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Abstract: In this paper, a cascaded fractional Kalman filter for state of charge and branch current estimation of large-
scale battery systems is proposed. As a centralized approach for the estimation of a large-scale system is costly in terms
of effort and time, a partition into smaller and, therefore, simpler subsystems is applied. Since the overall system is
divided into smaller units, a local computation is allowed and complexity reduced. In these distributed systems, usually,
the subsystems communicate with each other to exchange relevant data. Using a model based on mesh currents, we
receive a cascaded system structure which results in a hierarchical arrangement of all subsystems. This concludes in a
one-directional information flow and, therefore, reduces the overall communication effort. Using this proposed approach,
it is not only possible to estimate the states of each branch locally but also to calculate the branch currents when the total
current is known. Finally, a practical test with real measurement data is presented.
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1 INTRODUCTION

The state of charge (SOC) is one of the most important
variables describing the state of a Lithium-ion battery. As it
can not be measured directly it is a central task to accurately
estimate present and predict future values. In this paper, we
use the most common definition [1] calculating the ratio of
remaining electric charge Q(t) to the rated electric charge
QN

SOC(t) :=
Q(t)

QN
. (1)

Being that important, there are various approaches to de-
termine the SOC of a single battery cell [1, 2]. Many ap-
plications nowadays are based on models to consider the
underlying physical dynamics and to be able to deal with
measurement errors [2,3]. These models are then used as a
basis for state estimation.
In recent times, the use of fractional order models was pro-
posed for higher accuracy and a better representation of
the physical phenomena of Li-ion cells [4–6]. Using non-
integer order differential equations, fractional models de-
scribe reality better than conventional models of the same
order as they model accurately the internal impedance and
the electrochemical dynamics of a battery cell. Hence, they
are used more and more frequently in recent time [6–12].
As this model is easy to implement, the additional effort
compared to integer order models is negligible and the re-
sults are convincing, the application for battery modeling
is suitable. Corresponding estimation algorithms have also
been proposed with fractional Luenberger-type observers
[7] and fractional Kalman Filters [4, 6].

This work was supported by ITK Engineering.

A further challenge for battery systems is to fulfill high
power demands, e.g. in electric vehicles. Therefore, a high
number of single battery cells are connected in series and
in parallel to build a so-called battery pack [13, 14]. As
well as for single cells, one of the main tasks is to esti-
mate the SOC of the battery pack. But a difficulty is that
mutual effects have to be considered: Due to aging, manu-
facturing tolerances, temperature differences and different
serial connection resistances, some cells are burdened to a
different extent than others [15–17]. Following, the sin-
gle cell’s SOC will differ and the SOC of each cell has to
be determined separately. The cell currents also have to
hold some limits for security and aging reasons, e.g. the
maximum peak current specified by the manufacturer. To
this, usually, each current has to be measured separately
which is costly and causes power losses [2, 18]. To the
knowledge of the authors, there are no real-time capable
and model-based methods for current estimation of battery
packs existent, yet. There exist only few methods, e.g. an
iterative algorithm in [19], which is very cost-intensive in
terms of computing power and only suitable for simula-
tion purposes, or an approach as in [18] which utilizes a
filtered battery terminal voltage for SOC estimation of a
single cell without measuring the current, but it does not
consider measurement or modelling errors.
One approach for the estimation of a Li-ion battery pack is
to use a centralized approach [20]. However, the computa-
tion time of a central processor and the process complexity
increases for large-scale systems [21].
An alternative way is to split up the overall system into
smaller and, therefore, simpler subsystems. Then a single
estimation unit can be used for each subsystem which al-



