ki-
asan [Deng et al., 2006], Cloud9 [Bucur et al., 2011], (j)CUTE [Sen et al., 2005],
DART [Godefroid et al., 2005], DiSE [Yang et al., 2014], DSC [Islam and Csall-
ner, 2010], EXE [Cadar et al., 2008b], eXpress [Taneja et al., 2011], KLEE [Cadar
et al., 2008a], ParSym [Siddiqui and Khurshid, 2010], PEX [Tillmann and
de Halleux, 2008], SAGE [Godefroid et al., 2012], SMART [Godefroid, 2011],
and SPF [Pasareanu and Rungta, 2010]. Unfortunately, symbolic execution
is expensive both in time and space. We discuss most-related recent work
to reduce the high cost in constraint solving and in path exploration during
symbolic execution.

Time Reduction

Typically, symbolic execution spends a major part of its time in constraint
solving. Cadar et al. [Cadar et al., 2008a] proposed several approaches to
simplify constraints prior to calling an SMT solver during symbolic execution.
The static symbolic execution tool KLEE implements Caching as we described.
In addition, KLEE implements constraint checking with a potential solution.
It is based on the assumption that a solution of subset often satisfies extra
constraints. We need to investigate how this additional optimization compares
with those we considered.

Visser et al. [Visser et al., 2012] proposed GREEN, an infrastructure to
share results of symbolic executions across different environments. It not only
reuses the previously results in a single symbolic analysis, but also reuse more
generalized results such as the results from other runs of symbolic executions
and the results from different users. Moreover, they reused the results for
blocks of complicated code. GREEN proposes canonical representations of
path conditions to enable caching across different programs. The intuition is
that after partitioning constraints with respect to dependent clauses the chance
of finding structurally equal symbolic constraints increases. For example,
solutions to constraints produced in the symbolic execution of one program
could be used to solve constraints produced from the symbolic execution
for another program. The results of GREEN are encouraging to speedup
constraint solving. It is important to note that we also optimized the caching
algorithm by incrementally constructing the independent constraints, instead
of constructing them from scratch each time.
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Incremental SMT solving is an active field of research with the goal of
optimizing problems that can be characterized by many similar sub-problems.
For example, detecting the longest program execution trace [Li et al., 2014],
solving scheduling problems [Steiner, 2010], etc. As a basic decision procedure,
incremental SMT solving searches for a satisfying assignment by performing
various operations (e.g., unit propagation). When internal conflicts occur,
incremental SMT solvers extract and store conflict clause to prune exploration
search space. More specifically, incremental solvers store learned and conflict-
ing clauses in the assertion stack so that they can be reused upon backtracking.
Recently, Audemard et al. [Audemard et al., 2013] proposed a technique to
strengthen the clauses learned by the solver by extending an incremental SMT
solver to execute in multiple threads. We observed that this development can
directly improve symbolic execution.

Incremental SMT solving [Hooker, 1993; Whittemore et al., 2001; Wieringa,
2014] has been applied in some domain and achieved higher performance
by incrementally solving sets of related problems. Some experimental evi-
dence showed the effectiveness of the incremental facility to classical solvers.
For symbolic execution, to the best of our knowledge, there was no existing
symbolic execution tool using incremental SMT solving before our related
publication [Liu et al., 2014]. We evaluated the benefits of the gain and recom-
mend the use of incremental SMT solving in symbolic execution.

Space Reduction

Several techniques have been proposed to address the path-explosion problem
in symbolic execution. Godefroid [Godefroid, 2007] proposed compositional
symbolic execution. The idea is to perform symbolic execution using sym-
bolic summaries of functions that are incrementally computed in symbolic
execution. Yang et al. [Yang et al., 2014] proposed Directed Incremental Sym-
bolic Execution (DiSE) to speedup symbolic execution by capitalizing on the
changes across two code versions. Taneja et al. [Taneja et al., 2011] proposed
eXpress that builds on similar ideas. Both compositional and differential
symbolic execution are legitimate approaches to scale symbolic execution.
SymbolicJ is orthogonal to these techniques. It improves symbolic execution on
the apace dimension by eliminating common sub-expressions and building
the path conditions prior to path exploration. It is also possible to customize
SymbolicJ to perform compositional and differential symbolic execution.

