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ABSTRACT

Precipitation is affected by soil moisture spatial variability. However, this variability is not well represented

in atmospheric models that do not consider soil moisture transport as a three-dimensional process. This study

investigates the sensitivity of precipitation to the uncertainty in the representation of terrestrial water flow.

The tools used for this investigation are the Weather Research and Forecasting (WRF) Model and its hy-

drologically enhanced version, WRF-Hydro, applied over central Europe during April–October 2008. The

model grid is convection permitting, with a horizontal spacing of 2.8 km. TheWRF-Hydro subgrid employs a

280-m resolution to resolve lateral terrestrial water flow. A WRF/WRF-Hydro ensemble is constructed by

modifying the parameter controlling the partitioning between surface runoff and infiltration and by varying

the planetary boundary layer (PBL) scheme. This ensemble represents terrestrial water flow uncertainty

originating from the consideration of resolved lateral flow, terrestrial water flow uncertainty in the vertical

direction, and turbulence parameterization uncertainty. The uncertainty of terrestrial water flow noticeably

increases the normalized ensemble spread of daily precipitation where topography is moderate, surface flux

spatial variability is high, and the weather regime is dominated by local processes. The adjusted continuous

ranked probability score shows that the PBL uncertainty improves the skill of an ensemble subset in

reproducing daily precipitation from the E-OBS observational product by 16%–20%. In comparison toWRF,

WRF-Hydro improves this skill by 0.4%–0.7%. The reproduction of observed daily discharge

with Nash–Sutcliffe model efficiency coefficients generally above 0.3 demonstrates the potential of

WRF-Hydro in hydrological science.

1. Introduction

Numerical atmospheric models generally consider

terrestrial hydrological processes as only being vertical,

in order to estimate the surface heat fluxes for con-

straining the atmospheric lower boundary condition.

This is, for example, the case for the Weather Research

and Forecasting (WRF) Model (Skamarock and Klemp

2008) coupled with the Noah land surface model (LSM;

Chen and Dudhia 2001). In this approach, the lateral

redistribution of soil moisture according to the topog-

raphy and groundwater depth is, however, neglected. To

relax this constraint and better represent soil moisture

spatial variability, coupled atmospheric–hydrological

models have been developed in recent years (e.g.,

Maxwell et al. 2007, 2011; Anyah et al. 2008; Gochis

et al. 2015; Rahman et al. 2015; Wagner et al. 2016;

Larsen et al. 2016).

The initiation and development of moist convection is

sensitive to thermally induced wind circulations origi-

nating from the spatial variability in surface heat fluxes

(e.g., Pielke 2001). Soil moisture heterogeneities can

generate such circulations (e.g., Chen and Avissar 1994;

Cheng and Cotton 2004; Taylor et al. 2007; Rieck et al.

2014). Coupling the Advanced Regional Prediction
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System (ARPS; Xue et al. 2000) with a three-

dimensional and variably saturated groundwater flow

model (ParFlow; Jones and Woodward 2001) for an

idealized case study, Maxwell et al. (2007) found a

shallow water table–induced circulation that impacted

the location of convective cells after a 36-h run. Coupling

WRF with the Hydrological Modeling System (HMS; Yu

et al. 2006),Wagner et al. (2016) investigated groundwater

effects on surface and atmospheric variables in a catch-

ment of southeast China for an 8-yr period. Comparing

WRF and WRF-HMS precipitation results, basin-

averaged differences were minor, although spatial re-

distribution on the order of 65% occurred. Rahman

et al. (2015) simulated two convective events in western

Germany with the Terrestrial System Modeling Plat-

form (TerrSysMP; Shrestha et al. 2014), a version of the

COSMOmodel coupled with ParFlow. They performed

ensemble simulations based on perturbed initial condi-

tions, with and without groundwater coupling. Their

ensemble mean results supported the fact that ground-

water dynamics noticeably affects soil moisture, surface

fluxes, convective initiation, and the precipitation amounts.

Recently, Larsen et al. (2016) brought evidence that

including groundwater feedbacks in an atmospheric

model can reduce the difference between simulated and

observed seasonal precipitation, at least in the case of a

river basin in Denmark.

Senatore et al. (2015) applied WRF and its hydro-

logically enhanced version, that is, WRF-Hydro (Gochis

et al. 2015), to a catchment in southern Italy for a 3-yr

period. Senatore et al. (2015) concluded that the lateral

redistribution of soil moisture additionally resolved in

WRF-Hydro reduced surface runoff and increased soil

moisture amounts and drainage. However, the change

in precipitation between WRF and WRF-Hydro was

modest due to strong oceanic and orographic forcing in

their study region. Differences between WRF and

WRF-Hydro seasonal precipitation were also small in

the case of a steep catchment at the foothills of Mount

Kenya, East Africa (Kerandi et al. 2018). In West

Africa, Arnault et al. (2016) found that the impact of

overland flow and runoff–infiltration partitioning on

precipitation was scale dependent, that is, much more

noticeable in a 1003 100 km2 domain, but not in a 5003
2500km2 domain. WRF-Hydro also produced daily

discharge moderately close to observations according to

the Nash–Sutcliffe model efficiency coefficient (NSE;

Nash and Sutcliffe 1970): 0.27 in the case of Senatore

et al. (2015), 0.43 in the case of Arnault et al. (2016), and

0.02 in the case of Kerandi et al. (2018).

The above studies show that the representation of

terrestrial water flow indeed impacts the surface fluxes

and planetary boundary layer (PBL) dynamics, thus

potentially influencing precipitation. The representa-

tion of PBL dynamics in atmospheric models, through

turbulence parameterization, also influences precipitation.

However, it is unknown if the uncertainty in the represen-

tation of terrestrial water flow increases the precipitation

spread originating from PBL scheme uncertainty.

This study addresses the precipitation sensitivity to

the uncertainty in the representation of terrestrial water

flow for central Europe during the warm season April–

October 2008. An ensemble of WRF and WRF-Hydro

simulations is performed based on various turbulence

parameterization schemes and a varied runoff–infiltration

partitioning parameter. The uncertainty in the represen-

tation of terrestrial water flow is accounted for by com-

paring simulations with a varied runoff–infiltration

partitioning parameter and by comparing WRF and

WRF-Hydro simulations. The first objective of this study

is to assess the respective impacts of the uncertainties in

turbulence parameterization and terrestrial water flow

representation on precipitation. The second objective is to

assess if these impacts depend on the weather regime (e.g.,

Barthlott et al. 2011; Keil et al. 2014) or the spatial vari-

ability in surface fluxes (e.g., Pielke 2001). The third ob-

jective is to assess the skill of the WRF and WRF-Hydro

simulations in reproducing observed daily precipitation, as

well as observed daily discharge for WRF-Hydro. The

method to address these objectives, including the models

used, the ensemble strategy, the observational validation

dataset, and quantitative metrics, is detailed in section 2.

Results are given in section 3, and a summary and

perspective are finally provided in section 4.

2. Method

a. Modeling approach: WRF and WRF-Hydro setups

The WRF Model (Skamarock and Klemp 2008) and

the hydrologically enhanced version of WRF, that is,

WRF-Hydro (Gochis et al. 2015), are used to simu-

late the regional land–atmosphere system over central

Europe and investigate the impact of terrestrial water flow

representation uncertainty on precipitation. The simula-

tion period is from 1 January to 31 October 2008, with the

first three months being considered for spinup time. Initial

and lateral boundary conditions of the regional model are

provided by the 6-hourly operational analyses (OP) at

0.1258 resolution from the European Centre for Medium-

Range Weather Forecasts (ECMWF).

In both WRF and WRF-Hydro setups the equations

of atmospheric motion are solved at a time step of 10 s

on a rotated grid of 0.0258 (2.8 km) horizontal resolution

centered over central Europe and slightly larger than

that used in the Consortium for Small Scale Modeling
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(COSMO-DE) setup (Baldauf et al. 2011; Gebhardt

et al. 2011) (see Fig. 1a). The topography is derived from

the Advanced Spaceborne Thermal Emission and Re-

flection Radiometer (ASTER) global digital elevation

model (GDEM; NASA 2015). The vertical coordinate

is a terrain-followinghybridpressure coordinate (Skamarock

and Klemp 2008), with 50 vertical levels and a pressure

top at 10 hPa. Subgrid processes additionally parame-

terized are the longwave and shortwave radiative fluxes

[Mlawer et al. (1997) and Dudhia (1989), respectively],

cloud microphysics (Hong and Lim 2006), atmospheric

turbulence, and surface heat and moisture fluxes as

follows.