lows a local computation. In such a distributed approach
the subsystems communicate with each other to share all
necessary variables. The result is usually reduced complex-
ity and sinking computational costs [21]. Such distributed
filters have been introduced, e.g. in [21, 22] and have been
extended for fractional models in [23].
A special case of a distributed system, using a hierarchical
arrangement of subsystems, is a cascaded system. In [24] a
distributed Kalman Filter for cascaded systems is proposed.
Due to the cascaded system structure an all-to-all commu-
nication for transmitting information is not necessary, only
a one-directional information flow exists. Therefore, the
communication effort compared to a common distributed
system is reduced. This cascaded filtering approach has
been extended in [25] for fractional order models.
In this paper, we use a nonlinear variable fractional or-
der battery cell model which is extended to a battery pack
model. Mesh currents are used to describe the coupling
between the particular battery branches. Based on this, a
cascaded fractional Kalman filtering approach is used for
online and local SOC determination for all cells in each
branch. Hereby, the system is split up into subsystems and
a cascaded communication procedure is developed which
reduces complexity and computational cost due to a re-
duced order and a local computation. Moreover, this ap-
proach does not need to measure every single branch cur-
rent but can estimate these currents using a mesh current-
based model. Since only the total current has to be mea-
sured, measurement effort is reduced.

2 FRACTIONAL CALCULUS

The most common discrete-time representation of a frac-
tional derivative due to its easy numerical implementation
is the definition of Grünwald-Letnikov. Using a variable
fractional order, one definition is given in [26] by:

0D
α(tk)
tk

x(tk) := T−α(tk)
k+1∑
j=0

(−1)j
(
α(tk)
j

)
x(tk+1−j)

(2)

where D is the fractional order derivative, α(tk) ∈ R+ is
the time-variant fractional differentiation order, tk is the
sampled time and T is the sampling interval [26].
The summation in (2) respects an infinite number of previ-
ous values of x as k increases which makes it unsuitable in
practice at first glance. Because the binomial coefficient in
(2) converges to zero for j →∞, one can neglect very old
values of x. Therefore, we consider a maximum number l
of past values of x which is called short memory principle
(SMP) [25, 27].
The fractional, time-variant, and discrete-time state-space
representation can be obtained from (2) following [23, 28]
whereby index k denotes the current time step tk in

xk+1 = T αkfk(xk,uk) + T αkwk

−
z∑
j=1

(−1)jΓj,kxk+1−j (3)

yk = gk(xk,uk) + vk (4)

with

Γj,k := diag

[(
α1,k

j

)
, . . . ,

(
αN,k
j

)]
(5)

T αk := diag [Tα1,k , . . . , TαN,k ] (6)

where xk ∈ RN is the state vector, uk ∈ RL is the input
vector, yk ∈ RM is the output vector, wk ∈ RN is the sys-
tem noise vector, vk ∈ RM is the output noise vector, and
α1,k, . . . , αN,k ∈ R+ denote the orders of the fractional
derivative at time k [25, 27]. The upper limit of the sum is
denoted by the buffer length z = min(k + 1, l) due to the
SMP. Note that the matrix T αk is often included inside of
fk and wk [6].
As the calculation of the states in (3) only by knowing the
initial state x0 and the sequence of inputs (u0, . . . ,uk) is
not possible because of the theoretical infinite Grünwald-
Letnikov sum, it should be noted that xk are not states in
the classical sense [29] but rather ‘pseudo-states’. How-
ever, for simplicity reasons, in this paper we name xk
states. For these states, in fact, an initialization function
is needed [30], except one uses an infinite buffer z → ∞
which is not possible in practice. As discussed in [25], a
fractional order Kalman filter can compensate a missing
or wrong initialization of the system. Furthermore, it is
discussed in [6] that the initialization of a fractional order
state-space model has only a small influence on the SOC
estimation of a single cell. Therefore, an exact initializa-
tion will be neglected in this paper and the buffer of the
cascaded fractional order Kalman filter (CFKF) will be ini-
tialized with zeros.
3 BATTERY MODEL

3.1 Model of a single cell
In this paper, we use the battery model from [6, 8, 11] for
a single Li-ion cell of type SLPB 834374H from Kokam.
The equivalent circuit model which is used in this paper
is shown in Fig. 1. This ‘1-RQ-model’ consists of one
single RQ-element, which is composed of a fractional or-
der capacity Q(SOC) of order α(SOC) and a parallel con-
nected resistor R(SOC). The model is completed by an in-
ternal resistance R0(SOC) and the cell’s open circuit volt-
age OCV(SOC). It is assumed that the functional relations
of the parameters to the SOC are known. The OCV-SOC
characteristic of the considered cells including a hysteresis
effect is shown in Fig. 2.
As the deviation between the charge and the discharge pro-
cess is slight the OCV can be approximated by an average
curve for moderate and high temperatures in practice [31].
The resulting model is given by the SOC [1, 6]