Anand et al. [Anand et al., 2007a] proposed the use of an interprocedural
static analysis to detect potential flows of symbolic data to statements. One of
the goals was to speedup symbolic execution by avoiding unnecessary code
instrumentation. Even though SymbolicJ does not require code instrumenta-
tion we plan to evaluate how SymbolicJ compares to with further optimization
applied. Also, Siddiqui and Khurshid [Siddiqui and Khurshid, 2010], Staats
and Pǎsǎreanu [Staats and Pasareanu, 2010], and Bucur et al. [Bucur et al.,
2011] independently proposed the use of Parallel Symbolic Execution (PSE) to
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optimize the time dimension for symbolic execution. SymbolicJ complements
parallel symbolic execution. For example, our approach can be used on each
of the parallel processes to amplify the improvement of PSE.

More recently, Anand and Harrold [Anand and Harrold, 2011] proposed
Heap Cloning. The idea of the technique is to use an image of the concrete
heap while performing symbolic execution. One of the goals was to speedup
symbolic execution by avoiding unnecessary calls to reliable library code.
Park et al. [Park et al., 2012] proposed the use of large test suite bases to
support constraint solving. They use DSC [Islam and Csallner, 2010], a test
case generator using dynamic symbolic execution, to build path conditions
and existing test inputs to solve constraints. We will evaluate how SymbolicJ
compares to optimized versions of DSC that use such techniques.

7.5 Conclusion

Program verification techniques using symbolic execution generally check
the model of a program for the desired property by proving that all paths to
certain error nodes are infeasible (i.e., no program execution will violate the
property). One important obstacle for gaining high structural coverage is the
high cost of path condition solving.

We present an incremental SMT solving (stack-based) approach for symbolic
execution. Our approach represents the program under analysis in a decision
graph with respect to the loop bounds and constructs the path conditions
(concerning the class bounds) before the path exploration. Thus it reduces
the time of path condition generation. In the phase of path exploration, our
approach reduces the time of path condition solving by eliminating common
sub-expressions in the conditions and exploiting the recent advances of in-
cremental SMT solvers. An incremental SMT solver reuses the intermediate
lemmas that it has learned in previously constraint solving in contrast to a
common SMT solver that learns lemmas from scratch each time it is invoked.

We have implemented our approach in the prototype tool SymbolicJ. To
the best of our knowledge no existing symbolic execution tool uses incre-
mental SMT solving for symbolic execution. Hence, it is important to eval-
uate how helpful our approach can be. We performed an empirical study
on the efficiency of symbolic execution using different techniques. We com-
pared SymbolicJ with various alternatives using incremental solving. We
considered various options of cache-based incremental solving and a large
set of programs; both real (96 C programs from the KLEE benchmark) and
artificially-generated (300 randomly-generated programs of various sizes: 5,
10, and 20K). Overall, results indicate that stack-based approaches provide
superior results compared to cache-based approaches. The median speedup
obtained when using the support of a modern incremental SMT solver is of
∼ 5x (min.:∼ 1x, avg.:∼ 4.8x, max.: ∼ 9x). When the optimization that elim-
inates common sub-expressions is enabled in stack-based approach (i.e., the



7.5 Conclusion 131

approach provided by SymbolicJ), results indicate that the speedup obtained
is of ∼2.57x compared to a basic stack-based approach. Note that results are
restricted to the use depth-first search. More research is needed to find ways
to combine caching- and stack-based approaches to improve results even
further.





Part V

Conclusion





CHAPTER 8

Related Works

In the five previous chapters (Chapters 3–7) we have discussed the related
works that are specific for the area they concentrate. In this chapter we will
present the program verification techniques for checking the correctness of
programs with complex data structures.

Bounded Program Verification

Many bounded verification approaches (e.g., Jalloy [Vaziri-Farahani, 2004],
JForge [Dennis et al., 2006], TACO[Galeotti et al., 2013], Miniatur[Dolby et al.,
2007], Karun[Taghdiri, 2008], and MemSAT[Torlak et al., 2010]) have been
developed that target program with complex data structures. Similar to our
technique in Chapter 3, these approaches are exhaustive in the analyzed
domain and produce non-spurious counterexamples (with respect to the
analyzed bounds). However, unlike our technique that translates the code
and specifications into an SMT logic to allow high-level simplification before
bit-blasting, they directly use bit-blasting to generate the propositional logic
formulas from a relational logic. Bit-blasting is a formula flattening technique
that flats a high-level formula by representing its word-level variables, e.g.,
bit vectors, using bit-wise terms. Thus, scalability is their key issue since
bit-blasting may not scale when the bitwidth (size of a bit-vector) increases.