Three different PBL schemes are considered for the

parameterization of turbulence: the Asymmetrical Con-

vectiveModel version 2 (ACM2) scheme of Pleim (2007),

the Mellor–Yamada–Janjić (MYJ) scheme of Janjić

(1994), and the Yonsei University (YSU) scheme

of Hong et al. (2006). This is to generate the model

ensemble detailed in section 2b. These three particular

PBL schemes have already been considered for evalu-

ating turbulence parameterization uncertainty in WRF

ensembles (e.g., García-Díez et al. 2013).
Surface fluxes are calculated with the Noah LSM

predicting soil temperature and soil moisture in a

2-m-depth, four-layer column and taking into account

vegetation effects (Chen and Dudhia 2001). Albedo,

vegetation fraction, and leaf area index (LAI) are taken

from satellite-derived climatology (Csiszar and Gutman

1999; Gutman and Ignatov 1998; Kumar et al. 2014),

whereas other land surface and soil parameters are

assigned for each land category and soil texture from the

GlobCover2009 land cover map (Arino et al. 2012) and

the Harmonized World Soil Database (HWSD; FAO/

IIASA/ISRIC/ISS-CAS/JRC 2012), respectively. It is

noted that the conversion table of Smiatek (2014) is used

to translate GlobCover2009 and HWSD original classes

into WRF Preprocessing System indexes.

The ratio between surface water WS and surface in-

filtration IS in the Noah LSM is computed at each model

time step as
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where Pd (m) is the precipitation falling on the bare soil,

DZi (m) is the depth of soil layer i, ui (m
3m23) is the

volumetric water content (soil moisture) in soil layer i,

us (m
3m23) is the saturated soil moisture (porosity) that

depends on soil texture, Ks (m s21) is the saturated

hydraulic conductivity, Kref (m s21) is the saturated hy-

draulic conductivity of the silty–clay–loam soil texture

chosen as a reference, dt (s) is the model time step di-

vided here by 86 400 s for a conversion in days, and k is

the calibration parameter [k stands for kdtref in Chen

and Dudhia (2001)]. In Eq. (1), the ratio WS/IS is de-

creased by increasing k (Schaake et al. 1996). The

strength of the vertical water flow therefore depends on

k. In the WRF case,WS stands for the surface runoff RS,

FIG. 1. (a) Terrain elevation (m MSL) of the 2.8-km-resolution WRF domain. The height scale is given by the

colored bar to the right. The curved black lines delineate the coast and the political boundaries. (b)As in (a), but for

the routing grid at 280-m resolution coupled with the WRF domain in the WRF-Hydro setup. The thin black lines

show river channels with a Strahler stream order above 4. The bold black lines delineate the river basins considered

in this study, labeled with numbers 1–5. Each of these basins is also named by the juxtaposition of its river and outlet

name, as 1) Rhine–Koeln, 2) Weser–Liebenau, 3) Elbe–Neu Darchau, 4) Danube–Kienstock, and 5) Inn–Passau.

The area covered by these five river basins is called area A. It is noted that the Inn–Passau river basin is part of the

Danube–Kienstock river basin.
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which is the reason why k is referred as the runoff–

infiltration partitioning parameter (Arnault et al. 2016).

Furthermore, the terrestrial water budget equation

resolved in WRF can be written as

P5E1R
S
1R

G
1DS , (2)

with precipitation P being equal to the sum of surface

evaporation/sublimation E; surface and underground

runoff being RS and RG, respectively; and a terrestrial

water storage term DS that includes soil moisture, can-

opy water, and snow cover change. In this study, the

terms of Eq. (2) are computed as water flux rates in

millimeters per day.

In the WRF-Hydro setup, which also includes the

Noah LSM as in theWRF setup, the atmospheric grid at

2.8-km resolution (Fig. 1a) is coupled with a terrestrial

subgrid at 280-m resolution including a river network

(Fig. 1b) in order to route surface water WS overland,

soil moisture in the subsurface, and stream water in the

river channels (Gochis et al. 2015). The time step to

resolve these terrestrial processes is set to 10 s, as for the

atmospheric processes. Technically, WS and soil mois-

ture are conservatively disaggregated on the terrestrial

subgrid, routed, and aggregated back to the atmospheric

grid each time step. The topography of the terrestrial

subgrid is derived from the ASTER dataset. The river

network is obtained with ArcGIS software using the

Catchment Characterization and Modeling version 2.1

(CCM2) database (de Jager and Vogt 2010). It is em-

phasized that this WRF-Hydro setup allows for re-

infiltration, that is, WS infiltrating at a later time step

eventually at a different grid point, and exfiltration, that

is, WS originating from water excess in a fully saturated

soil column. The WS reaching a river channel grid point

in the terrestrial subgrid is finally removed from the land

and added to the water in the river channel. The part of

WS contributing to the river flow stands for the surface

runoff RS [Eq. (2)] in the WRF-Hydro setup and is

added to the model outputs (as in Arnault et al. 2016).

This allows us to define a WRF-Hydro-derived terres-

trial water budget equation as in Eq. (2), in which the

storage term DS also includes the surface water

change DWS.

In the WRF-Hydro setup, the river water volume is

routed on a pixel-by-pixel basis using a diffusive wave

formulation allowing for backwater effects. Channel pa-

rameters, including the initial river head, bottom width,

and side slope of the river channel, andManning’s channel

roughness coefficient are prescribed as functions of

Strahler stream order (Strahler 1957). In comparison to

other WRF-Hydro studies (e.g., Yucel et al. 2015;

Arnault et al. 2016; Kerandi et al. 2018), the Manning

coefficients used here have been decreased for calibra-

tion purposes, ranging from 0.35 at the order 1 to 0.03 at

the order 8. Otherwise, the further channel parameters

are default. The WRF-Hydro model could also be fur-

ther calibrated with respect to discharge, by tuning land

surface and soil parameters such as, among others, the

stomatal resistance, surface roughness, and the soil’s

hydraulic conductivity, which are currently assigned as a

function of land category and soil texture. However, this

study focuses only on the runoff–infiltration partitioning

parameter as it plays the key role for surface water re-

tention and subsequent redistribution by the lateral

routing components of WRF-Hydro. Investigating the

impact of further parameters would be beyond the scope

of this article.

Moreover, the baseflow contribution to the river flow

in each basin is evaluated with a basin-attributed linear

drainage bucket model, using the pass-through option

(Gochis et al. 2015). This means that the underground

runoff RG generated in a basin area is collected and di-

rectly redistributed to all the channel grid cells of the

basin. The following equation of specific discharge Q

generation at basin scale is derived as

Q5R
S
1R

G
2DW

R
, (3)

where RS and RG have already been defined above, and

DWR is the river water storage term in the basin. It is

noted that the specific discharge is computed as the

ratio between discharge (m3 s21) and basin area (m2).

As for Eq. (2), terms of Eq. (3) are also computed in

millimeters per day.

Surface variables, including those in the budget

equation [Eq. (2)], are stored at an hourly interval, as

well as the geopotential heights at 500hPa and the

convective available potential energy (CAPE). For

WRF-Hydro, terms of Eq. (3) are additionally saved on

the terrestrial subgrid at a daily interval.

b. Ensemble strategy

There is a potential link between terrestrial water

flow, soil moisture, surface fluxes, PBL dynamics, and

precipitation (e.g., Chen and Avissar 1994; Cheng and

Cotton 2004; Taylor et al. 2007; Maxwell et al. 2007;

Rieck et al. 2014; Senatore et al. 2015; Rahman et al.