SOCk+1 = SOCk + 100 · η · T
QN

· icell,k + wSOC,k (7)

and by the voltages [6]

ucell,k = uRQ,k +R0(SOCk)icell,k+

+ OCV(SOCk) + vcell,k (8)

uRQ,k+1 =
Tα(SOCk)

Q(SOCk)

(
icell,k −

uRQ,k
R(SOCk)

)
+

+ wRQ,k − Λk|z (9)



with

Λk|z :=

z∑
j=1

(−1)j
(
α(SOCk)

j

)
uRQ,k+1−j (10)

being an abbreviation for the Grünwald-Letnikov sum for
time-step k, considering the last z values. SOCk denotes
the SOC of the current time step k and icell,k denotes the
current of the concerning cell (see Fig. 1). In coincidence
with [32] the coulomb efficiency η is assumed to be

η ≈

{
1 discharging process
0.992 charging process.

(11)

Putting (7) - (9) in matrix form results in the following non-
linear state space structure

xcell,i,k+1 :=

(
SOCi
uRQ,i

)
k+1

=

 SOCi,k + 100 · η·TQN · icell,k + wSOC,k

Tα(SOCk)

Q(SOCk)
(icell,k − uRQ,k

R(SOCk)
)− Λk|z + wRQ,k


=: f cell(xcell,i, icell)k (12)

ycell,i,k := uRQ,k +R0(SOCk)icell,k+

+ OCV(SOCk) + vcell,k

=: gcell(xcell,i, icell)k. (13)

3.2 Model of a Branch
A serial connection of s single cells like in Fig. 3 is called
a ‘branch’. Hereby, an additional serial resistance Rc is in-
cluded to consider connection and wire resistances. There-
fore, Rc can differ in every branch, but is assumed to be
known.
As the cells are serially connected, the cell currents are
identical in every cell and the cell voltages sum up to a
total voltage

utotal,b =

s∑
r=1

ucell,b,r +Rc,bibranch,b (14)

whereas b denotes the index of the branch. The model for
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Figure 1: 1-RQ equivalent circuit model of a Li-ion cell
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Figure 2: Open Circuit Voltage of a Li-ion Polymer Battery
Cell (Type SLPB 834374H, Manufacturer Kokam)
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Figure 3: Serial connection of s single cells in one branch

one specific branch b results cell-wise as

xbranch,b,k+1 :=

xcell,b,1
...

xcell,b,s


k+1

=


SOCb,1
uRQ,b,1

...
SOCb,s
uRQ,b,s


k+1

=

f cell(xcell,b,1, ibranch,b)
...

f cell(xcell,b,s, ibranch,b)


k

(15)

=: f branch(xbranch,b, ibranch,b)k (16)

ybranch,b,k :=

gcell(xcell,b,1, ibranch,b)
...

gcell(xcell,b,s, ibranch,b)


k

(17)

=: gbranch(xbranch,b, ibranch,b)k. (18)

3.3 Model of a Pack
Connecting p branches in parallel and assuming that all
branches are of the same size s yields a p × s sized bat-
tery pack. An arrangement as depicted in Fig. 4 results.
The resulting discrete-time state vector for the overall bat-



0 =

s∑
r=1

(OCVb,r −OCVb−1,r) +

s∑
r=1

(uRQ,b,r − uRQ,b−1,r) + (

s∑
r=1

R0,b,r +Rc,b)(im,b − im,b+1)

− (

s∑
r=1

R0,b−1,r +Rc,b−1)(im,b−1 − im,b) (23)

ibranch,b,k = −

s∑
r=1

(OCVb,r −OCVb−1,r) +
s∑
r=1

(uRQ,b,r − uRQ,b−1,r)− (
s∑
r=1

R0,b−1,r +Rc,b−1)(im,b−1 − im,b)
s∑
r=1

R0,b,r +Rc,b

∣∣∣∣∣
k

=: hb(im,b, im,b−1,xb,xb−1)k ∀b = 2, . . . , p− 1 (24)
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Figure 4: Mesh currents and decomposition of a large-scale
system into p subsystems containing s cells each

tery pack is given branch-wise by

xpack,k =

xbranch,1
...

xbranch,p


k

, ypack,k =

ybranch,1
...

ybranch,p


k

.

