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Abstract

Energized with the rise of deep learning models, artificial intelligence made large strides
in bringing machine understanding to the realm of human performance. However,
in order to generalize well these models rely heavily on the availability of thousands
of manually labeled examples. Additionally, whenever a new task is encountered the
learning starts from scratch and the expensive process of collecting additional training
data is repeated. This significantly limits the scalability of such models.

On the other hand, we - humans - do not learn new tasks in isolation. We have the
remarkable ability to utilize previously obtained knowledge in solving new problems.
This skill is known as transfer learning. It enables us to learn faster, better and with few
examples. Therefore, there is great interest to mimic this skill by machines especially in
domains where training data is scarce or not available.

In this thesis we study transfer learning from a vision perspective. Specifically, we inves-
tigate how to carry on visual recognition (e.g. object or action classification) when there
are few or no training samples. A promising solution in that direction is the semantic
attribute framework. Here, visual categories are described in terms of intermediate
attributes like color, pattern and shape. These attributes can be learned from a disjoint
set of samples. Moreover, since they have a dual interpretation (visual and semantic),
language can be effectively leveraged to guide the transfer process. That is, given a novel
visual category, a linguistic description can be utilized to compose and transfer relevant
attributes and construct the category model without the need of any training images. In
this work, we pursue this framework and introduce novel solutions on how to model and
transfer semantic attributes, how to automatically associate them with visual categories
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and how to discover them from free-form linguistic descriptions. To that end, we address
the attribute-based recognition from four vantage points.

First, unlike the prevailing model where attributes are learned in a global manner, we
propose a hierarchical approach to learn the attributes at various abstraction levels.
Furthermore, we demonstrate how the structure among the categories can be effectively
leveraged to guide the learning and transfer process to construct more discriminative
models for novel categories. A thorough evaluation shows a significant improvement of
our model over the global approach especially in fine-grained recognition.

Second, while in the prevailing attribute-based transfer approach the user supervises
the mapping between the attributes and the categories, in this work we propose to
automatically establish the link among the two without user intervention. Our model
captures the semantic relations coupling attributes and objects to predict their associations
and select which attributes to transfer in an unsupervised manner.

Third, we circumvent the requirement of a predefined attribute vocabulary. We propose
to leverage encyclopedia articles describing object categories in a free-form text to discover
a set of discriminate, salient and diverse attributes. By alleviating the need of user defined
vocabulary, our model unlocks the capabilities of attribute-based frameworks for large-
scale data.

Finally, we introduce a novel real world application of semantic attributes. We propose
the first approach to learn fashion styles and forecast their popularity in the future. We
show that semantic attributes provides interpretable fashion styles and lead to better
forecast of visual styles popularity compared to other representation.



Kurzzusammenfassung

Angetrieben durch den Erfolg von Deep Learning Verfahren wurden in Bezug auf künst-
liche Intelligenz erhebliche Fortschritte im Bereich des Maschinenverstehens gemacht.
Allerdings sind Tausende von manuell annotierten Trainingsdaten zwingend notwendig,
um die Generalisierungsfähigkeit solcher Modelle sicherzustellen. Darüber hinaus muss
das Modell jedes Mal komplett neu trainiert werden, sobald es auf eine neue Problem-
klasse angewandt werden muss. Dies führt wiederum dazu, dass der sehr kostenintensive
Prozess des Sammelns und Annotierens von Trainingsdaten wiederholt werden muss,
wodurch die Skalierbarkeit solcher Modelle erheblich begrenzt wird. Auf der anderen
Seite bearbeiten wir Menschen neue Aufgaben nicht isoliert, sondern haben die bemer-
kenswerte Fähigkeit, auf bereits erworbenes Wissen bei der Lösung neuer Probleme
zurückzugreifen. Diese Fähigkeit wird als Transfer-Learning bezeichnet. Sie ermöglicht
es uns, schneller, besser und anhand nur sehr weniger Beispiele Neues zu lernen. Daher
besteht ein großes Interesse, diese Fähigkeit durch Algorithmen nachzuahmen, insbe-
sondere in Bereichen, in denen Trainingsdaten sehr knapp oder sogar nicht verfügbar
sind.