2015; Arnault et al. 2016; Wagner et al. 2016; Larsen

et al. 2016; Kerandi et al. 2018). A comparison between

the respective effects of terrestrial water flow and PBL

dynamics uncertainty could provide further insight on

the precipitation sensitivity to terrestrial water flow.

Accordingly, the following WRF/WRF-Hydro en-

semble is constructed in order to allow for a comparison

between turbulence and terrestrial water flow uncertainty

1010 JOURNAL OF HYDROMETEOROLOGY VOLUME 19



effects. The WRF and WRF-Hydro setups of section 2a

are run for the three PBL schemes, ACM2, MYJ, and

YSU, and for two values of k [Eq. (1)], that is, k5 1 and

k5 3, with 3 being the default value. The two values for

k represent the terrestrial water flow uncertainty in the

vertical, the two models, WRF and WRF-Hydro, rep-

resent the contribution of lateral flow to terrestrial water

flow uncertainty, and the three PBL schemes represent

the turbulence parameterization uncertainty. This makes

an ensemble (ENS) of 12 members: six WRF members

and six WRF-Hydro members. Figure 2 provides a

conceptual view of ENS. The ensemble subsets of the

members using the PBL scheme X are called ENS(X),

whereX stands for ACM2,MYJ, or YSU. The ensemble

subsets of the members using k5 1 and k5 3 are called

ENS(k 5 1) and ENS(k 5 3), respectively, whereas

those of the WRF and WRF-Hydro members are called

ENS(WRF) and ENS(Hydro), respectively.

A so-called control ensemble, similar to ENS except

for the initial time, is generated, in order to evaluate the

magnitude of random noise in the model results. Here,

we arbitrarily choose to initialize this control ensemble

on 2 January 2008.

c. Validation datasets

Precipitation ensemble results are validated with the

E-OBS gridded precipitation product PEOBS from the

European Climate Assessment and Dataset project

(Haylock et al. 2008). The PEOBS product is available

daily on a grid at 0.258 resolution. As remarked by

Haylock et al. (2008), PEOBS is the product of an

interpolationmethod that has been designed to facilitate

the comparison with regional climate models at the

same spatial scale.

Daily dischargeQGRDC from the Global Runoff Data

Center (GRDC 2013) is also considered in this study for

validating the results from theWRF-Hydro hydrological

extension. The selected stations are Koeln, Liebenau,

Neu Darchau, Kienstock, and Passau, located at the

rivers Rhine, Weser, Elbe, Danube, and Inn, respec-

tively (see Fig. 1b). The covered basin areas are referred

to as Rhine–Koeln (144 3 103 km2), Weser–Liebenau

(20 3 103 km2), Elbe–Neu Darchau (131 3 103 km2),

Danube–Kienstock (96 3 103 km2), and Inn–Passau

(28 3 103 km2), respectively. The total area covered by

these five river basins has a size of about 625 km 3
625 km and is named area A. This set of river basins has

been chosen as it covers a large part of central Europe,

that is, area A (Fig. 1b), and allows us to test WRF-

Hydro for different catchment sizes in various hydro-

logical environments: a mixed high–low mountainous

region (Rhine–Koeln, Danube–Kienstock, Inn–Passau)

and low mountainous region (Weser–Liebenau,

Elbe–Neu Darchau).

d. Continuous ranked probability score

The skill of an ensemble subset ENS(X) in re-

producing daily precipitation PEOBS is assessed with

the continuous ranked probability score (CRPS; e.g.,

Matheson and Winkler 1976; Hersbach 2000; Gneiting

and Raftery 2007). The CRPS has been selected for this

skill assessment as it is a strictly proper scoring rule,

FIG. 2. Conceptual view of the members of the ensemble ENS presented in section 2b. Each

member is named according to the model used [WRF (W) or WRF-Hydro (H)], the PBL

scheme used [ACM2 (A), MYJ (M), or YSU (Y)], and the value of the parameter k (1 or 3).

The links between the members, colored in red, blue, and green, represent the three groups of

ensemble subsets used for the computation of the normalized precipitation spreads SPBL, Sk,

and SHydro, respectively (see section 2e).
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following decision-theoretically justified principles (e.g.,

Gneiting and Raftery 2007). A high or low skill of the

ensemble subset ENS(X) is indicated by a low or high

CRPSENS(X), respectively:

CRPS
ENS(X)

5

ð‘
2‘

[F
ENS(X)

(P)2F
EOBS

(P)]2 dP , (4)

where FENS(X) and FEOBS stand for the cumulative dis-

tribution functions of modeled and observed daily pre-

cipitation P, respectively.

It is noted that the unit of theCRPS is identical with that

of daily precipitation, which in our case is millimeters per

day. One could decide to normalize the CRPS [Eq. (4)] by

the observed daily precipitation in order to have a di-

mensionless score. However, such a normalized CRPS

would be improper as it would favor forecast distributions

that unduly emphasize low precipitation events, and

therefore become misleading (Lerch et al. 2017).

The integral in Eq. (4) can be evaluated via

CRPS
ENS(X)

5
1

N
ENS(X)

�
L2ENS(X)

jP
L
2P

EOBS
j

2
1

2N2
ENS(X)

�
(L,M)2ENS(X)

�jP
L
2P

M
j, (5)

where NENS(X) is the number of members in ensemble

subset ENS(X), and PL and PM are the precipitation

from members L and M, respectively.

However, as noted by Ferro et al. (2008), the CRPS

computed as such favors ensembles with a larger

number of members. Since our interest focuses on the

relative comparison of the skill of ensemble subsets

of different size, we follow Ferro et al. (2008) and

Fricker et al. (2013), who proposed the following

‘‘unbiased’’ expression for the CRPS, the so-called

fair CRPS:

CRPS
ENS(X)

5
1

N
ENS(X)

�
L2ENS(X)

jP
L
2P

EOBS
j2 1

2N
ENS(X)

(N
ENS(X)

2 1)
�

(L,M)2ENS(X)
�jP

L
2P

M
j. (6)

Equation (6) is asymptotically equivalent to Eq. (5)

for an infinite number of members NENS(X) and allows

for a fair comparison of differently sized ensembles

(Ferro et al. 2008). In the following, the CRPS of each

ensemble subset of section 2b is evaluated with Eq. (6)

as horizontal maps and spatially averaged in area A

(see Fig. 1b).

e. Normalized ensemble spread

The respective effects of terrestrial water flow and

turbulence uncertainty are evaluated with the nor-

malized ensemble spread S (Hohenegger et al. 2006;

Keil et al. 2014). Parameter S is computed for the

ensemble ENS as

S
ENS

5
1

P
ENS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
ENS

2 1
�

L2ENS

(P
L
2P

ENS
)2

s
, (7)

where PENS is the ensemble mean daily precipitation,

and SENS [Eq. (7)] is displayed as horizontal maps and

computed as area averages on grid points receivingmore

than 1mmday21 in area A.

Parameter S is also evaluated for groups of ensemble

subsets as

S
G
5

1

N
G

�
SUB2G

1

P
SUB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
SUB

2 1
�

L2SUB

(P
L
2P

SUB
)2

s
,

(8)

where G is a group of NG ensemble subsets (SUB) of

size NSUB, PSUB is the ensemble mean daily pre-

cipitation from SUB, and SG is the normalized ensemble

spread relative to G. Three groups of ensemble subsets

are considered in this study, as illustrated in Fig. 2: 1) the

four ensemble subsets in which only the PBL scheme is

varied, 2) the six ensemble subsets in which only the

value of k is varied, and 3) the six ensemble subsets in

which only the model, that is, WRF or WRF-Hydro, is

varied. Note that each group comprises 12 individual

simulations. These three groups aim at quantifying the

precipitation sensitivity to 1) turbulence parameteri-

zation uncertainty, 2) terrestrial water flow uncertainty

in the vertical direction, and 3) terrestrial water flow

uncertainty originating from the consideration of re-

solved lateral flow. Their associated normalized pre-

cipitation spreads are named SPBL, Sk, and SHydro. The

impact of these respective effects can finally be assessed

by comparison to SENS.

f. Weather regime dependence

In regional atmospheric modeling, internal processes

uncertainty preferentially affects precipitation during

weak synoptic forcing episodes (e.g., Stensrud et al. 2000;

Keil et al. 2014). The question here is, if the precipitation

sensitivity to the uncertainty in the representation of

terrestrial water flowalso depends on the level of synoptic

forcing.
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Keil et al. (2014) used the convective adjustment time

scale t originally proposed by Done et al. (2006) and

modified by Keil and Craig (2011) and Zimmer et al.