(19)
The nonlinear state-space representation of the whole p×s
sized battery pack then follows

xpack,k+1 =

f branch(xbranch,1, ibranch,1)
...

f branch(xbranch,p, ibranch,p)


k

, (20)

ypack,k =

gbranch(xbranch,1, ibranch,1)
...

gbranch(xbranch,p, ibranch,p)


k

. (21)

3.4 Model of Branch Currents
The branch currents ibranch,1, . . . , ibranch,p used in the
pack model in (20) and (21) are not equal in practice which
is discussed in [15, 16, 33]. Some reasons are manufactur-
ing tolerances, aging, and different initial SOCs. There-

fore, the cell parameters are not identical and the connec-
tion resistances Rc,b differ as well. So, all branch currents
have to be determined individually.
The most common way to determine the branch currents
is to measure them by an amperemeter. The disadvantage
is that this method is expensive, energy consuming, and
influences the circuit [2, 18].
An alternative way of determining the branch currents for
simulation purposes is proposed in [13,33]. Instead of mea-
suring the branch currents, a battery model is used to cal-
culate their present value in every time step. Using mesh
currents as shown in Fig. 4, the authors set up a simulation
model. Evaluating the voltages in every mesh, the occur-
ring branch currents can be calculated numerically. As this
model-based approach worked well for the simulation of a
battery pack, it will be extended and adapted for real-time
current and SOC estimation in this paper.
According to [13, 33] and Kirchhoff’s voltage law [34] the
branch currents ibranch,b can be calculated using mesh cur-
rents

ibranch,b =

{
im,b − im,b+1 if b 6= p

im,b if b = p.
(22)

These mesh currents im,b are defined clockwise and are de-
picted by blue arrows in Fig. 4. With (22) and (23) the
mesh current im,b+1 for mesh b+ 1 can be calculated each
time step k.
Combining (22) and (23) yields (24) which calculates the
branch currents directly. For the special case ibranch,1,
equation (24) differs slightly as the measured voltage utotal
has to be considered in the following way:

ibranch,1 =
utotal −

∑s
r=1 OCV1,r −

∑s
r=1 uRQ,1,r∑s

r=1R0,1,r +Rc,1

= im,1 − im,2 =: h1(iin, utotal,x1)k, (25)

whereas the first mesh current corresponds to the bat-
tery pack load current im,1 = iin as depicted in Fig. 4
which is assumed to be the only measured current in this
model. Please note that due to a concise representation
of the current equations, the explicit notation of the SOC-
dependency of the model parameters has been suppressed.



3.5 Choice of Subsystems
Since the focus of this paper is to implement a cascaded
system structure with an unidirectional communication, the
pack has to be split up into smaller subsystems. In this pa-
per we suggest that every branch represents a single sub-
system which is a natural division of the system because
(20) and (21) are already partitioned branch-wise. There-
fore, the state vector of a single subsystem Sa corresponds
to the branch states and the output vector corresponds to
the branch outputs

xS,a = xbranch,a, yS,a = ybranch,a ∀a = 1, . . . , p.

(26)

The resulting system with its p subsystems and mesh cur-
rents is shown in Fig. 4. It can be seen using (20) - (25) and
in [33] that the dependency between the battery branches
can be described by the branch or mesh currents, respec-
tively. As discussed in Sec. 3.4 the branch current ibranch,a
following (24) is a function of the states, the mesh currents
and the resistances of the subsystems Sa and Sa−1. There-
fore, the proposed model using mesh currents is suitable for
a cascaded estimation approach because only an unidirec-
tional information flow is required for a local computation.