In dieser Arbeit untersuchen wir Transfer-Learning im Kontext von Computer Vision.
Insbesondere untersuchen wir, wie visuelle Erkennung (z.B. Objekt- oder Aktionsklassi-
fizierung) durchgeführt werden kann, wenn nur wenige oder keine Trainingsbeispiele
existieren. Eine vielversprechende Lösung in dieser Richtung ist das Framework der
semantischen Attribute. Dabei werden visuelle Kategorien in Form von Attributen wie
Farbe, Muster und Form beschrieben. Diese Attribute können aus einer disjunkten
Menge von Trainingsbeispielen gelernt werden. Da die Attribute eine doppelte, d.h.
sowohl visuelle als auch semantische, Interpretation haben, kann Sprache effektiv ge-
nutzt werden, um den Übertragungsprozess zu steuern. Dies bedeutet, dass Modelle für
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eine neue visuelle Kategorie nur anhand der sprachlichen Beschreibung erstellt werden
können, indem relevante Attribute selektiert und auf die neue Kategorie übertragen
werden. Die Notwendigkeit von Trainingsbildern entfällt durch diesen Prozess jedoch
vollständig. In dieser Arbeit stellen wir neue Lösungen vor, semantische Attribute zu
modellieren, zu übertragen, automatisch mit visuellen Kategorien zu assoziieren, und
aus sprachlichen Beschreibungen zu erkennen. Zu diesem Zweck beleuchten wir die
attributbasierte Erkennung aus den folgenden vier Blickpunkten:

• Anders als das gängige Modell, bei demAttribute global gelernt werden müssen, stellen
wir einen hierarchischen Ansatz vor, der es ermöglicht, die Attribute auf verschiedenen
Abstraktionsebenen zu lernen. Wir zeigen zudem, wie die Struktur zwischen den
Kategorien effektiv genutzt werden kann, um den Lern- und Transferprozess zu
steuern und damit diskriminative Modelle für neue Kategorien zu erstellen. Mit einer
gründlichen experimentellen Analyse demonstrieren wir eine deutliche Verbesserung
unseres Modells gegenüber dem globalen Ansatz, insbesondere bei der Erkennung
detailgenauer Kategorien.

• In vorherrschend attributbasierten Transferansätzen überwacht der Benutzer die Zu-
ordnung zwischen den Attributen und den Kategorien. Wir schlagen in dieser Arbeit
vor, die Verbindung zwischen den beiden automatisch und ohne Benutzereingriff
herzustellen. Unser Modell erfasst die semantischen Beziehungen, welche die Attribu-
te mit Objekten koppeln, um ihre Assoziationen vorherzusagen und unüberwacht
auszuwählen welche Attribute übertragen werden sollen.

• Wir umgehen die Notwendigkeit eines vordefinierten Vokabulars von Attributen. Statt
dessen schlagen wir vor, Enyzklopädie-Artikel zu verwenden, die Objektkategorien
in einem freien Text beschreiben, um automatisch eine Menge von diskriminanten,
salienten und vielfältigen Attributen zu entdecken. Diese Beseitigung des Bedarfs eines
benutzerdefinierten Vokabulars ermöglicht es uns, das Potenzial attributbasierter
Modelle im Kontext sehr großer Datenmengen vollends auszuschöpfen.

• Wir präsentieren eine neuartige Anwendung semantischer Attribute in der realen
Welt. Wir schlagen das erste Verfahren vor, welches automatisch Modestile lernt, und
vorhersagt, wie sich ihre Beliebtheit in naher Zukunft entwickeln wird. Wir zeigen,
dass semantische Attribute interpretierbare Modestile liefern und zu einer besseren
Vorhersage der Beliebtheit von visuellen Stilen im Vergleich zu anderen Darstellungen
führen.
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Chapter 1

Introduction

We, humans, are equipped with an extraordinary vision system which is refined through
long years of evolution. In just a blink of an eye, we are capable of recognizing the
categories of many objects present in an image (Potter et al., 2014; Thorpe et al., 1996).
A longer look will allow us to recognize the detailed visual properties of these objects
and the surrounding scene. If we are to study the given image, we are able to not only
infer all visual information available but also go beyond that and infer the relations
between these objects and their current status. We will also be able to provide a detailed
description of the scene and employ our prior knowledge of the world and imagination
to even write a story incorporating the various visual elements in the image.