(2011), in order to objectively determine the level of

synoptic forcing and associated weather regime:

t5 0:5

�
r
0
c
p
T
0

L
y
g

�
CAPE

P
, (9)

where t is proportional to the ratio between the CAPE

(Jkg21) and precipitation P. Other parameters in Eq.

(9) are the density reference r0 (kgm23), the specific

heat of air at constant pressure cp (J kg21K21), the

temperature reference T0 (K), the latent heat of va-

porization Ly (J kg21), and the terrestrial gravita-

tional acceleration g (m s22). Choosing millimeters per

hour for the precipitation unit, which is equivalent to

kilograms per square meter per hour as water density is

1000kgm23, the resulting t [Eq. (9)] comes in hours.

Parameter t provides a measure of how fast condi-

tional instability is removed in an atmospheric column

through the release of moist convection. If t is much

smaller than the time scale characterizing the develop-

ment of the synoptic environment, convection is in

equilibrium with the synoptic-scale forcing and hence

controlled by it. In the case of weak synoptically forced

situations, CAPE can build up as local forcing is gen-

erally not as efficient as synoptic forcing in triggering

precipitation. In this case, area-averaged t is larger than

3–6h (Keil et al. 2014; Kühnlein et al. 2014).

In this study the weather regime dependence is tested

for the contribution of the terrestrial water flow repre-

sentation uncertainty to the normalized ensemble

spread of daily precipitation. As in Keil et al. (2014),

hourly CAPE and P are convolved with a Gaussian

kernel of half-width size of 56 km before computing an

hourly value for t [Eq. (9)], which ensures that t is

characteristic of an enlarged environment around the

precipitating systems. Parameter t is then spatially av-

eraged in area A for pixels receiving more than

1mmh21. Following Kühnlein et al. (2014), daily values

of t are computed as the hourly maxima reached in a

day. If t is larger than 6h, the weather regime is gov-

erned by synoptic processes. Finally, the ensemblemean

of these daily values, called tENS, is compared to SPBL,

Sk, and SHydro (see definition in section 2e).

g. Surface flux spatial variability dependence

Convective precipitation is expected to be sensitive to

the wind circulation induced by surface flux spatial

variability or heterogeneity H (e.g., Chen and Avissar

1994; Pielke 2001; Cheng and Cotton 2004; Taylor et al.

2007; Rieck et al. 2014; Rahman et al. 2015). It is

therefore desirable to objectively define H and see if it

relates to the normalized precipitation spreads, and if

the precipitation sensitivity to the uncertainty in the

representation of terrestrial water flow depends onH. It

is chosen here to computeH as the norm of the gradient

of surface evaporation/sublimation E:

H5 k=Ek , (10)

where symbols= and k k stand for the gradient and norm
operator. ParameterE is convolvedwith a 5-pixel/14-km

diameter circular mean filter kernel, before computing

the gradient of E, as boundary layer motions are known

to be more sensitive to surface heterogeneities of the

neighborhood size 10–20 km (e.g., Clark et al. 2004).

Parameter k=Ek is then convolved with a Gaussian

kernel of half-width size of 56 km, as for CAPE and P in

the computation of t (section 2f).

As for t, H is evaluated at the hourly time scale and

spatially averaged for the areas with hourly precipitation

exceeding a threshold of 1mmh21 within area A. Sur-

face flux spatial variability has a potential impact on

daily precipitation uncertainty through its effect on PBL

processes during the initiation of moist convection (e.g.,

Pielke 2001). Consequently, the value ofH at the hour of

the day when t reaches its maximum, that is, the initial

stage of convection, is selected for computing a daily

ensemble mean HENS, which is then compared to SPBL,

Sk, and SHydro.

The fact thatHENS is computed in a similar manner as

tENS (section 2f) ensures that both quantities are rep-

resentative of the same environment. ParameterHENS is

finally evaluated in millimeters per day per kilometer, as

E is computed as a water flux rate in millimeters per day

[see section 2a, Eq. (2)] and the grid spacing for the

spatial derivate is provided in kilometers.

3. Results

a. Model validation

In this section the performance of the ensemble and

ensemble subsets (section 2b) in reproducing the syn-

optic dynamics from the input ECMWF OP, and the

observational products PEOBS and QGRDC (section 2c),

is investigated.

1) SYNOPTIC-SCALE DYNAMICS

Synoptic dynamics is assessed here with the geo-

potential heights at 500 hPa called Z500, as usually

done in midlatitude meteorology (e.g., Holton 2004).

Figure 3a displays the 6-hourly evolution of the area

A–averaged Z500 from the ECMWF OP, that is,

Z500ECMWF, and from the ENS members, that is,
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Z500ENS. It shows that Z500ENS remains close to

Z500ECMWF, and that there is not much variation be-

tween ENS members. This is confirmed by the 6-hourly

evolution of the spatial root-mean-square error (RMSE)

between these two quantities, with values between 5 and

30m (Fig. 3b). The small spread of Z500ENS at the 6-h

time scale suggests that the simulation domain (Fig. 1a) is

small enough that the boundary conditions effectively

control the synoptic-scale dynamics of the solution in the

interior of the domain.

2) MEAN PRECIPITATION

The mean precipitation of the ensemble PENS, as well

as that of the ensemble subsets PENS(ACM2), PENS(MYJ),

PENS(YSU), PENS(k51), and PENS(Hydro), are averaged for

the simulation period April–October 2008 and are

compared with the observation PEOBS in Fig. 4. Aver-

aged PEOBS is above 3mmday21 in the southern high

mountainous region of area A, and below 3mmday21 in

the lower regions to the north. This spatial distribution is

qualitatively reproduced by PENS (cf. Figs. 4a and 4b),

although with a mean overestimation of 23%. This

overestimation is mainly distributed in the southeastern

half of area A, and particularly in the upper Elbe

River basin, where the difference-to-observation value

reaches 100% (Fig. 4c).

YSUmainly increases the average precipitation, while

ACM2 mainly decreases it and MYJ has a mixed effect

(Figs. 4d–f). However, these PBL effects are much

smaller than the difference to PEOBS (cf. color scales in

Figs. 4c and Figs. 4d–f). The change in average pre-

cipitation for the period April–October 2008 induced by

modifications in the representation of terrestrial water

flow ranges from 25% to 15% (Figs. 4g,h), which is

comparable to that obtained by Wagner et al. (2016).

However, this is smaller than the change induced by the

PBL scheme, that is, ranging from 220% to 120%.

3) DAILY PRECIPITATION

The skill of the ENS members in reproducing daily

PEOBS is assessed with the continuous ranked proba-

bility score CRPSENS defined in section 2d [Eq. (6)] and

displayed in Fig. 5a. In average for the period April–

October 2008, CRPSENS is above 2mmday21 in the

southern high mountainous region of area A and below

2mmday21 in the lower regions to the north. This pattern

is similar to that of the ensemble mean precipitation PENS

(cf. Figs. 4b and 5a), so that the lowest ensemble skill is

associatedwith thehighest precipitation,mainly in thehigh

mountainous region. On average over the entire area A,

CRPSENS is about 1.5mmday21 (Table 1).

The ability of each PBL scheme to improve the en-

semble skill is investigated and is shown in Figs. 5b–d,

displaying the respective relative differences between

CRPSENS(ACM2), CRPSENS(MYJ), CRPSENS(YSU), and

CRPSENS. All three of the PBL ensemble subsets have a

CRPS that is substantially higher than CRPSENS. This

indicates that even the best PBL subensemble is inferior

to the ensemble containing all three PBL schemes in

terms of probabilistic skill. Overconfidence is known to

penalize the probabilistic skill of an ensemble (e.g.,

Weigel et al. 2008). Accordingly, each PBL ensemble

subset appears to be overconfident, and the full en-

semble reduces this overconfidence.