4 STATE OF CHARGE AND CURRENT ESTI-
MATION

In this section, we describe the model-based SOC and cur-
rent estimation of the battery pack model of Sec. 3.3 - 3.5.
The algorithm consists of two main parts, the branch cur-
rent calculation and the state estimation, both using only
measurements of the total voltage utotal, each cell’s voltage
ucell and the total current iin. The third section describes
the communication between the particular subsystems and
the program flow.

4.1 Estimation of Branch Currents
In Sec. 3.4 the model-based calculation of branch currents
has been introduced and motivated. For a model-based
branch current estimation, we propose the usage of (24) and
(25) for each subsystem Sa separately, because we want to
calculate the estimations locally. As discussed, we need in-
formation about the states and the resistances of both sub-
systems Sa and Sa−1. The resistances and their character-
istic Rc and R0(SOC) as well as the OCV-SOC character-
istic are assumed to be known as before. The states uRQ
and SOC of both subsystems are estimated by the CFKF
which is presented in the next section. The required in-
formation from subsystem Sa−1, i.e. the estimated states
and the resistances, is communicated to system Sa. Then,
all relevant parameters are known for the calculation of
ibranch,a in subsystem Sa.
For the calculation of the branch current îbranch,k+1 at
the next time step k + 1, we use the predicted states
x̂−k+1(̂ibranch,k) of the Kalman filter because it depends
only on the branch current of the current time step k.
The filtered states are a function of the branch current
x̂+
k (̂ibranch,k) of the same time step k and, therefore, can-

not be used which can be seen in (28) and (31). In accor-
dance with (24), (25) and using the predicted states, the

branch currents result also as estimated variables:

îbranch,a,k =


h1(iin, utotal, x̂

−
S,1)k a = 1

îm,a,k a = p

ha(̂im,a, îm,a−1, x̂
−
S,a, x̂

−
S,a−1)k else.

(27)
Again, for the first subsystem the measured variables utotal
and iin have to be considered as in (25). So the branch
currents îbranch,a can be calculated for all a = 1, . . . , p
recursively using only the parameters from the branches
Sa and Sa−1. Therefore, a cascaded system structure as in
Fig. 5 results.

4.2 Cascaded Fractional Kalman Filter

In this section, a cascaded fractional Kalman filter (CFKF)
for local state estimation of the branch-wise subsystem
structure is proposed. We already discussed in Sec. 3.4 that
the coupling between the subsystems can be described by
the branch or mesh currents, respectively. Since the branch
current is calculated separately as presented in Sec. 4.1,
the explicit dependency of other subsystems is already in-
cluded in the branch current and the formulas simplify
compared to [25]. For the current calculation, we treat
the predicted states as deterministic variables. This is
much easier to handle as the covariances of the estimated
states have not to be communicated between the subsys-
tems. Moreover, it was shown in [25] that deterministic
and stochastic treatment of the estimated states yield com-
parable results. Also, measured branch currents are often
treated as deterministic variables as well [2].
The CFKF algorithm from [25], adapted for the battery
model and applied for a particular subsystem a results then
as follows:
Prediction equations:

x̂−S,a,k+1 = f branch(x̂+
S,a, îbranch)k, (28)

P−a,k+1 = (Aa,k + Γa,1,k)P+
a,k(Aa,k + Γa,1,k)T

+ Qa,k +

z∑
j=2

Γa,j,kP
+
a,k−j+1Γ

T
a,j,k. (29)

Current estimation:

îbranch,a,k =


h1(iin, utotal, x̂

−
S,1)k a = 1

îm,a,k a = p

ha(̂im,a, îm,a−1, x̂
−
S,a, x̂

−
S,a−1)k else.

