KIT | KIT-Bibliothek | Impressum | Datenschutz

Online Parameter Identification of a Fractional Order Model

Stark, Oliver 1; Kupper, Martin 1; Krebs, Stefan 1; Hohmann, Sören 1
1 Institut für Regelungs- und Steuerungssysteme (IRS), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper deals with the parameter identification of a fractional order model using modulating function method. The novelty is that the system has not to be at rest at the beginning of the parameter identification. That means, regarding fractional calculus, the initialization function must be considered. In the paper, it is stated that if a modulating function has a particular property the initialization function can be neglected. In this paper, it is also shown that the spline-type modulating function fulfills this property. Before the property can be stated, the used fundamentals of fractional calculus are given and the modulating function method is provided. Due to the property of this method, a fractional order differential equation is converted into an algebraic one. By shifting the modulating function, a system of linear equations is generated and a least squares algorithm in matrix form is applied to estimate the parameters. An error analysis and a numerical example complete this paper.

DOI: 10.1109/CDC.2018.8619723
Zitationen: 6
Zitationen: 5
Zugehörige Institution(en) am KIT Institut für Regelungs- und Steuerungssysteme (IRS)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2019
Sprache Englisch
Identifikator ISBN: 978-1-5386-1396-2
KITopen-ID: 1000084547
HGF-Programm 37.06.01 (POF III, LK 01) Networks and Storage Integration
Erschienen in 57th IEEE Conference on Decision and Control (CDC 2018), Miami, FL, December 17-19, 2018
Veranstaltung 57th IEEE Conference on Decision and Control (CDC 2018), Miami, FL, USA, 17.12.2018 – 19.12.2018
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 2303-2309
Vorab online veröffentlicht am 21.01.2019
Schlagwörter Identifikation, Fraktionales Modell, Initialisierung, Anfangsbedingung
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page