Computer vision made large strides of improvements and demonstrated a remarkably
high level of performance especially within the last few years. There are models that
already outperform or at the level of human expert performance on tasks like object
classification (He et al., 2015), traffic sign reading (Stallkamp et al., 2012), face recognition
(O’Toole et al., 2007), age estimation (Han et al., 2015), lip reading (Chung et al., 2016),
predicting photos’ geolocation (Weyand et al., 2016), and playing Atari games (Mnih
et al., 2015). Many of these development came with the re-emergence of deep artificial
neural networks. Fueled with large-scale training data sets and advances in computation
hardware, deep learning established itself as one of themost successful learning framework
in vision by reaching unprecedented level of visual analysis capabilities. However, such
deep models are characterized by millions of parameters. This, in return, demands the
availability of immense amounts of training data in order to obtain a reliable estimate of
these parameters. Hence, such models are known to perform quite poorly when training
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black red white 
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wing 

spiral dots 
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It has a tail and hooves. It has 
a pattern of black and white 
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Zebra 

blue 

Figure 1.1: By leveraging language and vision modalities, we are able to recognize novel categories
even when there are no training data. For example, a linguistic description helps us to
identify the familiar visual-semantic concepts that we need to compose and transfer
to construct a model for a new visual category.

data is scarce or unavailable. Collecting and labeling data, while it is an option to remedy
such cases, is very expensive. Additionally, we are faced with this situation whenever
we want to extend our model to a new task or a new domain. Hence, this renders the
continuous data collection option infeasible and hard to maintain.

Children, on the other hand, are capable of performing these visual tasks effortlessly
and in a manner that is still not reachable yet by our best algorithms. We, humans, can
learn new categories using only a handful of examples. In fact, we can even construct
mental models of object categories using no training examples at all. We are very good
at decomposing problems into simpler units and leveraging different modalities in our
learning process. For example, a child through its learning process would learn how an
animal such as a horse, a giraffe or a lion looks like. Additionally, the child will learn
what an animal is composed of (e.g. parts, shape, color, pattern) and assign names to
these visual properties (see Figure 1.1). Then, when faced with a new unseen category
like zebra, the child will only require a linguistic description (e.g. a zebra is an animal
that looks like a horse but has black and white stripes) in order to construct a model for
class zebra. Although the child has never seen such an animal before, through efficient
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knowledge representation and leveraging both vision and language modalities to transfer
that knowledge, the child will easily recognize zebras in her/his next visit to the zoo.

This ability to tap to our previous skills and experiences, detecting the aspects of similari-
ties to the current task at hand, and efficiently apply such knowledge for solving the new
problem is known as knowledge transfer or transfer learning (Pratt, 1993; Woodworth
and Thorndike, 1901). It gives us the advantage of learning new concepts faster and
with a high initial performance while at the same time using only few trials or examples.
Therefore, there is a growing interest in the Vision and Machine Learning Community
to employ transfer learning to improve models generalization and overcome the scarcity
of training data.

In this thesis we study the knowledge transfer process from a computer vision perspective.
Specifically, we focus on visual-semantic knowledge representation in transfer learning
and scene understanding. Such a representation has the unique property of being both
visually detectable and human understandable (Figure 1.1). Thus, it can be effectively
learned from visual data and transfered to novel tasks guided with a form of semantic
description (i.e. using the language modality to guide the transfer process). That is, we
tackle questions like: What type of knowledge representation is best suited for transfer
learning? How can we guide the transfer process to select the most suitable knowledge
units to transfer to a new task? How to automatically establish the semantic link between
a novel task and the previously obtained knowledge without user intervention (i.e. a user
given semantic description)? How to discover and learn this visual semantic knowledge
from natural language sources without supervision?

1.1 Thesis organization and contributions

The thesis is organized as follows:

Chapter 2: Background and related work. In this chapter, we start by introducing
the main concepts and terminology used throughout this thesis. We cover mainly two
topics: 1) semantic attributes, and 2) transfer learning. Moreover, we discuss related
work to our research in these respective fields and highlight the contributions of this
work.

Chapter 3: Semantic knowledge representation in transfer learning. We analyze in
this chapter the benefit of using semantic representations in comparison to low-level
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features for transfer learning. We consider semantics at different abstraction levels
and study the impact of these representations on the performance and robustness of
the transfer framework when considering aspects like parameter and instance transfer.
Furthermore, we introduce a novel hierarchical knowledge representation based on
the embedded structure in the semantic attribute space. Finally, we provide evaluation
results of the proposed framework on challenging transfer settings that demonstrates the
effectiveness of our approach compared to state-of-the-art.