The impact of the other ensemble subsets on the

CRPS, that is, ENS(WRF, k 5 1), ENS(WRF, k 5 3),

ENS(Hydro, k5 1), ENS(Hydro, k5 3), is investigated

in Figs. 5e–h. These panels show that each of these en-

semble subsets has a CRPS slightly smaller than that of

ENS. This means that an ensemble subset considering the

three PBL schemes, but only one value for k, and only one

model, that is,WRForWRF-Hydro, has a better skill than

the full ensemble itself. Accordingly, following Weigel

et al. (2008), considering only one option for the repre-

sentation of terrestrial water flow reduces the over-

confidence of the ensemble. Table 1 further shows that the

ensemble subset usingWRF-Hydro andk5 1, that is, ENS

(Hydro, k5 1), exhibits the lowest CRPS, with an induced

area-average diminution of 25.5%.

The robustness of this result is assessed in a bootstrap

approach by computing the CRPS based on 100 ran-

domly selected days instead of the full period April–

October 2008. Reconducting this random evaluation

FIG. 3. (a) The 6-hourly time series of the geopotential height

Z500 at 500 hPa spatially averaged in area A (see Fig. 1b), from the

ECMWF operational analyses (Z500ECMWF, black line) and from

the ENS members (Z500ENS, red line). The range in the red line

represents the spread between the ENS members’ results. The x

axis gives the time (days) from 1 Apr to 31 Oct 2008, and the y axis

gives the height (m). (b) As in (a), but for the spatial RMSE be-

tween Z500ECMWF and Z500ENS.
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FIG. 4. (a) Average precipitation P (mmday21) for the period April–October 2008 in area A (see

Fig. 1b), derived from the mean of the ENSmembers. The scale is given by the colored bar to the right of

the panel. (b) As in (a), but from the observational dataset E-OBS. (c) As in (a), but for the normalized

difference (%) between ENS derived and observed P. (d)–(h) As in (c), but between the ENS(ACM2),

ENS(MYJ), ENS(YSU), ENS(k5 1), ENS(Hydro), andENSmembermeans, respectively. See section 2b

for details about the subscripts. All plotted data in this figure are resampled at a resolution 10 times that of

WRF, that is, 28 km, in order to facilitate the comparison between modeled and observed quantities.
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FIG. 5. (a) As in Fig. 4, but for the CRPS (mmday21) [Eq. (6)] of the whole ensemble ENS

averaged for the periodApril–October 2008. (b)–(l) As in (a), but for the normalized difference (%)

between the CRPS of ensemble subsets and CRPSENS. The data displayed in each panel are spatially

averaged in area A and arranged in Table 1.
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one thousand times, it is found that ENS(Hydro, k 5 1)

exhibits the lowest mean CRPS in 90% of the cases. This

suggests that the skill of a WRF ensemble can be im-

proved by considering several atmospheric turbulence

parameterization options, but only one best option for

the terrestrial water flow representation, which in this

case is WRF-Hydro with k 5 1.

4) BASIN-AVERAGED RESULTS

Basin-averaged daily time series of PENS in the river

basins Rhine–Koeln, Weser–Liebenau, Elbe–Neu

Darchau, Danube–Kienstock, and Inn–Passau are close

to those of PEOBS (Fig. 6), with a correlation coefficient

r between 0.67 and 0.91 and a mean difference-to-

observation value between 112% and 139% (Table 2).

This is in agreement with the precipitation over-

estimation discussed in section 3a(2) (see Fig. 4c). The

timing of the daily peaks is generally well captured, and

there is not much difference in terms of daily variation

among ENS members’ basin-averaged precipitation time

series (see range of the red lines in Fig. 6).

WRF-Hydro produces daily time series of discharge

QENS(Hydro) moderately close to that observed at the

outlets of the five selected river basins (Fig. 7),

with a mean difference to observations between 239%

and117% and an NSE value ( Nash and Sutcliffe 1970)

generally above 0.3 (Table 2). This is comparable to

what has previously been obtained with WRF-Hydro

(e.g., Yucel et al. 2015; Senatore et al. 2015; Arnault

et al. 2016; Kerandi et al. 2018), but noticeably lower to

what is usually obtained with traditional ‘‘uncoupled’’

hydrological models in part because the meteorological

forcing is prescribed in this latter case (e.g., Newman

et al. 2015; Zink et al. 2017). Indeed, the quality of the

WRF-Hydro discharge not only depends on the simu-

lated amount of basin-averaged precipitation (Fig. 6),

but also on the spatial distribution of simulated pre-

cipitation within the basin, which is challenging for an

atmospheric model. It is also acknowledged that the

discrepancies between simulated and observed dis-

charge in Fig. 7 may also be related to 1) distributed

parameters not properly calibrated for this particular

application, such as the unsaturated hydraulic conduc-

tivity, surface roughness or stomatal resistance, and

TABLE 1. The first row shows the CRPS (mmday21) [Eq. (6)] of

the whole ensemble ENS, averaged in area A (see Fig. 1b) and for

the period April–October 2008. The remaining rows show the

difference (%) between the CRPS of each ensemble subset and

CRPSENS. The ensemble subset ENS(Hydro, k 5 1) giving the

lowest averaged CRPS is bolded. The values provided in this table

are derived from the data displayed in Fig. 5.

CRPSENS 1.51mmday21

CRPSENS(ACM2) 113.3%

CRPSENS(MYJ) 111.3%

CRPSENS(YSU) 115.2%

CRPSENS(WRF,k51) 24.8%

CRPSENS(WRF,k51) 24.3%

CRPSENS(Hydro,k51) 25.5%

CRPSENS(Hydro,k51) 24.7%

FIG. 6. Daily time series of precipitation P (mm day21) from

E-OBS (black line) and from the ENS members (red line), spa-

tially averaged in the river basins shown in Fig. 1b: (a) Rhine–

Koeln (1), (b) Weser–Liebenau (2), (c) Elbe–Neu Darchau (3),

(d) Danube–Kienstock (4), and (e) Inn–Passau (5). The range in

the red line comes from the spread between the ENS members’

results. Statistics related to these time series are provided in

Table 2.
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2) the relatively short 3-month spinup time considered in

this study for snow and soil moisture in deeper soil layers

to reach equilibrium. Still, it is of high interest to assess

how well the coupled WRF-Hydro modeling system is

able to reproduce observed streamflow at respective

gauge locations.

The best discharge result is obtained for Elbe–Neu

Darchau, that is, NSE . 0.8, with a peak in late AprilT
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FIG. 7. As in Fig. 6, but for specific dischargeQ (mmday21) from

GRDC and from the ENS(Hydro) members at the outlet of the

river basins shown in Fig. 1b: (a) Koeln (1), (b) Liebenau (2),

(c) Neu Darchau (3), (d) Kienstock (4), and (e) Passau (5).
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2008 probably related to snowmelt, and a slow descent

afterward (Fig. 7c). The Weser–Liebenau’s discharge

has a similar temporal variation, although in this case

QENS(Hydro) largely underestimates the baseflow con-

tribution from June to October 2008 (Fig. 7b). NSE is

accordingly smaller, with values above 0.39. This could

be related to a relatively large contribution of soil water

older than 3 months in the case of the Weser–Liebenau

discharge, which would require a longer spinup time in

order to be properly taken into account. Danube–

Kienstock and Inn–Passau’s discharge displays many

more peaks, which makes hydrological modeling in

these basins more challenging. Parts of these two river

basins are located in a high mountainous region where

fast surface runoff generation during a storm event is

more likely to occur. Peaks simulated inQENS(Hydro) are

still relatively close to those inQGRDC (see Figs. 7d,e), as

deduced by a NSE above 0.3. Finally, concerning the

discharge of Rhine–Koeln, QENS(Hydro) displays such

peaks as well, in relation to an upper catchment area also

in the high mountainous region. However, these peaks

are not in QGRDC, with this last one also displaying a

higher base flow (see Fig. 7a). These discrepancies are

confirmed by relatively low NSEs, between 0.0 and 0.39

(Table 2), and could be related to the fact that the

storing influence of lakes is not taken into account in

WRF-Hydro, as it is known that LakeConstance and the

lakes of the Swiss Alps in theUpper Rhine attenuate the

flood peaks in the Lower Rhine (e.g., Lohre et al. 2003;

Bronstert et al. 2007). Such a smoothing is not seen in

the case of the Danube–Kienstock and Inn–Passau dis-

charge, which is potentially explained by the fact that

these two basins do not have a lake as big as Lake

Constance.

b. Relative impact of terrestrial water flow
representation on land surface variables

In coupled hydrological models, the consideration of

terrestrial water flow primarily modifies the distribution

of soil moisture and surface fluxes (Maxwell et al. 2007;

Senatore et al. 2015; Rahman et al. 2015; Arnault et al.

