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Overview

This thesis is concerned with a pasting theorem for categories enriched over

quasi-categories. The notion of pasting goes back to the theory of 2-categories,

where one frequently encounters diagrams such as

A B C

X Y Z:
u

a b

gf

v

c

w

)
�

)
)

 
� (0.1)

The axioms of a 2-category ensure that one can compose two cells like e. g.

 and � above. In this way, one obtains a composite

cba
��ba
��! wgba

w ���a
���! wvfa

wv� 
���! wvu

of the whole diagram. Pasting refers to this cobbling of cells in 2-categories

and a diagram such as (0.1) is consequently called a pasting diagram.

In the case of (0.1), the order in which one forms the composites of two such

cells so as to obtain a composite of the whole diagram is actually unique.
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However, there are other diagrams such as e. g.

A B C;

u

v

f

g

) )

�  

where we have the two possibilities

f u
 �u
��! gu

g ��
��! gv and f u

f ��
��! f v

 �v
��! gv

to obtain a composite of the whole diagram. These two compositions actually

do coincide by the axioms of a 2-category. A pasting theorem simply asserts

that any well-formed diagram admits a composite that is independent from

the order in which we form compositions of individual cells in the diagram.

Such a theorem was conjectured for 2-categories in [KS74] and proven by

John Power in [Pow90].

The work of Power in [Pow90] has two facets. First of all, the formulation

of a pasting theorem requires a formal definition of what exactly a well-

formed diagram actually is. Power chooses certain plane graphs as his model

of a diagram in a 2-category. Building on this notion of a diagram and

its basic combinatorial properties, Power then goes on to show that any

labeling of such a diagram in a 2-category admits a uniquely determined

composite.

In this thesis, we prove a pasting theorem for a specific model of .1; 2/-

categories, namely categories enriched over quasi-categories. We reuse the
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model of diagrams introduced by Power and extend his work from 2-categories

to .1; 2/-categories. However, we have to cope with serious technical di�cul-

ties due to the fact that composition in .1; 2/-categories is only unital and

associative up to higher dimensional invertible cells. Moreover, we cannot

even expect a diagram to have a unique composite but have to settle with

composites that are unique up to higher dimensional invertible cells. More

precisely, we show that the space of compositions of a given diagram is

nonempty and contractible:

Theorem D Consider a globular graph G and a category A enriched over quasi-

categories. The space C.ƒ/ of compositions of a given labeling ƒ of G in A is a

nonempty contractible Kan complex.

A labeling as in the statement of the above theorem or the work of Power

simply refers to a sensible assignment of cells in the category A to any cell

in the graph G.

Let us say a few words about our model of diagrams before we comment on

the proof of Theorem D. We model our diagrams on certain plane graphs that

we call globular graphs for they typically look as follows:

s t

Although the concept of globular graphs is due to [Pow90], we have to extend

3
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and adapt it to our model of .1; 2/-categories. This means in particular that

we have to associate with any such graph a family Xa;b of simplicial sets

indexed by pairs .a; b/ of vertices of the graph. To this end, we introduce

the nerve of such a graph and develop a pictorial calculus to describe its

simplices. A simplex in N.G/ essentially corresponds to a picture such

as

s t ,2 1

;

where the numbers in the faces should be thought of as specifying the order

of composition. In order to describe partial composites in terms of these

simplicial sets, we then go on to restrict the type of simplices that may appear

in this nerve. This line of thought eventually leads to our notion of pasting

diagram.

Let us now comment on the proof of Theorem D. There are three main

aspects to the proof and each aspect can be handled individually. In fact, the

three main chapters of this thesis are more or less independent from each

other and deal with one issue at a time.

Global aspect If a pasting diagram † satisfies a certain technical as-

sumption, then we are able to associate with † a simplicial category CŒ†�.

For the maximal pasting diagram with underlying graph G one obtains for

example the free 2-category on this graph in the sense of Power. We use these

simplicial categories CŒ†� to model partial composites of diagrams in some

4
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simplicial category A by simplicial functors CŒ†�! A. Given such a partially

composed diagram u W CŒ†�! A, we may add all missing composite cells to

the abstract diagram † and thus obtain a new diagram …. The problem of

finding a composition of the concrete diagram u W CŒ†�! A then amounts to

the problem of finding an extension of u as in the diagram

CŒ†� A

CŒ…�:

u

inclusion (0.2)

We attack the problem of constructing such an extension by considering the

more general problem of finding a simplicial functor CŒ…�! A that renders

a diagram such as

CŒ†� A

CŒ…� B

u

inclusion p (0.3)

commutative. This solves the original problem of finding a composition of

u W CŒ†�! A as long as we allow the unique simplicial functor A! � to

feature as the functor p.

Consider a class R of maps of simplicial sets that contains all isomorphisms

and let L D tR be the class of maps that have the left lifting property against

5
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all maps in R. We solve the problem (0.3) for those diagrams of simplicial

categories, where p is a local R-functor, that is, p W A.a; a0/! B.pa; pa0/ is

an R-map for all a; a0 2 A. Our solution to (0.3) then takes the form of the

following theorem:

Theorem B The functor CŒ†� ! CŒ…� induced by an inclusion of complete

pasting diagrams has the left lifting property against all local R-functors if and

only if the map

N.†x;y(…x;y/! N.…x;y/

is an L-map for all vertices x; y 2 †.

The diagrams †x;y(…x;y appearing in the statement of Theorem B are

certain intermediate diagrams between † and … that are introduced at the

very end of § 2.5.

Local aspect Now suppose that the classes L and R from above are the

classes of mid anodyne maps and mid fibrations, respectively. In this case, the

unique functor A! � from a simplicial category A to the terminal simplicial

category is a local R-functor if and only if A is enriched over quasi-categories.

Theorem B hence reduces the problem (0.2) of finding a composition of a

diagram u W CŒ†�! A in some category enriched over quasi-categories to

the problem of showing that certain maps

N.†x;y(…x;y/! N.…x;y/

6
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are mid anodyne. We identify a certain class of inclusions †! … of pasting

diagrams for which these maps are indeed mid anodyne. More precisely,

we deduce that the maps in question are mid anodyne from the following

theorem:

Theorem C Let †! … be an inclusion of complete pasting diagrams such that

both † and … contain all the interior faces of the underlying graph and are closed

under taking subdivisions. Then

N.†/! N.…/

is mid anodyne.

Bootstrapping There is still one problem left that did not yet appear in

the above discussion. The simplicial categories CŒ†� featuring as the domain

of diagrams CŒ†�! A exist only under certain technical assumptions. In

order to complete the proof of Theorem D that we sketched so far, we have to

make sure that we can associate with any labeling ƒ of a diagram a simplicial

functor CŒ†�! A. This is achieved by

Theorem A Suppose that † is the minimal complete pasting diagram on some

globular graph G. The map

Cat y�.CŒ†�;A/! L.G;A/; u 7! ƒu;

that sends a simplicial functor u to its associated labeling ƒu is a bijection.

7
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The chapters of this thesis correspond to these three aspects of our main

theorem. The mutual interdependence of the individual chapters can be seen

in the following diagram:

chapter 1

Preliminaries

chapter 2

Basic definitions

chapter 3

Theorem A

chapter 4

Theorem B

chapter 5

Theorem C

chapter 6

Theorem D

§ 3.1

8



1 Prel iminaries

1.1 Lift ing propert ies

Fix a category C . A map i W A! B is said to have the left lifting property

against a map p W X ! Y if one finds a lift ` in any commutative solid

diagram such as

A X

B Y :

i p

In this case, we also write i t p. A map i as above has the left lifting property

against a class R of maps in C , if it has the left lifting property against any

map p 2 R.

1.1.1. Proposition The class L of all maps i that have the left lifting prop-

erty against a given class R of maps is closed under pushouts and (trans�nite)

compositions.

9



1 Preliminaries

We learned the following proposition and its proof from Richard Garner:

1.1.2. Proposition Let R be a class of maps in a category C with �nite colimits

and let L be the class of maps having the left lifting property against all R-maps.

Given a diagram

X2 X0 X1

Y2 Y0 Y1

u v

f2 f0 f1

u0 v0

with f0 and the induced maps Xi qX0
Y0 ! Yi in L, the induced map

f2qf0
f1 W X2qX0

X1 ! Y2qY0
Y1

is also in L.

Proof. Consider the class

R0 D
˚
.idX ; p/ W idX ! p j p W X ! Y 2 R

	
of maps in the arrow category C2 and let L0 be the class of maps with the

left lifting property against R0.

Let us consider an R0-map .idX ; p/ W idX ! p and a lifting problem of a map

.u; v/ W f ! g against .idX ; p/ in C2. Such a lifting problem corresponds to

10



1.1 Lifting properties

a diagram

A A

X Y

A B

X 0 Y 0:

id

id

u

v
f

g

u v

If the source f of .u; v/ is the identity of the initial object ¿ in C , this lifting

problem is equivalent to the lifting problem in the right face of the cube. We

therefore have f 2 L if and only if id¿ ! f 2 L0.

Moreover, we have for any such lifting problem an induced square

X 0qX Y A

Y 0 B

p

in C . It is easy to see that a solution to the latter lifting problem in C is

equivalent to a solution to the lifting problem in C2.

The maps f0 ! f1 and f0 ! f2 occuring in the span

f2  f0 ! f1

11



1 Preliminaries

in the statement of the lemma thus have the left lifting property against all

R0-maps. This implies in particular that the inclusion f1 ! f2 qf0
f1 has

the left lifting property against all R0-maps and so does the composition

id¿ ! f0 ! f1 ! f2qf0
f1:

This finishes the proof as f 2 L if and only if id¿ ! f 2 L0.

For the statement of an important corollary of this proposition, recall that a

class L of maps in some category has the right cancellation property if for any

diagram

� � �
i j

with i 2 L and j i 2 L, we have j 2 L, too.

1.1.3. Corollary Let R be a class of maps in a category C with �nite colimits

and let L be the class of maps having the left lifting property against all R-maps.

Further suppose that there is a diagram

X2 X0 X1

Y2 Y0 Y1

u v

f2 f0 f1

u0 v0

12



1.2 Simplicial sets

with f0; f1; f2 2 L. If L has the right cancellation property, then

f2qf0
f1 W X2qX0

X1 ! Y2qY0
Y1

is in L.

Proof. We verify the hypotheses of Proposition 1.1.2. We have a commutative

diagram

X0 X1

Y0 X1qX0
Y0

Y1

v

f0

f1

v0

in which both the map X1 ! X1 qX0
Y0 and the map X1 ! Y1 are in L.

We thus conclude that X1 qX0
Y0 ! Y1 is in L by the right cancellation

property of L. The other square is handled analogously.

1.2 Simplicial sets

We briefly recall some aspects of the theory of simplicial sets and quasi-

categories. This serves merely the purpose of fixing notation and quoting

13



1 Preliminaries

some results from the literature, so that we can easily refer to them when

needed. For more information on simplicial sets see e. g. [GJ09]. An introduc-

tory text on quasi-categories is [Gro10], for instance, while the original sources

[Joy08a; Lur09] develop the theory in much greater detail.

Basic de�nitions Let � denote the category of nonempty, finite ordinals

Œn� D f0; : : : ; ng and monotone maps. The category � admits a presentation

with generators cofaces ıi W Œn�1�! Œn� and codegeneracies � i W ŒnC1�! Œn�,

0 � i � n, given by

ıi.j / D

˚
j if j < i;

j C 1 else
and � i.j / D

˚
j if j � i;

j � 1 else,

and relations

ıiıj D ıj ıi�1 for all i > j;

� i�j D �j� iC1 for all i � j;

� iıj D

„
ıj� i�1 if j < i;

1 if i D j or j D i C 1;

ıj�1� i if j > i C 1:

(1.1)

The category y� of simplicial sets is the category of presheaves X W �op ! Set

and natural transformations. Simplicial sets are a complete and cocomplete

category as is true for any category of set-valued presheaves. For X 2 y�

14



1.2 Simplicial sets

we write Xn instead of X.Œn�/. Given the presentation of � by generators

and relations, it follows that a simplicial set X is completely determined by

the sets Xn, n 2 N, together with maps di W Xn ! Xn�1 and si W Xn ! XnC1

subject to relations that are dual to (1.1). Observe that simplices in a sim-

plicial set are oriented as the existence of a 1-simplex � with d1� D a and

d0� D b does not guarantee the existence of a 1-simplex with d0� D a and

d1� D b.

The elements x 2 Xn are referred to as n-simplices. Such an n-simplex

is degenerate if x D si.x
0/ for some x0 2 Xn�1 and nondegenerate other-

wise.

The representable presheaf �.�; Œn�/ is denoted by �n and called the n-

simplex. There are two types of simplicial subsets of �n that are of interest

to us, namely the boundary @�n � �n given by

@�n
�
Œm�
�
D
˚
˛ W Œm�! Œn�

ˇ̌
˛ not surjective

	
and the i -th horn ƒni � @�

n for 0 � i � n given by

ƒni
�
Œm�
�
D
˚
˛ W Œm�! Œn�

ˇ̌
Œn� X fig ª ˛

�
Œm�
� 	
:

A horn ƒni � �n is an inner horn if 0 < i < n. One should think of a

horn ƒni as the boundary @�n with the face opposite to the i -th vertex

removed.

15



1 Preliminaries

Nerves Consider a category C and a functor f W �! C.1 This data gives

rise to a nerve functor N W C! y� by virtue of the composition

C
Yoneda
����! yC

f �

��! y�;

where f � denotes the functor X 7! X Bf . In less fancy language, this means

nothing but that N.c/ D hom.f .�/; c/.

Important examples of this construction are the nerves of partially ordered

sets and,more generally, of categories. The category � embeds in the category

Poset of partially ordered sets and monotone maps, hence there is a nerve

N W Poset ! y�. Unravelling the definitions, one sees that an n-simplex �

in N.P / is a chain � D .x0 � � � � � xn/ of elements in P . The boundary

maps di omit the i -th element in this chain and the degeneracies si repeat

it.

One similarly has an embedding of� into the category Cat of small categories

that sends the ordinal Œn� to the category Œn� having nC 1 objects 0; : : : ; n

and a unique morphism i ! j if and only if i � j . The nerve N.A/ of a

category is thus the simplicial set whose set N.A/n of n-simplices is the set

of functors Œn�! A.

Kan �brations and anodynemaps Let us consider the sets

ƒ D fƒni ! �n j n 2 N and 0 � i � ng

1Such functors are commonly called cosimplicial objects in C.

16



1.2 Simplicial sets

of all canonical horn inclusions and the set

@� D f@�n ! �n j n 2 Ng:

of all canonical boundary inclusions.

A map p W X ! Y between simplicial sets is a Kan �bration if it possesses

the right lifting property against all maps in ƒ, that is, if for all n and all

0 � i � n and each diagram

ƒni X

�n Y ;

p

where the left vertical map is a map in ƒ, there exists a diagonal lift as

indicated. A simplicial set X is a Kan complex if the unique map X ! �0 is

a Kan fibration. The map p is a trivial Kan �bration if it possesses the right

lifting property against all maps in @�. In fact, trivial Kan fibrations have the

right lifting property against all monomorphisms in y�.

Kan fibrations have the right lifting property against all retracts of transfinite

compositions of pushouts of maps in ƒ. These maps are often called anodyne

and they actually comprise the class of all maps having the left lifting property

against all Kan fibrations.

17



1 Preliminaries

1.3 Quasi -categories

Quasi-categories are certain simplicial sets that first showed up in the work of

Boardman and Vogt [BV73]. Joyal seems to have been the first one to realise

that quasi-categories behave like categories with compositions defined only

up to infinitely many higher coherence cells. It seems important to the author

to mention that quasi-categories are by far not the only models available for

such generalised categories. In fact, there are many such models linked by

an intricate net of comparison theorems.

Mid �brations and quasi-categories With the advent of quasi-categories

came a whole family of di�erent fibrations in y� that serve di�erent purposes.

As we need so-called mid fibrations only, we refer the reader to [Joy08a] and

[Lur09, Chapter 2] for further notions of fibrations relevant to the theory of

quasi-categories.

A map p W X ! Y is a mid �bration if it possesses the right lifting property

against all maps in the set

ƒi
D fƒni ! �n j n 2 N and 0 < i < ng

of the canonical inclusions of inner horns. A simplicial setX is a quasi-category

if the unique map X ! �0 is a mid fibration.

Let us give a quick example that illustrates why it might make sense to

consider a quasi-category as a kind of generalised category. We picture the

18



1.3 Quasi-categories

0-simplices of a quasi-category X as its set of objects and the 1-simplices �

with d1� D a and d0� D b as the morphisms a! b. Given two composable

1-simplices � and � , we fabricate a map ƒ21 ! X that sends the edge 0! 1

in ƒ21 to � and the edge 1! 2 to � . The fact that this map is well-defined

is equivalent to the condition that � and � be composable. As X is a quasi-

category, we find a lift in the diagram

ƒ21 X

�2 �0:

This lift yields the composition of � and � as the face of �2 missing in

the inner horn ƒ21. Moreover, it also yields a 2-simplex witnessing that the

1-simplex in X selected by this new edge is indeed a composition of � and � .

The composition is not uniquely determined but one can show with a similar

argument that any two compositions can be compared by a non-unique

3-simplex. This continues ad infinitum. In order to be able to compare higher

and higher cells in the quasi-category and talk about suitable notions of

uniqueness, one needs to develop some techniques – mid fibrations and mid

anodyne maps are one of these.

A mid anodyne map is a retract of a transfinite composition of pushouts

of maps in ƒi. Again, mid anodyne maps are precisely the class of maps

having the left lifting property against all mid fibrations. The mid anodyne

19



1 Preliminaries

maps, however, are not the trivial cofibrations in Joyal’s model structure

for quasi-categories. In fact, no set of generating trivial cofibrations for the

model structure with fibrant objects the quasi-categories and cofibrations the

monomorphisms is known.

Closure properties of mid anodyne maps We have already seen that

mid anodyne maps are closed under transfinite compositions, pushouts and

retracts. Here, we collect some closure properties of mid anodyne maps

that are harder to obtain. The following propositions are due to Joyal, see

[Joy08b, Theorem 2.17 and 2.18] or [Lur09, Corollary 2.3.2.4 and 2.3.2.5].

1.3.1. Proposition Let i W A! A0 be a mid anodyne map and j W B ! B 0 be

an arbitrary monomorphism of simplicial sets. Then the canonical map

A � B 0
a
A�B

A0 � B ! A0 � B 0

is mid anodyne.

1.3.2. Corollary Mid anodyne maps are closed under products with arbitrary

simplicial sets X .

1.3.3. Proposition Let p W X ! Y be a mid �bration and j W A ! B be an

arbitrary monomorphism of simplicial sets. Then the canonical map

XB
! XA

�

YA

Y B (1.2)

20



1.4 Graphs

is a mid �bration. Moreover, if j is mid anodyne, then (1.2) is a trivial Kan

�bration.

1.3.4. Remark We cannot resist to point out that these propositions are

formally dual to each other, see [Rie14, Lemma 11.1.10].

For the statement of the last proposition, recall that a class C of monomor-

phisms in some category has the right cancellation property if for any dia-

gram

� � �
i j

with i 2 C and j i 2 C, we have j 2 C, too. The following result is due to

Stevenson [Ste16, Theorem E].

1.3.5. Proposition The class of mid anodyne maps has the right cancellation

property.

1.4 Graphs

This section serves the purpose of fixing notation and terminology for graphs.

All our graphs are directed and have possibly multiple distinct edges between

two vertices.

Graphs A graph G consists of a set G0 of vertices and a set G1 of edges

together with two maps s; t W G1 ! G0 called source and target, respectively. A

vertex v 2 G0 and an edge e 2 G1 are incident if v D s.e/ or v D t .e/. A graph

21



1 Preliminaries

G is �nite if both G0 and G1 are finite sets. We usually abbreviate v 2 G0
to v 2 G.

A graph is nothing but a set-valued presheafG on the category

0 1:

This point of view has the advantage that it does not only yield the notion of

a single graph but rather the category of graphs, which is complete and co-

complete as is any category of set-valued presheaves. We denote this category

by Graph. Explicitly, a morphism f W G ! H of graphs is given by two maps

f0 W G0 ! H0 and f1 W G1 ! H1 with the property that s.f1.e// D f0.s1.e//

and t .f1.e// D f0.t.e// for all edges e of G.