Scalability of bounded program verification can be improved by partition-
ing the set of all program executions based on the program’s control-flow
or data-flow properties, and analyzing each partition separately [Shao et al.,
2009, 2010]. Another possibility is to introduce a CEGAR framework (see
e.g., Karun [Taghdiri, 2008]), to iteratively analyze only the necessary parts
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of the code. Such ideas are independent of the underlying solver and can be
incorporated into our approach in future.

ESC/Java[Flanagan et al., 2002] and ESC/Java2[Cok and Kiniry, 2004]
analyze JML specifications of Java programs where loops are bounded, but
the objects in the heap are not. They support various SMT solvers and theorem
provers, but due to quantification over infinite types, their target logics are
undecidable. Thus the solver may not terminate with a conclusive outcome.

Deductive Program verification

Traditional program verification approaches made extensive use of the pro-
gram structure in structuring the analysis. Each method would be checked
against its specification, using specifications of the called methods as surro-
gates for their code. Many tools (e.g., KeY [Ahrendt et al., 2016], VCC [Cohen
et al., 2009], and PVS [Owre et al., 1992]) have been applied successfully to
substantial programs, but they suffer from an obstacle that limits their appli-
cability. It turns out that the burden of writing useful auxiliary specifications
(e.g., method contracts and loop invariants) for the called methods is consider-
able. First, understanding the required contributions of the called methods is
a serious issue when the called methods are deeply called by the top method.
Thus it is difficult to write just enough auxiliary specifications for the called
methods. A too detailed specification increases the difficulty to prove the
correctness of a program and it is error-prone to write such a specification. On
the other hand, a too weak auxiliary specification causes the verification to
fail. Second, it is unclear whether the auxiliary specification or the analyzed
program is wrong when the verification fails.

Shape Analysis

Shape analysis is a static code analysis that can estimate the shape (e.g., Tree
or Graph) of the data structure that is used in the analyzed program. Many
shape analysis algorithms [Chase et al., 1990; Jones and Muchnick, 1979, 1982;
Plevyak et al., 1993; Stransky, 1992] have been developed to infer shape in-
variants of programs with a particular data structure. They typically represent
the memory states via shape graphs in which the nodes represent memory
locations, and edges represent field relations. Each node is associated to a
group of shape predicates that describe its relations with other nodes. A finite
set of shape graphs is estimated via merging the nodes that satisfy similar
shape predicates to a summary node. to obtain a finite set of graphs that
implicitly represent the data structure properties. Sagiv et al. provide a para-
metric framework for shape analysis (PSA) [Sagiv et al., 2002] that generalizes
these algorithms and can generate various shape analysis algorithms with dif-
ferent precision and complexity according to the chosen shape predicates. PSA
encodes properties of memory locations using particular shape predicates
and evaluates predicates using Kleene’s 3-valued logic [Kleene et al., 1952].
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The output can be true (denoted by value 1), meaning that the property is
proved to be correct, false (denoted by value 0), meaning that the property
is known to be incorrect, or unknown (denoted by value 1/2), meaning that
nothing can be deduced. PSA has been implemented in the three-valued logic
analyzer (TVLA) [Lev-Ami and Sagiv, 2000] that can automatically generate a
static-analysis algorithm from the operational semantics of a given program.
TVLA requires users to provide abstract operational semantics in first-order
predicate logic with transitive closure. These semantics have to be proved
correct before the actual verification and contains enough details for gaining
a successful verification. It uses abstract-interpretation technique [Cousot and
Cousot, 1979] in shape analysis and conservatively merges shape nodes with
similar behaviors to a summary node with abstract operational semantics.
In contrast to traditional program verification that requires users to provide
annotations, TVLA has been used to infer loop invariants in proving the
insertion sort and bubble sort of an abstract datatype (ADT) of linear linked
list [Lev-Ami et al., 2000] and binary search trees [Reineke, 2006]. However,
the precision of these analysis depends on the chosen of shape predicates in
summarizing nodes.

The pointer assertion logic engine (PALE) [Møller and Schwartzbach, 2001]
is another shape analysis tool for verifying data structure invariants. PALE re-
quires users to provide a large set of annotations for the analyzed procedures.
The annotations are expressed in pointer assertion logic (PAL), a monodic
second-order logic expressed over records, pointers, and Boolean, and are
treated as hints for the underlying decision procedure, MONA [Klarlund
et al., 2002]. When the analysis terminates, either the data structure invariants
have been proved or a counterexample has been generated. PALE has been
shown to perform efficiently in practice, however, it has a non-elementary
worst-case complexity. Thus PALE aims to verify partial properties of a single
data structure. Besides, it eagerly requires user-provided annotations and
does not support arbitrary data structures.

