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Science as we know it today
is the pursuit of truth and
knowledge for the good of all
mankind.

Anonymous

Introduction

Preface

Science, and physics in particular, after its establishment as independent field of science
in the 17th century, have come a long way since the beginning of mankind.

From the first conscious-thinking early humans trying to grasp their environment over the
first astronomers looking up at the sky, followed closely by the early philosophers wonder-
ing what holds heaven and earth together via the Scientific revolution and establishment of
the experimental method up to the modern science nowadays, human knowledge evolved
faster and faster, even though it encountered some obstacles from time to time. Never
before in history the technological advancement resting on rapidly growing and swiftly
applied scientific insights could provide necessaries and comfort of life for so many people.
Still some of the oldest questions of mankind remain and still “two mysteries lie at the
heart of the human experience. Where do we come from? Where are we going” [1].

It would be presumptuous to claim that particle physics would hold the final answer to
these questions. Nevertheless, by providing experimentally-established theoretical models
describing the composition of matter up to the smallest and non-directly detectable ele-
mentary particles the field of particle physics sheds some light on the matter.

The Standard Model of particle physics, which was developed from the 1960s on and whose
current formulation was finalized in the early 1980s, is the best example of this being con-
sidered as “the most successful theory ever” [2]. As a successor of the quark model, or
rather the Eightfold Way, it could not only explain the existing particle zoo and solve
the particle puzzle of the 1960s, but also established the group of elementary particles all
known matter is based on, while predicting fundamental particles which were successfully
found only later. The latest of these fundamental particles found is the Higgs boson, which
was discovered 2012 and which was also the last missing elementary particle predicted by
the Standard Model.
Even though all particles predicted by the Standard Model are found, many questions
around the Standard Model are still open. By studying physics processes occurring at
particle accelerators like the Large Hadron Collider (LHC) particle physicists try to ad-
dress some of these open questions, while hoping to gain more insight.

Current particle physics experiments would not be possible without the application of
state-of-the-art technologies. Therefore, this academic discipline is promoting progress by
being an early-adopter of recent advances and, also, in many cases by developing home-
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grown innovations due to the need of fulfilling its own challenging demands. Just one of
many examples is that particle physicists were among the first who had to handle, pre-
pare and analyze extremely large data sets, which is these days known as Big Data, Data
Science, and Data Analytics. All of these three topics are skyrocketing in importance in
industry and become part of all areas of life in an unprecedented manner.

A key term which always comes up in this context is artificial neural network as a promis-
ing set of tools for a multivariate analysis.
In fact, particle physicists already considered and used neural networks – first mostly
for object identification and event reconstruction – since the late 1980s and the early
1990s. Later on, the application of neural networks as a classifier for a particle physics
analysis became more popular. However, they were still employed infrequently since the
implementation of this multivariate analysis method was often a challenging task and other
multivariate analysis methods like boosted decision trees (BDTs) were easier to realize and
provided comparable results. Only from roughly 2015 the time was ripe for a widespread
application of neural networks, and especially, deep learning techniques, in particle physics
and also in industry which is still picking up momentum. The year 2015 can safely be cho-
sen as a starting date since in this time falls the release of the TensorFlow open-source
software library, which provided a rather easy framework to adopt neural networks in vari-
ous software projects, and the NVIDIA company entered the deep learning market, so that
artificial neural networks can now be easily trained and evaluated on a graphical processing
unit (GPU) which is far more efficient than the computation on a central processing unit
(CPU).

Overview

“Standing on the shoulder of giants”1 this thesis provides a measurement of the signal
strength and cross section for the production of a top quark-antiquark pair in association
with one or more jets with a bottom hadron (tt̄+≥1b-jet), while employing neural networks
as multivariate analysis method in such a measurement for the first time. In addition to the
neural network analysis the tt̄+≥1b-jet signal strength and cross section is also determined
by using a simpler B-jet multiplicity based analysis acting as a baseline analysis and a linear
discriminant based analysis, which was used as a cross check of the neural network based
analysis.

Furthermore, a simultaneous measurement of the tt̄+bb̄ signal strength and cross section,
the tt̄+2b signal strength and cross section, and the tt̄+b signal strength and cross section
is presented in this thesis. These three processes are subsummed under the term tt̄+≥1b-jet
processes.
In similar fashion, a simultaneous measurement of the tt̄+≥1b-jet signal strength and cross
section and the signal strength and cross section of the associated production of top quark-
antiquark pairs and a Higgs boson (tt̄H) was conducted and its results are given.

Moreover, a study of a possible improvement of the tt̄+≥1b-jet modeling by Monte Carlo
event generators is presented.

1Regardless of the fact that many people believe that this quote comes from Sir Isaac Newton, this shorter
linguistic expression is a lot older than Newton’s complete sentence of “We are like dwarfs sitting on
the shoulders of giants.” and is attributed to Bernard of Chatres by [3] and others.
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Outline

In the first part of this thesis (part I) the theoretical foundations, experimental basics,
and statistical methods are shortly introduced since they are essential for the further
understanding of this thesis:
In chapter 1 a brief overview of the Standard Model of particle physics is given. It is
followed by a more in-depth discussion of physics at hadron colliders in chapter 2 with an
explanation of the calculation of cross sections and of the Monte Carlo event generation for
physics processes at hadron colliders. Subsequently, the experimental basics are introduced
in chapter 3 with a discussion of the Large Hadron Collider (LHC), the Compact Muon
Solenoid (CMS) detector, and the object identification and event reconstruction employed
by the CMS detector. As top-quark physics processes are in the focus of this thesis
chapter 4 is devoted to top-quark physics. Finally, chapter 5 completes part I with a
discussion of statistical analysis methods, such as the Maximum-Likelihood method or
linear discriminants and neural networks as multivariate analysis methods.

An in-depth motivation of the measurements conducted and presented in this thesis is
given in part II, while in part III past measurements studying the same physics processes
are reviewed.

As all three measurements contained in this thesis rely on the same analysis chain, the
analysis chain and setup is introduced in part IV for all measurements.
In chapter 6 the signal and background processes employed in this thesis are presented,
before the measurement data and event selection is introduced in chapter 7. A short
overview of the analysis setup is given in the subsequent chapter (chapter 8), before in
chapter 9 the analysis strategy is presented. In this chapter the three analyses (B-jet
multiplicity based, linear discriminant based, neural network based), which were employed
for all measurements, are discussed in detail. In chapter 10 follows an overview of the
systematic uncertainties which were considered in these measurements. The results of the
first measurement are presented in chapter 11, while the results are further discussed in
the next chapter (chapter 12).

The simultaneous measurement of the tt̄+bb̄, tt̄+2b, tt̄+b signal strength and cross section
as well as the simultaneous measurement of the tt̄+≥1b-jet and tt̄H signal strength and
cross section are presented in part V. They are largely identical to one another and also to
the reference analyses of the first measurement. Therefore, only the differences between the
measurements are presented in chapter 13. In chapter 14 the results of the simultaneous
measurements are given, before these results are discussed in chapter 15.

In part VI a study of the possible improvement of the tt̄+≥1b-jet modeling by Monte Carlo
event generators is presented.

A summary and outlook given in part VII concludes this thesis.

3





Part I
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experimental basics, and statistical

analysis methods
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1. The Standard Model of particle
physics

The Standard Model of particle physics (SM) is a renormalizable quantum field theory
unifying the electromagnetic, weak, and strong nuclear interactions in one common frame-
work, but leaving out the fourth important interaction observed in nature, gravity. It can
be said that the to-date knowledge of particle physics is aggregated in this framework.

In the next section a historical summary of the SM will be given, before in section 1.2 the
elemetary particles described by the SM are introduced. In section 1.3 an overview of the
three interactions which are unified in the SM will be given.

1.1 History of the Standard Model

The current formulation of the SM was finalized in the 1970s. In 1974 the dicovery of the
J/ψ meson [4,5] proved the existence of the charm quark as a fourth quark and confirmed
the quark model described by the SM. Shortly before in 1973, the correctness of the elec-
troweak theory contained in the SM was already shown by the discovery of neutral currents
in neutrino scattering [6–8]. But in any case no later than 1983, by the discovery of the
W± gauge bosons [9,10] and the Z gauge boson [11,12], which completed the electroweak
theory, the SM became widely accepted as the default theory in particle physics.
The SM is regarded as one of the most successful theories of nature in history: Few
generally-accepted theories provided more experimentally testable predictions like the ex-
istence of new elementary and composite particles which were found later in experiments
and led to further trust in the SM.

Among the many discoveries that were successfully predicted by the SM of particle physics
two findings are of particular significance for this thesis:

• The discovery of the top quark, which is discussed in more detail in section 4.1.

• The discovery of the Higgs boson which was the last missing piece of the ele-
mentary particle puzzle anticipated in the SM and which was already theoretically
described as consequence of what was later called the Higgs mechanism by Robert

7



8 1. The Standard Model of particle physics

Brout, Francois Englert [13], Peter Higgs [14, 15], Gerald Guralnik, Carl Richard
Hagen, and Tom Kibble [16] in 1964. The Higgs boson was finally discovered in 2012
at the Large Hadron Collider (LHC) by two independent measurements [17, 18] of
the ATLAS and CMS collaboration.

However, even the successes of the SM in predicting new particles cannot mask the fact
that the SM falls short of being a complete theory: The SM lacks the description and
explanation of gravity as the fourth important interaction observed in nature. Up to
now, there exists no verified and widely accepted way to implement the theory of general
relativity into the SM. Furthermore, the SM seems to be a limiting case of a more general
theory since it cannot explain the following established findings, among others:

• Observation of dark matter and dark energy in the universe, which are not part of
the Standard Model of particle physics.

• Neutrinos are massless in the Standard Model, but the observed neutrino oscillations
require that neutrinos have small masses.

• The hierarchy problem, a large discrepancy between the strengths of the weak inter-
action and gravity by a factor of 1032.

• 19 to 28 free parameters (depending on the counting method) occur in the Standard
Model, which is considered unacceptable for a theory of everything.

1.2 Elementary particles

According to the SM of particle physics all known ordinary matter is composed of few
elementary particles which can be classified according to the interactions they take part
in and also in accordance with their spin.

Fermions are particles with half-integer spins, such as ~
2 , 3~

2 , . . . , while particles with integer
spins, such as ~, 2~, . . . are known as bosons.1 Fermions – in contrast to the bosons – are
subject to Fermi-Dirac statistics and obey the Pauli exclusion principle. Therefore, two or
more identical fermions cannot occupy the same quantum state at the same time. Out of
the elementary particles predicted by the Standard Model leptons and quarks all having
spin 1

2 are fermions and can be paired in three generations (electron, electron neutrino;
muon, muon neutrino; tau, tau neutrino and up quark, down quark; charm quark, strange
quark; top quark, bottom quark, respectively). Furthermore, each lepton and quark has an
associated antiparticle with the same mass and opposite charge quantum numbers. Both
the charged leptons and the quarks acquire their mass via the Higgs-Yukawa coupling,
while, with the exception of the massless photon, the gauge bosons of the SM gain their
mass from the Higgs mechanism.

In contrast to fermions, bosons following Bose-Einstein statistics can occupy the same
quantum state in infinite numbers. A special kind of bosons occurring in the SM are the
gauge bosons. These bosons carry a spin of one and represent the mediators of the three
interactions described by the SM which will be explained in the following.
In addition, the SM includes the Higgs boson H0, which is an uncharged spin zero particle
and represents the smallest possible quantum excitation of the Higgs field.

1In the following natural units will be used in which the reduced Planck constant ~ and the speed of light
c are set to ~ = c = 1.

8



1.3. Interactions 9

Figure 1.1 gives an overview about all the fundamental fermions and bosons described by
the SM of particle physics. Additionally, it is shown which kind of interaction a particle
is subject to and which gauge boson is exchanged due to this interaction: The photon as
the mediator of the electromagnetic and electroweak interaction is exchanged between all
charged particles. The gluons as carriers of the colour charge and gauge bosons of the
strong interaction couple only to the quarks and antiquarks, while every fermion interacts
via the (electro)weak interaction with the W and Z bosons.

Figure 1.1: Elementary particles described by the SM of particle physics: The leptons,
quarks, and gauge bosons described by the SM of particle physics are presented.
The corresponding antiparticles are neglected for presentation purposes. The
mass, the electric charge, and the spin is specified in the top left corner of
each particle. By coloured areas the interaction a particles takes part in is
shown (Dark blue colour: Electromagnetic interaction, Red colour: Strong
interaction, Green colour: Weak interaction). Adapted work, based on [19].

1.3 Interactions

The SM is a gauge quantum field theory. Therefore, the elementary particles and inter-
actions of the SM are described by quantum fields, while the dynamics of the underlying
fields and the transitions between the quantum states are described by Lagrangian densi-
ties L from which the equations of motion for a given field can be obtained by applying
the Euler-Lagrange equation.
Moreover, the SM is locally gauge invariant under transformations of the SU(3)×SU(2)×
U(1) gauge group. The three factors of the gauge group can be used to distinguish three
different interactions in the SM, or rather two since the electromagnetic and weak interac-
tion is unified in the electroweak interaction. The corresponding gauge bosons as quanta
of the associated gauge fields are:

• The photon for the electromagnetic interaction and also the electroweak interaction,

• the W+, W−, and Z0 boson for the weak and electroweak interaction,

9



10 1. The Standard Model of particle physics

• and gluons for the strong interaction,

all having spin one.

1.3.1 Electromagnetic interaction

The electromagnetic interaction is described by the Abelian gauge theory of Quantum-
ElectroDynamics (QED) [20, 21] with the U(1) symmetry group. The range of its corre-
sponding quantum field is infinite since the photon as the gauge boson is massless and
does not carry electric charge itself. Nonetheless, with increasing distance the force of the
field decreases according to the inverse square law which is in contrast to the behaviour
of the strong interaction, where the field strength increases with distance. Furthermore,
the coupling constant of the electromagnetic interaction corresponds to the fine-structure
constant α ≈ 1

137 at low momentum transfer. This constant is roughly 100 times smaller
than the coupling constant of the strong interaction αS if one neglects the running of αS
explained later. Therefore, the physics at the Large Hadron Collider (section 3.1) is in
most cases in first- and often also in second-order dominated by the strong interaction
processes, while electromagnetic interactions and their corresponding physics processes in
many cases act as minor corrections.

1.3.2 Weak and electroweak interaction

The weak interaction was first described by the theory of Quantum Flavour dynamics
(QFD) [22]. However, the weak interaction can be better understood in terms of the Elec-
troweak Theory (EWT) [23] in which the electromagnetic interaction and weak interaction
were unified in a more general, common gauge theory a few years later and which has a
SU(2)×U(1) symmetry group.
The electroweak interaction couples to SM fermions. Hereby, two types of the electroweak
interaction can be distinguished: The flavour- and charge-changing electroweak interaction
caused by the exchange of the electrically charged W+ and W− bosons and the neutral-
current interaction mediated by the neutral photon and Z0 boson, which conserves the
flavour and charge of the participating fermions.
By coupling to the Higgs field via the Higgs mechanism, the W± and Z0 bosons gain a
large mass of 80.4 GeV and 91.2 GeV [24], respectively. Furthermore, these mediators of
the (electro)weak interaction can couple among themselves. Therefore and due to having
a mass, the range of the (electro)weak interaction and its gauge bosons is – in comparison
to the other contemplated interactions – rather short. This is also the reason why the
strength of the quantum field of the (electro)weak interaction is in general rather small.
Hence, the coupling constant of the (electro)weak interaction is some orders of magnitude
smaller than the coupling constants of the two other interactions explaining also the name
of this interaction.

In the context of the (electro)weak theory the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix [25] should also be mentioned. It is used to describe quark-quark transitions by
flavour-changing charged currents under emission of a W± boson.

1.3.3 Strong interaction

The strong interaction is described by the non-Abelian gauge theory of Quantum Chro-
modynamics (QCD) and a SU(3) symmetry group. Its gauge boson are eight gluons with
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1.3. Interactions 11

different colour-charge-states (combination of colour and anticolour). Since in contrast to
a photon each gluon is a charge carrier, it cannot only annihilate into a quark-antiquark
pair carrying colour charge or emerge from such one, but also interact with itself. This
kind of interaction is called self-coupling and gives rise to a number of unique phenomena
of QCD:

Fragmentation, hadronization and the phenomenom of confinement The
strength of the strong interaction quantum field increases linearly with distance. If the
distance between two originally interacting partons (quarks, antiquarks, or gluons) con-
nected by a gluon exchange increases above the so-called fragmentation threshold, the field
strength has become so large that instead of a further increase of the strength of the field
fragmentation occurs. By this fragmentation a new quark-antiquark pair is created by the
exchanged gluon. The freshly created quark and antiquark and the initial particles form
bounding states (hadrons). Also on that account single quarks can never be observed in
nature and by the phenomenom of confinement the formation of colour-neutral hadrons,
termed hadronization, is always preferred.
Due to this behaviour of the strong interaction high-energetic partons (quarks and gluons)
emerging in the hard interaction process or subsequent decay processes involving large
momentum transfers can lead to a stream of collimated subsidiary hadrons. Due to mo-
mentum conservation these hadrons fly in a similar direction as the original partons and
result in a so-called jet.

The phenomenom of asymptotic freedom The counterpart to confinement and
originating from the gluon self-coupling, too, is the phenomenom of asymptotic freedom.
With larger energy of the interacting partons and shorter distance between them the
strength of the QCD field and the value of the corresponding strong coupling constant di-
minishes, thus, the strong interaction between the considered partons becomes negligible
and the partons bound in a hadron behave like free particles. For this reason, perturba-
tion theory can be applied to describe hadron-hadron scattering processes involving large
momentum transfers at high energies, while the hadronization taking place at low ener-
gies and with, in comparison, rather small momentum transfers cannot be described by
perturbative approaches. Therefore, it must be treated with non-perturbative approaches
and semi-empirical models.
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2. Hadron collider physics

Theoretical models like the SM of particle physics are tested by calculating physics observ-
ables using the corresponding theory and by comparison of the determined values of these
physics observables with data obtained from measurements. One of the most important
observables in collider physics is the (total) cross section of a scattering process, which cor-
responds to the probability that a scattering between two high-energetic particles occurs
and which is briefly described in the next section. Additionally, for the more detailed study
of such a physics process the simulation of entire collision events is often inevitable. That
is the reason why in section 2.2 an overview about the generation of simulation data or,
more exactly, the computation of events by employing Monte Carlo simulations is given.

Most of following explanations apply to all types of particle colliders in which two particle
beams are collided to produce collision events and observe elementary particles. Nonethe-
less, there are some specific pecularities in the case of hadron-hadron colliders like the
Large Hadron Collider (LHC) (section 3.1). As in the case of other types of particle
colliders like lepton-lepton and lepton-hadron colliders, physics and scattering processes
can involve all three interactions described by the SM of particle physics (section 1.3).
However, in contrast to the physics at lepton-lepton colliders, the presence of hadrons
like protons or lead-ions in the initial state of a hard scattering process means that the
Quantum Chromodynamics (QCD) interactions are in general the dominant ones and are
of particular importance. Furthermore, since the two partons participating in the hard
scattering were originally part of a hadron and, hence, carry only a portion of the total
momentum of this hadron, the total energy and momentum of the initial-state process is
smaller than the original center-of-mass energy of the collision. Therefore, in general a full
event reconstruction is only possible under certain assumptions, if at all. Moreover, the
proper description of hadron collider physics processes can be a challenge since the short-
and long-distance behaviour of QCD has to be considered, which will be discussed in more
detail in the following sections.

More details about the calculation of cross sections and Monte Carlo event generation for
hadron colliders can be found in [26–28].
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14 2. Hadron collider physics

2.1 Calculation of cross sections

In hadron collider physics cross sections σ are used to describe scattering processes between
two high-energy partons emerging from colliding hadrons. The scattering cross section
σh1h2→cd is a measure of the probability that a scattering occurs, leading to the appearance
of the particles c and d in the final state, while in the beginning two partons of the involved
hadrons (h1, h2) interacted with each other. In a classical view, the cross section is the
effective area the hadrons h1 and h2 have to hit to create the particles c and d with a given
frequency and is stated in units of area. Typically, the unit barn (1 barn = 10−28 m2)
is used. The scattering cross section σ is an universal quantity and together with the
time-dependent luminosity L the event rate dN

dt of a specific scattering process occurring
at this particle collider is given by:

dN

dt
= σ · L.

The luminosity is a characteristic measure of the total particle collisions taking place per
time and area at a given particle accelerator and can be expressed by operating parameters
as follows:

L =
n ·N1 ·N2 · f

A

Here, n is the number of colliding bunches per particle beam, N1 and N2 are the number
of particles per bunch, f is the revolution frequency, and A is the cross section of the beam
at the interaction point.
Usually the time-independent integrated luminosity

∫
L dt is used to obtain a prediction

of the number of events N which should be observed for a specific physics process in a
given time:

N = σ ·
∫
L dt.

By using this relation, a cross section can be experimentally determined by counting the
events of a specified physics process with regard to all the other occurring events. Hence,
the cross section which can be derived from a theoretical model represents a link to a sim-
ple counting measurement while by consideration of the luminosity the specific properties
of the given particle collider are taken into account.
The aforementioned cross section is a total cross section, while one can define also differ-
ential cross sections if one considers the angles or energies of outgoing particles of an event
as further parameters, for example.

In the following important ingredients to calculate the scattering cross section of physics
processes at hadron colliders are explained.

2.1.1 Factorization theorem

The calculation of scattering cross sections of physics processes at lepton-hadron and
hadron-hadron colliders usually makes it necessary to include the short- and long-range
behaviour of Quantum Chromodynamics (QCD) at different levels of the event evolution.
The reason for this is that elementary particles obeying to the strong interaction can ap-
pear at any level like the initial state or final state as well at the hadronization level.

The short-distance interactions like the initial hard scattering sub process can be described
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2.1. Calculation of cross sections 15

by a perturbative QCD approach due to the strong coupling constant αS being sufficient
small. By such a perturbative approach the prediction of an observable like a total scat-
tering cross section σ can be expanded in powers of the strong coupling αS as:

σ = σ1 + αS · σ2 + α2
S · σ3 + . . .

In general, including higher-orders in the perturbation calculation gets soon very compli-
cated for many particle physics observables. Therefore, usually only leading order (LO),
next-to-leading order (NLO), and next-to-next-to-leading order (NNLO) terms are applied
in the calculation of particle physics observables.

The strong coupling constant αS being small holds no longer true for long-distance in-
teractions. Here, due to confinement (section 1.3.3), the strong coupling constant αS is
no longer a small parameter. Thus, a perturbation ansatz is not valid requiring non-
perturbative and empirical models to address these long-distance interactions.

For this reason, a factorization theorem is employed for the calculation of the cross section
of the scattering between the hadrons h1 and h2:

σh1h2 =
∑
a,b

1∫
0

dxa

1∫
0

dxbfa(xa, µ
2
F ) · fb(xb, µ2

F ) · σab(xa~pi, xb~pj , αS(µR), µR, µF )

Part of this factorization ansatz are the process-dependent, short-distance partonic cross
section σab(xa, xb, αS(µR), µR, µF ) and the process-independent, long-distance interactions
fa/b(xa/b, µ

2
F ):

The calculation of the process-dependent, short-distance, partonic cross sec-
tion The partonic cross section σab(xa~pa, xb~pb, αS(µR), µR, µF ) gives the probability of
the scattering between two incoming partons which carry the momentum fraction xa/b
of the corresponding hadron momentum ~pa/b. Nowadays, this calculation of the process-
dependent, short-distance, partonic cross section is done by means of dedicated matrix
element (ME) event generators like MG5aMC [29] or POWHEG Box Version 2 [30–34],
using perturbative methods.
The partonic cross section depends on the center-of-mass energy of the interacting par-
ticles. Furthermore, the integrals of loops possibly occurring in the underlying Feynman
diagrams (section 2.1.2) can diverge. That is the reason why a renormalization scale µR
being part of a regularization procedure is introduced which can be seen as a momentum
cut-off. By this renormalization ultraviolet divergences occurring in the integrals of the
propagator terms are absorbed via a redefinition of particle masses, quantum fields, and
coupling constants. Therefore, the running of the strong coupling constant αS depends
on the chosen value of the renormalization scale. Hence, the strong coupling constant is
expressed as αS(µR).
Furthermore, similar to the renormalization scale µR, a factorization scale µF is intro-
duced. Small-angle and low-energetic parton splittings which would lead to collinear or
infrared divergences in the cross section calculation up to this factorization scale µF are ab-
sorbed by the parton distribution functions, making them part of the process-independent,
long-distance interactions.
In the unlikely case that all orders of perturbative expansion are considered, the cross
section would not depend on these two scales.

15



16 2. Hadron collider physics

The determination of the process-independent, long-distance interactions by
non-perturbative and empirical models In contrast to the ME event generators, so-
called general-purpose Monte Carlo (GPMC) event generators, like Herwig7 [35, 36] or
Pythia8 [37, 38], are applied to consider the long-distance interactions which are process-
independent and which can be described by universal non-perturbative and empirical mod-
els.
Furthermore, universal non-perturbative parton distribution functions (see below) are em-
ployed to describe the parton content of the hadrons xi/j . They are functions of the
factorization scale µF .

For the illustration of the factorization ansatz in figure 2.1 the γ+jets production at a
proton-proton collider is shown together with a schematic representation of the factoriza-
tion model used for the calculation of the total cross section σh1h2→cd. In the left picture,
from each of the two protons, one parton participates in the hard scattering interaction
while the remaining partons do not interact. The two interacting partons of the left figure
are represented in the right figure by the partons a and b which interact at the vertex ŝ
creating the final-state particles c and d, while the partonic cross section of this scattering
process σab→cd can be computed with a ME generator using perturbative methods. The
parton distribution functions fa/h1 and fb/h2 , which are part of the schematical view in
the right figure, describe the probability of finding a parton of type a or b with a certain
fraction of the momentum of the original hadron and factorize the interactions inside of
the corresponding hadron by introducing a factorization scale. A further explanation of
both will be given in section 2.1.3.

(a) γ+jets production (b) Schematic representation of corresponding
factorization ansatz

Figure 2.1: Illustrative sketch of the factorization theorem: In figure (a) the γ+jets pro-
duction at a proton-proton collider is shown as an example, while in the figure
(b) the schematic representation of the factorization ansatz used for the calcu-
lation of the total cross section σh1h2→cd is displayed. The computation of the
total cross section σh1h2→cd computation is split in two parts: A calculation
of the partonic cross section σab→cd at the interaction vertex ŝ using a pertur-
bative method and the determination of the long-distance interactions making
use of two parton distribution functions fa/h1 and fb/h2 . Slightly modified
from [39].
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2.1. Calculation of cross sections 17

2.1.2 Feynman diagrams and perturbation theory

Feynman diagrams, introduced by Richard Feynman in 1949 [40], are an important tool
in particle physics to illustrate hard scattering processes since they represent the pertur-
bative transition from an initial to a final quantum state. Together with Feynman rules
they also allow the computation of hard scattering processes. Hence, they translate the
knowledge of an quantum field interaction described by a theoretical model like the SM
of particle physics (chapter 1) into a simpler to understand graphical representation of an
underlying mathematical term. The in- and outgoing lines of Feynman diagrams applied
in particle physics (figure 2.2) represent the wave functions of on-shell elementary particles
in momentum space. Each external line depicts the four momentum and the spin of an
individual (in principle measurable) particle, while inner lines correspond to the propaga-
tors of the underlying quantum field interaction. They can be seen as virtual particles.
Different inner and outer lines are connected to each other via interaction points called
vertices. These vertices are the space-time point at which one of the three fundamental
interactions described by the Standard Model of particle physics takes place. The associ-
ated mathematical interaction term can be derived from the Standard Model Lagrangian
as a vertex factor.
Feynman diagrams are a description of a physics process in space-time. They have two
axes: One axis is containing the time coordinate, while the other axis represents the space
component. That is why the exemplary Feynman diagram shown in figure 2.2 can be
understood in multiple ways depending on the choice of the time and space axis. One
can make out an electron-positron annihilation followed by a muon-pair production (time
scale in horizontal direction) or an electron/positron-muon scattering process (time scale
in vertical direction). Both possible processes are mediated by a photon.

Figure 2.2: Exemplary Feynman diagram containing leptons: The external lines represent
the wave functions of possibly measurable particles, while the two outer lines
are connected by two vertices via an inner line or rather an electromagnetic
propagator term corresponding to a virtual photon. Note that the time and
space axis can be chosen either in horizontal or vertical direction. Taken
from [41].

Feynman diagrams and the corresponding determination of the cross sections can be clas-
sified according to the order of perturbation theory they depict. For example, if in a cross
section calculation only leading-order (LO) Feynman diagrams are taken into account for
the hard scattering process, the cross section result will also only reach leading-order accu-
rateness. Obviously, it is worth pursuing to include higher orders in the perturbation series
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18 2. Hadron collider physics

to achieve a more complete and more precise description of a physics process. However,
higher orders of perturbation come with a cost. They will involve additional radiation
and loops which often present a challenge to include and evaluate in a calculation. That
is the reason why the production of Monte Carlo events (section 2.2), as a general rule,
is nowadays done mostly in next-to-leading order (NLO) and seldom makes use of orders
higher than next-to-next-to-leading order (NNLO) of perturbation theory. In fact, NLO
event generation for various physics processes in an automated way was not feasible until
in 2007 a program making use of a reduction method to compute one-loop amplitudes [42]
was released.
An example of Feynman diagrams containing possible different orders of perturbation the-
ory for the pp → tt̄H process is given in figure 2.3. In this figure, besides a LO Feynman
diagram which is also called a Born level diagram, three additional NLO Feynman dia-
grams are presented: One diagram containing a loop in the propagator (virtual) as well as
diagrams representing either initial-state radiation (ISR) or final-state radiation (FSR).

Figure 2.3: Example of Feynman diagrams containing different orders of perturbation the-
ory: A selection of Feynman diagrams describing the pp → tt̄H is shown, a
LO only, Born level diagram and three additional NLO diagrams. One dia-
gram depicts a virtual loop process and the other diagrams represent either
initial-state radiation (ISR) or final-state radiation (FSR).

2.1.3 Parton distribution functions

As shown above, parton distribution functions (PDF) are used to describe the parton
content of hadrons like protons in a non-perturbative way. In this way, they conceal
interactions taking place inside of the corresponding hadron below a certain scale, the
factorization scale µF . Since the colliding protons are composite particles their contained
valence quarks interact with each other by gluon exchange. At the same time the gluons
can temporarily create virtual quark-antiquark pairs in accord with the time-energy un-
certainty principle. On this account, not only the valence quarks of the proton but also
the exchanged gluons and temporarily created sea quarks can be a collision partner in a
hard scattering process with an energy scale Q. Since the content of a hadron should be
universal due to the mentioned uncertainty principle the parton distribution functions can
be seen as universal. For this reason, parton distribution functions are determined in var-
ious experiments studying deep-inelastic scattering (DIS), e.g. at lepton-hadron colliders,
and also at different energy scales Q. However, the inner structure of the hadron which is
described by a parton distribution function depends on the energy scale Q at which it is
probed: At lower energy scales Q the energy of the probe particle like an electron can only
be enough to scatter hadrons as a whole. In such a case the hadron appears more like a
fundamental particle, while by using a highly-energetic probe particle the inner structure
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2.1. Calculation of cross sections 19

of the hadron can get resolved. For the evolution of parton distribution functions measured
at lower energy scales Qlow to higher energy scales Qhigh the DGLAP evolution equations
( [43–45]) can be employed. These equations allow the determination of the change of the
parton density in relation to the energy scale variation Q. As a result, parton distribution
functions derived from measurements at fixed-target DIS and proton-nucleon experiments
as well as DIS data from the HERA e±p-collinder and jet data from the Tevatron pp
collider may be used as the foundation of a set of parton distribution functions applied for
the physics analyses at the Large Hadron Collider.

2.1.4 Description of a physics process in the four-flavour and
five-flavour scheme

The physics analyses covered in this thesis study physics processes involving bottom quarks
occurring in the initial state or final state of the matrix element computation. Due to
the non-negligible mass of the bottom quarks, the cross section computation and event
generation for such processes must be treated differently than for processes containing only
lighter quarks. Two schemes exists to describe such processes, the four-flavour and the
five-flavour scheme. Both schemes, having advantages and disadvantages, cover different
needs of a physics analyses, but if one would consider all orders in perturbation theory
both schemes could be defined in a way to be identical. This section, following the far
more detailed reference [46], will give a short introduction to both flavour schemes.

Four-flavour scheme

In the four-flavour scheme (4FS) or also the so-called “massive” scheme it is assumed that
due to their large mass bottom quarks cannot be part of the composite proton below the
factorization scale µF and that they only appear as quark-antiquark pairs in scattering
processes at a high energy scale Qhigh. Furthermore, the assumption is made that the
mass of the bottom quark is of the same order as the energy scale Q of the hard scattering
process. As a consequence bottom quarks are not considered in the parton distribution
function of the colliding protons. Therefore, this scheme can be seen as an effective theory
in which the bottom quarks do not enter the evolution of the parton distribution functions
via the DGLAP equations or via the computation of the running coupling constant of the
strong interaction αS .
The advantage of this scheme is that“the full kinematics of the heavy quarks are taken into
account already at leading order” [46] in the calculation of perturbation theory. Hence,
observables which have a strong dependance on kinematics are in general better described
by this scheme. Moreover, this scheme can easily be adopted by the parton shower codes
of general-purpose Monte Carlo event generators. However, the scheme has also some
disadvantages: Due to the presence of final states with massive bottom quarks and multiple
legs the computation is usually more complicated than in a scheme with massless bottom
quarks. Furthermore, the occurrence of possibly large logarithms in the initial and final
state, which are not resummed, can lead to a poor behaviour of the perturbative expansion
and can lead to an inaccurate prediction of the total cross section.

Five-flavour scheme

The five-flavour (5FS) or also the“massless” scheme is a natural choice if the typical energy
scale Q of the hard scattering is rather large in comparison to the bottom-quark mass.
In this scheme bottom quarks can appear both in the initial state and final state since
the applied parton distribution function considers also bottom quarks in addition to the
light quarks. By including the bottom quarks in the parton distribution functions large
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logarithms appearing in the initial state can be resummed into the bottom-quark distri-
bution function of the corresponding parton distribution function. Logarithms occurring
in the final state can either be resummed into perturbative fragmentation functions or be
possibly avoided by introducing more inclusive observables like using bottom jets and their
properties instead of using bottom hadrons.
An advantage of this scheme is usually that the corresponding calculations are highly
simplified, since at leading-order of perturbation theory the number of occurring exter-
nal legs as well as the number of energy scales to consider in the process compared to a
four-flavour scheme is reduced. “In addition, as mentioned above, potentially large log-
arithms [...] arising from collinear splitting of the initial heavy quarks and gluons, are
consistently resummed in the heavy quark PDF” [46]. Therefore, this scheme is generally
a very suitable choice to predict rather inclusive observables like the total cross section of a
given process. However, the downside of this scheme is that the results can differ strongly
between the orders of perturbation theory which were chosen for the computation. This
is especially the case for observables like kinematic quantities which would benefit from
higher orders of perturbation theory.

Due to the occurrence of two top quarks in the final states of the signal processes studied
in this thesis, the assumption that was made for the four-flavour scheme, that the energy
scale of the hard scattering process Q is of the same order as the bottom quark mass, is
questionable. Since the applicability of four-flavour schemes and five-flavour schemes for
physics processes involving top quarks and the Higgs boson at the LHC cannot easily be
decided on and is an ongoing discussion, a good starting point for an interested reader to
learn more about the ongoing studies would be the tt̄+bb̄ production studies presented
in [47].
For the generation of the tt̄+X samples employed by default in this thesis the five-flavour
scheme was applied. This seems a suitable choice since in the physics analyses presented
later the major focus will be on the determination of the tt̄+≥1b-jet signal strength r
comprising of the tt̄+bb̄, tt̄+2b, and tt̄+b physics processes. Kinematic observables are
only used as inputs for the multivariate classifiers to derive this signal strength r.

2.2 Monte Carlo event generation for hadron colliders

As discussed before, single physical observables like the total cross section can be calcu-
lated using a factorization ansatz, parton distribution functions, Feynman diagrams and
further ingredients. In principle, an analytic solution of the cross section calculation or
the determination of another single basic observable like the transverse momentum pT of
an initial-state top quark is possible for many physics processes of importance conceivable
up to a few orders in perturbation theory. For example, since 2013 there exists a fully
analytic prediction of the total tt̄ production at next-to-next-leading order (NNLO) QCD
accuracy [48] and since 2017 a prediction of the top pT observable of the tt̄ process among
others is available at NNLO QCD accuracy including next-to-leading order (NLO) elec-
troweak corrections [49].
Since the analytical and numerical calculations provide the most accurate predictions of
cross section results and some other basic observables they are preferable whenever they
exist. However, in many cases the analytical or numerical computation of more complex
observables measurable by a particle detector or even differential cross sections is not fea-
sible. Therefore nowadays, a two-prong approach is applied: Entire collision events are
simulated using event generators based on Monte Carlo methods allowing to make use of
the full event kinematics in physics analyses, while the cross section of the simulated event
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data set is obtained by scaling the event weights to the corresponding theoretical cross
section obtained from a precise analytical or numerical calculation.
The generation of single collision events by event generators is performed similar to the
calculation of a cross section explained before. However, to obtain an event for a given
physics process and a corresponding Feynman diagram a Monte Carlo random sampling
method is chosen which selects the particles occurring in the initial state and final state
of the hard scattering process as well as their energy and momentum distribution. Other
decisions on the event topology like the occurrence of gluon splitting are also being made
by using Monte Carlo sampling methods. Furthermore, integrals which emerge during the
computation of an event are usually solved by Monte Carlo integration since the multi-
dimensional integrals can be arbitrarily complex and often cannot be solved by other
numerical methods. In comparison to the calculation of a (total) cross section no integra-
tion over the full phase-space is conducted.

Subsequently, an outline of the different stages of the event generation procedure will be
given. It is followed by a description of the tuning of event generators (section 2.2.2),
before this chapter will be concluded with a short discussion of matching and merging
methods. These are important techniques to increase the accuracy of the produced event
samples.
For more details about Monte Carlo event generation see [26–28].

2.2.1 Event generation

As mentioned above, event generation based on Monte Carlo methods is applied “to sim-
ulate the final states of high-energy collisions in full detail down to the level of individual
stable particles. The aim is to generate a large number of simulated collision events, each
consisting of a list of final-state particles and their momenta, such that the probability to
produce an event with a given list is proportional (approximately) to the probability that
the corresponding actual event is produced in the real world.” [50]. By taking advantage
of the aforementioned factorization ansatz (section 2.1.1) this event generation procedure
to simulate events at hadron colliders is usually split into different steps. This allows the
usage of the best set of tools in every step and to simulate an event in full detail. A short
overview of the different steps, which follows closely the illustration of the event generation
process presented in figure 2.4, will be given in the subsequent paragraphs. It starts with
the computation of the hard scattering process by a matrix element event generator and
ends with the simulation of a detector.

The computation of the hard scattering process

For a given physics process the event generation starts with the computation of the par-
tonic cross section and the simulation of the hard scattering process. As we have seen
before, the hard scattering process is defined by the interaction of two highly-energetic
partons originating from hadrons (here: protons) which themselves are part of two collid-
ing particle beams. The interaction of these two partons leads to a partonic final state
containing a few partons, leptons, and possibly other elementary particles. Hence, events
of this stage of event generation procedure are also called parton-level events in experimen-
tal particle physics. Since from each of the two protons only one parton takes part in the
hard scattering process, the remaining partons of the proton (depicted as black outgoing
lines in figure 2.4) do not contribute to the hard interactions, but they will later form the
underlying event.
The hard scattering interaction takes place with a high momentum transfer. Therefore,
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the strong coupling constant αS can be assumed to be rather small and the hard scatter-
ing process can be described by perturbation theory. The order of perturbation theory
used in this step defines the achievable accuracy of the whole event simulation. For this
reason, nowadays, dedicated matrix element generators like MG5aMC [29] or POWHEG
Box Version 2 [30–34] are used which allow to describe the hard scattering process in
leading-order or next-to-leading order QCD accuracy and which in many cases allow to
consider quantum interference effects in the initial state and final state. Furthermore,
especially processes which have rather highly-energetic partons in the final state like many
top physics processes can benefit from higher-order matrix element computations: They
get described better by additional matrix elements with larger multiplicities (number of
additional partons in a final state besides the nominal partons). For example, their de-
scription is improved if one or more additional partons besides the partons of the nominal
Born-level process are considered in an additional next-to-leading order matrix element.
However, matrix element computations are generally limited to some number of partons
in the final state since the computation of the underlying matrix elements can be complex,
involves much computing, and increases drastically with the multiplicity of a given physics
physics. That is one of the reasons why matrix element generators are not applied to
describe the evolving parton shower after a hard scattering which involves a multitude of
partons. The other reason is that the evolving parton shower cannot be described fully by
a perturbative approach.

Parton shower, hadronization, and hadron decay

After the simulation of the hard scattering process follows first a so-called parton shower
step which is usually simulated with a general-purpose Monte Carlo (GPMC) event gener-
ator like Herwig7 [35,36] or Pythia8 [37,38]. Such a step is necessary to obtain an inclusive
event sample. The partons emerging during the hard scattering process and carrying a
colour charge can emit QCD radiation in the form of gluons which leads to a cascade of
parton creation and parton splitting processes, the so-called parton shower. This parton
shower goes on until the energy of the individual colour-charged partons is decreased so
much that the parton reaches the hadronization scale which is roughly in the order of one
GeV. At this scale the formation of colourless hadrons out of single colour-charged par-
tons is possible due to the increased strength of the strong interaction (cf. pink bubbles in
figure 2.4). This process is called hadronization. The arising hadrons can either be stable
or decay further. However, these hadrons are colourless and, hence, observable particles,
while the single colour-charged partons are not due to colour confinement. Events obtained
from this stage of event generation are called particle-level events (also: generator-level
events) since in strict terms the event generation is complete at this point. However, in
this way, multiple parton interactions and the underlying event as well as the possible need
of considering pile-up events and of a subsequent detector simulation would be neglected.

Multiple parton interactions and the underlying event

So far, the remaining partons of the original protons, which did not participate in the
hard scattering process, and their interactions were neglected. Since the most common
hard scattering process at the Large Hadron Collider is elastic scattering of gluons gg
→gg and the corresponding total cross section can even be larger than the total proton-
proton scattering cross section, which is not a contradiction, multiple parton interactions
are highly probable [50]. From these multiple parton interactions arise further partons and
subsequent hadrons in an event which have to be considered by a Monte Carlo simulation
as so-called underlying event, even though these partons and hadrons do not originate
from an identifiable hard sub process.
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Pile-Up events

Each proton beam of the LHC consists up to 2808 bunches at full beam intensity, while
each bunch itself will roughly contain 1011 protons at the start of a nominal fill. As
a consequence, it is expected that at each bunch crossing not only one proton-proton
collision occurs but in general somewhere between 20 and 50 simultaneous collisions. In
most of these collisions only elastic scattering processes or low-energetic inelastic scattering
processes will happen. Nonetheless, these unwanted and rather uninteresting collisions and
their corresponding partons and hadrons, which are called pile-up events, can emerge at
a similar time as or near to an collision containing a hard scattering process of a physics
process of interest. Thus, it is quite likely that a collision event measured and recorded at
the CMS detector (section 3.2) also contains particles from pile-up events. For this reason,
besides the simulation of the physics processes of interest, pile-up events are computed
by Monte Carlo event generators, too. For each simulated event of a physics process of
interest a number of additional pile-up events is randomly sampled and randomly drawn
pile-up events are merged with the initial event.

Detector simulation

In experimental particle physics the events obtained by means of a Monte Carlo simulation
have to be compared to the measurement data derived from a particle detector like CMS,
which is explained in section 3.2. Such a real-world particle detector cannot directly deter-
mine the particles occurring at the aforementioned particle-level. As a result it has to rely
on an indirect detection and measurement of these particles by making use of interactions
between the produced particles and the purposefully-chosen detector material and detec-
tion systems (section 3.3). Furthermore, the single measurement components used in the
detector only have a limited measurement precision and object reconstruction probability
for physical and technical reasons. Also the hermetic coverage of the collision point by the
detector itself is not totally perfect. Thus, particles and decay products emitted during
the collision process can escape the detector without being accounted for or only being
partly considered in a subsequent reconstruction step.
This has to be taken into account by a simulation of the full detector, its subcomponents,
and of the successive object identification and event reconstruction step to obtain sim-
ulation events comparable to events measured by the real detector. Since the detector
simulation is tailored to the properties of the specific given detector the derived simulation
events are no longer generally applicable and are called reco-level events after the final
reconstruction step they have passed.
For the simulation of their detector the CMS Collaboration applies the Geant4 frame-
work [51].
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Figure 2.4: Illustration of the event generation procedure: The event generation starts
with the computation of the hard scattering process making use of parton
distribution functions (PDFs) and of matrix element (ME) calculations and
results in a few partons in the final state (two blue lines representing a quark
pair and possibly a gluon originating from an interaction in the initial state).
It follows a parton cascade since the high-energetic, colour-charged partons
appearing either in the initial state or final state will undergo parton splitting
(further green and blue lines) until they have lost enough energy to reach the
point of hadronization at which they form colourless hadrons (pink bubbles).
The hadrons can decay further or can be stable. A simulation of the detec-
tion, measurement, and reconstruction of the obtained hadrons by a real-world
detector concludes the event generation procedure. Taken from [52].

24



2.2. Monte Carlo event generation for hadron colliders 25

2.2.2 Tuning of event generators

The approximation of physics processes by Monte Carlo event generators involves a number
of free or at least not fully constrained parameters, for example, the previously mentioned
energy scales. Many of these parameters like parameters of hadronization described by
phenomenological models cannot be deduced or even fixed from first principles. At the
same time the choice of these parameters affects the prediction of Monte Carlo generators
and, in particular, how well data is described by them. Therefore, these parameters
must be matched to large sets of experimental data, so that a wide range of physics can
be properly described by a Monte Carlo generator. This adjustment of event generator
parameters is referred to as tuning [53].

2.2.3 Matching and merging

Matching and merging methods are an important tool set to increase the accuracy of event
samples obtained from a Monte Carlo event generator since the matrix element (ME)
generators and the general-purpose Monte Carlo (GPMC) generators used at different
stages of the event generation procedure have both advantages and disadvantages: The
ME generators which are applied to simulate the hard scattering process deliver sound
results if the interacting partons can be resolved in a fixed order calculation by having
high energy (also referred to as being hard) and being well separated. In contrast to
that the GPMC generators based on non-perturbative methods and empirical models are
better suited to describe the low-energetic interactions and collinear splittings happening
at a later stage of the event generation.
For this reason, for the production of simulation data both complementary types of event
generators are combined by the means of so-called matching methods since a while. By
using such matching methods it is ensured that the parts of the phase-space which could
in principle be described by both event generator types simultaneously are only filled
once be either one of the two event generators or by a clever combination of them. So,
the major motivation of a matching method is to avoid the so-called double-counting.
Double-counting describes that additional partons occurring in a given physics process
can either emerge from the consideration of matrix elements with multiplicity greater
than zero in the ME generator or by the subsequent application of a parton shower. For
the production of the simulation samples used later in this thesis, either the MC@NLO
matching prescription [54] in the case of the MG5aMC samples or the POWHEG matching
prescription [31] in the case of the POWHEG Box Version 2 samples was applied.