2016; Wagner et al. 2016; Larsen et al. 2016; Kerandi

et al. 2018). In the following, this impact is discussed

with the terrestrial water budget [Eq. (2)] and river

water budget [Eq. (3)]. Figure 8a displays daily time

series of the terms of Eq. (2) spatially averaged in areaA

(see Fig. 1b) and derived from the mean of ENS mem-

bers. It shows that DS and RS mainly follow the daily

variations of P, whereas E and RG have a much

smoother temporal variation. The differential daily time

series between the mean of ENS(k 5 1) [ENS(Hydro)]

and ENS members are displayed in Fig. 8b (Fig. 8c) and

summed in Table 3. Figures 8b and 8c show that daily

changes in DS mainly counterbalance those in RS. Pa-

rameters E and RG are not much affected on the daily

scale, but noticeable changes in the total sums are found

(see Table 3). The increase of DS is associated with an

increase of E, RG, and P, whereas the decrease of DS is

associated with a decrease ofE,RG, andP. However, the

impact of modified terrestrial water flow representation

on the average precipitation in area A is small: 62mm

over 631mm for the considered time period, which is

about 60.3% (Table 3).

The robustness of the above result is assessed by

comparing with the control ensemble result. In the

control ensemble the total sum of precipitation is in-

creased by about 0.25%, which gives the magnitude of

random noise. The change in precipitation induced by

modifying the representation of terrestrial water flow is

slightly larger than this random noise. According to a

standard t test, the change is significant only at the

FIG. 8. (a) Daily time series of the terms (mmday21) of the soil

water budget [Eq. (2)], that is, precipitationP, surface evaporation/

sublimation E, surface runoff RS, ground runoff RG, and soil water

storage DS, spatially averaged in area A (see Fig. 1b) and derived

from theENSmembersmean. (b)As in (a), but from the difference

between ENS(k 5 1) and ENS member mean. (c) As in (a), but

from the difference betweenENS(Hydro) and ENSmembermean.

Temporal sums of the displayed data are provided in Table 3.
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p. 0.1 level. This confirms that the terrestrial water flow

uncertainty has a reduced and barely significant impact

on the total sum of precipitation in areaA. In the control

ensemble, we find that modifying the representation of

terrestrial water flows induces a change inDS,E,RG, and

P of the same sign and with a similar amplitude as in

Table 3 (not shown). In terms of physical processes, this

suggests that some of the water evaporating from the

surface in area A falls back in area A as precipitation, so

that changing the amount of surface evaporation by

decreasing surface infiltration or enabling lateral ter-

restrial water flow would have a direct effect on the

amount of precipitation.

Figure 9a displays daily time series of the terms of

Eq. (3) spatially averaged in area A (see Fig. 1b) and

derived from the mean of ENS(Hydro) members. It

shows the contributions of RS and RG to daily discharge

generation in area A. Isolated peaks in simulated Q are

mainly related to RS. The river water storage term DWR

acts as a buffer and smooths the Q isolated peaks with

respect to those of RS. This smoothing can be further

calibrated with the Manning roughness coefficients, which

are currently specified as a function of stream order.

Decreasing k to 1 slightly increases RS, although the

associated increase in Q is partly counterbalanced by a

smaller decrease in RG (Fig. 9b, Table 4). However, the

impact of decreasing k on the area-average discharge is

small: 12mm over 182mm for the considered time pe-

riod, which is about11.1% (Table 4). As a side note, this

is a noticeable difference with West Africa, where

Arnault et al. (2016) found that the amount of simulated

discharge was tightly related to the value of k.

c. Relative impact of terrestrial water flow
representation on precipitation

The impact of terrestrial water flow representation is

further discussed with the normalized ensemble spreads

of daily precipitation SENS, SPBL, Sk, and SHydro (see

section 2e), displayed in Fig. 10 as averagedmaps for the

period April–October 2008. Parameter SENS is generally

between 0.5 and 0.8 in the central and northern parts

of area A but is below 0.5 in the southern part

in association with a strong orographic forcing on

precipitation there.

Parameter SPBL is generally slightly lower than SENS

(Fig. 10b), with an area-average difference of about

5%. In comparison, Sk and SHydro are much lower

(see Figs. 10c,d), with an area-average difference of

about 40%–50%. This shows that the uncertainty in the

modeled atmospheric turbulence is largely dominating

the full ensemble spread SENS and that the averaged

contribution of the terrestrial water flows representation

uncertainty to this variability is 5%. The reduced spread

between the ensemble members using the same PBL

scheme is in accordance with the fact each of the

PBL ensemble subsets ENS(ACM2), ENS(MYJ), and

ENS(YSU) is overconfident in comparison to the full

ensemble ENS and that ENS is overconfident in com-

parison to each of the ensemble subsets that consider

only one terrestrial water flow option, as discussed in

section 3a(3).

Parameter SENS is much closer to SPBL in the southern

part of area A, suggesting that a strong orographic

forcing inhibits the impact of terrestrial water flow

representation uncertainty on precipitation. The largest

impact occurs in the central and northern parts, where

SENS locally exceeds SPBL by 5%–20% (Fig. 10b). Ac-

cordingly, the uncertainty in the representation of ter-

restrial water flow preferentially affects precipitation in

regions with moderate topography. The next sections

FIG. 9. (a) As in Fig. 8a, but for the terms of the river water

budget [Eq. (3)], that is, river discharge Q, surface runoff RS,

ground runoff RG, and river water storage DWR, derived from the

ENS(Hydro) member mean. (b) As in (a), but from the difference

between ENS(Hydro, k 5 1) and ENS(Hydro) member mean.

Temporal sums of the displayed data are provided in Table 4.

TABLE 3. Temporal sums for the period April–October 2008 of

the terms of the terrestrial water budget [Eq. (2)] spatially aver-

aged in area A and displayed in Fig. 8, averaged for all the en-

semble members in the first row. The second and third rows show

the difference between ensemble subsets and the whole ensemble.

The values are in millimeters.

P E RS RG DS

ENS 631 525 83 119 296

ENS(k 5 1) 2 ENS 22 22 115 27 28

ENS(Hydro) 2 ENS 12 17 238 113 120
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investigate if the sensitivity of precipitation to terrestrial

water flow uncertainty varies from day to day, poten-

tially in relation with the weather regime and surface

flux spatial variability.

d. Role of weather regime

The weather regime dependence of SPBL, Sk, and

SHydro is investigated with the daily convective adjust-

ment time scale averaged for the ENS members in area

A, referred as tENS (section 2f). Figure 11a displays the

scatterplot between daily values of tENS and SPBL. There

is a positive correlation between SPBL and tENS, with a

coefficient of determination R2 of 0.53. A similar cor-

relation is obtained for Sk and SHydro (not shown). This is

much higher than that obtained in Keil et al. (2014) for

forecast ensembles of hourly precipitation, possibly be-

cause the analysis here is conducted with daily values.

This confirms that internal processes uncertainty

preferentially affects precipitation during weak syn-

optic forcing episodes (e.g., Stensrud et al. 2000; Keil

et al. 2014).