Paths Fix a graph G. An undirected path in G is a non-empty sequence

p D .v0; e1; v1; e2; : : : ; ek; vk/ alternating between vertices v0; : : : ; vk and

edges e1; : : : ; ek of G, such that ei is incident to both vi�1 and vi . We often

denote a path simply by its sequence of vertices and consider the edges

understood. A path is trivial if p D .v0/. If vi�1 D s.ei/ and vi D t .ei/ for

all 0 � i � k, we say that p is a directed path. The source and target – denoted

s.p/ and t .p/ – of an undirected path p are its first vertex v0 and its last

vertex vk, respectively. All other vertices are interior. An undirected path

p with s D s.p/ and t D t .p/ is also referred to as a path from s to t or an

st -path. The reverse path pop of a path p is obtained by reversing the sequence

of vertices and edges, that is, pop D .vk; ek; : : : ; e1; v0/. A path p is simple
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1.4 Graphs

if each interior vertex v 2 p appears exactly once in p. It is a cycle if it is

nontrivial and t .p/ D s.p/. A graph G is acyclic if there is no directed cycle

in G. Given paths p and q with t .p/ D s.q/, their concatenation p � q has as

its sequence of vertices and edges the sequence of p without t .p/ followed

by the sequence of q.

Induced subgraphs LetG be a graph and letX be a subset of the vertices

of G. The vertex-induced subgraph GŒX� is the maximal subgraph of G with

vertices X . In concrete terms, GŒX� has vertices X and edges determined by

the pullback

GŒX�1 G1

X �X G0 �G0

.s; t/

We also say that GŒX� is obtained from G by removing the complement

Y D G0 XX of X from G and write G X Y .

Connectivity A graph G is connected if there is an undirected path be-

tween any two vertices u; v 2 G. It is n-connected if G X X is connected

for all X � G0 with jX j � n � 1. Any vertex, whose removal makes a

connected but not 2-connected graph G disconnected, is called a cut ver-

tex.
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1 Preliminaries

1.5 Plane graphs

In this section, we give a bit of intuition for plane graphs and cite some

results from the literature that justify this intuition.

Topological Realisation The topological realisation jGj of a graph G is

the topological space that may be obtained as follows: One equips G0 with

the discrete topology and glues for each edge e of G a copy of the unit

interval I along its endpoints to s.e/ and t .e/, respectively. Formally, jGj is

the pushout a
e2G1

@I G0

a
e2G1

I jGj;

`
sq t

in which the left hand vertical map is just the coproduct of all the inclu-

sions @I � I and in which the top horizontal map is the coproduct of all the

maps that send the points 0 and 1 in the copy of @I D f0; 1g corresponding to

the edge e to s.e/ and t .e/, respectively. We do not distinguish between ver-

tices of G and those points of jGj that correspond to them. Similarly, we often

identify an edge e 2 G1 with the copy of the unit interval in jGj correspond-

ing to e. Using the universal property of pushouts, topological realisation

is easily enhanced to a functor j�j W Graph! Top, where Top denotes the

category of topological spaces and continuous functions.
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1.5 Plane graphs

Curves A curve ˛ in a topological spaceX is a continuous map ˛ W I ! X .

The curve ˛ is said to join or connect its endpoints ˛.0/ and ˛.1/. The inverse

˛op of ˛ is given by t 7! ˛.1� t /. A topological space X is pathwise connected

if for any two points x; y 2 X there exists a curve in X with endpoints x

and y. A curve ˛ is closed if ˛.0/ D ˛.1/. As is common, we view closed

curves as continuous maps ˛ W S1 ! X . The restrictions of ˛ to closed

connected subsets J � I – or J � S1 if ˛ is closed – are called segments of

˛. A (closed) curve is simple if it is injective as a map I ! X (S1 ! X). We

often identify a simple curve ˛ with its image, so that we can speak of e. g.

the complement X X ˛ of a simple curve or the union ˛ [ ˇ of two simple

curves in X .

We are primarily interested in simple curves in the plane R2. Note that

since the unit interval I and the sphere S1 are compact and the plane is

Hausdor�, any simple (closed) curve is actually an embedding. If C � R2

is any set, we call the connected components of its complement R2 X C

the faces of C . Any non-empty, open and connected subset F of the plane

is pathwise connected. A classic theorem concerning simple closed curves

in the plane is the following theorem of Jordan that we cite without proof.

1.5.1. Theorem A simple closed curve ˛ in the plane has exactly one

bounded face int.˛/ and one unbounded face ext.˛/. The boundary of

both faces is ˛.

Proof. See e. g. [Tho92].
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We will also have occasion to use the following strengthening of the Jordan

curve theorem due to Schönflies.

1.5.2. Theorem Let ˛; ˇ � R2 be simple closed curves in the plane. Any

homeomorphism f W ˛ ! ˇ can be extended to a homeomorphism of the

entire plane.

Proof. See e. g. [Tho92].

One should note that if the homeomorphism f between the curves in

Schönflies’ theorem is orientation preserving, then so is its extension to

the plane.

Embeddings Let G be a graph and let i W jGj ! R2 be a topological

embedding of its realisation in the plane. A point x 2 R2 is a vertex (edge)

accumulation point of i if each neighbourhood U of x contains infinitely

many vertices (intersects infinitely many edges) of G. An embedding of a

graph G is a topological embedding of its realisation without any vertex or

edge accumulation points. Embeddings are rather well-behaved topological

gadgets and can only exist for graphs with countably many vertices with

locally finite valency, see e. g. [Moh88].

Actually, we are not interested in concrete embeddings but rather in topolog-

ical equivalence classes. Two embeddings i and j of the same graph G are

topologically equivalent if there is an orientation preserving homeomorphism

f of the plane such that j D f i .
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1.5 Plane graphs

A plane graph is a graph G together with a chosen embedding up to topo-

logical equivalence. A map f W G ! H between plane graphs consists of

a map f W G ! H of abstract graphs such that iH ı jf j and iG are topo-

logically equivalent. Observe that any map of plane graphs necessarily is a

monomorphism of abstract graphs.

Again, we deliberately conceal the distinction between the abstract graph

G, its realisation jGj and the image of the latter in the plane. Such abuse

of notation and terminology in conjunction with the natural orientation of

the plane supplies us with notions as e. g. the clockwise order on the set of

edges with a prescribed source or target. Fix a graph G and an embedding i

of G in the plane. A face of this embedding is a connected component of

R2 X i.jGj/. There are exactly one unbounded face, the exterior face of G,

and probably many bounded interior faces. We denote the set of interior faces

of a plane graph G by ˆ.G/. The Jordan Curve Theorem tells us that an

interior face is homeomorphic to the open unit disk. Moreover, there exists

an undirected cycle in G such that the boundary of � is precisely this cycle.

We usually consider the boundary @� of a face as an undirected cycle in the

abstract graph G such that the face is enclosed in clockwise orientation. We

warn the reader that this convention has its disadvantages when it comes to

the exterior face.

Most of the time, we will work with plane graphs on the intuitive level.

However, the following lemma will be used very often and we feel obliged to

state it, at the very least.
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1 Preliminaries

1.5.3. Lemma Let � be a face of the given embedding and let e be an edge of G.

1. Either e is contained in the boundary @� of � or its interior is disjoint from

@�.

2. If e lies on a simple cycle or an in�nite path of G, then e is contained in the

boundary of exactly two faces.

3. If e does not lie on any simple cycle of G and if G is �nite, then e is contained

in the boundary of exactly one face.

Proof. See e. g. [Die10, Lemma 4.2.1]
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2 Globular Graphs and Pasting Diagrams

This chapter has essentially two parts. The first part comprises § 2.1–2.3 and is

concerned with globular graphs. We review the definition of a globular graph

from [Pow90] and discuss some technical observations on globular graphs due

to Power. Globular graphs are essentially diagrams such as

s t

As we eventually want to interpret these diagrams in categories enriched

over simplicial sets or quasi-categories, we then go on to define the nerve

of a globular graph and establish some of its technical properties. It turns

out, that the nerve of a globular graph appears as the nerve of the category

F2G.s; t/, where F2G is the free 2-category on the graph G. This means in

particular that N.G/ contains the composite of any of its 1-simplices and is

therefore inadequate as a model of the input data of a vertical composition in

a category enriched over quasi-categories. In the second part of this chapter

we thus introduce pasting diagrams in § 2.4 and their nerves in § 2.5. Our

29



2 Globular Graphs and Pasting Diagrams

notion of pasting diagram is built on the notion of a globular graph but

allows for a specification of which vertical composites are present in its

nerve.

2.1 Globular Graphs

In this section, we review relevant parts of the work [Pow90] of Power

and extend it by some definitions and mostly trivial observations of our

own.

Globular graphs Let G be a graph. A vertex s 2 G is called a source if

there is a directed path from s to any vertex u ¤ s of G. A target in G is a

source in Gop. An st -graph is a nontrivial plane graph G with unique source

and target that are both incident to the exterior face.

A face � of a plane graph is globular if its clockwise oriented boundary @�

decomposes as @� D p � qop for two nontrivial directed paths p and q. If � is

an interior face, we call dom� D p the domain and cod� D q the codomain

of �. However, we use the exact opposite convention for the exterior face ",

i. e. dom " D q and cod " D p if @" D p � qop.

As s.p/ D s.q/ and t .p/ D t .q/, we simply denote these vertices by s.�/

and t .�/, respectively. A globular graph is an st -graph in which all faces are

globular.
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2.1 Globular Graphs

s te1

e7

e2 e5 e6 e4

e8

e3

�

Figure 2.1: An example of a globular graph.

2.1.1. Example Consider the graph shown in Figure 2.1. It certainly is an

st -graph for the vertices marked s and t are its source and target, respectively.

Moreover, the clockwise boundary @� of any face � of G decomposes as

@� D p �qop for two directed paths p and q, that is, all faces of G are globular.

Let us check this for the interior face � marked in Figure 2.1 and the exterior

face " of G. The clockwise boundary of � is e2 � e5 � e
op
7 D p � qop with

p D e2 � e5 and q D e7. The face � thus has dom� D e2 � e5 and cod� D e7.

The exterior face " has clockwise boundary @" D eop4 � e
op
3 � e

op
2 � e

op
1 � e1 � e7 � e8

and this clockwise boundary decomposes up to rotation as @" D p � qop with

p D e1 � e7 � e8 and q D e1 � e2 � e3 � e4. We thus have dom " D e1 � e2 � e3 � e4
and cod " D e1 � e7 � e8.

The following characterisation of globular graphs is taken from [Pow90,

Proposition 2.6].

2.1.2. Proposition A nontrivial st -graph G is globular if and only if it is acyclic,

i. e. contains no directed cycles.

Proof. Let us first show that an acyclic st -graph G is globular. To this end,

consider an arbitrary face � of G. As G is nontrivial and has no cycles, @�
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u

t
e1

e2

e3

p

�

Figure 2.2: Three edges e1; e2; e3 with source u in the boundary of a face �
of some st -graph G.

contains two distinct edges e1 and e2 with common source u. Observe that

there cannot exist a third edge e3 � @� with source u, for then the path p

from t .e3/ to the target t of G would necessarily cut �, see Figure 2.2. It

therefore su�ces to show that e1 and e2 are the only such edges in @�, for the

maximal directed paths p1 and p2 in @� starting with e1 and e2, respectively,

then meet at a common target and our claim follows. Let us assume the

contrary, i. e. that there are edges d1 ¤ d2 in @� that have a common source

v ¤ u. We may suppose without loss of generality that v ¤ s. As G is an

st -graph, we find paths qi from t .di/ to t and a path p from s to v. Observe

that s is not contained in the undirected cycle c D d1 � q1 � q
op
2 � d

op
2 as s

does not occur as target of any edge of G and v ¤ s. Therefore, s lies in the

exterior of the cycle c and the path p from s to v has to cross q1 or q2. This,

however, is the desired contradiction, for we find a directed cycle consisting

of parts of p, qi and di . This can also be seen in Figure 2.3 in the case that

� is interior. The reader is invited to adapt the picture to the case that � is

the exterior face of G.

Let us now check that any globular graph G is acyclic. Consider a directed
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u v t

s

e1

e2

d1

d2

q1

q2

Figure 2.3: The paths and vertices occurring in the first part of the proof of
Proposition 2.1.2.

cycle c in G that encloses a minimal number of faces. Choose any edge e

of c and the face � in the interior of c that is incident to e. Without loss

of generality assume that e lies in dom.�/. Observe that this implies that

cod.�/ intersects the directed cycle c at most at its endpoints. Choose paths

p and q from s to s.�/ and from t .�/ to t , respectively. These paths have to

cross the cycle c and we may thus decompose p D p0 � p1 and q D q1 � q0
in such a way that both p1 and q1 lie in the interior of c and p1 connects a

vertex of c to s.�/ and q1 connects t .�/ to a vertex of c. Further let r denote

the part of c that has source t .q1/ and target s.p1/. As can also be seen in

Figure 2.4, p1 � cod.�/ � q1 � r is a directed cycle in G that encloses fewer faces

than c — a contradiction.

The boundary, domain and codomain of a globular graph are the bound-

ary, domain and codomain of its exterior face. Note that our conventions

concerning the domain and codomain of the exterior face now ensure that
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s.�/ t.�/
s t

e

c

Figure 2.4: The paths and vertices occurring in the second part of the proof
of Proposition 2.1.2.

the domain of a face does not depend upon whether we consider it as a

subgraph or as a face.

2.1.3. De�nition A globular subgraph H � G is wide if s.H/ D s.G/ and

t .H/ D t .G/.

2.1.4. De�nition If H � G is a globular subgraph of G, we call a subgraph

K � G a subdivision of H if H � K and @H D @K.

2.1.5. De�nition A glob 
 in a globular graph G is a globular subgraph of G

with the property that any of its edges is incident with the exterior face of 
 . A glob

is nondegenerate if it has at least one interior face and degenerate otherwise. A

glob is proper if it is 2-connected.

2.1.6. Example

(a) Any path p in a globular graph G is a degenerate glob.

(b) Any face � of a globular graph G is a nondegenerate, proper glob.

(c) Let H � G be a globular subgraph of some globular graph G. The

boundary @H of H is a glob in G that is degenerate if and only H has
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2.1 Globular Graphs

(a) A globular graph G. (b) A proper glob 
1 � G.

(c) A nonproper glob 
2 � G. (d) A globular subgraph H � G that
is not a glob.

Figure 2.5: Example of a globular graph G and two of its globs 
1 and 
2.

no interior faces and proper if and only if H is 2-connected.

(d) Consider the graph G shown in Figure 2.5a and its subgraphs 
1, 
2
and H shown in Figure 2.5b, 2.5c and 2.5d, respectively. Both 
1 and


2 are globs, but H is not since it contains an edge that is not incident

with the exterior face of H .

2.1.7. Lemma The following are equivalent for a glob 
 :

(i) 
 is degenerate.

(ii) 
 is a directed path in G.

(iii) @
op is oriented clockwise.

Proof. Let 
 be a degenerate glob with source s and target t in G. If 
 is

no directed path, then there are two st -paths p ¤ q in 
 . The cycle p � qop
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encloses at least one interior face of 
 — a contradiction. As directed paths

are certainly degenerate globs, this proves the equivalence of (i) and (ii).

The oriented boundary of a directed path p is simply @p D p � pop and this

cycle clearly satisfies @pop D @p, which proves the implication “(ii)) (iii)”.

Now assume that both @
 and @
op are clockwise orientations of @
 . Write

@
 D p � qop and @
op D q � pop. As clockwise orientations are unique up to

cyclic rotation, we conclude that p D q, i. e. that 
 is a simple directed path

in G.

2.1.8. Remark If u; v are two vertices of a globular graph G, the subgraph

Gu;v consisting of all paths with source u and target v is either empty or

itself a globular graph. If fu; vg ¤ fs; tg, then Gu;v is strictly smaller than G

in terms of arrows and vertices.

The following two lemmata are due to Power [Pow90].

2.1.9. Lemma Let v be a vertex of a globular graph G. The clockwise cyclic order

of edges around v is e1 � � � � � er � d1 � � � � � ds , where the edges ei are the

edges with source v and the edges di are the edges with target v.

Proof. If the edges with source v do no appear consecutively in the cyclic

order around v, we find edges e1 and e2 with source v and edges d1 and d2
with target v such that the cyclic order around v is e1 � d1 � e2 � d2. We find

paths qi from the target of ei to t . We may suppose without loss of generality

that the source u of d1 lies in the interior of the cycle c D e1 � q1 � q
op
2 � e

op
2 .
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s t

u

Gu;t
�

Figure 2.6: An illustration of the argument in the proof of Lemma 2.1.10.

Any path from s to u has to cross the cycle c and we find a directed cycle

just as in the proof of Proposition 2.1.2.

2.1.10. Lemma Let G be a globular graph with exterior face " and at least one

interior face. There then exists an interior face � of G with dom.�/ lying entirely

in dom.G/.

Proof. We proceed by induction on the number of vertices. Possibly removing

a path that starts in s and whose edges are incident with the exterior face

only, we may suppose that there is an interior face � of G such that dom�

and domG both start at s and have at least one edge in common. If � is not

a face of the desired type, choose the last vertex u of the common subpath

of domG and dom� that starts in s. Then, Gu;t is a globular graph with

fewer vertices and at least one interior face lying in the interior of the cycle

consisting of the paths from u to t in dom.G/ and via t .�/ to t . Note that

dom.Gu;t/ � domG, see Figure 2.6. Thus, the claim follows by induction.
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2 Globular Graphs and Pasting Diagrams

Joins of globular graphs The operation of glueing two globular graphs

at their respective source and target vertices very much looks like horizontal

composition in 2-categories. In fact, this is precisely the role that this opera-

tion is going to play in the later chapters of this work. In this paragraph, we

just define this operation and prove one technical lemma.

2.1.11. De�nition The join G _H of two globular graphs is the globular graph

obtained by gluing t .G/ to s.H/. This is a well-de�ned globular graph as we

consider topological equivalence classes of actual embeddings.

2.1.12. Remark Note that the domain and codomain of G _H are given

by dom.G _H/ D dom.G/ � dom.H/ and cod.G _H/ D cod.G/ � cod.H/.

2.1.13. Remark Consider a globular graphG and some vertex x 2 G. Recall

that Gs;x and Gx;t are the subgraphs of G consisting of all the paths from s

to x and from x to t , respectively. As t .Gs;x/ D x D s.Gx;t/, we can form

their join Gs;x _Gx;t and obtain a wide globular subgraph of G.

We end this paragraph with a technical lemma on the interplay between joins

and intersections of globular subgraphs of the form Gu;v.

2.1.14. Lemma Let G be a globular graph with source s and target t . Further let

x; y 2 G be two vertices. The intersection�
Gs;x _Gx;t

�
\
�
Gs;y _Gy;t

�
contains a directed path from s to t if and only if G contains a directed path from

x to y or from y to x. Moreover, if G contains a directed path, say, from x to y,
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2.1 Globular Graphs

then �
Gs;x _Gx;t

�
\
�
Gs;y _Gy;t

�
D Gs;x _Gx;y _Gy;t :

Proof. Let Hx D Gs;x _ Gx;t and Hy D Gs;y _ Gy;t . If Hx \Hy contains a

directed path p from s to t , this path p passes through x as p � Hx and it

passes through y as p � Hy . Taking the subpath of p between x and y, we

have found a directed path between x and y.

Now suppose that there exists some directed path p, say, from x to y in G.

Then Gx;y ¤ ¿ and we have Gs;x _ Gx;y � Gs;y and Gx;y _ Gy;t � Gx;t .

Thus

Gs;x _Gx;y _Gy;t � Hx \Hy :

In order to show the converse inclusion, let us consider some path p in

Hx \ Hy that consists of at most one edge. We then find directed paths

qx and qy from s to t such that x 2 qx, p � qx, y 2 qy and p � qy . We

distinguish the following cases:

1. The vertex x does not precede t .p/ on qx. Note that p then lies on a

path from s to x, i. e. in Gs;x � Gs;x _Gx;y _Gy;t .

2. The vertex s.p/ does not precede y on qy . The path p then lies on a

path from y to t and hence in Gy;t � Gs;x _Gx;y _Gy;t .