To support composite data structures, especially nesting lists, Berdine et al.
proposed a higher-order predicate-based shape analysis (HOPSA) [Berdine
et al., 2007] to support a variety of complex data structures. HOPSA specifies
a family of linear data structures using a higher-order inductive predicate and
infers new predicates to express complex composite structures in the analysis.
it has been successfully used to verify several procedures in a system library.
In order to reduce the amount of annotations, Bohne [Wies et al., 2006] use
a number of decision procedures to infer loop invariants that may contain
transitive closure and quantifiers. However, it also requires users to provide
some annotations as hints in the abstraction of each code fragment.

In contrast to the approaches like PSA that group each family of nodes
into a single summary node when the nodes associate to equivalent predi-
cates, grammar-based shape analysis (GSA) [Lee et al., 2005] associates new
approximate grammars to the summary nodes of the shape graphs. That is,
GSA provides better precision than PSA to improve the accuracy and main-
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tains fewer shape graphs to reduce the space cost. The semantics of the shape
graphs is defined as assertions to be proved via separation logic [Reynolds,
2005]. GSA has been used to verify the binomial heap construction algorithm
and the Schorr-Waite tree traversing algorithm [Cormen et al., 2009]. All these
techniques are useful to analyze certain linear linked lists such as singly- and
doubly-linked lists. However, they are not easily extensible to arbitrary data
structures.

Model Checking

Model checkers such as FSoft [Ivancic et al., 2005], CBMC[Clarke et al., 2004],
and SLAM [Ball and Rajamani, 2001] were designed to check temporal safety
properties. They provide a fully automatics analysis and can produce sound
counterexamples. They have been successfully used in checking large pro-
grams against control properties, but they are not suitable for checking the
kind of data-structure properties that we aim. Several model checkers (e.g.,
[Ganai and Gupta, 2006; Armando et al., 2009; Sinz et al., 2010; Cordeiro et al.,
2012; Vujosevic-Janicic and Kuncak, 2012]) incorporate SMT solvers as their
underlying engines. Similar to our approach, they translate a program and its
property into an SMT logic that consist of bit-vectors and/or arrays. Unlike
our approach, their logics are quantifier-free or does not support reachability
expressions. To our knowledge, all of these model checkers focus on checking
C programs (thus no object-oriented features are supported), and their trans-
lations are highly tuned for checking memory layout and finite-state-machine
properties; no data-structure properties (beyond simple array accesses) can
be checked. JBMC [Cordeiro et al., 2018] is the first BMC-based Java veri-
fier. It processes Java bytecode and only checks the runtime exceptions, e.g.,
NullPointerException and ArrayIndexOutOfBoundsException. It
can not check the properties of complex data structures that we target.

Symbolic Execution

TestEra [Khalek et al., 2011] and Korat [Milicevic et al., 2007] also check Java
programs against data-structure properties with respect to a bounded heap.
However, they perform the check dynamically. That is, they generate all
non-isomorphic input structures that satisfy the preconditions within the
given bounds, run the program on each input, and check the results against
an oracle (or a postcondition). For checking code that involves a single data
structure, these approaches would suffice; they would achieve the same results
as bounded program verification. However, for checking code that involves
several data structures, the number of possible inputs can become too large to
enumerate and execute explicitly.



CHAPTER 9

Conclusion and Future Works

Verifying programs with complex data structures, e.g., lists, trees, and graphs
is particularly important for safety-critical software systems with extensive
heap manipulations. Erroneous heap manipulations may cause loss of data or
unauthorized access to data, violate software security, and may eventually
cause a system to crash. Program verification techniques such as deductive-
and bounded program verification generally are capable of verifying pro-
grams with complex data structures. However, they either require the veri-
fication engineers to provide many annotations and discovering useful an-
notations is a complicated and error-prone effort, or they do not scale—the
analysis only works for a very small scope.

This thesis presented an infrastructure to reduce the effort of verification
engineers in deductive program verification, i.e., the effort to inspect failed
proofs and to discover useful annotations.