As mentioned earlier, it is worth striving to include further matrix elements in next-to-
leading order or even higher order of perturbation theory in the computations of the
matrix element generators because this results in an improved accuracy of the simulation.
Besides of adding higher-order matrix elements the description of a physics process can
also be improved by considering additional matrix elements of a process which just has a
higher multiplicity. Then, initial and final states of the overall simulated physics process
containing a few additional partons besides the nominal ones are not only obtained by a
combination of matrix element computation and parton shower. They can also be directly
derived from the additional matrix elements of the added sub process.
However, all of these improvements in the matrix element description of a given physics
process make it necessary to apply further prescriptions in the event generation procedure
to avoid an overlap in phase-space, so-called merging prescriptions. For example, these
merging prescriptions can take into account that a leading-order matrix element for a sub
process with a given multiplicity in principle can correspond to a next-to-leading order
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matrix element with the same multiplicity minus one. This would result again in a double-
counting in certain areas of the phase-space without the application of a merging technique.
Among the best-known merging prescriptions are the MLM merging prescription [55] which
is used by MG5aMC in the case of the combination of leading-order sub processes, the
FxFx merging prescription [56] used by MG5aMC for the combination of next-to-leading
order sub processes, and the various CKKW(-L) merging prescriptions [57–60].
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In physics like in any other scientific field the best theory is worthless if the theory is
not tested by conducting experiments. Trust in a theory is created if its predictions are
established experimentally and proven by results. As science progresses and the generally
accepted theoretical models evolve, it seems inevitable that the experimental setups, ex-
perimental tools, and experimental methods have to advance, too.
In the case of particle physics and, especially, in the context of the in-depth exploration
of the Standard Model of particle physics (section 1) this unavoidably leads to the study
of particle processes or more precisely particle collisions involving larger and larger mo-
mentum transfer and, closely related, higher energies of the involved particles as well as
particle accelerators providing higher luminosities. Meeting the first condition means that
the theory can be examined in novel and until now inaccessible phase-space regions. As
a result it can be checked if the established theory like the SM holds true and can be
extended to these regions without modifications. In the case of the higher luminosity the
more frequent occurrence of a particle process can be used to reduce the statistical and in
many cases also the systematic uncertainties related to a measurement of such a particle
process. This drives the involved experimental and theoretical boundaries further down.
The Large Hadron Collider (discussed in the next section) as the till now most powerful
and sophisticated particle accelerator fully meets the first condition and also provides the
largest-ever luminosity of a proton-proton collider1. Therefore, at the LHC particle physics
analyses can be conducted at hitherto unknown energies and precision.
Studying particle collisions with a high degree of accuracy would not be possible without
well-developed tools like the Compact Muon Solenoid detector (discussed in section 3.2)
and matching object identification and event reconstruction methods (presented in sec-
tion 3.3).

3.1 The Large Hadron Collider (LHC)

Particle accelerators relying on the same principles and technological foundations as mod-
ern accelerators were built since the 1920s. Electrostatic particle accelerators using static
electric fields are the first type of particle accelerators still in use today. However, the

1A up to ten times larger luminosity of roughly 1 × 1035 1
cm2s1

will be reached in the high-luminosity
upgrade of the LHC [61, 62], while the SuperKEKB e+e− particle accelerator [63] being a so-called
(bottom-meson-) b-factory provides a larger peak luminosity of 8 × 1035 1

cm2s1
.
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achievable final energy of the charged particles accelerated by them is limited due to elec-
trical breakdown. Thus nowadays, these particle accelerators have a mere existence as
pre-accelerators or as accelerators in experimental setups requiring rather small particle
energies below a few MeV. Meanwhile, electrodynamic particle accelerators make use of
electromagnetic fields to accelerate charged particles. They have the advantage that if
the accelerator is circular-shaped the charged particles can pass through an acceleration
field many times. In this way, the obtainable final energy of these particles is in principle
only limited by the magnetic field forcing the particles on circular orbits. For this reason,
synchrotron accelerators like the Large Hadron Collider (LHC) [64] represent the techno-
logical work horse of modern particle physics.

The LHC is part of the accelerator complex at CERN, the European Organization for
Nuclear Research, and the last element of CERN’s main accelerator chain (figure 3.1).
In this chain a succession of machines is used to accelerate either protons or lead ions to
increasingly higher energies until in the LHC a beam energy of up to

√
s = 6.5 TeV and

a luminosity in the order of L = 2× 1034 1
cm2s

is reached in proton-proton collisions.

The LHC was built in the same 27 km long tunnel as the previous Large Electron-Positron
Collider (LEP). This former collider was used to accelerate electrons and positrons. In
comparison to LEP the LHC was purposely designed as a proton-proton collider. The
reason for this is that the energy loss due to synchrotron radiation which goes roughly
by 1

m4 is a lot smaller for protons than for lighter electrons and positrons. Therefore,
far higher collision energies can be obtained by the LHC. For the same reason of reaching
higher collision energies while keeping feasible collider dimensions, instead of using a linear
collider design, a circular collider design is used. Hereby, the charged protons or lead-ions
are forced on a circular trajectory in the LHC by a magnetic field of up to 8.33 T originat-
ing from 1232 superconducting dipole magnets. This allows the acceleration of the beam
particles in each revolution until they reach their final energy. The circular collider design
of the LHC has also the advantage that the beams can be used over and over again. Thus,
a far higher luminosity than in a linear collider can be reached. This goal of reaching a
large luminosity lead also to the decision to build two separate beam tubes and to col-
lide two opposite-directed proton beams. In contrast to that, a proton-antiproton collider
needing only one beam tube would have been a lot easier to construct, but would have
provided far less luminosity due to the impossibility of producing the same large number
of antiprotons as protons.
Protons gain additional energy if they pass through an accelerating cavity at the same
time when the radio frequency (RF) field has the correct orientation. That is the reason
why in the LHC not a constant proton stream is used. Instead each proton beam in the
LHC consists of up to 2808 bunches containing approximately 1× 1011 protons. The time
spacing between these bunches is at least 25 ns. Furthermore, this bunching of protons is
already introduced in the beginning of the accelerator chain: The reason for this is that
only a given number of protons can be obtained from neutral hydrogen neutrons simul-
taneously. Furthermore, only a limited number of protons can be accelerated in the RF
cavities of the linear accelerator (LINAC) at the same time. The acceleration in the RF
cavities is also direct cause of the bunching. Only protons which are in sync with the
RF field get accelerated sufficiently, so that they will reach the BOOSTER as the next
accelerator in the accelerator chain. Protons which fall out of sync will be removed by ded-
icated techniques. Otherwise, bunches would not have a homogenous energy distribution
of the protons and would not be properly accelerated as well as inserted into the following
accelerators.
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At four so-called collision points out of the eight LHC beam crossing points the two coun-
terrotating proton beams cross in such a manner that protons from each of the two bunches
pass the collision point at the same time and can interact with each other. The four major
particle detectors of the LHC (ALICE, ATLAS, CMS, and LHCb) are placed at these
collision points to measure the collision products.

Figure 3.1: CERN’s accelerator complex: The Large Hadron Collidier (LHC) is the last
and most powerful accelerator in the main accelerator chain. The two coun-
terrotating proton or lead-ion beams are accelerated in the LHC up to their
final center-of-mass energy after being transferred from the Super Proton Syn-
chrotron (SPS), which itselfs gets its beams from a chain of smaller accelera-
tors. Taken from [65]

.

3.2 The Compact Muon Solenoid detector

The occurrence of a multitude of elementary particles and composite particles in the beam-
beam collisions and the subsequent particle and antiparticle cascade at the LHC together
with the wide variety of possible physics analyses places rigorous demands on the detection
and measurement capacities of a particle detector at the LHC. In particular many differ-
ent particles types have to be measured over a large energy and momentum range, while
these particles also leave the collision point at various angles. This need is met by particle
detectors arranged in an onion-like structure and comprised of several sub detectors. Each
of these sub detectors is an advanced system itself and fulfills varying individual require-
ments, while the entire detector should accurately detect and measure as many particles
involved in the collision as possible to achieve an almost hermetic geometric coverage of
the collision point.
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The Compact Muon Solenoid (CMS) detector [66] [67], which is located at beam cross-
ing point 5 of CERN’s Large Hadron Collider and which is operated by the independent
CMS collaboration, was designed in due consideration of these requirements on a general-
purpose particle detector. It consists of a central barrel region complemented by endcaps
on both sides of the outward beam line resulting in an overall length of roughly 21.6 m,
a diameter of approximately 14.6 m and a total weight of more than 14 000 t. The whole
CMS detector is dominated by a superconducting solenoid with an overall length of 13 m
and a diameter of 7 m. The solenoid encloses all sub detectors except the muon detec-
tion system. The placement of most sub detectors inside the solenoid is also the cause of
the rather compact detector outline. The following is a more detailed description of the
onion-like structure of the CMS detector from the inner core around the beam pipe to the
external muon detection system (figure 3.2). It ends with a subsequent short discussion of
the trigger system.

Coordinate system Collisions taking place in the CMS detector are described by an
orthogonal right-handed coordinate system: The x axis of this coordinate system points
toward the center of the LHC accelerator ring. Since the z axis points counterclockwise in
the direction of the beam pipes, the x and z axis form the plane of the accelerator ring.
The y axis points upwards in an orthogonal direction to this plane of the accelerator ring.
Furthermore, two angles are defined: The angle φ defines the azimuthal angle to the x axis
in the xy plane, while θ is the polar angle measured from the z axis.
However, more commonly the pseudorapidity η is used instead of the polar angle θ. It is
defined as:

η = − ln

[
tan

(
θ

2

)]
An advantage of the pseudorapidity η is that it covariant under boosts along the z axis in
the limit of massless particles.
Additionally, the distance ∆R

∆R =
√

(∆φab)2 + (∆ηab)2

as a measure of the distance between two objects a und b is defined in this coordinate
system.

Silicon-based tracking system The CMS tracking system [68] is constructed as the
first layer of the CMS detector directly around the collision point and beam pipe. It allows
to identify the trajectory of centrally (|η| < 2.5) produced charged particles.
Charged particles having a transverse momentum of at least 1 GeV can be identified with
an excellent resolution of up to 10µm in the x-y direction and 20µm in the z-direction.
With decreasing efficiency the spatial resolution of charged particles with a lower transverse
momentum can still be identified up to a transverse momentum in the order of 10 MeV.
Similarly, the momentum of charged particles can be precisely determined (e.g. less than
2% uncertainty on the pT value for muons with a pT of at least 100 GeV) since the charged
particles traverse the detector on bent trajectories due to the magnetic field of the solenoid
[68]. By the combination of both pieces of information it is possible to reconstruct the
trajectories of single charged particles. This enables a distinction between primary vertices,
geometric points at which the primary protons interacted with each other, secondary
vertices, which are originating from the delayed decay of particles produced in the primary
collision into secondary charged particles, and pile-up vertices, geometric points at which
partons other than those of the primary collision interacted with each other (section 3.3.1).
Especially, for the identification of jets stemming from b quarks (the b-tagging of jets is
discussed in section 3.3.6) this vertex information is very important. Such b-tagged jets
quite often occur in physics processes involving Higgs-boson and top-quark decays. Usually
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they lead to the occurrence of secondary vertices.
However, since more than 1000 charged particles are produced at each bunch crossing a
good spatial resolution, a fine granularity, and a fast response time for the tracking system
is required to properly identify vertices and tracks. In addition, the tracking system has
to withstand the large particle-flux around the collision point, while it should have a low
material budget preventing that passing particles lose energy in inactive detector material.
A tracker design based on two types of silicon-based semiconductor detectors was chosen to
fulfill this needs and to keep the total costs in line with the budget: The innermost layers
are composed of the so-called pixel tracker consisting of approximately 66 million pixels.
More precisely, 66 million pn-junctions and corresponding read-out electronic circuits are
arranged in three central layers in the barrel region and two endcap disks on either side.
This sub detector is located just four to ten centimeters away from the beam line. This
is an apt choice to endure the high particle flux and to offer fine granularity at the same
time. This setup is completed by layers of the so-called strip tracker consisting of over
9 million silicon strips in roughly 15 000 modules. The strip tracker, even though being
coarser-grained, is still a suitable and simultaneously cost-effective solution due to the
lower particle flux further away from the collision point .
The CMS pixel detector was replaced in the 2016/2017 year-end shutdown as part of the
so-called Phase-1 upgrade [69]: Among many other changes the number of pixel layers
in the barrel region was increased from three to four layers and the total number of the
pixels was increased to 124 million pixel. Given that this thesis makes use of the 2016
CMS measurement data the basic layout of the old pixel detector was mostly referred to,
but the overall requirements and concepts still hold true.

Electromagnetic calorimeter The electromagnetic calorimeter (ECAL) [70] [71]
starts only 1.3 m away from the collision point and hermetically encloses the tracking
system in a pseudorapidity range of |η| < 3.0. It is an important ingredient to iden-
tify and measure the energy of electromagnetically-interacting particles, specifically for
the detection and energy measurement of electrons and photons. In the ECAL more than
75 000 PbWO4 crystals are applied as scintillators in which the energy of electrons and pho-
tons is measured by detecting the scintillation light produced by electromagnetic showers.
Similar requirements as for the tracking system are fulfilled: The ECAL has a sufficient
depth of up to 25.8 radiation lengths. Due to the short radiation length of 0.89 cm of
the lead-tungstate (PbWO4) crystals the ECAL is also compact enough to fit inside of
the solenoid together with the tracker and hadronic calorimeter. At the same time fine
granularity and the possibility to operate in a strong magnetic field is vital and achieved,
too. Again, the detector system is facing rather high particle flux. Thus, the ECAL is also
designed to endure such an amount of radiation.
As in the case of the tracking system, the ECAL is split into a cylindric barrel region cov-
ering a pseudorapidity range |η| < 1.479 and two endcaps covering 1.553 < |η| < 3.0. In
addition, a preshower detector outwards of the endcaps is installed allowing the distinction
of isolated photons from pion decays. Furthermore, it improves the detection as well as
the position and energy measurement of electrons and photons. As a result of this sub
detector setup “the resolution for ~ET ≈ 45 GeV electrons from Z-boson decays is better
than 2 % in the central region of the ECAL barrel (|η| < 0.8), and is between 2 % and 5
% elsewhere” [71].

Hadronic calorimeter Following the electromagnetic calorimeter a hadronic calorime-
ter (HCAL) [72] is positioned. It is employed to detect and measure the energy, arrival
time and position of hadrons and their corresponding jets, which are produced at large
rate at the LHC. Moreover, the HCAL allows the indirect measurement of missing trans-
verse energy and missing transverse momentum. As before for the other sub detectors this
calls again for a rather hermetic enclosing of the beam line by the HCAL. Hence, besides
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dividing the calorimeter into a barrel part reaching up to a pseudorapidity of |η| < 1.4
and a partly overlapping endcap starting from |η| < 1.3 an additional forward calorimeter
is used, too. Since the forward calorimeter is very close to the beam line covering small
opening angles up to |η| < 5.2 it has to endure an extreme particle flux. That is the reason
why it must be very radiation hard which is achieved by the application of hard quartz
fibers as active material and embedded steel absorbers.
On the other hand, a sampling calorimeter consisting of plastic scintillator tiles and dense
brass plates is used for the barrel and endcap regions since brass is non-magnetic. Thus,
the material is not interfering with the outer magnetic field. Meanwhile it has a suit-
able nuclear interaction length of roughly 16 cm, representing an appropiate depth of 5.15
nuclear radiation lengths by a total thickness of about 80 cm. This leads to a relatively
compact design, even though that hadronic showers typically develop slower than elec-
tromagnetic ones. To increase the overall thickness and the associated radiation length
further from 5.15 to 11.8 an additional barrel part is placed behind the solenoid.

Solenoid The superconducting solenoid being made out of niobium titanium alloy
has a magnetic field ranging from 2 T in the outer detector parts to 4 T in the detector
core. This configuration was chosen to allow for a precise measurement of the momentum
of charged particles by determing the curvature of the charged particle’s track inside the
magnetic field. The large field strength of up to 4 T is required so that even particles having
rather large energies and momentum get slightly deflected. In this way, they can still be
measured by dedicated sub detectors. The magnetic field is returned via an iron yoke
which is interleaved with the modules of the muon detection system. Hence, the tracks
of the muons get bent in two directions: Inside of the solenoid the muons are deflected in
either clockwise or anticlockwise direction according to their polarity, while outside of the
solenoid they are getting deflected in the opposite direction.

Muon tracking and detection system The CMS detector has a dedicated muon
tracking and detection system, which gives the entire detector its name. It is used to
identify and trigger on muons as well as to precisely measure the tracks and momenta of
highly-energetic muons in combination with the information obtained by the inner tracking
system and other inner sub detectors.
The muon detection system, like the inner tracking system, does not rely on the stopping
of particles. Instead it determines the trajectory of charged particles by making use of
the magnetic field of the interleaved iron yoke. In principle, except for the undetectable
neutrinos, only muons, which have a longer mean free path than other particles, can pass
the inner detectors and solenoid without losing too much energy and reach the muon
detectors. Therefore, the particle flux in the muon system is quite low. However, because
the detector system is placed outside of the solenoid and far away from the collision
point a robust muon detection and measurement of the muon trajectories requires the
instrumentation of a large volume. The aspiration to measure muons with a transverse
momentum of up to 1 TeV still precisely lead to the construction of three types of cost-
efficient large gaseous detectors: drift tubes, cathode strip chambers, and resistive plate
chambers. All of them make use of the principle that charged particles like muons can
ionize a gas and create an avalanche of further charged particles which can be measured
as an electric signal if a strong electric field is applied.
As in the other sub detectors, the muon detector is divided into a barrel and an endcap
region. The drift tubes placed in the barrel region cover a pseudorapidity range of up
to |η| < 1.3, while for the coverage of a pseudorapidity range of 0.9 < |η| < 2.4 cathode
strip chambers are positioned in the endcaps. Cathode strip chambers are chosen for the
endcaps since they can better endure the radiation coming with higher particle flux than
drift tubes. Both of these sub detectors have a spatial resolution between roughly 40µm
to 150µm [73]. They are used to provide an accurate measurement of the momentum
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of the muons. The uncertainty on the muon momentum is 8 to 15 % for muons having
a momentum of about 10 GeV and 20 to 40 % for a muon momentum in the order of
1 TeV if only the information from the muon system is used [73]. In contrast to that, the
resistive plate chambers have a poorer spatial resolution in the order of 1 cm, but a fast
response time of around 3 ns [73]. They are placed in the barrel and endcap region up to
a pseudorapidity range of up to |η| < 2.1 and are employed as part of the trigger system
for events containing high-energy muons.

Trigger and data acquisition system An important part of the CMS detector
besides the sub detectors is the specialized trigger system: Up to roughly 60 and on
average 35 proton-proton collisions can take place simultaneously every 25 ns at the LHC,
resulting in a huge amount of measurement data. Not all data recorded by the CMS
detector systems can be written to dedicated computer centers. Besides of that only
few events are of scientific interest as most of the times rather low-energetic collinear or
elastic scattering occurs during the bunch crossings. That is the reason why the CMS
collaboration is making use of a two-staged triggering approach. The level 1 trigger stage
is integrated as custom-made hardware into the read-out systems of the sub detectors. It
is used to reduce the event rate from 40 MHz to roughly 100 kHz. Since this event rate
would still overload the write-out capabilities of the computer centers only events which
passed the level 1 trigger get further processed by a subsequent high level trigger. This
software-based trigger reduces the number of considered events further, so that an output
rate of up to 1 kHz is achieved resulting in a passable amount of measurement data which
can be transferred to the computer centers. There, reconstruction algorithms are applied
to analyze the events, before the events as measurement data become available for physics
analyses.
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Figure 3.2: Schematic cross section of the barrel region of the CMS detector: The different
parts of the CMS detector are shown radially from the inner to the outer parts
and going from left to right. The silicon-based tracking system represents the
innermost part of the CMS detector. Therefore, it is shown on the left. Note
that all sub detectors – except the muon detection system shown on the right
– are located inside of the solenoid. Taken from [74]

.
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3.3 Object identification and event reconstruction

Without further processing the output derived from the CMS detector represents only
a stream of raw and inscrutable digital signals. Therefore, it must be matched with
subsequent object identification and event reconstruction steps to become applicable in
physics analyses. During these steps the information gained from the single detector
components is combined to define single objects at first. Afterwards the whole event which
unfolded during a specific collision in the detector is reconstructed, so that exploitable
measurement data is obtained.

The complete event reconstruction is done on dedicated computer clusters and it must be
distinguished between the online event reconstruction and the offline event reconstruction.
The online event reconstruction takes place in the first seconds after a collision event
happens and is recorded due to fulfilling some trigger requirements. Usually measurement
data from online event reconstruction is employed only to check the operating status of the
CMS detector. It is also used for a few high-priority analyses which require fast feedback
but cannot wait for the data of the offline event reconstruction to become available.
In the offline event reconstruction measurement data stored on a dedicated storage site
is reprocessed at a later point in time. In contrast to the online reconstruction, time-
consuming computation algorithms may be applied, which are not feasible in real time.
Furthermore, the offline event reconstruction makes use of additional information like the
state and configuration of single detector components during a particular collision, which
was not available at event time. In this way, an improved version of the measurement data
is provided by this reconstruction. Therefore, the most high-precision analyses – including
the analyses in this thesis – employ the measurement data obtained with the offline event
reconstruction.

In the following a brief introduction to basic (physics) objects which are used later to
reconstruct and classify an event is given. It starts with objects simpler to define and
nearer to the collision point and ends with finding, reconstructing, and b-tagging of jet
objects. Jet objects are complex objects, consisting of many particles.

3.3.1 Tracks and vertices

If a set of simultaneous collisions occurs inside of the CMS detector, one of the first and
most important pieces of information determined by the detector is the reconstruction of
the trajectories of charged particles called tracks and of the vertices from which the tracks
originate. More precisely, the silicon-based inner tracking system and the outer muon
tracking system are mainly used for this kind of reconstruction.
Charged particles traversing the inner tracking system, and in the case of muons also
reaching the muon tracking system, produce hits in each active layer by energy transfer.
The track of such a charged particle can be reconstructed by a combinatorial track finder
algorithm which in the case of the CMS Collaboration is based on the Kalman filtering
method [75] [76]. Hereby, the reconstruction algorithms consider the deflection of a charged
particle by the Lorentz force due to the strong magnetic field among other effects.
The reconstructed tracks are then used to determine the corresponding vertex candidates.
These vertices can be seen as the origins of reconstructible particles decaying into charged
particles. Therefore, at first possible vertex candidates are determined via track clustering.
Subsequently, the vertices having the largest likelihood are derived via the adaptive vertex-
fitter method [77].
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At the LHC usually several collisions happen at the same time (in 2016 on average around
23 collisions per bunch crossing). Therefore, more than one vertex is reconstructed in
general. Therefore, different kinds of vertices are distinguished:

Primary vertex of the hard interaction The primary vertex of an event defines
the center of the coordinate system for a single hard-scattering event. It is found by deter-
mining the vertex with the largest sum of squared transverse momentum of its associated
tracks,

∑
Tracks

p2
T. Therefore, a primary vertex generally corresponds to a hard, inelastic

collision. This primary vertex of a hard interaction is important for the reconstruction of
the full event since the reconstruction algorithms try to map all outgoing particles to this
initial vertex.

Underlying event and pile-up vertices Besides the partons of the two colliding
protons participating in the hard, inelastic interaction, further bystander partons either
from the colliding protons or other protons in the bunch can interact with each other.
This leads to the occurrence of additional vertices and particles not connected to the
primary vertex of the hard interaction. Since the resulting particles were not involved in
the hard interaction of interest they could distort the overall event reconstruction of the
hard collision process if they are not removed. Therefore, the identification of such vertices
and associated particles is of importance. The events which arise from such vertices are
called underlying events and pile-up.

Secondary vertices of the hard interaction Hadrons emerging from the primary
collision, but having a long decay time can move far enough away from the corresponding
vertex where they were created before they decay into charged particles. That is the
reason why a displaced vertex can be observed. Such a secondary vertex is often related to
the occurrence of bottom or charm hadrons usually having long decay times. Therefore,
this feature of bottom hadrons is exploited for their identification and for the so-called
b-tagging (section 3.3.6).

More information about the track and primary vertex reconstruction can be found in [78].

3.3.2 Particle flow event reconstruction and MET

The CMS collaboration employs a particle flow algorithm [79–81] to allow for a better
object identification and reconstruction as well as for the reconstruction of the full event:
Instead of using measurement data only from single detector parts, the information of
all sub detectors is exploited simultaneously to construct particle objects at first. Then
based on the derived particle objects the information from the full detector is combined
to reconstruct the full event.

By the particle flow algorithm (figure 3.3) five types of object candidates are identified:
Muons, electrons, photons, neutral hadrons, and charged hadrons. They represent all the
particles detectable by the detector.

Muons are the first objects which are reconstructed by the particle flow algorithm. Here,
hits and tracks from the inner tracking system or hits and tracks in the outer muon tracking
system are combined.

Tracks and hits corresponding to a muon candidate are then removed from the collection
of particle objects which are available for the reconstruction of further objects. In the next
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step electron candidates are determined by combining tracks from the inner tracking system
with energy deposition in the ECAL. Again, the corresponding tracks and ECAL energy-
deposition towers are removed. Subsequently, photon candidates, neutral hadron, and
charged hadron candidates are reconstructed by making use of the remaining information
from the inner tracking system, the ECAL, and the HCAL. Finally, by means of the
particle-flow algorithm object candidates for all detectable particles are obtained and based
on the particle candidates the full event is reconstructed.

Figure 3.3: Exemplary sketch of the particle flow algorithm: On the left side, information
derived by the single sub detectors like tracks in the inner tracking system,
energy-deposition towers in the ECAL and HCAL as well as the track of a
muon candidate is shown. On the right side, particle objects reconstructed
by the particle flow algorithm using the information of the full detector are
presented. Taken from [82].

Furthermore, after the reconstruction of a full event the missing energy in the transverse
plane /ET can be assessed. It is defined as the negative sum of the momenta of all n
reconstructed particles:

/ET = −
n∑
i=1

~pT

Since the partons taking part in the hard collision process only have a small intrinsic
transverse momenta, the sum of the transverse momentum pT of all detected particle-flow
particle candidates in the final-state should also be rather small. However, a large /ET is
expected, if (highly-energetic) particles escape the detector acceptance or if undetectable
particles like neutrinos from weak interactions occur in the final-state. For example, after
the decay of bottom or top quarks neutrinos can emerge by leptonic decay of W± bosons.
On that score, /ET can be an important observable in top-physics analyses.

3.3.3 Muons

For the CMS detector two different types of muon reconstruction are applied:

Reconstruction of“tracker”muons Muons having a momentum lower than roughly
300 GeV and losing most of their energy in the inner parts of the detector can be better re-
constructed by starting from the inner tracking system. These are called “tracker” muons.
In the beginning all of the tracks of the inner tracking system are considered for possible
muon candidates. The tracks inside of the inner tracking system are then extrapolated to
the outer muon tracking system in consideration of the deflection by the magnetic field,
energy loss due to bremsstrahlung, or the occurrence of multiple scattering. If an extrap-
olated track can be matched with at least one hit in the outer muon tracking system, a
valid muon candidate is assumed.
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Reconstruction of “global” muons In contrast to that, muons having larger mo-
mentum can be better reconstructed by using the dedicated outer muon system in the
first place. These muons are referred to as “global” muons. They are reconstructed by
combination of hits in the outer muon tracking system, so that a muon track in the outer
tracking system is obtained. This track is then extrapolated to the inner tracking system
and, if applicable, matched with a corresponding track.

In the end muons derived from both approaches and sharing the same track are combined
by means of the CMS particle flow algorithm.
Detailed descriptions of the muon reconstruction and its performance can be found in
[73,83].

3.3.4 Electrons

The reconstruction of electrons in the CMS detector is based on their energy deposition in
the ECAL and a matching track in the inner tracking system. The electrons get deflected
in the tracking system due to the large magnetic field. Furthermore, they lose energy
by radiating off photons as bremsstrahlung. Therefore, the finding of their tracks and
their subsequent reconstruction is challenging. That is the reason why a supercluster
approach combined with a Kalman [75] [76] and Gaussian Sum filtering method [84] is
used: In the beginning a seed crystal corresponding to the center of a cluster with high-
energy deposition in the ECAL is chosen. Subsequently, neighbouring clusters exceeding a
threshold get added, so that a super cluster is formed inside of the ECAL. An electron track
is then reconstructed either by an extrapolation of the aforementioned ECAL supercluster
in direction of the tracking system or from at least two hits in the inner layer of the
tracking system. For the combination of electron traces in the tracking system to a track
first a combinatorial Kalman filter method with loose constraints is applied. It is then
followed by a Gaussian Sum filtering (GSF) method. This method accounts for the large
radiative energy losses of the original electrons due to the creation of bremsstrahlung
photons and subsequent electron-positron pair production as well as the curved trajectories
of the electrons and their associated charged particles. By geometrical matching electron
candidates are then derived by an association of the super clusters with a corresponding
track obtained by the GSF method. A detailed description of the electron reconstruction
can be found in [85] [86].

3.3.5 Photon, hadron and jet reconstruction

After electrons and muons are identified and removed, together with their tracks, from the
particle object collection, photons and neutral hadrons are determined by the particle flow
algorithm. Therefore, as a first step topological clusters representing energy deposition
in neighbouring detectors cells in the ECAL and the HCAL are determined. Clusters in
different layers of the calorimeters are then matched to straight tracks. Afterwards, the
tracks from the ECAL and the HCAL are combined, if applicable.
If clusters occur in the ECAL (within the tracker acceptance of |η| < 2.5) which are not
linked to any track, these clusters are converted to isolated photons. Similarly, clusters
in the HCAL not linked to any tracks give rise to neutral hadrons. For ECAL clusters
outside of the tracker acceptance still an isolated photon is assumed if the ECAL clusters
are not linked to any HCAL clusters.
Otherwise, as in the case of a track simultaneously linked to ECAL and HCAL clusters
a shower of charged and neutral hadrons is assumed in general. The distinction between
a photon, neutral hadron, or charged hadron is then made by comparing the sum of the
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associated track momenta to the energy deposited in the calorimeters as clusters: If the
observed energy deposit of the associated clusters is larger than the sum of the track mo-
menta by a certain amount, this excess is interpreted as the presence of photons or neutral
hadrons. In the case that the energy deposit of the clusters is compatible with the sum
of the track momenta a charged hadron is assumed and its energy is determined from a
combination of the calorimeter and track measurement. If the energy deposited in the
calorimeter is smaller than the sum of the track momenta an extended search for muons
or fake tracks is performed. Tracks surviving this extended checks are associated with
charged hadrons.

From the particle flow candidates reconstructed before jets are constructed using the
anti-kT clustering algorithm [87, 88] with a radius parameter of 0.4 in the case of this
thesis. Hereby, the jet reconstruction algorithm extrapolates the calorimeter tracks to
tracks in the inner tracking system up to the primary vertex of the hard interaction. In
general, particle flow candidates which cannot be mapped to this primary vertex and orig-
inate from other vertices are neglected to remove pile-up and mitigate distortion effects
due to the underlying event.

3.3.6 b-Tagging of jets

It is important to identify jets originating from bottom quarks and bottom hadrons.
This can be achieved using b-tagging algorithms which determine if at least one bottom-
flavoured hadron was part of the parton shower causing the corresponding jet and if the
parton shower emerged from a bottom quark in the beginning. These kind of b-tagged
jets have some distinct features:

Cone sizes of b-tagged jets Since bottom quarks are a lot heavier than the lighter
quarks (up, down; charm, strange), hadrons which are formed between a bottom quark and
one or two lighter quarks also have a rather large mass in comparison to the usual hadrons
occurring during a parton shower. Therefore, the decay products of such heavier b-hadrons
are generally more boosted in one direction compared to jets from hadrons formed only by
light quarks. Due to momentum conservation and the relativistic movement of the bottom
quark this results in jets with smaller cone sizes.

Lifetime of b-hadrons, displaced and secondary vertices Furthermore, the bot-
tom quark and its corresponding b-hadron usually have a large lifetime in the order of
1× 10−12 s. The reason for this is that the original bottom quark cannot decay to a top
quark via the weak interaction due to their difference in mass. Thus, it can only decay
via the weak interaction into an up-type quark of another generation which is suppressed
by the off-diagonal matrix element of the CKM matrix. Therefore, if a bottom quark
is created inside the inner tracking system its associated b-hadron can travel distances
around a few millimeters before decaying. This leads to an observable displaced vertex in
the inner tracking system. In fact, these secondary vertices (section 3.3.1) are employed
in b-tagging algorithms as an important measure to identify jets from bottom quarks.
In figure 3.4 an event with two light jets and a jet emerging from a bottom quark decay is
shown in an exemplary way: The developing jet cones of the decay products of the light
jets can be matched to the primary vertex as their origin. However, due to the decay of the
bottom quark at a later point in time its corresponding jet partly starts at the secondary
vertex. Moreover, it can be observed that the overall direction of the decay products of the
b-tagged jet is slightly offset with regard to the primary vertex resulting in an measurable
impact parameter d0 for the b-tagged jet.
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Charged leptons inside of a jet A further hint of the occurrence of a bottom hadron
in the beginning of a parton shower used by b-tagging algorithms can be the appearance
of few charged leptons in the developing jet. This is caused by semileptonic weak decays
of the bottom quark or its decay products.

For the analyses presented in this thesis the combined secondary vertex b-tagging algorithm
version 2 (CSVv2) [89] is employed. It makes use of a combination of secondary vertex and
track-based lifetime information to determine b-tagged jets. Among others, the algorithm
uses features like the mass of the considered vertices and the significance of the measurable
impact parameter for the tested tracks. One novelty as compared to the LHC Run 1 version
is that this b-tagging algorithm now combines the two sets of information with shallow
neural networks instead of a likelihood ratio. In future CMS analyses this algorithm
will most likely be replaced by b-tagging algorithms which completely depend on neural
networks with at least a few hidden layers like the DeepCSV b-tagging algorithm [90].
More information about the b-tagging algorithms available for the CMS physics analyses
in the LHC Run 2 and their performance can be found in [89,90].

Figure 3.4: Example of an event with two light jets and a b-tagged jet: The jet cones and
tracks of the light jets can be matched to the primary vertex as their origin. In
contrast to that the cone of the b-tagged jet still starts at the primary vertex,
but the displaced tracks originate from the secondary vertex. Furthermore,
the cone direction of b-tagged jet is slightly offset resulting in an measurable
impact parameter d0. Taken from [91].
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4. Top-quark physics

Physics involving top quarks, which were discovered only in 1995, is still an important
topic of research within the studies of the Standard Model of particle physics (chapter 1).
Due to the large mass of the top quark this kind of physics processes feature some specific
characteristics as discussed in the following. Moreover, the proper description and the
precise measurement of such physics process can still be a challenge (sections 4.5 and II).
After a short review of the discovery of the top quark which also represents a starting
point for top-quark physics (next section), some information about the basic properties of
the top quark will be given in section 4.2. This is followed by a discussion of the top quark
production and decay modes (section 4.4). Subsequently, the focus will be on top-quark
pair production and possible tt̄+X processes. A short overview of the associated produc-
tion of a Higgs boson with a top quark-antiquark pair completes this chapter (section 4.6).
More detailed descriptions about top physics can be found e.g. in the following review
articles [92–94].

4.1 The beginning of top-quark physics and the discovery of
the top quark

The prediction of the necessity of a third generation of the quark family by Makoto
Kobayashi and Toshihide Maskawa can be marked as the beginning of top-quark physics
as a research topic. By this prediction of the top quark as the up-type quark of the third
quark generation an observed violation of the CP symmetry in kaon decay [25] could be
explained. Later, in 1975, the names top and bottom quark were introduced by Haim
Harari [95] for the quarks of this third generation in analogy to the up and down quark
of the first generation. Similarly, these two quarks also form a weak isospin doublet. The
discovery of the bottom quark followed quickly in 1977 by the E288 experiment [96] [97]
at Fermi National Accelerator Laboratory (FNAL). At this time the existence of the top
quark was generally assumed and an imminent top-quark discovery was widely antici-
pated.
Nonetheless, it was not until 1995 that the discovery of the top quark could finally be
claimed by the CDF and DØ collaborations [98] [99] making use of the Tevatron accelera-
tor located at FNAL, while first evidence of events containing top quarks already showed
up in 1992 [92].
Today, at the LHC roughly 17 top-quark pairs are produced per second due to the large
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tt̄ production cross section of 832 pb at a center-of-mass energy of
√
s = 13 TeV and an

instantaneous luminosity of L = 2× 1034 1
cm2s

.

4.2 Basic properties of the top quark

The top quark is the heaviest of the six quarks predicted by the Standard Model of par-
ticle physics (chapter 1). Due to being the up-type quark in the third generation of the
Standard Model quarks it has an electric charge of +2

3 in units of the elementary charge
e. Furthermore, the left-handed top quark has a value of the third component of the weak
isospin of T3 = +1

2 , while its right-handed counterpart has T3 = 0.
The average mass of the top quark considering direct measurements done at the LHC
[100, 101] and the Tevatron [102] is (173.1± 0.6) GeV [24]. The average value of the top
quark decay width is Γ = (1.41+0.19

−0.15) GeV [24]. Here, measurements of the CMS collab-
oration done at the LHC and of the DØ Collaboration conducted at the Tevatron were
taken into account.
These basic properties of the top quark are also listed in table 4.1 together with the top-
quark pair production cross section at a center-of-mass energy of

√
s = 13 TeV and the

single-top production cross sections which both will be discussed in the next section. More
details about the properties of the top quark can be found in [24,94].

4.3 Top-quark production

At hadron colliders like the LHC (section 3.1) top quarks are produced dominantly in
pairs by QCD process at leading order, this top-quark pair production (pp → tt̄), which
is shown in figure 4.1a, can either emerge from gluon-gluon (gg) fusion or quark-antiquark
(qq̄) annihilation. At the LHC with a center-of-mass energy of

√
s = 13 TeV of the

colliding protons, roughly 88 % of the top-quark pair production arises from gg fusion
with the remainder from qq̄ annihilation.

The total cross section of the top-quark pair production is known fully analytically at
next-to-next-leading order (NNLO) QCD accuracy with next-to-next-leading log (NNLL)
soft gluon resummation since 2013 [48]. In this calculation, a top quark mass of m(top) =
172.5 GeV and a center-of-mass energy of

√
s = 13 TeV has been assumed to derive the

cross section: σ(tt̄, NNLO+NNLL) = (832+40
−46) pb.

There exists a further production mode of top quarks called single top-quark production.
Since this production mode involves electroweak interactions the corresponding cross sec-
tions are significantly smaller than for pair production. Furthermore, the single top-quark
production can be divided into three separate production modes, ordered by virtuality
of the W± boson. The production modes are shown in figure 4.1b and the process cross
sections are stated in table 4.1.

The t-channel single top-quark production The t-channel single top-quark pro-
duction involving the process qb→ q’t has a sizable cross section (see below) at the LHC.
However, this process is suppressed due to the smaller coupling strength of the weak inter-
action compared to the tt̄ production by the strong interaction. The cross sections of this
process for the top quark and its corresponding antiquark are different at the LHC due to
the charge-asymmetric initial state. This difference in the cross section for top quark and
antiquark at the LHC can also be seen for the s-channel single top-quark production.
The total cross sections of the t-channels single top-quark production are known to NNLO
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(a) Top-quark pair production

(b) Single top-quark production

Figure 4.1: Exemplary Feynman diagrams of top-quark pair production and single top-
quark production: In the left plot of figure (a) the gluon fusion initiated
top-quark pair production is shown, while in the right plot the production
via quark-quark annihilation. In the sub figure (b) the t-channel, the Wt-
associated, and the s-channel single top-quark production is presented from
left to right.

QCD accuracy since 2014 [103] and the value of the cross section combining the top
quark and top antiquark contributions to the t-channel production is σ(t+t̄, NNLO) =
(214.8+2.1

−1.3) pb [104] at a center-of-mass energy of
√
s = 13 TeV.

The Wt-associated single top-quark production The Wt-associated production,
corresponding to the bg → W−t process, has, due to the additional occurring real W±

boson in the final state, a smaller combined total cross section of σ(t+t̄, NNLO approx.) =
(71.7± 1.8± 3.4) pb [105]. This value was also derived from an NNLO approximate cal-
culation and an assumed top mass of m(top) = 172.5 GeV.
At NLO, this production mode interferes with top-quark pair production. It can be a very
interesting production mode because of this interference, but also due to its sensitivity
to new physics [106–108]. Furthermore, in many Higgs and SUSY searches it has a not
insignificant role as a background process [109].

The s-channel single top-quark production With a value of σ(t+t̄, NNLO approx.)
= (11.4± 0.2± 0.4) pb [105] the s-channel has the smallest combined total cross section
of the three single top-quark production modes at the LHC. The main reason is that this
process is quark-antiquark initiated, while the probability of gluons occurring in the initial
state is quite larger at the LHC.

4.4 Decay modes of the top quark

The large mass of the top quark results in a large decay width of the top quark of
Γ = (1.41+0.19

−0.15) GeV [24]. Accordingly, it has a corresponding very short life-time of
roughly 5× 10−25 s. Since this is below the time required to form hadronic bounding
states via hadronization, the physics of the top quark is fundamentally different compared
to the other quarks. Hadron spectroscopy like for the other quarks is not possible, but
instead the top quark offers “the unique opportunity to study the production and decay
of a ’bare’ quark, at energy scales much larger than those which are typically involved for
the other quarks” [93].
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Table 4.1: Basic properties of the top quark: First a description of the property is given,
followed by the corresponding symbol of the property, finally the value of the
property is stated. The values are taken from: 1 [24], 2 [48], 3 [104], and 4 [105].

Description of property Corr. symbol values

Average mass of the top quark1 m(top) (173.1± 0.6) GeV

Average decay width of the top quark1 Γ (1.41+0.19
−0.15) GeV

Top-quark pair production cross section prediction at
√
s = 13 TeV

Total cross section prediction2 σ(tt̄, NNLO+NNLL) (832+40
−46) pb

Single-top production cross section prediction at
√
s = 13 TeV

t-channel prediction3 σ(t+t̄, NNLO) (214.8+2.1
−1.3) pb

Wt-associated production prediction4 σ(t+t̄, NNLO approx.) (71.7± 1.8± 3.4) pb
s-channel prediction4 σ(t+t̄, NNLO approx.) (11.4± 0.2± 0.4) pb

Off-diagonal decays of the top quark are suppressed by the CKM matrix. Therefore, the
top quark decays into a W+ boson and a bottom quark in almost of all cases (branching
ratio: BR = 1.014± 0.003(stat)± 0.032(sys) [110]). According to the further decay of the
involved W± boson one distinguishes two top-quark decay modes: If the W± boson decays
into a charged lepton and a neutrino, this is called a leptonic decay of the top quark.
Meanwhile, a hadronic decay of the top quark is assumed if the W± boson decays into a
quark-antiquark pair. The hadronic decay of the W± boson and the associated hadronic
decay of the top quark is twice as likely as the leptonic decay. The reason for this lies in
the three different colour charges of the quarks in comparison to the single electric charge
of the leptons. Therefore, the W± boson can decay into three times more quark-antiquark
pairs than fermion pairs. The two types of W± boson decay are shown in figure 4.2a.
Following the above categorization of the top quark decay, one can also define three dif-
ferent decay modes of the top-quark pair production (tt̄), ordered by the size of their
branching ratio BR:

Fullhadronic tt̄ decay mode In the fullhadronic tt̄ decay mode both top quarks
decay hadronically. This decay mode features the largest branching ratio of 45.7 % [24].

Semileptonic tt̄ decay mode In the semileptonic tt̄ mode one top quark or anti-
quark decays hadronically, while the other top parton decays leptonically (see also fig-
ure 4.2b for an example of such a kind of tt̄ decay). The branching ratio BR of this decay
mode is 43.8 % considering all three charged leptons (electron, muon, tauon) [24].
In this thesis only tt̄ processes involving the semileptonic decay mode limited to electrons
and muons will be considered. The reason for this is that these kind of tt̄ processes of-
fer a good compromise between a rather high probability of occurrence compared to tt̄
processes of the dileptonic decay mode and a still rather good possibility to reconstruct
the full event in contrast to fullhadronic tt̄ processes. Furthermore, in this way a difficult
tauon reconstruction is avoided.

Dileptonic tt̄ decay mode In the dileptonic tt̄ decay mode which has the lowest
branching ratio BR of 10.5 % [24] both top quarks decay leptonically.
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(a) The two types of W± boson decay

(b) Semileptonic tt̄ decay mode

Figure 4.2: Exemplary Feynman diagrams of the W± boson decay and the semileptonic
decay mode of the tt̄ process : In the left part of the upper figure the leptonic
decay of the W± boson is shown, while in the right plot the hadronic decay
mode. In the lower figure the semileptonic decay mode of the tt̄ process is
presented.

4.5 Top-quark pair production and corresponding tt̄+X
processes

Of greatest interest are processes where the top-quark pair is created in association with
additional quarks. These tt̄+X processes can be distinguished by the number of heavy-
flavour quarks in the final state at matrix-element level (section 2.2.1), which is done in
the following to provide a short description of their differences.
However, in this thesis a classification of tt̄+X events based on the mapping of heavy-
flavour particle-level jets to heavy-flavour hadrons is employed as described in section 6.4.
The group of all tt̄+X processes (including those with no additional partons) is referred
to as the inclusive tt̄+X processes, while the single tt̄+X processes are also often called
exclusive processes.
Commonly, processes in which a boson emerges besides the top-quark pair in the final
state instead of quarks, like tt̄H or tt̄Z, are not counted to the tt̄+X processes. They are
considered as separate processes.

The tt̄+bb̄ processes

A tt̄ process is spoken of as tt̄+bb̄ process if besides the two bottom quarks originating
from the decay of the two top quarks two additional bottom quark occur in the final state
of a matrix element.
This kind of processes are of particular interest since they are among the SM processes
occurring at the LHC which have the heaviest particles in the final-state. Furthermore,
by comparing the Feynman diagrams of these processes with the diagrams of the tt̄H(bb̄)
process (discussed in the next section) it is obvious that in most cases the only difference
between both processes is the origin of the additional bottom-quark pair. The bottom-
quark pair in general either originates from a massless gluon or light quark in the case of
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the tt̄+bb̄ process or from the massive Higgs boson. Hence, the kinematics of the bottom-
quark pair are the major difference. That is also the reason why the differentiation between
the two processes is difficult. Therefore, both processes are an important object of study
as will be motivated in more detail in part II.

The tt̄+2b process

The tt̄+2b process cannot be defined by the number of additional quarks at matrix-element
level. It can only be understood at particle level since it is defined by mapping the
same particle-level jet to at least two bottom hadrons (section 6.4). Nonetheless, the
introduction of this process later in this thesis is useful: Events which originate from tt̄+bb̄
matrix elements and which would would be misidentified as tt̄+b events (see below) at
particle level will be considered by this process class. Therefore, in principle this process
defines a sub class of the tt̄+bb̄ processes in which the two additional bottom quarks
are radiated in a similar direction and, hence, their bottom hadrons will lead to a single
particle-level jet.

The tt̄+b processes

An event is classified as a tt̄+b event if exactly one additional bottom quark occurs in the
tt̄ final state at matrix-element level. At the matrix-element level it is quite different to
the tt̄+bb̄ process since it is always quark-gluon initiated in leading-order QCD, while the
tt̄+bb̄ process is either originating from gluon fusion or quark-antiquark annihilation.