3. The vertex x precedes t .p/ on qx and the vertex s.p/ precedes y on qy .

Write qx D ax � bx � p � cx with ax a path from s to x and bx a possibly

empty path from x to s.p/. This is possible as p consists of at most one
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edge. Similarly, write qy D ay �p �by �cy with ay a path from s to s.p/ and

by a path from t .p/ to y. The concatenation bx �p �by is a path from x to

y that contains p and we conclude that p � Gx;y � Gs;x _Gx;y _Gy;t .

2.2 Nerves of globular graphs

In this section, we first give a formal definition of the nerve N.G/ of a

globular graph as the nerve of a certain partially ordered set. After some

basic examples, we then show that the simplices of N.G/ are in bijection

with certain marked subgraphs of G. This ultimately leads to a quite intuitive

description of the nerve of a globular graph and to a pictorial calculus for

the action of simplicial operators on N.G/.

De�nition and examples Let G be a globular graph and consider two

st -paths p and q. Let us write p � q if there exists a glob 
 � G and possibly

trivial paths a and b in G such that p D a �dom 
 �b and q D a �cod 
 �b. We

call any such glob 
 a witness for the relation p � q. Observe that minimal

witnesses for a relation p < q are unique.

2.2.1. Lemma The relation “�” de�nes a partial order on the set PG of st -paths

in G.
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2.2 Nerves of globular graphs

Proof. We have p � p as p itself is a glob. Suppose p � q and q � r

for st -paths p, q and r in G. Choose globs 
; ı � G and decompositions

p D a � dom 
 � b, q D a � cod 
 � b D a0 � dom ı � b0 and r D a0 � cod ı � b0. We

may assume without loss of generality that a D a0 and b D b0, for we could

otherwise decompose a D a0 � a1, a0 D a0 � a01, b D b1 � b0 and b
0 D b01 � b0

and choose 
 D a1 [ 
 [ b1 and ı D a01 [ ı [ b
0
1 as witnesses for p � q and

q � r . But if a D a0 and b D b0, then @.
 [ ı/ is a glob witnessing p � r .

Now suppose p � q and q � p. As above, we find witnesses 
 and ı such

that p D a � dom 
 � b D a � cod ı � b and q D a � cod 
 � b D a � dom 
 � b. We

thus have

@
 D dom 
 � cod 
op D cod ı � dom ıop D .dom ı � cod ı/op D @ıop

for the clockwise directed boundaries of 
 and ı. This implies that both 


and ı are degenerate.

2.2.2. De�nition The nerve N.G/ of a globular graph G is the nerve of the

partially ordered set .PG;�/. An n-simplex � 2 N.G/n is thus an .nC 1/-chain

� D .p0 � � � � � pn/

of st -paths pi 2 PG and the action of a simplicial operator ˛ W Œm�! Œn� on this

simplex is determined by �˛ D .q0 � � � � � qm/ with qi D p˛.i/.

The reader might object that the purely combinatorial Definition 2.2.2 is

not satisfactory, for any nerve N W B! yA taking values in a category yB of
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presheaves should arise as a composition N D i�By, where y W B! yB denotes

the Yoneda embedding and i� W yB! yA is restriction along a preferably dense

functor i W A! B. It is in fact easy to show, though, that the nerve of globular

graphs arises in exactly this manner and we will come back to this topic in

§ 2.3.

2.2.3. Example Consider the graph Bn with two vertices s and t and nC 1

distinct edges e0; : : : ; en between them. The set PBn of st -paths in Bn is the

set fe0; : : : ; eng. We embed Bn such that for all i 2 f1; : : : ; ng there is an

interior face �i with oriented boundary @�i D ei�1 � e
op
i . A glob 
 in Bn is

then nothing but a pair .ei ; ej / of edges with i � j . The boundary of such

a 
 D .ei ; ej / is given by @
 D ei � e
op
j and we thus have dom 
 D ei and

cod 
 D ej . This implies that ei � ej if and only if i � j . Altogether, we see

that PBn is isomorphic to the ordinal Œn� and N.Bn/ is isomorphic to �n.

Note that a nondegenerate 1-simplex .p0 < p1/ of N.Bn/ is contained in

the spine of N.Bn/ if and only if there is a single face of Bn witnessing the

relation p0 < p1. This observation along with our computation of N.Bn/ is

also illustrated in Figure 2.7 for the case n D 2.

2.2.4. Example Let us next consider the join G D Bn _ Bm of two such

graphs Bn and Bm. We denote the edges of Bn and Bm by e0; : : : ; en and

d0; : : : ; dm, respectively. The set of st -paths in G is then given by

PG D fei � dk j 0 � i � n and 0 � k � mg:

Any glob 
 in G is the join of two globs .ei ; ej / in Bn and .dk; dl/ in Bm. We

thus have ei � dk � ej � dl if and only if i � j and k � l . Summing up, we

42



2.2 Nerves of globular graphs

s t

e0

e1

e2

(a) B2

e0

e1

e2

(b) PB2

e0 e2

e1

(c) N.B2/ ' �
2

Figure 2.7: Computation of N.B2/.

have PG isomorphic to the product Œn� � Œm� and hence N.G/ ' �n ��m.

This observation on joins and products actually holds true for all globular

graphs as we discuss in a more general setting in Proposition 2.5.6 below.

An explicit computation of N.B1 _ B1/ along the lines of the computation

of N.B2/ in Figure 2.7 can be seen in Figure 2.8.

A pictorial representation of N.G/ Even though the definition of N.G/

in Definition 2.2.2 is concise and su�cient for most technical purposes, it

leaves a lot to be desired from an intuitional point of view. Therefore, in

this paragraph, we give another description of N.G/ in terms of certain

marked globular subgraphs of G such as those that we already used in

the computation of N.B1 _ B1/ in Figure 2.8. We hope that seeing N.G/

from a slightly di�erent angle might help the reader on her or his way

through the remaining parts of this work. In fact, in § 2.5 below, we will

refine the material presented here so as to provide the reader with some

intuition for further definitions that are based on the notion of the nerve

of a globular graph. Moreover, in chapter 3, we will actually need some
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s t

e0

e1

d0

d1

(a) B1 _ B1

e0 � d0

e0 � d1 e1 � d0

e1 � d1

(b) P.B1 _ B1/

e0 � d0

e0 � d1 e1 � d0

e1 � d1

2 1 1 2

(c) N.B1 _ B1/ ' �
1 ��1

Figure 2.8: Computation of N.B1 _ B1/.
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2.2 Nerves of globular graphs

facets of the description of N.G/ obtained in this paragraph for the proof of

Theorem A.

Let us fix a globular graph G with source s and target t and consider an

n-simplex � D .p0 � � � � � pn/ 2 N.G/. Observe that Proposition 2.1.2

implies that P D
Sn
iD0 pi is a wide globular subgraph of G, for it is acyclic

and contains both a source and target. The following lemma is crucial to

the description of N.G/ that we are about to give:

2.2.5. Lemma Let � D .p0 � � � � � pn/ be an n-simplex in N.G/ and let � be

an interior face of P D
Sn
iD0 pi . There then exists some i 2 f1; : : : ; ng such that

cod� � pi . Moreover, dom� � pi�1 if and only if i is chosen minimal.

Proof. The proof is by induction on n and the claim is obvious for n D 0 and

n D 1. Now let n � 2. The interior faces of P are the bounded connected

components of .R2XP 0/Xpn, where P 0 D
Sn�1
iD0 pi . Observe that pn and P 0

intersect only in pn�1 � @P 0 since pn�1 � pn. This implies in particular that

pn does not intersect any interior face of P 0 and that any interior face of P

that is not already an interior face of P 0 is necessarily bounded by subpaths

of pn�1 and pn. The claim follows.

Lemma 2.2.5 implies in particular that we may associate with a given n-

simplex � D .p0 � � � � � pn/ of N.G/ a tuple .P� ; ��/, where P� D
Sn
iD0 pi

is a wide globular subgraph of G and where �� W ˆ.P�/! f1; : : : ; ng is the
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2 Globular Graphs and Pasting Diagrams

2

5

1

3

Figure 2.9: A 5-marked subgraph .P; �/.

map that associates with any interior face � 2 ˆ.P�/ the unique i 2 f1; : : : ; ng

such that � � pi�1 [ pi . This observation motivates the following definition:

2.2.6. De�nition An n-marked subgraph .P; �/ of a globular graph G consists

of a wide globular subgraph P � G and a map � W ˆ.P /! f1; : : : ; ng from the

set of its interior faces into f1; : : : ; ng.

We picture n-marked subgraphs by drawing the graph P and labelling the

interior faces � of P with �.�/, see Figure 2.9. The reader should note that

this pictorial representation of .P; �/ does not determine the number n,

though.

It is clear that not all n-marked globular subgraphs .P; �/ arise from n-

simplices � of N.G/. One condition that all the maps �� satisfy, though, is

the following:

2.2.7. Lemma Let .P� ; ��/ be the n-marked subgraph associated with some n-

simplex � 2 N.G/. Suppose that � and  are two faces of P� such that there exists

some edge e of P� such that e � cod� and e � dom . Then ��.�/ < ��. /.
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2.2 Nerves of globular graphs

Proof. We know that j D ��. / is minimal with cod � pj . Any pk that

contains the edge e cannot contain cod simply because e � dom . We

thus have j > k for all k with e � pk and this implies in particular j > ��.�/

as e � cod.�/ by assumption.

2.2.8. De�nition An n-marked subgraph .P; �/ is admissible if �.�/ < �. /

whenever cod� \ dom contains an edge.

2.2.9. Remark Let .P; �/ be admissible and let p be some st -path in P . Any

face � on the left of p then satisfies

�.�/ � maxf�.�/ j cod � \ p contains an edgeg

and any face  on the right of p satisfies

�. / � minf�.�/ j dom � \ p contains an edgeg:

Indeed, if � D �0 is an interior face on the left of p such that cod�0 \ p

does not contain an edge, we find an interior face �1 to the left of p such

that cod�0 \ dom�1 contains an edge, i. e. �.�0/ < �.�1/. If cod�1 \ p

contains an edge, we are done. Otherwise, we can continue in this manner

to obtain a sequence of faces �0; : : : ; �k that are on the left of p and satisfy

�.�0/ < � � � < �.�k/. This procedure terminates after a finite number of steps,

for P is a globular graph. We thus find a face �k such that �.�0/ < �.�k/

and cod�k \ p contains an edge.
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2 Globular Graphs and Pasting Diagrams

2.2.10. Lemma Let � W P ! f1; : : : ; ng be admissible. For each k 2 f0; : : : ; ng

there exists a unique st -path pk � P such that all the interior faces � on the left

of pk satisfy �.�/ � k and all the interior faces � on the right of pk satisfy

�.�/ > k.

Proof. We obviously have p0 D domP . Given such a path pk, we can con-

struct pkC1 by replacing each subpath of pk of the form dom� for some

interior face � with �.�/ D k C 1 by cod�. This is indeed the sought-for

path pk by Remark 2.2.9. Let us now suppose that we have two such paths

pk ¤ qk. As both pk and qk start in s, there is then some vertex u and

edges e ¤ d with source u such that e � pk and d � qk. We know from

Lemma 2.1.9 that the edges with source u appear consecutively in the cyclic

order of edges around u and after possibly changing the role of pk and qk
we therefore find interior faces �1; : : : ; �r such that e � dom�1, d � cod�r
and such that cod� \ dom�iC1 contains an edge for all 1 � i < r , see

Figure 2.10. We then have k < �.�1/ � �.�r/ � k by admissibility of �

and the definitions of pk and qk. This is a contradiction and we conclude

pk D qk.

2.2.11. Remark One consequence of Lemma 2.2.10 is that the path pi
occuring in some simplex � D .p0 � � � � � pn/ of N.G/ can be characterised

as the unique st -path p in P� with the property that all interior faces � of

P� with ��.�/ � i are on the left hand side of p.
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u

e

d

�1

�2

�r

:::

Figure 2.10: An illustration of an argument in the proof of Lemma 2.2.10.

The following proposition gives us the promised description of the simplices

of N.G/ in terms of n-marked graphs:

2.2.12. Proposition Let G be a globular graph. The assignment � 7! .P� ; ��/

de�nes a bijection between the set of n-simplices � of N.G/ and the set of n-marked

subgraphs of G.

Proof. Given some admissible n-marked subgraph .P; �/ of G, we obtain

by Lemma 2.2.10 a set of st -paths p0; : : : ; pn in the wide subgraph P of

G such that pi has precisely the interior faces of P with �.pi/ � i on its

left. The graph pi�1 [ pi is a glob witnessing pi�1 � pi and we thus obtain

an n-simplex � D �.P; �/ D .p0 � � � � � pn/ of N.G/. We obviously have

P D P� . Furthermore, the interior faces � of P with �.�/ D i are precisely

those interior faces of P that lie on the right of pi�1 and on the left of pi ,

i. e. in pi�1 [ pi . It now follows that � D �� .

Conversely, given a simplex � in N.G/, it follows immediately from Re-
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2 Globular Graphs and Pasting Diagrams

mark 2.2.11 that the simplex �.P� ; ��/ is � again.

It remains to desribe the action of simplicial operators in terms of n-marked

graphs. This is achieved in the following proposition.

2.2.13. Proposition Let ˛ W Œm�! Œn� be a simplicial operator and let .P� ; ��/

be the tuple associated with some n-simplex � 2 N.G/. The tuple .P�˛; ��˛/

associated with �˛ can then be obtained from .P� ; ��/ by the following steps:

1. Remove the edges and interior vertices of all paths dom.�/, where � is some

interior face of P� with ��.�/ � ˛.0/.

2. Remove the edges and interior vertices of all paths cod.�/, where � is some

interior face of P� with ��.�/ > ˛.m/.

3. De�ne y� on the remaining graph by

y�.�/ D min
˚
k 2 f1; : : : ; mg j ˛.k/ � ��.�/

	
:

4. In each maximal globular subgraph Q � P on which y� takes some constant

value c, remove all edges and vertices of Q that are not incident with the

exterior face of Q and de�ne ��˛.�/ D c on the resulting interior faces.

Proof. Let us write � D .p0 � � � � � pn/. The simplex �˛ is then given by

�˛ D .q0 � � � � � qm/ with qj D p˛.j /. Observe thatQ D
S
qj is a subgraph

of P D
S
pi . We fix some embedding of P in R2 and consider the induced

embedding of Q. The closure  of any face  of Q can be written as a
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2.2 Nerves of globular graphs

union of the closures of a certain set of faces of P and each face of P occurs

in at most one such union. Now consider a path qj D p˛.j / occuring in �˛.

By Remark 2.2.11, it is the unique st -path in P such that an interior face

� 2 ˆ.P / lies to the left of p˛.j / if and only if ��.�/ � ˛.j /. It follows that

the interior faces � in P between qj�1 and qj are precisely those interior

faces of P with ˛.j � 1/ < ��.�/ � ˛.j /. This implies that all interior faces

� of P with ��.�/ � ˛.0/ or ��.�/ > ˛.m/ are not contained in any interior

face  of Q and justifies the correctness of the first two steps. Moreover,

the closure of any interior face  of qj�1 [ qj is the union of the closure of

interior faces � of P with ˛.j � 1/ < ��.�/ � ˛.j /. But for any of these

faces � we certainly have

��˛. / D j D min
˚
k 2 f1; : : : ; mg j ˛.k/ � ��.�/

	
and this justifies the remaining two steps.

2.2.14. Example Let us compute the action of d1; d2 W Œ2� ! Œ3� on the

admissible 3-marked globular subgraph .P; �/ shown in Figure 2.11a. Let

us first consider the action of d1. As d1.0/ D 0 and d1.2/ D 3, the first two

steps of the procedure given in Proposition 2.2.13 do not change the graph

P . The values of the map y� of step 3 are easily computed and can be seen

in Figure 2.11b. There is then one edge between two faces � and  of P

with 1 D y�.�/ D y�. /. Removing this edge then results in d1.P; �/ as can

be seen in Figure 2.11c and 2.11d.
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Let us now consider the action of d2. Again, there are no edges to be

removed in the first two steps and the map y� can easily seen to be the one

in Figure 2.11e. It turns out that .P; y�/ is already the result of the algorithm

given in Proposition 2.2.13.

2.3 Globular graphs and 2 -computads

It is well-known that the category Cat of small categories is monadic over the

category Graph of graphs. The monad T1 for categories sends a graph G to

the graph T1G having the same vertices but possibly empty directed paths p

as edges between s.p/ and t .p/. The monad T1 is in fact strongly cartesian,

meaning that yS W Graph! Graph=T11 has a right adjoint and that all the

naturality squares of� W T 21 ! T1 and � W 1! T1 are cartesian. Similar results

hold true for higher categories if one is willing to substitute n-globular sets

for graphs. In the case of 2-categories this was first observed in [Str76] and

has since been studied in various contexts, see e. g. [Bat98] for a construction

of computads for a general finitary monad on globular sets or [Mét16] for

a slick proof of the monadicity of strict !-categories over computads. In

this paragraph, following [Lei04], we sketch the relation between Street’s

2-computads, 2-categories and globular graphs. Note that this section is kept

a bit vague because the material is still work in progress.
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3 2
1

(a) An admissible 3-marked subgraph .P; �/.

2 1
1

(b) The map y� in the
computation of
d1.P; �/.

2 1
1

(c) Removal of the edges
of P that are not
present in d1.P; �/.

2
1

(d) The 2-marked sub-
graph d1.P; �/.

2 2
1

(e) The map y� in the computation of d2.P; �/.

Figure 2.11: Examples of the procedure given in Proposition 2.2.13 for the
computation of the action of simplicial operators on n-marked
subgraphs.
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2-globular sets and 2-categories Consider the category G2 generated

by the graph

� � �
�0

�0

�1

�1

subject to relations �1�0 D �1�0 and �1�0 D �1�0. A presheaf X 2 yG2

consists of three sets X0, X1 and X2 together with maps

X0 X1 X2
s0

t0

s1

t1

such that s0s1 D s0t1 and t0s1 D t0t1. Such a presheaf X is also known as

2-globular set.

We will have the occasion to use a slightly di�erent description of yG2. To-

wards this description let us define the category Graph2 of 2-graphs. A

2-graph G consists of a set V.G/ of vertices together with graphs Gx;y
for each pair x; y 2 V.G/ of vertices. A map G ! H of 2-graphs is a

map f W V.G/! V.H/ together with compatible maps Gx;y ! Hfx;fy of

graphs.

Given such a 2-graphG, we associate with it the globular set

XG D

�
V.G/

a
x;y

.Gx;y/0
a
x;y

.Gx;y/1
s0

t0

s1

t1

�
;

where s0.u/ D x and t0.u/ D y for all u 2 .Gx;y/0 and where the maps s1
and t1 are induced by the source and target maps of the graphs Gx;y . The as-

signmentG 7! XG can easily be seen to be functorial inG.
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Conversely, if X is a 2-globular set, we can associate with it a 2-graph as

follows: For each pair x; y 2 X0 take the pullbacks

.Gx;y/0 1

X1 X0 �X0.s0; t0/

.x; y/ and

.Gx;y/1 1

X2 X0 �X0:

.x; y/

.s0; t0/ B s1

The bottom map in the right hand square satisfies .s0; t0/ B s1 D .s0; t0/ B t1
as X is a 2-globular set by assumption. We therefore get two factorisa-

tions

.Gx;y/1 .Gx;y/0 f.x; y/g

X2 X1 X0 �X0.s0; t0/

s1

t1

.x; y/

s1

t1

of the right hand square through the left hand square and hence graphs

.Gx;y/1 � .Gx;y/0 for all pairs x; y 2 X0. The set X0 together with the

graphs Gx;y obviously form a 2-graph GX and it is easy to check that the

construction G 7! GX is functorial and inverse to the functor X 7! XG

constructed above. We have thus proven the following well-known proposition:

2.3.1. Proposition The category yG2 of 2-globular sets and the category Graph2
of 2-graphs are equivalent.
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Our interest in 2-globular sets stems from the fact that the category of

small 2-categories is monadic over yG2, see e. g. the end of section 2 in

[Str76] or [Lei04, Appendix F]. Let us describe the monadic adjunction

F2 W Graph2 � Cat2 WU2 in terms of the category of 2-graphs and the

monadic adjunction F1 W Graph� Cat WU1 between graphs and small cat-

egories. The forgetful functor U2 W Cat2 ! Graph2 maps a 2-category A to

the 2-graph that has the objects of A as vertices and associated with any

two vertices a; b 2 ObA the graph U1A.a; b/. The left adjoint F2 takes a

2-graph G to the 2-category F2G with objects V.G/ and

F2G.x; y/ D
a

xDx0;:::;xnDy

F1Gx0;x1
� � � � � F1Gxn�1;xn

;

where the coproduct ranges over all positive integers n and all sequences

.x0; : : : ; xn/ of elements of V.G/ with x0 D x and xn D y.