The red bold plus signs in Fig. 11 indicate the days when

area-average SENS exceeds area-average SPBL by more

than 20%. These are the days when the precipitation

sensitivity to the uncertainty in the representation of ter-

restrial water flow is most noticeable. According to the red

bold plus signs in these scatterplots, these days are mostly

associated with a weak synoptically forced weather regime

(tENS higher than 6h).

FIG. 10. (a)As in Fig. 4, but for the normalized spread of daily precipitation SENS [Eq. (7)] averaged for the period

April–October 2008 and computed and displayed at the original resolution of WRF, that is, 2.8 km. (b)–(d) As in

(a), but for the normalized difference (%) between the normalized spreads SPBL, Sk, and SHydro from groups of

ensemble subsets [Eq. (8), Fig. 2] and SENS.

TABLE 4. As in Table 3, but for the terms of the river water budget

[Eq. (3)] displayed in Fig. 9.

Q RS RG 2DWR

ENS(Hydro) 182 46 132 4

ENS(Hydro, k 5 1) 2 ENS(Hydro) 12 15 23 0
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e. Role of surface flux spatial variability

The surface flux spatial variability dependence of

SPBL, Sk, and SHydro is investigated with the surface flux

spatial heterogeneity averaged for the ENS members,

referred as HENS (section 2g). Figure 11b displays the

scatterplot between daily values of HENS and SPBL. The

correlation is close to that obtained in previous section,

with aR2 of 0.40. A similar correlation is obtained for Sk
and SHydro (not shown). This means that internal pro-

cesses uncertainty preferentially affects precipitation

when surface flux spatial variability is high. The fact that

the coefficient of determination in Fig. 11a is close to

that in Fig. 11b further suggests that surface flux spatial

variability is as important as the weather regime to ex-

plain the precipitation ensemble spread driven bymodel

physics.

As in Fig. 11a, the red bold plus signs in Fig. 11b in-

dicate the days when area-average SENS exceeds area-

average SPBL by more than 20%. It is noted that these

days are associated with relatively large values of HENS,

that is, above 0.15mmday21km21, whereas the total range

ofHENS values spreads from 0 to 0.4mmday21km21. This

result suggests that, in central Europe, the uncertainty in

the representation of terrestrial water flowmost noticeably

affects precipitation preferentially when surface flux

spatial variability is high.

4. Summary and perspective

This study addressed the precipitation sensitivity to

the uncertainty in the representation of terrestrial water

flow in central Europe. For this purpose, an ensemble of

WRF and WRF-Hydro simulations was generated for

the period April–October 2008, using the COSMO-DE

grid at 2.8-km resolution and ECMWF operational an-

alyses as forcing data, taking into account turbulence

uncertainty with three PBL parameterization (ACM2,

MYJ, or YSU schemes), and vertical water flow repre-

sentation uncertainty with two values for the runoff–

infiltration partitioning parameter k, that is, 1 and 3. The

contribution of lateral flow to the uncertainty in the

representation of terrestrial water flow was considered

by comparing the WRF and WRF-Hydro simulations.

Enabling lateral terrestrial water flow in WRF-Hydro

generally increased soil moisture, surface evaporation,

and precipitation in the study region, whereas these

variables were generally decreased by reducing the

runoff–infiltration partitioning parameter. However, a

similar precipitation change was found by changing the

initial time of the ensemble, which confirmed that the

total sum of precipitation in the study region was not

much affected by terrestrial water flow uncertainty. The

fact that the change in surface evaporation and pre-

cipitation were in phase, both in the ensemble and in the

control ensemble, is thought to be related to regional

precipitation recycling.

The impact of these terrestrial water flow effects on

precipitation was evaluated with the normalized en-

semble spread. The full ensemble spread was largely

dominated by the uncertainty in the modeled atmo-

spheric turbulence. On average for April–October

2008, the difference between the full and turbulence-

uncertainty-driven ensemble spread was about 5%,

which was considered to be the averaged effect of

terrestrial water flow representation uncertainty. This

averaged effect was found to be inhibited over steep

FIG. 11. (a) Scatterplot between daily values of the convective

adjustment time scale tENS (h) [Eq. (9), x axis] and the normalized

precipitation spread SPBL [Eq. (8)] spatially averaged in area A

(see Fig. 1b). The red line is the linear fit, with a coefficient of

determinationR2 given in the legend in the lower-right corner. Red

bold plus signs indicate days when area-averaged SENS is 20%

larger than area-averaged SPBL, respectively. (b) As in (a), but with

the surface flux heterogeneity HENS (mmday21 km21) [Eq. (10)]

for the x axis.
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terrain, but enhanced in regions where topography is

moderate. Special attention was drawn to the days when

the normalized ensemble spread of the full ensemble

was about 20% higher than that originating from tur-

bulence parameterization uncertainty. These particular

days were associated with relatively high values of the

convective adjustment time scale and surface flux spatial

variability. It was therefore concluded that the un-

certainty in the representation of terrestrial water flow is

more likely to noticeably affect precipitation when the

weather regime is weakly synoptically forced and sur-

face flux spatial variability is high. As 1) the additional

description of lateral terrestrial water flow noticeably

increases the normalized ensemble spread in certain

conditions and 2) the WRF-Hydro coupled modeling

system allows us to describe this lateral flow at a mod-

erate computational cost, we argue that WRF-Hydro is

suitable for ensemble forecasting.

Further focus of the study was on assessing the skill of

ensemble members in reproducing the E-OBS daily

precipitation product. Spatially averaged daily time se-

ries of E-OBS precipitation in five large river basins in

central Europe were approximately well reproduced,

with a correlation coefficient above 0.67. Precipitation

was on average overestimated between112%and139%.

As for the normalized ensemble spread, modifying the

representation of terrestrial water flow had much less im-

pact on the average precipitation amount than the choice

of the PBL scheme. The ensemble skill in reproducing

E-OBS daily precipitation was further evaluated with the

CRPS. The ensemble subset considering the three PBL

schemes, but only theWRF-Hydromodel and the value of

1 for k provided the lowest CRPS (highest ensemble skill).

The decrease of probabilistic skill, or increase of confi-

dence, for the ensemble subsets considering several ter-

restrial water flow options is coherent with the reduced

ensemble spread induced by the terrestrial water flow

uncertainty. Future studies should investigate if for other

years and/or other regions the skill of a WRF ensemble is

also improved by considering several atmospheric turbu-

lence parameterization options, but only one best option

for the representation of terrestrial water flow.

Finally, the WRF-Hydro ensemble driven by ECMWF

operational analyses showed diverse skills in reproducing

streamflow in large European river basins, with NSE

ranging from 0 to 0.91. Future research with WRF-Hydro

could also focus on an enhanced calibration of the various

distributed land surface and soil parameters and the use of

multiyear spinup to investigate the potential of further

improvement in reproducing streamflow.

Acknowledgments. This research is part of the sub-

project ‘‘A5-The role of soil moisture and surface- and

subsurface water flows on predictability of convection’’

of the Transregional Collaborative Research Center

SFB/TRR 165 ‘‘Waves To Weather’’ funded by the

German Science Foundation (DFG). ECMWF opera-

tional analyses were obtained within the framework of a

special project at the ECMWF. WRF and WRF-Hydro

simulations were performed on the computational re-

source ForHLR I funded by the Ministry of Science,

Research and the Arts Baden-Württemberg and DFG

(Deutsche Forschungsgemeinschaft). We acknowledge

the P-EOBS dataset from the ECA&D project (http://

www.ecad.eu) and the Q-GRDC dataset from the

Global Runoff Data Center (http://www.bafg.de/GRDC/

EN/Home/homepage_node.html). Special thanks go to

Christian Barthlott for providing COSMO static input

data; George Craig, StephanRasp,Michael Riemer, and

Lotte Bierdel for fruitful discussions about skill scores;

Gerhard Smiatek, Dominikus Heinzeller, Christof

Lorenz, Patrick Laux, Thomas de Couet, Carsten Maas,

Hartmut Häfner, and Christoph Sörgel for the logistic

and computer support; and two reviewers for helping to

clarify the manuscript.