The tt̄+cc̄ processes

tt̄ events which do not contain any additional bottom quarks in the matrix element, but
still have at least one charm quark at matrix-element level are counted as tt̄+cc̄ events.
The softened requirement of only one charm quark is motivated by the difficult identifi-
cation of charm hadrons and charm-tagged jets at reconstruction level. It is quite likely
that only one charm quark and its successors are identified later. Therefore, it seems not
reasonable to split this class of processes further like in the case of the aforementioned
processes involving bottom quarks.
Compared to the tt̄+bb̄ processes, a possibly emerging charm-quark pair usually carrys a
smaller transverse momentum than the heavier bottom quarks and, hence, it is far more
likely that the two developing jets of the charm quarks would overlap.

The tt̄+lf processes

The tt̄+X processes which remain and do not fall in one of the other process classes
are referred to as tt̄+lf processes. These processes represent the lion’s share of all tt̄+X
processes and are important background processes for many physics analyses conducted
at the LHC.

4.6 Associated production of a Higgs boson with a
top-quark pair

The associated production of a Higgs boson with a top-quark pair, pp → tt̄H, is a physics
processes of particular interest. It allows a direct measurement of the top-Higgs-Yukawa
coupling which also corresponds to the largest Yukawa coupling of all SM fermions. The
top-Higgs-Yukawa coupling can also be measured by means of the Higgs-boson production
via gluon-gluon fusion or the Higgs-boson decay into two photons. However, these are only

46



4.6. Associated production of a Higgs boson with a top-quark pair 47

indirect measurements since besides the top quarks other non-SM particles could be part
of the occurring virtual loops. Therefore, all three measurements are an important test of
the Standard Model of particle physics (SM). Furthermore, findings in such measurements
can be a possible gateway to new physics.
The tt̄H production mode of a Higgs boson has the smallest cross section of all four major
Higgs-boson production modes (gluon fusion, vector-boson fusion, associated production
with a vector boson, and associated production with a top-quark pair) described by the
SM. The reason for this is that the final state contains three heavy massive particles (fig-
ure 4.3) which together have an invariant mass of roughly 470 GeV. Hence, the predicted
total cross section of the tt̄H process at a center-of-mass energy of

√
s = 13 TeV and calcu-

lated in NLO QCD including electroweak corrections according to [47] is: σ(tt̄H, NLO) =
(507.1+81.6

−98.9) pb.
The observation of the tt̄H process was recently made by the CMS collaboration with a
significance of 5.2σ, while the expected significance was 4.2σ [111]. Shortly before the
ATLAS collaboration claimed evidence of this process with a significance of 4.2σ observed
standard deviations (3.8σ expected) [112,113].
In this thesis only the tt̄H sub processes in which the Higgs boson decays into a bottom-
quark pair will be considered [114, 115]. Even though this class of tt̄H sub processes has
the largest branching ratio BR it has a roughly 1600 times smaller cross section than
the tt̄ process. Nonetheless, tt̄ production can still be seen as an important background,
especially to the tt̄+bb̄ sub processes since a tt̄+bb̄ process and a tt̄H(bb̄) processes can
share the same final state but with different kinematics.
In principle, with the same argumentation of possibly having similar final-states, the tt̄Z
and VV+jets process can also be considered important backgrounds. However, the major
difference is that these processes can also be measured and constrained well by making
use of other final states. In contrast to that, the tt̄H process still has to understood better
and is associated with uncertainty.
As can be seen from the Feynman diagram in figure 4.3 the tt̄H(bb̄) process under the
assumption of a semileptonic tt̄ decay usually features a very “busy” event. Such an event
involves several quarks, leptons, and missing transverse momentum due to at least one
emerging neutrino because of one top quark decaying leptonically. It is for this reason
that a proper object identification and event reconstruction represents a challenging com-
binatorial problem. Especially the assignment of observed and possibly b-tagged jets to
the originally occurring top quarks and the Higgs boson can be highly ambiguous.

Figure 4.3: Exemplary Feynman diagram of the associated Higgs boson production with
a top-quark pair, in which a semileptonic decay of the tt̄ system occurs.
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5. Statistical analysis methods

Statistical analysis methods are an important set of tools in particle physics:

On the one hand, they provide methods to interpret the data obtained in a physics analysis
for example with the maximum-likelihood (ML) method (next section). In this way, by
comparing the results derived from such a physics analysis with a given prediction these
methods lead to a quantitative result.
In this thesis the ML method is applied to obtain the value of the signal strength modifier
r for top-quark pair production in association with b-tagged jets. This modifier states the
deviation of the analysis result from a theoretical prediction.
Among others, the tt̄+≥1b-jet signal derived from physics analyses is compared to the
prediction of the tt̄+≥1b-jet signal by theoretical calculations in the framework of the
Standard Model of particle physics in this thesis.

On the other hand, multivariate data analysis (section 5.2) is also based on statistical
methods and is also often applied in particle physics. Multivariate analysis methods allow
the analysis of data using more than one variable simultaneously. The application of such
methods takes into account that usually the separation between signal and background
processes is a multidimensional problem in particle physics. Furthermore, often a better
separation between signal and background processes can be obtained if multiple variables
and correlations between them are used.
In this thesis linear discriminants and neural networks are applied as multivariate classifiers
to provide a separation between signal and background events.

5.1 Maximum-Likelihood method

This section begins with a derivation of the binned likelihood function as part of the
explanation of the maximum-likelihood (ML) method in the subsequent section. Properties
of nuisance parameters are shortly discussed in section 5.1.3. Furthermore, the Asimov
dataset is introduced in section 5.1.4.

49



50 5. Statistical analysis methods

5.1.1 Derivation of the binned likelihood function

The number of events measured in data ndata in a physics analysis can be seen as the
outcome of a counting experiment. In general, Poisson distributions are used to describe
the probability of a given number of events or, in our case, data events ndata in a such
counting experiment:

Poisson(ndata|ν) =
νndata · e−ν
ndata!

,

in which the probability depends on the number of predicted events ν.

In particle physics, the number of predicted events ν is usually obtained from Monte Carlo
samples. Furthermore, this prediction is split into signal events nsig originating from signal
processes of interest and background events nbkg which emerge from all other processes, so
that ν = nsig + nbkg. Therefore, the Poisson distribution for a single counting experiment
in particle physics would be given by:

Poisson(ndata|nsig + nbkg) =
(nsig + nbkg)ndata · e−(nsig+nbkg)

ndata!
.

The predicted number of signal events nsig and background events nbkg is generally only
known within some uncertainty. These uncertainties on the predictions are considered
by introducing so-called nuisance parameters θi. For each uncertainty such a nuisance
parameter θi together with its associated probability density function (PDF) P (θi) is
considered. The number of signal events nsig(~θ) and of background events nbkg(~θ) are
then given as functions of these nuisance parameters. Furthermore, from this the likelihood
function for a single counting experiment can be derived:

L
(
ndata|nsig, nbkg, ~θ

)
= Poisson

(
ndata|nsig(~θ) + nbkg(~θ)

)
·
N∏
i

P (θi) .

So far, it was neglected that in the analyses of this thesis as in the most other parti-
cle physics analyses binned data is analyzed. However, the derived likelihood function

L
(
ndata|nsig, nbkg, ~θ

)
can easily be extended to binned data. This is done by describ-

ing the observed data ~ndata as well as the predicted signal events ~nsig(~θ) and predicted

background events ~nbkg(~θ) via vectors of individual counting experiments:

L
(
~ndata|~nsig, ~nbkg, ~θ

)
=

M∏
j

Poisson
(
ndata,j|nsig,j(~θ) + nbkg,j(~θ)

)
·
N∏
i

P (θi) .

In this way, each value of a vector corresponds to a bin in the binned output distribution
used for the construction of the likelihood function.

Often in particle physics a signal strength modifier r is introduced. The number of pre-
dicted signal events ~nsig(~θ) is scaled by r during the ML fit, so that it corresponds to the
number of observed signal events in data:

~ndata,sig := r · ~nsig(~θ).

Therefore, given the number of signal events in data is properly predicted by the Monte
Carlo samples for the signal processes this signal strength modifier r should be one. This
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value is also chosen as initial value in the ML fit.
The corresponding likelihood function

L
(

~ndata|r, ~nsig, ~nbkg, ~θ
)

=

M∏
j

Poisson
(
ndata,j|r · nsig,j(~θ) + nbkg,j(~θ)

)
·
N∏
i

P (θi)

is then used as input for the binned ML fit.

5.1.2 Maximum-Likelihood fit

The ML method is used to estimate the parameters of the likelihood function, the signal

strength parameter r and the nuisance parameters ~θ. This parameter estimation is done by
finding the extremum of the likelihood function. Often instead of maximizing the likelihood
function the negative logarithmic-likelihood function is minimized. The advantage of this
approach is that the logarithmic-likelihood function has the extreme value at the same
spot as the likelihood function, but it is easier to compute due to occurrence of sum terms
instead of product terms, the vanishing of exponential functions and constant terms like
the factorial n! being part of the definition of the Poisson distribution:

− logL
(

~ndata|r, ~nsig, ~nbkg, ~θ
)

= −

 M∑
j

log Poisson
(
ndata,j|r · nsig,j(~θ) + nbkg,j(~θ)

)
·

N∑
i

log P (θi)

 .

Especially the vanishing of the exponential functions which often occur in the PDFs of the
nuisance parameters leads to a simpler computation.

The found likelihood estimate corresponds to the optimal set of free parameters (r̂, ~̂θ) for
a given number of events in data ~ndata as well predicted events in the Monte Carlo signal

samples ~nsig and events in the background samples ~nbkg. These found parameters (r̂, ~̂θ)
describe best the observed data for a given model.

In most of the cases only one or a few free parameters of the likelihood function are
parameters of interest. In the case of this thesis only the best-fit value of the signal
strength modifier r̂ is of general interest, while the values of the nuisance parameters are
still studied to check the assumed uncertainty model. Therefore, each nuisance parameter
θi is expressed as a function of the signal strength modifier: θi = f(r).

The uncertainty on the best-fit value of the signal strength r̂ can then be derived from a
profile likelihood ratio (PLR):

q(r) = −2 log

L
(
r,

ˆ̂
~θ

)
L
(
r̂, ~̂θ
) .

Here, the parameter
ˆ̂
~θ maximizes the likelihood function for a given signal strength r, while

by L
(
r̂, ~̂θ
)

the likelihood estimate corresponding to the previously found global maximum

of the likelihood function is used.
By scanning the PLR q(r) the 1σ-uncertainty interval of the best-fit value of the signal
strength r̂ is determined. The 1σ-uncertainty interval corresponds to an increase in the
parabolic shape of the PLR from the minimum obtained with the best-fit signal strength r̂
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by a factor of 1. In the case of a dependency of the likelihood on two signal strengths and
of an associated two-dimensional likelihood contour the factor to derive the 1σ-uncertainty
would be 2.3.

5.1.3 Properties of nuisance parameters

Nuisance parameters θi can be classified into rate-changing, shape-changing, and rate-and-
shape-changing nuisance parameters. All of these three classes of nuisance parameters
affect final discriminant output distributions which are used as inputs for a ML fit.

Rate-changing nuisance parameters A rate-changing nuisance parameter changes
the expected rate of events in all bins of a final discriminant output distribution by the
same factor. Such a nuisance parameter corresponds to a normalization uncertainty, which
is often modeled by a log-normal distribution, so that the nuisance parameter itself is
constrained by a normal distribution.

Shape-changing nuisance parameters Shape-changing nuisance parameters affect
the number of expected events in each bin of a final discriminant distribution separately.
Therefore, usually two additional Monte Carlo samples are produced to model the upwards
and downwards shape variation due to such a shape uncertainty. For the production of
these samples the values of some parameters are varied by ±1σ compared to their nominal
values used for the production of the nominal sample.

Rate-and-shape-changing nuisance parameters Rate-and-shape-changing nui-
sance parameters can be seen as a combination of both aforementioned nuisances. In
general, such uncertainties are split into a rate-changing and shape-changing nuisance and
corresponding uncertainties. The shape uncertainties are then normalized to the nominal
prediction, while the rate uncertainty takes the necessary normalization into account.

5.1.4 Asimov dataset

The 1σ-uncertainty interval for the central value of the observed signal strength r(observed)
is obtained from a PLR fit using the measurement data as described.
However, this observed signal strength and its associated uncertainty ∆r(observed) strongly
depends on the measurement data. Therefore, it is not a good measure of the experimental
sensitivity of a physics analysis and the uncertainty on the signal strength r expected from
the related uncertainty model. Furthermore, the measurement data can be blinded.

That is the reason why for a given signal strength r the expected uncertainty on the signal
strength ∆r(expected) is computed using a representative dataset, the so-called Asimov
dataset [116]. Compared to measurement data, in such an Asimov dataset the observed
data is replaced by fake data predicted from the sum of the Monte Carlo samples. Further-
more, it is defined in a way that the true parameter values are obtained if the dataset is
used for the evaluation of all parameters in a ML fit. Hence, it can be applied to derive the
expected uncertainties for a parameter of interest, in the case of this thesis the expected
uncertainty on a signal strength, ∆r(expected). By construction, the Asimov dataset is
also free from statistical fluctuations for a given set of Monte Carlo samples it can be used
to determine the maximum precision obtainable with a physics analysis.
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Two types of Asimov datasets can be distinguished:

An Asimov dataset constructed for a signal strength expectation r(expected) of zero con-
sists only of the background model in which the nuisance parameters θi and all parameters
of interest except the signal strength r are set to their estimation values before the ML fit.
The signal strength is set to zero, so that no signal contributions are considered. Such an
Asimov dataset is only a good estimate of the expected uncertainty on a signal strength
modifier r if the signal contribution is quite smaller than the background contribution.
For example, this is often the case in searches. Otherwise, the uncertainty model would
be also driven by signal contribution. Since in the analyses presented in this thesis signal
contributions are in the same order as background contributions, this assumption holds
not true. For this reason such an Asimov dataset is not used in this thesis.

An Asimov dataset can also be constructed considering a signal strength expectation
r(expected) of one. In this way, signal and background is assumed according to the pre-
diction by the Monte Carlo samples based on the Standard Model prediction. Again, the
nuisance parameters θi and all parameters of interest are set to their estimation values
before the fit. In addition, for the signal strength a value of one is assumed. Such Asimov
datasets are used throughout this thesis to provide an estimate of the uncertainty expected
for a signal strength measurement.

5.2 Multivariate data analysis

Multivariate analysis (MVA) methods [117] are employed for classification of data and
dimensionality reduction. In the context of this thesis, MVA methods like linear discrimi-
nant analysis (section 5.2.2) or neural networks (section 5.2.3) are used to classify events
into different categories.

In the next subsection the receiver-operator-characteristic (ROC) curve is shortly intro-
duced since its integral is often used as a performance indicator for a classifier.

Afterwards a general overview of the two MVA methods mentioned before will be given.
The setup of these methods for the physics analysis presented in this thesis will be discussed
in chapter 9.

5.2.1 Performance of a classifier

MVA methods are often used to classify data into categories. In such a case it is of im-
portance to estimate or quantify the performance of such classifier.
A suitable performance indicator of a classifier is the receiver-operating-characteristic
(ROC) curve. Furthermore, if the integral of this curve is computed a quantative as-
sessment of the separation power of a classifier is possible. This integral value is also
termed area-under-curve (AUC) score. To obtain such a ROC curve the true positive rate
is generally plotted against the false positive rate. However, in particle physics it is more
common to plot the background rejection versus the signal efficiency for a classifier. Both
plotting styles lead to the same AUC score but the curves appear mirrored along their x-
and y-axis.
The value of the ROC integral can vary between zero and one. In practice ROC integral
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somewhere between 0.5 and one are obtained, while a larger value represents a better
performing classifiers and a better separation between different categories. A classifier
choosing randomly should lead to a mean ROC value of 0.5 in the case of binary classifi-
cation. If a classifier would provide a perfect categorization of data the associated ROC
integral would be one.
The concept of the ROC integral can be extended from the case of binary classification to
multiclassification. This is achieved by considering a multiclass classifier as a combination
of single binary classifiers. For each category the value of the ROC integral is determined
based on its separation to the other categories. The common ROC integral of the mul-
ticlass classifier is then obtained by calculating the mean of the ROC integrals for each
category.

5.2.2 Linear discriminant analysis

Linear discriminant (LD) analysis is a mathematically robust and rather simple MVA
method. It is a generalization of the Fisher discriminant analysis [118] which was developed
already in 1936. LD analysis is generally employed to reduce the dimensionality of data to
a single variable and to separate two classes based on this obtained output variable. This
is accomplished by finding of linear combination of n parameters βi and associated input
variables xi for a given dataset with known classification, so that the computed single
output variable y(~x) provides the best split between the two classes:

y(~x) =

n∑
i=1

βi · xi.

In particle physics, usually, the two classes are designated as signal and background class
and an event corresponds to single data. Furthermore, in many cases a bias parameter β0

is introduced. By this additional bias parameter the value of the output variable y(~x) is
adjusted:

y(~x) =

n∑
i=1

βi · xi + β0.

Often an adjustment is chosen in which the value of the output variable for data corre-
sponding to the signal class is always above zero (y(~x) > 0) and for data corresponding to
the background below zero (y(~x) < 0).

The finding of the parameters ~β =
∑
βi for a given set of input variables ~x =

∑
xi is called

training. In this training a so-called training dataset, for which the classification of events
into signal events (y(~x) = 1) and background events (y(~x) = −1) is known, is applied. If
this training dataset contains m events, the following matrix representation can be used
to compute the output variable yi(~x) for each single data simultaneously:

Y =


y1(~x)
y2(~x)

...
ym(~x)

 =


1 x11 . . . x1n

1 x21 . . . x2n
...

...
. . .

...
1 xm1 . . . xmn



β0

β1
...
βm

 = X~β.

Since finding an optimal set of the parameters ~β is of interest and only X and Y are
known, a solution of the system of equations by the method of least squares is essential.
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Therefore, the Moore-Penrose inverse of X transformation [119]
(
XTX

)−1
XT is applied

to derive the parameters ~β:

~β =
(
XTX

)−1
XTY.

The obtained vector of parameters ~β can be geometrically interpreted as an vector which
defines a perpendicular hyperplane: Depending on if an event is located below or above
this hyperplane it is considered to belong to the class of signal or background events. The
dot product between the set of input variables ~x and the parameter vector ~β is then the
criterion to define if an event belongs to the signal (background) class:

~x · ~β ≷ 0.

The LD analysis shows a good performance for Gaussian distributed variables with linear
correlations. If the input variables are not Gaussian distributed, the LD analysis can often
profit from suitable transformations of the input variables [120].
Therefore, transformations were used as part of the preparation of the training dataset for
the physics analysis presented in this thesis. After application of these transformations the
input variables were virtually Gaussian distributed with a mean of zero and a standard
deviation of one.
Reference [121] demonstrates that adding input variables having low separation power to a
set of input variables showing high separation power can lead to a decreased performance
of the LD analysis in most cases. Furthermore, it is a requirement of each input variable
that it is well modeled by Monte Carlo samples.
For this reason, only a small set of variables showing high separation power and good
modeling by Monte Carlo samples were chosen in this thesis (more details will be given in
section 9.2).

5.2.3 Neural networks

Neural networks (NNs), or in fact artificial neural networks, are MVA methods which
are in general more complex than linear discriminants. Their name was inspired by the
network of neurons in animal brains they are modeled after.

Basic principles of neural networks

Usually (artificial) NNs consist of different layers in which neurons (“nodes”’) are arranged
(figure 5.1). These nodes are connected to other nodes.
Two layers are special in an NN: The nodes of the first layer (also: input layer) are only
connected to the subsequent layer. The nodes in this layer only have one inward connec-
tion. They get a single input value which corresponds to the value of an input variable.
The last layer or output layer has only one outward connection which can be seen as the
final output of an NN. The layers in between are referred to as hidden layers since their
inputs or outputs are not directly accessible.

Different types of NNs exist which differ in the topology of the network, the connections
made between the nodes, and the properties of the nodes.
In particle physics often and, in particular, in this thesis only feed-forward NNs are of
interest for the classification of events. The reason is that the occurrence of an event for
a given physics process can be described by Poisson statistics and is not time-dependent.
This means that the occurrence of an event is not determined by the events which were
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observed before. Therefore, no feedback loop which would take this into account is re-
quired.
This leads to feed-forward NNs having only connections between consecutive layers and
no connections to other layers.

Figure 5.1: Schematic representation of a feed-forward neural network: The nodes in each
layer are only connected to nodes in the subsequent layer. The input values xi

of nodes in the input layer correspond to values of input variables. After three
hidden layers follows the output layer. This contains one single output node
which provides the output value y(~x) of the neural network.

Nodes represent mathematical functions by which a single output o(~i) is derived from a set
of inputs ii provided by the inward connections of other nodes (figure 5.2). The obtained
output o(~i) is then forwarded to other nodes by outward connections.
Each connection to another node is associated with a weight factor wi. Therefore, first of
all, the product of input times weight factor ii · wi is computed for each connection in a
node. Afterwards, the products of all connections are added up, while a bias factor b is
added to the sum. Finally, an activation function f is applied to derive an output y(~x):

o(~i) = f
(∑

ii · wi + b
)
.

The bias factor is chosen to adjust the output o(~i) obtained by the function f . Often a bias
factor is chosen so that for data which fulfills a categorization an output o(~i) close to one
would be obtained, while for other data an output o(~i) close to zero would be observed.

For the activation function f mostly monotonically increasing and non-linear functions
which are easily differentiable are chosen. By chosing monotonically increasing activation
functions f it is taken into account that if two events have a large difference in their input
values this generally corresponds to the events being rather different. Therefore, such a
large difference in the initial input values xi should also result in quite different inputs ii
to the single nodes. Furthermore, this should lead to different outputs o(~i) obtained by
the single nodes and maybe a different overall output value y(~x) and categorization of the
two events.
Usually non-linear activation functions are employed since a combination of linear function
can be replaced by a single linear function by making use of simple arithmetic transforma-
tions. Therefore, in NNs containing more than one hidden layer linear activation functions
f would not constitute an advantage.
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The differentiability of the activation function f is mostly a requirement since the back-
propagation-of-error algorithm [122] [123] [124] is used in the training of a neural network
which presumes this.
For this reason, suitable activation functions would be e.g., the tangens hyperbolicus func-
tion or the exponential linear unit (ELU) function [125] which was applied throughout this
thesis.

Figure 5.2: Schematic representation of a neural network node: The node obtains inputs
ii by connections to other nodes. A weight factor wi is associated with each
connection. The products of input times weight factor ii · wi are added up.
Furthermore, a bias factor b is added to the sum. Afterwards by application
of an activation function f the output o(~i) is obtained. This output o(~i) is
forwarded to other nodes.

Training of neural networks

The finding of optimal weight factors wi and bias factors ~b requires – in analogy to a linear
discriminant – a training of the neural network. Again, this leads to the need for a training
dataset in which the categorization of single data is known. For example, the predicted
output value of a node in the output layer should be either one (single data belongs to
category defined by this node) or zero (single does not belong to category).

Generally, as a first step of the processing of input variables in an NN a transformation step
is introduced: For each input variable its distribution in the training dataset is determined
and a suitable transfer function with an associated scaling factor is derived. By application
of such transfer functions the values for each input variables are transformed, such that the
resulting distributions are virtually Gaussian. This is done to make sure that each input
variable has the same influence on the training. In this way, the data to be classified will
also be properly normalized and possible differences in the input variable distribution of
data and training data are mitigated. In strict terms this normalization is not necessary,
but it can improve the performance of the training [126].

Usually NNs are then trained by making use of the backpropagation-of-error algorithm
[122] [123] [124], while employing batch training: Out of the training dataset batches with
a given size n are randomly constructed. All single data contained in a batch is fed one
after the other into such an NN. The output value y(~x) of the NN is computed for each
single data and is compared to the known classification. Therefore, the obtained output
value y(~x) of an output node should be either one or zero. The deviation between the
obtained output value y(~x) and the expected output value ŷ(~x) is then determined for all
data in a batch by a loss function L(y(~x), ŷ(~x)). Possible loss functions L(y(~x), ŷ(~x)) are
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the euclidean distance

L(y(~x), ŷ(~x)) =
1

n

n∑
i

(ŷ(~x)− yi(~x))2 ,

or the cross entropy

L(y(~x), ŷ(~x)) =
1

n

n∑
i

(ŷ(~x) · ln yi(~x) + (1− ŷ(~x)) · ln (1− yi(~x))) .

The obtained output value y(~x) for a given single data not only depends on the input
variables but also on the applied weights wi and bias factors ~b as parameters of an NN.
Therefore, a optimization algorithm can be used to obtain the set of parameters leading
to the smallest loss function L(y(~x), ŷ(~x)). The optimization algorithm evaluates the loss
function for all data in a batch and determines new weights wi and bias factors ~b by a
gradient descent method. The weight change is then given by the partial derivative of the
loss function L(y(~x), ŷ(~x)) with respect to the corresponding weight

∆wi = −η · ∂L(y(~x), ŷ(~x))

∂wi
.

Here, the learning rate η was introduced. The learning rate η defines by which amount the
weights are adjusted per optimization step and should be suitably chosen. If the learning
rate η is too small the change of weight takes too long, if it is too large the weights can
fluctuate and will never reach an optimal value. Similarly, the bias factors ~b are adjusted.
Following this adjustment the next batch is employed for a further optimization of the NN
parameters. After all batches were used, the complete dataset has been used once for the
optimization. This is called an epoch.

Reference [127] showed that using the cross-entropy as loss function can yield an improved
performance of NNs compared to NNs trained by making use of the euclidean distance as
loss function. That is the reason why throughout this thesis the cross entropy is employed
as a loss function.

Nowadays, mostly stochastic gradient descent methods instead of gradient descent methods
are applied for the NN parameter optimization. The major difference is that stochastic
gradient descent methods approximate a gradient by computing gradients from single data
and update the parameter every time. An advantage of this class of optimizers is that they
usually obtain an optimized set of parameters faster. However, during the training the
value of the loss function L(y(~x), ŷ(~x)) can fluctuate heavily [128].
Among the most known of these methods is the Adam optimizer [129] which according
to [128] might be the best choice out of the generally available optimizers. This finding
was confirmed by own studies.
Therefore, in this thesis the Adam optimizer was employed.

Measures against overtraining

The training of an NN can lead to a so-called overtraining: By the training a NN should
learn the features provided by the training dataset. However, an NN cannot only learn
general features of the data but over time and after a few epochs it can also memorize
specific characteristics of the training dataset due to its usually large number of free pa-
rameters. In this way, it loses its generalization abilities. Such an NN would still show
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a continuously improving classification of the training dataset with each further epoch.
However, its performance on data it was not trained on would get worse and worse.

As a countermeasure the initial (training) dataset for which the classification of single data
is known is split into three datasets: A training dataset is still used to obtain an optimized
set of NN parameters. An additional validation dataset is not employed for optimization
but utilized to determine the performance of an NN after each epoch based on an per-
formance indicator. Furthermore, after the training of an NN is finished a test dataset is
employed for an unbiased check of the performance of the NN on an so far unused dataset.
The ROC integral stated later in this thesis is always derived from such a test dataset.

In general the ROC integral mentioned before is used as a performance indicator to spot
overtraining. For each epoch the ROC integral is determined for the training dataset and
the validation dataset. In the beginning of the training the ROC integral should consider-
ably increase with every epoch (figure 5.3). After a certain number of epochs the increase
in the ROC integrals typically slows down. With further epochs the ROC integral of the
training dataset will normally slightly improve. However, at some point the ROC integral
of the validation dataset will have reached a maximum and will decrease again. This is
considered as a sign that overtraining occurred and the NN has already partly lost its
generalization abilities. At latest now the training of the NN should be stopped.

A more promising measure against overtraining is early stopping. By early stopping the
training of an NN is stopped as soon as the improvement in proper classification and the
associated increase in the ROC integral of the validation dataset stagnates. It is assumed
that by a suitable choice of the early-stopping interval the training of a NN can already be
stopped before overtraining occurs. The early-stopping interval defines how many epochs
must have passed, in which the ROC integral of validation dataset has not improved, be-
fore the training is stopped.
An example of early stopping is shown in figure 5.3 for the reference neural network em-
ployed for the physics analysis in this thesis. Here, an early-stopping interval of 15 epochs
was chosen. The training stopped after 214 epochs since no improvement in the ROC in-
tegral of the validation dataset was observed since the 199th epoch. The NN configuration
of the 199th epoch is used later in the physics analysis.

Another measure against overtraining of NNs is regularization techniques. These are often
used in ill-posed optimization problems. In general the training of a complex classifier, like
an NN, is an underdetermined problem since such a classifier can have a large number of
free parameters, while the size of the training dataset is finite. Therefore, it is quite chal-
lenging to constrain all free parameters properly. By regularization techniques additional
information is provided during the training of classifier. In this way, the free parameters
can be better constrained. Furthermore, this approach usually leads to more homogenous
classification models since parameters having large values are suppressed. Therefore, large
fluctuations in the obtained output values of a classifier are less frequent. In this manner,
the classifier is also forced to keep its generalization abilities since single outliers of the
output values and corresponding single data have fewer influence on the overall training.
For NNs often weight decay, which is also termed L-regularization, is employed. Here, the
L refers to adding a coefficent to the linear model of the loss function L(y(~x), ŷ(~x)), so
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Figure 5.3: Example of the learning behaviour and of early stopping during the training
of a neural network: The training of the neural network used for the reference
physics analysis in this thesis is shown. In the beginning of the training the
classification performance, shown by the receiver-operator-curve (ROC) inte-
gral, is increasing strongly, while with increasing number of training epochs the
classification performance approaches a nearly constant value. The training of
the neural network is stopped, after the ROC integral the validation sample
has not increased for 15 epochs. The corresponding 199th epoch is shown by
a red line.

that the new loss function L′(y(~x), ŷ(~x)) would be:

L′(y(~x), ŷ(~x)) = L(y(~x), ŷ(~x)) +
λ

2
· ||wi||.

In this formula the regularization parameter λ and a norm for the weights wi of the NN
||wi|| was introduced. A suitable choice of the regularization parameter λ is necessary. The
regularization parameter λ should be large enough to enforce small individual weights wi,
so that overtraining will be avoided. Nonetheless, if the regularization parameter λ has
been selected too large, the learning of an NN and its adoption of to data is suppressed.
Furthermore, different kind of norms of the weights wi are conceivable. However, in most
cases the either L1- or L2-regularization is applied. The difference between the two schemes
is that either the absolute value of the weights (L1) or the square of the weights (L2) is
employed, so that the extended loss function becomes:

L′(y(~x), ŷ(~x)) = L(y(~x), ŷ(~x)) +
λ

2
·
∑
|wi| (L1-regularization),

or

L′(y(~x), ŷ(~x)) = L(y(~x), ŷ(~x)) +
λ

2
·
∑

w2
i (L2-regularization).

Since the change of weights wi is determined by the partial derivative of the loss function,
by L1-regularization the change of single weights as a function of the regularization term
is independent of the weight itself. Therefore, L1-regularization has the advantage that
it pushes more weights close to zero. However, according to [130] L2-regularization leads
to an overall better training performance, especially if pruning (will be discussed next) is
applied during the training.
Therefore, for the NNs employed in this thesis L2-regularization is used.

A pruning of NN parameters by the dropout method can lead to simpler NN models. In
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addition, it reduces the influence of single NN nodes on the overall output of a given NN.
If dropout is applied in the training of an NN, the output of a node o(~i) is set to zero for a
fraction d of randomly selected nodes. In this way, these nodes are virtually switched off
for the corresponding training epoch. The outputs of the remaining nodes is rescaled by
the factor 1

1−d , so that still the same output value for each single data should be obtained
as for an NN with all nodes being active. As before the loss function is evaluated and
the backpropagation-of-error algorithm employed to adjust the weights batch by batch
or per epoch. However, it is expected that an NN having better generalization abilities
is obtained by this kind of training. The reason for this is that the emergence of nodes
having a significant influence on the overall NN performance is suppressed. Furthermore,
the obtained NN should be less prone to statistical fluctuations of the training data.
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Motivation

Even more than 20 years after the discovery of the top quark at the Tevatron [98] [99] in
1995 the study and measurement of the tt̄+≥1b-jet signal processes, which in the context
of this thesis comprise of the tt̄+bb̄, tt̄+2b, and tt̄+b processes, is an important field
of study. The reason for this is that the description, calculation, proper simulation, and
determination of these processes is challenging. Furthermore, these processes enter many
other measurements done at the Large Hadron Collider as background processes.
A detailed motivation of the measurements and studies presented in this thesis will be
given in the following.

Description of the tt̄+≥1b-jet processes by Monte Carlo event generators:
Test of heavy-flavour production and Quantum Chromodynamics

Out of the various tt̄+X processes especially the description, calculation, and proper simu-
lation of the tt̄+≥1b-jet processes as well as their measurement is of special interest. It can
be seen as a crucial test of our understanding of the theory of Quantum Chromodynamics
(QCD) and the analysis methods usually applied to predict and measure a QCD process:
The tt̄+≥1b-jet processes provide a unique possibility to explore and study heavy-flavour
quark production since at least two top quarks and one bottom quark are involved in such
a process [131]. In the tt̄+≥1b-jet processes the associated dynamics of the heavy-flavour
quark production are very pronounced due to the at least four QCD vertices occuring in
the tt̄+bb̄ and tt̄+2b processes in leading-order of perturbation theory (LO). This also
leads to an α4

S-dependency of the corresponding cross sections. That is also the reason
why these processes are particularly sensitive to variations of the renormalization and
factorization scale. The related uncertainty on the tt̄+bb̄ cross section is in the order
of 70% − 80% at leading-order of perturbation theory [131]. According to [132, 133] the
scale factor between the leading-order and next-to-leading order (NLO) predictions of the
tt̄+bb̄ cross section is roughly k(NLO

LO ) ≈ 1.8 and, hence, quite large, while a rather large
30%− 35% uncertainty on the NLO tt̄+bb̄ cross section can be observed, too. This rather
large jump in the cross section from LO to NLO and the large uncertainty of the NLO
tt̄+bb̄ cross section can be seen as a sign that it is hard to describe the tt̄+bb̄ process and
the two other related tt̄+≥1b-jet processes properly in lower orders of perturbation theory
only. Proper simulations of the tt̄+≥1b-jet processes in higher orders of perturbation the-
ory considering the full phase space seem not feasible up to now. Furthermore, it appears
that more insight into suitable choices of the renormalization and factorization could be
beneficial for the tt̄+≥1b-jet processes [131].

Also the decision on energy scale values other than the renormalization and factorization
scale, like the scale of the matrix element and parton shower matching, represents a tough
choice: For the description and prediction of these processes by application of Monte Carlo
event generators multiple scales, spanning a wide energy range, have to be considered. As
an example of these different energy scales, the typical energy of the emerging bottom
quark system is roughly in the order of two to four times the bottom quark mass. Hence,
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it is far below the energy of pp → tt̄ production taking place at energies in the order of
two times the top quark mass [134]. As an effect of this scale dependency, in [135] it was
found that the choice of the value of the parton shower matching scale, used to match the
matrix element event generator output with a general-purpose event generator, can have a
significant impact on tt̄+≥1b-jet production. The cause for this is that gg→ bb̄ splittings
can be either described by matrix elements or by the parton shower of a general-purpose
event generator.

Based on all these reasons, various approaches to describe and simulate the tt̄+≥1b-jet
production in NLO precision by a combination of a matrix element event generator and
a general-purpose event generator are conceivable and were developed: In the first NLO
simulation of the tt̄+bb̄ process conducted by using the POWHEL+Pythia6 event gen-
erator [37, 136, 137] a five-flavour scheme (5FS) was applied together with the POWHEG
matching method [30,31]. In contrast to that, a Sherpa+OpenLoops result [135] obtained
with a four-flavour scheme (4FS) and the MC@NLO matching method [54, 138] proved
soon afterwards that a 4FS computation can describe the full phase-space of the bottom
quarks. For this reason it can deliver a more consistent description of the tt̄+≥1b-jet pro-
duction, while a description in the 5FS has to restrict the phase-space to avoid collinear
gg→ bb̄ singularities due to the massless bottom quarks [131].

A comparison of the integrated tt̄+≥1b-jet cross section predicted by the three event
generator combinations MG5aMC(NLO)+Pythia8 [29, 38, 139, 140], POWHEL+Pythia8
[38, 139, 141, 142], and Sherpa+OpenLoops [143–145], demonstrated excellent agreement
between the POWHEL+Pythia8 and Sherpa+OpenLoops event generators. However,
the MG5aMC(NLO)+Pythia8 event generator yielded a roughly 30% larger integrated
tt̄+≥1b-jet cross section and showed a stronger dependency on the chosen parton shower
matching scale. This result is shown in figure 5.4 and was published among further
tt̄+≥1b-jet related studies as part of the fourth volume of the Handbook of LHC Higgs
Cross Sections [47]. The observed difference is striking since both the MG5aMC(NLO)
and Sherpa matrix element generator employ a 4FS for the computation, while POWHEL
makes use of a 5FS computation. Nonetheless, in principle, good agreement between the
different event generators using NLO perturbation theory would be expected. One can
conclude from this that even today the simulation of the tt̄+≥1b-jet production is afflicted
by uncertainties related to the choice of a specific event generator and the resulting un-
certainty on its proper description of the tt̄+≥1b-jet production.

A recently published paper [131], which was used as the major reference for this part of the
chapter, assesses the theoretical uncertainties in the tt̄+≥1b-jet production further from a
theoretical point of view by providing new Monte Carlo comparison studies. It mentions
also a new POWHEG generator for the 4FS tt̄+≥1b-jet production, which was not yet
available for own tests at the time of writing this thesis.

However, the two NLO tt̄+≥1b-jet-production comparison-studies mentioned so far lacked
a comparison with data, while the agreement between data and a Monte Carlo simulation
of the tt̄+≥1b-jet processes should be considered the final test of the quality of a Monte
Carlo event generator.
For this reason, in the measurement presented in part IV the POWHEG+Pythia8 event
generator combination is applied to describe all tt̄+X processes including the tt̄+≥1b-jet
ones at reconstruction level. In this way, the prediction of the POWHEG+Pythia8 event
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generator for the tt̄+≥1b-jet signal processes can be compared to data at reconstruction
level.
In part VI the POWHEG+Pythia8 prediction of the tt̄+≥1b-jet processes is compared to
tt̄+≥1b-jet predictions by the MG5aMC(NLO)+Pythia8 and Sherpa+OpenLoops event
generator to provide more insight on the differences between the tt̄+≥1b-jet modeling of
different event generators. This comparison is also done at reconstruction level by making
use of events which have passed the selection and object-reconstruction steps described in
chapter 7.

pp → tt̄bb̄@ 13TeV

L
H
C
H
IG

G
S
X
S
W

G
20

16

Sherpa+OpenLoops

MG5aMC@NLO

PowHel+PY8
NLO

1 2 3 4

10−2

10−1

1

10 1

10 2

Inclusive b-jet multiplicity distribution

Nb−jets

σ
[p
b
]

1 2 3 4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Nb−jets

σ
/

σ
S
h
er
p
a
+
O
p
en

L
o
o
p
s

1 2 3 4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Nb−jets

σ
/

σ
M
G
5
a
M
C
@
N
L
O

1 2 3 4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Nb−jets

σ
/

σ
P
o
w
H
el
+
P
Y
8

Figure 5.4: Predictions of the integrated NLO tt̄+≥1b-jet production cross section: The
integrated NLO tt̄+≥1b-jet cross section is presented for the MG5aMC(NLO)
+Pythia8, POWHEL+Pythia8, and Sherpa+OpenLoops event generators as
well as for a fixed-order NLO computation in inclusive bins considering events
with different numbers of b-tagged jets. In the three ratio plots one normalized
event generator prediction is compared to the other ones and to the fixed-
order NLO computation, in addition its scale variation band is shown. Taken
from [47].
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Distinction between the tt̄+≥1b-jet processes:
Dependency on the chosen b-tagging settings and the applied Monte Carlo
event generators

The classification of events as belonging to one of the three processes tt̄+bb̄, tt̄+2b, and
tt̄+b, which together form the tt̄+≥1b-jet process, depends strongly on how heavy-flavour
jets at particle level (“gen-jets”) are defined, identified and mapped to bottom hadrons.
Therefore, different kinds of migrations of events between these three process classes can
occur:
For example, by raising or lowering the threshold of the minimum transverse momentum
pT required for a gen-jet, an event can contain more or fewer b-tagged gen-jets. In this
way, by increasing the pT threshold an event considered a tt̄+bb̄ event can become a tt̄+b
event. Similarly, the change of the value of the anti-kT jet clustering algorithm [87] or
even using another jet clustering algorithm could lead to a different categorization of an
event. As an example, an event formerly classified as a tt̄+b event can mutate to a tt̄+2b
event if the anti-kT jet clustering value is raised from 0.4 (the value used in this thesis)
to a slightly larger value because then an additional bottom hadron could become part of
this gen-jet.
Some further modifications of the gen-jet definition or their mapping to bottom hadrons
are conceivable which could lead to an alteration of the event classification (Ref. [146] con-
tains a few examples). Therefore, the distinction between the tt̄+≥1b-jet processes must
always be viewed in the context of the heavy-flavour identification applied in the corre-
sponding analysis. The heavy-flavour identification employed in this thesis is described in
section 6.4.

Besides the dependency of the tt̄+≥1b-jet classification on the heavy-flavour identification
settings, also the choice of the Monte Carlo event generator applied for the tt̄+≥1b-jet
production can lead to a change in the fractions of the tt̄+≥1b-jet process classes.
In the fourth version of the Handbook of LHC Higgs Cross Sections [47] it was shown,
for example, that the ∆R distribution between the first and second b-tagged jet, which
describes the distance between these two jets, can be quite different for a tt̄+≥1b-jet pro-
duction using either one of the three aforementioned event generators MG5aMC(NLO)
+Pythia8, POWHEL+Pythia8, and Sherpa+OpenLoops. Also here, MG5aMC(NLO)
+Pythia8 predicts a quite different differential distribution, while comparing POWHEL
+Pythia8 and Sherpa+OpenLoops still sizable differences can be observed, too, as ap-
parent from figure 5.5. Similar findings were also presented in [146] and in addition it
was found that already large differences in the ∆R distribution for bottom hadrons can
occur if different Monte Carlo event generators are compared. The observed difference
seems to be caused mainly by the chosen general-purpose event generator. Furthermore,
the differences smear out if jet clustering is applied and the b-tagged jet distributions are
compared, which is also expected.
Analogue to the direct influence of the b-tagging settings, such deviations in differential
distributions related to the b-tagging of jets and caused by different Monte Carlo gener-
ator predictions can also result in an uncertain distinction between the three tt̄+≥1b-jet
process classes. Similar to the earlier example, a change in the ∆R distance between two
bottom hadrons and corresponding b-tagged jets of an imaginable event could lead to a
mutation of an event considered as a tt̄+bb̄ event to a tt̄+2b event since one of the bottom
hadrons and associated b-tagged jets then would become part of the other jet.

In figure 5.6 an exemplary differentiation between the three tt̄+≥1b-jet processes is shown
by using the tt̄+X samples employed in this thesis (section 6.4): In this figure the ∆R
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value of the b-tagged jet pair with the smallest ∆R value (DR of b-jets w/ min. DR) dis-
tribution is presented for the three processes. A detailed description of this event variable
which is also employed as input variable of multivariate classifiers in this thesis can be
found in section 9.2.
The observable difference in the DR of b-jets w/ min. DR distribution between the tt̄+bb̄
process and the other two processes can be attributed to the at least two b-tagged jets
which occur in tt̄+bb̄ events, while in tt̄+2b events and tt̄+b events only one additional
b-tagged jet can emerge per definition: Due to the additional b-tagged jets the minimal
distance between b-tagged jets becomes smaller.
As mentioned previously, a change in the ∆R distance chosen for the jet clustering would
alter the differentiation between the three processes and, hence, the distribution shown in
figure 5.6.

Even though the distinction between the tt̄+≥1b-jet process classes is afflicted by the afore-
mentioned imponderabilities a differentiation of them is of particular importance since the
underlying Feynman diagrams and interactions describing the production of events of
these three process classes can be quite different (section 6.4). Especially, in the case of
tt̄+b events different origins are possible: tt̄+b events can originating from explicit tt̄+b
Feynman diagrams, but they can also arise from tt̄+bb̄ or tt̄+2b Feynman diagrams and
subsequent simulations, in which one additional bottom hadron was not identified at par-
ticle level for different reasons.

A detailed and individual study of the three process classes can, therefore, provide valuable
insight into the tt̄+≥1b-jet production mechanisms and their description by Monte Carlo
event generators. For this reason, by using neural networks a multivariate analysis method
allowing a multiclassification and individual study of single tt̄+≥1b-jet process classes is
introduced in this thesis.
In part V the three tt̄+≥1b-jet processes will be measured individually but simultane-
ously. The obtained signal strength r(observed) for each of these three process classes
(tt̄+bb̄, tt̄+2b, tt̄+b) will be compared to the signal strength r(expected) predicted by
the POWHEG+Pythia8 event generator. Furthermore, the cross section σ of these three
process classes will also be determined, while the joint tt̄+≥1b-jet signal strength r and
cross section σ will be already obtained by the first measurement (section 11.7 of part IV).
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Figure 5.5: Predictions of the ∆R value of the first and second b-tagged jet: The ∆R
value of the b-tagged jets having the largest and second largest pT value is
presented for the MG5aMC(NLO)+Pythia8, POWHEL+Pythia8, and Sherpa
+OpenLoops event generator as well as for a fixed-order NLO computation. In
the three ratio plots one normalized event generator prediction is compared to
the other ones and to the fixed-order NLO computation, in addition its scale
variation band is shown. Taken from [47].
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Figure 5.6: Example of the differentiation between the three tt̄+≥1b-jet processes: The
∆R value of the b-tagged jet pair with the smallest ∆R value (DR of b-jets
w/ min. DR) distribution is presented for the three processes. A detailed
description of this event variable can be found in section 9.2.
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Importance of the tt̄+X and particularly the tt̄+≥1b-jet processes as back-
ground processes for various other LHC analyses

In many Standard Model (SM) and Beyond Standard Model (BSM) analyses conducted
at the Large Hadron Collider (LHC) the tt̄+X processes can constitute a non-negligible
and often important background – among others – to the actual signal process of interest.
The major reason for this can be seen in the dominant production of many processes of
interest by QCD at the LHC energies due to the hard partonic interactions of the pro-
tons in the initial state and since also the production of tt̄+X processes is dominanted by
QCD. Meanwhile, Quantum Electrodynamics (QED) corrections in next-to-leading order
of perturbation theory contribute only less than 5 % to the overall tt̄ production [147].
Furthermore, reference [148] found that the effects of electroweak corrections are very small
as far as the total tt̄ cross section is concerned.

An example of a signal search, which is plagued by the tt̄+X background is the search for
the Higgs boson production in association with a top quark pair (pp → tt̄H). Meanwhile,
the study of the tt̄H production presents an important remaining test of the SM predic-
tions since these searches allow direct access to the Top-Higgs-Yukawa coupling. This
coupling represents the strongest coupling of the Higgs boson to any of the SM fermions
because the Higgs boson couples corresponding to the mass of the fermion. Up to now the
Top-Higgs-Yukawa coupling could be only indirectly assessed and constrained from the
study of the other Higgs production and decay modes (H→ γγ) described by the SM.
Recently, a combination of the searches of the tt̄H production including various Higgs
decay modes lead to 5.2σ observation of the tt̄H process by the CMS collaboration with
a measured signal strength r(observed) of 1.27+0.32

−0.27 [111], while the ATLAS collaboration
found 4.2σ evidence for the tt̄H production end of last year [113] (a short review of these
measurements will be given in part III).
An increased tt̄H signal strength r and related Top-Higgs-Yukawa coupling strength could
hint at new physics, while the tt̄H process can be also used to determine the CP-structure
of the coupling [82]. Therefore, it is certain that even after its recent observation the tt̄H
process will remain an interesting object of study and will attract further attention.