Using the fact thatU1 preserves coproducts and arbitrary limits, we obtain the

following description of the monad T2 D U2F2 on Graph2:

2.3.2. Proposition The monad T2 for 2-categories takes a 2-graphG to the 2-graph

T2G on the same objects but with

T2Gx;y D
a

xDx0;:::;xnDy

T1Gx0;x1
� � � � � T1Gxn�1;xn

;

where T1 denotes the monad on Graph for categories. One has to be careful to add

another summand 1 in the description of T2 in case that x D y to cater for the

identities of F2G.
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In fact, Leinster shows in [Lei04, Appendix F] that T2 (and even Tn for any

n 2 N) is a cartesian monad.

2-computads The category of 2-globular sets and the monad T2 su�er

from one serious drawback: The shapes allowed to generate a 2-category

are rather restrictive. Each 2-cell in a 2-globular set has only one source

and one target 1-cell. However, it occurs frequently that one has more com-

plicated diagrams that should generate a free 2-category. This defect can

be remedied by passing from 2-globular sets to Street’s category of com-

putads at the expense of more involved combinatorics occuring in the base

category.

The category of computads is a category of presheaves, see [CJ95], and one

can either guess or compute the index category C for 2-computads from the

proof of Carboni and Johnstone. The index category is given as the collage

and hence explicitly computable. We circumvent this technicality and define

the category of 2-computads as the category of presheaves on the category C

that can be described as follows: The objects of C are 0, 1 and 
n;m for all

pairs n;m 2 N. The morphisms are generated by

1. C.0; 1/ D f�; �g,

2. C.1; 
n;m/ D f�1; : : : ; �ng [ f�1; : : : ; �mg

subject to the relations

1. �1� D �1� and �n� D �m� ,

57
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2. �iC1� D �i� for all 0 � i < n,

3. �iC1� D �i� for all 0 � i < m.

A 2-computad thus consists of a graph G together with a family Bn;m of globs

with domBn;m a path of length n and codBn;m a path of length m. It follows

from this description that the terminal computad 1 has one vertex � with one

loop t W � ! � and one glob Bn;m of each size. We can moreover consider any

globular graph as a 2-computad, the set Bn;m of globs given by the interior

faces with appropriate domains and codomains.

It was proven in [Str76] that 2-categories are monadic over yC and it follows

from the explicit description of the monad T2 on yC for 2-categories given there

and our description of the terminal computad 1 that the cells in T21 certainly

include our globular graphs. One might thus hope for a characterisation

of globular graphs as the canonical arities of the monad T2 in the sense of

[Web04; Web07; BMW12].

Nerves of globular graphs revisited So far, we did not speak of mor-

phisms between globular graphs. It turns out that there are several choices

and all of them have their merits. However, if one wants to give a presentation

of the nerve of globular graphs in terms of a cosimplicial object, 2-functors be-

tween the free 2-categories on them are the correct choice.

By virtue of the preceding paragraph, we consider globular graphs as cer-

tain types of 2-computads. Let Bn denote the globular graph from Exam-

ple 2.2.3. The free 2-category F2Bn on Bn has 2 objects s, t and nC 1 1-cells
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e0; : : : ; en W s ! t and a 2-cell �i;j W ei ! ej whenever i � j .1 It is immediate

from this description that B� is a cosimplicial object in the category whose

objects are globular graphs and whose morphisms are 2-functors between

the free categories.

Consider a 2-functor f W F2Bn ! F2G into the free 2-category on some

globular graph G that preserves source and target. It maps each edge ei of

Bn to a morphism in F2G, i. e. to an st -path in G. Moreover, each 2-cell

�i;j is mapped to a 2-cell in F2G, i. e. a pasting of globs of G. Taking the

boundary of this pasting, we obtain a glob 
 in G witnessing f .ei/ � f .ej /.

Summing up, we thus have the following proposition:

2.3.3. Proposition The nerve N.G/ of a globular graph G is isomorphic to the

simplicial set ŒF2B�; F2G�s;t of source and target preserving 2-functors from the

cosimplicial object F2B� into F2G.

Note that Proposition 2.3.3 is equivalent to the assertion that N.G/ is naturally

isomorphic to the nerve of the category F2G.s; t/.

1Observe that one obtains essentially the nerve of the globular graph Bn upon applying
the nerve functor N W Cat! y� to each hom-set in this free 2-category. This is, of course,
no coincidence but true more generally. However, we do not touch upon this topic in
this text.
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2.4 Past ing diagrams

2.4.1. De�nition A pasting diagram .G;S/ consists of a globular graph G and

a set S of globular subgraphs of G that contains all paths and is closed under

taking subgraphs.

2.4.2. Remark The condition that S be closed under taking subgraphs

in Definition 2.4.1 is not essential to the notion of pasting diagram but

merely convenient for some considerations below, see e. g. the formulation

of Definition 2.4.10. Moreover, if S is an arbitrary set of globular subgraphs

of G, then there is a unique smallest set hSi � S of globular subgraphs of

G that is closed under taking subgraphs and contains all paths in G. In this

situation, we call .G; hSi/ the pasting diagram generated by .G;S/. In fact,

we often give only .G;S/ and understand that we actually mean the pasting

diagram .G; hSi/ generated by it.

2.4.3. De�nition Let † D .G;S/ and … D .G; T / be two pasting diagrams on

the same underlying graph G. We then say that †! … is an inclusion of pasting

diagrams if S � T .

2.4.4. Remark We warn the reader that any inclusion †! … in the sense

of Definition 2.4.3 is necessarily the identity on the underlying graphs.

2.4.5. Example For any globular graph G there exist minimal and maximal

pasting diagrams †min D .G;Smin/ and …max D .G;Smax/ with underlying

graph G. The collections Smin and Smax of globular subgraphs of G are given

by

Smin D
˚
A � G j A is a face of G or a path in G
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and

Smax D
˚
A � G j A an arbitrary globular subgraph of G

	
;

respectively. The maximal pasting diagram on G is generated by fGg, of

course. Moreover, we have an obvious inclusion †min ! …max.

2.4.6. De�nition Let † D .G;S/ be a pasting diagram.

(a) We call † generated by wide subgraphs if there is a set R of wide subgraphs

of G such that .G;S/ D .G; hRi/.

(b) We call † complete if S is closed under taking joins, that is, if H1;H2 2 S

implies H1 _H2 2 S whenever the join H1 _H2 is de�ned.

(c) We call † closed under taking subdivisions if for any subdivision K of

some H 2 S we have K 2 S .

2.4.7. Remark Given a pasting diagram † D .G;S/ on some globular graph

G, there exists a minimal complete pasting diagram †c D .G;Sc/ on G

such that S � Sc .

2.4.8. Example Both the minimal pasting diagram †min and the maximal

pasting diagram …max on some globular graph G are closed under taking

subdivisions. Moreover, …max is always complete and generated by wide

subgraphs. However, †min need neither be complete nor generated by wide

subgraphs as can be seen for e. g. G D B1 _ B1, where †cmin D …max.

2.4.9. Lemma Any complete pasting diagram is generated by wide subgraphs.

Proof. Let † D .G;S/ be a complete pasting diagram and consider any
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2 Globular Graphs and Pasting Diagrams

A 2 S . There are paths p and q from s to s.A/ and from t .A/ to t , respectively.

We then have B.A/ D p _ A _ q 2 S as S is closed under taking joins and

the set fB.A/ j A 2 Sg is a generating set of wide subgraphs.

2.4.10. De�nition Let † D .G;S/ be a pasting diagram and let H � G be a

globular subgraph. We call the set

SH D fA 2 S j A � H g:

the restriction of S to H and refer to the pasting diagram †H D .H;SH / as the

restriction of † to H . In the case that H D Gx;y for two vertices x; y 2 G, we

also write †x;y for the restriction of † to H .

2.4.11. Remark Observe that if † is complete, closed under taking subdi-

visions, or generated by wide subgraphs, then so are all of its restrictions.

This implies in particular that .†H /c D .†c/H .

2.4.12. De�nition Let .G1;S/ and .G2; T / be pasting diagrams generated by

collections S0 � S and T0 � T of wide subgraphs. Their join .G1;S/ _ .G2; T /

is the pasting diagram with underlying graph G1 _G2 that is generated by the set

S0 _ T0 D fA _ B j A 2 S0 and B 2 S1g:

2.4.13. Remark We have to justify that the join of two pasting diagrams

as in Definition 2.4.12 is well-defined, i. e. independent of the choice of the

generating sets S0 and T0. To this end, consider another pair S 00 and T 00 of

collections of wide subgraphs that generate S and T , respectively. For each
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2.5 Nerves of Pasting Diagrams

A 2 S0 and B 2 T0 we then find A0 2 S 00 and B
0 2 T 00 such that A � A0 and

B � B 0. But this implies A _ B � A0 _ B 0. As the argument is symmetric in

S0; T0 and S 00; T
0
0 , we may conclude that the pasting diagrams generated by

S0 _ T0 and S 00 _ T 00 , respectively, coincide.

2.4.14. Remark Suppose that † is some pasting diagram on G1 _G2 and

let †i be the restriction of † to Gi . We warn the reader that the obvious

inclusion † � †1 _†2 is generally strict as demonstrated by the minimal

pasting diagram †min on B1 _ B1. In the case that † is complete, however,

we always have an equality † D †1 _†2.

2.5 Nerves of Past ing Diagrams

In this section we define the nerve N.†/ of a pasting diagram † D .G;S/ as

a certain simplicial subset of N.G/ and record some elementary properties.

We also observe that the pictorial calculus for N.G/ from Proposition 2.2.12

and 2.2.13 carries over to nerves of complete pasting diagrams. The larger

part of this section, however, consists of technical lemmata concerning the

interplay of the nerve with operations such as restriction of pasting diagrams

or the join of two pasting diagrams that we introduced above. These basic

results will be used throughout the remaining chapters.

De�nition and Elementary Properties We now give the promised def-

inition of the nerve of a pasting diagram as a subset of the nerve of the

underlying globular graph.
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2 Globular Graphs and Pasting Diagrams

2.5.1. De�nition Let † D .G;S/ be a pasting diagram. Its nerve N.†/ is the

simplicial subset of N.G/ consisting of those simplices � D .p0 � � � � � pn/ with

the property that there exists some A 2 S such that all the relations pi�1 � pi for

1 � i � n have witnesses 
i � A.

2.5.2. Example Let us consider a pasting diagram on the graph Bn from

Example 2.2.3. We then have N.Bn;S/ D �1 _ : : : _�1 for S the set of all

interior faces of Bn.

2.5.3. Lemma Let .G;S/! .G; T / be an inclusion and suppose that S is closed

under taking subdivisions. If an inner face of a simplex of N.G; T / is contained in

N.G;S/, then so is the simplex itself.

Proof. Consider a simplex � � N.G; T / with di� in N.G;S/. Write

� D .p0 � � � � � pn/

and consider the face di� along with a witness 
 � A for pi�1 � piC1 and

some A 2 S . Cutting 
 along pi provides us with witnesses 
i , 
iC1 for

pi�1 � pi � piC1. Possibly passing to a subdivision of A we may assume


i ; 
iC1 � A and thus find � � N.G;S/.

In the case that † is complete, we have the following lemma that allows us to

describe N.†/ in terms of admissible n-marked subgraphs ofG.

2.5.4. Lemma Consider a complete pasting diagram † D .G;S/. An n-simplex

� with associated n-marked subgraph .P� ; ��/ of N.G/ is contained in N.†/ if

and only if P� 2 S .
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2.5 Nerves of Pasting Diagrams

Proof. Write � D .p0 � � � � � pn/. Recall that P� D
S
i pi . It is immediate

that � 2 N.†/ if P� 2 S . Now suppose that � 2 N.†/. We then find some

A 2 S that contains all the witnesses 
i for pi�1 � pi . We also find possibly

trivial paths q1 from s.G/ to s.A/ and q2 from t .A/ to t .G/ such that all the

paths pi can be written as pi D q1 � ri � q2 for some path ri from s.A/ to

t .A/ in A. It now follows that R D
S
i ri 2 S as S is closed under taking

subgraphs and this in turn implies P D q1_R_ q2 2 S as S is closed under

taking joins.

2.5.5. Corollary Let † D .G;S/ be a complete pasting diagram. The n-simplices

of N.†/ are in bijection with admissible n-marked subgraphs .P; �/ of G such that

P 2 S . Moreover, the action of simplicial operators on these n-marked subgraphs

may be computed as described in Proposition 2.2.13.

Nerves and the join operation In this paragraph we compute the nerve

N.†1_†2/ of the join of two pasting diagrams that are generated by wide sub-

graphs. More precisely, we show that N is a strong monoidal functor from the

monoidal category of pasting diagrams that are generated by wide subgraphs

with the join operation to the cartesian closed category of simplicial sets. This

observation will be used in § 3.1 to construct composition laws for the sim-

plicial category that we associate with a pasting diagram.
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2 Globular Graphs and Pasting Diagrams

2.5.6. Proposition Let † and … be pasting diagrams that are generated by wide

subgraphs. There then exists an isomorphism

�†;… W N.†/ �N.…/! N.† _…/

and these isomorphisms �†;… equip the nerve with the structure of a strong monoidal

functor from the monoidal category of pasting diagrams that are generated by wide

subgraphs with the join operation to the cartesian closed category of simplicial sets

Proof. Given n-simplices �k D .pk0 � � � � � pkn/ of N.†k/ we have an

n-simplex �1 � �2 D .p10 � p
2
0 � � � � � p1n � p

2
n/ in N.†1 _ †2/. One eas-

ily verifies that the assignment .�1; �2/ 7! �1 � �2 defines a map

N.†1/ �N.†2/! N.†1 _†2/:

Let us show that this map is an isomorphism. To this end write†k D .Gk;Sk/

and denote by sk and tk the source and target of Gk . Consider an n-simplex

� D .p0 � � � � � pn/ of N.†1 _†2/. Each path pi necessarily contains the

cut vertex t1 D s2 ofG1_G2 and thus decomposes uniquely as pi D q1i �q
2
i for

sktk -paths qki in Gk . We have thus found a unique pair .�1; �2/ of n-simplices

�k D .qk0 � � � � � q
k
n/ of N.†k/ such that � D �1 � �2.

Note that the pasting diagram †0 on the trivial globular graph serves as

unit in our monoidal category of pasting diagrams and we obviously have

N.†0/ D �0. Moreover, one of the axioms of a strong monoidal functor
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2.5 Nerves of Pasting Diagrams

requires the diagram

N.†1/ �N.†2/ �N.†3/ N.†1/ �N.†2 _†3/

N.†1 _†2/ �N.†3/ N.†1 _†2 _†3/

N.†1/� �

� �N.†2/ �

�

to be commutative. Given our definition of � this is immediate, though. The

remaining axioms of a strong monoidal functor are left to the reader.

2.5.7. Corollary If † is a complete pasting diagram on G D G1 _ G2, then

† D †1 _†2 and hence

N.†/ ' N.†1/ �N.†2/;

where †i denotes the restriction of † to Gi .

2.5.8. Remark We did not specify the maps in the category that is to be

the domain of the strong monoidal functor N. One could choose e. g. maps

.H;S/! .G; T / with H � G a globular subgraph and S � T . The nerve

is certainly functorial with respect to these maps and one easily verifies that

the isomorphisms � in Proposition 2.5.6 are natural.

2.5.9. Remark The hypothesis that the pasting diagrams in Proposition 2.5.6

are generated by wide subgraphs is essential to the construction of the

isomorphism �, for otherwise �.�1; �2/ D �1 ��2 need not even be a simplex

of N.†1 _†2/.
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2.5.10. Remark The isomorphisms � constructed in Proposition 2.5.6 can

also be described in terms of n-marked subgraphs. The image �.�; �/ of

an n-simplex .�; �/ 2 N.†1/ �N.†2/ with admissible n-marked subgraphs

.P� ; ��/ and .P� ; ��/ has .P� _ P� ; �� _ ��/ as its associated n-marked

subgraph. Put di�erently, the isomorphisms � are given by the join of the

respective n-marked subgraphs.

Unions and intersections In this paragraph we collect some technical

yet easy lemmata concerning intersections and unions of nerves of pasting

diagrams.

2.5.11. Lemma Consider a family .G;Sj /, j 2 J , of pasting diagrams on the

same underlying graph G. We then have an equality[
j2J

N.G;Sj / D N
�
G;
[
j2J

Sj

�
of simplicial subsets of N.G/.

Proof. Consider some simplex � D .p0 � � � � � pn/ in N.G/. We have

� 2
S
j N.G;Sj / if and only if there exists some j 2 J and some A 2 Sj

such that all the witnesses of pi�1 � pi are contained in A. This is obviously

equivalent to the condition that there exists some A 2
S
j Sj such that

all the witnesses of pi�1 � pi are contained in A, i. e. to the statement

� 2 N.G;
S
j Sj /.
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2.5.12. Lemma Let .G;S/ be a pasting diagram, H � G a wide globular

subgraph and SH the restriction of S to H . Then

N.H;SH / N.G;SG/

N.H/ N.G/

is cartesian.

Proof. Immediate from the definitions.

2.5.13. Corollary Let .G;S/ � .G; T / be an inclusion of pasting diagrams,

H � G a wide globular subgraph and SH and TH the restrictions of S and T to

H . Then

N.H;SH / N.G;S/

N.H; TH / N.G; T /

is cartesian.
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2.5.14. Lemma Let .G;S/ and .H; T / be pasting diagrams such that H is a

wide subgraph of G. Further let SH be the restriction of S to H and suppose

SH � T , i. e. SH D S \ T . Then

N.H;SH / N.G;S/

N.H; T / N.G;S [ T /

is bicartesian.

Proof. Let us first show that the square is cocartesian. We have jointly surjec-

tive inclusions N.G;S/! N.G;S [ T / and N.H; T /! N.G;S [ T / since

H � G is wide by assumption. It is furthermore easy to see that the intersec-

tion of N.H; T / and N.G;S/ in N.G;S [ T / is precisely N.H;SH /. In fact,

if � D .p0 � � � � � pn/ is a simplex in this intersection, then pi � H for all

i and we consequently find some A 2 S , A � H , that contains witnesses for

all the relations pi�1 � pi . This implies � 2 N.H;SH /.

It now either follows from general properties of coherent categories or from

Corollary 2.5.13 that the square is cartesian, too.

2.5.15. Lemma Consider a complete pasting diagram .G;S/ on some globular

graph G with source s and target t . Let H1 and H2 be wide subgraphs of G and

let H0 D H1 \H2. Denote by Si the restriction of S to Hi .
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(a) The intersection of N.H1;S1/ and N.H2;S2/ in N.G;S/ is nonempty if

and only if H0 contains a path from s to t .

(b) If H0 is a wide globular subgraph, then

N.H0;S0/ N.H1;S1/

N.H2;S2/ N.G;S/

is cartesian.

Proof. Part (a) is obvious, for st -paths p from s to t in H0 are in bijective

correspondence with 0-simplices .p/ in N.†1/ \N.†2/.

Let us now suppose that H0 is a wide globular subgraph of G. It is clear

that N.G0;S0/ is a simplicial subset of the intersection of N.H1;S1/ and

N.H2;S2/. It thus su�ces to show N.H1;S1/ \N.H2;S2/ � N.H0;S0/. To

this end, consider any simplex � D .p0 � � � � � pn/ in the intersection

of N.H1;S1/ and N.H2;S2/. Observe that all the paths pi are paths in

H0 D H1 \H2 and that
S
i pi 2 Sk for k 2 f1; 2g by virtue of Lemma 2.5.4.

We thus have
S
i pi 2 S1 \ S2 D S0 and conclude � 2 N.H0;S0/ by

Lemma 2.5.4.
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2.5.16. Corollary Let † be a complete pasting diagram on a globular graph G

with source s and target t . Further let x; y 2 G. If there exists a directed path from

x to y in G, then

N.†s;x _†x;y _†y;t/ N.†s;x _†x;t/

N.†s;y _†y;t/ N.†/

is a cartesian square of simplicial sets, i. e.