Chapter 4: Hierarchical transfer of semantic attributes. In this chapter, we introduce
an approach that leverages the embedded structure between the categories in the source
set to learn and transfer attributes. We propose to capture the intra-attribute variations in
a novel hierarchical model that expands the source knowledge with additional abstraction
levels of the attributes, from the most specific that distinguish one class from another to
the most general that are learned over all categories. Furthermore, we introduce a guided
transfer approach that can choose the appropriate attributes to be shared with an unseen
class. Finally, we evaluate the proposed model on three challenging data sets each with a
different granularity of object categories and highlight the potentials of our model.

Chapter 5: Predicting class-attribute associations. We aim in this chapter to alleviate
the need for user predefined mappings of classes and attributes. We propose a novel
approach that models semantic relations which couples classes with their corresponding
attributes. Hence, given only the name of an unseen class, the learned relationship model
is used to automatically predict the class-attribute associations. Consequently, our model
also facilitates transferring attributes across data sets without any user supervision. We
show in the evaluation that integrating knowledge from multiple sources results in a
significant improvement in performance.

Chapter 6: Automatic attribute discovery from natural language. In this chapter,
we move a step further and propose a model that not only automatically maps classes and
attributes but also discovers the attribute vocabulary itself, thus circumventing any need
for human supervision in the attribute-based framework. Our proposed model utilizes
online text corpora to automatically discover a salient and discriminative vocabulary that
correlates well with the human concept of semantic attributes. Moreover, we propose a
deep convolutional model to optimize class-attribute associations with a linguistic prior
that accounts for noise and missing data in text. Finally, in a thorough evaluation we
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demonstrate that our model is able to efficiently discover and learn semantic attributes
at a large scale.

Chapter 7: Attributes for fashion analysis. We introduce in this chapter a real world
application of semantic attributes. We propose the first approach to predict the future
popularity of styles discovered from fashion images in an unsupervised manner. Our
model leverages semantic attributes to discover garment styles at a large scale. Based
on these styles, we train a forecasting model to represent their trends over time. The
resulting model can hypothesize which styles will become popular in the future, discover
style dynamics (trendy vs. classic), and name the key visual attributes that will dominate
tomorrow’s fashion. Furthermore, we show in the evaluation that fashion forecasting
benefits greatly from the attribute-based representation, much more than textual or meta-
data cues surrounding products. The work in this chapter was done in collaboration
with the University of Texas at Austin.

Chapter 8: Conclusion. We conclude the thesis with a summary of the key contribu-
tions presented in this work and discussion of future directions.

1.2 List of publications

The work presented in this thesis spans mainly contributions from the following peer-
reviewed publications:

1. Z. Al-Halah, R. Stiefelhagen, and K. Grauman, “Fashion Forward: Forecasting
Visual Style in Fashion,” in IEEE International Conference on Computer Vision
(ICCV), 2017.

2. Z. Al-Halah and R. Stiefelhagen, “Automatic Discovery, Association Estimation
and Learning of Semantic Attributes for a Thousand Categories,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017.

3. Z. Al-Halah, L. Rybok, and R. Stiefelhagen, “Transfer Metric Learning for Action
Similarity using High-Level Semantics,” Pattern Recognition Letters, vol. 72, pp.
82–90, 2016.

4. Z. Al-Halah, M. Tapaswi, and R. Stiefelhagen, “Recovering the Missing Link:
Predicting Class-Attribute Associations for Unsupervised Zero-Shot Learning,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
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5. Z. Al-Halah and R. Stiefelhagen, “How to Transfer? Zero-Shot Object Recognition
via Hierarchical Transfer of Semantic Attributes,” in IEEE Winter Conference on
Applications of Computer Vision (WACV), 2015.

6. Z. Al-Halah, L. Rybok, and R. Stiefelhagen, “What to Transfer? High-Level
Semantics in Transfer Metric Learning for Action Similarity,” in International
Conference on Pattern Recognition (ICPR), 2014. (Best Student Paper Award)

Additionally, the following publications were part of my PhD research but outside the
scope of this thesis:

1. M.-L. Haurilet, M. Tapaswi, Z. Al-Halah, and R. Stiefelhagen, “Naming TV
Characters by Watching and Analyzing Dialogs,” in IEEE Winter Conference on
Applications of Computer Vision (WACV), 2016.