Out of the various Higgs boson decay modes, which can be considered as part of the tt̄H
search and process study, the Higgs boson decay into a bottom quark pair (H→ bb̄) is of
special interest since it has the largest branching fraction of all Higgs decays with roughly
58 %. The next largest branching fraction is roughly 6.3 % for the Higgs boson decay to
a tau lepton pair [47].
However, the larger statistics of the H → bb̄ decay mode come on a price: The tt̄H(bb̄)
analysis suffers from large tt̄ background, about 1600 times larger than the tt̄H signal,
and especially an irreducible tt̄+bb̄ and tt̄+2b background. The cause of the irreducible
background is that the tt̄H(bb̄) and the tt̄+bb̄ process as well as the tt̄+2b process can
share the same final state with the only difference being that the additional bottom quarks
and associated b-tagged jets either originate from the Higgs boson or from gluon radiation
(cf. figures 6.1 and 4.3).

Due to the uncertainties on the proper simulation of the tt̄+≥1b-jet production by Monte
Carlo event generators and the ambiguous distinction between the tt̄+≥1b-jet processes
discussed before, the treatment of these irreducible backgrounds in the tt̄H(bb̄) analyses
gets even more complicated, while the treatment of these uncertainties differs between the
ATLAS and CMS collaboration: For an improved description of the tt̄+X background
both the ATLAS collaboration in their tt̄H(bb̄) analysis, making use of the 2015 and 2016
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data with a total luminosity of L = 36.1 fb−1 [114], and the CMS collaboration in their
corresponding tt̄H(bb̄) analysis, which only used the 2016 data corresponding to a lumi-
nosity of L = 35.9 fb−1 [115], split the tt̄ process into tt̄+X sub processes. In this way,
smaller uncertainties for the better understood tt̄+lf process can be applied, while larger
individual uncertainties can be attributed to the tt̄+hf processes (including the tt̄+cc̄ pro-
cess).
However, even in the way of tt̄+X process splitting and the defined tt̄+X process classes
both analyses differ. In the ATLAS tt̄H(bb̄) analysis a ∆R matching is applied with a ∆R
value of ∆R = 0.4 and a transverse momentum cut of pT = 5 GeV on the jets to derive six
tt̄+X process classes. These process classes are defined analogously to the process class
definition outlined in section 4.5 with the major difference that an additional tt̄+≥3b-jet
class is introduced. In comparison to that the CMS tt̄H(bb̄) analysis makes use of the
ghost hadron matching (see [149]) and considers tt̄+≥3b-jet events in the tt̄+bb̄ process
class. This split of the tt̄ process into tt̄+X sub processes by the CMS collaboration is
explained in more detail in section 6.4.
Furthermore, the two collaborations apply different systematic uncertainties related to the
modeling of the tt̄+hf processes in their analysis, which cannot be discussed here in detail.
One major difference between the two analysis is that in the ATLAS tt̄H(bb̄) analysis the
events in the tt̄+≥1b-jet process classes, which were obtained quite similar to the CMS
approach from a 5FS inclusive tt̄ simulation using the POWHEG+Pythia8 event gener-
ator, are rescaled to match the predictions of an NLO tt̄+bb̄ sample originating from a
4FS tt̄+bb̄ Sherpa+OpenLoops simulation. A comparison of the relative fractions pre-
dicted by the POWHEG+Pythia8 and the Sherpa+OpenLoops event generator is shown
in figure 5.7. The 4FS tt̄+bb̄ Sherpa+OpenLoops simulation should in principle pro-
vide tt̄+≥1b-jet events, and particularly tt̄+≥3b-jet events, with a higher precision. But it
comes with the drawback that tt̄+lf events are not included and the simulation itself is com-
putationally quite expensive in comparison to possible POWHEG+Pythia8 or MG5aMC
(NLO)+Pythia8 simulations. Therefore, the sole use of such a 4FS tt̄+bb̄ Sherpa+Open
Loops sample was not an option for the CMS analysis. Moreover, the CMS collaboration
decided against a rescaling of their 5FS POWHEG+Pythia8 tt̄+≥1b-jet events with such a
sample since this kind of rescaling changes the relative fractions of the tt̄+≥1b-jet process
classes described by the POWHEG+Pythia8 sample. For this reason it could introduce
additional systematic uncertainties which are difficult to specify. However, in the CMS
analysis an additional 50% uncertainty for each of the four tt̄+hf process class is applied,
which is considered a conservative treatment of the related uncertainties and is assumingly
too large.

In the first measurement presented in this thesis (part IV), the tt̄+≥1b-jet signal strength
r and its associated overall uncertainty ∆r is determined using an analysis setup similar
to the CMS tt̄H(bb̄) analysis. The aim is to derive a better estimate of the uncertainty on
tt̄+≥1b-jet production and to provide this as an input for a future CMS tt̄H(bb̄) analysis.
Apart from this, in the linear discriminant based and neural network based reference anal-
yses, delivering the major results presented in this thesis, besides the tt̄+X processes the
tt̄H process is considered as an individual process class in the multiclassification. In this
manner, not only the signal-to-background separation of the present analyses could be im-
proved, but this developed approach makes it also possible to determine the signal strength
of the tt̄+≥1b-jet processes and the tt̄H process simultaneously. This is demonstrated in
part V.
In a future analysis this simultaneous measurement could reduce the dependency on a
proper modeling of the tt̄+≥1b-jet processes for the determination of the tt̄H signal. The
ATLAS tt̄H(bb̄) measurement already employs a rather similar approach: In this measure-
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ment the normalization of the tt̄+≥1b-jet processes as well of the tt̄+cc̄ processes is left
freely floating. To derive the uncertainty on the tt̄H signal strength, with the exception of
these two normalization factors all nuisance parameters are fixed by a Maximum-Likelihood
(ML) fit. However, the signal strength of the tt̄+≥1b-jet process or the tt̄+cc̄ process is
not derived.
Meanwhile, in section 11.6 of part IV the influence of including or neglecting the tt̄H pro-
cess as a process class in the neural network analysis will be discussed.
In part VI – as mentioned before – the tt̄+≥1b-jet predictions of the POWHEG+Pythia8
event generator are compared to predictions by the MG5aMC(NLO)+Pythia8 and Sherpa
+OpenLoops event generator. These studies maybe can also provide helpful insight for
the future choice of a Monte Carlo event generator applied to describe the tt̄+≥1b-jet
processes in a future tt̄H(bb̄) analysis.

Figure 5.7: Prediction of the relative fractions of the tt̄+≥1b-jet process classes: The rel-
ative fractions of the tt̄+≥1b-jet process classes, according to their definition
in the ATLAS tt̄H(bb̄) analysis, are compared between the predictions of the
POWHEG+Pythia8 and the Sherpa+OpenLoops event generator. In addi-
tion, the systematic uncertainties considered for the Sherpa+OpenLoops event
generator are shown as an uncertainty band. The shown tt̄+B process class
corresponds to the tt̄+2b process class in this thesis. Taken from [150].
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Application of neural network based classification considering different tt̄+X
process classes

In experimental particle physics multivariate statistical analysis [117] and its related tech-
niques are essential workhorses in many cases. By making use of multiple input variables
they produce output variables or final discriminants with a better separation between sig-
nal and background than would be obtained from the application of single variables.
Multivariate analysis (MVA) methods and also neural networks were used in a significant
number of particle physics publications since the 1980s and the early 1990s [151–158],
while at first they were mostly applied to improve identification of physics objects and
reconstruction of events and less to produce final discriminants. At the Large Electron-
Positron Collider (LEP) MVA methods were already established as a tool set of heavy
quark physics [159].
Later on, the application of neural networks as a final classifier for a particle physics anal-
ysis became more often. For example, in the Run 2 of the Tevatron the CDF collaboration
used neural networks provided by the Neurobayes neural network package [160], while by
the DØ collaboration at the Tevatron and in the first years of the LHC other MVA meth-
ods like (boosted) decision trees [161, 162] were still more commonly employed. In this
context the “Measurement of the Cross Section for tt̄ Production in pp Collisions using the
Kinematics of Lepton+Jets Events” analysis [163] conducted by the CDF collaboration at
the Tevatron and employing neural networks is worth mentioning because it can be seen
as a predecessor of the physics analysis presented in this thesis.

Nonetheless, it can be correctly stated that only from roughly 2015 on the time was ripe
for a rediscovery of neural networks as MVA techniques and, especially, a widespread ap-
plication of deep learning techniques in particle physics and also in industry which is still
picking up momentum. In 2015, the TensorFlow open-source software library [164] was re-
leased by Google, which provided a rather easy framework to adopt deep1 neural networks
in various software projects. In the same year, the NVidia company entered the deep
learning market [165] by releasing the seventh version of the NVidia CUDA programming
platform which allowed to run TensorFlow and other frameworks providing artificial neural
networks on a graphical processing unit (GPU). The straightforward parallelization of the
steps needed to train neural networks on a GPU, which is provided by TensorFlow and
other frameworks by abstraction of more complex steps, can be seen as a breakthrough and
the ignition of an upcoming new era of computing which is expected to provide artificial
intelligence computing to a wide scope of application [166,167].

In particle physics the adoption of new technologies and implementation of state-of-the-art
techniques has a long history. It was generally driven by the quest for an improvement of
the precision of physics measurements as demonstrated by outlining the adoption of the
first multivariate analysis techniques above.
Another example is the replacement of the CSVv1 b-tagging algorithm [168], which is
relying on a likelihood ratio to combine various basic event variables to a b-tagging value
for a jet and which was applied in LHC Run 1 as the default algorithm by the CMS col-
laboration, with the CSVv2 b-tagging algorithm [169]. The CSVv2 algorithm uses rather
simple neural networks instead and was replaced by the DeepCSV b-tagging algorithm [90]
during the LHC Run 2, based on more complex neural networks and including more event

1The term of a deep neural network is not generally defined. But usually feed-forward neural networks
containing at least a few hidden layers or more complex convolutional neural networks are considered
deep neural networks. In the context of this thesis the term “neural network” without the addition
“deep” will be used and refers to feed-forward networks.
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information. From figure 5.8 it is evident that the application of a more elaborate neu-
ral network and the possibility to include further event information improves both the
b-tagging efficiency as well as the efficiency of tagging charm jets.

Figure 5.8: Comparison between the performance of different jet tagging algorithms ap-
plied by the CMS collaboration: In the left plot, the b-tagging efficiency of the
three jet taggers CSVv2, DeepCSV, cMVAv2 is compared, while in the right
plot their c-tagging efficiency is shown. Curves tending to the right present a
better jet tagging efficiency. Taken from [90].

In this thesis, a neural network based analysis, which relies on the TensorFlow open-source
software library, is introduced to measure the tt̄+≥1b-jet signal strength r. As part of this,
a neural network is used for a multiclassification of the tt̄+X processes as well as of the
tt̄H background. To my knowledge it is one of the first analyses using multiclassification
for a tt̄+≥1b-jet measurement.
The multiclassification approach is motivated by the expectation that a simultaneous
classification of the individual tt̄+X processes leads to a better separation between the
tt̄+≥1b-jet signal processes and the tt̄+cc̄, tt̄+lf, tt̄H background processes and, hence, a
better precision of a tt̄+≥1b-jet signal strength measurement. Moreover, the multiclassi-
fication and the associated determination of multiple process classes enables to consider
either a single process class or a combination of quite a few process classes as signal process
during a Maximum-Likelihood fit providing the final signal strength r.
Hence, a plurality of new signal strength measurements and further studies are conceivable.
Three of these various possibilities are exploited in this thesis: In part IV a measurement
of the tt̄+≥1b-jet signal strength is presented, while in part V signal strengths of single
process classes are obtained by a simultaneous measurement.
In the context of the variety of new opportunities due to the multiclassification, these mea-
surements and the related studies can also be seen as a trailblazer and part of a possibly
upcoming flood of new physics analyses making use of multiclassifying neural networks.
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Review of past tt̄+≥1b-jet and
tt̄+bb̄ measurements
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Review of past tt̄+≥1b-jet and tt̄+bb̄
measurements

In the following a selection of past tt̄+≥1b-jet and tt̄+bb̄ measurements will be reviewed.
Only measurements which were conducted at the Large Hadron Collider and which contain
a dedicated result for either the tt̄+≥1b-jet or the tt̄+bb̄ process were selected.
After the presentation of the single measurements a summary and comparison of these
measurements will be given. The measurements will be also compared to the measurements
presented in this thesis.

Measurement of fiducial cross sections for tt̄ production with one or two ad-
ditional b-jets in pp collisions at

√
s = 8 TeV using the ATLAS detector

This measurement [170] was conducted by the ATLAS collaboration. It makes use of an
integrated luminosity of L = 20.3 fb−1 which was obtained at a center-of-mass energy of√
s = 8 TeV. As part of this measurement two tt̄+≥1b-jet fiducial cross sections were

extracted by a binned profile likelihood fit: One tt̄+≥1b-jet fiducial cross section is derived
from a semileptonic measurement, in which exactly one lepton and at least five jets, two
of which must fullfill a b-tagging criterion, are required. A set of isolation criteria with
an efficiency of 90 % is used for electrons, while for muons a 97 % efficient set of selection
criteria is used. The second tt̄+≥1b-jet fiducial cross section is obtained from a dileptonic
measurement, in which exactly two leptons and at least three jets, two of which are b-
tagged, are required. The summary of the main event selection is also shown in table 5.1.

Table 5.1: Summary of the main event selection criteria applied in the ATLAS tt̄+≥1b-jet
measurement: The requirements of the semileptonic and dileptonic measure-
ment of the tt̄+≥1b-jet fiducial cross section are presented. Values taken
from [170].

Requirement tt̄+≥1b-jet semileptonic tt̄+≥1b-jet dileptonic

Nleptons 1 2
Electron iso. efficiency 90 % 90 %
Muon iso. efficiency 97 % 97 %
Njets ≥ 5 ≥ 2
Nb-tagged jets ≥ 2 ≥ 2

For the simulation of the tt̄ signal events the POWHEG Box Version 1 next-to-leading order
(NLO) matrix event generator [30,31,171] interfaced to the Pythia6 general-purpose Monte
Carlo generator [38] was applied. The tt̄ events were renormalized to the inclusive cross
section obtained from a next-to-next-to-leading order (NNLO) QCD calculation which
included resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms
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and which was done with the TOP++ program [172–177].

From both measurements a tt̄+≥1b-jet fiducial cross section was observed which is higher
than the predicted cross section of the POWHEG+Pythia6 sample. For the semileptonic
measurement an observed signal strength of r(observed) = 1.32 was found and for the
dileptonic an observed signal strength of r(observed) = 1.30. Due to the higher acceptance
times branching ratio in the semileptonic decay channel, the total measurement uncertainty
of ∆r ≈ 25% is smaller than the total measurement uncertainty of ∆r ≈ 32% obtained
in the dileptonic decay channel. In the semileptonic measurement major uncertainties are
uncertainties related to the b-tagging of charm jets(+16.2 %, –13.4 %), the total modelling
of the tt̄ event content (+13.1 %, –13.7 %), and to the modelling of the parton shower
and hadronisation (+11.4 %, –12.1 %). In comparison to that, major uncertainties in the
dileptonic measurement are the total modelling of the tt̄ event content (+23.8 %, –16.1 %),
generator uncertainties (+23.3 %, –15.1 %) as well as the statistical uncertainty (+19.2 %,
–17.9 %).

Besides the determination of the tt̄+≥1b-jet signal strength and cross section, also an tt̄+bb̄
fiducial cross section was measured using the dileptonic decay channel and two different
approaches. In the first cut-based approach tight selection criteria were applied, while in
the second fit-based approach a looser selection was employed allowing the extraction of
the background normalisation from data. In both analyses it was required that the mass of
the two leptons is above 15 GeV and for opposite-sign, same-flavour leptons an additional
cut of ±10 GeV around the Z0 boson mass was applied. A summary of the main event
selection criteria of the two tt̄+bb̄ measurements is given in table 5.2.

Table 5.2: Summary of the main event selection criteria applied in the ATLAS tt̄+bb̄
measurement: The requirements of the cut-based and fit-based measurement of
the tt̄+bb̄ fiducial cross section are presented. Values taken from [170].

Requirement tt̄+bb̄ cut-based tt̄+bb̄ fit-based

Nleptons 2 2
Electron iso. efficiency 98 % 98 %
Muon iso. efficiency 97 % 97 %
mll > 15 GeV Yes Yes
|mee/µµ − 91 GeV| > 10 GeV Yes Yes
Njets ≥ 4 ≥ 4
Nb-tagged jets ≥ 4 ≥ 2

The fiducial cross sections obtained from the two tt̄+≥1b-jet measurements as well from
the tt̄+bb̄ measurements are presented in table 5.3.
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Table 5.3: Summary of the measured fiducial cross sections in the ATLAS tt̄+≥1b-jet
and tt̄+bb̄ measurement: The observed cross sections σ(obs.) and predicted
cross sections σ(pred.) are taken from [170]. The measured signal strength
r(observed) is calculated out of these two cross sections.

Analysis σ(obs.) [fb] σ(pred.) [fb] r(observed)

stat. syst.

tt̄+≥1b-jet semileptonic 950 ±70 +240
−190 720 1.32+0.43

−0.36

tt̄+≥1b-jet dileptonic 50 ±10 +15
−10 38 1.32+0.65

−0.53

tt̄+bb̄ cut-based 19.3 ±3.5 ±5.7 12.3 1.57+0.75
−0.75

tt̄+bb̄ fit-based 13.5 ±3.3 ±3.6 12.3 1.10+0.56
−0.56
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Measurement of tt̄ production with additional jet activity, including b quark
jets, in the dilepton decay channel using pp collisions at

√
s = 8 TeV

This measurement [178] was conducted by the CMS collaboration in the dileptonic decay
channel. It makes use of an integrated luminosity of L = 19.7 fb−1 which was obtained
at a center-of-mass energy of

√
s = 8 TeV. As part of this measurement differential

distributions of the tt̄+≥1b-jet and the tt̄+bb̄ cross section were derived in the visible
phase space of the additional b-tagged jets and in the full phase space of the tt̄ system.
For the simulation of the nominal tt̄ signal events the MG5aMC(LO) matrix event genera-
tor [179] interfaced to the MadSpin package [180] and the Pythia6 general-purpose Monte
Carlo generator [38] was applied. The tt̄ events were renormalized to the inclusive cross
section from a next-to-next-to-leading order (NNLO) QCD calculation which included re-
summation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms and which was
done with the TOP++ program [172–177]. In addition, further Monte Carlo event gen-
erators were employed to produce additional tt̄ samples, so that the predictions of these
event generators could be compared to the obtained result at particle-level: MC@NLO [54],
POWHEG Box Version 1 [31], and MG5aMC(NLO) [29] which were either interfaced with
Pythia6 [38] or Herwig6 [181].

The measurement found that the observed tt̄+≥1b-jet signal strength r(tt̄+≥1b-jet, observed)
and associated tt̄+≥1b-jet cross section is roughly 1.3 times larger than the signal strength
r(expected) predicted by the MG5aMC(LO) or POWHEG Box Version 1 event generator.
The tt̄+bb̄ cross section is underestimated by a factor 1.8 by both event generators.
No uncertainties on these estimates of the observed tt̄+≥1b-jet and of the observed tt̄+bb̄
signal strength are given in this publication.

The dominant systematic uncertainties in this measurement are the b-tagging efficiency
(up to 20 %), the jet-energy scale (JES, up to 15%), and the variation of the renormaliza-
tion and factorization scale (8 %).
In figure 5.9 the tt̄+≥1b-jet differential cross sections as a function of the transverse mo-
mentum pT and the absolute pseudorapidity |η| of the leading additional b-tagged jet are
shown as an example.
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Figure 5.9: Differential cross section distributions of the CMS tt̄+≥1b-jet measurement:
The differential tt̄+≥1b-jet cross section is given as a function of the transverse
momentum pT (left plot) and of the absolute pseudorapidity |η| of the leading
b-tagged jet. Data are compared with predictions from MG5aMC(LO) inter-
faced with Pythia6, MC@NLO interfaced with Herwig6, and POWHEG Box
Version 1 interfaced with Pythia6 and Herwig6, normalized to the measured
inclusive cross section. The inner (outer) vertical bars indicate the statisti-
cal (total) uncertainties. The lower part of each plot shows the ratio of the
predictions to the data. Taken from [178].
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Measurements of tt̄ cross sections in association with b jets and inclusive jets
and their ratio using dilepton final states in pp collisions at

√
s = 13 TeV

This measurement [182] was conducted by the CMS collaboration in the dileptonic decay
channel. It makes use of an integrated luminosity of L = 2.3 fb−1 which was obtained at a
center-of-mass energy of

√
s = 13 TeV. As part of this measurement the tt̄+bb̄ and tt̄+j̄j

cross section were derived in the visible phase space, defined as events having two leptons
with pT > 20 GeV and |η| < 2.4, plus at least four jets, including at least two b-tagged
jets. Furthermore, the two cross sections were measured in the full phase space, corrected
for acceptance and branching fractions.

For the simulation of the nominal tt̄ signal events the POWHEG Box Version 2 matrix
event generator [30,31,171] interfaced to the Pythia8 general-purpose Monte Carlo gener-
ator [37, 183] was applied. The tt̄ events were renormalized to the inclusive cross section
from a next-to-next-to-leading order (NNLO) QCD calculation which included resumma-
tion of next-to-next-to-leading logarithmic (NNLL) soft gluon terms and which was done
with the TOP++ program [177]. In addition, further matrix element event generators
were employed to produce additional tt̄ samples for cross checks and studies of systematic
uncertainties: MG5aMC(LO) [179] and MG5aMC(NLO) [29] which were also interfaced
with Pythia8.

For the discrimination between the tt̄+bb̄ and tt̄+j̄j events the CSVv2 b-tagging discrimi-
nators [168] of the third and fourth leading jets are applied, which are shown in figure 5.10.

The measurement found an inclusive tt̄+bb̄ cross section of σ(tt̄+bb̄) = 0.088±0.012(stat.)±
0.029 (syst.) pb and a tt̄+j̄j cross section of σ(tt̄+j̄j) = 4.0± (stat.)0.6± 1.3(syst.) pb in
the visible phase space. The individual cross sections were also determined for the full
phase space: σ(tt̄+bb̄) = 4.0 ± 0.6(stat.) ± 1.3(syst.) pb and σ(tt̄+j̄j) = 184 ± 6(stat.) ±
33(syst.) pb. The measured cross sections σ(tt̄+bb̄) and σ(tt̄+j̄j) as well as the predictions
by the POWHEG Box Version 2 event generator are also given in table 5.4.
By a comparison of the observed and predicted tt̄+bb̄ cross section σ(tt̄+bb̄) it can be
concluded that the POWHEG event generator underestimates the tt̄+bb̄ cross section by a
factor of ≈ 1.26 in the visible phase space and by a factor of ≈ 1.25 in the full phase space.
Similarly to the other measurements, the dominant uncertainties of this measurement are
related to the b-tagging of jets (up to 19 %), the dependency on the chosen scale in the
parton shower (13 %), the dependency on the applied Monte Carlo event generator (9.4
%), and the jet-energy scale and jet-energy resolution (7.8 %).
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Figure 5.10: Distributions of the CSVv2 b-tagging discriminators for the third (top) and
fourth (bottom) leading jets in decreasing order of b-tagging discriminator
value. The points show the data and the stacked histograms are from sim-
ulated events, normalized by the results of the fit. The ratio of the number
of data events to the expected number, as given by the stacked histograms,
is shown in the lower panels. The hatched region indicates the modelling
uncertainty in the MC simulation. Taken from [182].

Phase space Obs./Pred. σ(tt̄+bb̄) [pb] σ(tt̄+j̄j) [pb]

Visible Observed 0.088± 0.012± 0.029 3.7± 0.1± 0.7
Visible POWHEG 0.070± 0.009 5.1± 0.5

Full Observed 4.0± 0.6± 1.3 184± 6± 33
Full POWHEG 3.2± 0.4 257± 26

Table 5.4: Summary of the measured σ(tt̄+bb̄) and σ(tt̄+j̄j) cross sections as well as their
ratio σ(tt̄+bb̄)/σ(tt̄+j̄j) in the CMS measurement: The cross sections and their
ratio were determined for the visible and full phase space. The uncertainties
on the measurements are separated into statistical and systematic components,
while those are combined for the POWHEG Box Version 2 predictions. Values
taken from [182].
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Summary and comparison

An overview of the analysis setup of the three reviewed measurements is given in table 5.5,
while the derived results are summarized in table 5.6.

The (older) ATLAS measurement and the older CMS measurement were conducted at
a center-of-mass energy

√
s of 8 TeV, while the newer CMS measurement was done at a

center-of-mass energy
√
s of 13 TeV. The measurements presented in this thesis are also

conducted at this center-of-mass energy. Due to the increase in the center-of-mass energy
an increase in the predicted tt̄+bb̄ cross section σ(tt̄+bb̄, pred.) of roughly a factor 4 is
expected [184].
The two older measurements made use of a similar luminosity L of roughly 20 fb−1. The
newer CMS measurement used only a luminosity of 2.3 fb−1. For the measurements pre-
sented in this thesis a luminosity of 35.9 fb−1 is employed.
The ATLAS measurement is the only measurement in which the tt̄+≥1b-jet and the tt̄+bb̄
process was measured in the semileptonic decay channel of the top quark – like in this thesis
– and in the dileptonic decay channel as well. The two other measurements were conducted
by using only the dileptonic decay channel. None of the three measurements gives a result
for the tt̄+2b or tt̄+b process as it is done in this thesis.
The event selection applied in the three measurements is outlined by presenting the num-
ber of required leptons, jets and b-tagged jets. In contrast to these measurements and, in
particular the ATLAS semileptonic measurement, in this thesis a tighter event selection
was chosen by requiring at least six jets and two b-tagged jets besides a single lepton.
In this way, a phase space region is selected in which tt̄+≥1b-jet events are enriched and
background is partly suppressed. Furthermore, the rather homogenous phase space made
it possible to use only a single classifier. If a larger phase space would have been considered
it would have been necessary to train and employ multiple multivariate classifiers covering
different jet multiplicity and b-jet multiplicity categories which would have complicated a
comparison between the reference analyses employed in this thesis (chapter 9).
The ATLAS measurement and the newer CMS measurement rely on b-tagging probability
distributions as final discriminators or make use of a cut-and-count approach. The older
CMS measurement employs a boosted decision tree (BDT) as classifier. Compared to that,
the best classifier used in this thesis is a neural network, while also a b-jet multiplicity
distribution and a distribution provided by a linear discriminant are employed. These two
simpler classifiers are provided as a cross check of the elaborate neural network and allow
the comparison with the past measurements.
For the generation of the nominal tt̄ sample different event generators were used: The
ATLAS measurement makes use of the older version of the next-to-leading order (NLO)
POWHEG matrix element (ME) event generator (POWHEG Box V1) together with
the older version of the Pythia general-purpose Monte Carlo (GPMC) event generator
(Pythia6). The older CMS measurement employs a leading-order (LO) ME event genera-
tor by making use of MG5aMC(LO) and matches it to the Pythia6 event generator. For
the newer CMS measurement with the combination of the NLO POWHEG Box Version 2
ME generator and the Pythia8 GPMC event generator the same combination is used as in
this thesis. In principle, it is expected that these newer event generators provide a more
accurate description of the tt̄+≥1b-jet and the tt̄+bb̄ processes as already mentioned in
part II.
All measurements (including the measurements of this thesis) use the same program
(TOP++) to calculate the cross section of the inclusive tt̄ sample at next-to-next-leading
order (NNLO) QCD accuracy with next-to-next-leading log (NNLL) soft gluon resumma-
tion.
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The observed signal strengths r(observed) are summarized in table 5.6. The observed sig-
nal strengths r(observed) of the ATLAS measurement and of the newer CMS measurement
conducted at

√
s = 13 TeV were calculated by using the published cross section results.

In addition, the observed tt̄+bb̄ cross section for the full phase space σ(tt̄+bb̄) is listed
which was only available for the newer CMS

√
s = 13 TeV measurement.

As can be seen from table 5.6 the measurements are for the observed tt̄+≥1b-jet sig-
nal strength r(tt̄+≥1b-jet, observed) in good agreement with each other. According
to the measurements the observed tt̄+≥1b-jet signal strength r(tt̄+≥1b-jet, observed) is
roughly 1.3.
However, for the observed tt̄+bb̄ signal strength r(tt̄+bb̄, observed) there is a rather strong
tension between the measurements since the observed tt̄+bb̄ signal strength ranges from
1.1 to 1.8.

Table 5.5: Overview of the analysis setup in the three reviewed tt̄+≥1b-jet and tt̄+bb̄ mea-
surements: For each measurement the center-of-mass energy

√
s, the luminosity

L, the measured processes and the decay channels are stated. Furthermore, the
number of required leptons, required jets, and required b-tagged jets is listed.
In addition, the classifier employed to derive the result is stated. The event
generator combination to produce the nominal tt̄ sample is also listed as well as
the tt̄ cross section σ(tt̄) applied for the tt̄ event sample normalization. Values
taken from [170,178,182].

Measurement ATLAS CMS CMS
√
s 8 TeV 8 TeV 13 TeV

Luminosity L 20.3 fb−1 19.7 fb−1 2.3 fb−1

Processes tt̄+≥1b-jet, tt̄+bb̄ tt̄+≥1b-jet, tt̄+bb̄ tt̄+bb̄
Channel semilepton dilepton dilepton dilepton
Required leptons 1 2 2 2
Required jets ≥ 5 ≥ 4 - ≥ 4
Required b-tagged jets ≥ 2 ≥ 4 ≥ 3 ≥ 2

Classifier b-tag. prob. b-tag. prob. / Boosted Decision Tree b-tag. prob.
cut-and-count

Nominal tt̄ sample: POWHEG Box V1+ MG5aMC(LO)+ POWHEG Box V2+
Event generator Pythia6 Pythia6 Pythia8

σ(tt̄) NNLO+NNLL inclusive tt̄ cross section from TOP++ program
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Table 5.6: Summary of the signal strengths and cross sections derived in the three reviewed
tt̄+≥1b-jet and tt̄+bb̄ measurements: The observed signal strength r(observed)
and the observed cross section for the full phase space is listed if available. In
the case of the ATLAS measurement the observed signal strength r(observed)
is calculated from fiducial cross sections. In the case of the CMS

√
s = 13 TeV

measurement the observed signal strength r(observed) is calculated from full
phase space cross sections. Values taken from [170,178,182].

Analysis r(observed) σ(obs.) [pb]

ATLAS measurement

tt̄+≥1b-jet semileptonic 1.32+0.43
−0.36 -

tt̄+≥1b-jet dileptonic 1.32+0.65
−0.53 -

tt̄+bb̄ cut-based 1.57± 0.75 -

tt̄+bb̄ fit-based 1.10± 0.56 -

CMS
√
s = 8 TeV measurement

tt̄+≥1b-jet ≈ 1.3 -

tt̄+bb̄ ≈ 1.8 -

CMS
√
s = 13 TeV measurement

tt̄+bb̄ 1.25± 0.59 4.0± 0.6(stat.)± 1.3(syst.)
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Measurement of the tt̄+≥1b-jet
signal strength and cross section
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Measurement of the tt̄+≥1b-jet signal
strength and cross section

In this part of the thesis, a measurement of the tt̄+≥1b-jet cross section, expressed by the
tt̄+≥1b-jet signal strength r, using the CMS data from the Large Hadron Collider run in
2016 is conducted.

In the following chapters the analysis will be presented: In chapter 6 the Monte Carlo
samples applied to describe the signal and background processes will be discussed in detail.
This is followed by a few details about the CMS measurement data considered for this
analysis and the selection of events, independent of their origin from Monte Carlo samples
or measurement data (chapter 7). In chapter 8 an overview of the analysis framework is
given. Furthermore, the agreement between the predictions by the Monte Carlo samples
and the measurement data after the event selection is checked. The strategy of this analysis
is explained in detail in chapter 9. In this chapter also the three different sub analyses,
which are employed throughout this thesis, are introduced. A discussion of the systematic
uncertainties considered in all analyses follows in chapter 10. The overall result of the
tt̄+≥1b-jet signal strength r measurement is presented in the first part of chapter 11,
while further aspects of the result are studied closer in the subsequent sections. In the last
chapter of this part the previously obtained results are discussed and summarized as well
as compared to the findings of the previously reviewed measurements (part III).
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6. Signal and background processes

Event samples derived from Monte Carlo simulations are an important ingredient to a
particle physics analysis, as explained in section 2.2. Each process which could contain
events passing the selection criteria of an analysis has to be considered via the inclusion
of associated event samples in the corresponding analysis.
However, since the preparation and production of samples of Monte Carlo simulated events
(”‘MC samples”’) can be a time-consuming, challenging, and computationally intensive
task, Monte Carlo samples of general interest are produced centrally by the CMS collab-
oration. Favourable side effects of this sharing of Monte Carlo samples among analysis
groups are also that the limited storage space is better exploited since the produced Monte
Carlo samples can be in the order of Terabytes and that produced samples get cross checked
by different groups.
For this analysis the Standard Model physics processes listed in table 6.1 are considered
and their corresponding Monte Carlo event samples are applied. All these event samples
were produced centrally in the course of the CMS “RunII Summer16 MiniAOD” cam-
paign.

Not considered in this analysis is the so-called QCD background which corresponds to
events originating from light-flavour multijet processes because it was shown that these
processes only contribute with a tiny fraction of events to the selected phase space. Fur-
thermore, since only a small number of QCD events fall in the phase space defined by the
selection criteria of this analysis, the few remaining events have quite large uncertainties
and some bins of the final discriminants have even negative event numbers. Thus, these
events seem more of hindrance than beneficial for this analysis. For this reason, these kind
of processes are neglected for the remainder of this thesis. The total number of neglected
QCD events after the preselection would correspond to N(QCD) = 4.7± 31.2. In compar-
ison the total number of events is roughly 92 000.

In table 6.1, besides the nominal Monte Carlo samples, also eight tt̄ systematic samples are
stated which are applied to take into account systematic uncertainties due to a variation
of the tt̄ signal samples. They will be discussed in more detail in section 10.1.
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94 6. Signal and background processes

6.1 General properties of the Monte Carlo samples

For the production of most of the event samples a dedicated matrix element event generator
like MG5aMC [29] (version 5.2.2.2) or POWHEG Box Version 2 [30–34] (version from
September 2015) was applied for the simulation of the hard sub process. If either MG5-
aMC(NLO) or POWHEG Box Version 2 is listed as event generator, the matrix element
computation was done in next-to-leading (NLO) order of perturbation theory, while in the
case of MG5aMC(LO) only a leading-order computation was conducted. In some rare cases
like for the WW+jets, the WZ+jets, and the ZZ+jets processes only the internal matrix
elements of the general-purpose Monte Carlo (GPMC) event generator Pythia8 [37, 38]
(version 8.226) were exploited.
Pythia8 was also used for all event samples as a GPMC event generator to simulate the
parton shower, hadronization, and hadron decay steps (cf. section 2.2.1). For the modelling
of the underlying events by the Pythia8 GPMC event generator either one of the following
two CMS in-house tunes “CUETP8M1” or “CUETP8M2” was applied. Both tunes are
derived from the Pythia8 Monash tune [139] and “CUETP8M2” is a newer version of the
“CUETP8M1” tune described in [185].
Moreover, all event samples derived from the Monte Carlo event generators underwent a
CMS detector simulation (cf. section 2.2.1) for which the Geant 4 toolkit [51] was used.
In all samples the parameter of the top-quark mass is set to m(top) = 172.5 GeV and the
parameter of the Higgs-boson mass to m(H) = 125 GeV.
The NNPDF3.0 set [186] of parton distribution functions (PDFs) was used in all cases as
nominal PDF set.

6.2 Cross sections of the Monte Carlo samples

For all event samples inclusive cross section predictions from dedicated theoretical cal-
culations more precise than by the matrix element generator computations are available.
Therefore, all event samples of a given physics process are scaled to the corresponding cross
section derived from theoretical calculations. This is done by summing up the weights of

all events
N∑
i
wi contained in an event sample of a given physics process and scaling of

this sum, so that the overall event weight matches the number of expected events in the
measurement data. Hereby, the number of expected events N(expct.) is derived by mul-
tiplication of the cross section prediction σ(pred.) with the integrated luminosity

∫
L dt,

which was recorded to obtain the measurement data and which corresponds in the case of
this analysis to 36 fb−1 [187]:

N∑
i

wi := σ(pred.) ·
∫
L dt = N(expct.)

In table 6.1 also the cross section predictions σ(pred.) are given. For the split tt̄ and tt̄H
samples the cross section prediction σ(pred.) is multiplied by the corresponding branching
ratio BR.

For the total cross section of the top-quark pair production (tt̄) samples a prediction at
next-to-next-leading order (NNLO) QCD accuracy with next-to-next-leading logarithmic
(NNLL) soft gluon resummation using the top++2.0 program (see [177] and references
therein) is used. Following the recommendations of the LHC Higgs Cross Section Work-
ing Group (LHCHXSWG) [47] an NLO QCD cross section which includes next-to-leading
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logarithmic (NLL) soft-gluon radiation corrections is applied for the tt̄H samples. Also
following the LHCHXSWG recommendations NLO QCD cross sections including elec-
troweak (EW) corrections are used for the tt̄W and tt̄Z processes. The cross section of the
s-channel single-top quark production and the tW-channel production is obtained from an
NNLO approximate calculation [105], while the t-channel cross section is derived from an
NLO calculation using the Hathor v2.1 program [188, 189]. For the W+jets and Z+jets
processes NNLO cross sections calculated with the program FEWZ 3.1 [190–193] are used.
The NNLO QCD cross section of the WW+jets process is taken from [194], while the
NLO QCD cross sections of the WZ+jets and the ZZ+jets processes are calculated with
the MCFM 6.6 program [195,196].

6.3 Choice of the tt̄ signal samples

Three kinds of tt̄ samples are centrally produced by the CMS collaboration using different
matrix element generators which are considered in this thesis:

First of all, inclusive tt̄ samples are produced by the MG5aMC(NLO) event generator in
next-to-leading order perturbation theory, while making use of the so-called FxFx merg-
ing procedure [56] mentioned in section 2.2.3. These inclusive tt̄ samples are obtained
by merging three NLO MG5aMC(NLO) event samples: An exclusive tt̄+0jet sample is
merged with an exclusive tt̄+1jet and an inclusive tt̄+2jets sample. The resulting inclu-
sive tt̄+0/1/2jets sample has NLO accuracy in processes with up to two additional jets.
However, this excellent description of the tt̄ processes in higher jet multiplicities comes at
a cost. NLO event samples produced with MG5aMC(NLO) have a non-negligible fraction
of events which have a negative event weight, resulting in a larger statistical uncertainty
of these samples. According to the weak law of large numbers the relative statistical un-
certainty of a result obtained using N Monte Carlo events, each having a weight wi, can
be generally stated as:

∆N

N
=

√
N∑
i
w2
i

N∑
i
wi

.

In the case of events having only positive event weights with value wi = +1 this relation
simplifies to

∆N

N
=

1√
N

,

which corresponds to the well-known relative statistical uncertainty usually considered for
Monte Carlo simulations. However, in the case of the inclusive, FxFx-merged tt̄+0/1/2jets
samples roughly fn = 32.7% of all events have a negative event weight of −1, while the
other 67.3 % of events have a positive event weight of +11 Therefore, the following relation
has to be applied to determine the relative statistical uncertainty

∆N

N
=

1√
n
· 1

(1− 2 · fn)
= 2.89

1√
n

,

1The case that the absolute value of the negative event weight corresponds to the value of the positive
event weight is not universally valid, but in the case of NLO event generation with MG5aMC(NLO)
holds true.
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which shows that the statistical uncertainty is 2.89 times larger than originally expected
due to the many events with negative event weight. Put differently, to obtain the same
statistical precision an event sample with 2.89 times more events is required in comparison
to an event sample which does not contain events with negative event weight. Besides the
significantly lower statistical precision for a given number N of events, events with nega-
tive event weight can also cause problems in the training and evaluation of multivariate
analysis methods. Hence, one often tries to avoid them.
The number of (tt̄) events which can be produced by the CMS collaboration in a Monte
Carlo campaign is limited. In addition, for the training of the multivariate analysis meth-
ods applied in this analysis a sufficient statistical precision of the tt̄ signal samples is vital.
For this reason, the MG5aMC(NLO) tt̄ samples are not considered a suitable choice and
are not applied in this analysis.

The second kind of tt̄ samples, which are centrally available and are also produced by
application of a merging method, are MG5aMC(LO) tt̄ samples. Here, the matrix ele-
ment computation is conducted in leading-order perturbation theory. Furthermore, MLM
merging [55] is applied to derive inclusive tt̄+0/1/2/3jets samples having leading-order
accuracy in processes with up to three additional jets. Due to the leading-order matrix
element computation no events with negative event weight occur. Therefore, in principle
these kind of samples would be a good choice to produce large event samples. However,
because of the only leading-order matrix elements applied these samples lack a bit in the
description of the hard sub process, the final-state of the top-quark system and, hence, the
kinematic properties of the top quark. For this reason, only rather small MG5aMC(LO)
event samples are produced by the CMS collaboration.

In comparison to the aforementioned two kinds of samples, the third kind of tt̄ samples are
computed in next-to-leading order by using the POWHEG Box Version 2 event generator.
They have only a tiny fraction of events with negative event weight. Furthermore, since the
fraction of events with negative event weight fn is smaller than 0.5 % and it can be shown
that the corresponding events have a negligible impact on the overall description of the tt̄
processes, these events having negative weights can safely be neglected in CMS analyses.
Nonetheless, the POWHEG Box Version 2 tt̄ samples have some drawbacks. Therefore,
they are considered only as a good compromise between accuracy and feasibility of produc-
ing event samples with sufficient statistical precision. The reason for this is that only the
tt̄+0jet process is simulated in next-to-leading order and no merging technique is applied.
That is the reason why at most one additional parton and associated jet is described in
leading-order accuracy by the matrix element generator. Compared to that all the fur-
ther partons leading to additional jets have to be produced by the parton shower of the
GPMC event generator. In the context of this analysis, in which the tt̄+≥1b-jet processes
are of particular interest, this can be problematic since the parton shower generally does
not describe emissions of high-energetic partons well. Nevertheless, large POWHEG Box
Version 2 tt̄ samples are centrally produced by the CMS collaboration and are used as
default samples for the tt̄ process in this thesis.
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6.4 Split of the tt̄ samples into tt̄+X sub processes
according to the flavour of the additional hadrons and
jets

Of greatest interest are tt̄ processes where the top-quark pair is created in association
with additional quarks. These tt̄+X processes are not uniformly defined and their proper
definition as well as their differentation to one another is still part of an ongoing discus-
sion [47,131]. This is detailed in section II.
Nonetheless, one can define five types of tt̄+X processes based on the particle-level infor-
mation in the following way (illustrated in figure 6.1) that is rather universally accepted.
Still, the problem lies in the detail of the individual implementation. In particular, the
definition of bottom hadrons and the applied jet reconstruction algorithm can differ be-
tween experiments and analyses.

The previously discussed tt̄ samples can be classified and split into tt̄+X sub samples ac-
cording to the flavour of additional quarks and hadrons occurring in the final-state of the
hard sub processes by a heavy-flavour identification based on particle-level information.
Such a split of the tt̄ samples into five distinct tt̄+X sub samples (tt̄+bb̄, tt̄+2b, tt̄+b,
tt̄+cc̄, and tt̄+lf) is done in this analysis by using the GenHFHadronMatcher [146, 149]
provided in the CMS software framework (CMSSW) [197]. Consequently, the different
properties of the individual tt̄+X sub processes can be exploited by multivariate analysis
techniques to separate the sub processes in the measurement data.

For the classification of tt̄ events according to the flavour of the additional bottom and
charm hadrons, which do not originate from the top-quark decay, the GenHFHadron-
Matcher method requires the matching of selected hadrons to jets at particle-level (“gen-
jets”) and the subsequent matching of the selected hadrons to quarks.

Matching of selected hadrons to jets

For the matching of selected hadrons to gen-jets the CMS hadron-based JetFlavour tool
[198] is employed. This tool allows an identification of the flavour of a gen-jet based
on the flavour of the hadron it contains. It makes usage of so-called “ghost” hadrons to
decide if a bottom or charm hadron gets reclustered into a gen-jet which would then be
referred to either as a bottom or charm gen-jet: For selected bottom or charm hadrons
the four-momentum of the corresponding hadron and its partons gets rescaled by a very
small number. In this manner, they become soft (having low energy and low momentum)
and are referred to as “ghost particles”. This ghost particles are then added to the parton
collection of an event instead of the original hadrons and associated partons, before the
gen-jets are reclustered using the default jet clustering parameters. In this way, the selected
soft bottom and charm hadrons as well as their partons practically do not affect the overall
gen-jet clustering. Nonetheless, they still get clustered into gen-jets by the direction of
their three-momentum vector.
Depending on if at least one bottom ghost hadron is clustered into gen-jet, such a gen-jet
is considered a bottom gen-jet. A gen-jet is referred to as a charm gen-jet if no bottom
ghost hadrons are clustered into the corresponding gen-jet, but at least one charm ghost
hadron. The remaining gen-jets which do not contain bottom or charm ghost hadrons are
declared as light-flavour gen-jets.
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Matching of selected hadrons to quarks

The GenHFHadronMatcher tool makes use of the derived bottom and charm hadrons as
well of the matched gen-jets. For each bottom- and charm-hadron the particle chain,
which is stored for every event and contains the event history of a simulated event up to
the hard scattering process, is scanned to identify the last mother quark of the selected
hadron. By this means and in the case of using the Pythia8 event generator as parton
shower, it may be decided with a high degree of certainty if the selected hadron and its
predecessors originates from the decay of a top quark or if it has been radiated before. The
information if such a selected hadron is an additional hadron or emerging from a top-quark
decay is then used to classify the associated event into one of five distinct tt̄+X processes
(cf. figure 6.1):

• tt̄+bb̄ events: Events featuring at least two bottom gen-jets of which each contains
at least one bottom hadron not originating from a top-quark decay.

• tt̄+2b events: Events featuring a single bottom gen-jet in which two additional
bottom hadrons are clustered.

• tt̄+b events: Events featuring a single bottom gen-jet which contains exactly one
bottom hadron not emerging from a top-quark decay.

• tt̄+cc̄ events: Events featuring no bottom gen-jets, but at least one charm gen-jet
containing an additional charm hadron.

• tt̄+lf events: All remaining events which either contain no bottom and charm gen-
jets or only such gen-jets with bottom and charm hadrons coming out of a top-quark
decay.

A clear separation between the tt̄+bb̄ and the tt̄+2b processes cannot be made. Particu-
lary, a separation between the two processes depends, among others, on the jet algorithm
and the parameters chosen for the jet algorithm. For similar reasons, tt̄+2b events can
also be classified as tt̄+b events by mistake, but in this case the imprecise identification
and definition of the underlying bottom hadrons is mostly the cause.
The softened requirement of only one charm gen-jet, even though the process class is called
tt̄+cc̄, is motivated by the difficult identification of charm hadrons and charm-tagged jets
at reconstruction level. It is assumed that in most of the cases a charm-quark pair occurs,
but that the identification of only one charm hadron and its successors is quite likely.