N.†s;x _†x;t/ \N.†s;y _†y;t/ D N.†s;x _†x;y _†y;t/:

Moreover, the intersection of N.†s;x _†x;t/ and N.†s;y _†y;t/ in N.†/ is empty

whenever G contains neither a directed path from x to y nor a directed path from

y to x.

Proof. Immediate from Lemma 2.5.15 and Lemma 2.1.14.

Formal partial composites In this short final paragraph, we define an

operation “(” that associates with an inclusion †! … of pasting digarams

a new pasting diagram †(…. In case that … is complete, †(… has the
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property that the inclusion †! … factors as

† …

†(…:

The pasting diagram †(… should hence be thought of as a formal partial

composite of the inclusion †! …. In fact, †(… features in exactly this

role in chapter 4 and we advise the reader to skip this section on a first

reading and only come back to it after having had a first look at the material

in chapter 4.

2.5.17. De�nition Let †! … be an inclusion of pasting diagrams † D .G;S/

and … D .G; T /. We de�ne a pasting diagram †(… D .G;S(T / on G by

S(T D S [
[

x2GXfs;tg

Ts;x _ Tx;t :

2.5.18. Remark We warn the reader that generally S ( T ª T as can

already be seen for † D … some non-complete pasting diagram. However,

S(T � T whenever T is complete, see Lemma 2.5.22.

2.5.19. Example Let us compute †(… for † D .G;Scmin/ the minimal

complete and … D .G;Smax/ the maximal pasting diagram on the globular
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0 1 2

(a) A globular graph G

0 1 2

(b) The subgraph G0;1 _G1;2 of G.

0 1 2

(c) A wide subgraph of G0;1 _G1;2.

1 2

(d) A glob 
 of G0;1 _G1;2.

Figure 2.12: The graphs occuring in Example 2.5.19.

graph G shown in Figure 2.12a. The definition of Scmin(Smax gives us

Scmin(Smax D Scmin [
�
Smax;0;1 _ Smax;1;2

�
:

The set Smax;0;1 _ Smax;1;2 is the set of all globular subgraphs of G0;1 _G1;2,

i. e. of the graph shown in Figure 2.12b. One now easily sees that the only

subgraphs in .S(T /XS are G0;1 _G1;2 itself and the two of its subgraphs

shown in Figure 2.12c and 2.12d.

2.5.20. Remark Consider an inclusion † ! … of pasting diagrams on

some graph G. For any globular subgraph H � G, there exists a canonical

inclusion

.†H(…H /! .†(…/H :

This inclusion is strict in general, even for subgraphsH of the formH D Gx;y .
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This can already be seen in Example 2.5.19, where the glob shown in Fig-

ure 2.12d is an element of .Smin(Smax/1;2 but Smin;1;2(Smax;1;2 coincides

with Smin;1;2 simply because there are no vertices x 2 G1;2 X f1; 2g.

We end this paragraph with some technical but easy observations on “(”

that will be of good use in chapter 4.

2.5.21. Lemma Let †! … be an inclusion of pasting digarams. If … is complete,

then so is †(….

Proof. Let us write … D .G; T / and † D .G;S/ and consider A;B 2 S(T

with t .A/ D s.B/ D x. Observe thatA � Gs;x andB � Gx;t , i. e. A 2 Ts;y_Ty;x

and B 2 Tx;;´ _ T´;t . But this implies A _ B 2 Ts;x _ Tx;t � S(T by com-

pleteness of ….

2.5.22. Lemma Consider an inclusion † ! … of pasting diagrams on some

globular graph G with source s and target t . If … is complete and x and y are two

vertices of G such that .x; y/ ¤ .s; t/, then .†(…/x;y D …x;y .

Proof. Let us write … D .G; T / and † D .G;S/. Let us first show that

Tx;y � .S(T /x;y . To this end, consider any A 2 T with A � Gx;y . If x ¤ s

then A � Gx;y � Gx;t and hence A 2 Tx;t � Ts;x _ Tx;t � S(T . The case

y ¤ t is handled analogously.

Conversely, if A 2 .S ( T /x;y , then A 2 Sx;y � Tx;y or A � Gx;y with

A 2 Ts;´_T´;t for some vertex ´ 2 GXfx; yg. In the latter case, we conclude

A 2 Tx;y by completeness of ….
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2.5.23. Lemma Let †! … be an inclusion of pasting diagrams on the underlying

graph G with source s and target t . We then have an equality

N.†(…/ D N.†/ [
[

x2GXfs;tg

N.…s;x _…x;t/

of simplicial subsets of N.G/.

Proof. This follows from the definition of †(… and Lemma 2.5.11.
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Categories

In this chapter we associate with any complete pasting diagram † a simplicial

category CŒ†�. It turns out that CŒ…max�, where …max denotes the maximal

pasting diagram on some globular graph G, is nothing but the simplicial

category obtained from the free 2-category on G by local application of the

nerve functor, see Example 3.1.5. We are therefore led to think of functors

u W CŒ†� ! A with a pasting diagram †min � † � …max as mediating

between the mere specification of maps and cells in A at the level of †min

and a fully coherent composition CŒ…max� ! A. There is one problem in

this picture, though. In general, †min is not complete and our definition

of CŒ†� does not work. In order to overcome this di�culty, we introduce

labelings of globular graphs in a simplicial category A so as to capture

the idea of a compatible specification of maps and cells in A. Our main

theorem in this chapter then essentially closes the gap between labelings of

a globular graph G in some simplicial category A and simplicial functors

CŒ†cmin�! A.
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Theorem A Suppose that † is the minimal complete pasting diagram on some

globular graph G. The map

Cat y�.CŒ†�;A/! L.G;A/; u 7! ƒu;

that sends a simplicial functor u to its associated labeling ƒu is a bijection.

The proof of this theorem relies on a description of CŒ†cmin� in terms of

products of low-dimensional simplices in CŒ†cmin�.x; y/. After having given

the basic definitions sketched above in § 3.1, the whole of § 3.2 is devoted to

this description of CŒ†cmin�. The chapter then ends with a proof of Theorem A

in § 3.3.

3.1 The simplicial category associated with a complete

past ing diagram

This short section introduces the simplicial category CŒ†� associated with a

complete pasting diagram †. Moreover, we give the definition of a labeling

of a globular graph in some simplicial category A.

3.1.1. De�nition Let † be a complete pasting diagram. We associate with †

a simplicial category CŒ†� with objects the vertices of † and mapping spaces

CŒ†�.x; y/ D N.†x;y/. The identities are given by the isomorphisms

�0 ' N.†x;x/ D CŒ†�.x; x/
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pasting diagram

and the composition laws are given by

CŒ†�.x; y/ �CŒ†�.y; ´/ CŒ†�.x; ´/

N.†x;y/ �N.†y;´/ N.†x;y _†y;´/ N.†x;´/:
�

inclusion

D D

3.1.2. Remark The fact that CŒ†� is well-defined, i. e. that the composition

laws are associative and unital, follows immediately from the fact that N is a

strong monoidal functor, see Proposition 2.5.6.

3.1.3. Remark The necessity of the condition that † be complete in Defini-

tion 3.1.1 is somewhat subtle. In fact, the isomorphism

N.†x;y/ �N.†y;´/! N.†x;y _†y;´/

exists for all † that are generated by wide subgraphs. However, as already

pointed out in Remark 2.4.14, for non-complete † it might very well happen

that †x;y _ †y;´ ª †x;´, i. e. that the composition laws of CŒ†� are not

well-defined.

3.1.4. Remark The assignment † 7! CŒ†� is obviously functorial in arbi-

trary inclusions of complete pasting diagrams, that is, we have a functor from

the category of complete pasting diagrams and inclusions into the category

of simplicial categories.

3.1.5. Example Let us compute the category CŒ…max� for the maximal past-

ing diagram on some globular graph G. The objects of C D CŒ…max� are the
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vertices of G and the mapping spaces are C.x; y/ D N.…max;x;y/ D N.Gx;y/.

According to Proposition 2.3.3, we can identify N.Gx;y/ with the nerve of the

category F2G.x; y/, where F2G denotes the free 2-category on the globular

graph G considered as a 2-computad. Altogether, we thus find that CŒ…max�

has objects the vertices of G and mapping spaces

CŒ…max�.x; y/ D N
�
F2G.x; y/

�
:

We leave it to the reader to verify that the compositions in CŒ…max� are

induced by those of F2G. Altogether, we thus find that CŒ…max� is obtained

from F2G by applying the nerve functor Cat ! y� locally to each of the

categories F2G.x; y/.

3.1.6. Remark The composition laws in the categoryCŒ†� for some complete

pasting diagram † D .G;S/ admit a neat description in terms of n-marked

subgraphs. We know from Corollary 2.5.5 that n-simplices in CŒ†�.x; y/

correspond to admissible n-marked subgraphs .P� ; ��/ with P� 2 Sx;y .

Moreover, Remark 2.5.10 tells us that the composition � B � of two such

simplices is nothing but .P� _P� ; �� _ ��/, where �� _ �� is given by �� on

P� and by �� on P� .

3.1.7. Remark The categories CŒ†� are simplicial computads in the sense

of [RV16], that is, any n-simplex � 2 CŒ†�.x; y/ has a unique decomposition

� D .�1˛1/ B � � � B .�a˛a/, where the �i are nondegenerate atomic ni -simplices

and the ˛i are degeneracy operators in �. Here, an atomic n-simplex is a

simplex that cannot be written as a nontrivial composition in CŒ†�. We will

use the decomposition of � into atomic n-simplices more or less explicitly in
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our proof of Theorem A.

The above decomposition of some simplex � is easy to get hold of using the

pictorial description of CŒ†� given in the preceding remark. It is clear that an

n-simplex � is atomic if and only if P� is 2-connected or a single edge. Given

any admissible n-marked subgraph .P� ; ��/ in CŒ†�.x; y/, we therefore write

P� D P1 _ : : : _ Pa with each Pi a 2-connected globular subgraph and thus

obtain � D �a B � � � B �1 with .P�i
; ��i

/ D .Pi ; �� jPi
/. The Eilenberg-Zilber

lemma now yields nondegenerate simplices �i and degeneracy operators ˛i
with �i D �i˛i and it is clear from the description of the simplicial operators

in Proposition 2.2.13 that �i is atomic, too.

The following definition formalises the notion of a 2-dimensional diagram in

a simplicial category.

3.1.8. De�nition Let G be a globular graph. A labelingƒ of G in some simplicial

category A consists of the following data:

1. An object ƒx 2 A for each vertex x 2 G.

2. A 0-simplex ƒe 2 A.ƒx;ƒy/ for each edge e from x to y in G.

3. A 1-simplex ƒ� 2 A.ƒx;ƒy/ for each interior face � of G with s.�/ D x

and t .�/ D y.

This data is subject to the condition that for each interior face � of G we have
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equalities

d0ƒ� D ƒer B � � � Bƒe1 and d1ƒ� D ƒfs B � � � Bƒf1;

where dom.�/ D f1 � � � � � fs and cod.�/ D e1 � � � � � er .

3.1.9. Example (a) A labeling ƒ of the graph Bn from Example 2.2.3

in some simplicial category A consists of the choice of two objects

ƒs;ƒt 2 A and a map �1 _ : : : _�1 ! A.ƒs;ƒt/ of simplicial sets.

In the case that A is enriched over quasi-categories, a labeling of Bn is

therefore nothing but a string of n composable cells in A.ƒs;ƒt/.

(b) A labeling ƒ of the graph B1 _ B1 in Figure 2.8 in some simplicial

category A consists of the choice of three vertices ƒx, ƒy and ƒ´ in

A together with two maps �1 ! A.ƒx;ƒy/ and �1 ! A.ƒy;ƒ´/.

In anticipation of § 3.2, the reader might want to compare the notion

of a labeling of B1 _ B1 with that of a functor CŒ†cmin� ! A from

the simplicial category associated with the minimal complete pasting

diagram on B1 _ B1.

3.1.10. Remark Each functor u W CŒ†� ! A determines a labeling ƒu of

the graph G underlying † in A. The labeling is given by ƒux D u.x/,

ƒue D u.e/ and ƒu� D u.�/, where e and � D .dom� � cod�/ are

considered as 0- and 1-simplices in CŒ†�.s.e/; t.e// and CŒ†�.s.�/; t.�//,

respectively.
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3.2 The simplicial category associated with a minimal

complete past ing diagram

In this section we prepare the ground for the proof of Theorem A in the

following section and give an explicit description of the category CŒ†� in

the case that † is the minimal complete pasting diagram on some globular

graph G. In a certain sense, we show that CŒ†� is freely generated by G and

additional witnesses of the Godement interchange law, that is, any simplex

� 2 CŒ†�.x; y/ of dimension n � 2 sits inside some cube .�1/a � CŒ†�.x; y/

that corresponds to the di�erent orders of composition of a diagram such

as

� � � � � � � �x y

whose a globs are faces of G, see Proposition 3.2.2. The argument leading to

this presentation relies on the description of simplices in N.†/ in terms of ad-

missible n-marked subgraphs .P� ; ��/ from Corollary 2.5.5.

This section has two parts. In the first part we prove the statement sketched

above, i. e. that any n-simplex � in C.x; y/ is contained in some cube .�1/a.

In the second part we then determine the action of simplicial operators ˛

on the simplices of C.x; y/ in terms of the maps �n ! .�1/a. Especially

this latter part is rather technical and the reader might want to skip some of

the proofs until she or he has had a look at the proof of Theorem A in the

forthcoming section, where these technicalities are crucial.
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Fix a globular graph G and let † D †cmin D .G;S/ be the minimal complete

pasting diagram on G. Throughout this section we abbreviate C D CŒ†�.

Recall from Lemma 2.5.4 that there is a one-to-one-correspondence between

n-simplices � 2 N.†/ and n-marked subgraphs .P� ; ��/, where P� 2 S and

�� W ˆ.P�/! f1; : : : ; ng is admissible in the sense of Definition 2.2.8. How-

ever, any P� 2 S D Smin is a join of edges and faces ofG, so that admissibility

of �� turns out to be an empty condition in the case at hand, because there

are no interior faces � and  in P� with some edge e in both cod.�/ and

dom. /. We thus identify n-simplices in N.†/ or N.†x;y/ D C.x; y/ with

n-marked subgraphs .P� ; ��/, where P� 2 Sx;y and �� W ˆ.P�/! f1; : : : ; ng

is an arbitrary map.

Let us now consider an n-simplex � D .p0 � � � � � pn/ 2 C.x; y/ and let

.P� ; ��/ be the corresponding n-marked subgraph. Observe that P� can be

written uniquely as a join P� D P1 _ : : : _ Pa with each Pi an edge or a

face of P� since † D .G;S/ is the minimal complete pasting diagram on G.

With

"i.�/ D

˚
0 if Pi is an edge of P ;

1 if Pi is a face of P ;

each Pi corresponds to an "i.�/-dimensional simplex �i 2 C.sPi ; tPi/,

namely �i D .Pi/ if Pi is an edge and �i D .domPi � codPi/ if Pi is

a face. We thus obtain a map

�"1.�/ ��"2.�/ � � � � ��"a.�/
.�1;:::;�a/
������! C.sP1; tP1/ � � � � �C.sPa; tPa/:
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As this map is crucial to the rest of this paragraph, we introduce the abbre-

viations

�".�/ D �"1.�/ ��"2.�/ � � � � ��"a.�/ (3.1)

and

C.�/ D C.sP1; tP1/ � � � � �C.sPa; tPa/: (3.2)

3.2.1. Remark The reader should note that the above discussion is merely

a special case of the decomposition � D .�a˛a/ B � � � B .�1˛1/ of an n-

simplex that we already sketched in Remark 3.1.7. In fact, the decomposition

P� D P1_: : :_Pa of P� into faces and edges corresponds to a decomposition

� D �a B � � � B �1 of � into atomic n-simplices. Moreover, writing �i D �i˛i

with �i nondegenerate recovers the construction of the simplices �i given

above.

With this notation at hand, we can already show that any simplex in C is

contained in some cube .�1/n.

3.2.2. Proposition Let � 2 C.x; y/ be an arbitrary n-simplex. There then exists

a unique map y� W �n ! �".�/ such that

�".�/ C.�/

�n C.x; y/

.�1; : : : ; �a/

y�

�

composition
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commutes.

Proof. We keep the notation fixed that we use throughout this section. That

means in particular that � D .p0 � � � � � pn/ has .P� ; ��/ as its associated

n-marked subgraph and that P� D P1 _ : : : _ Pa is the decomposition of

P� into edges and faces of P . Moreover, �i D .Pi/ if Pi is an edge and

�i D .domPi � codPi/ if Pi is a face.

Let us consider an arbitrary map y� W �n ! �".�/. By the universal property

of products, the map y� is uniquely determined by the compositions

ˇi W �
n
! �".�/ ! �"i .�/;

that is, by maps ˇi W Œn�! Œ"i.�/�. The composition

.�1; : : : ; �a/ B y�

thus classifies the n-simplex .�1ˇ1; : : : ; �aˇa/ of C.�/. Given the explicit

description of the simplices �i at the beginning of this proof, one now easily

computes the n-simplices �i D �iˇi as �i D .qi0 � � � � � q
i
n/ with

qij D

„
Pi if "i.�/ D 0;

domPi if "i.�/ D 1 and ˇi.j / D 0;

codPi if "i.�/ D 1 and ˇi.j / D 1:

The composition � D �r B : : : B �1 D .q0 � � � � � qn/ 2 C.x; y/ of these
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simplices �i therefore has

qj D q
1
j � : : : � q

r
j

by the definition of composition in C. Note that y� renders the diagram

�".�/ C.�/

�n C.x; y/

.�1; : : : ; �r /

y�

�

composition (3.3)

commutative if and only if � D � , that is, if and only if qj D pj for

all 0 � j � n. According to Remark 2.2.11, the path pj occuring in

� D .p0 � � � � � pn/ can be characterised as the unique wide path in

P with exactly the faces Pi with ��.Pi/ � j to its left. However, given the

above description of qj it is easy to see that a face Pi lies to the left of qj
if and only if ˇi.j / D 1. Altogether, we may thus conclude that the map y�

induced by the maps

ˇi.j / D

˚
0 if j < ��.Pi/

1 if j � ��.Pi/

is the unique map that renders (3.3) commutative.

An immediate consequence of the uniqueness of the map y� asserted in
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Proposition 3.2.7 is the following corollary:

3.2.3. Corollary Let � 2 C.x; y/ and � 2 C.y; ´/ be two composable n-simplices.

The map b� B � is the map

.y�; y�/ W �n ! �".�/ ��".�/ D �".�B�/:

Proof. The composite � B� in C corresponds to the join .P� _P� ; �� _��/ of

n-marked subgraphs, see Remark 3.1.6. This implies �".�B�/ D �".�/ ��".�/,

C.� B �/ D C.�/ � C.�/ and ..��/1; : : : ; .��/c/ D .�1; : : : ; �a; �1; : : : ; �b/.

The diagram

�".�/ ��".�/ C.�/ �C.�/

�n C.x; y/ �C.y; ´/ C.x; ´/

.y�; y�/

.�1; : : : ; �a; �1; : : : ; �b/

composition
composition � composition

composition.�; �/

commutes by associativity of composition in C and the definition of y� and

y� . It now follows from the uniqueness asserted in Proposition 3.2.7 that

b� B � D .y�; y�/.

Let us now consider a simplicial operator ˛ W Œm�! Œn� and the n-marked

subgraph .P�˛; ��˛/ associated with �˛. The steps given in Proposition 2.2.13

to compute .P�˛; ��˛/ from .P� ; ��/ then admit some simplifications because

any edge of P� ; P�˛ 2 S D Scmin is incident with the exterior face. More
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precisely, one obtains the following procedure to determine .P�˛; ��˛/ in

terms of .P� ; ��/:

1. Remove the edges and interior vertices of all paths dom.�/, where � is

some interior face of P� with ��.�/ � ˛.0/.

2. Remove the edges and interior vertices of all paths cod.�/, where � is

some interior face of P� with ��.�/ > ˛.m/.

3. Define ��˛ on the remaining graph by

��˛.�/ D min
˚
k 2 f1; : : : ; mg j ˛.k/ � ��.�/

	
:

As both P� and P�˛ are wide subgraphs of Gx;y , the following description

of the decomposition P�˛ D Q1 _ : : : _Qb into edges and faces of P�˛ in

terms of P� D P1 _ : : : _ Pa is immediate.