(30)

S1 S2 S3

x̂−
S1 x̂−

S2 x̂−
S3

îm1, îm2 îm2, îm3 îm3, îm4

Figure 5: Communication flow between subsystems in cas-
caded structure



Correction equations:

x̂+
S,a,k = x̂−S,a,k

+ Ka,k(yS,a,k − gbranch(x̂−S,a, îbranch)k), (31)

P+
a,k = (I −Ka,kCa,k)P−a,k(I −Ka,kCa,k)T

+ Ka,kRaK
T
a,k, (32)

Ka,k = P−a,kC
T
a,k(Ca,kP

−
a,kC

T
a,k + Ra,k)−1, (33)

where x−S,a are the predicted states, x+
S,a are the updated

states, and yS,a are the outputs of subsystem Sa. P−a,k
is the predicted and P+

a,k the updated estimation error co-
variance matrix, Qa,k = E{wkw

T
k }a is the measurement

noise covariance matrix and Ra,k = E{vkvTk }a is the sys-
tem noise covariance matrix of subsystem Sa.
The nonlinearities of the system are treated by linearization
for the calculation of the covariance matrices, identical to
an extended Kalman filter [6]. Therefore, the Jacobian ma-
trices Aa,k and Ca,k are given by

Aa,k =

[
∂f branch(xS,a, i)

∂xS,a

]
xS,a=x̂+

S,a,k,i=îbranch,k

(34)

Ca,k =

[
∂gbranch(xS,a, i)

∂xS,a

]
xS,a=x̂−

S,a,k,i=îbranch,k

.

(35)

4.3 Communication Procedure and Discussion
Summarizing, the algorithm consists of two main parts that
are tightly cooperating with each other. On the one hand the
CFKF estimates the state vector and on the other hand the
mesh equations are solved for providing the branch current.
This calculation is done locally at each subsystem. There-
fore, the subsystems have to exchange necessary informa-
tion. This exchange can be realized via a communication
line. An overview of the communication processes and of
the program flow is presented in Fig. 6.
In this way, all branch currents can be calculated recur-
sively. The cascaded scaling of the system causes that esti-
mated states are not handed over to every single subsystem
but only to the following one. Therefore, the communica-
tion effort is comparatively low, even when the number of
battery branches per pack increases. However, the commu-
nication among a huge number of subsystems may become
difficult because of time delays depending on the realiza-
tion of the communication. A further advantage is the pos-
sibility to use local processing units to execute the calcu-
lations in each subsystem. Hence, a split up of computing
power can be achieved. Furthermore, the number of current
measurements is reduced considerably. For this reason, the
overall costs reduce significantly.

5 MEASUREMENT SETUP AND RESULTS

For the validation of the functionality of the proposed
model and algorithm in practice, a real-world experiment
was set up. The setup consists of an A/D-board DS2004
from dSpace for cell voltage measurements ucell of each

cell and total voltage measurement utotal and a current
source BOP20-20M from Kepco for measurement and con-
trol of the load current iin which is shown in Fig. 7. For
comparison reasons each branch contains also a highly ac-
curate 34410A multimeter from Keysight Technologies to
validate the model-based calculation of the branch currents
with the measured branch currents ic. The battery pack un-
der investigation consists of 3 branches containing 3 cells
each. The additional resistances Rc differ in each branch.
They have been identified to

Rc,1 = 540 mΩ, Rc,2 = 610 mΩ, Rc,3 = 650 mΩ. (36)

The initial states of the branches have been determined us-
ing cell voltage measurements of each cell before wiring
the cells to a pack, after a rest time of t = 1000 s. Assum-
ing that all uRQ ≈ 0 V after the rest time, the initial SOCs
have been identified using the OCV-SOC relation. The ini-
tial states for the three branches are

xbranch,1,0 = (95.3 % 0 V 85.5 % 0 V 74.9 % 0 V)
>
,

xbranch,2,0 = (90.5 % 0 V 80.8 % 0 V 69.4 % 0 V)
>
,

xbranch,3,0 = (85.6 % 0 V 76.1 % 0 V 64.6 % 0 V)
>
.