This matching of selected hadrons to quarks and, especially, the decision if such a hadron
emerges from a top-quark decay or not relies strongly on the event history provided by
the GPMC event generator. Some GPMC event generators like Herwig7 [35, 36] and
Sherpa [143] consider the matching between a top quark occurring in the final state and
its subsequent decay products as unphysical. Hence, they only provide a truncated event
history. Therefore, if these event generators are used to produce a tt̄ sample, the afore-
mentioned splitting procedure based on additional bottom and charm hadrons does not
work reliably, if at all.

6.5 Choice of the tt̄H background samples

For the same reasons as in the case of the tt̄ samples, the POWHEG Box Version 2 tt̄H
event samples are chosen for the analyses conducted in this thesis. Besides the reasons
already given before, the same choice of event generator seems reasonable. This choice is
especially made because the tt̄+bb̄ and tt̄H(bb̄) processes can share the same final-state
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Figure 6.1: Illustration of the classification of the different tt̄ sub processes: The classifi-
cation depends on the additional particle-level hadrons (depicted by the blue
X) which may emerge either from interactions in the initial state or the final
state, but are not part of the top quark decay. In dependence of the additional
hadrons (shown as circles) which can be bottom hadrons, charm hadrons, or
light-quark hadrons and their mapping to the corresponding jets at particle
level the classification is made.

being only different in the kinematics of the bottom-quark pair. In this way, no additional
uncertainties due using a different event generators in a similar phase space are introduced.
This exclusion of differences in the description of the tt̄ and tt̄H processes due to the event
generator choice is of particular importance since both processes are considered in the
multivariate analysis techniques. Otherwise, subtle, but non-physical differences in the
process description by different event generators could be exploited by the multivariate
analysis and could lead to biased results.

6.6 Choice of the other background samples

For the other background samples in general the matrix element event generator is used
which allows for the most accurate description of the corresponding processes. Of course,
under the condition that the corresponding samples have sufficient statistical precision in
the phase space being of interest in this thesis. Consequently, the MG5aMC(NLO) event
generator together with the FxFx merging technique is used to simulate the tt̄W, tt̄Z, and
the single-top s-channel processes, all of which are minor backgrounds. The remaining
single-top channels are produced by using the POWHEG Box Version 2 event generator.
Here, the missing merging of exclusive samples with higher jet multiplicities is of less
importance than in the tt̄ case since in general fewer additional high-energetic partons
are expected in the partonic final-state. The vector boson processes V+jets (W+jets,
Z+jets) which in general have a large cross section, but hardly contribute to the selected
phase-space considered in this analysis, are described via the MG5aMC(LO) event gen-
erator together with the MLM merging technique. For the diboson production VV+jets
(WW+jets, WZ+jets, ZZ+jets) the internal matrix elements of the Pythia8 GPMC event
generator are exploited.
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Table 6.1: Summary of the Monte Carlo event samples considered in this analysis: For
the respective simulated process the applied Monte Carlo matrix element event
generator as well as the assigned cross section σ is stated, while, if applicable,
the corresponding branching ratio BR was taken into account. stated. In
addition to the nominal MC event samples also the samples used to evaluate
the tt̄ systematic uncertainties are listed.

Simulated process Applied MC event generator σ [pb]

tt̄ inclusive POWHEG Box Version 2 831.76
tt̄ semileptonic POWHEG Box Version 2 365.9744
tt̄ dileptonic POWHEG Box Version 2 91.4936

tt̄H(bb̄) POWHEG Box Version 2 0.2953
tt̄H(nonbb̄) POWHEG Box Version 2 0.2118

tt̄W hadronic MG5aMC(NLO) +FxFx merg. 0.4062
tt̄W leptonic MG5aMC(NLO) +FxFx merg. 0.2043

tt̄Z hadronic MG5aMC(NLO) +FxFx merg. 0.5297
tt̄Z leptonic MG5aMC(NLO) +FxFx merg. 0.2529

Single top s-channel MG5aMC(NLO) +FxFx merg. 3.70
Single top t-channel (t) POWHEG Box Version 2 136.02
Single top t-channel (t̄) POWHEG Box Version 2 80.95
Single top tW-channel POWHEG Box Version 2 35.85

W+jets MG5aMC(LO) +MLM merg. 3091.522
Z+jets MG5aMC(LO) +MLM merg. 939.825

WW+jets Pythia8 118.7
WZ+jets Pythia8 47.12
ZZ+jets Pythia8 31.73

tt̄ inclusive, initial-state radiation (ISR) scale up POWHEG Box Version 2 831.76
tt̄ inclusive, initial-state radiation (ISR) scale down POWHEG Box Version 2 831.76
tt̄ inclusive, final-state radiation (FSR) scale up POWHEG Box Version 2 831.76
tt̄ inclusive, final-state radiation (FSR) scale down POWHEG Box Version 2 831.76
tt̄ inclusive, underlying event tune (UE) up POWHEG Box Version 2 831.76
tt̄ inclusive, underlying event tune (UE) down POWHEG Box Version 2 831.76
tt̄ inclusive, hdamp variation up POWHEG Box Version 2 831.76
tt̄ inclusive, hdamp variation down POWHEG Box Version 2 831.76
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7. Measurement data and event selection

In this section the measurement data used and the selection of the events applied in this
analysis will be shortly summarized. Please refer to sections 3.2 and 3.3 for a general
description of the CMS experiment and correspondingly of the object identification and
event reconstruction.

7.1 Measurement data

For this analysis measurement data from runs of the Large Hadron Collider (LHC) taking
place in the year 2016 is used which was recorded by the CMS experiment. More par-
ticularly, the data was taken from LHC runs with proton-proton collisions, at which the
beam energy of each proton corresponded to 6.5 GeV. In this time period roughly a total
integrated luminosity of

∫
L dt = 38 fb−1 was delivered to the CMS experiment [199]. Of

this amount of measurement data an integrated luminosity of
∫
L dt = 36.459 fb−1 was

recorded and certified by the data certification group of the CMS Collaboration (data sets
internally referred to as “Golden JSON 2016”) [199]. After the application of luminos-
ity corrections [200] using Van-der-Meer scans [201, 202] the total integrated luminosity
available as measurement data corresponds to

∫
L dt ≈ 35.918 fb−1 [203].

7.2 Trigger

Since in this analysis only semileptonic events are of interest, two types of exclusive triggers
based on leptons and corresponding trigger paths are applied.
By the semileptonic electron trigger path (internal name: HLT Ele27 WPTight Gsf v*)
events which have exactly one leading electron are preselected. Furthermore, the electron
of the event must have a transverse momentum of pT > 30 GeV, have an electron ID
according to the tight working point of the electron identification algorithm, and must
occur in a range of |η| < 2.1. In this case, the event is considered as a candidate for this
analysis.
Similar to the electron trigger, events which have exactly one leading muon are preselected
by two orthogonal semileptonic muon trigger path (internal names: HLT IsoMu24 v* ,
HLT IsoTkMu24 v*). Here, the muon of the event must have a transverse momentum
of pT > 26 GeV and an muon ID according to the tight working point. In addition, it
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must occur in a range of |η| < 2.1. Furthermore, it must fulfill an isolation criterion of
iso < 0.15. The cut on the transverse momentum pT of the muon can be lower due to the
excellent muon identification and tracking capabilities of the CMS detector.
However, such event candidates are still vetoed if one or more additional leptons occur. For
the veto additional electrons are taken into account which have a transverse momentum
of pT > 15 GeV, have an electron ID according to the tight working point, and occur
in a range of |η| < 2.4. In the case of additional muons as veto leptons, the following
requirements must be fulfilled: An additional muon must have a transverse momentum of
pT > 15 GeV and have an muon ID according to the tight working point. Additionally, it
must occur in a range of |η| < 2.4 and must obey an isolation criterion of iso < 0.25.

7.3 Jets

In general events originating from the tt̄+X processes or the tt̄H(bb̄) process should contain
at least six jets (cf. figures 6.1 and 4.3), while many of the background processes like the
V(V)+jets processes containing only vector bosons in the final-state usually feature events
with fewer jets.
For a reduction of the number of background events, hence, events must contain at least six
jets in this analysis. The possible jet candidates are derived from an anti-kT -jet-clustering
algorithm [87] with a jet-cone size of 0.4 and must have a jet ID in accordance with the
loose working point. Furthermore, the transverse momentum of the leading jet candidate
must be larger than 30 GeV. In contrast to that, for the subleading jets a transverse
momentum of at least 20 GeV is sufficient. Moreover, all possible jets must occur in a
range of |η| < 2.4. Nevertheless, jets are vetoed if their distance to leptons is smaller than
∆R(jet,lepton) < 0.4. For the reduction of pile-up jet candidates are also vetoed if they
would pass a pile-up jet ID corresponding to the loose working point.

7.4 B-tagging

For a further reduction of expendable background events and to increase the number of
signal events in the overall analysis sample, a b-tagging requirement is applied in this
analysis. Such a requirement reduces particularly the number of events from boson and
diboson processes which generally feature fewer b-tagged jets. Therefore, possible event
candidates must also possess at least two b-tagged jets out of the six or more selected jets
in this analysis. These b-tagged jets must fulfill requirements consistent with the medium
working point of the CMS CSVv2 b-tagging algorithm [89].

7.5 MET

Finally, event candidates have to pass a missing energy in the transverse plane /ET require-
ment of /ET > 20 GeV, too. Such a requirement would allow a possible measurement of
the QCD background in a dedicated control region. However, as explained before, the
number of QCD events in the phase space of this analysis is negligible. Therefore, such an
additional measurement was not necessary in the end.
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In the following, an overview of the framework which is used to conduct the following
analyses will be given. Furthermore, by a check of the Monte Carlo samples and the
measurement data after the event selection it will be shown that the agreement between
both is good.

8.1 Analysis framework

For this analysis a self-developed analysis framework is applied: It is based on the CMS of-
fline software framework [197] and is also used to produce the results of the CMS tt̄H(bb̄)
analyses [204, 205]. Sharing the analysis framework with the tt̄H(bb̄) analysis group is
beneficial since by this means the framework is checked by more persons and the appen-
dant efforts to implement the recommended settings for CMS physics analyses, to keep
the framework up to date, and to add new features are shared.
The steering code of the analysis framework is mostly written in Python for simplicity.
Also, the analysis itself is mostly defined by Python code. However, for performance rea-
sons a code generator writing C++ code is invoked to generate the final code used for such
an analysis. Furthermore, most of the analysis parts are fully automated and a continuous
integration, delivery and deployment approach is applied. This approach mitigates the
risks of introducing bugs in the code, provides confidence and trust in the analysis by
being a completely transparent analysis. Moreover, it allows others the repetition of the
the analysis and leads to the production of consistent results by an automated execution
of the analysis code [206–208].
For the neural network based analyses (see section 9.5) the C++ version of the TensorFlow
application programming interface [164] was compiled as a library and shipped as part of
the final analysis code. In this way, previously trained neural networks can be used by
the final analysis code. For the training of the neural networks the self-developed wrapper
framework NNFlow [209] together with the TensorFlow open source library for machine
learning was used. In the case of the linear discriminant based analyses (cf. section 9.4)
such an inclusion of an additional program library was not necessary. The linear discrim-
inants are trained by application of the TMVA multivariate data analysis tool kit [120]
which provides standalone C++ code to evaluate the obtained linear discriminants in an
analysis.
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8.2 Check of Monte Carlo samples and measurement data
agreement

For a physics analysis it is of importance that the data is well-modeled by the applied
Monte Carlo (MC) samples and that the phase space of the measurement is properly
described by the MC samples. Otherwise, it would be impossible to decide whether ob-
servable differences between the measurement data and the sum of all MC samples in a
final discriminant output are due to physical reasons or just the outcome of an insufficient
modeling of the considered signal and background processes by the MC event generators
or if maybe a MC sample of some important physics process was unintentionally neglected.
For this reason, a few basic and robust event variables are used to the check the agreement
between the measurement data and the sum of all MC samples after the application of the
event selection (cf. section 7) using control distributions.
A short description of these event variables is given in table 8.1, while the corresponding
control distributions are shown in figure 8.1 and 8.2. As can be seen from the distribu-
tions, the agreement between the measurement data adn the sum of all MC samples is
good. Therefore, the assumption can be made that this will hold also true for the final
discriminator distributions.

Table 8.1: Description of the event variables used in the control plots

Variable name Description

Eta of all electrons η distribution considering all electrons
pT of all electrons pT distribution considering all electrons

Eta of all muons η distribution considering all muons
pT of all muons pT distribution considering all muons

Number of jets Distribution of the jet multiplicity
CSV CSVv2 b-tagging values of all jets
Energy of all jets Energy distribution considering all jets
Mass of all jets Mass distribution considering all jets
Eta of all jets η distribution considering all jets
pT of all jets pT distribution considering all jets
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Figure 8.1: Control distributions to test the agreement between measurement data and
the sum of all Monte Carlo samples: The measurement data (black dots) is
compared to the stacked Monte Carlo histograms (filled blocks). In addition,
the contributions of the three signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) are indi-
vidually scaled to the overall integral of the stacked histograms and are shown
as solid lines. The uncertainty band includes all statistical and systematic
uncertainties.
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Figure 8.2: Control distributions to test the agreement between measurement data and
the sum of all Monte Carlo samples: The measurement data (black dots) is
compared to the stacked Monte Carlo histograms (filled blocks). In addition,
the contributions of the three signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) are indi-
vidually scaled to the overall integral of the stacked histograms and are shown
as solid lines. The uncertainty band includes all statistical and systematic
uncertainties.
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9. Analysis strategy

For the measurement of the tt̄+≥1b-jet (tt̄+bb̄, tt̄+2b, tt̄+b) signal strength r various
types of analysis are conceivable. More basic and simple analyses come with the advantage
that they are robust and easy to set up. These are transparent and verifiable to a higher
degree as well. However, usually such analyses have the drawback that they cannot take full
advantage of the information hidden in the data. Hence, they do not provide an optimum
result regarding the achievable uncertainty of such a measurement. In contrast to that,
multivariate analysis methods like neural networks tend to exploit more of the information
available in data. But, they are also more difficult to comprehend and to check due to the
highly sophisticated methods they make use of. Between these two extremes, there exist
a variety of other analysis types. For example, a linear discriminant based analysis can
be seen as a middle ground between both worlds and an entry step to a more complex
multivariate analysis. As a multivariate analysis it allows to make use of different event
variables and features, while its underlying mathematical model and analysis procedure
can still be understood rather well.

The present analysis is divided into three reference sub analyses which cover the full range
of possible analysis types:
The B-jet multiplicity based (B-jet mult.) analysis, discussed in the next section, is a
simple and robust analysis. It is considered a baseline analysis for the two other analyses.
This analysis makes use of the number of b-tagged jets distribution as a final discriminant
to classify events in one out of four categories according to the number of b-tagged jets an
event passing the event selection has.

A linear discriminant based (LD) analysis is applied in this thesis as a cross check of the
more elaborate neural network based analysis employed later. Furthermore, it allows a
check for correlations between the input variables (section 9.2) used in both multivariate
analyses. By the linear discriminant events are classified into an output distribution which
can be seen as the probability that a single event originates more likely from a tt̄+≥1b-jet
(tt̄+bb̄, tt̄+2b, tt̄+b) signal process or from a background process. Its setup is presented
is section 9.4.

In comparison with the binary classifying LD analysis, the reference neural network based
(NN) analysis represents a multiclassification. Here, events are first assigned to one out
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of six event classes based on the probability of emerging from a given process. Each event
class and associated output distribution corresponds to either one of the three tt̄+≥1b-jet
signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) or to three background processes (tt̄+cc̄, tt̄+lf, tt̄H)
which are of special interest in this thesis. For each event class an output distribution is
obtained. This distribution represents a kind of probability that a single, assigned event
is really originating from the process associated with this event class.
This analysis is discussed in more detail in the section refsec:analysis-1-nn-analysis.

For both multivariate analyses (LD and NN) the event samples of various processes used
in the training had to be reweighted, this reweighting is shortly discussed in section 9.3.
Furthermore, a binning optimization algorithm was employed for both analyses, which is
explained in section 9.6. This chapter ends with an overview of the setup of the Maximum-
Likelihood (ML) fit (section 9.7), which was used to derive the final results for all three
analyses.

9.1 B-jet multiplicity based analysis

The B-jet multiplicity based (B-jet mult.) analysis is a simple and robust analysis. It
allows, as a baseline analysis, to estimate a conservative uncertainty on the signal strength
result r for the tt̄+≥1b-jet (tt̄+bb̄, tt̄+2b, tt̄+b) signal. The number of b-tagged jets
distribution is chosen for this analysis. Subsequently, it will be shown that event variables
related to b-tagging and b-tagged jets have the largest separation power between the six
signal and background processes of interest (tt̄+bb̄, tt̄+2b, tt̄+b, tt̄+cc̄, tt̄+lf, tt̄H).
In more detail, events which are passing the event selection criteria (cf. section 7) are
sorted in a number of b-tagged jets final discriminant distribution (see figure 9.1 for the
prefit distribution using the Asimov dataset and figure 11.1 for the distribution using the
measurement data). The sorting is done in accordance with the number of b-tagged jets
the event contains. Since the previously applied event selection requires that events have
at least two b-tagged jets the final discriminant distribution binning starts with 2 b-tagged
jets, too. For the final discriminant a binning with four bins was chosen, which means that
the distribution spreads from two to five b-tagged jets, so that also the last bin contains
a sufficient number of signal and background events. By using this final discriminant
distribution together with a Maximum-Likelihood fit (discussed in section 9.7) the signal
strength result for the tt̄+≥1b-jet processes is finally obtained which will be discussed in
detail in chapter 11.

9.2 Input variables for the multivariate analyses

As multivariate analysis methods the linear discriminant and neural network based analy-
ses explained below rely on well-described input variables which should also provide a good
separation power between signal and background. The self-developed analysis framework
which is shared with the tt̄H(bb̄) analysis groups provides in total 253 variables, from
which finally 11 variables are chosen as input variables for the multivariate analyses. The
method used to select these 11 input variables is discussed in the next section.
A description of these 11 input variables chosen for the subsequent multivariate analyses
is given in table 9.1 and a discussion of these variables follows in section 9.2.2. Besides fea-
turing a rather large separation power, also a good agreement between the stacked Monte
Carlo histograms and the measurement data can be demonstrated for the 11 selected input
variables, as can be seen from figures 9.2 and 9.3.
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Figure 9.1: Prefit final discriminant distribution of the B-jet multiplicity based analysis
using the Asimov dataset: As the final discriminant of the B-jet multiplic-
ity based analysis the number of b-tagged jets distribution is chosen. The
stacked Monte Carlo histograms (filled blocks) are compared to the Asimov
dataset (black dots). In addition, the contributions of the three signal pro-
cesses (tt̄+bb̄, tt̄+2b, tt̄+b) are individually scaled to the overall integral of
the stacked histograms and are shown as solid lines. The hashed uncertainty
band considers all systematic uncertainties, which are added in quadrature.
The distribution is shown before the Maximum-Likelihood fit.
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Figure 9.2: Input variables applied for the multivariate analyses: The stacked Monte Carlo
histograms (filled blocks) are compared to the measurement data (black dots).
In addition, the contributions of the three signal processes (tt̄+bb̄, tt̄+2b,
tt̄+b) are individually scaled to the overall integral of the stacked histograms
and are shown as solid lines. The uncertainty band includes all statistical and
systematic uncertainties.
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Figure 9.3: Input variables applied for the multivariate analyses: The stacked Monte Carlo
histograms (filled blocks) are compared to the measurement data (black dots).
In addition, the contributions of the three signal processes (tt̄+bb̄, tt̄+2b,
tt̄+b) are individually scaled to the overall integral of the stacked histograms
and are shown as solid lines. The uncertainty band includes all statistical and
systematic uncertainties.
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Table 9.1: Description of the input variables applied for the multivariate analyses: Be-
side the shortened variable name of the corresponding input variable a short
description of the input variable is given.

Variable name Description

Kinematic variables, considering b-tagged jets (and leptons)

Avg. mass of all b-jets Average mass of all b-tagged jets
Avg. DEta of all b-jets Average ∆η value of all b-tagged jets
Avg. DR of all b-jets Average ∆R value of all b-tagged jets
DR of b-jets w/ min. DR ∆R value of the b-tagged jet pair with the smallest ∆R value
DR of lepton & b-jet w/ min. DR ∆R value of the lepton and b-tagged jet with the smallest ∆R value
Mass of lepton & closest b-jet Inverse mass of the lepton and closest b-tagged jet

B-tagging variables

B-tag. LR B-tagging likelihood ratio
Trans. b-tag. LR Transformed b-tagging likelihood ratio
2nd largest CSV Second-largest CSVv2 tagger discriminant value of all b-tagged jets
Avg. CSV of all b-jets Average CSVv2 discriminant value of all b-tagged jets
Squared diff. in CSV Sum of the squared differences between the CSVv2 discriminant value

of a given b-tagged jet and the average CSVv2 discriminant value
of all b-tagged jets

9.2.1 Choice of the input variables for the multivariate analyses

As explained previously, from 253 available event variables as inputs to the multivariate
analyses 11 input variables are chosen. These 11 input variables are derived from pre-
ceding studies using dedicated neural network training: Various multiclassification neural
networks were trained to differentiate between the following six processes tt̄+bb̄, tt̄+2b,
tt̄+b, tt̄+cc̄, tt̄+lf, and tt̄H. Therefore, these networks contained six dedicated output
nodes and associated event classes. As part of the training different network topologies
(e.g. different numbers of hidden layers and nodes in hidden layers) and network param-
eters (e.g. different dropout rates) were tried out. Every neural network could exploit all
of the 253 available event variables as input variables. After the training of each neural
network the 253 input variables were ranked according to their contribution to the neural
network and to the overall separation power of the neural network.
For this purpose, the connections between the input layer of the neural network and its
output layer were evaluated. Each of the 253 input variables corresponds to a node of the
input layer. Since only feed-forward neural networks were applied, each node in the input
layer is only connected with nodes in the subsequent layer. The nodes in the subsequent
layer are also only connected to nodes in the following layer. This kind of connection
scheme goes on until the output layer is reached which contains six nodes, each repre-
senting one of the six considered event classes. All of these forward connections have an
assigned weight which is derived by the training of the neural network. This weight can
be considered a measure of the importance of a connection for the overall output of the
neural network.
Under the assumption that an input variable having a rather large separation power should
have an important influence on the overall neural network output, it should also have con-
nections with either large positive or negative assigned weights due to positive or negative
correlation with the neural network output. For this reason, the absolute sum of the
weights of all connections going from the corresponding single input node to the six out-
put nodes was calculated for each input variable. This absolute sum of associated weights
was then used to rank the individual input variables.
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Even though various neural network with different network topologies and parameters were
tested, it was shown that in general the 11 input variables which were finally selected were
among the input variables having the largest absolute sum of weights. Furthermore, all
of them show good agreement between the Monte Carlo samples and measurement data
which was an exclusion criteria for further promising input variables.

9.2.2 Discussion of input variables applied for the multivariate analyses

The 11 input variables applied for the multivariate analyses are listed in table 9.1 and are
shown in figures 9.2 and 9.3.
The method-unspecific separation power between signal processes (tt̄+bb̄, tt̄+2b, tt̄+b)
and background processes (tt̄+cc̄, tt̄+lf, tt̄H) of these variables was determined by using
TMVA toolkit for Multivariate Analysis [120] and is stated for each input variable in
table 9.2.
As can be seen from the description in the table 9.1 the 11 input variables can be roughly
classified into two types of variables: Kinematic variables describing b-tagged jets, maybe
in connection with leptons, and rather pure b-tagging variables.

However, it is noteworthy that all of these 11 input variables with rather large separation
power are related to b-tagging and b-tagged jets. This is hardly surprising since the signal
and the tt̄ background processes (tt̄+bb̄, tt̄+2b, tt̄+b, tt̄+cc̄, tt̄+lf) mostly differ in the
nmber of b-tagged jets contained in an event. The kinematic variables like the ∆R value
of the b-tagged jet pair with the smallest ∆R value (DR of b-jets w/ min. DR) or the
mass of the lepton and closest b-tagged jet (Mass of lepton & closest b-jet) can be viewed
as input variables exploited by the multivariate analyses to increase the separation power
for processes which have the same number of b-tagged jets. For example, it can be safely
assumed that especially these two kinematic variables can be used to better differentiate
events of the tt̄+bb̄ and the tt̄H process as well as events of the tt̄+cc̄ and the tt̄+lf
process. The first variable has a quite larger separation power than the second variable
which indicates that the difference between the tt̄+bb̄ signal process and the tt̄H process
could be more pronounced between two b-tagged jets than between a b-tagged jet and its
closest lepton as one would expect.

Moreover, it was expected that the b-tagging likelihood ratio (B-tag. LR) and transformed
b-tagging likelihood ratio (Trans. b-tag. LR) variables will be among the input variables
having the largest separation power due to their construction: Both variables, which differ
only by the non-linear transformation

Trans. b-tag. LR = ln(
B-tag. LR

1− B-tag. LR
),

are based on a likelihood method and will be now briefly described (Ref. [210] contains a
more detailed explanation).
For the computation of the b-tagging likelihood ratio (B-tag. LR), first of all, the values
of the CSVv2 b-tagging algorithm are derived for all jets in an event. Afterwards, these
CSVv2 values are used to construct two hypotheses:

1. Hypothesis that 4 jets in the event are originating from b-quarks and the remaining
jets from light quarks (up, down, strange quarks).

2. Hypothesis that only 2 jets in the event emerge from b-quarks and the remaining
jets from light quarks (charm quarks not considered).
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Finally, the B-tagging likelihood ratio (B-tag. LR) between the two hypotheses is evaluated
by comparing with the expected CSVv2 probabilities derived from dedicated Monte Carlo
simulations.
For this reason, the B-tagging likelihood ratio (B-tag. LR) and its transformed version
(Trans. b-tag. LR) can especially be exploited by the multivariate analyses to distinguish
between processes featuring different number of b-tagged jets like tt̄+bb̄ or tt̄H(bb̄) vs.
tt̄+2b or tt̄+b.
It will be shown later in section 11.3.1 that including both b-tagging likelihood ratios (B-
tag. LR, Trans. b-tag. LR) helps to simplify the topology of the neural network used in
the neural network based (NN) analysis, even though these two input variables are highly
correlated, as can be seen from the linear discriminant based (LD) analysis.

Table 9.2: Separation power of input variables applied for the multivariate analyses: The
separation power between signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) and back-
ground processes (tt̄+cc̄, tt̄+lf, tt̄H) determined by the TMVA toolkit for Mul-
tivariate Analysis [120] is stated for each input variable applied by the linear
discriminant and neural network based analyses. The variables are ordered
from the variables having the largest separation power to the variables having
the lowest.

Variable name Separation power

Trans. b-tag. LR 1.553× 10−1

B-tag. LR 1.539× 10−1

2nd largest CSV 2.520× 10−2

DR of b-jets w/ min. DR 2.513× 10−2

Mass of lepton 1.209× 10−2

Squared diff. in CSV 8.933× 10−3

Avg. DR of all b-jets 8.309× 10−3

Avg. DEta of all b-jets 7.371× 10−3

Avg. CSV of all b-jets 7.060× 10−3

Avg. mass of all b-jets 3.617× 10−3

DR of lepton & b-jet w/ min. DR 2.453× 10−3

9.3 Reweighting of process classes for the training of the
multivariate analyses

For the training of classifiers employed in this thesis all process classes (tt̄+bb̄, tt̄+2b,
tt̄+b, tt̄+cc̄, tt̄+lf, tt̄H) are treated equally. This is achieved by an adjustment of the
weights of single events, so that the sum of the weights of all events of a given process
class corresponds to the sum of the weights of the other process classes.

Therefore, events emerging from the tt̄H process have the same influence in the train-
ing and on the final shape of a multivariate classifier as events from other processes like
tt̄+bb̄. However, as an example, the cross section of the tt̄H process is quite smaller than
the tt̄+bb̄ cross section (0.5 pb / 4.2 pb), while their events can have similar features.
For this reason a classifier may not learn to properly distinguish tt̄+bb̄ events from other
events since it could lead to a reduction of the identification of tt̄H events at the same time.
In comparison to that, in the later measurement more tt̄+bb̄ events than tt̄H events are
expected and, hence, the proper assignment of tt̄+bb̄ events is generally more important
for the analysis.
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In principle, this could be avoided by training a multivariate classifier with processes
weighted according to their importance or cross section. However, in the case of the mea-
surements presented in this thesis, it is challenging to do this weighting of processes and
events in a reasonable way. The major reason is that the range of the cross sections of
the signal and background processes of interest is rather wide. For example, the tt̄+lf
cross section is approximately 730 pb, while the tt̄+2b cross section is roughly 4.6 pb.
Even this cross section is rather large compared to the tt̄H cross section stated above at
a center-of-mass energy of 13 TeV. By using cross sections as a basis for the reweighting
of processes in the training tt̄+lf events and their separation from the other events would
have the major influence on the training. In this way, the classifier would provide a rather
good separation of the tt̄+lf processes from the other processes, but most likely processes
having a smaller cross section and associated lower influence on the training would not be
properly classified.

For the measurements presented in this thesis the proper assignment of tt̄+≥1b-jet events
and later also tt̄H events (part V) as well as good separation of these events from back-
ground events is fundamental. As previously outlined all of these processes of interest have
rather small cross sections and would have only a small influence on the classifier training
if the process classes would be reweighted by their cross section. That is the reason why
multivariate classifiers employed in this thesis were always trained with processes having
equal overall weight instead.

9.4 Linear discriminant based analysis

The linear discriminant based (LD) analysis can be viewed as one of the simplest multivari-
ate analysis methods. Therefore, it is a good compromise between the B-jet multiplicity
based (B-jet mult.) baseline analysis and the highly-sophisticated neural network based
(NN) analysis. The LD analysis is also used to exploit the linear correlations of the input
variables in a straight forward way (see section 11.3.2), which would be a more cumber-
some task with the NN analysis. In both analyses suitable transformations were applied,
so that these input variables were virtually Gaussian distributed with a mean of zero and
a standard deviation of one.

The LD analysis makes use of the “LD”-type of linear discriminant provided by the TMVA
multivariate data analysis tool kit [120] (section 5.2.2 for a more general discussion).
Nonetheless, also Fisher’s classical linear discriminant [118] was tried, but it was found
that it leads to the same results. This was expected since it can be shown that both linear
discrimant types are equivalent [120].

The linear discriminant is trained to distinguish between the tt̄+≥1b-jet signal processes
(tt̄+bb̄, tt̄+2b, tt̄+b) and the background processes (tt̄+cc̄, tt̄+lf, tt̄H) using the afore-
mentioned input variables for a binary classification. Later on, for each event the linear
discriminant is evaluated and its output distribution is used as final discriminant in this
analysis. The binning of the linear discriminant output distribution, shown in figure 9.4
for the Asimov dataset and in figure 11.2 for the measurement data, is optimized by a
dedicated binning algorithm which is explained in section 9.6.
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Figure 9.4: Prefit final discriminant distribution of the linear discrimant based analysis
using the Asimov dataset: The output of the linear discrimant is chosen as
the final discriminant. The stacked Monte Carlo histograms (filled blocks) are
compared to the Asimov dataset (black dots). In addition, the contributions
of the three signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) are individually scaled to
the overall integral of the stacked histograms and are shown as solid lines. The
hashed uncertainty band considers all systematic uncertainties which are added
in quadrature. The distribution is shown before the Maximum-Likelihood fit.
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9.5 Neural network based analysis

The neural network based (NN) reference analysis performs a multiclassification. Nonethe-
less, as part of a cross check with the LD reference analysis also a binary classifying neural
network is tested. The multiclassifying neural network of the reference analysis differen-
tiates between each of the three tt̄+≥1b-jet signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) as well
as the background processes (tt̄+cc̄, tt̄+lf, tt̄H) individually by defining six corresponding
event classes and associated output distributions (see figure 9.5). These output distribu-
tions are then used as final discriminants in a Maximum-Likelihood (ML) fit to obtain the
final tt̄+≥1b-jet signal strength result r.

Even though in this measurement only the signal strength r result of the combined
tt̄+≥1b-jet signal process is derived, using an event class for each considered process is
beneficial since it enables the ML fit to constrain the individual processes and related
uncertainties better. This advantage of multiclassification will be confirmed in the mea-
surements of part V. In these measurements signal strengths r of two or three processes
are determined simultaneously.

For the implementation of the neural networks used in this thesis the TensorFlow open
source library for machine learning [164] is applied, while for the training of the neural
networks the self-developed wrapper framework NNFlow [209] is exploited in addition. A
neural network containing 11 input nodes – corresponding to the 11 input variables dis-
cussed before –, two hidden layers with 100 nodes per hidden layer, and six output nodes
associated with the six event classes (tt̄+bb̄, tt̄+2b, tt̄+b, tt̄+cc̄, tt̄+lf, tt̄H) is chosen
for the NN reference analysis. But also other binary or multiclassifying neural networks
featuring different network topologies are examined as part of this analysis, these networks
will be explained in chapter 11.
However, in all cases the exponential linear unit (ELU) function [125] was employed as an
activation function (section 5.2.3).

The application of neural networks as multivariate analysis tools requires to train the
neural networks using Monte Carlo samples, before they can be used for an evaluation
of events. In the case of the multiclassifying neural network six individual Monte Carlo
samples corresponding to the tt̄+bb̄, tt̄+2b, tt̄+b, tt̄+cc̄, tt̄+lf, and tt̄H processes are con-
sidered for the training, while in the binary case only two combined samples are applied
(tt̄+≥1b-jet; tt̄+cc̄, tt̄+lf, tt̄H).
The samples consisting of events with known classification are split into three subsets: A
training sample containing 40% of the total number of events, a validation sample con-
taining 10% (both corresponding to events with an odd event number), and an evaluation
sample containing 50 % of the events (corresponding to events with an even event number).

The 11 input variables previously discussed are used as inputs to the neural network. How-
ever, the scale of the input variables and their original distribution can differ substantially
and this could lead to input variables having different influence in the training. Thus, a
scaling function is applied for each input variable. This scaling function makes sure that
the overall distribution of the input variable is Gaussian with a mean value of zero and a
standard deviation of one. The derived scaling functions are not only applied during the
training of the neural network, but also during the evaluation of events to obtain the final
output distributions.
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For the training of the various neural networks (section 5.2.3) batch training was em-
ployed. Each batch contained 500 randomly selected events. The learning rate η was set
to η = 3× 10−5. For the minimization of the loss function, for which the cross entropy was
chosen, the adam optimizer [129] was utilized with the following parameters: β1 = 0.9,
β2 = 0.999, and ε = 1e − 08. As countermeasures against overtraining of the neural net-
works early-stopping, L2-regularization, and dropout were employed: An early-stopping
interval of 15 epochs was chosen. The regularization parameter λ for the L2-regularization
was set to λ = 1× 10−12. For the dropout 30 % of the nodes were randomly selected
and their output set to zero in each batch training. The general properties of the neural
networks applied throughout this thesis are also stated in table 9.3.

Besides the scaling functions and the common activation functions of a neural network
(section 5.2.3) a softmax function is applied as part of the output layer. In this way, the
values of the six output nodes are transformed, so that the overall sum of the six output
nodes is equal to one. By this means, the individual obtained value of an output node can
be seen as a likelihood that an event was originating from the associated event class and
corresponding process in the beginning. For each event, independent of being part of the
training or evaluation step, the neural network is evaluated and the transformed values
of the six output nodes are obtained. Afterwards, the event class an event most likely
belongs to is chosen by picking the output node and corresponding event class with the
largest value. Finally, the value of this output node is then used to fill the event with its
event weight into the associated distribution of the selected event class. In this manner,
events are always attributed to only one event class, which increases the purity of the event
classes. This attribution of an event to an event class is also depictured in figure 9.6. Here,
for a given event the output node associated with the tt̄+cc̄ event class has the largest
value. Therefore, this event is classified as a tt̄+cc̄ event and its event weight is filled into
the tt̄+cc̄ event class distribution.

In theory, the bin range for each of these six event class distributions could span from
zero to one. However, in almost all cases the neural networks would not assign an event
to only one event class by producing a single output node with value of one. Instead, in
most cases one or two output nodes have rather large values for a given event and the
remaining four output nodes still have non-zero values. Hence, the distribution of output
node values of the event classes does not generally range from zero to one, but more likely
from zero to roughly 0.7. The maximum of the distribution tends to be on the left side of
the histogram (compare the prefit final discriminant distributions for the Asimov dataset
in figure 9.5). As an improvement of the event class output distributions, which are used
to derive the tt̄+≥1b-jet signal strength r result by a final Maximum-Likelihood fit, an
binning optimization algorithm is applied. It will be introduced in the next section. Since
it purges empty outer bins in an distribution, the prefit final discriminant distributions of
the NN analysis will not span over the full range from zero to one.
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Figure 9.5: Prefit final discriminant distributions of the neural network based analysis us-
ing the Asimov dataset: The output distributions of the six output nodes of the
neural network, which correspond to the six event classes (tt̄+bb̄, tt̄+2b, tt̄+b,
tt̄+cc̄, tt̄+lf, tt̄H) are chosen as the final discriminant. The stacked Monte
Carlo histograms (filled blocks) are compared to the Asimov dataset (black
dots). In addition, the contributions of the three signal processes (tt̄+bb̄,
tt̄+2b, tt̄+b) are individually scaled to the overall integral of the stacked his-
tograms and are shown as solid lines. The hashed uncertainty band considers
all systematic uncertainties which are added in quadrature. The distribution
is shown before the Maximum-Likelihood fit.
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Table 9.3: General properties of the neural networks employed in this thesis: The ELU
function was used as an activation function. For the training of a neural net-
work event samples with known classification were split into a training, vali-
dation, and test dataset. From these dataset batches of 500 randomly selected
events were constructed. As part of the training a learning rate η and an op-
timizer to minimze the loss function was chosen. Furthermore, early-stopping,
L2-regularization, and dropout were used to prevent overtraining of a neural
network.

Property Value

Activation function Exponential linear unit (ELU)

Fraction of training events 40 % (80 % of events with odd number)
Fraction of validation events 10 % (20 % of events with odd number)
Fraction of evaluation events 50 % (100 % of events with even number)

Batch size 500 events
Learning rate η 3e-05
Loss function cross entropy
Optimizer Adam
Parameter β1 of Adam optimizer 0.9
Parameter β2 of Adam optimizer 0.999
Parameter ε of Adam optimizer 1e-08

Early-stopping interval 15 epochs
Early stopping of training after 199 epochs
L2-regularization parameter λ 1e-12
Dropout rate d 0.3

Figure 9.6: Overview of the neural network used for the neural network based analysis:
The neural network expects for each input variable an input value (x1 to xn),
which is normalized by using a scaling function (not shown). The values of the
input layer are processed further by the hidden layers of the neural network,
before the last hidden layer consisting of six nodes (one node for each of the
considered sub-processes / event classes: tt̄+bb̄, tt̄+2b, tt̄+b, tt̄H, tt̄+cc̄, and
tt̄+lf) is reached. The values of these six nodes get transformed by a so-called
soft-max function, so that the sum over all six nodes in the output layer is
one. Based on the node in the output layer with the largest value the neural
network decides on the event class.
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9.6 Application of a binning optimization algorithm

For the LD and NN analyses a dedicated binning optimization algorithm is applied since
the number of background events in the outer bins can be rather small or even negligible.
This can lead to large statistical fluctuations for the background processes and also to bins
having negative numbers of expected background events if the corresponding background
process was simulated in next-to-leading order of perturbation theory and, thus, its events
can have negative event weight. For this reason, a fixed bin size would be hardly suitable
and a better solution is to require a certain number of bins and a minimum number of
background event in each bin. This requirement is met by the binning optimization algo-
rithm: By using this algorithm a final discriminant has at least 5 bins and at maximum 20
bins. The bins usually have equal bin widths, but the width of the outer bins is increased
if necessary, so that every bin contains at least 10 background events (events from all
background processes counted together).
To obtain the optimized bins, final discriminant output distributions containing 1000 bins
with a total range from zero to one are produced initially. Subsequently, the binning opti-
mization algorithm merges bins starting from the left and right side of the total bin range,
so that the number of weighted background events in each remaining bin is at least 10.
Finally, the remaining bins are combined to bins with an equal bin width until the criteria
of having at least 5 bins and at maximum 20 bins is met.
The binning optimization algorithm purges empty bins, if they correspond to the lowest
or highest remaining bin of an output distribution. That is the reason why output dis-
tributions as in the case of the NN analysis can have a smaller bin range than zero to
one.

9.7 Maximum-Likelihood fit

For the three reference analyses (B-jet mult., LD, NN) and all other analyses a Maximum-
Likelihood (ML) fit (section 5.1) is applied to derive the signal strength r of the tt̄+≥1b-jet
signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) and its associated uncertainties as a final analysis
result. All systematic uncertainties (cf. next section) are taken into account as nuisance
parameters θ during the minimization of the corresponding negative log-likelihood func-
tion. A global minimum of the likelihood function is found using the Minuit algorithm [211]
by scanning the signal strength r as the parameter of interest, while the nuisance param-
eters θ are varied one after the other to find a local minimum of the likelihood function.
This Maximum-Likelihood fit and further fit tests are conducted by making use of the CMS
Higgs Combine tool [212] together with the CombineHarvester CMS software framework
(CMSSW) package [213]. These tools are chosen and are widely used in the CMS col-
laboration since the proper implementation of a multi-dimensional Maximum-Likelihood
fit, the corresponding handling of the convergence of the fit, and so on is a formidable
challenge in itself. By employing the two tools, which rely on the ROOT data analysis
framework [214] as well as the CMS software framework [197] themselves, trust can be
placed in the results of the Maximum-Likelihood fits. Nevertheless, various tests are con-
ducted to cross check the results produced with the three reference analysis and to increase
the confidence in the results presented in chapter 11.
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10. Systematic uncertainties

In this analysis different kinds of systematic uncertainties are considered during the Maximum-
Likelihood fit discussed previously to obtain the final signal strength r result for the
tt̄+≥1b-jet signal processes. All of the following uncertainties, if not stated otherwise,
apply equally to the tt̄+≥1b-jet signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) and all the back-
ground processes (including the background processes neglected by the classification via
the multivariate analysis methods). Generally, these systematic uncertainties are treated
as fully correlated between the signal and background processes.
The systematic uncertainties will be divided into theory uncertainties related to the ap-
plied Monte Carlo samples and into experimental uncertainties related to the measurement
process. Furthermore, systematic uncertainties can also be classified according to their in-
fluence on the rate and / or shape of the obtained final discriminant output distributions
into:

Rate uncertainties, which refer to systematic uncertainties affecting only the rates of
physics processes in a final discriminant output distribution and are constrained by a
log-normal distribution.

Shape uncertainties, which have an influence on the shape of a final discriminant output
distribution and maybe (indirectly) also on the rate.

Of course, systematic uncertainties can also be an uncertainty affecting both the rate and
the shape of an output distribution.
In the summary table 10.3, besides the classification of uncertainties according to their
origin, these two types of systematic uncertainties will also be used to provide a complete
overview of all systematic uncertainties applied.

10.1 Systematic uncertainties related to the applied Monte
Carlo samples

In this section a short overview of the systematic uncertainties related to the usage of
Monte Carlo samples will be given.
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10.1.1 Cross section normalization rate uncertainties

In the most cases the Monte Carlo samples are generated using a combination of a dedi-
cated matrix element (ME) event generator and a subsequent general-purpose Monte Carlo
(GPMC) event generator in next-to-leading order of perturbation theory. Please refer to
chapter 6 for more details about the chosen samples. However, the expectation for the
signal and background cross sections are derived from theoretical calculations since in all
cases these provide a cross section estimation with a higher accuracy and lower uncertain-
ties (cf. section 6.2) due to inclusion of higher-order corrections. The rate uncertainties
which are related to these cross section normalizations are given in table 10.1. Uncer-
tainties that are common to multiple processes are considered as fully correlated, where
applicable.
The cross section normalization rate uncertainties are split into systematic uncertainties
related to the variation of the parton distribution function (PDF) and to the variation of
the QCD scale. More details will be given below.

10.1.2 Extra rate uncertainty due to the cross section normalization of
the tt̄+cc̄ process

The tt̄+cc̄ process due to its similarities to the tt̄+≥1b-jet signal processes represents an
important source of irreducible background. Since up to now the cross section normaliza-
tion of this process cannot be constrained to better than roughly fifty percent using either
control region studies or higher-order theory calculations, an additional and uncorrelated
fifty percent rate uncertainty is assigned to the cross section normalization of this process.

Table 10.1: Systematic uncertainties due to the normalization of cross sections: Each col-
umn in the table is an independent source of a rate uncertainty. If uncertainties
are listed for more than one process (same column, but different rows), the
uncertainties for these processes are fully correlated. The rate uncertainties
are split into systematic uncertainties related to the variation of the parton
distribution function (PDF) and of the QCD scale. In the case of the tt̄+cc̄
process an extra 50 % rate uncertainty is assigned which is not listed here.

Process
pdf QCD Scale

ggtt̄H gg qq̄ qg tt̄ t V+jets VV+jets tt̄H

tt̄H 3.6% -9.2%/+5.8%

tt̄+jets 4% -4%/+2%

tt̄W 2% -12%/+13%

tt̄Z 3% -12%/+10%

Single Top 3% -2%/+3%

V+jets 4% 1%

DiBoson 2% 2%

10.1.3 PDF variation uncertainties

For all Monte Carlo samples used in this thesis the NNPDF3.0 set [186] is used as the
default parton distribution function (PDF) set. Variations of the final discriminant output
distributions due to the intrinsic uncertainty of this PDF set are considered by making use
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of the 100 sub pdfs contained in this PDF set to reweight the output distributions and to
derive the associated shape uncertainties. In the case of the tt̄ samples the obtained shape
uncertainty is applied, while for all the other samples a rate uncertainty is used.
These PDF uncertainties are listed in table 10.1 and PDF uncertainties are correlated for
the same initial-state.

10.1.4 Extra shape uncertainties due to the chosen renormalization and
factorization scale for the tt̄+X processes

For all tt̄+X processes additional, uncorrelated shape uncertainties are considered due to
the choice of the renormalization scale µR and the factorization scale µF in the ME gener-
ator to produce these event samples. The shape uncertainties are derived from the changes
to the final discriminant output distributions, after these scales are individually varied by
a factor of either 0.5 or 2. Since the aforementioned cross section rate uncertainties should
already completely cover any rate changes due to the parameters chosen in the matrix el-
ement generator, the scale variation uncertainties are getting scaled to retain the original
overall cross section normalization and are only considered as shape uncertainties.

10.1.5 Extra rate uncertainties due to the matrix element generator and
parton shower matching for the tt̄+X processes

The tt̄ samples are produced using the POWHEG ME event generator matched to the
Pythia8 GPMC event generator. For this event generation a hdamp value of hdamp
= 1.58mt is applied which represents the choice of a resummation scale for the damp-
ing function limiting the resummation of higher-order effects by the Sudakov form factor
(Ref. [215] provides detailed information about this parameter). Since the resummation
scale is a physically unmotivated parameter and only an artifact of the approximation of
higher-order calculations in leading or next-to-leading order event generation, it should be
considered as an additional theory uncertainty. Therefore, by producing extra tt̄ samples
with hdamp values of hdamp = mt and hdamp = 2.24mt the hdamp resummation scale
value is varied within reasonable bounds. In this way, corresponding uncorrelated shape
variations for each tt̄+X process are obtained. However, due to the limited number of
events in the extra tt̄ samples large statistical fluctuations occur, resulting in unrealisti-
cally large variations of the final discriminant templates. It is for this reason that this
shape variations are converted to an individual and uncorrelated rate uncertainty for each
tt̄+X process by comparing the total event yield of the nominal and the varied samples.