3.2.4. Lemma Let � be an n-simplex in C.x; y/ and let P� D P1 _ : : :_Pa be

the decomposition of its associated n-marked subgraph into edges and faces. Further

let ˛ W Œm�! Œn� be a simplicial operator in � and let P�˛ D Q1 _ : : : _Qb be

the decomposition of P�˛ into edges and faces. For any i 2 f1; : : : ; ag we then have

the following relations between these decompositions:

1. If Pi is an edge, then Pi D Qj for some suitable j .

2. If Pi is an interior face � with ˛.0/ < ��.�/ � ˛.m/, then Pi D Qj for

some suitable j . Moreover, k < ��˛.�/ if and only if ˛.k/ < ��.�/.
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3. If Pi is an interior face with ��.Pi/ � ˛.0/, then codPi D Qj_: : :_QjCk
for suitable j and k.

4. If Pi is an interior face with ��.Pi/ > ˛.m/, then domPi D Qj_: : :_QjCk
for suitable j and k.

Let us fix the notation of Lemma 3.2.4 for the remainder of this section.

In order to be able to describe the action of simplicial operators on the

simplices of C.x; y/ in terms of the maps y� and c�˛, we need to relate �".�/

and �".�˛/ in some sensible way. Recall from (3.1) that

�".˛/ D �"1.˛/ � � � � ��"a.˛/:

From the description of .P�˛; ��˛/ given in Lemma 3.2.4 we fabricate a

map ".˛/ W �".�˛/ ! �".�/ whose component ".˛/i at �"i .�/ is the identity

�"j .�˛/ D �"i .�/ if Pi D Qj for some j and whose components ".˛/i at

�"i .�/ with Pi ª Q are given by

˚
�"j .�˛/ � � � � ��"jCk.�˛/ ' �0

d0

�! �"i .�/ if Qj _ : : : _QjCk D codPi ;

�"j .�˛/ � � � � ��"jCk.�˛/ ' �0
d1

�! �"i .�/ if Qj _ : : : _QjCk D domPi :

3.2.5. Remark The maps ".˛/ are functorial in ˛ in the sense that we have

".˛ B ˇ/ D ".˛/ B ".ˇ/ for all composable simplicial operators ˛ and ˇ.

We record the following technical remark in order to isolate all technical

properties of the maps ".˛/ from the actual proof of Theorem A in the forth-
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coming section. However, this remarkmight also provide the reader with some

intuition for the whys and wherefores of the maps ".˛/.

3.2.6. Remark Suppose that ƒ is a labeling of † D †cmin in some simplicial

category A. Further suppose that � is some n-simplex in C.x; y/ and that

˛ W Œm�! Œn� is a simplicial operator in �. If we let

A.�/ D A.ƒsP1; ƒtP1/ � � � � �A.ƒsPa; ƒtPa/;

then there are obvious partial composition maps

$ W A.�˛/! A.�/

given by the identities on those A.ƒsPi ; ƒtPi/ with Pi D Qj for some j

and by the compositions

A.ƒsQj ; ƒtQj / � � � � �A.ƒsQjCk; ƒtQjCk/! A.ƒsQj ; ƒtQjCk/

whenever Pi is a face and Qj _ : : : _QjCk is either domPi or codPi .

Given the relation between P� D P1 _ : : :_Pa and P�˛ D Q1 _ : : :_Qb in

Lemma 3.2.4, it is immediate that

$
�
ƒ.�˛/j

�
i
D

„
ƒ�i if Pi D Qj for some j;

ƒQjCk B � � � BƒQj if domPi D Qj _ : : : _QjCk

or codPi D Qj _ : : : _QjCk:
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With our definition �i D .domPi � codPi/ and the definition of a labeling

ƒ, one then sees that

$
�
ƒ.�˛/j

�
i
D

„
ƒ�i if Pi D Qj for some j;

d1.ƒ�i/ if domPi D Qj _ : : : _QjCk;

d0.ƒ�i/ if codPi D Qj _ : : : _QjCk:

Moreover, it follows from our construction of ".˛/ from above that �i B ".˛/

classifies the simplex given by

ƒ�i � ".˛/i D

„
ƒ�i if Pi D Qj for some j;

d1.ƒ�i/ if domPi D Qj _ : : : _QjCk;

d0.ƒ�i/ if codPi D Qj _ : : : _QjCk:

Altogether, this proves that the diagram

�".�˛/ A.�˛/

�".�/ A.�/

".˛/

�
ƒ.�˛/1; : : : ;ƒ.�˛/b

�

.ƒ�1; : : : ;ƒ�a/

$

commutes.

Let us now give a description of the action of simplicial operators on the

simplices of C.x; y/ in terms of the maps y� .
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3.2.7. Proposition The diagram

�m �".�˛/

�n �".�/

b�˛
˛

y�

".˛/

commutes for any simplicial operator ˛ W Œm� ! Œn� in � and any n-simplex

� 2 C.x; y/.

Proof. We still keep the notation from Lemma 3.2.4. According to the proof

of Proposition 3.2.2, the composition

�m
˛
�! �n

y�
�! �".�/ ! �"i .�/

corresponds to the map Œm�! Œ0� if "i.�/ D 0 and to ˇi W Œm�! Œ1� given by

ˇi.j / D

˚
0 if ˛.j / < ��.Pi/;

1 if ˛.j / � ��.Pi/;

if "i.�/ D 1. In order to show that the diagram in the lemma commutes, it

su�ces to show that these maps coincide with the maps 
i W Œm�! Œ"i.�/�

corresponding to the compositions

�m
b̨�
�! �".�˛/

".˛/
��! �".˛/ ! �"i .˛/: (3.4)
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To this end, we distinguish the following cases that correspond to the di�erent

cases in Lemma 3.2.4:

1. If "i.�/ D 0, i. e. if Pi is an edge, then Œ"i.˛/� D Œ0� is terminal and we

are done.

2. If "i.�/ D 1, i. e. if Pi is an interior face and ˛.0/ < ��.Pi/ � ˛.m/,

then Pi D Qk for some k. The component ".˛/i is then the identity on

�"k.�˛/ D �"i .˛/. The map Œm�! Œ1� corresponding to the composition

(3.4) is therefore given by


i.j / D

˚
0 if j < ��˛.Pi/

1 if j � ��˛.Pi/:

We conclude by the equivalence

j < ��˛.Pi /
if and only if ˛.j / < ��.Pi/

stated in Lemma 3.2.4.

3. If "i.�/ D 1 and ��.Pi/ � ˛.0/, then codPi D Qk _ : : : _QkCl and

".˛/i is the map

�"k.�˛/ � � � � ��"kCl .�˛/
d0

�! �"i .�/

The map Œm� ! Œ1� corresponding to the composition (3.4) is hence

the constant map 1. This coincides with ˇi since ��.Pi/ � ˛.0/, i. e.
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˛.j / � ��.Pi/ for all j 2 Œm�.

4. The remaining case that "i.�/ D 1 and ��.Pi/ > ˛.m/ can be handled

as the preceding case.

This finishes the proof of Proposition 3.2.7.

3.3 Label ings of Globular Graphs

This section solely consists of a proof of

Theorem A Suppose that † is the minimal complete pasting diagram on some

globular graph G. The map

Cat y�.CŒ†�;A/! L.G;A/; u 7! ƒu;

that sends a simplicial functor u to its associated labeling ƒu is a bijection.

Proof. Let us begin by introducing some notation and recalling some facts

from § 3.2. Given a simplex � in CŒ†�.x; y/ with associated n-marked sub-

graph .P� ; ��/, we decompose

P� D P1 _ : : : _ Pa
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with each Pi an edge or an interior face of P� , see § 3.2. We then have

simplices �i D .Pi/ if i is an edge and �i D .domPi � Pi/ if Pi is an

interior face. Similar to the abbreviation

CŒ†�.�/ D CŒ†�.sP1; tP1/ � � � � �CŒ†�.sPa; tPa/

introduced in (3.2) above, we write

A.�/ D A.ƒsP1; ƒtP1/ � � � � �A.ƒsPa; ƒtPa/:

Let us now show that a simplicial functor u W CŒ†� ! A is uniquely de-

termined by its associated labeling ƒu. It is obvious that the labeling ƒu
completely determines the action of u on objects. Moreover, ƒu also deter-

mines the action of u an all the simplices � 2 CŒ†�.x; y/ of the form � D .e/

for an edge e or � D .dom� � cod�/ for an interior face �. Now consider

some arbitrary n-simplex � 2 CŒ†�.x; y/. We then have a commutative

diagram

�".�/ CŒ†�.�/ A.�/

�n CŒ†�.x; y/ A.ux; uy/

.�1; : : : ; �r /

y�

�

.u; : : : ; u/

composition

u

composition

by Proposition 3.2.2 and functoriality of u. Observe that the top row in this
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diagram is nothing but

.u; : : : ; u/ B .�1; : : : ; �r/ D .u�1; : : : ; u�r/ D
�
ƒuP1; : : : ; ƒuPr

�
:

The image u.�/ of � is hence the n-simplex in A.ux; uy/ classified by the

composition

�n �".�/ A.�/ A.ux; uy/
�
ƒuP1; : : : ;ƒuPr

�
y� composition

and this composition is uniquely determined by ƒu. Altogether, this proves

that u 7! ƒu is injective.

In order to prove surjectivity of the assignment u 7! ƒu, we have to construct

for each labelling ƒ of G in A a simplicial functor u W CŒ†�! A such that

ƒ D ƒu. The argument so far already hints at the correct definition of u. In

fact, we have no choice but to define u.x/ D ƒx on objects and to define

the image u.�/ of some n-simplex � 2 CŒ†�.x; y/ as the simplex classified

by the map

�n �".�/ A.�/ A.ux; uy/:
�
ƒP1; : : : ;ƒPr

�
y� composition

Observe that if these assignments indeed define a functor u, then ƒ D ƒu.

Let us verify that these assignments define a simplicial functor. For two

composable n-simplices � 2 CŒ†�.x; y/ and � 2 CŒ†�.y; ´/ we have a
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3 Pasting Diagrams and Simplicial Categories

commutative diagram

�".�B�/ A.� B �/

�".�/ ��".�/ A.�/ �A.�/

A.x; y/ �A.y; ´/

�n A.ux; u´/

.ƒ�1; : : : ;ƒ�a;ƒ�1; : : : ;ƒ�b/

composition � composition

.y�; y�/ Db� B �

composition

u.� B �/

.u.�/; u.�//

.ƒ.� B �/1; : : : ;ƒ.� B �/aCb/
D D

by Corollary 3.2.3. We thus conclude u.� B �/ D u.�/ B u.�/ by associativity

of composition in A. Moreover, for any simplicial operator ˛ we have a

diagram

�m �".�˛/ A.�˛/

�n �".�/ A.�/ A.x; y/�
ƒ�1; : : : ;ƒ�a

�
y�

�
ƒ.�˛/1; : : : ;ƒ.�˛/b

�b�˛
˛ ".˛/ composition

composition

composition

in which the triangle commutes by associativity of composition in A and in

which the two squares on the left hand side commute by Remark 3.2.6 and

Proposition 3.2.7.
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Diagrams

Throughout this chapter we fix a class R of maps in y� that contains all

isomorphisms and let L denote the class of maps that have the left lifting

property against all maps in R. We call the elements of L and R L-maps and

R-maps, respectively. A simplicial functor u W A! B is a local R-functor if

all the maps u W A.a; a0/! B.ua; ua0/, a 2 A, are R-maps. The main result

of this chapter is the following characterisation of those inclusions between

pasting diagrams that induce simplicial functors that have the left lifting

property against all local R-functors:

Theorem B The functor CŒ†� ! CŒ…� induced by an inclusion of complete

pasting diagrams has the left lifting property against all local R-functors if and

only if the map

N.†x;y(…x;y/! N.…x;y/

is an L-map for all vertices x; y 2 †.

The proof of Theorem B relies on three independent steps. As a first step, in

§ 4.1, we prove that the hypothesis on the inclusion †! … in Theorem B is
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4 Global Lifting Properties of Pasting Diagrams

su�cient:

4.1.1. Proposition Let † ! … be an inclusion of complete pasting diagrams

such that N.†x;y(…x;y/ ! N.…x;y/ is an L-map for all vertices x; y of †.

The functor CŒ†� ! CŒ…� then has the left lifting property against all local

R-functors.

The other two steps are necessary to show that the hypothesis on †! … in

Theorem B is necessary. To this end, we verify in § 4.2 that the hypothesis is

necessary at least for the map N.†(…/! N.…/:

4.2.8. Proposition Let † ! … be an inclusion of complete pasting diagrams.

If CŒ†�! CŒ…� has the left lifting property against all local R-functors, then

N.†(…/! N.…/ is an L-map.

The final step in the proof of Theorem B is then to descend from the

maps N.†(…/ ! N.…/ handled by Proposition 4.2.8 to all the maps

N.†x;y(…x;y/! N.…x;y/ with x; y 2 G. This is achieved by the follow-

ing proposition whose proof we give in § 4.3.

4.3.5. Proposition If †! … is an inclusion of complete pasting diagrams such

that CŒ†�! CŒ…� has the left lifting property against all local R-functors, then

so do the functors CŒ†x;y�! CŒ…x;y� for all vertices x; y of †.

In the final section § 4.4 we then give the proof of Theorem B that we sketched

in this introduction.
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4.1 Sufficiency of the hypothesis

4.1 Suff ic iency of the hypothesis

We keep the classes L and R of maps in y� with L D tR fixed. This section

is devoted to a proof of the following proposition that we already stated

above.

4.1.1. Proposition Let † ! … be an inclusion of complete pasting diagrams

such that N.†x;y(…x;y/ ! N.…x;y/ is an L-map for all vertices x; y of †.

The functor CŒ†� ! CŒ…� then has the left lifting property against all local

R-functors.

In order to prove Proposition 4.1.1, we thus have to show that for each

square

CŒ†� B

CŒ…� A

u

p

v

(4.1)

in which p is a local R-functor, there exists a simplicial functor ` W CŒ…�! B

such that

CŒ†� B

CŒ…� A

u

p

v

` (4.2)

commutes. Throughout this section, we keep an inclusion †! … of pasting
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4 Global Lifting Properties of Pasting Diagrams

diagrams satisfying the hypothesis of Proposition 4.1.1 and a square such

as (4.1) fixed and assume p to be a local R-functor. We let G denote the

graph underlying both † and …. Observe that CŒ†�! CŒ…� is the identity

on objects, so that pu.x/ D v.x/ for any vertex x 2 G. We thus define

`.x/ D u.x/ on objects and this definition lets (4.2) commute on the level

of objects. It remains to construct for each two vertices x; ´ 2 G suitably

functorial lifts `x;´ as in the diagram

N.†x;´/ CŒ†�.x; ´/ B.ux; u´/

N.…x;´/ CŒ…�.x; ´/ A.vx; v´/:

u

p

v

`x;´
inclusion

D

D

(4.3)

Here, functoriality means nothing but that for all vertices x of G the map

`x;x W N.…x;x/ D �
0 ! B.ux; ux/ classifies the identity idux 2 B.ux; ux/0,

and that the square

N.…x;y/ �N.…y;´/ B.ux; uy/ � B.uy; u´/

N.…x;´/ B.ux; u´/

`x;y � `y;´

composition

`x;´

composition (4.4)

commutes for all vertices x; y; ´ 2 G. The constraint on `x;x is easily satisfied

by simply defining `x;x to be the map classifying the identity in B.ux; ux/0.
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4.1 Sufficiency of the hypothesis

It is then clear that (4.4) commutes for all x; y; ´ 2 G with x D y or

y D ´. Moreover, the following lemma identifies a further case, where (4.4)

commutes for trivial reasons.

4.1.2. Lemma The square (4.4) commutes whenever y … Gx;´.

Proof. Suppose y … Gx;´. There is then no directed path from x to y or no

directed path from y to ´ in G. This implies in particular that N.…x;y/ D ¿
or N.…y;´/ D ¿ and thus N.…x;y/ �N.…y;´/ D ¿. Hence, (4.4) commutes

simply because its upper left corner is an initial object.

Let us sum up our discussion so far: In order to solve the lifting problem

(4.1) it su�ces to devise maps `x;´ W N.…x;´/! B.ux; u´/ as in (4.3) for all

pairs x; ´ of distinct vertices of G such that diagram (4.4) commutes for all

vertices x; ´ 2 G and y 2 Gx;´ X fx; ´g. We construct these maps `x;´ by

recursion over the partial order “�” on the set of pairs .x; ´/ of vertices of

G given by

.x; ´/ � .x0; ´0/ if and only if Gx;´ � Gx0;´0 :

To this end, let us fix two vertices x; ´ 2 G and assume that all `a;b with

.a; b/ � .x; ´/ have already been constructed. Further assume that these `a;b
are functorial in the sense that (4.4) with a; b; c instead of x; y; ´ commutes

for all a; c 2 G with .a; c/ � .x; ´/ and b 2 Ga;c. Given this data, we have
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4 Global Lifting Properties of Pasting Diagrams

to furnish a map `x;´ W N.…x;´/! B.ux; u´/ such that (4.3) commutes and

such that (4.4) commutes for all y 2 Gx;´.

Observe that for any vertex y 2 Gx;´ X fx; ´g we have .x; y/; .y; ´/ � .x; ´/.

This means in particular that we have for any such vertex y the maps

`x;y and `y;´ at our disposal. We thus define for any such vertex y the

map

hy W N.…x;y _…y;´/! B.ux; u´/

as the composition

N.…x;y _…y;´/ N.…x;y/ �N.…y;´/ B.ux; uy/ � B.uy; u´/

B.ux; u´/:

`x;y � `y;´

composition
hy

'

We know from Lemma 2.5.23 that

N.†x;y(…x;y/ D N.†x;´/ [
[

y2Gx;´Xfx;´g

N.…x;y _…y;´/;

where the unions are taken in N.…x;´/. Observe that the domain of hy is a

simplicial subset of N.†x;´(…x;´/. The following two lemmata therefore

guarantee that these maps hy together with u W CŒ†�.x; ´/ ! B.ux; u´/

induce a map h W N.†x;´ ( …x;´/ ! B.ux; u´/ and this permits us to

eventually utilise the hypothesis on the inclusion †! … in the statement of

104



4.1 Sufficiency of the hypothesis

Proposition 4.1.1.

4.1.3. Lemma Let y 2 Gx;´ X fx; ´g. The map hy and

u W N.†x;´/ D CŒ†�.x; ´/! B.ux; u´/

coincide on the intersection of their domains.

4.1.4. Lemma Let y; y 0 2 Gx;´ X fx; ´g. The maps hy and hy0 coincide on the

intersection of their domains.

We defer the proof of these lemmata until the end of this section so as not

to distract from the main argument. In order to understand the composition

p B h, where h W N.†x;´(…x;´/! B.ux; u´/ is the map whose existence is

guaranteed by the above two lemmata, it su�ces to understand the compo-

sition p B u and all the compositions p B hy , where y 2 Gx;´ X fx; ´g. The

former composition is known from (4.1) while the latter composition can

easily be computed as in the following remark:

4.1.5. Remark The diagram

N.…x;y/ �N.…y;´/ B.ux; uy/ � B.uy; u´/ B.ux; u´/

A.ux; uy/ �A.uy; u´/ A.ux; u´/

comp.

comp.

p � p p

`x;y � `y;´

v � v

commutes by functoriality of p and (4.3) for `x;y and `y;´. The composition
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4 Global Lifting Properties of Pasting Diagrams

p B hy therefore appears in the commutative diagram

N.…x;y/ �N.…y;´/ N.…x;y _…y;´/ N.…x;´/

A.ux; uy/ �A.uy; u´/ A.ux; u´/

composition in CŒ…�

v

inclusion

v � v

composition

p B hy

'

and we conclude that p B hy is nothing but the composition of v and the

canonical inclusion N.…x;y _…y;´/! N.…x;´/.