• Reducing the number of failed proofs. Instead of proving the correct-
ness of a program from scratch, we verify the program using bounded
program verification before using deductive verification. Bounded pro-
gram verification is fully automatic, and grants fast and initial confidence
in the correctness of the program, and it is then convenient for the verifi-
cation engineers to renovate the failed verification. Besides, if a program
has bugs, it is very likely to find most of the bugs already in a small
scope. Therefore, proving a bounded verified program reduces the effort
of verification engineers in inspecting failed proofs.

• Reducing the unnecessary implementation details. Instead of writing
annotations for the whole program, we provide an instantiation of the
Counterexample-guided Abstraction Refinement (CEGAR) framework
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to gradually reveal the necessary implementation details for the deduc-
tive verification. Guided by bounded program verification, we construct
abstractions to replace those program parts whose behavior does not
affect the evaluation result of the specification and gradually refine the
abstractions based on the spurious counterexamples. Code with less de-
tails requires less annotations. Thus, we reduce the effort of verification
engineers in discovering useful annotations.

Our infrastructure gradually reveals the program parts that are relevant
to the desired property and then guarantees that only as much information
about the program will be analyzed as is necessary to check the property.
Thus it holds the promise of scalability. Besides, our CEGAR instantiation has
a certain degree of extensibility and it does not rely on a specific bounded
program verification. The deductive program verification can still benefit from
a scope-bounded code analysis. As an application using Satisfiability Modulo
Theories (SMT) solvers, our infrastructure exploits the recent advances of
SMT solvers. With the continuous development of SMT solvers, we believe
that our infrastructure will become more efficient.

Though the thesis overall presents a comprehensive infrastructure to check
whether a program fulfills its desired property, the components of the infras-
tructure are designed as stand-alone analyses that can be used in different
contexts. We provide an SMT-based bounded program verification approach
(see Chapter 3) that scales better than an SAT-based bounded program ver-
ification. It allows to analyze the programs for a larger scope and makes a
step forward in extending the applications of bounded program verification
in practice. In addition, our calculus for computing the accurate scope of
analysis (Chapter 4) improves the efficiency of existing bounded program
verification techniques, thus they may find software bugs that they could
not find before. We provide a verification-based program slicing technique
(Chapter 5) for the construction (and the refinement) of the abstractions in
our CEGAR instantiation (Chapter 6). The slicing technique and the CEGAR
instantiation liberate the verification engineers from the implementations that
are irrelevant to the desired property and also from the unnecessary verifi-
cation tasks during software development—they do not need to verify the
whole program if the updated implementation still fulfills the abstractions.
Finally, we investigate the impact of using incremental SMT solvers on the
speed of symbolic execution (Chapter 7). The results of our empirical study
recommend the verification engineers to use incremental SMT solvers when
they need to check an SMT formula that is similar, but not identical, to the
previously checked formulas.

We have implemented our approaches in prototype tools and performed
various experiments to evaluate the benefits of using those approaches com-
pared to existing (or constructed) alternatives. The preliminary results show
that in almost all cases our approaches provide faster and more accurate
answers of analysis and are more conducive to the deductive verification than
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the alternatives. However, there are still cases where our approaches do not
scale with the rising scope of analysis. Existing techniques can be used to
enhance the scalability of our approaches; for example, symmetry breaking,
incremental control-/data-flow analysis, and summary inference. Besides,
we plan to cover more language features. Currently, the infrastructure sup-
ports a basic subset of Java that does not include floating point numbers,
concurrency, and lambda calculus. Although we provide an encoding of the
Java Modeling Language (JML) reachability construct, this feature has only
been tested in bounded program verification but has not been used in the
experiments involving deductive program verification. Thus it is important
to investigate the impacts of using the feature in our CEGAR instantiation.
Another challenging and interesting task is to migrate our approaches into
other programming languages such as C and C++. They are widely used for
embedded and safety-critical systems.

The development of program verification is not an overnight process. It is
a gradual process. For example, program verification gains a lot of benefits
from using SMT solvers, and the development of SMT solvers is a gradual
process. It has been developed for many years and only in last decade, it
attracts people’s attention. In addition, there is no a single solution for all
problems, we combine the benefits of different techniques and improve the
efficiency of the program verification. The superior results recommend the
people to provide a heterogeneous solution (i.e., a program verification system
combining different techniques) to program verification. Recall the motivation
at the beginning of the first chapter that, more efforts are required on the road
to success in software quality assurance. We have made small steps on the
road in the thesis. So far, we have only made small steps in advancing the
process of extending applications of deductive program verification. The
bigger challenges are still ahead.
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