For the CFKF algorithm we use a sampling time T = 0.1 s,
a memory length l = 250, covariance matrices

Qa,k = diag [10−5 %2, 5 · 10−4 V2, 10−5 %2,

5 · 10−4 V2, 10−5 %2, 5 · 10−4 V2] ∀a, k (37)

Ra,k = diag [2.8391 · 10−8 V2, 2.8391 · 10−8 V2,

2.8391 · 10−8 V2] ∀a, k (38)

P a,0 = diag [100 %2, 100 V2, 100 %2,

100 V2, 100 %2, 100 V2] ∀a (39)

x+
1,k x−

1,k+1 îm2,k+1 x+
1,k+1 x−

1,k+2

îm3,k+1

iin,k+1 utotal,k+1 ucell,1,l,k+1

x+
2,k x−

2,k+1 x+
2,k+1 x−

2,k+2

S1

S2

measurementk k + 1 k + 2

Figure 6: Procedure and communication order in the cas-
caded algorithm. Orange and purple arrows show the pro-
cessing order within the subsystems, blue arrows show
measured values and black arrows depict the information
flow between subsystems.



0 2000 4000 6000 8000

−3

−2

−1

0

1

2

time (s)

ba
tte

ry
pa

ck
cu

rr
en

t(
A
)

Figure 7: Input current iin for the measurement setup

and the initial SOCs of the filter algorithm as

x̂branch,1,0 = (93.3 % 0 V 88.5 % 0 V 79.9 % 0 V)
>
,

x̂branch,2,0 = (93.5 % 0 V 77.8 % 0 V 73.4 % 0 V)
>
,

x̂branch,3,0 = (81.6 % 0 V 81.1 % 0 V 63.6 % 0 V)
>

which have slight, randomly chosen deviations to the true
states. Note that we parametrized only one of the cells of
the pack and, therefore, the CFKF uses identical parame-
ters for all cells, although in practice the cells may have
different parameters.
Exemplary results of the experiment are shown in Fig. 8
and in Fig. 9. Fig. 8 shows the estimated branch cur-
rents îbranch by the CFKF as well as the measured branch
currents ic by the Keysight multimeters. It can be seen
that there are only small differences between the currents.
The maximum difference of |̂ibranch,a,k − ic,a,k|,∀a, k is
smaller than 70 mA in this experiment. As a result, the
current estimation can compete with the multimeter.
In Fig. 9 the estimated SOCs of the CFKF are shown ex-
emplarily for branch 2 as well as the corresponding SOCs
which are calculated by a current integration using (7) and
the measured branch currents ic. It can be seen that the
states can be estimated accurately even though the filter is
not correctly initialized and the parameters of all cells have
been chosen identically. The difference of the estimated
SOCs to the SOCs determined by the current integration
is at all times for all branches smaller than the maximum
initial difference of 5 %.

6 CONCLUSION

In this paper, we presented a nonlinear variable fractional
battery cell model and extended it to a battery pack model.
This model uses mesh currents to describe the coupling be-
tween the branches and for the branch current calculation.
It has been shown that this model is suitable for a cascaded
estimation approach which estimates the states of each cell
of the battery pack model as well as each branch current.
The results show that the estimated branch currents match
with the measured ones although the parameters have been
identified only for one cell and all other cells may have
slightly different parameters. The state estimation achieves
good results as expected because the current estimation
works correctly and the Kalman filter algorithm is robust
with respect to measurement, parameter, and linearization
errors.
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Figure 8: Comparison of estimated branch currents î and
measured branch currents ic
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Figure 9: Estimated SOCs of branch 2 of the CFKF com-
pared to an integration of the measured current ic

We also discussed the division of the system into subsys-
tems in that way that each branch represents one subsys-
tem. This approach achieves scalability and also obtains
small and simple subsystems which are easier to handle,
especially for large-scale systems. These subsystems only
need an unidirectional communication between neighbour-
ing subsystems. However, a division into subsystems is not
binding since the algorithm can also be implemented on a
single processor. Furthermore, it is also not mandatory to
use a fractional order battery model because one can simply
adopt integer order models by setting α = 1.
Summarizing, the CFKF for the cascaded state and current
estimation has various advantages, e.g. shared computation
costs between the subsystems and reduced measurement
effort with consistent accuracy. Further improvements of
the CFKF can be made by considering the covariances of
the states for the current estimation, by identifying the pa-
rameters of each cell individually, and by increasing the
buffer length of the Grünwald-Letnikov sum.
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