Altogether, we see that the diagram

N.†x;´/ N.†x;´(…x;´/ B.ux; u´/

N.…x;´/ A.vx; vy/

u

h

v

p

(4.5)

commutes. Moreover, p is an R-map by assumption and the left vertical

map N.†x;´(…x;´/ ! N.…x;´/ is an L-map by our hypothesis on the

inclusion†! … in the statement of Proposition 4.1.1. We therefore find a lift

`x;´ W N.…x;´/! B.ux; u´/ in (4.5) and this lift renders (4.3) commutative,
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4.1 Sufficiency of the hypothesis

too. It only remains to check that the lift `x;´ in (4.5) is functorial in the

sense that all the diagrams (4.4) with y 2 Gx;´ X fx; ´g commute. To this

end, let us consider the diagram

N.…x;y/ �N.…y;´/ N.…x;y _…y;´/ N.†x;´(…x;´/ N.…x;´/

B.ux; uy/ � B.uy; u´/ B.ux; u´/:

`x;y � `y;´

composition

h
`x;´

'

The triangle commutes by our construction of `x;´ as a lift in (4.5) and the

quadriliteral commutes because both compositions from N.…x;y _…y;´/ to

B.ux; u´/ are nothing but the map hy . Functoriality of `x;´ therefore follows

from the simple observation that the top row in this diagram is composition

in CŒ…�. This finishes the proof of Proposition 4.1.1 except for the fact that

we owe the reader proofs for Lemma 4.1.3 and 4.1.4.

4.1.3. Lemma Let y 2 Gx;´ X fx; ´g. The map hy and

u W N.†x;´/ D CŒ†�.x; ´/! B.ux; u´/

coincide on the intersection of their domains.

Proof of Lemma 4.1.3. The domain of hy is N.…x;y _…y;´/ and the domain

of u is N.†x;´/. Their intersection in N.…x;´/ is nothing but N.†x;y _†y;´/

by Corollary 2.5.13. The restrictions of u and hy to this intersection feature
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4 Global Lifting Properties of Pasting Diagrams

as the bottom-left and top-right compositions in the diagram

N.†x;y _†y;´/ N.…x;y _…y;´/ N.…x;y/ �N.…y;´/

N.†x;y/ �N.†y;´/ B.ux; uy/ � B.uy; u´/

N.†x;´/ B.ux; u´/:

�

composition

`x;y � `y;´

u� u

composition

u

'

This is obvious for hy and follows for u from the definition of composi-

tion in CŒ†�. The bottom square in this diagram commutes by functo-

riality of u and top square commutes by naturality of the isomorphisms

N.†x;y _†y;´/ ' N.†x;y/�N.†y;´/ together with the standing assumption

that `x;y and `y;´ render the diagram (4.3) commutative. In fact, the upper

left triangle in (4.3) su�ces for the diagram at hand.

4.1.4. Lemma Let y; y 0 2 Gx;´ X fx; ´g. The maps hy and hy0 coincide on the

intersection of their domains.

Proof of Lemma 4.1.4. Corollary 2.5.16 tells us that dom.hy/ and dom.hy0/

intersect in N.…x;´/ if and only if G contains a directed path between y and

y 0. As the situation is symmetric, we may suppose that G contains a directed

path from y to y 0. According to Corollary 2.5.16, the intersection of dom.hy/

and dom.hy0/ is then given by N.…x;y _…y;y0 _…y0;´/. By naturality of the

108



4.1 Sufficiency of the hypothesis

isomorphisms N.…x;y _…y;´/ ' N.…x;y/ � N.…y;´/ the statement of the

lemma thus reduces to the commutativity of the diagram

N.…x;y/ �N.…y;y0/ �N.…y0;´/

N.…x;y0/ �N.…y0;´/ N.…x;y/ �N.…y;´/

B.ux; uy/ � B.uy; uy 0/ � B.uy 0; u´/

B.ux; uy 0/ � B.uy 0; u´/ B.ux; uy/ � B.uy; u´/

B.ux; u´/;

composition composition

composition �N.…y0;´/ N.…x;y/� composition

`x;y � `y;y0 � `y0;´

`x;y0 � `y0;´ `x;y � `y;´

composition �B.uy0; u´/ B.ux; uy/� composition

as the compositions on the left and right hand side of this diagram are – up

to coherent isomorphism – nothing but the restrictions of hy0 and hy to the

intersection of their domains. However, the upper two squares in this diagram

commute by functoriality of our lifts `�;� and the lower square commutes by

associativity of composition in B. This concludes the proof.
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4.2 Necessity of the hypothesis , part 1

In this section,we give a proof of the following proposition:

4.2.8. Proposition Let † ! … be an inclusion of complete pasting diagrams.

If CŒ†�! CŒ…� has the left lifting property against all local R-functors, then

N.†(…/! N.…/ is an L-map.

The proof of Proposition 4.2.8 works by exhibiting for each commutative

square

N.†(…/ X

N.…/ Y ;

u

v

p (4.6)

in which p is an R-map, another commutative square

CŒ†� CŒ†(…�=u

CŒ…� CŒ†(…�=pu;v=pu

C=p (4.7)

in which C=p is a local R-functor, that has the property that any solution

to the lifting problem (4.7) gives a solution to the original lifting problem

(4.6).
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4.2 Necessity of the hypothesis, part 1

Even though the definitions and remarks of this section are only relevant to

the proof of Proposition 4.2.8, we still prefer to give them in their general

form.

4.2.1. De�nition Let † be a complete pasting diagram with source s and target t .

Further let u W N.†/ ! X be a map of simplicial sets. We de�ne a simplicial

category CŒ†�=u as follows: The objects of CŒ†�=u are the vertices of † and the

mapping spaces of CŒ†�=u are given by

CŒ†�u.x; y/ D

˚
CŒ†�.x; y/ if .x; y/ ¤ .s; t/;

X if .x; y/ D .s; t/:

The composition laws in CŒ†�=u are those of CŒ†� except for the compositions

CŒ†�=u.s; x/ �CŒ†�=u.x; t/! CŒ†�=u.s; t/;

which are given by

CŒ†�=u.s; x/ �CŒ†�=u.x; t/ CŒ†�=u.s; t/

N.†s;x/ �N.†x;t/ N.†s;t/ X:
composition in CŒ†� u

D D

if x … fs; tg and by the isomorphisms �0 �X ' X and X ��0 ' X if x D s

or x D t , respectively.

4.2.2. Remark We should justify that CŒ†�=u is well-defined, i. e. that the
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composition laws for CŒ†�=u are associative and unital. This, however, is

immediate from the definition and left to the reader.

4.2.3. Remark Observe that we have a canonical functor u W CŒ†�! CŒ†�=u
that is the identity on objects and on all mapping spaces CŒ†�.x; y/ with

.x; y/ ¤ .s; t/, and acts on CŒ†�.s; t/ D N.†/ by u.

4.2.4. Remark If p W X ! Y is another map of simplicial sets, then there is

a canonical functor C=p W CŒ†�=u ! CŒ†�=pu that is the identity on objects

and on all mapping spaces CŒ†�=u.x; y/ with .x; y/ ¤ .s; t/, and acts on

CŒ†�=u.s; t/ D X by p. The reader should note that C=p is a local R-functor

whenever p W X ! Y is an R-map.

4.2.5. De�nition Let v W N.…/ ! Y and w W N.†(…/ ! Y be two maps

of simplicial sets. We de�ne a functor v=w W CŒ…� ! CŒ†(…�=w as follows:

The functor v=w is the identity on objects. The action of v=w on mapping spaces

CŒ…�.x; y/ with .x; y/ ¤ .s; t/ is given by the identity on

CŒ…�.x; y/ D N.…x;y/ D N
�
.†(…/x;y

�
D CŒ†(…�=w.x; y/;

where the second equality follows from Lemma 2.5.22 and the action of v=w on the

mapping space CŒ…�.s; t/ is given by the composition

CŒ…�.s; t/ D N.…/
v
�! Y D CŒ†(…�=w.s; t/:

We leave it to the reader to verify that the functor v=w in Definition 4.2.5 is

well-defined. Definition 4.2.5 was the last piece missing in order to be able
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4.2 Necessity of the hypothesis, part 1

to transform squares such as (4.6) into squares (4.7). This is accomplished

by the following lemma:

4.2.6. Lemma Suppose that a square such as (4.6) is given. The diagram

CŒ†(…� CŒ†(…�=u

CŒ…� CŒ†(…�=pu

u

C=p

v=pu

commutes.

Proof. Both compositions are the identity on objects and all mapping spaces

CŒ†( …�.x; y/ with .x; y/ ¤ .s; t/. On the remaining mapping space

CŒ†(…�.s; t/, the diagram given in the lemma is nothing but (4.6).

4.2.7. Lemma Suppose a square such as (4.6) to be given. Suppose further that the

diagram

CŒ†� CŒ†(…� CŒ†(…�=u

CŒ…� CŒ†(…�=pu

u

C=p

v=pu

`

commutes. The map `s;t W N.…/ ! X given by the action of ` on the mapping

space CŒ…�.s; t/ then solves the lifting problem (4.6).
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Proof. It is immediate that p`s;t D v from our definitions of C=p and v=w.

Let us verify that the composition

N.†(…/! N.…/
`s;t

��! X

is equal to u. By Lemma 2.5.12, we may write the domain of this composition

as

N.†(…/ D N.†/ [
[

x2GXfs;tg

N.…s;x _…x;t/

and it thus su�ces to show that the map

N.†/! N.…/
`s;t

��! X (4.8)

and all the maps

N.…s;x _…x;t/! N.…/
`s;t

��! X (4.9)

with x 2 G X fs; tg coincide with the restrictions of u to their domain. For

the former map (4.8) this follows immediately from the commutative square

given in the lemma. For the latter maps, we observe that `s;x and `x;t are

necessarily identity maps and that functoriality of ` hence implies that the
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square

N.…s;x/ �N.…x;t/ N.…s;x _…x;t/ N.…/

N.…s;x/ �N.…x;t/ N.…s;x _…x;t/ N.†(…/ X

`s;x � `x;t 1

inclusion

inclusion u

`s;t

'

'

commutes, i. e. that the maps (4.9) coincide with the restriction of u to their

domain. This finishes the proof.

We close this section with the proof of Proposition 4.2.8 that we sketched at

its beginning.

4.2.8. Proposition Let † ! … be an inclusion of complete pasting diagrams.

If CŒ†�! CŒ…� has the left lifting property against all local R-functors, then

N.†(…/! N.…/ is an L-map.

Proof. Suppose that

N.†(…/ X

N.…/ Y ;

u

v

p

is a commutative diagram of simplicial sets in which p is an R-map. We
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then have a commutative diagram

CŒ†� CŒ†(…�=u

CŒ…� CŒ†(…�=pu;v=pu

C=p

by Lemma 4.2.6 and the functor C=p is a local R-functor by Remark 4.2.4.

As CŒ†�! CŒ…� has the left lifting property against all local R-functors, we

find a lift ` W CŒ…�! CŒ†(…�=u in this diagram. However, any such lift `

induces a lift `s;t in the original diagram of simplicial sets by Lemma 4.2.7.

4.3 Necessity of the hypothesis , part 2

This section is devoted to a proof of the following third proposition announced

at the beginning of this chapter:

4.3.5. Proposition If †! … is an inclusion of complete pasting diagrams such

that CŒ†�! CŒ…� has the left lifting property against all local R-functors, then

so do the functors CŒ†x;y�! CŒ…x;y� for all vertices x; y of †.

The proof of Proposition 4.3.5 is very similar in spirit to the proof of Propo-

sition 4.2.8 in the preceding section in the sense that we transform some
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given lifting problem of the form

CŒ†x;y� B

CŒ…x;y� A

u

v

p (4.10)

into a lifting problem

CŒ†� B˙

CŒ…� A˙

p˙ (4.11)

in such a way that p˙ is a local R-functor whenever p is. Moreover, we show

that any solution to the lifting problem (4.11) can be translated back into

a solution to the lifting problem (4.10). However, the technical details are

completely di�erent.

4.3.1. De�nition Let A be a simplicial category. We de�ne a simplicial category

A˙ as follows: The set of objects of A˙ is the disjoint union of the set of objects of

A and fs; tg. The mapping spaces of A˙ are given by

A˙.x; y/ D

„
A.x; y/ if x; y 2 A

�0 if x D s or y D t

¿ otherwise
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and the compositions are those of A and the maps determined by the universal

properties of the initial object ¿ or the terminal object �0 of y�.

4.3.2. Remark The category A˙ should be pictured as the category A with

an initial object s and a terminal object t freely adjoined. Consistent with

this picture, the assignment A 7! A˙ is functorial in A and there are obvious

inclusions A! A˙ such that the diagrams

A A˙

B B˙

f f˙

commute. Moreover, as f˙ is the identity on all mapping spaces A.x; y/

with fx; yg ª A, it is immediate that f 7! f˙ takes local R-functors to local

R-functors.

Let us now consider a span

A B Cu i

of simplicial categories with i fully faithful and injective on objects. We want

118



4.3 Necessity of the hypothesis, part 2

to construct a functor yu W C! A˙ such that

B A

C A˙

u

i

yu

commutes. For this purpose, we consider a partition ObC D C0 [ C1 [ C2,

C1 D ObB, of the objects of C such that C.c; c0/ D ¿ whenever x 2 Ci ,

y 2 Cj with j < i . We then define yu W C! A˙ by

yu.c/ D

„
s if c 2 C0

uc if c 2 ObB

t if c 2 C2

on objects. We then have no choice but to define yu W C.c; c0/! A˙.yuc; yuc
0/

on mapping spaces by8̂̂<̂
:̂

C.c; c0/ D B.c; c0/
u
�! A.uc; uc0/ D A˙.yuc; yuc

0/ if c; c0 2 ObB;

C.c; c0/! �0 D A˙.yuc; yuc
0/ if c 2 C0 or c

0
2 C2;

C.c; c0/ D ¿! A˙.yuc; yuc
0/ otherwise:

It is now easily verified that this assignment indeed defines a simplicial

functor yu W C! A˙. Moreover, the construction of yu from a given partition

119
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C D C0 [ C1 [ C2 is functorial in a certain sense:

4.3.3. Remark Consider a morphism

A B C

A0 B0 C0

u i

v j

f g h

of spans. Suppose that i and j are injective on objects and fully faithful.

Further assume that g and h are bijective on objects. Finally, let

ObC0 D C 00 [ C
0
1 [ C

0
2; C 01 D ObB0

be a partition of the objects of C0 such that C0.c; c0/ D ¿ whenever c 2 Ci ,

c0 2 Cj and j < i . By the preceding discussion, this partition gives rise to a

functor yv W C0 ! A0
˙
.

But we also obtain a partition ObC D C0 [ C1 [ C2 with Ci D h�1C 0i as g

and h are bijective on objects. It is now easy to see that this partition gives

rise to a functor yu W C ! A˙. Moreover, looking at the construction of yu
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4.3 Necessity of the hypothesis, part 2

and yv, one easily verifies that the square

C A˙

C0 A0
˙

yu

yv

f˙h

commutes.

In order to put this digression on the properties of the assignment A 7! A˙ to

good use, we have to be able to produce certain partitions of the objects of cate-

gories like CŒ†�. This is achieved by the following lemma:

4.3.4. Lemma Let G be a globular graph. For any two vertices x; y 2 G there

exists a partition V D V0 [ V1 [ V2 such that V1 is the set of vertices of Gx;y and

such that G contains no paths p from u to v with u 2 Vi , v 2 Vj and j < i .

Proof. Let V denote the set of vertices of G and let V1 be the set of vertices

of Gx;y . Let V0 be the set of vertices v of V X V1 such that there is a directed

path p from v to some vertex w 2 V1. Observe that there is no path from

some vertex w0 2 V1 to some vertex v 2 V0, for one could then fabricate a

path from x to y through v, see Figure 4.1.

Now let V2 be the complement of V0 [ V1 in V . Note that there cannot be

any directed path from a vertex v 2 V2 to some vertex w 2 V0 [ V1 since

this would imply w 2 V0.
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x y

v

Gx;y

w0 w

Figure 4.1: A vertex v 2 V0 with its path to some vertex w 2 Gx;y . If the
dashed path exists, then v 2 Gx;y .

Altogether, we have thus found a partition V0 [ V1 [ V2 with the desired

properties.

Let us now return to our actual concern, namely the promised proof of the

following proposition:

4.3.5. Proposition If †! … is an inclusion of complete pasting diagrams such

that CŒ†�! CŒ…� has the left lifting property against all local R-functors, then

so do the functors CŒ†x;y�! CŒ…x;y� for all vertices x; y of †.

Proof. Consider a lifting problem

CŒ†x;y� B

CŒ…x;y� A

u

v

p
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with p a local R-functor. We then get a morphism

B CŒ†x;y� CŒ†�

A CŒ…x;y� CŒ…�

u

v

p

i

j

of spans in which the two vertical maps on the right hand side are bijective

on objects and in which i and j are injective on objects and fully faithful.

The partition of ObCŒ…� D ObCŒ†� constructed in Lemma 4.3.4 now gives

rise to the commutative square on the right hand side of the diagram

CŒ†x;y� CŒ†� B˙

CŒ…x;y� CŒ…� A˙:

yu

yv

p˙

Note that p˙ is a local R-functor by Remark 4.3.2. Note further that the

square on the left in this diagram commutes, too, and we thus find a solution

to the original lifting problem that we started with.
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4.4 The proof of Theorem B

Finally, we have all pieces together to give the proof of

Theorem B The functor CŒ†� ! CŒ…� induced by an inclusion of complete

pasting diagrams has the left lifting property against all local R-functors if and

only if the map

N.†x;y(…x;y/! N.…x;y/

is an L-map for all vertices x; y 2 †.

Proof. Su�ciency of the condition in the theorem is Proposition 4.1.1 and

necessity can be deduced as follows: Let †! … be an inclusion between

complete pasting diagrams such that CŒ†� ! CŒ…� has the left lifting

property against all local R-functors. According to Proposition 4.3.5, the

functors CŒ†x;y�! CŒ…x;y�, where x; y 2 † are arbitrary vertices, then have

the left lifting property against all local R-functors, too. It now follows from

Proposition 4.2.8 that the maps N.†x;y(…x;y/! N.…x;y/ are L-maps for

all vertices x; y 2 †.
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Diagrams

This whole chapter is devoted to a proof of

Theorem C Let †! … be an inclusion of complete pasting diagrams such that

both † and … contain all the interior faces of the underlying graph and are closed

under taking subdivisions. Then

N.†/! N.…/

is mid anodyne.

Our proof of Theorem C closely parallels Power’s proof of his 2-categorical

pasting theorem in [Pow90]. More precisely, both proofs work by induc-

tion on the size of the underlying graph G and both inductive steps rest

on Lemma 2.1.10. In our case, there are more technical di�culties to be

overcome, though.

We explain the basic strategy and handle some trivial cases of the proof in

§ 5.1. Afterwards, in § 5.2 we reduce the problem to a combinatorial problem
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5 Local Lifting Properties of Pasting Diagrams

that we solve in § 5.3

5.1 The basic setup

Let us give a quick outline of the proof of Theorem C. We proceed by

induction on the number of edges of the graph G underlying both † and ….

The base clause is basically trivial. For the induction step, we reduce to the

case that G is 2-connected by decomposing complete pasting diagrams on

non 2-connected graphs as

N.†1 _†2/ ' N.†1/ �N.†2/:

The assumption that G is 2-connected then allows us to avail ourselves of

Lemma 2.1.10, and construct certain globular subgraphs G0; G1; G2 ofG that

are smaller than G. We may thus apply our induction hypothesis to the restric-

tion of the pasting diagrams † and… in Theorem C. The mid anodyne maps

thus obtained can be glued so as to obtain a factorisation

N.†/! X0 ! N.…/

in which N.†/! X0 is mid anodyne. In order to finish the proof of Theo-

rem C, we thus have to exhibitX0 ! N.…/ as mid anodyne, too. We solve this

problem in § 5.3 by a careful analysis of those simplices of N.…/ that are not

contained in X0. This analysis eventually leads to a filtration of X0 ! N.…/
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by pushouts of inclusions ƒni ! �n with 0 < i < n. The map X0 ! N.…/

is thus mid anodyne and this finishes the proof.

5.1.1. Remark Observe that the inclusion †cmin ! …max of the minimal

complete pasting diagram into the maximal pasting diagram satisfies the

hypothesis of Theorem C.

Moreover, if †! … is an inclusion satisfying the hypothesis of Theorem C,

then so do the inclusions †! †(…, †(…! … and all restrictions of

†! … to globular subgraphs of the form Gx;y of the underlying graph G.