10.1.6 Extra rate uncertainties due to the value of the strong coupling
constant αS chosen in the parton shower for the tt̄+X processes

As mentioned before, the tt̄ samples are produced by employing the POWHEG ME event
generator matched to the Pythia8 GPMC event generator. For these samples the impact
of the value for the strong coupling constant αS in the Pythia8 parton shower is evaluated
independently for the initial-state radiation (ISR) and the final-state radiation (FSR) par-
ton shower by including dedicated samples. These samples are produced with a variation
of the αS value in either the ISR or FSR shower by a factor of two up or down and lead to
a shape variation in the final discriminant output distributions. However, as in the case
of the hdamp tt̄ samples large statistical fluctuations occur due to the limited number of
events. Hence, for the same reasons as before the shape variations are converted to an
individual and uncorrelated rate uncertainty for each tt̄+X process.
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10.1.7 Extra rate uncertainties due to the underlying event tune of the
parton shower for the tt̄+X processes

In the same manner as for the two previously discussed extra uncertainties, also rate
uncertainties considering the choice of the underlying tune of the Pythia8 parton shower
are obtained and applied. In table 10.2 the settings chosen for the underlying event tune
to produce the nominal and varied tt̄ samples are listed. Again, the limited size of the
varied samples made it reasonable to convert the shape variations into uncorrelated rate
uncertainties for the single tt̄+X processes.

Table 10.2: Settings to obtain the rate uncertainties due to the underlying event tune of
the parton shower for the tt̄+X processes: The underlying event tune settings
for the nominal POWHEG tt̄ samples and the up- or down-varied samples are
given in the table.

Parameter Nominal Up-varied Down-varied

MultipartonInteractions:pT0Ref 2.1971 2.1279 2.2686
MultipartonInteractions:expPow 1.6085 1.7106 1.5619
ColourReconnection:range 6.5932 6.5000 8.7140

10.1.8 Shape uncertainties due to the limited size of the Monte Carlo
samples

Due to the limited size of the tt̄ Monte Carlo samples and all the background samples sta-
tistical fluctuations, affecting the event yield predictions for the nominal samples, occur.
By introducing a shape uncertainty, which is constructed by varying each bin of a final dis-
criminant output distribution individually by its statistical uncertainty, this is considered.
Since all bins are statistically independent, each single shape variation can be viewed as
an uncorrelated shape uncertainty.

10.2 Systematic uncertainties related to the measurement
process

In this section a short overview of the systematic uncertainties related to the measurement
process will be given.

10.2.1 Luminosity rate uncertainty

The integrated luminosity
∫
L dt delivered and recorded by the CMS detector is measured

using five detectors: The silicon pixel detector, the drift tubes in the barrel (DT), the
forward hadronic calorimeter (HF), the fast beam conditions monitor (BCM1F) and the
pixel luminosity telescope (PLT). The recommended rate uncertainty on the luminosity
for the 2016 measurement period is 2.5 % [187]. It is an important uncertainty since it
affects all other rates.

10.2.2 Uncertainties due to pileup interactions

The occurrence of additional pileup interactions and the corresponding uncertainty on
the number of pileup interactions is taken into account by including a rate and shape
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uncertainty which is applied to all processes and considered fully correlated among them.
These uncertainty is obtained by a variation of the cross section applied for the pileup
interactions in the Monte Carlo samples by a factor of ± 4.6 % as recommended by [216].

10.2.3 Lepton ID, tracking, and isolation uncertainties

For the electrons and muons rate and shape uncertainties of the lepton ID, tracking,
and isolation scale factors are applied and propagated to the final discriminant output
distributions. In this way, the efficiency of reproducing a lepton by the Monte Carlo
event generation and subsequent detector simulations is taken into account, which is the
approach recommended by the CMS electron-gamma physics-object group [217] and by
the CMS muon physics-object group [218]. For each lepton occurring in an event, the
uncertainties are typically of the order of 1-2%.

10.2.4 Lepton trigger efficiency uncertainties

Similar to the other lepton uncertainties, variations in the final discriminant output distri-
butions due to the modelling of the lepton trigger efficiency by Monte Carlo samples occur,
which are considered as rate and shape uncertainties. These uncertainties are obtained by
a variation of the lepton scale factors for each lepton emerging in an event.

10.2.5 Jet energy scale uncertainties

26 individual rate and shape uncertainties are applied in this analysis to take into ac-
count systematic uncertainties related to the jet energy scale (JES). They are obtained
by a 1σ-variation of the jet energy scale for all jets at reconstruction level, so that after
a new reconstruction of the jets and related kinematic variables varied final discriminant
output distributions are derived. More information about these uncertainties can be found
in [219].
In the case of the b-tagged jets for the 10 most important JES uncertainties dedicated
JES uncertainties are determined, while for the other 16 JES uncertainties the same un-
certainties as in the case of the non-b-tagged jets are used. All 26 systematic uncertainties
are considered fully correlated.

10.2.6 Jet energy resolution uncertainties

Similar to the jet energy scale uncertainties, the jet energy resolution (JER) rate and shape
uncertainties are derived by a variation of the difference in the jet energy between jets at
particle level and jets at reconstruction level as suggested by [220].

10.2.7 B-tagging uncertainties

For the b-tagging of jets differential CSVv2 scale factors are applied which are derived from
studies using heavy-flavour (hf) or light-flavour (lf) enriched control samples as described
in [221] and [222]. The uncertainties related both to using the heavy-flavour and light-
flavour scale factors can be divided into three categories which are considered separately:
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Uncertainty on the heavy-flavour and light-flavour purity in the control sam-
ples

The uncertainty on the purity of the heavy-flavour and light-flavour control samples is
taken into account by introducing a dedicated uncertainty which is obtained by shifting
either the heavy-flavour or light-flavour scale factor by a factor of 1 σ. This corresponds to
a change in the contamination of a heavy-flavour (or light-flavour) enriched control region
with light-flavour (or heavy-flavour) jets.

Uncertainties due to the size of the control samples

Four additional uncertainties, two for the heavy-flavour and two for the light-flavour b-
tagging scale factors which are called b-Tag HF stats and b-Tag LF stats, respectively, are
employed. In this manner, the limited size of the control samples and the consequential
statistical uncertainties is taken into account. The first uncertainty of each class controls
distortions in the CSV distribution leading to an overall tilt of the distribution (“linear”),
while the second uncertainty controls distortions leading to a change in the lower and
upper ends of the CSV distribution with respect to the relative center of the distribution
(“quadratic”).

Uncertainties related to the scale factors of charm jets

Two separate additional uncertainties are used to control the systematic uncertainties on
the distribution of the scale factors for charm jets. The first uncertainty considers an
uncertainty on the linear shape of the charm jet scale factor distribution, while the second
uncertainty refers to a quadratic shape deviation.
These uncertainties of the charm jet scale factors are constructed by taking the relative
uncertainty from the heavy flavour scale factors and doubling it in size. The two un-
certainties related to the c-tagging scale factors are then treated as independent to the
uncertainties of the heavy-flavour and light-flavour scale factors. More details on these
uncertainties can be found in [222].

10.3 Summary of systematic uncertainties

Table 10.3 summarizes the systematic uncertainties applied on the tt̄+≥1b-jet signal pro-
cesses and all the background processes for this analysis. Furthermore, it contains a
distinction between rate and shape uncertainties.
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Table 10.3: Summary of the systematic uncertainties considered in this analysis

Source Type Notes

Systematic uncertainties related to the Monte Carlo samples

QCD Scale (tt̄) Rate Scale uncertainty for tt̄ prediction
QCD Scale (tt̄+cc̄) Rate Additional scale uncertainty for tt̄+cc̄ prediction
QCD Scale (tt̄H) Rate Scale uncertainty for tt̄H prediction
QCD Scale (t) Rate Scale uncertainty for single-top prediction
QCD Scale (V+jets) Rate Scale uncertainty for W+jets and Z+jets prediction
QCD Scale (VV+jets) Rate Scale uncertainty for diboson prediction

PDF (gg) Rate PDF uncertainty for gg initiated processes (tt̄, tt̄Z)
except tt̄H

PDF (ggtt̄H) PDF uncertainty for tt̄H
PDF (qq̄) Rate PDF uncertainty for qq̄ initiated processes (tt̄W, W,

Z).
PDF (qg) Rate PDF uncertainty for qg initiated processes (single top)

PDF (tt̄) Shape PDF uncertainty for the tt̄ samples
Q2 Scale (tt̄) Shape Renormalization and factorization scale uncertainties

for the tt̄+X processes
ME-PS matching (tt̄) Rate Matrix element generator and parton shower matching

uncertainties for the tt̄+X processes
PS Scale: ISR (tt̄) Rate Initial-state radiation parton shower scale uncertain-

ties for the tt̄+X processes
PS Scale: FSR (tt̄) Rate Final-state radiation parton shower scale uncertainties

for the tt̄+X processes
Underlying Event (tt̄) Rate Underlying event tune uncertainties for the tt̄+X pro-

cesses
Bin-by-bin statistics Shape Statistical uncertainty of the signal and background

predictions due to the limited size of the Monte Carlo
samples

Systematic uncertainties related to the measurement process

Luminosity Rate Uncertainty on the luminosity measurement
Pileup Rate, Shape Uncertainties on the number of pileup interactions

Lepton ID, tracking, and isolation Rate, Shape Uncertainty on the lepton identification, tracking, and
isolation

Lepton trigger efficiency Rate, Shape Uncertainty on the lepton triggering

JES [26 individual uncertainties] Rate, Shape Jet energy scale uncertainties
JER Rate, Shape Jet energy resolution uncertainties

b-Tag HF purity Shape Purity uncertainty of the heavy-flavour control region
used to determine the b-tagging scale factors

b-Tag HF stats (linear) Shape Statistical uncertainty related to the determination of
the b-tagging scale factors

b-Tag HF stats (quadratic) Shape Statistical uncertainty related to the determination of
the b-tagging scale factors

b-Tag LF purity Shape Purity uncertainy of the light-flavour control region
used to determine the b-tagging scale factors

b-Tag LF stats (linear) Shape Statistical uncertainty related to the determination of
the b-tagging scale factors

b-Tag LF stats (quadratic) Shape Statistical uncertainty related to the determination of
the b-tagging scale factors

b-Tag Charm (linear) Shape Uncertainties related to the scale factors of charm jets
b-Tag Charm (quadratic) Shape Uncertainties related to the scale factors of charm jets
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11. Results

In this chapter – based on the foundations layed in the previous chapters – the results of the
measurement of the tt̄+≥1b-jet (tt̄+bb̄, tt̄+2b, tt̄+b) signal strength and corresponding
cross section using the reference analyses will be presented. Furthermore, some additional
results and tests helping to assess the obtained results better will be discussed.

11.1 tt̄+≥1b-jet signal strength result

For the reference analyses the tt̄+≥1b-jet signal strength r result obtained with a Maximum-
Likelihood fit is stated in table 11.1.
As a short reminder, the B-jet multiplicity (B-jet mult.) and linear discriminant (LD)
based analyses perform a binary classification between the tt̄+≥1b-jet signal processes
(tt̄+bb̄, tt̄+2b, tt̄+b) and the background processes (tt̄+cc̄, tt̄+lf, tt̄H). In comparison,
the neural network (NN) based analysis does a multiclassification between the six asso-
ciated event classes. Both the LD and the NN analyses make use of 11 input variables,
discussed in sections 9.2 to 9.2.2. The B-jet mult. analyses, however, just uses the distri-
bution of the number of b-tagged jets as final discriminant.
In table 11.1, the expected tt̄+≥1b-jet signal strength r(expected) result is given using an
Asimov dataset under signal expection (S=1) and the observed tt̄+≥1b-jet signal strength
r(observed) result applying the measurement data after the event selection (cf. sections 7.1
and 7) is listed.
In this manner, the systematic uncertainties which correspond to a 1σ-uncertainty and
which are related to the determination of the signal strength r result can be compared
between both data sets. It is generally expected that the signal strength result of the Asi-
mov data set r(expected) has slightly larger uncertainties, since the nuisance parameters
do not get as much constrained as by real data, while only small differences between the
obtained uncertainties of the Asimov data set and the measurement data indicate that
the underlying model of the systematic uncertainties is already quite well described by the
Asimov data set.
Some analyses also show the expected signal strength r(expected, S=0) result for an Asi-
mov data set with only background expectation (S=0). However, in the case of the analyses
presented in this thesis showing a background-only expectation does not seem reasonable.
The reason for this is that the signal contributions of the tt̄+≥1b-jet processes are rather
large and a background-only model cannot be properly fitted to the measurement data.
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Therefore, this kind of signal strength r(expected, S=0) result is always neglected.

As can be seen from table 11.1 all analyses observe a signal strength r(observed) larger
than expected from the predictions of the Standard Model of particle physics (SM). Fur-
thermore, especially the two multivariate analyses (LD, NN) are in very good agreement
with each other, both deriving a tt̄+≥1b-jet signal strength of r(observed) = 1.2. On the
other hand, the smaller signal strength r(observed) result of the B-jet mult. analysis can
be attributed to the rather basic number of b-tagged jets distribution, which is exploited
as final discriminant (see figure 9.1 for the prefit version): Due to the smaller separation
between signal and background processes and lower number of bins in its distribution,
it is more likely that during the fit of this final discriminant background processes are
pulled upwards reducing the amount of signal. The rather large reduction of the expected
uncertainties in comparison to the observed uncertainties for the B-jet mult. analysis also
can be seen as an indication that the separation between signal and background processes
may be not as good as in the two other analysis.
Overall, one can safely say that the expected and observed systematic uncertainties are
smaller for the NN analysis than for the other two analysis and that also the difference
between the expected and observed uncertainties of this analysis is smallest. This is not
surprising since the NN analysis utilizes rather complex multivariate analysis methods
by making use of a multiclassifying neural network with 2 hidden layers and 100 nodes
per hidden layer. However, it is striking that the much simpler linear discriminant based
multivariate analysis comes to a similar result with compatible uncertainties. Moreover,
if one neglects the different observed signal strength r(observed) result of the B-jet mult.
analysis and only compares its expected uncertainties with the other two analyses, these
uncertainties are also in the same order of magnitude. The reason for these rather simi-
lar and still quite large uncertainties is that the uncertainties of the analyses are mostly
limited by large systematic uncertainties and rather less by statistical uncertainties which
will be studied in the next section in more detail.
At this point one can conclude that the three reference analyses lead to an increased, but
rather consistent tt̄+≥1b-jet signal strength of approximately r(observed) = 1.20+23%

−17%,
where the result of the NN analysis is used to estimate the uncertainty.

Table 11.1: tt̄+≥1b-jet signal strength r results for the reference analyses: For the three
reference analyses the tt̄+≥1b-jet signal strength result for an Asimov data set
under signal expection r(expected) and the tt̄+≥1b-jet signal strength result
for the measurement data after the event selection r(observed) is shown. The
systematic uncertainties (listed in percent) correspond to a 1σ-uncertainty.
Besides of that the type of classification and, if applicable, the chosen param-
eters are given.

Analysis Classification Parameters r(expected) r(observed)

B-jet mult. binary - 1+32.7%
−22.7% 1.09+25.0%

−22.1%

LD binary 11 vars 1+24.3%
−17.6% 1.21+23.4%

−19.5%

NN multiclass 11 vars, 2 HL, 100 nodes 1+22.9%
−17.1% 1.20+22.8%

−17.4%
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11.2 Influence of systematic uncertainties on the tt̄+≥1b-jet
signal strength result

As can be seen from table 11.1 all three reference analyses derive an uncertainty on the
observed signal strength ∆r(observed) in the order of ∆r(observed) ≈ ±20% − 24%, if
one transforms the slightly different upwards and downwards uncertainties into a common
two-sided uncertainty. It is of special interest that the three reference analyses derive a
tt̄+≥1b-jet signal strength with almost the same uncertainty. In general, it would be ex-
pected that the multivariate analyses (LD, NN), by using more elaborate final discriminant
output distributions, can constrain the result and its corresponding uncertainties better.
It is assumed that at least the multivariate analyses are affected by large systematic un-
certainties and, hence, cannot derive a more precise result. Therefore, in this section the
influence of systematic uncertainties on the measurement of the tt̄+≥1b-jet signal strength
will be discussed.

11.2.1 Prefit and postfit distributions of the three reference analyses

The prefit and postfit distributions of the three reference analysis using the selected mea-
surement data are presented in figures 11.1 to 11.4. In the case of the B-jet mult. and LD
analyses, which only use one final output distribution (either the number of b-tagged jets or
the linear discriminant output), the prefit and postfit distributions are shown side-by-side
in the corresponding figures 11.1 and 11.2. Due to the six event classes and associated final
discriminant output distributions of the NN analyses the prefit distributions are shown in
figure 11.3 and the postfit distributions in the subsequent figure 11.4.
It is important to note that the uncertainty bands in the prefit and postfit distributions
are obtained differently. For the prefit distributions all systematic uncertainties are con-
sidered uncorrelated and the corresponding nuisance parameters θ are assumed to follow a
Gaussian distribution. Therefore, the uncertainties of the nuisance parameters θ are added
in quadrature. This results in rather large uncertainty bands compared to the uncertainty
bands of the postfit distributions.
In the case of the postfit distributions, the nuisance parameters are getting constrained by
the Maximum-Likelihood fit (see section 9.7) and correlations between them are taken into
account by computing the covariance matrix by the fit. For the determination of the un-
certainty bands the covariance matrix is used to construct probability distributions of the
nuisance parameters. By sampling from multivariate normal distributions the rate changes
of the final discriminant output distributions due to the constrained nuisance parameters
can be calculated for every bin of the respective final discriminant output distribution.

From the prefit and postfit output distributions of the three reference analyses it can be
observed that before the Maximum-Likelihood fit and also after the fit the agreement be-
tween the sum of Monte Carlo predictions and the measurement data is very good for all
output distributions. Furthermore, the effect of the systematic uncertainties rarely leads
to a systematic bin uncertainty (shown by the hashed uncertainty band) larger than 20 %
of the bin expectation before the fit. After constraining the systematic uncertainties by the
fit, these bin uncertainties do not exceed 10 % for the most part. Moreover, all bin-by-bin
systematic uncertainties show consistent behaviour between the prefit and postfit distri-
butions. In most cases, the bin uncertainties get drastically smaller after the fit. Only the
right-most bins of the tt̄+2b, tt̄+b, and tt̄H output distributions of the NN analysis show
only a slightly decrease of their uncertainties after the fit. This can be explained by the
relative large uncertainty of the few measured events falling into these bins.
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Due to the similar bin-by-bin systematic uncertainties observed in the postfit distributions,
the similar observed uncertainty on the tt̄+≥1b-jet signal strength r(observed) seems plau-
sible. However, a direct conclusion which systematic uncertainties and related nuisance
parameters cause the rather large observed uncertainty of ∆r(observed) ≈ ±20% − 24%
cannot be drawn from the prefit and postfit plots. For such studies pull and impact
distributions are more suitable, which will be discussed in the next section.
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CMS Private work

CMS Private work

Figure 11.1: Final discriminant distributions of the B-jet multiplicity based analysis us-
ing the measurement data: As the final discriminant of the B-jet multiplic-
ity based analysis the number of b-tagged jets distribution is chosen. The
stacked Monte Carlo histograms (filled blocks) are compared to the measure-
ment data (black dots). In addition, the contributions of the three signal
processes (tt̄+bb̄, tt̄+2b, tt̄+b) are individually scaled to the overall integral
of the stacked histograms and are shown as solid lines for the prefit distri-
bution (upper plot). In the prefit distribution, the hashed uncertainty band
considers all systematic uncertainties added in quadrature. In the postfit
distribution (lower plot), the hashed uncertainty band considers all system-
atic uncertainties constrained by the Maximum-Likelihood fit via covariance
matrix sampling.
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Figure 11.2: Final discriminant distributions of the linear discriminant based analysis us-
ing the measurement data: The output of the linear discrimant is chosen as
the final discriminant. The stacked Monte Carlo histograms (filled blocks) are
compared to the measurement data (black dots). In addition, the contribu-
tions of the three signal processes (tt̄+bb̄, tt̄+2b, tt̄+b) are individually scaled
to the overall integral of the stacked histograms and are shown as solid lines
for the prefit distribution (upper plot). In the prefit distribution, the hashed
uncertainty band considers all systematic uncertainties added in quadrature.
In the postfit distribution (lower plot), the hashed uncertainty band considers
all systematic uncertainties constrained by the Maximum-Likelihood fit via
covariance matrix sampling.
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Figure 11.3: Prefit final discriminant distributions of the neural network based analysis us-
ing the measurement data: The output distributions of the six output nodes
of the neural network, which correspond to the six event classes (tt̄+bb̄,
tt̄+2b, tt̄+b, tt̄+cc̄, tt̄+lf, tt̄H) are chosen as the final discriminant. The
stacked Monte Carlo histograms (filled blocks) are compared to the measure-
ment data (black dots). In addition, the contributions of the three signal
processes (tt̄+bb̄, tt̄+2b, tt̄+b) are individually scaled to the overall integral
of the stacked histograms and are shown as solid lines. The hashed uncer-
tainty band considers all systematic uncertainties added in quadrature. The
distribution is shown before the Maximum-Likelihood fit.
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Figure 11.4: Postfit final discriminant distributions of the neural network based analy-
sis using the measurement data: The output distributions of the six output
nodes of the neural network, which correspond to the six event classes (tt̄+bb̄,
tt̄+2b, tt̄+b, tt̄+cc̄, tt̄+lf, tt̄H) are chosen as the final discriminant. The
stacked Monte Carlo histograms (filled blocks) are compared to the measure-
ment data (black dots). The hashed uncertainty band considers all systematic
uncertainties constrained by the Maximum-Likelihood fit via covariance ma-
trix sampling.
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11.2.2 Pull and impact distributions of the three reference analyses

Pull and impact distributions are quite useful to determine which systematic uncertainties
and related nuisance parameters θ have the largest effect on the observed uncertainty of
the tt̄+≥1b-jet signal strength r(observed) result. In pull distributions, for each system-
atic uncertainty the difference between the initial value of its nuisance parameter θ0 and
the best-fit value after the Maximum-Likelihood fit θ̂ divided by the uncertainty on this
parameter before the fit ∆θ

θ̂ − θ0

∆θ

is shown. The constraints on the nuisance parameter correspond to a 1σ-confidence inter-

val around the prefit value which is also presented. Large deviations of θ̂−θ0
∆θ from zero, or,

in other words, pulls, indicate that the initially assumed value of a nuisance parameter θ
and the corresponding model of a systematic uncertainty is not properly chosen and that
the fit finds another value of this nuisance parameter more suitable. This often happens
for systematic uncertainties, which proper estimation and modeling presents a challenge,
and has to be understood. It can also indicate a problem with the fit model. Therefore, if
occurring, the cause of such large pulls has to be checked.
Another feature occuring in pull distributions is that nuisance parameters can have rather
strong constraints. This is usually caused by nuisance parameters and related systematic
uncertainties for which rather large uncertainties are assumed in the beginning and which
can be constrained quite well by the fit due to the knowledge obtained through the overall
systematic uncertainty model. If systematic uncertainties related to rates of background
processes are tightly constrained, in particular if the upper uncertainty interval is small,
the sensitivity of the analysis is improved. The reason for the improvement is that the
fit model cannot accommodate a signal-like excess by an upward fluctuation of the back-
ground model easily due to the constraints.

For the production of impact distributions each nuisance parameter is fixed either on the
upper or lower border of its 1σ-confidence interval after the fit. The Maximum-Likelihood
fit is then conducted again with the remaining nuisance parameters being freely floating.
Afterwards, the change in the observed signal strength result ∆r from the nominal observed
signal strength result r(observed) is computed and shown as impact of the corresponding
nuisance parameter and associated systematic uncertainty in the plot. In this manner, the
influence of a systematic uncertainty on the overall fit result can be estimated. Further-
more, impact distributions are scanned for systematic uncertainties having single-sided
impacts. Similar to systematic uncertainties with large pulls, systematic uncertainties
with single-sided impacts suggest that these uncertainties are not properly modeled and
should be understood better. Positive and negative correlations between the systematic
uncertainties and their impact on the tt̄+≥1b-jet signal strength result can also be read
from the corresponding impact distributions.

The combined pull and impact distributions listing the 13 most important systematic un-
certainties of the neural network based (NN) analysis is presented in figure 11.5. This
analysis is the most sensitive of the reference analyses. The combined pull and impact
distributions of the other two reference analyses lead to similar findings and are part of
appendix A together with a plot containing the 30 most important systematic uncertain-
ties of the NN analysis.

From the combined pull and impact distributions it can be observed that the following
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systematic uncertainties are most dominant in all three analyses:

B-tagging uncertainties

The uncertainty on the heavy-flavour and light-flavour purity in the control samples (b-Tag
hf purity, b-Tag lf purity) to derive the b-tagging scale factors as well as the uncertain-
ties on the scale factors of charm jets (b-Tag Charm (linear), b-Tag Charm (quadratic))
(cf. section 10.2.7) are among the most dominant uncertainties.
The strong impact of b-tagging uncertainties is not unexpected since as explained during
the discussion of the input variables for the two multivariate analyses (section 9.2.2) b-
tagging information is mostly exploited to separate the tt̄+≥1b-jet signal processes from
the background processes, while the B-jet mult. analysis makes explicitly use of the num-
ber of b-tagged jets. Moreover, the proper b-tagging of bottom jets and even more the
proper tagging of charm jets is still experimentally challenging and a continuing field of
further study. For example, the CSVv2 b-tagging algorithm [89], which is used in this
analysis and was used by default in the CMS Collaboration from the beginning of the
LHC Run 2 up to now, is superseded for the CMS 2017 measurement data by the newer
DeepCSV b-tagging algorithm [90] promising a more precise tagging of jets.

Uncertainties related to the parton shower

In all three analyses uncertainties related to the parton shower and to the description of ei-
ther the tt̄+bb̄ or tt̄+lf process have significant impact on the overall result. Among them
the uncertainty due to the chosen value of the strong coupling constant αS for the descrip-
tion of the final-state radiation (FSR) by the parton shower (PS Scale: FSR (tt̄+bb̄), PS
Scale: FSR (tt̄+lf)) is the most important (section 10.1.6). It is followed by the impact of
the uncertainty on the initial-state radiation (ISR) αS value (PS Scale: ISR (tt̄+bb̄), PS
Scale: ISR (tt̄+lf)) and the uncertainty due to the matrix element generator and parton
shower matching (ME-PS: (tt̄+bb̄), ME-PS: (tt̄+lf)) (section 10.1.5).
Also this finding is expected since, as mentioned in the corresponding systematic uncer-
tainty sections, the statistics of the Monte Carlo samples applied to derive and estimate
these uncertainties is rather limited. For this reason rather large rate uncertainties have
to be used to cover these systematic effects.

Looking at the constraints of the pull and the impact distribution of the neural network
(NN) based analysis, it is interesting to note that the uncertainty related to the linear
shape of the scale factor distribution of charm jets (B-Tag Charm (linear)) gets pulled and
shows a deviation from its prefit value. Likewise its corresponding impact is single-sided.
The pull and impact distributions of the other two analyses (available in appendix A)
do not show single-sided impacts, but also a tendency that this nuisance parameter gets
pulled to larger values. It can be assumed that the linear component of the shape of the
scale factor distribution for the charm jets was mismodeled in the beginning and led to
an underestimation of the associated initial value of the B-Tag Charm (linear) nuisance
parameter. However, this should not be cause for excessive concern since it seems that
this upward pull of the nuisance parameter gets balanced by a downward pull of the B-Tag
Charm (quadratic) nuisance parameter, which reflects the uncertainty on the quadratic
component of the shape of the charm jet scale factor distribution and which supports the
above assumption of a mismodeling of the scale factor distribution. Furthermore, possi-
bly the extra rate uncertainty due to the cross section normalization of the tt̄+cc̄ process
(QCD Scale (tt̄+cc̄) nuisance parameter, cf. section 10.1.2) makes up for this mismodeling
by getting pulled to negative values as well.
Besides of this all pulls and impacts look reasonable.
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Figure 11.5: Pull and impact distribution of the neural network based analysis: The pull of
a nuisance parameter θ (black point) corresponds to the difference between its
initial value and its best-fit value after the fit divided by the uncertainty on it

before the fit θ̂−θ0
∆θ . The 1σ-confidence interval according to its prefit value is

shown as a black line. The impact of a nuisance parameter on the tt̄+≥1b-jet
signal strength result ∆r is obtained by repeating the fit while fixing this
parameter to the upper or lower bound of its nominal postfit 1σ-confidence
interval. Positive (blue/red) or negative correlations (red/blue) between the
nuisance parameter and the signal strength result can be concluded from the
coloured bars. In the plot the 13 systematic uncertainties having the largest
impact are presented.
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11.2.3 Influence of specific systematic uncertainties on the tt̄+≥1b-jet
signal strength result

In the following, the effects of specific systematic uncertainties on the tt̄+≥1b-jet signal
strength result will be studied in detail, since – as explained in the previous section –
especially systematic uncertainties related to the b-tagging of jets and to the parameters
chosen for the parton shower during the production of the tt̄+X Monte Carlo samples
seem to have a large impact.
The subsequent outcomes are presented using only the results produced with the neu-
ral network (NN) based reference analysis since this analysis has the smallest expected
systematic uncertainty on the tt̄+≥1b-jet signal strength result and, hence, seems most
suitable. Nonetheless, the findings of the NN analysis are consistent with the findings of
the other two analyses, which will not be presented to avoid duplicate information. More-
over, subsequently, results produced with the Asimov dataset will be presented since due
to the expected and observed tt̄+≥1b-jet signal strength r(expected/observed) = 1 the
relative uncertainties can easily determined and compared. But as a part of a cross check
the subsequent findings were also be reproduced for the measurement data.

In a first study none of the systematic uncertainties usually applied in the reference anal-
yses and described in section 10 is considered during the Maximum-Likelihood fit. This
approach is frequently chosen to determine for the overall uncertainty ∆r on a signal
strength result r which proportion can be attributed to the statistical uncertainties due
to the Poisson distribution of the measurement data ∆r(stats). Because the overall un-
certainty ∆r is defined as a quadratic sum of the statistical uncertainties ∆r(stats) and
the systematic uncertainties ∆r(sys), knowing the overall and statistical uncertainties, the
systematic uncertainties of a signal strength result can be easily computed via the following
relation:

∆r(sys) =

√
∆r2 −∆r(stats)2

For all three reference analyses it is found that the statistical uncertainty on the tt̄+≥1b-jet
signal strength result is roughly ∆r(stats) = ±1.8%. From this finding it is clear that all
three analyses are driven and limited by the systematic uncertainties, which are in the
order of ∆r(sys) ≈ ∆r ≈ ±20− 24%.

For future analyses reducing these systematic uncertainties will be of particular interest.
For this reason, it is vitally important to know which specific systematic uncertainties
are the largest ones and should be reduced. Of course, due to the conclusions from the
previously discussed impact plots the b-tagging and parton shower related systematic un-
certainties are the natural candidates causing the overall large systematic uncertainty.
Therefore, in further studies the Maximum-Likelihood fit is conducted without consider-
ing these two kinds of uncertainties. The results are given in table 11.2 and are explained
below.

The assumption that the b-tagging and parton shower related systematic uncertainties
affect the overall uncertainty of the tt̄+≥1b-jet signal strength result ∆r most of all
proves true. Without these kinds of uncertainties the overall uncertainty would be roughly
∆r ≈ ±4.4% which leads to the conclusion that the remaining systematic uncertainties
contribute only to the overall uncertainty in the order of roughly ∆r(sys) ≈ ±4.0%. More-
over, a few further things can be observed:
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Table 11.2: Influence of specific systematic uncertainties on the overall uncertainty ∆r of
the tt̄+≥1b-jet signal strength r result for the neural network based reference
analysis: The overall uncertainty is determined by redoing the Maximum-
Likelihood fit, while some systematic uncertainties are not considered. The
resulting downwards overall uncertainty (−∆r) and the upwards overall un-
certainty (+∆r) corresponding to a 1σ-confidence interval is stated using the
Asimov data set and the NN reference analyses. Similar results can be found
for the measurement data and the other two reference analyses.

Systematic uncertainties −∆r +∆r

All systematic uncertainties 17.13% 22.88%

Without any systematic uncertainties 1.81 % 1.82 %

Without b-tagging related systematic uncertainties 10.84 % 17.00 %
Without parton shower related systematic uncertainties 13.23% 14.26 %

Without b-tagging and
parton shower related systematic uncertainties 4.35 % 4.50 %
Without a subset of b-tagging and
parton shower related systematic uncertainties 6.91 % 7.91 %

First of all, the effects of the b-tagging and parton shower related systematic uncertainties
on the overall uncertainty are mostly uncorrelated between each other. That is the reason
why the Maximum-Likelihood fit does only slightly exploit correlations between them to
constrain the uncertainties of the fit. This can be seen if one combines the obtained uncer-
tainty result without the b-tagging related systematic uncertainties with the uncertainty
result without the parton shower related systematic uncertainties by quadratic sum. A
comparison to the overall uncertainty result considering all systematic uncertainties leads
to:

−
√

(10.84%)2 + (13.23%)2 = −17.10% ≈ −∆r = −17.13%

+
√

(17.00%)2 + (14.26%)2 = +22.19% ≈ +∆r = +22.88%

It can be safely said that only upwards correlations of both kinds of systematic uncertain-
ties are slightly exploited by the fit. The reason for this could be that the two types of
uncertainties have – at least for downward variations – not a direct effect on each other.

Secondly, the parton shower related systematic uncertainties seem to be the major cause of
the inequality of the upwards and downwards overall uncertainty ∆r since the overall un-
certainty after their removal becomes almost uniform (−∆r : −13.23%, +∆r : +14.26%).
In comparison a removal of the b-tagging related systematic uncertainties leads to a quite
inequal overall uncertainty (−∆r : −10.84%, +∆r + 17.00%). The inequal overall uncer-
tainty due to the parton shower related uncertainties is most likely caused by converting
the parton shower related shape uncertainties suffering from low statistics to rate uncer-
tainties. Especially, in the case of an upwards variation of the αS values in the parton
shower (PS: FSR and PS: ISR systematic uncertainties) a change of the tt̄+X process
shapes is expected. This not fully covered by using only rate uncertainties based on the
nominal shapes due to a higher selection efficiency of events with more parton splittings
and corresponding higher number of additional jets. Hence, it is likely that the associated
upward rate uncertainties do not get constrained as much in the Maximum-Likelihood fit
as their downward companions.
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Thirdly, the b-tagging and parton shower related systematic uncertainty drive the overall
uncertainty ∆r roughly in the same order of magnitude, especially if one compares their
effects on the downward overall uncertainty −∆r.

Finally, this common set of systematic uncertainties causing the large overall uncertainty
at most can be further restricted by determination of a sub set of b-tagging and parton
shower related systematic uncertainties. In a future analysis studies to reduce the system-
atic uncertainties contained in this sub set can then be made, which hopefully leads to
a reduction of the overall uncertainty ∆r. It can be found that the following systematic
uncertainties are the major cause of a large overall uncertainty: b-Tag LF purity, b-Tag
HF purity, b-tag Charm (linear), b-Tag Charm (quadratic), b-Tag LF stats (quadratic);
ME-PS matching (tt̄+bb̄), ME-PS matching (tt̄+lf); PS: FSR (tt̄+bb̄), PS: FSR (tt̄+lf),
PS: ISR (tt̄+bb̄), PS: ISR(tt̄+lf). If these systematic uncertainties are neglected during the
Maximum-Likelihood fit the overall uncertainty gets reduced to −∆r : −6.91,+∆r : +7.91.
Better b-tagging scale factors or a new b-tagging algorithm as explained previously could
lead to a decrease of these systematic uncertainties as an improvement of the Monte Carlo
samples applied to describe the tt̄+X processes.

11.3 Influence of correlations between input variables on
the tt̄+≥1b-jet signal strength result

Some of the input variables applied in the linear discriminant and neural network based
multivariate analyses are strongly corelated as can be seen from the correlation matrix pre-
sented in figure 11.6. Since correlations between input variables can have a negative impact
on the accuracy of the tt̄+≥1b-jet signal strength result r, the influence of correlations will
be investigated more closely in this section.

11.3.1 Strong correlations between pairs of input variables

It can be observed from the correlation matrix (cf. figure 11.6), which is produced as part
of the LD based analysis using TMVA [120], that no huge negative correlations between
input variables occur, while the following pairs of input variables are strongly positively
correlated:

Correlation between b-tagging likelihood ratio and transformed b-tagging like-
lihood ratio

A strong linear correlation of 87 % between the b-tagging likelihood ratio (B-tag. LR) and
the transformed b-tagging likelihood ratio (Trans. b-tag. LR) is expected since the only
difference between these two variables is the following non-linear transformation:

Trans. b-tag. LR = ln(
B-tag. LR

1− B-tag. LR
)

Nonetheless, the application of both variables in the multivariate analyses is beneficial
for two reasons: Both variables have the largest separation power between signal (tt̄+bb̄,
tt̄+2b, tt̄+b) and background (tt̄+cc̄, tt̄+lf, tt̄H) events as stated in table 9.2. Further-
more, the application of both variables helps to simplify the network topology of the neural
network used in the NN analysis as will be discussed later in this section.
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Figure 11.6: Correlation matrix of the input variables applied in the multivariate analyses:
The correlation matrix shows linear correlation coefficients between the 11
input variables applied in the linear discriminant and neural network based
reference analyses.
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Correlation between second-largest CSV and average CSV of all b-tagged jets

The pair of the second-largest CSVv2 tagger discriminant value of all b-tagged jets (2nd
largest CSV) and the average CSVv2 discriminant value of all b-tagged jets (Avg. CSV of
all b-jets) input variables represents the second-largest linear correlation of input variables
with 83 %. Also here a large correlation is rather expected: Due to the event selection
requirement of six jets and at least two b-tagged jets, each event contains at least two
b-tagged jets, while increasingly large multiplicities of b-tagged jets are less likely as it is
evident from the number of b-tagged jets distribution applied by the B-jet. mult. based
analysis (figure 9.1). Hence, the Avg. CSV of all b-jets input variables shares roughly 46
% of its information with the 2nd largest CSV input variable since it contains the CSVv2
tagger discriminant values of all b-tagged jets including the second-largest CSVv2 value
and on average an event passing the event selection contains 2.17 b-tagged jets.
In principle, one could construct an input variable which calculates the average CSVv2
discriminant value of all b-tagged jets without considering the second-largest CSVv2 value.
Including the second-largest CSVv2 value in the computation of the average value should
provide more information about the overall system of b-tagged jets in an event. The reason
for this is that a larger value of the second-largest b-tagged jet should also in general be
linked with larger CSV values of the other b-tagged jets and more b-tagged jets occurring
in an event. Leaving out the second-largest CSV value in the averaging process would
diminish this common link between all b-tagged jets and most likely reduce the intrinsic
separation power exploitable by a multivariate analysis technique.

Correlation between ∆R value of the b-jet pair with the smallest ∆R value and
average ∆R value of all b-jets

The input variable ∆R value of the b-tagged jet pair with the smallest ∆R value (DR of
b-jets w/ min. DR) and the input variable average ∆R value of all b-tagged jets (Avg.
DR of all b-jets) also show a relatively large linear correlation with a correlation coefficient
of 81 %.
Similar considerations as in the case of the previous input variable pair apply since the
one input variable can be seen as a subset of the other one. Again, the occurrence of
a correlation between these two input variables is hardly surprising. Again, it is still
reasonable to consider both variables in a multivariate analysis since by using only the
∆R average variable less information could be exploitable than by using both variables.

11.3.2 Influence of strongly correlated input variables on the tt̄+≥1b-jet
signal strength

To study which influence strongly correlated input variables could have on the tt̄+≥1b-jet
signal strength result r, the b-tag. LR and trans. b-tag. LR input variables are cho-
sen. They show the largest correlation of all 11 input variables and also have the largest
separation power between signal and background of all input variables according to the
input variable ranking (table 9.2). Therefore, it is expected that the correlation of this
input-variable pair will affect the overall tt̄+≥1b-jet signal strength result the most.

In a first step the b-tag. LR input variable was removed from the set of input variables used
in the LD and NN based analyses, so that these two analyses made use of only 10 input
variables instead of the 11 input variables applied for their corresponding reference analy-
ses. The comparison of the reference analyses with the analyses not containing the b-tag.
LR input variable is given in table 11.3. Besides the expected tt̄+≥1b-jet signal strength
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r(expected) this table also states the ROC integral values derived by the associated anal-
ysis using a validation dataset. The signal strength result r for the Asimov dataset is
presented since it provides a better comparability between the individual analyses. More-
over, the ROC integrals of the binary classifying LD analysis and the multiclassifying NN
analysis cannot be directly compared (a discussion of these differences is part of the next
section 11.4). Only a comparison of the ROC values of the same type of analysis is sensible.

Table 11.3: Influence of strongly correlated input variables on the tt̄+≥1b-jet signal
strength using the b-tagging likelihood variables as an example: The expected
tt̄+≥1b-jet signal strength r(expected) is stated for the Asimov dataset as well
as the ROC integral value. The comparison includes the baseline linear dis-
criminant (LD) and neural network (NN) based analysises and different LD
and NN based analyses, in which the b-tag. LR variable was not considered
as an input variable (10 vars). Furthermore, NN analyses with one (3HL) or
two (4HL) additional hidden layers are presented.

Analysis Parameters r(expected) ROC integral value

LD reference 11 vars 1+24.30%
−17.64% 0.7352

NN reference 11 vars, 2 HL, 100 nodes 1+22.88%
−17.13% 0.6701

LD 10 vars 1+23.81%
−17.77% 0.7354

NN 10 vars, 2HL, 100 nodes 1+26.10%
−18.61% 0.6698

NN 10 vars, 3HL, 100 nodes 1+22.85%
−17.15% 0.6698

NN 10 vars, 4HL, 100 nodes 1+67.05%
−20.55% 0.6696

As can be seen from table 11.3, the ROC integral values for the two LD analyses as well
as for the four NN analyses are nearly identical.

In the case of the NN analysis the relation between ROC integral value and expected signal
strength r(expected) is not so clear: Even though the reference neural network considering
all 11 input variables and consisting of two hidden layers with 100 nodes per layer has the
largest ROC integral of 0.6701, which is one of the reasons why this network is chosen as
the reference network in the first place. The neural network considering only 10 variables,
but having three hidden layers shows a slightly better expected signal strength r(expected),
while having a lower ROC integral of 0.6698. It will be shown later in section 11.5 that
these difference in the expected signal strength r(expected) is fully covered by statistical
fluctuations due to the chosen random seed for the training of a neural network with a
given network topology. Nonetheless, the difference between the ROC integrals and still
compatible performance of both neural networks is interesting. However, a proper expla-
nation is hard to give. Most likely, the neural network with three hidden layers performs a
little bit better in a phase-space region which allows the Maximum-Likelihood to constrain
the signal strength result better than the reference network, while being worse in a not
so important phase-space region. This could be a possible reason why it has a decreased
ROC integral.
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Moreover, one can conclude from the above comparison that the neural network needs an
additional hidden layer, if it is only supplied with 10 input variables, to obtain the same
accurancy as the reference neural network. This can be explained by the strong correlation
between the b-tag. LR variable, which is removed in this study, and the transformed b-tag.
LR variable as well as the difference of this two input variables due to a non-linear trans-
formation. By adding an additional hidden layer the neural network has the possibility to
do further non-linear transformations of input variables, since the activation function in
the neurons is non-linear itself. In this special case it seems highly likely that the neural
network uses the additional hidden layer to reconstruct the missing b-tag. LR variable in
some way, so that it also can exploit its information. For this reason, the neural network
containing of 10 input variables and having only two hidden layers performs worse than
the reference network and the neural network with three hidden layers as well as the LD
analyses.

In this context it is interesting that the neural network considering 10 input variables
and consisting of two additional hidden layers performs also worse compared to the NN
reference analysis. However, the major cause of this behaviour can be seen by the more
challenging training of a neural network with more hidden layers and also most likely be
attributed to the lack of Monte Carlo sample statistics to sufficiently train a neural net-
work with four hidden layers. Especially, the second point gets supported by the slightly
worse ROC integral of this neural network.

The lack of Monte Carlo statistics could also be the cause why the neural network con-
sidering 10 variables and consisting of only 2 hidden layers performs not as good as the
reference neural network or the much simpler LD analyses. In general, one would expect
that a neural network with at least one hidden layer and one node in this layer performs
as good as a linear discriminant. But the picture here is more complicated since multi-
classifying neural networks are compared to binary classifying linear discriminants. Due
to the multiclassification the neural networks are suffering more from limited statistics of
the Monte Carlo samples than the linear discriminants. Therefore, it seems highly likely
that the lack of the b-tag. LR variable as input variable cannot be compensated by a
better trained neural network consisting of two hidden layers alone due to the training
samples not being large enough. In comparison to that, the neural network with three
hidden layers should require smaller training samples since it can far easier reconstruct
the missing information of the b-tag. LR variable due to its additional hidden layer.
In the next section the difference between a binary and multiclassifying neural network
will be studied in more depth to underpin these statements.

148



11.4. Influence of binary or multiclassification on the tt̄+≥1b-jet signal strength result149

11.4 Influence of binary or multiclassification on the
tt̄+≥1b-jet signal strength result

In the previous section and in table 11.3 it was observed that the binary classifying linear
discriminant based (LD) reference analysis and the neural network (NN) based reference
analysis making use of a multiclassification have quite different ROC integral values of
0.7352 and 0.6701, respectively. In this section the assumption will be checked that this
difference in the ROC integral is due to the fact that multiclassification is more challenging
than binary classification.

Since the linear discriminant method implemented in the TMVA toolkit for Multivariate
Analysis [120] does not allow to conduct a multiclassification, binary classifying neural
networks similar to the reference neural network and considering all 11 input variables are
constructed for a comparison with the LD reference analysis. As in the case of the LD
analyses these neural networks are trained to provide a binary classification between the
tt̄+≥1b-jet (tt̄+bb̄, tt̄+2b, tt̄+b) signal processes and the tt̄+cc̄, tt̄+lf, tt̄H background
processes. The obtained expected signal strength result r(expected) as well as the corre-
sponding ROC integral value of these neural networks is given in table 11.4 and can be
compared to the LD and NN reference results.

It is expected that in the case of binary classification the presented NN analysis with one
node in one hidden layer has a ROC integral value compatible to the LD reference anal-
yses. Furthermore, it should derive a similar or slightly better expected signal strength
result r(expected). The result is expected to improve for the NN analysis due to the usage
of a non-linear activation function in the single node, while the linear discrimination only
exploits linear relations.
Results obtained with binary neural networks having more nodes or more hidden layers
should always be better, but are not the major scope of this study. Nonetheless, a result
from a neural network consisting of 100 nodes in one hidden layer is given as an example.

The expectations stated above prove true as can be seen from table 11.4. If a binary
classifying neural network with a single node in one hidden layer is used, a value of the
ROC integral equivalent to the ROC integral of the LD reference analysis can be obtained.
The small difference in the ROC integral value most likely comes from numerical differ-
ences between the two different multivariate analysis frameworks TensorFlow and TMVA.
Furthermore, the result of the expected signal strength r(expected) of this neural network
has slightly smaller uncertainties, which can be explained by the exploitation of non-linear
relations of the input variables by the neural network. But overall one can say that both
analyses expect the same uncertainties on the signal strength r.

Moreover, as also expected, the binary classifying neural network with 100 nodes in a
single hidden layer performs better than the simpler neural network and the LD reference
analyses: The better ROC integral value leads to an expected signal strength result having
slightly smaller uncertainties.