REFERENCES

Anyah, R. O., C. P. Weaver, G. Miguez-Macho, Y. Fan, and

A. Robock, 2008: Incorporating water table dynamics in cli-

mate modeling: 3. Simulated groundwater influence on coupled

land-atmosphere variability. J. Geophys. Res., 113, D07103,

https://doi.org/10.1029/2007JD009087.

Arino, O., P. Ramos, J. Jose, V. Kalogirou, S. Bontemps,

P. Defourny, and E. Van Bogaert, 2012: Global Land Cover

Map for 2009 (GlobCover 2009). European Space Agency/

Université catholique de Louvain, https://doi.org/10.1594/

PANGAEA.787668.

Arnault, J., S. Wagner, T. Rummler, B. Fersch, J. Bliefernicht,

S. Andresen, and H. Kunstmann, 2016: Role of runoff–

infiltration partitioning and resolved overland flow on land–

atmosphere feedbacks: A case study with the WRF-Hydro

coupled modeling system for West Africa. J. Hydrometeor.,

17, 1489–1516, https://doi.org/10.1175/JHM-D-15-0089.1.

Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer,

and T. Reinhardt, 2011: Operational convective-scale numeri-

cal weather prediction with the COSMO model: Description

and sensitivities.Mon. Wea. Rev., 139, 3887–3905, https://doi.org/

10.1175/MWR-D-10-05013.1.

Barthlott, C., and Coauthors, 2011: Initiation of deep convection at

marginal instability in an ensemble of mesoscale models: A

case-study from COPS. Quart. J. Roy. Meteor. Soc., 137,

118–136, https://doi.org/10.1002/qj.707.

Bronstert, A., and Coauthors, 2007: Multi-scale modelling of land-

use change and river training effects on floods in the Rhine

basin. River Res. Appl., 23, 1102–1125, https://doi.org/10.1002/

rra.1036.

Chen, F., and R. Avissar, 1994: The impact of land-surface wetness

heterogeneity on mesoscale heat fluxes. J. Appl. Meteor., 33,

1323–1340, https://doi.org/10.1175/1520-0450(1994)033,1323:

TIOLSW.2.0.CO;2.

JUNE 2018 ARNAULT ET AL . 1023

http://www.ecad.eu
http://www.ecad.eu
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
https://doi.org/10.1029/2007JD009087
https://doi.org/10.1594/PANGAEA.787668
https://doi.org/10.1594/PANGAEA.787668
https://doi.org/10.1175/JHM-D-15-0089.1
https://doi.org/10.1175/MWR-D-10-05013.1
https://doi.org/10.1175/MWR-D-10-05013.1
https://doi.org/10.1002/qj.707
https://doi.org/10.1002/rra.1036
https://doi.org/10.1002/rra.1036
https://doi.org/10.1175/1520-0450(1994)033<1323:TIOLSW>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<1323:TIOLSW>2.0.CO;2


——, and J. Dudhia, 2001: Coupling an advanced land surface–

hydrology model with the Penn State–NCAR MM5 model-

ing system. Part I: Model implementation and sensitivity.

Mon. Wea. Rev., 129, 569–585, https://doi.org/10.1175/1520-

0493(2001)129,0569:CAALSH.2.0.CO;2.

Cheng, W. Y. Y., and W. R. Cotton, 2004: Sensitivity of a cloud-

resolving simulation of the genesis of a mesoscale convective

system to horizontal heterogeneities in soil moisture initiali-

zation. J. Hydrometeor., 5, 934–958, https://doi.org/10.1175/

1525-7541(2004)005,0934:SOACSO.2.0.CO;2.

Clark, D. B., C. M. Taylor, and A. J. Thorpe, 2004: Feedback be-

tween the land surface and rainfall at convective length scales.

J. Hydrometeor., 5, 625–639, https://doi.org/10.1175/1525-

7541(2004)005,0625:FBTLSA.2.0.CO;2.

Csiszar, I., and G. Gutman, 1999: Mapping global land surface

albedo from NOAA/AVHRR. J. Geophys. Res., 104, 6215–

6228, https://doi.org/10.1029/1998JD200090.

de Jager, A. L., and J. V. Vogt, 2010: Development and demon-

stration of a structured hydrological feature coding system for

Europe. Hydrol. Sci. J., 55, 661–675, https://doi.org/10.1080/

02626667.2010.490786.

Done, J.M., G. C. Craig, S. L. Gray, P. A. Clark, andM. E. B.Gray,

2006: Mesoscale simulations of organized convection: Impor-

tance of convective equilibrium. Quart. J. Roy. Meteor. Soc.,

132, 737–756, https://doi.org/10.1256/qj.04.84.
Dudhia, J., 1989: Numerical study of convection observed during

the Winter Monsoon Experiment using a mesoscale two-

dimensional model. J. Atmos. Sci., 46, 3077–3107, https://

doi.org/10.1175/1520-0469(1989)046,3077:NSOCOD.2.0.CO;2.

FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012: Harmonized World Soil

Database (version 1.2). FAO, http://www.fao.org/soils-portal/

soil-survey/soil-maps-and-databases/harmonized-world-soil-

database-v12/en/.

Ferro, C. A. T., D. S. Richardson, and A. P. Weigel, 2008: On the

effect of ensemble size on the discrete and continuous ranked

probability scores. Met. Appl, 15, 19–24, https://doi.org/

10.1002/met.45.

Fricker, T. E., C. A. T. Ferro, and D. B. Stephenson, 2013: Three

recommendations for evaluating climate predictions. Met.

Appl, 20, 246–255, https://doi.org/10.1002/met.1409.

García-Díez, M., J. Fernández, L. Fita, and C. Yagüe, 2013: Sea-
sonal dependence of WRF model biases and sensitivity to

PBL schemes over Europe. Quart. J. Roy. Meteor. Soc., 139,

501–514, https://doi.org/10.1002/qj.1976.

Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallègue, 2011:
Uncertainties in COSMO-DE precipitation forecasts in-

troduced by model perturbations and variation of lateral

boundaries.Atmos. Res., 100, 168–177, https://doi.org/10.1016/

j.atmosres.2010.12.008.

Gneiting, T., and A. E. Raftery, 2007: Strictly proper scoring rules,

prediction, and estimation. J. Amer. Stat. Assoc., 102, 359–378,

https://doi.org/10.1198/016214506000001437.

Gochis, D. J., W. Yu, and D. N. Yates, 2015: The WRF-Hydro

model technical description and user’s guide, version 3.0.

NCAR Tech. Doc., 120 pp., http://www.ral.ucar.edu/projects/

wrf_hydro/.

GRDC, 2013: Tenth meeting of the GRDC Steering Committee, 15–

17 June 2011,Koblenz,Germany.GRDCRep. 42,GlobalRunoff

Data Centre, 31 pp., https://doi.org/10.5675/GRDC_Report_42.

Gutman, G., and A. Ignatov, 1998: The derivation of the green

vegetation fraction from NOAA/AVHRR data for use in

numerical weather prediction models. Int. J. Remote Sens., 19,

1533–1543, https://doi.org/10.1080/014311698215333.

Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P. D.

Jones, and M. New, 2008: A European daily high-resolution grid-

ded dataset of surface temperature and precipitation. J. Geophys.

Res., 113, D20119, https://doi.org/10.1029/2008JD010201.

Hersbach, H., 2000: Decomposition of the continuous ranked

probability score for ensemble prediction systems. Wea.

Forecasting, 15, 559–570, https://doi.org/10.1175/1520-

0434(2000)015,0559:DOTCRP.2.0.CO;2.

Hohenegger, C., D. Lüthi, and C. Schär, 2006: Predictability mys-

teries in cloud-resolving models. Mon. Wea. Rev., 134, 2095–

2107, https://doi.org/10.1175/MWR3176.1.

Holton, J. R., 2004: An Introduction to Dynamic Meteorology.

4th ed. Elsevier Academic Press, 535 pp.

Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment

6-Class Microphysics Scheme (WSM6). J. Korean Meteor.

Soc., 42 (2), 129–151.

——, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion

package with an explicit treatment of entrainment processes.

Mon. Wea. Rev., 134, 2318–2341, https://doi.org/10.1175/

MWR3199.1.
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