As announced above, we do induction on the size of G, the base clause being

trivial:

5.1.2. Lemma The mapN.†/! N.…/ is mid anodyne for all inclusions†! …

satisfying the hypotheses of Theorem C on some globular graph G with at most one

interior face.

Proof. If G has no interior face, there is nothing to show as G is nothing but

a possibly trivial directed path. Similarly, if G has only one interior face,

then S D T and the map in question is an identity.

5.1.3. Lemma Suppose that G decomposes as G D G1 _ G2. For i 2 f1; 2g

denote the restrictions of † and … to Gi by †i and …i , respectively. If the maps

N.†i/! N.…i/; i 2 f1; 2g;

are mid anodyne, then so is the map N.†/! N.…/.
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Proof. Follows from the assumption that † and … are complete, Corol-

lary 2.5.7 and Corollary 1.3.2.

5.2 The inductive step

Given Lemma 5.1.3, we may suppose that G is 2-connected and has at

least two faces. According to Lemma 2.1.10, there then exists a face �

of G such that dom� � domG. Consider the following subgraphs Gi of

G:

1. G1 is the subgraph of G consisting of all directed paths containing

either dom� or codom� as subpath.

2. G2 is the subgraph of G consisting of all directed paths that contain no

edge of dom�, that is, G2 is obtained from G by removing the interior

vertices of dom.�/.

3. G0 is the intersection of G1 and G2, i. e. the subgraph of G consisting

of all directed paths containing cod� but no edge of dom�.

In Figure 5.1 one can see a sketch of how these graphs roughly look like.

Note that the graphs Gi are globular by Proposition 2.1.2. Moreover, they

all have fewer edges than G — a fact that we record in the following lemma.

5.2.1. Lemma The graphs Gi have fewer edges than G.
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s t

�

(a) G1

s t

�

(b) G2

s t

�

(c) G0

Figure 5.1: Schematic pictures of the graphs G1, G2 and G0.
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Proof. As dom� consists of at least one edge, both G0 and G2 have fewer

edges than G. Finally, if G and G1 had the same number of edges, then s.�/

or t .�/ would be a cut vertex of G as we assume G to have at least two faces.

This contradicts our assumption that G is 2-connected, though.

For i 2 f0; 1; 2g denote by †i and …i the restrictions of † and … to Gi . We

gather the maps N.†i/ ! N.…i/ induced on the respective nerves in the

commutative diagram

N.†1/ N.†0/ N.†2/

N.…1/ N.…0/ N.…2/:

(5.1)

5.2.2. Lemma If the maps N.†0/! N.…0/ are mid anodyne for all inclusions

†0 ! …0 satisfying the hypotheses of Theorem C on globular graphs G 0 with fewer

edges than G, then the map

N.†1/
a

N.†0/

N.†2/! N.…1/
a

N.…0/

N.…2/

induced by (5.1) is mid anodyne, too.

Proof. This is Corollary 1.1.3 and Proposition 1.3.5.
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5.3 Fillable simplices

Now consider the pushout

colimN.†�/ N.†/

colimN.…�/ N.†/
a

colimN.†�/

colimN.…�/

(5.2)

of the map in Lemma 5.2.2 along the inclusion colimN.†�/! N.†/. The

vertical map on the right hand side in (5.2) is mid anodyne by the stability of

mid anodyne maps under pushouts and Lemma 5.2.2. Moreover, the inclusion

N.†/! N.…/ factors through this map and to finish the proof of Theorem C,

it therefore su�ces to show that the canonical map

N.†/
a

colimN.†�/

colimN.…�/! N.…/

is mid anodyne. This will be accomplished in the next section.

5.3 Fi l lable simplices

In order to finish the proof of Theorem C,we have to show that the map

N.†/
a

colimN.†�/

colimN.…�/! N.…/ (5.3)
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induced by (5.1) is mid anodyne. We will achieve this by a direct inspection

of the simplices of the domain and codomain of (5.3). For this purpose,

let us first recollect the construction of G1. We chose a face � of G with

dom� � domG and let G1 be the subgraph of G that consists of all paths

that contain either dom� or cod� as subpath. It is immediate from this

description that we have the following characterisation of the simplices of

N.…1/ considered as a simplicial subset of N.…/:

5.3.1. Lemma Consider an n-simplex � D .p0 � � � � � pn/ of N.…/. If all the

paths pi contain either dom� or cod�, then � 2 N.…1/.

The graph G2 was defined as the subgraph of G that consists of all paths that

have no edge in common with dom�. The following lemma and its corollary

provide us with a description of the simplices of N.…2/.

5.3.2. Lemma Consider paths p � q in G and suppose that dom� and p have

no common edge. Then the same holds true for dom� and q.

Proof. We may assume p < q. For any path q with p < q, we may write

p D a �dom 
 �b and q D a �cod 
 �b for a nontrivial glob 
 and suitable paths

a and b. It follows that if q and dom� had a common edge, this edge would

be an edge in the codomain of some nontrivial glob 
 . This is impossible,

though, as dom� � domG and no edge of domG occurs in the codomain

of a nontrivial glob.

5.3.3. Corollary Consider an n-simplex � D .p0 � � � � � pn/ of N.…/.

If dom� and p0 have no common edge, then � 2 N.…2/.
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In fact, Lemma 5.3.1 and Lemma 5.3.2 tell us a bit more about the structure

of the simplices of N.…/:

5.3.4. Corollary Consider an n-simplex � D .p0 � � � � � pn/ of N.…/ with

minimal witnesses 
i for pi�1 � pi . Then either � 2 colimN.…�/ or dom� � p0
and 
i ª G1 for some i 2 f1; : : : ; ng.

For a given n-simplex

� D .p0 � � � � � pn/

of N.…/ with minimal witnesses 
i for pi�1 � pi , we let c.�/ be the

minimal c 2 f1; : : : ; ng such that 
c ª G1. If there is no such c, we let

c.�/ D nC 1 by convention. We call the simplex �llable if c.�/ D nC 1 or


c.�/ \G1 � @G1. The following example illustrates the definition of fillable

simplices:

5.3.5. Example In order to illustrate the definition of a fillable simplex, let

us draw simplices � in N.…/ as n-marked subgraphs of G.

(a) An n-simplex � is certainly fillable, whenever c.�/ D nC1, i. e. whenever

all 
i � G1. This does not necessarily imply that P� D
S
i pi � G1 but

it does imply that all the interior faces of P� lie in the interior of G1,

see Figure 5.2a.

(b) An n-simplex � has 
.c/ � n if and only if there is some witness 
i
such that 
i ª G1. The simplex shown in Figure 5.2b is fillable as the

face of P� labeled 1 intersects G1 only in its boundary.
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(c) Finally, consider the face d1� of the simplex � of the previous example.

Its 1-marked subgraph is shown in Figure 5.2c. We obviously have

c.�/ D 1 but the minimal glob 
1 witnessing p0 � p1 has nontrivial

intersection with the interior of G1. This simplex is thus non-fillable.

With this definition at hand, Corollary 5.3.4 admits the following reformula-

tion:

5.3.6. Lemma For a �llable simplex � of N.…/ of dimension n, we either

have � 2 colimN.…�/ or c.�/ 2 f2; : : : ; ng.

Proof. If � … colimN.…�/, then � … N.…2/ and thus dom� � p0. Assume

c.�/ D 1, i. e. 
1 ª G1. Since � is fillable, 
1 intersects G1 only in its

boundary. Let us consider the order of the vertices s.
1/; t.
1/; s.�/; t.�/ on

the path p0. Observe that the orders

s.�/Ý t .�/Ý s.
1/Ý t .
1/ and s.
1/Ý t .
1/Ý s.�/Ý t .�/

are impossible as they would imply 
1 � G1 by our definition ofG1. Moreover,

the orders

s.�/Ý s.
1/Ý t .
1/Ý t .�/; t.
1/Ý t .�/Ý s.�/Ý s.
1/

s.�/Ý s.
1/Ý t .�/Ý t .
1/; s.
1/Ý s.�/Ý t .
1/Ý t .�/

are also impossible, for 
1 is minimal, intersects G1 only in its boundary but

is not contained in G1 and we have the path dom� between s.�/ and t .�/.
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s t

(a) Sketch of the n-marked subgraph of a fillable n-simplex � with
c.�/ D nC 1.

s t
2

1

(b) The 2-marked subgraph of a fillable 2-simplex � with c.�/ D 1.

s t
1

1

(c) The 1-marked subgraph of the non-fillable face d1� of the sim-
plex whose 2-marked subgraph is shown in Figure 5.2b.

Figure 5.2: Illustration of the definition of a fillable simplex. The shaded area
of the shown globular graph represents G1.
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However, these are all possible orders and we conclude c.�/ � 2. Moreover,

c.�/ � n as � … N.…1/.

In order to finish the proof of Theorem C we want to express the map (5.3) as

a composition of pushouts of inner horn inclusions ƒni ! �n in which each

�n maps to a fillable n-simplex of N.…/. We therefore need to understand the

faces of fillable simplices in N.…/. To this end, we will employ the following

remark.

5.3.7. Remark Consider a glob 
 � G with 
 ª G1 and 
 ª G2. Cutting
the glob 
 along the boundary @G1 supplies us with two globs 
1 and 
2 such

that (i) 
 D @.
1 [ 
2/, (ii) 
1 � G1 and (iii) 
2 \ G1 � @G1. This is also

illustrated in Figure 5.3. Observe that 
1 corresponds to the part of 
 that

lies left of @G1 while 
2 lies right of @G1. Given any relation p < r witnessed

by 
 , we thus find a path q such that 
1 and 
2 witness p < q < r .

5.3.8. Remark The above Remark 5.3.7 immediately implies that each sim-

plex of N.…/ is an inner face of some fillable simplex, for … D .G; T / is

closed under taking subdivisions and the globs 
1 and 
2 constructed above

therefore appear in T whenever 
 2 T , see Lemma 2.5.3.
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@G1





1


2

Figure 5.3: Cutting a glob 
 along @G1.

5.3.9. Lemma Let � be a nondegenerate, �llable n-simplex of N.…/ and suppose

c D c.�/ 2 f2; : : : ; ng.

(a) The faces di� are �llable for all i … fc � 1; cg.

(b) The face dc�1� is not �llable and there is no �llable n-simplex � ¤ �

of N.…/ with c.�/ � c such that dc�1� � @� .

(c) If the face dc� is not �llable, then there exists a �llable n-simplex � of N.…/

such that dc� � @� and c.�/ > c.

Proof. Let us write � D .p0 < � � � < pn/ and choose minimal witnesses 
j of

pj�1 < pj . Then di� D .p0 < � � � < bpi < � � � < pn/, where the circumflex

signals omission of pi . The minimal witnesses for the relations pj�1 < pj
that occur in di� are thus all the 
j with j … fi; i C 1g and a minimal glob

containing 
i [ 
iC1.

Part (a) is now obvious and so is the assertion that dc�1� is not fillable since


c�1 [ 
c is neither contained in G1 nor in G2 by the definition of fillable

simplices. Towards the second claim in part (b), it su�ces to observe that
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the decomposition 
i [ 
iC1 is unique with the property that 
i � G1 and


iC1 \G1 � @G1. There is thus no fillable simplex � ¤ � with c.�/ � c and

dc�1� � @� .

Finally, suppose that dc� is not fillable. This is equivalent to the condition

that .
c[
cC1/\G1 ª @G1. We may thus decompose 
c[
cC1 into 
 0c[
 0cC1
with 
 0c � G1 and 
 0cC1 \G1 � @G1. There then exists a path q with 
 0c and


 0cC1 witnessing pc�1 < q < pcC1 and the simplex

� D .p0 < : : : pc�1 < q < pcC1 < � � � < pn/

is a fillable simplex with c.�/ > c.�/ and dc� � @� .

We have finally gathered all technical details to finish the proof of Theorem C.

5.3.10. Lemma The map (5.3) admits a �ltration by mid anodyne maps and is

hence mid anodyne itself.

Proof. Let us denote the domain of (5.3) by X0 and let Yn;c be the simplicial

subset of N.…/ that is generated by the fillable nondegenerate simplices � of

dimension n with c.�/ � c together with the fillable nondegenerate simplices

of dimension less than n. Note that

Yn�1;2 [X0 D Yn�1;1 [X0 D Yn;nC1 [X0
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by Lemma 5.3.6. The first equality follows from the fact that any fillable

simplex � of N.…/ with c.�/ D 1 is already contained in colimN.…�/ � X0
and the second equality follows from the fact that any fillable n-simplex with

c.�/ D nC 1 is contained in colimN.…�/ � X0. We thus have a filtration

X0 D Y2;3 [X0 � Y2;2 [X0 D Y2;1 [X0 D Y3;4 [X0 � Y3;3 [X0 � : : :

of the inclusion X0 ! N.…/ that is exhaustive by Remark 5.3.8. It therefore

su�ces to show that each of the inclusions Yn;cC1 [ X0 � Yn;c [ X0 with

2 � c � n is mid anodyne. To this end, it su�ces to prove the following

statements:

(i) For any nondegenerate simplex � 2 Yn;c that is not contained in

Yn;cC1 [ X0 there is an inner horn ƒnc�1 � Yn;cC1 [ X0 such that

� is a filler for this horn.

(ii) For any simplex � as in (i), the face dc�1� is not contained in Yn;cC1[X0.

(iii) If � ¤ � are two simplices as in (i), then dc�1� ¤ dc�1� .

Consider a nondegenerate simplex � 2 Yn;c X .Yn;cC1 [ X0/ for some

2 � c � n. Note that � is fillable with c.�/ D c. Part (a) of Lemma 5.3.9

implies that all the faces di� of � with i … fc � 1; cg are fillable of dimen-

sion strictly less than n, i. e. contained in Yn;cC1. Moreover, by part (c) of

Lemma 5.3.9, dc� is either fillable or a face of some � 2 Yn;cC1. In either

case, it is contained in Yn;cC1. The faces di� of � with i ¤ c�1 are therefore
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an inner horn ƒnc�1 � Yn;cC1 of the desired kind since 0 < c � 1 < n by

assumption.

Moreover, according to part (b) of Lemma 5.3.9, dc�1� is not contained in

Yn;cC1. Let us assume for the sake of contradiction that dc�1� is contained

in

X0 D N.†/
a

colimN.†�/

colimN.…�/;

i. e. dc�1� 2 N.†/ or dc�1� 2 N.…i/. As † and …i are closed under taking

subdivisions, this implies � 2 X0 by Lemma 2.5.3.

Finally, if � and � are two distinct fillable simplices with c.�/ D c.�/ D c,

Lemma 5.3.9 (b) implies dc�1� ¤ dc�1� .
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6 A Pasting Theorem for Riehl and Verity’s

Cosmoi

In this final chapter, we collect all the results obtained so far and deduce our

pasting theorem. Let us commence by combining Theorem B and Theorem C:

6.1. Proposition Let †! … be an inclusion of complete pasting diagrams such

that † and… are both closed under taking subdivisions and contain all the interior

faces of the underlying graph. The functor

CŒ†�! CŒ…�

has the left lifting property against all local mid �brations.

Proof. Recall that if†! … satisfies the hypothesis of Theorem C, then so do

all the restrictions †x;y ! …x;y and all the inclusions †x;y(…x;y ! …x;y .

The proposition thus follows from Theorem C and Theorem B.

Recall from [RV16] that the category of small simplicial categories is simpli-

cially enriched with mapping spaces given by icon.A;B/n D Cat y�.A;B
�n

/,
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where B�
n

denotes the simplicial category with B�
n

.a; b/ D B.a; b/�
n

. The

acronym icon stands for “identity component oplax natural transformations”

and is due to Lack in the case of 2-categories, see [Lac10].

6.2. Proposition Consider an inclusion † ! … of complete pasting diagrams

such that both † and … are closed under taking subdivisions and contain all the

interior faces of the underlying graph. Further let B! A be a local mid �bration

of simplicial categories. The canonical map

icon
�
CŒ…�;B

�
! icon

�
CŒ†�;B

�
�

icon.CŒ†�;A/

icon
�
CŒ…�;A

�
is a trivial Kan �bration.

Proof. Any lifting problem

@�n icon
�
CŒ…�;B

�
�n icon

�
CŒ†�;B

�
�

icon.CŒ†�;A/

icon
�
CŒ…�;A

�
transposes to a lifting problem

CŒ†� B�
n

CŒ…� B@�
n

�

A@�n

A�n

:
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6 A Pasting Theorem for Riehl and Verity’s Cosmoi

Similar to the proof of [RV16, Lemma 4.4.2], we observe that the map on

the right hand side in this latter diagram is locally a mid fibration by Propo-

sition 1.3.3 and the claim thus follows from Proposition 6.1.

Recall from Theorem A that any labeling ƒ of a globular graph G in some

simplicial category A determines a simplicial functor uƒ W CŒ†cmin� ! A.

6.3. De�nition The space C.ƒ/ of compositions of a labeling ƒ of a globular

graph G in some simplicial category A is obtained as the pullback in

C.ƒ/ icon
�
CŒ…max�;A

�

�0 icon
�
CŒ†cmin�;A

�
:uƒ

6.4. Remark Using the fact that uƒ and ƒ determine each other uniquely,

we see that the 0-simplices in C.ƒ/ are those functors v W CŒ…max�! A such

that ƒv D ƒ, i. e. extensions of ƒ to the fully coherent CŒ…max�.

Theorem D Consider a globular graph G and a category A enriched over quasi-

categories. The space C.ƒ/ of compositions of a given labeling ƒ of G in A is a

nonempty contractible Kan complex.

Proof. Observe that A! � is a mid fibration in the case that A is enriched
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over quasi-categories. Proposition 6.2 thus implies that the map

icon
�
CŒ…max�;A

�
! icon

�
CŒ†cmin�;A

�
is a trivial Kan fibration. The space C.ƒ/ of compositions of ƒ is hence a

contractible Kan complex.

6.5. Remark Note that we can deduce Power’s original result from [Pow90]

from Theorem D. Indeed, given any labeling ƒ of a globular graph G in

some 2-category A, we obtain a labeling of G in the simplicial category A

obtained by applying the nerve functor to all the categories A.a; b/. As C.ƒ/

is nonempty there is at least one extension v W CŒ…max� ! A of ƒ and v

restricts to a map

v W N.G/ D CŒ…max�.s; t/! A.s; t/

of simplicial sets. We now apply the left adjoint �1 of N to the inclusion

�1
@G
�! N.G/! A.s; t/

and thus obtain a composite 2-cell � W f ! g in A.s; t/ D �1NA.s; t/.

Now consider two such extensions v; v0 2 icon.CŒ…max�;A/ with associated

144



6 A Pasting Theorem for Riehl and Verity’s Cosmoi

composite 2-cells � and  . We then find a lift h as in the diagram

@�1 icon
�
CŒ…max�;A

�

�1 �0 icon
�
CŒ†cmin�;A

�
:

vq v0

uƒ

h (6.1)

As above, this gives rise to a map h W �1 �N.G/! A.s; t/ of simplicial sets

and hence to a square

� �

� �

�  

u

v

in A.s; t/. Commutativity of the lower triangle in (6.1) now implies that both

u and v are the identity, i. e. � D  .
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7 Concluding Remarks

Conducting the research for and especially writing down this thesis has left

me behind with the very question that initially triggered my journey into the

combinatorics of compositions in higher categories unanswered. Moreover,

along the way, studying beautiful — yet sometimes daunting — mathematics,

I came to know other issues of which more than one has been left unexplored

not because of lack of ideas but rather because of the amount of technicalities

that have to be sorted out. This thesis therefore closes with a short list of

some of these questions. We begin with rather technical points and broaden

our perspective gradually:

1. Can we strengthen Theorem C?

2. Pasting of categories enriched over quasi-categories should include a

calculus of monoidal .1; 1/-categories. One can pass from a globular

graph to a string diagram by taking (roughly) the dual graph. Can

anything meaningful about monoidal .1; 1/-categories be said in this

way?
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7 Concluding Remarks

3. There should exist a category of computads such that the categories

CŒ…� are free categories on computads.1

4. If there exists such a category of computads, can we describe it in terms

of pasting diagrams? Moreover, the induced comonad on Cat y� is a

candidate for the construction of pseudo functors between categories

enriched over quasi-categories, see [Gar10].

5. Can we use Theorem B for other weak factorisation systems on y�?

1I have a sketch of a construction but there are still some details missing.
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