The rather large difference in the ROC integral value between the multiclassifying neural
network of the reference analysis and the binary classifying neural networks can be ex-
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Table 11.4: Comparison of binary classifying neural networks with the linear discriminant
and neural network based reference analyses: The expected tt̄+≥1b-jet sig-
nal strength r(expected) is stated as well as the ROC integral value for two
different neural network (NN) based analyses, in which the number of nodes
in the one hidden layer is varied. The binary neural networks are trained to
classify between the tt̄+≥1b-jet (tt̄+bb̄, tt̄+2b, tt̄+b) signal processes and the
tt̄+cc̄, tt̄+lf, tt̄H background processes. The results are compared to the bi-
nary classifying LD reference analysis and the multiclassifying NN reference
analysis.

Analysis Parameters r(expected) ROC integral value

LD reference 11 vars 1+24.30%
−17.64% 0.7352

NN reference 11 vars, 2 HL, 100 nodes 1+22.88%
−17.13% 0.6701

Binary neural networks: tt̄+bb̄, tt̄+2b, tt̄+b vs. tt̄+cc̄, tt̄+lf, tt̄H

NN 11 vars, 1 HL, 1 nodes 1+23.52%
−17.44% 0.7349

NN 11 vars, 1 HL, 100 nodes 1+22.56%
−17.34% 0.7413

plained by stronger requirements in the case of the multiclassification to obtain the same
ROC integral value. Here, a signal (or background) event not only needs to be properly
attributed to the signal (background) event class, but it is also required that a signal event
like a tt̄+bb̄ event is put in the proper corresponding tt̄+bb̄ signal event class. In the likely
case that a tt̄+bb̄ event is wrongly assigned to the tt̄+2b or tt̄+b event class, the ROC
integral of the multiclassification analysis is reduced, while it stays the same for the binary
classification analysis, in which such an event would still be properly assigned.
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11.5 Influence of neural network training on the tt̄+≥1b-jet
signal strength result

For an estimation of how much the training of a neural network (NN) influences the ob-
tained tt̄+≥1b-jet signal strength result and its related uncertainty, four additional neural
networks, which had exactly the same configuration and network topology as the neural
network used in the NN reference analysis, are trained. The only difference between these
neural networks as well as the original reference neural network is the chosen random seed
at the beginning of the training.

In table 11.5 the expected and observed signal strength r as well as the value of the ROC
integral is given for each of the neural network based analyses. In addition, the arithmetic
mean is applied to calculate the average expected and observed signal strength as well
as the related uncertainties and the average ROC integral value. Moreover, by using a
linear regression implemented in the ROOT data analysis framework [214] the five signal
strength results are combined to common expected and observed signal strength results
r(expected) and r(observed), respectively. However, since no correlations between the
individual results are considered the uncertainties of these two combined signal strength
results are certainly underestimated.
Nevertheless, the linear regression result can serve as a reference point to estimate the
influence of the training on the obtained tt̄+≥1b-jet signal strength result.

Table 11.5: Influence of neural network training on the tt̄+≥1b-jet signal strength result:
The expected tt̄+≥1b-jet signal strength r(expected) and the observed signal
strength r(observed) is stated as well as the ROC integral value for a set
of neural network (NN) based analyses. The only difference between these
neural network analyses is the random seed chosen for the training of the
network. In addition, the arithmetic mean is applied to calculate the average
signal strengths and an average ROC integral. Furthermore, common results
obtained from a linear regression are presented.

Analysis r(expected) r(observed) ROC integral value

NN reference 1+22.88%
−17.13% 1.20+22.75%

−17.35% 0.6701

NN 2nd trial 1+22.09%
−17.49% 1.21+19.29%

−15.67% 0.6703

NN 3nd trial 1+22.88%
−17.39% 1.21+18.80%

−15.49% 0.6695

NN 4nd trial 1+22.43%
−17.16% 1.27+20.34%

−15.06% 0.6692

NN 5nd trial 1+22.99%
−17.54% 1.28+25.09%

−15.09% 0.6698

Arithmic mean 1+22.7%
−17.3 1.23+21.3%

−15.7% 0.6698

Linear regression 1+10.1%
−7.8% 1.25+8.4%

−7.5% -

From the results stated in table 11.5 one can conclude that the chosen random seed in
the training of a neural network and the training itself can have a non-negligible influ-
ence on the obtained signal strength results r. After the comparison with the other
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NN results the NN reference analysis appears to predict a rather low observed signal
strength r(observed) = 1.20, while the common observed signal strength seems to be
rather r(observed) = 1.25 according to the result of the linear regression.

Furthermore, it is striking that the value of the ROC integral does neither indicate if a
larger or smaller signal strength result r will be obtained at the end of the full analysis
chain nor can be used to estimate the uncertainties related to the final signal strength re-
sults r. For example, a comparison between the 2nd trial and the 4th trial shows a rather
large difference in the ROC integral of 0.6703 and 0.6692, respectively. However, the neural
network of the 4th trial obtains a signal strength result with smaller relative uncertainties
than the reference neural network. Also a comparison between the 3nd trial and the 5th
trial which differ in the absolute value of the observed signal strength r(observed) and a
comparison of their ROC integral to other trials does not provide further insight.
Most likely both effects can be ascribed to the finding of local minima by the particular
neural network instead of a global minimum in the phase-space of the separation problem.
Since the phase-space of the selected events itself and also the corresponding multiclassi-
fication is a multidimensional and highly complex problem it is very unlikely that such a
global minimum is found and quite expected that nearby minima are found and lead to
slightly different signal strength results r.

According to the findings presented in table 11.5 and the difference in the expected and
observed signal strength r it seems reasonable to assume an intrinsic uncertainty on the
tt̄+≥1b-jet signal strength results of roughly 7%− 10% which is caused by the influence of
the neural network training and which cannot be considered as a systematic uncertainty in
the Maximum-Likelihood fit. Here, for this intrinsic uncertainty the results from the linear
regression are used as a first estimate. But as mentioned briefly before, the intrinsic uncer-
tainty could be larger since in the linear regression no correlations between the particular
results are considered, while in principle the results should be highly correlated. For a
cross check, this intrinsic uncertainty can also be estimated by calculation of the standard
deviation σ for the arithmetic mean of all five NN analyses. This standard deviation σ
corresponds to σ = 3.78%. Therefore, the assumption that the intrinsic uncertainty on
the tt̄+≥1b-jet signal strength is smaller than 10% appears plausible. Meanwhile, since
the overall uncertainties on the tt̄+≥1b-jet signal strength result r are quite larger this
intrinsic uncertainty is fully covered by the overall uncertainty.

11.6 Influence of including the tt̄H process as a background
process in the training of neural networks

For the linear discriminant and neural network based reference analyses the tt̄H process
was always included as a background process in the training of the corresponding classi-
fier. It was also considered as a background process in all other analyses shown previously.
Furthermore, each multiclassifying neural network contained a tt̄H output node until now.

This inclusion of the tt̄H process is motivated by the possibility to conduct a simultaneous
measurement of the tt̄+≥1b-jet signal strength and the tt̄H signal strength r (part V).
So far, in the present tt̄H(bb̄) measurements [114,115] large uncertainties on the tt̄+≥1b-jet
contributions have to be considered. The reason for this is that the exact size of the
tt̄+≥1b-jet contribution to the phase space of the tt̄H(bb̄) measurement is difficult to
predict by Monte Carlo samples: As explained in the motivation of this measurement
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(part II) different tt̄+≥1b-jet as well as tt̄+bb̄ cross sections σ are predicted by different
Monte Carlo event generators. Furthermore, the measurement of the tt̄H(bb̄) process as
well as this measurement is conducted in a phase space which contains events with rather
large jet multiplicities and a few b-tagged jets. Usually the proper description of such
a phase space represents a challenge for Monte Carlo event generators. The reason for
this is that besides a proper simulation of the hard collision process by a matrix element
generator the radiation of a few additional partons must be performed correctly by the
subsequent parton shower of a general-purpose Monte Carlo event generator. This neces-
sary interplay between the two classes of event generators places hard demands on their
proper setup and tune which are difficult to fulfill in practice.
Therefore, from the perspective of a tt̄H(bb̄) analysis a simultaneous measurement of both
signal strengths (tt̄+≥1b-jet and tt̄H) can be beneficial: Since the tt̄+≥1b-jet background
and the tt̄H signal would be determined simultaneously the uncertainty assumed for the
tt̄+≥1b-jet background in the tt̄H(bb̄) analysis could be smaller. The reason for this is that
by leaving the tt̄+≥1b-jet signal strength freely floating the uncertainty on the tt̄+≥1b-jet
contribution would most likely be stronger constrained than if a fixed prediction of the
tt̄+≥1b-jet background is employed. Therefore, it can be assumed that the uncertainty of
the tt̄H signal strength is reduced if the tt̄+≥1b-jet signal strenght is measured in parallel.

In contrast to that, it is assumed that a simultaneous measurement only leads to a slight
improvement of the uncertainty of the measured tt̄+≥1b-jet signal strength if at all. The
reason is that tt̄H process is only a minor background to a tt̄+≥1b-jet measurement.
Moreover, one can also argue that compared to other background processes like the tt̄V
processes the tt̄H process has an insignificant impact on the tt̄+≥1b-jet measurement.
Therefore, constraining the tt̄H process better most likely will have no effect on the uncer-
tainty of the tt̄+≥1b-jet signal strength. For this reason it may be considered that the tt̄H
process is not included as a background process during the training of the classifier of a
multivariate analyses. In this line of thought, a separate process class in a multiclassifying
neural network for the tt̄H process does also not appear to be strictly necessary.

Furthermore, the inclusion of the tt̄H process in the training of a multivariate classifier
can even have a negative impact on the performance of a classifier as explained in sec-
tion 9.3: For the training of classifiers employed in this thesis all process classes are treated
equally. Therefore, the neural network may not learn to properly distinguish tt̄+≥1b-jet
signal events from other events since it could lead to a reduction of the identification of
tt̄H events at the same time.

In a similar context, it can be said that a multiclassification consisting of fewer classes can
be beneficial. The proper assignment of events to a process class becomes more likely if
fewer process classes and output nodes have to be considered.
This is motivated by the following considerations: Under the assumption that the neural
network does not know anything about the process classes and just randomly assigns an
event to an process class, it will assign one out of six events correctly if the neural network
contains six output nodes. However, if such a neural network would contain only five pro-
cess classes and corresponding output nodes 20% of all events should be properly assigned
but sensitivity may not depend (strongly) on this.

On the other hand, an additional process class and corresponding final output distribution
can provide extra information which can be employed by the Maximum-Likelihood fit to
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obtain the tt̄+≥1b-jet signal strength.

For the reasons outlined above, it may be relevant to study the influence of including the
tt̄H process as a background process in the training of neural networks. Therefore, it is
now studied in detail:
A multiclassifying neural network analogous to the neural network of the NN reference
analysis was defined and trained. The only difference to the NN reference analysis and
network is that the tt̄H process is not included as a background process in the training
and the neural network does not contain a tt̄H output node.

In addition, a binary classifying neural network was trained, in which the tt̄H process was
neglected during the training. Apart from that, this neural network corresponds to the
binary classifying neural network which was used for a comparison with the LD reference
analysis (section 11.4).
In table 11.6 the expected tt̄+≥1b-jet signal strength r(expected) values obtained from
these analyses are stated. Furthermore, the results of the LD and NN reference analyses
are given for comparison. In the case of the stated NN reference analysis result the arith-
metic mean was applied to combine the results of five NN analyses. All of these analyses
consisted of neural networks having the same configuration and topology but different
random seeds were chosen in the training of the neural network (section 11.5).

The ROC integral values of the analysis including the tt̄H process cannot be compared
to the ROC integral values of the analyses in which the tt̄H process was neglected. The
reason for this is that the normalization of the input variables by scaling factors can be dif-
ferent: Before the training this scaling factor is determined by considering the distribution
of input variables of each process employed in the training. The distribution of an input
variable can e.g. differ between the tt̄H process and the other processes. The change in
the joint input variable normalization by excluding a process like the tt̄H process, hence,
could also change the response of the neural network and lead to slight changes of the
ROC integral values. Therefore, in this case ROC integral values are not a good metric
for the sensitivity of an analysis and not stated here.

For the two neural networks in which the tt̄H process was not included, a more precise
measurement of the tt̄+≥1b-jet signal strength r(expected) is obrained than for the refer-
ence neural networks they are compared to. For this reason, the clear conclusion can be
drawn that the inclusion of the tt̄H process as a background process in the training and
also as an output node in a multiclassifying neural network impairs the measurement of
the tt̄+≥1b-jet signal strength in this particular instance. Furthermore, the binary and
the multiclassifying NN analyses predict an almost identical uncertainty on the tt̄+≥1b-jet
signal strength of ∆r(expected) ≈+21.6%

−17.2%, in which the arithmetic mean of the uncertainty
of these two measurements is given. Therefore, it can be concluded that including the tt̄H
process in the training reduces the sensitivity and not the additional output node in the
multiclassifying neural network.

The most likely reason is that by inclusion of the tt̄H process in the training neural net-
works, will learn less about the proper assignment of tt̄+X events. It can be assumed that
some features which would be employed by the neural network to separate tt̄+X process
cannot be exploited since some tt̄H events would show the same features. This assumption
is supported by the following observation: In table 11.7 the fraction of properly assigned
tt̄+X events is compared for the two multiclassifying neural networks, the one without
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Table 11.6: Influence of including the tt̄H process in the training of neural networks: The
expected tt̄+≥1b-jet signal strength r(expected) is stated for different neural
network (NN) based analyses. A multiclassifying neural network was trained,
in which the tt̄H process was not included as a background process in the
training and which does not contain a tt̄H process class. Apart from that, it
corresponds to the neural network of the NN reference analysis, whose result
is also given. This result was obtained by calculating the arithmetic mean of
five measurements obtained with neural networks, in which training different
random seeds were used. Furthermore, the tt̄+≥1b-jet signal strength result
from a binary classifying neural network, in which the tt̄H process was not
included, is presented. Except for the inclusion of the tt̄H process this neural
network corresponds to the binary classifying neural network which was em-
ployed for a comparison with the LD reference analysis. The results of both
analyses are also given.

Analysis Parameters r(expected)

Reference analyses

LD reference 11 vars 1+24.3%
−17.6%

NN reference (arithmetic mean) 11 vars, 2 HL, 100 nodes 1+22.7%
−17.3%

Multiclass neural network excl. tt̄H: tt̄+bb̄, tt̄+2b, tt̄+b, tt̄+cc̄, tt̄+lf

NN 11 vars, 2HL, 100 nodes 1+21.7%
−17.3%

Binary neural network incl. tt̄H: tt̄+bb̄, tt̄+2b, tt̄+b vs. tt̄+cc̄, tt̄+lf, tt̄H

NN 11 vars, 1 HL, 1 nodes 1+23.5%
−17.4%

Binary neural network excl. tt̄H: tt̄+bb̄, tt̄+2b, tt̄+b vs. tt̄+cc̄, tt̄+lf

NN 11 vars, 1 HL, 1 nodes 1+21.5%
−17.0%
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inclusion of the tt̄H process and the neural network of the NN reference analysis. These
fractions were obtained by applying the neural networks to the validation dataset.

Table 11.7: Comparison of properly assigned tt̄+X events: The fraction of properly as-
signed tt̄+X events is compared for two multiclassifying neural networks. For
the multiclassifying neural network (NN without tt̄H) the tt̄H process was not
included as a background process in the training and it does not contain a tt̄H
process class, while the other neural network (reference NN) belongs to the
NN reference analysis and includes the tt̄H process.

tt̄+X process NN without tt̄H reference NN

tt̄+bb̄ 44.3 % 24.5 %
tt̄+2b 30.6 % 26.1 %
tt̄+b 12.7 % 10.5 %

tt̄+cc̄ 21.3 % 19.3 %
tt̄+lf 59.1 % 59.4 %

As expected the inclusion of the tt̄H process in the training drastically reduces the number
of properly assigned tt̄+bb̄ events. The reason can be seen by the two processes having
similar features as discussed previously in detail. For the same reason, the proper assign-
ment of tt̄+2b events is also significantly affected by the inclusion of the tt̄H process. The
assignment of tt̄+b and tt̄+cc̄ events is only slightly affected, while the tt̄+lf assignment
is not affected at all. It even seems that the tt̄+lf assigment gets slightly improved, but
this could be just an effect of statistical fluctuations and would need further study.

It can be summarized that by including the tt̄H process in the training of neural net-
work classifiers the expected precision of the tt̄+≥1b-jet signal strength decreases. An
NN analysis without inclusion of the tt̄H process would most likely yield a tt̄+≥1b-jet
signal strength with smaller uncertainties. Nevertheless, for the NN reference analysis and
corresponding neural network the tt̄H process was still considered. The reason is that
this NN reference analysis was also employed to conduct a simultaneous measurement of
the tt̄+≥1b-jet and tt̄H signal strength in a further analysis (part V). In this way, the
tt̄+≥1b-jet signal strength of both analysis can be easily compared.

11.7 tt̄+≥1b-jet cross section

So far, the result of this analysis was always stated as the tt̄+≥1b-jet signal strength r.
The signal strength is a very useful quantity if a prediction based on Monte Carlo samples
should be compared to measurement data. Therefore, it is often employed in experimental
particle physics. However, for a comparison between different measurements which may
rely on different Monte Carlo predictions the specification of a cross section σ is more ap-
propiate. In addition, cross sections σ are frequently used in theoretical particle physics,
while signal strengths r are seldomly employed and are only meaningful relative to the
cross section they are normalized to.

To provide easy access to the tt̄+≥1b-jet measurement, the tt̄+≥1b-jet signal strength r
result of the NN reference analysis is now employed to determine the associated tt̄+≥1b-jet
cross section σ(tt̄+≥1b-jet) in the full phase space and at a center-of-mass energy of 13 TeV.
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A visible cross section is not derived since a reproduction of the visible phase space would
be a challenging task for others. The reason for this is that the definition of the tt̄+≥1b-jet
processes strongly depends on the GenHFHadronMatcher which is employed to split the
inclusive POWHEG Box Version 2 tt̄ sample into tt̄+X sub samples (section 6.4). There-
fore, interested parties would principally need to implement the GenHFHadronMatcher to
derive the same visible phase space. It seems highly unlikely that someone is willing to
take this trouble. Especially since the signal strength result is provided which could be
easily compared to an result obtained in a similar phase space.

For the purpose of determining the tt̄+≥1b-jet cross section in the full phase space σ(tt̄+≥1b-jet)
first of all the tt̄+≥1b-jet cross section σ(tt̄+≥1b-jet, pred.) predicted by the tt̄ samples
was determined: The tt̄ samples employed in this analysis were produced by a combination
of the POWHEG Box Version 2 [30–34] matrix element generator and the Pythia8 [37,38]
general-purpose Monte Carlo event generator (section 6.3). By application of the Gen-
HFHadronMatcher [146, 149] these tt̄ samples were split into tt̄+X sub samples (sec-
tion 6.4). A total cross section at next-to-next-leading order (NNLO) QCD accuracy with
next-to-next-leading logarithmic (NNLL) soft gluon resummation was only available for
the inclusive tt̄ production process (section 6.2). It is for this reason that this cross section
of 831.76 pb had to be used to obtain the tt̄+≥1b-jet cross section σ(tt̄+≥1b-jet, pred.).
Therefore, the number of events per tt̄+X category in the inclusive POWHEG Box Ver-
sion 2 tt̄ sample was determined. In total roughly 77 million events were analyzed and
classified by the GenHFHadronMatcher, while no further cuts were applied. In table 11.8
the number of events per tt̄+X category is listed. All samples are inclusive in the tt̄ decay
channels.
The number of tt̄+≥1b-jet events ntt̄+≥1b-jet was calculated by summing the number of
tt̄+bb̄ events ntt̄+bb̄, tt̄+2b events ntt̄+2b, and tt̄+b events ntt̄+b:

ntt̄+≥1b-jet = ntt̄+bb̄ + ntt̄+2b + ntt̄+b = 2 218 801

The cross section of the tt̄+≥1b-jet processes σ(tt̄+≥1b-jet, pred.) predicted by the POWHEG
Box Version 2 event generator is then calculated by making use of the number of tt̄+≥1b-jet
events ntt̄+≥1b-jet, the total number of tt̄ events ntt̄ = 76 707 098, and the aforementioned
inclusive tt̄ cross section σ(tt̄) = 831.76 pb:

σ(tt̄+≥1b-jet, pred.) =
ntt̄+≥1b-jet

ntt̄
· σ(tt̄) ≈ 24.06 pb

In the same fashion, the predicted cross sections σ(pred.) of the single tt̄+bb̄, tt̄+2b,
and tt̄+b process are derived. All four predicted cross sections σ(pred.) are also listed in
table 11.8.

The tt̄+≥1b-jet cross section in the full phase space and at a center-of-mass energy of
13 TeV, σ(tt̄+≥1b-jet, obs.), is then determined by multiplying the tt̄+≥1b-jet signal
strength r(observed) measured by the NN reference analysis and its uncertainties by the
predicted tt̄+≥1b-jet cross section, σ(tt̄+≥1b-jet, pred.):

σ(tt̄+≥1b-jet, obs.) = r(observed) · σ(tt̄+≥1b-jet, pred.)

= 1.23+21.3%
−15.7% · 24.06 pb

≈ 29.6+6.3
−4.6 pb

Here, for the value of the tt̄+≥1b-jet signal strength r(observed) the arithmetic mean of
five measurements was employed. For these measurements neural networks were used,
which had the same setup and topology as the NN reference network, but had different
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Table 11.8: Number of tt̄+X events in the inclusive POWHEG Box Version 2 tt̄ sample and
predicted cross sections σ(pred.): The number of events per tt̄+X category is
stated in this tables. It was determined by analyzing the inclusive POWHEG
Box Version 2 tt̄ sample. The classification of the events was made by the
GenHFHadronMatcher, while no further cuts were applied. In addition, the
total number of events in the tt̄ sample is given. Furthermore, the cross section
σ(pred.) of the tt̄+≥1b-jet processes as well as the cross section of the single
tt̄+bb̄, tt̄+2b, and tt̄+b process predicted by the POWHEG Box Version 2
event generator is stated. For the tt̄ process the cross section at NNLO QCD
and NNLL accuracy is listed.

tt̄+X category Number of events σ(pred.)

tt̄+bb̄ 384 253 4.16 pb
tt̄+2b 427 108 4.63 pb
tt̄+b 1 407 440 15.26 pb

tt̄+≥1b-jet 2 218 801 24.06 pb

tt̄+cc̄ 7 211 374 -
tt̄+lf 67 276 914 -

tt̄ 76 707 089 831.76 pb

random seeds in the training (section 11.5).
Unfortunately, the obtained tt̄+≥1b-jet cross section σ(tt̄+≥1b-jet, obs.) of 29.6+6.3

−4.6 pb
cannot be compared to another tt̄+≥1b-jet measurement since no such measurement
conducted at a center-of-mass energy of 13 TeV and stating a tt̄+≥1b-jet cross section
σ(tt̄+≥1b-jet) exists so far.
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In the previous chapter the results of the measurement of the tt̄+≥1b-jet signal strength
r using the 2016 CMS data together with further detailed studies were presented.

It was found that the three reference analyses (B-jet multiplicity based, linear discrim-
inant based, neural network based) are in good agreement with each other if one takes
the uncertainty on the signal strength result ∆r into account. The uncertainty on the
expected signal strength r(expected) ranges between ∆r(expected) =+33%

−23% in the case of
the B-jet multiplicity based (B-jet mult.) analysis having the largest uncertainties and
∆r(expected) =+23%

−17% in the case of the neural network based (NN) analysis being the
most precise one.

Furthermore, it can be observed that for all three analyses the observed tt̄+≥1b-jet signal
strength r(observed) is larger than the signal strength predicted by the combination of
the POWHEG Box Version 2 matrix element generator and the Pythia8 general-purpose
Monte Carlo event generator. The linear discriminant based (LD) and NN analysis ob-
serve a similar signal strength of r(observed) ≈ 1.2, while the B-jet mult. analysis observes
a smaller signal strength of r(observed) ≈ 1.1. It is assumed that the smaller observed
signal strength of the B-jet mult. based analysis can be attributed to the simpler final
discriminant and the reduced separation power between tt̄+≥1b-jet signal processes and
tt̄+X background processes.
Nonetheless, all results are consistent. In the following the signal strength r(observed)
of 1.20+23%

−17% measured by the NN reference analyis is taken as main result. This result is
strongly supported by the two other analyses acting as baseline analysis (B-jet mult.) and
cross check analysis (LD).

The observed signal strength of r(observed) ≈ 1.2 is also in good agreement with other
tt̄+≥1b-jet measurements: As reviewed in chapter III, two measurements were conducted
at the Large Hadron Collider at a center-of-mass energy of 8 TeV, which contained a
measurement of the tt̄+≥1b-jet signal strength r, too. Both measurements, one from the
ATLAS collaboration using dileptonic and semileptonic events and one from the CMS col-
laboration using only dileptonic events, observed a signal strength r(observed) which was
roughly 1.3 times larger than the signal strength predicted by either the POWHEG Box
Version 1 matrix element generator or the MG5aMC(LO) matrix element generator.
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The overall uncertainty of these two tt̄+≥1b-jet signal strength measurements is roughly
∆r(expected) ≈ 25%−30% and, therefore, only slightly larger than the overall uncertainty
expected for the analyses presented in this thesis. The reason for the similar precision,
despite more luminosity was employed in this measurement, is that the past measurements
were conducted using the dileptonic channel (CMS measurement) or using both the dilep-
tonic and semileptonic channel (ATLAS measurement). The systematic uncertainties in
the case of the dileptonic measurements are smaller. Therefore, these measurements are
less driven by systematic uncertainties and can provide a similarly precise result, while
making use of less luminosity.
As the measurement presented in this thesis the ATLAS measurement conducted in the
semileptonic channel is plagued by rather large systematic uncertainties compared to the
dileptonic measurements. The dominant systematic uncertainties of the semileptonic mea-
surements are related to the b-tagging of jets and to the usage of the parton shower which
is quite expected as explained previously. But also the two reviewed dileptonic measure-
ments suffer from similar further major systematic uncertainties like uncertainties related
to the usage of Monte Carlo event generators and the modelling of the tt̄ processes or the
uncertainty on the jet-energy scale.
For this reason, considering the overall uncertainty on the signal strength ∆r, it can be
concluded that the results of the measurement presented here are consistent with the past
two measurements.

This finding is of particular importance since for the two reviewed measurements the older
version 1 of the next-to-leading order POWHEG matrix element generator interfaced with
the Pythia6 general-purpose Monte Carlo event generator was applied to produce the
nominal tt̄ samples. Additionally, in the past CMS tt̄+≥1b-jet measurement further tt̄
samples were considered for a comparison to the nominal one. For example, among other
event generators, the MG5aMC(LO) matrix element generator was used to produced a tt̄
event sample at leading-order of perturbation accuracy, in which merging was employed
to include matrix elements with up to three additional partons.
Compared to the past measurements, for this measurement tt̄ samples are produced in
next-to-leading order of perturbation theory by the newer version 2 of the POWHEG gen-
erator interfaced to the Pythia8 event generator. In principle, it would be expected that
the newer Monte Carlo event generators and associated tt̄ samples provide a more accurate
modeling of the tt̄+X and, particularly, the tt̄+≥1b-jet processes.
However, independent of the different matrix element generators and parton showers ap-
plied, all three measurements find that the deviation of tt̄+≥1b-jet signal strength from
one is sizeable and underestimated by (roughly) the same factor by the event generators.
This could be seen as a sign that the modelling of the heavy-flavour production by Monte
Carlo event generators is inadequate up to now.

Besides the maybe delicate modeling of the heavy-flavour production by the Monte Carlo
event generators all three tt̄+≥1b-jet measurements would gain from reduced systematic
uncertainties related to the parton shower and the Monte Carlo event generators in general
as well as from smaller systematic uncertainties due to the b-tagging of jets. At least the
measurement presented here (and the ATLAS semileptonic measurement) are driven by
these two kinds of dominant systematic uncertainties, as shown in section 11.2.
For the reduction of the b-tagging systematic uncertainties newer b-tagging algorithms
like the DeepCSV b-tagging algorithm, established by the CMS collaboration during the
2017 data taking period, [90] seem promising.
In the case of the parton shower systematic uncertainties it is harder to predict how fast
and by how much these uncertainties can be further reduced. Their reduction would either
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require larger additional tt̄ samples allowing for the in-depth study of shape changes in
the final discriminants due to the chosen parton shower parameters or another treatment
and propagation of these uncertainties by the applied Monte Carlo event generator: The
production of even larger additional samples than the already existing ones, from which
each contains about 100 million events and which are employed to take parton shower
variations into account (section 10.1.6), seems not very feasible due to the constraints on
the overall event sample production in a large collaboration like ATLAS or CMS.
Another possible option would be to rewrite general-purpose Monte Carlo event genera-
tors, so that for considering parton shower variations no additional samples have to be
produced. Instead parton shower variations could be included in the nominal tt̄ samples.
In this way, only large nominal tt̄ samples must be produced. However, including parton
shower uncertainties as part of nominal tt̄ samples could require some difficile changes in
the established general-purpose Monte Carlo event generators.
Hence, it appears quite likely that for the near future further measurements of the tt̄+≥
1b-jet processes will mostly be conducted using the dileptonic decay channel, in which the
uncertainties related to the b-tagging of jets and to the parton shower are less important.
That is also the reason why tt̄+≥1b-jet measurements in the dileptonic decay channel are
less driven by systematic uncertainties so far.

Correlations between input variables could per se have an influence on the separation
power of a multivariate analysis and, hence, on the overall tt̄+≥1b-jet signal strength r
measurement. For this reason, the influence of correlations between input variables for
the LD and NN analysis was studied as part of this measurement. As an example the
rather strong correlation of 87 % between the b-tagging likelihood ratio (B-tag. LR) and
the transformed b-tagging likelihood ratio (Trans. b-tag. LR) input variable was presented
and examined.
It was found that for the LD analysis the removal of the B-tag. LR input variable had a
rather negligible influence on the expected uncertainty of the tt̄+≥1b-jet signal strength
∆r(expected). The slightly better performance after removing the B-tag. LR variable can
most likely be explained by the better numerical stability of the matrix transformation
necessary to obtain the linear discriminant if one variable less has to be considered.
At the same time, the removal of the B-tag. LR input variable leads to a worse perfor-
mance of the neural network which consisted of 100 nodes in two hidden layers and is
constructed analogously to the reference network. In the case of just 10 input variables,
only by adding a third hidden layer consisting of 100 nodes the same expected uncertain-
ties for the tt̄+≥1b-jet signal strength ∆r(expected) could be regained as for the reference
neural network which exploited also the B-tag. LR input variable. This necessity of a
third hidden layer in the case of 10 input variables can most likely be attributed to the
intrinsic reconstruction of the missing B-tag. LR variable from the correlated Trans. b-
tag. LR variable by the neural network.
Nonetheless, one can conclude from the correlation studies that the influence of correlated
input variables has a rather innocuous influence on the overall tt̄+≥1b-jet signal strength
result. However, the addition or removal of correlated input variables can lead to a change
of the overall expected uncertainty ∆r(expected) in the case of a neural network based
analysis, which should be kept in mind. Furthermore, as done as part of this measurement,
various neural network topologies should be tried for a given set of input variables to ex-
ploit the dependency of the overall tt̄+≥1b-jet signal strength uncertainty on the chosen
network architecture.

As part of these studies on the influence of the chosen neural network, the performance
of binary classifying neural networks was compared to the performance of multiclassify-
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ing neural networks. The major difference between both classes of neural networks is the
obtained value of the ROC integral. The value of the ROC integral is smaller for the
multiclassifying neural networks, but this can be explained by stronger requirements in
the case of the multiclassification. Besides of that, both approaches lead to tt̄+≥1b-jet
signal strength results with a similar expected overall uncertainty ∆r(expected). For this
reason, the usage of multiclassifying neural networks should be favoured since in principle
these networks provide more information about the possible origin of an event by sorting
these into different process classes.

In another study the effect of the training of a neural network to derive an expected and
observed tt̄+≥1b-jet signal strength r result was examined. It was found that the choice
of the random seed for the training of the network has only a rather negligible effect on
the expected uncertainty of the signal strength ∆r(expected). But still sizable differences
in the observed signal strength r(observed) and the related observed overall uncertainty
∆r(observed) can occur. Furthermore, the training can lead to quite different values of the
ROC integral. Most likely both effects can be ascribed to the finding of a local minimum
by the corresponding neural network instead of the global minimum.
The difference in the observed signal strength results r(observed) is fully covered by the
associated overall uncertainty ∆r(observed). Nevertheless, one can assume an intrinsic
uncertainty on the absolute value of the measured tt̄+≥1b-jet signal strength of roughly
7%− 10% due to influence of the neural network training.
However, this intrinsic uncertainty on the absolute value of the observed signal strength
r(observed) can be mitigated by conducting a tt̄+≥1b-jet measurement multiple times,
while using identical neural networks with different random seeds applied in the train-
ing. Out of this multiple measurements the arithmetic mean of the value of the observed
tt̄+≥1b-jet signal strength r(observed) is then determined. At the same time, the arith-
metic mean can also be applied to derive the average relative uncertainties of the observed
tt̄+≥1b-jet signal strength ∆r(observed).
On that basis, an expected tt̄+≥1b-jet signal strength of r(expected) = 1+23%

−17% and an

observed tt̄+≥1b-jet signal strength of r(observed) = 1.23+21%
−16% is derived by the neural

network based reference analysis and used from now on.

Further on, the influence of including the tt̄H process as a background process in the train-
ing of neural networks was studied. It was shown that if the tt̄H process is included in the
training the expected precision of the tt̄+≥1b-jet signal strength r(expected) decreases.
The reason for this is that by including the tt̄H process a neural network will learn less
about the proper assignment of tt̄+X events since tt̄H events can show similar features
as tt̄+bb̄ and tt̄+2b events. Therefore, in particular, fewer tt̄+bb̄ and tt̄+2b events are
properly assigned if the tt̄H process was included in the training.
For this reason, the tt̄H process should be neglected in the training of a neural network
if only the measurement of the tt̄+≥1b-jet signal strength is of interest. However, in the
training of the neural networks of the NN reference analysis the tt̄H process was included
since in this way a simultaneous measurement of the tt̄+≥1b-jet and tt̄H signal strength
can be conducted later on (part V).

In the last section based on the observed tt̄+≥1b-jet signal strength r(observed) of 1.23+21%
−16%,

measured by the NN reference analysis, the corresponding tt̄+≥1b-jet cross section
σ(tt̄+≥1b-jet, obs.) was determined. Considering the full phase space the signal strength
r(observed) corresponds to 29.6+6.3

−4.6 pb. So far it is the first tt̄+≥1b-jet cross section result
at a center-of-mass energy of 13 TeV.
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Simultaneous measurement of individual
signal strengths and cross sections

In this part of the thesis, two tt̄+≥1b-jet measurements using the CMS data from the
Large Hadron Collider run in 2016 will be presented.
In these measurements cross sections σ, expressed by signal strengths r, of more than
one signal process are simultaneously determined. For this determination, the classifiers
of the reference analyses, which were already employed for the measurement of the joint
tt̄+≥1b-jet signal strength r(tt̄+≥1b-jet) and cross section σ(tt̄+≥1b-jet) (part IV), are
used again.

In the first of the two measurements, the cross section of the tt̄+bb̄ process σ(tt̄+bb̄), the
tt̄+2b process σ(tt̄+2b), and the tt̄+b process σ(tt̄+b) as well as the corresponding signal
strengths (r(tt̄+bb̄), r(tt̄+2b), r(tt̄+b)) are measured simultaneously. From now on this
will be referred to as the tt̄+bb̄/tt̄+2b/tt̄+b measurement.

In the second measurement, the signal strength r(tt̄+≥1b-jet) and cross section σ(tt̄+≥1b-jet)
of the tt̄+≥1b-jet process is determined together with the signal strength r(tt̄H) and cross
section σ(tt̄H) of the tt̄H process by a simultaneous measurement. In short form it will be
designated as the tt̄+≥1b-jet/tt̄H measurement.

The analyses conducted by these two measurements (tt̄+bb̄/tt̄+2b/tt̄+b and tt̄+≥1b-jet/tt̄H)
are largely identical to one another and also to the reference analyses employed for the
joint tt̄+≥1b-jet measurement. Therefore, to avoid a repetition, in chapter 13 only the
differences in the three measurements will be discussed.
The results of the tt̄+bb̄/tt̄+2b/tt̄+b and the tt̄+≥1b-jet/tt̄H measurement will be pre-
sented in chapter 14. This part closes with a discussion of the results obtained by the two
measurements in chapter 15. Here, the results will also be compared to the findings of the
reference analyses (part IV) and the measurements reviewed previously (part III).
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13. Differences between the tt̄+≥1b-jet,
tt̄+bb̄/tt̄+2b/tt̄+b, and
tt̄+≥1b-jet/tt̄H signal strength and
cross section measurements

All three measurements (tt̄+≥1b-jet, tt̄+bb̄/tt̄+2b/tt̄+b, and tt̄+≥ 1b-jet/tt̄H) employ
the same three analysis strategies, a B-jet multiplicity based (B-jet mult.) one, a linear
discriminant based (LD) one, and an analysis based on a neural network (NN). These
three analysis strategies are already discussed at length in chapter 9.

The only difference between the three measurements is the type of Maximum-Likelihood
(ML) fit (section 5.1) and the signal and background definition, which is used to derive
the respective signal strength r. From the signal strength r the cross section σ can easily
be determined as described in section 11.7.

Due to taking only one signal into consideration, a one-dimensional ML fit is employed
in the joint tt̄+≥1b-jet measurement, while for the two other measurements a multi-
dimensional ML fit is used.

For all measurements the prefit final discriminant distributions (figure 9.1, fig. 9.4, and
fig. 9.5) obtained from each of the three aforementioned analyses are employed in either a
one-dimensional or a multi-dimensional ML fit:

In comparison to the joint tt̄+≥1b-jet signal strength r(tt̄+≥1b-jet) measurement by a
one-dimensional ML fit, in which the tt̄+bb̄, tt̄+2b, and tt̄+b process are considered as
a combined signal; the tt̄+bb̄ process, tt̄+2b process, and tt̄+b process are defined as in-
dividual signals in the multi-dimensional ML fit of the tt̄+bb̄/tt̄+2b/tt̄+b measurement.
Therefore, for the three signal processes, (tt̄+bb̄/tt̄+2b/tt̄+b) signal strengths, r(tt̄+bb̄),
r(tt̄+2b), and r(tt̄+b), are assigned.
Each of these signal strengths is set to an initial value of one. In this way, the SM predic-
tion of the tt̄+≥1b-jet processes, which is given by the POWHEG Box Version 2 tt̄ sample
and the NNLO+NNLL tt̄ cross section (chapter 6), is assumed before the fit. However,
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13. Differences between the tt̄+≥1b-jet, tt̄+bb̄/tt̄+2b/tt̄+b, and tt̄+≥1b-jet/tt̄H signal

strength and cross section measurements

the signal strengths are left freely floating during the fit.
All other processes (chapter 6) are included as background and single templates for each
of the background processes are used, while the individual backgrounds are set to their
Standard Model (SM) expectation.
The corresponding profile likelihood ratio (section 5.1) is then evaluated, while all system-
atic uncertainties (chapter 10) are taken into account as constrained nuisance parameters
θ. Here, all three signal strengths (r(tt̄+bb̄), r(tt̄+2b), r(tt̄+b)) as parameters of interest
are scanned simultaneously by defining a three-dimensional grid of sets of possible signal
strength values, while the nuisance parameters θ are varied to obtain a local minimum of
the likelihood function. The best-fit signal strengths r(tt̄+bb̄), r(tt̄+2b), and r(tt̄+b) are
then given by the global minimum of the profile likelihood function.

Analogous to the tt̄+bb̄/tt̄+2b/tt̄+b measurement the tt̄+≥1b-jet and tt̄H signal strengths
(r(tt̄+≥1b-jet), r(tt̄H)) and cross sections (σ(tt̄+≥1b-jet), σ(tt̄H)) are determined in the
tt̄+≥ 1b-jet/tt̄H measurement. The only difference to the previously explained measure-
ment is that the three processes tt̄+bb̄, tt̄+2b, and tt̄+b are taken as a combined signal,
while the tt̄H process is included as a further signal in the multi-dimensional ML fit.
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14. Results

tt̄+bb̄/tt̄+2b/tt̄+b measurement

In the tt̄+bb̄/tt̄+2b/tt̄+b measurement the signal strength of the tt̄+bb̄ process r(tt̄+bb̄),
of the tt̄+2b process r(tt̄+2b), and of the tt̄+b process r(tt̄+b) are determined simulta-
neously.

However, only in the case of the NN reference analysis the multi-dimensional ML fit showed
a good convergence behaviour. In the case of the B-jet mult. and LD analysis the ML fit
had difficulties to determine the signal strength r(tt̄+2b) of the tt̄+2b process.
The initial assumption that this is caused by a smaller number of degrees of freedom pro-
vided to the ML fit by the B-jet mult. and LD analysis could be excluded: A LD analysis
containing a final discriminant distribution divided in 30 bins, the same number of bins as
provided by the six final discriminant distributions of the NN analysis, still resulted in a
non-properly converging ML fit.
Instead it seems that the B-jet mult. and LD cannot provide sufficient separation of the
tt̄+2b process to the two other signal processes (tt̄+bb̄, tt̄+b). The multiclassification
done by the neural network apparently gives an advantage to the NN reference analysis.
Comparing the final discriminant distributions of the three analyses (figure 9.1, fig. 9.4,
and fig. 9.5), it can be observed that in the single distributions of the B-jet mult. and LD
analyses events corresponding to all three processes are enriched in the rightmost bins. In
the same figures the individual contributions of the three signals are shown by solid lines
which are scaled to the overall integral of the stacked histograms. It is rather obvious that
events of all three processes will be similarly classified. In comparison, the dedicated tt̄+2b
final discriminant distribution of the NN analysis demonstrates that the neural network
can sufficiently separate events of the tt̄+2b process and the two other signal processes.

Accordingly, only results obtained with the NN reference analysis will be given for the
tt̄+bb̄/tt̄+2b/tt̄+b measurement in the following:

The expected signal strengths r(expected) and observed signal strengths r(observed) of the
three processes are presented in table 14.1. From the observed signal strength r(observed)
the cross section σ was derived as described in section 11.7. The results obtained with
the NN reference analysis are presented additionally for a comparison with the sum of the
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tt̄+bb̄/tt̄+2b/tt̄+b cross sections. Since correlations between the three tt̄+bb̄/tt̄+2b/tt̄+b
cross section results are difficult to estimate and the cross section sum is only used for a
comparison with the tt̄+≥1b-jet cross section of the NN reference analysis, no uncertainty
on this summed tt̄+bb̄/tt̄+2b/tt̄+b cross section is given.

Furthermore, in figure 14.1 two-dimensional likelihood contour plots are shown in which
two observed signal strengths r(observed) measured by the NN reference analysis are
drawn.

Table 14.1: Results of the tt̄+bb̄/tt̄+2b/tt̄+b measurement: The expected signal strength
r(expected) measured by the NN reference analysis is stated for the tt̄+bb̄
process, the tt̄+2b process and the tt̄+b process. Furthermore, the observed
signal strength r(observed) is given for these processes. From this observed
signal strength r(observed) the cross section σ was derived. For a comparison,
the sum of the tt̄+bb̄/tt̄+2b/tt̄+b cross sections and the results obtained
with the NN reference analysis are presented in addition. The systematic
uncertainties correspond to a 1σ-uncertainty.

Process r(expected) r(observed) σ

tt̄+bb̄ 1±0.13 1.28±0.15 5.3±0.6 pb

tt̄+2b 1+0.65
−0.55 0.98+0.71

−0.62 4.5+3.3
−2.9 pb

tt̄+b 1±0.21 1.14±0.21 17.4±3.2 pb

tt̄+bb̄/tt̄+2b/tt̄+b 27.2 pb

tt̄+≥1b-jet 1+0.23
−0.17 1.23+0.26

−0.19 29.6+6.3
−4.6 pb
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Figure 14.1: Likelihood contour plots of the tt̄+bb̄/tt̄+2b/tt̄+b measurement: Two ob-
served signal strenghts r(observed) are plotted against each other. In addi-
tion, their best-fit value is drawn and stated. Furthermore, the 68 % and
95 % confidence level of the two-dimensional likelihood contour is shown.
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tt̄+≥1b-jet/tt̄H measurement

In the tt̄+≥1b-jet/tt̄H measurement the signal strength of the tt̄+≥1b-jet process r(tt̄+≥1b-jet)
and of the tt̄H process r(tt̄H) are determined by a multi-dimensional ML fit.

In contrast to the tt̄+bb̄/tt̄+2b/tt̄+b measurement, the ML fit converged for all three
analyses (B-jet mult., LD, NN). Nonetheless, only the NN analysis has good sensitivity.
For the other two analyses large uncertainties on the tt̄H signal strength r(tt̄H) are ex-
pected, which is confirmed by even larger uncertainties on the observed signal strength
r(tt̄H, observed). Therefore, they will only be listed in table 14.2 for completeness.
As before, an additional linear discriminant based analysis in which the final discriminant
distribution had the same number of bins as the six final discriminant distributions of
the NN reference analysis, was tested. However, increasing the number of bins in the LD
analysis did not significantly improve the precision of the expected and observed signal
strengths r. For this reason, this result is not presented. It can once more be assumed
that the lower precision obtained with the B-jet mult. and LD analysis is caused by the
smaller separation between the two signal processes.

The expected and observed signal strength r of the tt̄+≥1b-jet process and the tt̄H process
measured by the three reference analyses is stated in table 14.2. For the determination of
the tt̄H cross section σ(tt̄H) the tt̄H(bb̄) cross section prediction of 0.2953 pb (section 6.2)
is employed. The tt̄+≥1b-jet results of the dedicated tt̄+≥1b-jet measurement (part IV)
are stated additionally for comparison.
Furthermore, the likelihood contour of the tt̄+≥1b-jet signal strength r(tt̄+≥1b-jet, observed)
and the tt̄H signal strength r(tt̄H, observed) is shown in figure 14.2. Again, the results of
the NN reference analysis are used.

Table 14.2: Results of the tt̄+≥ 1b-jet/tt̄H measurement: The expected signal strength
r(exp.) measured by the reference analyses (B-jet mult., LD, NN) is stated
for the tt̄+≥1b-jet process and the tt̄H process. Furthermore, the observed
signal strength r(obs.) is given for these processes. From the observed signal
strength of the NN analysis the cross section σ was derived. For a comparison,
the tt̄+≥1b-jet signal strength results measured by the dedicated tt̄+≥1b-jet
measurement are presented in addition. The systematic uncertainties corre-
spond to a 1σ-uncertainty.

B-jet mult. LD NN

Process r(exp.) r(obs.) r(exp.) r(obs.) r(exp.) r(obs.) σ

tt̄+≥1b-jet 1±0.50 0.86+0.40
−0.30 1+0.57

−0.37 1.20+0.65
−0.40 1+0.23

−0.18 1.21+0.27
−0.22 29.1+6.5

−5.3 pb

tt̄H 1±1.53 4.30±8.95 1±1.67 −0.01±6.39 1±0.81 0.80±0.83 0.2±0.2 pb

tt̄+≥1b-jet 1+0.33
−0.23 1.09+0.27

−0.24 1+0.24
−0.18 1.21+0.28

−0.24 1+0.23
−0.17 1.23+0.26

−0.19 29.6+6.3
−4.6 pb
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Figure 14.2: Likelihood contour plot of the tt̄+≥ 1b-jet/tt̄H measurement: The observed
signal strength of the tt̄H process r(tt̄H, observed) is plotted over the ob-
served signal strength of the tt̄+≥1b-jet process r(tt̄+≥1b-jet, observed). In
addition, their best-fit value is drawn and stated. Furthermore, the 68 % and
95 % confidence level of the two-dimensional likelihood contour is shown.
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15. Discussion of results

As already discussed in the results chapter (chapter 14), out of the three analyses (B-jet
mult., LD, NN) only the NN analysis showed a good convergence behaviour and leads to
results with sufficient precision for the two measurements, the tt̄+bb̄/tt̄+2b/tt̄+b measure-
ment and the tt̄+≥1b-jet/tt̄H measurement. The shortcomings of the other two analyses
can be attributed to their lower separation power. In particular, these had difficulties to
separate the tt̄+2b process from the tt̄+bb̄ and tt̄+b process in the tt̄+bb̄/tt̄+2b/tt̄+b
measurement.

For this reason, only results obtained by using the NN reference analysis will be discussed
in the following.

tt̄+bb̄/tt̄+2b/tt̄+b measurement

A comparison of the sum of the observed tt̄+bb̄, tt̄+2b, and tt̄+b cross section of σ(obs.) =
27.2 pb obtained with the tt̄+bb̄/tt̄+2b/tt̄+b measurement to the tt̄+≥1b-jet cross sec-
tion (σ(tt̄+≥1b-jet, obs.) = 29.6+6.3

−4.6 pb) derived from the tt̄+≥1b-jet measurement shows
the good agreement between the two measurements. Here, due to the difficult to estimate
correlations between the tt̄+bb̄/tt̄+2b/tt̄+b cross section results no uncertainties of the
tt̄+bb̄/tt̄+2b/tt̄+b cross section sum are given. Nonetheless, it can be assumed that these
uncertainties will be in similar order of magnitude as the uncertainties of the tt̄+≥1b-jet
cross section.

Interestingly enough, the tt̄+bb̄/tt̄+2b/tt̄+b measurement leads to signal strengths and
cross sections with rather symmetric uncertainties, while the uncertainties on the tt̄+≥
1b-jet signal strength and cross section of the tt̄+≥1b-jet measurement are rather asym-
metric. An explanation for this is hard to give, but it is assumed that it is caused by the
fewer degrees of freedom in the tt̄+≥1b-jet measurement: Since only one signal is fitted
in this measurement, the Maximum-Likelihood (ML) fit has more difficulties to adjust the
signal template, so that, together with the background, the shape of the measurement
data is matched. In the case of three signals as in the tt̄+bb̄/tt̄+2b/tt̄+b measurement
the signal templates can be individually adjusted, so that the agreement of signals plus
backgrounds with the measurement data should be better.

The tt̄+2b process has by far the largest relative uncertainties, even though the tt̄+2b
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process out of the tt̄+≥1b-jet processes is the process with the smallest expected and ob-
served cross section. Again, one can conclude that the most challenging separation is the
separation of the tt̄+2b process from the other tt̄+≥1b-jet processes, which is expected as
explained earlier.

For Monte Carlo event generator experts the different signal strengths obtained in the
tt̄+bb̄/tt̄+2b/tt̄+b measurement maybe also of interest: The observed signal strength of
the tt̄+bb̄ process of 1.28 ± 0.15 clearly indicates that the amount of tt̄+bb̄ signal ob-
served in measurement data is underpredicted by the combination of the POWHEG Box
Version 2 matrix element generator [30–34] and the Pythia8 general-purpose Monte Carlo
event generator [37,38] employed in this thesis to describe all tt̄ processes. Meanwhile, the
observed signal strength of the tt̄+b process is only 1.14± 0.21. Therefore, it seems that
the prediction of this process by the aforementionend combination of Monte Carlo event
generators is better. The signal strength of the tt̄+2b process is – as discussed previously
– afflicted with large uncertainties; for this reason, no conclusions will be drawn for this
process.

A comparison of the observed signal strength (r(tt̄+bb̄, observed) = 1.28±0.15) and cross
section (σ(tt̄+bb̄, obs.) = 5.3± 0.6 pb) of the tt̄+bb̄ process to the results of the reviewed
tt̄+bb̄ measurements (part III) shows a good agreement with the newest measurement, the
CMS

√
s = 13 TeV measurement, which observes a tt̄+bb̄ signal strength of 1.25± 0.59

and a tt̄+bb̄ cross section of 4.0± 0.6(stat.)± 1.3(syst.) pb.
As mentioned in the review part (part III) the other reviewed tt̄+bb̄ measurements are in
strong tension to the CMS

√
s = 13 TeV measurement and, hence, also to the measure-

ment presented in this thesis.

However, the uncertainties on the observed tt̄+bb̄ signal strength r(tt̄+bb̄, observed) and
the observed tt̄+bb̄ cross section σ(tt̄+bb̄, obs.) are quite smaller in the measurement pre-
sented in this thesis than in the CMS

√
s = 13 TeV measurement.

Since in section 11.2.3 it was shown that systematic uncertainties are dominanting the over-
all uncertainties of a signal strength measurement presented in this thesis and statistical
uncertainties are rather negligible the uncertainties are not split in statistical uncertainties
(stat.) and systematic uncertainties (syst.) as it is done for the CMS measurement.
The reason for the different statistical uncertainties is that the measurement presented in
this thesis made use of an integrated luminosity of 35.9 fb−1, while the CMS

√
s = 13 TeV

measurement could only use a luminosity of 2.3 fb−1.
Furthermore, it can be observed that the precision of CMS

√
s = 13 TeV measurement is

limited by the rather large systematic uncertainty of ±1.3 pb on the tt̄+bb̄ cross section
result. In comparison to that, the systematic uncertainty on the tt̄+bb̄ cross section of
the measurement presented in this thesis is quite smaller, roughly 0.6 pb.

In principle, it would be expected that a tt̄+bb̄ measurement conducted in the dileptonic
channel has smaller systematic uncertainties than a semileptonic tt̄+bb̄ measurement. The
reason for this is that, for example, large dominant systematic uncertainties related to the
b-tagging of jets do not need to be considered.
This contradiction can be explained by the fact that the CMS

√
s = 13 TeV tt̄+bb̄

measurement was conducted at the beginning of the LHC Run 2 which is also why the
employed integrated luminosity is rather small. Commonly, after an increase of the center-
of-mass energy

√
s the estimation of systematic uncertainties must be renewed, while in
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general this estimation improves with more event statistics or rather luminosity. Further-
more, the reduction of systematic uncertainties is part of continuous effort to improve
the object identification and event reconstruction by the CMS detector as well as physics
analyses. Therefore, it can be safely assumed that the systematic uncertainties employed
in the tt̄+bb̄ measurement presented in this thesis are smaller not least because this mea-
surement was conducted at a later time.

For the reasons stated above, it can be concluded that the tt̄+bb̄ measurement presented
in this thesis is the most precise measurement of the tt̄+bb̄ signal strength and cross sec-
tion so far.
For the tt̄+2b and the tt̄+b process no other measurement conducted at the Large Hadron
Collider and suitable for a comparison exists. Therefore, no further conclusions can be
drawn.

tt̄+≥1b-jet/tt̄H measurement

A comparison of the observed tt̄+≥1b-jet signal strength r(tt̄+≥1b-jet, observed) and
cross section σ(tt̄+≥1b-jet, obs.), obtained from the NN reference analysis, between the
tt̄+≥1b-jet/tt̄H measurement

r(tt̄+≥1b-jet,observed) = 1.21+0.27
−0.22 ,

σ(tt̄+≥1b-jet, obs.) = 29.1+6.5
−5.3 pb ,

and the tt̄+≥1b-jet measurement

r(tt̄+≥1b-jet,observed) = 1.23+0.26
−0.19 ,

σ(tt̄+≥1b-jet, obs.) = 29.6+6.3
−4.6 pb ,

shows good agreement.
It can be concluded that the additional fit of the tt̄H signal in the tt̄+≥1b-jet/tt̄H mea-
surement does not significantly affect the determination of the tt̄+≥1b-jet signal strength
and cross section.

The observed tt̄H signal strength r(tt̄H, observed) is now compared to a recent ATLAS
tt̄H(bb̄) measurement [114] and a recent CMS tt̄H(bb̄) measurement [115]:

Both measurements employ a similar luminosity (ATLAS: L = 36.1 fb−1) or even the same
luminosity (CMS: L = 35.9 fb−1) as the measurement presented in this thesis.
Furthermore, both measurements conduct the measurement of the tt̄H(bb̄) signal strength
in the semileptonic decay channel of the top quark as well as the dileptonic decay chan-
nel, while the measurement presented in this thesis only exploits the semileptonic decay
channel. Therefore, in the following only the semileptonic measurements and results will
be discussed.
For the semileptonic decay channel, the ATLAS measurement requires at least five jets,
from which two must fulfill a b-tagging requirement, besides a single lepton. Semileptonic
events considered in the CMS measurement must have one single lepton and at least four
jets, from which two must fulfill a b-tagging requirement. For the measurement presented
in this thesis events have to fulfill a harder requirement: Besides one lepton at least six
jets, from which two are b-tagged, are required.
In all three measurements (including the one presented in this thesis) the tt̄ samples was
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produced using a combination of the POWHEG Box Version 2 matrix element genera-
tor [30–34] and the Pythia8 general-purpose Monte Carlo event generator [37, 38]. In the
case of the CMS measurement and this measurement this event generator combination was
also employed for the modeling of the tt̄H process. In contrast to that, in the ATLAS mea-
surement a combination of the MG5aMC(NLO)+Pythia8 event generators [29,38,139,140]
is used to model the tt̄H process. Furthermore, the tt̄+≥1b-jet processes contained in the
tt̄ sample are scaled to match the predictions of a next-to-leading order (NLO) tt̄+bb̄
sample generated with the Sherpa+OpenLoops event generator [143–145] in the ATLAS
measurement.
For the total cross section of the tt̄ samples a prediction at next-to-next-leading order
(NNLO) QCD accuracy with next-to-next-leading logarithmic (NNLL) soft gluon resum-
mation using the top++2.0 program (see [177] and references therein) is used in all three
measurements.
In the ATLAS measurement a boosted decision tree (BDT) is employed as classifier, which
can exploit among common event variables b-tagging probabilities and information pro-
vided by a matrix element method. In the CMS dileptonic measurement also a BDT using
common event variables, b-tagging probabilities, and information provided by a matrix
element method is used. However, for the CMS semileptonic measurement a multiclas-
sifying neural network – similar to the neural network used in this thesis – is employed.
The major difference between the two neural networks is that the neural network of the
CMS measurement considers other event variables and makes use of additional information
provided by a matrix element method.
All three (semileptonic) measurements consider similar (ATLAS measurement) or the same
(CMS measurement and measurement of this thesis) systematic uncertainties. However,
in the ATLAS measurement the normalizations of the tt̄+bb̄ and tt̄+cc̄ background is left
freely floating, while the CMS measurement considers them as nuisance parameters.

Due to leaving the tt̄+bb̄ and tt̄+cc̄ normalization freely floating the ATLAS measurement
determines, besides the observed tt̄H signal strength r(tt̄H, observed)

r(tt̄H, observed) = 0.95+0.65
−0.62 ,

also the tt̄+≥1b-jet signal strength r(tt̄+bb̄, observed) and the tt̄+cc̄ signal strength
r(tt̄+cc̄, observed)

r(tt̄+bb̄, observed) = 1.24± 0.10 ,

r(tt̄+cc̄, observed) = 1.63± 0.23 .

Here, the observed tt̄H signal strength r(tt̄H, observed) is stated which is derived from the
semileptonic measurement only, so that it is better comparable to the measurement of this
thesis. In contrast to that, the tt̄+bb̄ and tt̄+cc̄ signal strengths are given for a combined
measurement using the semileptonic and dileptonic decay channel since no semileptonic
result was available for a comparison.

By the semileptonic measurement of the CMS collaboration a tt̄H signal strength of

r(tt̄H, observed) = 0.84+0.52
−0.50

is observed. Again, only the result of the semileptonic measurement is given for a bet-
ter comparison with the measurement presented in this thesis, even though a combined
semileptonic and dileptonic result would have been available.
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Compared to the two reviewed measurements, the tt̄+≥1b-jet/tt̄H measurement presented
in this thesis observes a tt̄H signal strength r(tt̄H, observed) of

r(tt̄H, observed) = 0.80± 0.83 ,

and a tt̄+≥1b-jet signal strength r(tt̄+≥1b-jet, observed) of

r(tt̄+≥1b-jet,observed) = 1.21+0.27
−0.22 .

It can be concluded that all three measurements are in good agreement with each other.

However, the two reviewed measurements feature tt̄H signal strength results with smaller
uncertainties than this measurement, even though a similar luminosity was used and only
the results of the semileptonic measurements were compared.

It is plausible that the better performance of the two reviewed measurements compared
to this one comes from including additional information provided by a matrix element
method in the classifier. Furthermore, the two reviewed measurements employ a looser jet
selection and, hence, can include more categories in the final Maximum-Likelihood (ML)
fit.

Besides the good agreement in the tt̄H signal strength the ATLAS measurement and
the measurement presented in this thesis also predict a rather similar tt̄+≥1b-jet signal
strength, while the tt̄+≥1b-jet definition is slightly different:

In the ATLAS tt̄H(bb̄) measurement in addition to the tt̄+bb̄, tt̄+2b, and tt̄+b pro-
cess classes two further tt̄+≥1b-jet process classes are introduced. Events having more
than two additional b-tagged jets fall into the tt̄+≥3b-jet process class and are not in-
cluded in the tt̄+bb̄ process class like in the measurements presented in this thesis. Events
with additional b-tagged jets entirely originating from final-state radiation or multi-parton
interactions are considered in a separate process class. Furthermore, the relative contribu-
tions of the tt̄+bb̄, tt̄+2b, tt̄+b, and the tt̄+≥3b-jet process class are scaled to match the
predictions of a Sherpa+OpenLoops [143–145] tt̄+bb̄ sample. This rescaled and combined
process scales are employed in the ML fit to derive the tt̄+≥1b-jet signal strength.
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Study of a possible improvement
of the tt̄+≥1b-jet modeling by
Monte Carlo event generators
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Study of a possible improvement of the
tt̄+≥1b-jet modeling by Monte Carlo
event generators

In the measurements presented in this thesis and the reviewed measurements signal strengths
of the tt̄+≥1b-jet, the tt̄+bb̄, and the tt̄+b process larger than expected from available
Monte Carlo event generators are observed. This leads to the assumption that an improve-
ment of the modeling of the tt̄+≥1b-jet processes by Monte Carlo event generators would
be beneficial. Therefore, in the following, possible approaches to improve the tt̄+≥1b-jet
modeling by Monte Carlo event generators will be discussed.

The concept of combining a five-flavour scheme (5FS) tt̄ sample with a four-flavour scheme
(4FS) tt̄+bb̄ sample will be introduced and motivated (chapter 16). In chapter 17 follows
a description how such a combined 5FS tt̄/ 4FS tt̄+bb̄ sample can be constructed, before
the focus will be on the proper normalization which is required for the combination of the
two samples (chapter 18). Since this normalization is still afflicated with shortcomings
only preliminary conclusions can be drawn in chapter 19.
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16. Motivation of a combined 5FS tt̄/
4FS tt̄+bb̄ sample

In the measurements presented previously in this thesis the combination of the POWHEG
Box Version 2 matrix element (ME) event generator [30,31,171] and the Pythia8 general-
purpose Monte Carlo (GPMC) event generator [37, 183] is employed to produce next-
to-leading order (NLO) tt̄ samples by making use of the five-flavour scheme (5FS). As
explained in section 2.1.4 the 5FS seems a suitable choice for the generation of the tt̄
samples since in measurements of signal strengths (r(tt̄+≥1b-jet), r(tt̄+bb̄), r(tt̄+2b),
r(tt̄+b), r(tt̄H)) rather inclusive observables are of particular interest.
These tt̄ samples (chapter 6) are then split into tt̄+X sub processes by using the Gen-
HFHadronMatcher tool [146, 149] (section 6.4). In this way, separate Monte Carlo event
samples of the tt̄+bb̄, tt̄+2b, and tt̄+b signal process are obtained and also event samples
of the tt̄+cc̄ and the tt̄+lf background process.
All of these processes are later considered as single processes in the final discriminant
distributions of the three reference analyses, the B-jet multiplicity based (B-jet mult.)
analysis, the linear discriminant based (LD) analysis, and the neural network based (NN)
analysis (chapter 9). Furthermore, these single processes are used for the training of the
multivariate classifiers of the LD and NN analysis (section 5.2).

As can be deduced from the measurements presented in this thesis (part IV and part V) and
the reviewed measurements (part III), the tt̄+≥1b-jet process is underpredicted by Monte
Carlo event generators so far. All measurements observe signal strengths r(tt̄+≥1b-jet,
observed) of roughly 1.3. This also applies to the tt̄+bb̄ and tt̄+b processes individually,
for which a signal strength of r(tt̄+bb̄, observed) = 1.28 ± 0.15 and r(tt̄+b, observed) =
1.14 ± 0.21, respectively, is derived in this thesis. The tt̄+2b process could be the only
exception since the observed signal strength of this process is 0.98+0.71

−0.62. However, the
uncertainties on the tt̄+2b signal strength r(tt̄+2b, observed) are rather large, so that no
definitive statement can be made.

The tt̄+≥1b-jet production processes are predicted by the Standard model of particle
physics (SM). Until now, no hint of physics beyond the Standard Model (BSM) is ob-
served for these processes. Therefore, the significant deviation of the measured tt̄+≥1b-jet
signal strengths from one leads to the conclusion that these processes are not properly
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modeled by the Monte Carlo event generators and methods currently employed.
This issue is well-known among large parts of the particle physics community and active
research is undertaken in this context as already mentioned in the motivation (part II):
References [47, 131, 223] are examples of rather recent publications describing this issue
and suggesting possible solutions.

Among the possible solutions which are discussed is a further tuning of the currently em-
ployed Monte Carlo event generators. However, large efforts to tune the event generators
used by default by the CMS collaboration have already been made in the recent past (see
reference [185]). By this tuning, for example, the modeling of the tt̄+lf processes was
improved, so that the agreement between measurement data and Monte Carlo prediction
has particularly gotten better in high jet-multiplicity and large transverse momentum cat-
egories [224].

Nonetheless, in the near future it is not expected that tuning the Monte Carlo event gener-
ators currently employed by the CMS collaboration will improve the tt̄+≥1b-jet modeling.

Another proposal for solution, made e.g. by [47,131,223], involves using dedicated tt̄+bb̄
event samples which are produced by employing a four-flavour scheme (4FS).

In contrast to the 5FS, in the 4FS the assumption is made that bottom quarks cannot be
part of the composite proton below the factorization scale µF due to their large mass and
that they only appear as quark-antiquark pairs in scattering processes. Therefore, bottom
quarks are not included in the parton distribution function of the proton. The advantage
of the 4FS is the presumably better description of the kinematics of the tt̄+bb̄ process,
while the prediction of the total cross section of a process or other inclusive observables
can be inaccurate because of large logarithms possibly occurring in computation of initial-
state and final-state radiation, which are not resummed.

For example, the ATLAS collaboration makes use of such a 4FS tt̄+bb̄ sample produced by
the Sherpa+OpenLoops event generator [143–145] in their tt̄H(bb̄) analysis [114] as out-
lined in the motivation (part II): tt̄+≥1b-jet events derived from a 5FS tt̄ sample which
was generated by using the same event generator combination as in this thesis (POWHEG
+Pythia8) are rescaled to match the predictions of this 4FS tt̄+bb̄ sample.

However, the CMS collaboration is skeptical of this rescaling approach. The reason is
that the rescaling changes the relative fractions of the tt̄+≥1b-jet process classes described
by the POWHEG+Pythia8 sample. Therefore, it could introduce additional systematic
uncertainties which are difficult to specify.

Furthermore, in this way, the main advantage of 4FS tt̄+bb̄ event generation, namely
providing tt̄+≥1b-jet events, and particularly tt̄+bb̄ and tt̄+≥3b-jet events, with higher
precision, is not exploited.

For this reason, this approach is not discussed further here.
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The best solution so far, which is also advocated by [47,131,223], seems to be the combi-
nation of a 5FS tt̄ sample with a 4FS tt̄+bb̄ sample: The 5FS tt̄ sample would provide a
modeling of tt̄+lf and tt̄+cc̄ events, while the 4FS tt̄+bb̄ sample would be employed for
an improved modeling of tt̄+≥1b-jet events.

This is motivated by different limitations of the two sample types: The 5FS can only
poorly describe tt̄+bb̄ events in which the two additional bottom quarks of the tt̄+bb̄
matrix element have a small transverse momentum and angular separation. The reason
for this is that in this collinear region of the phase space the approximation that bottom
quarks are massless breaks down. Compared to that, the 4FS has the advantage that one
out of the two g → bb̄ splittings required to produce the tt̄+bb̄ process can be described
as part of a NLO tt̄+bb̄ matrix element. However, a 4FS tt̄+bb̄ sample does not include
contributions of the tt̄+lf or tt̄+cc̄ processes [47].

This approach will be followed in the further course of this thesis.
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17. Construction of a combined 5FS tt̄/
4FS tt̄+bb̄ sample

For the reasons stated in chapter 16 a combined 5FS tt̄/ 4FS tt̄+bb̄ sample would be
highly desirable, at least for a cross check with the default 5FS tt̄ sample.

According to [223], for a combination of a 5FS tt̄ sample with a 4FS tt̄+bb̄ sample a veto
on events involving bottom quarks in the tt̄ sample would be sufficient. However, the veto
has to take place at particle level, after the parton shower, but the veto should not be
applied on bottom quarks originating from the decay of the involved top quarks or from
the underlying event.

Applying such an event veto is not possible for analyses conducted by the CMS collab-
oration at the moment. The reason is that due to the large number of tt̄ events (> 150
million) required by analyses to obtain enough statistics the 5FS tt̄ samples are produced
globally by a dedicated event sample production system called Monte Carlo Request Man-
agement (McM). The technical realization of such a veto would require non-trivial changes
to the McM system. Furthermore, it still needs to be confirmed by a comparison with mea-
surement data that such a combined sample leads to a better modeling of the tt̄, and in
particular the tt̄+≥1b-jet, processes, before the default 5FS tt̄ can be replaced.

For this reason a combined 5FS tt̄/ 4FS tt̄+bb̄ sample has to be obtained by a slightly
different replacement of 5FS tt̄+≥1b-jet events with 4FS tt̄+≥1b-jet events, which takes
into account the available means and event samples provided by the CMS collaboration.

In addition to the 5FS tt̄ samples produced by using POWHEG+Pythia8 and employed
in this thesis or other 5FS samples produced by using either MG5aMC(LO) [179] or MG5-
aMC(NLO) [29, 140] as matrix element generator, two 4FS samples were produced which
should match the properties of the 2016 measurement data: A 4FS tt̄+bb̄ sample was
produced using a combination of the MG5aMC(NLO) matrix element event generator and
the Pythia8 GPMC event generator. By using the Sherpa+OpenLoops event generator a
further 4FS tt̄+bb̄ sample was produced.
Both 4FS samples will be used in the following together with 5FS POWHEG tt̄ sample.
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The 5FS POWHEG tt̄ sample is split into tt̄+X sub samples by using the GenHFHadron-
Matcher tool as mentioned earlier. The GenHFHadronMatcher (section 6.4) acts in a
similar way as the suggested event veto based on additional bottom quarks by providing a
possibility to derive a tt̄+bb̄, a tt̄+2b, and a tt̄+b sub sample in addition to a tt̄+cc̄ and a
tt̄+lf sub sample. The major difference between the proposed event veto and the approach
of the GenHFHadronMatcher is that the GenHFHadronMatcher identifies tt̄+≥1b-jet pro-
cesses by additionally occurring bottom hadrons which are not originating from the decay
of a top quark, while the suggested event veto relies directly on additional bottom quarks.

By using the process classes determined by the GenHFHadronMatcher two combined 5FS
tt̄/ 4FS tt̄+bb̄ sample can be easily constructed: From the 5FS POWHEG sample only the
tt̄+cc̄ and the tt̄+lf sub sample is used for a combination with either the 4FS MG5aMC-
(NLO) tt̄+bb̄ sample or the 4FS Sherpa+OpenLoops tt̄+bb̄ sample, while the POWHEG
tt̄+bb̄, tt̄+2b, and tt̄+b sub samples are neglected.
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Before 5FS tt̄+≥1b-jet events are replaced by 4FS tt̄+≥1b-jet events during the construc-
tion of a combined sample, tt̄+≥1b-jet events obtained from the 4FS tt̄+bb̄ sample must
be properly normalized, so that their sum of weights matches the weight of the replaced
5FS tt̄+≥1b-jet events. Otherwise, the exchange of the tt̄+≥1b-jet events would lead to a
change in the (differential) tt̄+≥1b-jet cross section. For this reason, the stacked Monte
Carlo histograms of all processes (tt̄+X, tt̄H, and background processes) would no longer
show good agreement with measurement data.

Currently, this proper normalization of the integrated 4FS tt̄+≥1b-jet events represents
a challenge: Various normalization schemes have been tried, but after the replacement of
5FS tt̄+≥1b-jet events by 4FS tt̄+≥1b-jet events a change in the number of events which
pass the event selection (chapter 7) of the three reference analyses is always observed. The
exchange of the tt̄+≥1b-jet events also leads to a poor modeling of the measurement data
by the Monte Carlo samples, so that it does not seem reasonable at this point to use the
obtained combined 5FS tt̄/ 4FS tt̄+bb̄ event sample for an analysis or to show a derived
final discriminant distribution.

Especially, the observed significant change in the number of events passing the event selec-
tion after replacing the tt̄+≥1b-jet events is astonishing. As an example the b-tagged jets
final discriminant distribution of the B-jet mult. analysis is shown in figure 18.1. Here,
the events of the tt̄+bb̄ process, the tt̄+2b process, and the tt̄+b process of the 5FS
POWHEG ttbar samples are combined to a common 5FS POWHEG tt̄+≥1b-jet sample
and compared to the two 4FS tt̄+≥1b-jet samples produced by using either the MG5aMC
(NLO)+Pythia8 or the Sherpa+OpenLoops event generator.

For the construction of the combined 5FS tt̄/ 4FS tt̄+bb̄ samples the sum of the event
weight of all 5FS tt̄+≥1b-jet events was determined and the weight of the inserted 4FS
tt̄+≥1b-jet events adjusted, so that their sum matches the sum of the weights of the 5FS
tt̄+≥1b-jet events. Both weight sums were determined using particle-level information,
meaning that no event selection or cuts were applied.

This normalization scheme is motivated by the different jet multiplicity distributions ob-
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served for events in the three samples as shown in figure 18.2. For the determination of this
number of jets distribution a transverse momentum cut of 20 GeV is imposed on gen-level
jets obtained with the anti-kT jet clustering algorithm and a distance parameter of 0.4.
In principle, by considering the full phase (no cuts applied) for the normalization of the
tt̄+≥1b-jet events a difference in the jet multiplicity or other observables should have no
influence on the overall normalization. Furthermore, by this normalization scheme the
tt̄+≥1b-jet cross section of all three tt̄+≥1b-jet event samples should be equal and should
correspond to the tt̄+≥1b-jet cross section σ(tt̄+≥1b-jet, pred.) of 24.06 pb predicted by
the POWHEG event generator as described in section 11.7.

In figure 18.1a the number of tt̄+≥1b-jet events predicted by using each of the three
tt̄+≥1b-jet samples is shown, while in figure 18.1b the number of predicted tt̄+≥1b-jet
events is normalized to one for each tt̄+≥1b-jet sample.

As seen in figure 18.1 the total number of tt̄+≥1b-jet events as well as the number of
tt̄+≥1b-jet events per bin is significantly smaller if the two combined 5FS tt̄/ 4FS tt̄+bb̄
samples are used instead of the 5FS POWHEG tt̄+≥1b-jet sample. Furthermore, it seems
that the 5FS POWHEG tt̄+≥1b-jet sample has a smaller fraction of events with four or
more b-tagged jets than the other two combined samples.

At the same time the 5FS POWHEG tt̄+≥1b-jet sample has in comparison with the com-
bined 5FS tt̄/ 4FS tt̄+bb̄ samples more events with higher jet multiplicity, while the other
two samples have more events with less than six jets.

Due to having more events with fewer than six jets the two combined 5FS tt̄/ 4FS tt̄+bb̄
samples have a lower number of events in the selected phase space region of events contain-
ing at least six jets, from which are two b-tagged. For this reason also a poorer modeling
of the measurement data by the stack of Monte Carlo histograms is observed if either one
of the two combined 5FS tt̄/ 4FS tt̄+bb̄ samples is included instead of the default 5FS
POWHEG tt̄ sample which already shows a good agreement with measurement data.

192



193

(a) Number of b-tagged jets (not normalized)

(b) Number of b-tagged jets (normalized to one)

Figure 18.1: Comparison of the number of b-tagged jets predicted by the three tt̄+≥1b-jet
samples: The number of b-tagged jets after the event selection (section 7)
predicted by using the 5FS POWHEG+Pythia8 tt̄+≥1b-jet sample, the 4FS
MG5aMC(NLO)+Pythia8 tt̄+≥1b-jet sample, and the 4FS Sherpa+Open
Loops tt̄+≥1b-jet sample is compared. In figure (a) the number of events
predicted by using the three samples is shown, while in figure (b) the distri-
bution is normalized to one.
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Figure 18.2: Comparison of the number of jets predicted by the three tt̄+≥1b-jet samples:
The number of jets predicted by using the 5FS POWHEG+Pythia8 tt̄+≥
1b-jet sample, the 4FS MG5aMC(NLO)+Pythia8 tt̄+≥1b-jet sample, and
the 4FS Sherpa+OpenLoops tt̄+≥1b-jet sample is compared.
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19. Preliminary conclusions

Even after a few studies and different normalization schemes tried out a well-founded
explanation of the difference between the 5FS POWHEG tt̄+≥1b-jet sample and the two
combined 5FS tt̄+≥1b-jet/ 4FS tt̄+bb̄ samples is hard to give at present:
First of all, it can be speculated that the 4FS does not properly describe the full range of
tt̄+≥1b-jet processes encountered in measurement data and that a modeling of tt̄+≥1b-jet
processes by the 5FS approximates measurement data better.
Furthermore, it can be assumed that the two Monte Carlo event generators MG5aMC
(NLO)+Pythia8 and Sherpa+OpenLoops employed for the production of the underlying
4FS tt̄+bb̄ samples need some further tuning. This is plausible for the Sherpa+OpenLoops
event generator, which has not yet been used much in the CMS collaboration. However, the
MG5aMC(NLO)+Pythia8 is used by default for the production of many process samples
other than the tt̄ samples. An improper tuning of this event generator, therefore, seems
unlikely but a non-optimal tuning for processes involving top and bottom quarks cannot
be fully excluded.

More insight in this issue may also be gained by applying the GenHFHadronMatcher
on the 4FS MG5aMC(NLO)+Pythia8 tt̄+bb̄ sample before it is used to replace the 5FS
POWHEG+Pythia8 tt̄+≥1b-jet events. In this way, similar events should be classified
as tt̄+≥1b-jet events from the 4FS MG5aMC(NLO)+Pythia8 tt̄+bb̄ sample as from the
5FS POWHEG+Pythia8 tt̄ sample. Therefore, it could be that a better normalization is
reached by these means.

It can be argued that the GenHFHadronMatcher should have been applied also on the
4FS tt̄+bb̄ samples from the beginning. However, since the GenHFHadronMatcher relies
partly on parton-level information it cannot be used for Sherpa+OpenLoops samples. The
reason is that for samples produced with the Sherpa event generator such information is
deliberately not available.

That is the reason why a more general replacement and normalization scheme was aimed
for from the beginning, which will allow the combination of 5FS tt̄ samples with 4FS tt̄+bb̄
samples independent of the event generator they are produced with.
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196 19. Preliminary conclusions

As for now, it can be concluded that more studies are necessary before a combined 5FS
tt̄+≥1b-jet/ 4FS tt̄+bb̄ sample can be employed in a physics analysis.

In the same context, it cannot be said for the time being if a combination of a 5FS
tt̄+≥1b-jet sample with a 4FS tt̄+bb̄ sample would lead to an improved modeling of
the tt̄+≥1b-jet process and if it would resolve the difference between the predicted tt̄+≥
1b-jet, tt̄+bb̄, and tt̄+b signal strengths r(expected) and the corresponding observed signal
strengths r(observed).
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Part VII

Summary and outlook
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Summary and outlook

After the discovery of the Higgs boson in 2012, which was the final missing particle pre-
dicted by the Standard Model of particle physics (SM), and at latest with the Run 2 of
the Large Hadron Collider (LHC) starting in 2015, a large-scale transition process began:
While searches for new particles, physics beyond the Standard Model (BSM), or the dis-
covery of previously undiscovered SM physics processes like the tt̄H process were of major
importance in the early days of the LHC, precision measurements of SM processes are
becoming more and important nowadays.
Since no new physics has been found at the LHC up to now, an early discovery of new
physics becomes less and less likely every day. The reason for this lies in the scaling of
the discovery potential at a fixed center-of-mass energy

√
s with the root of the number

of analyzed events. The LHC has delivered a rather large luminosity since its start, while
the CMS detector is performing well and has already recorded an integrated luminosity of
proton-proton collisions of roughly 114 fb−1 by the end of 2017 [225]. It can be assumed
that a jump in luminosity as expected by the high-luminosity LHC (HL-LHC) projected
for 2026 is essential before an extensive search for new physics will be worthwile again.

Meanwhile, many physics analyses conducting precision measurements are no longer lim-
ited by the size of the dataset as in the beginning of the LHC data taking, but more and
more systematic uncertainties dictate the accuracy of the outcome of such analyses.
Dominant systematic uncertainties in precision measurements are often related to the event
reconstruction and the identification of more complex objects, for example, the identifi-
cation of b-tagged jets, or to the modeling of major signal and background processes by
Monte Carlo event generators.

An example of the latter are the tt̄+≥1b-jet processes which are defined by a top-quark pair
production physics process accompanied by additionally occurring bottom quarks. The
measurement of these tt̄+≥1b-jet processes suffers from large systematic uncertainties on
the b-tagging of jets if the semileptonic decay channel of top quarks is exploited. Further-
more, in measurements of the tt̄+≥1b-jet and, in particular, tt̄+bb̄ production conducted
so far, signal strengths well above one are observed, so that it can be concluded that these
processes are underestimated by the Monte Carlo event generators currently employed.
At the same time, these tt̄+≥1b-jet processes are important background processes for
many other LHC physics analyses. Therefore, conidering the non-optimal modeling of
tt̄+≥1b-jet processes, large systematic uncertainties have to be dealt within such analyses.
For example, the tt̄H(bb̄) measurement conducted by the CMS collaboration [115], which
recently led to a 5.2 σ discovery of the tt̄H process together with other tt̄H channels [111],
assigned an additional 50% uncertainty to the tt̄+≥1b-jet processes.

Therefore, the boundaries of precision measurements restricted by systematic uncertainties
can often be pushed in two ways:
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On the one hand, the employment of more elaborate methods, e.g. in the object identifica-
tion and event reconstruction, can reduce systematic uncertainties. The replacement of a
likelihood ratio used by the CMS collaboration for the b-tagging of jets in the LHC Run 1
by methods based on neural networks in LHC Run 2 may serve as an example [90,169].
On the other hand, a better understanding and modeling of physics processes can also lead
to measurement results with higher precision.

With the measurements of the tt̄+≥1b-jet signal strength and cross section using the CMS
2016 measurement data recorded at a center-of-mass energy of 13 TeV and presented in
this thesis, both possibilities to push the boundaries were exploited: The determination
of a more precise tt̄+≥1b-jet signal strength and cross section itself is worth striving for,
but it can also lead to decreased systematic uncertainties assumed for the tt̄+≥1b-jet pro-
cesses in other measurements. Moreover, a promising multivariate analysis method was
introduced by using multiclassifying neural networks in the measurements presented in
this thesis, which to the best of my knowledge was never used for a measurement of the
tt̄+≥1b-jet processes until now.
In addition to the neural network based analysis, a straightforward analysis based on the
B-jet multiplicity was employed as a cross check for these measurements. Furthermore, a
linear discriminant based analysis was used to compare a binary classifying multivariate
analysis method with the multiclassifying multivariate analysis method implemented by
using neural networks.

In the first measurement part (part IV), the signal strength and cross section of the com-
bined tt̄+≥1b-jet processes were determined. In contrast, the single signal strengths and
cross sections of either the tt̄+bb̄, the tt̄+2b, and the ttb process or the single signal
strengths and cross sections of the tt̄+≥1b-jet and the tt̄H process were simultaneously
measured in part V.
Here, the advantages of a multiclassification provided by the neural network employed
became clearly evident: For the simultaneous measurement of the tt̄+bb̄/tt̄+2b/tt̄+b pro-
cesses, the multi-dimensional Maximum-Likelihood fit showed good convergence behaviour
only in the case of the neural network based analysis and was used to determine signal
strength and cross section results. By contast, the fit did not converge for the simpler B-jet
multiplicity and linear discriminant based analyses. In similar fashion, for the simultane-
ous measurement of the tt̄+≥1b-jet and tt̄H signal strength and cross section rather large
uncertainties were expected and observed if the two more straightforward analyses were
used, while the neural network based analysis reached results and associated uncertainties
comparable to reviewed measurements.

In table 19.1, the various signal strengths r and cross sections σ determined by employing
the neural network based analysis are summarized.

All results are in good agreement with previous measurements.
The results obtained for the tt̄+≥1b-jet and tt̄+bb̄ processes represent the most precise
results up to now, while for the tt̄+2b and the tt̄+b processes no measurement conducted
at the LHC at a center-of-mass energy of 13 TeV and suitable for a comparison exists.
By specific tt̄H(bb̄) measurements realized by the ATLAS and CMS collaboration just re-
cently, a tt̄H signal strength with smaller uncertainties was determined [114,115]. However,
the difference in the uncertainties can be explained by a tighter event selection employed
in the measurements of this thesis and resulting fewer categories. In contrast to the two
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tt̄H(bb̄) measurements, the analyses presented in this thesis were also not specifically op-
timized for measuring the tt̄H signal strength. Moreover, only one classifier was used in
this thesis always, while the two tt̄H(bb̄) measurements employ various classifiers trained
for single categories.

The underestimation of the tt̄+≥1b-jet signal strengths (except maybe for the tt̄+2b signal
strength, which has rather large uncertainties), which is also observed by other measure-
ments [170,178,182], confirms the assumption that the tt̄+≥1b-jet processes could benefit
from improved modeling by Monte Carlo event generators.
For this reason, in part VI, feasible approaches for such an improvement were discussed
and studied by introducing the possibility to combine an inclusive tt̄ sample produced
by using the five-flavour scheme with a tt̄+bb̄ sample produced by making use of the
four-flavour scheme. Regrettably, the necessary normalization required to employ such
combined samples is still proving problematic. Therefore, no final conclusions can be
drawn if a combined sample would provide an improved modeling of tt̄+X processes and,
in particular, tt̄+≥1b-jet processes.

Table 19.1: Summary of the signal strengths and cross sections determined by the measure-
ments presented in this thesis: The expected signal strength r(expected) of the
tt̄+≥1b-jet process, the tt̄+bb̄ process, the tt̄+2b process, the tt̄+b, and the
tt̄H process is stated. Furthermore, the observed signal strength r(observed)
is given for these processes. From the observed signal strength r(observed)
the cross section σ was derived. All results were determined using the neu-
ral network based analysis. The results of processes marked by an asterisk
(*) were obtained in a simultaneous measurement with other processes. The
systematic uncertainties correspond to a 1σ-uncertainty.

Process r(expected) r(observed) σ

tt̄+≥1b-jet 1+0.23
−0.17 1.23+0.26

−0.19 29.6+6.3
−4.6 pb

tt̄+bb̄ (*) 1±0.13 1.28±0.15 5.3±0.6 pb

tt̄+2b (*) 1+0.65
−0.55 0.98+0.71

−0.62 4.5+3.3
−2.9 pb

tt̄+b (*) 1±0.21 1.14±0.21 17.4±3.2 pb

tt̄+≥1b-jet (*) 1+0.23
−0.18 1.21+0.27

−0.22 29.1+6.5
−5.3 pb

tt̄H (*) 1±0.81 0.80±0.83 0.2±0.2 pb
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Outlook

The measurements presented in this thesis would benefit from an improved b-tagging of
jets which should reduce the related dominant systematic uncertainties.
In the 2016/2017 year-end shutdown the old CMS pixel detector consisting of three detec-
tor layers was replaced by a new pixel detector as part of the CMS Phase-1 upgrade [69].
Due to the increased number of 124 million pixels and an additional fourth detector layer
an improvement in the b-tagging capabilities of the CMS detector is rather certain.
In addition, an improved b-tagging algorithm [90, 169] is already available for the CMS
2017 measurement data, but has not been available by default for the CMS 2016 measure-
ment data yet.

Furthermore, the measurements would in general gain from an improved modeling of the
tt̄+X processes and, in particular the tt̄+≥1b-jet processes, by Monte Carlo event gener-
ators. Systematic uncertainties related to the modeling by Monte Carlo event generators
are among the most important systematic uncertainties. Such an improvement can either
come from using a new or better tuned Monte Carlo event generator or from making use
of a combined tt̄/ tt̄+bb̄ sample as mentioned previously.

However, if no further reduction of systematic uncertainties can be reached, future tt̄+≥
1b-jet measurements will most likely be conducted in the dileptonic decay channel of top
quarks. In comparison to the semileptonic decay channel, this channel is less affected by
systematic uncertainties until now and hence will allow more precise results.

The usage of multiclassifying neural networks clearly showed advantages in contrast to
binary classification. This is also observed in other measurements like the recent CMS
tt̄H(bb̄) measurement [115].
That is the reason why a wide-spread use of multiclassifying neural networks in physics
analysis – similar to the rapidly growing adoption of neural networks in many fields of
industry – can be expected.

For example, in a future tt̄H(bb̄) analysis, a multiclassifying neural network could be
employed to measure the tt̄H signal strength and the tt̄+≥1b-jet signal strength simulta-
neously.
Of course, such a simultaneous measurement is also feasible with traditional multivariate
analysis methods like binary classifying boosted decision trees. However, the multiclassify-
ing neural networks have the advantage that they can easily provide individual categories
for multiple signals (e.g. tt̄H and tt̄+≥1b-jet) and background. Therefore, a better sepa-
ration between multiple signal processes as well an improved background estimation can
be expected which should lead to an improved final result.

A simultaneous measurement of the tt̄H process and the tt̄+≥1b-jet process seems to
be beneficial independent of the multivariate classifier applied. The reason is that the
uncertainty on the dominant tt̄+≥1b-jet background to the tt̄H signal can be stronger
constrained if the tt̄+≥1b-jet normalization is left freely floating in the ML fit which was
already demonstrated in the ATLAS tt̄H(bb̄) measurement [114].

Thinking further ahead, the neural networks employed in this thesis or in the CMS tt̄H(bb̄)
measurement, which both consider six process classes (tt̄+bb̄, tt̄+2b, tt̄+b, tt̄+cc̄, tt̄+lf,
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tt̄H) in the multiclassification, could be extended by process classes for the tt̄W and the
tt̄Z process. In this way, a simultaneous measurement of all three processes involving top-
quark pair production associated with an additional boson seems conceivable. First steps
have already been taken in this direction, but particularly the separation of the tt̄Z pro-
cess from the other two tt̄+Boson processes still needs improvement, before this approach
could be exploited in a measurement.
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[148] J. H. Kühn, A. Scharf, and P. Uwer, “Electroweak corrections to top-quark pair
productionin quark-antiquark annihilation”, The European Physical Journal C -
Particles and Fields 45, 139–150 Jan, 2006.

[149] CMS Collaboration, “GenHFHadronMatcher - revision 30 from 30.01.2017.”
https://twiki.cern.ch/twiki/bin/view/CMSPublic/GenHFHadronMatcher.
Date viewed: 13.02.2018, only internally accessible.

[150] ATLAS Collaboration, “Search for the Standard Model Higgs boson produced in
association with top quarks and decaying into a bb̄ pair in pp collisions at

√
s = 13

TeV with the ATLAS detector”, Submitted to: Phys. Rev. D 2017.

[151] R. Odorico, “Telling top jets from QCD jets using energy flow”, Physics Letters B
120, 219 – 223, no. 1, 1983.

[152] R. Marshall, “The separation of quark flavours ine + e − annihilation and its
applications”, Zeitschrift für Physik C Particles and Fields 26, 291–299 Nov, 1984.

[153] B. Denby, “Neural networks and cellular automata in experimental high energy
physics”, Computer Physics Communications 49, 429 – 448, no. 3, 1988.

[154] C. Peterson, “Track finding with neural networks”, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 279, 537 – 545, no. 3, 1989.

[155] C. Peterson and T. Rognvaldsson, “An Introduction to artificial neural networks” in
1991 CERN School of Computing Ystad, Sweden, August 23-September 2, 1991,
pp. 0113–170. 1991.

[156] L. Lönnblad, C. Peterson, and T. Rögnvaldsson, “Using neural networks to identify
jets”, Nuclear Physics B 349, 675 – 702, no. 3, 1991.
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A Pull and impact distributions of the three reference
analyses

In the following the combined pull and impact distributions containing the 30 systematic
uncertainties which have the largest impact on the tt̄+≥1b-jet signal strength result are
presented for the three reference analyses.

CMS Private work

Figure A.1: Pull and impact distribution of the B-jet multiplicity based analysis: The pull
of a nuisance parameter θ (black point) corresponds to the difference between
its initial value and its best-fit value after the fit divided by the uncertainty on

it before the fit θ̂−θ0
∆θ . The 1σ-confidence interval according to its prefit value is

shown as a black line. The impact of a nuisance parameter on the tt̄+≥1b-jet
signal strength result ∆r is obtained by repeating the fit while fixing this
parameter to the upper or lower bound of its nominal postfit 1σ-confidence
interval. Positive (blue/red) or negative correlations (red/blue) between the
nuisance parameter and the signal strength result can be concluded from the
coloured bars. In the plot the 30 systematic uncertainties having the largest
impact are presented.
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Figure A.2: Pull and impact distribution of the linear discriminant based analysis: The
pull of a nuisance parameter θ (black point) corresponds to the difference
between its initial value and its best-fit value after the fit divided by the un-

certainty on it before the fit θ̂−θ0
∆θ . The 1σ-confidence interval according to

its prefit value is shown as a black line. The impact of a nuisance parameter
on the tt̄+≥1b-jet signal strength result ∆r is obtained by repeating the fit
while fixing this parameter to the upper or lower bound of its nominal postfit
1σ-confidence interval. Positive (blue/red) or negative correlations (red/blue)
between the nuisance parameter and the signal strength result can be con-
cluded from the coloured bars. In the plot the 30 systematic uncertainties
having the largest impact are presented.
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CMS Private work

Figure A.3: Pull and impact distribution of the neural network based analysis: The pull of
a nuisance parameter θ (black point) corresponds to the difference between its
initial value and its best-fit value after the fit divided by the uncertainty on it

before the fit θ̂−θ0
∆θ . The 1σ-confidence interval according to its prefit value is

shown as a black line. The impact of a nuisance parameter on the tt̄+≥1b-jet
signal strength result ∆r is obtained by repeating the fit while fixing this
parameter to the upper or lower bound of its nominal postfit 1σ-confidence
interval. Positive (blue/red) or negative correlations (red/blue) between the
nuisance parameter and the signal strength result can be concluded from the
coloured bars. In the plot the 30 systematic uncertainties having the largest
impact are presented.
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