2. E. Ghaleb, M. Tapaswi, Z. Al-Halah, H. K. Ekenel, and R. Stiefelhagen, “Accio: A
Data Set for Face Track Retrieval in Movies Across Age,” in ACM on International
Conference on Multimedia Retrieval (ICMR), 2015.

3. T. Gehrig*, Z. Al-Halah*, H. K. Ekenel, and R. Stiefelhagen, “Action Unit Inten-
sity Estimation using Hierarchical Partial Least Squares,” in IEEE International
Conference on Automatic Face and Gesture Recognition (FG), 2015. (* = equal
contribution)

4. L. Rybok, B. Schauerte, Z. Al-Halah, and R. Stiefelhagen, “Important Stuff, Ev-
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Chapter 2

Background and Related Work

In this chapter, we provide background coverage of concepts and terms used throughout
this thesis. Additionally, we give an overview of prior work related to the problems
tackled in this work which can be roughly split into two main topics: 1) attribute-based
visual recognition and 2) transfer learning. Both of these topics witnessed increased
popularity in the last years. However, this chapter is not intended to provide an exhaustive
coverage of all key contributions in these fields. We focus rather on work most related
to ours and highlight our own contributions in terms of commonalities and differences
to literature.

We start in Section 2.1 by introducing the main concepts and characteristics of semantic
attributes. This is followed with a discussion of related work to our contributions in
modeling attributes (Section 2.1.1), predicting their associations to object categories
(Section 2.1.2), automatic discovery of attribute vocabulary (Section 2.1.3) and semantic
attributes applications (Section 2.1.4). Consequently, we provide a brief introduction to
transfer learning in Section 2.2. Then, we review and discuss related work to our own
contribution in tackling the transfer aspects of what to transfer? (Section 2.2.1), how to
transfer? (Section 2.2.2) and when to transfer? (Section 2.2.3). Finally, we discuss our
contributions to the transfer framework of zero-shot learning in Section 2.2.4.

2.1 Semantic attributes

A key aspect of this thesis is the leverage of semantic representation for knowledge
transfer and visual recognition. Semantic representation, i.e. a knowledge representation
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which has a clear association with language, is a natural form of representation that
facilitates transferring across tasks with human feedback and guidance. Additionally,
there is evidence that we humans rely on such representation in learning concepts from
the surrounding world using a form of semantic memory (Patterson et al., 2007). The
semantic memory in the human brain is composed of distributed regions such that each
region captures specific type of attributes like visual-, motion- and linguistic-properties.
These regions are connected with direct neuroanatomical pathways that enable direct
activation of representations between modalities of all semantic categories (Patterson
et al., 2007). This view of semantic memory supports our ability to easily name objects
based on a visual description (e.g. what is the name of the big animal that has big ears
and a trunk?) or to describe sensory properties of an object (e.g. how does the cake
taste? what is the sound of a dog?). In other words, this representation allow us to easily
transfer and reuse previously learned concepts (e.g. gray, big ears and trunk) activated
by a linguistic description to compose a new model for a target task (e.g. recognition
of elephant images). Next, we address one of the most popular forms of semantic
representations, semantic attributes.

Semantic attributes are considered a form of intermediate representation between low-
level image features and category labels. Furthermore, each dimension in this representa-
tion is associated with a semantic concept, i.e. it is human understandable, while at the
same time is visually detectable, i.e. it can be learned and detected by machines. This
mid-level representation transcends the categories borders; hence, it forms a shared layer
based on a joint vocabulary that describes the various visual aspects of all classes.

Formally, let C = {ci} be a set of categories. Each object oj ∈ ci can be described with a
vector a ofM semantic attributes where each attribute am ∈ a is assigned a label from
the attribute vocabularyA. In the following, we provide more details about some aspects
of the attribute-based recognition framework.

Semantics. Probably the most important aspect of semantic attributes is their hu-
man interpretability. Many typical visual features like HoG (Dalal and Triggs, 2005)
or SIFT (Lowe, 1999) capture low-level properties like edges and salient points. More
advanced models like bag-of-words (Leung andMalik, 2001), the constellation model (Fer-
gus et al., 2003) and the deformable part model (Felzenszwalb et al., 2008) capture more
abstract and salient visual properties of categories like parts or certain edge configura-
tions. However, unlike attributes we usually can not assign a label for each dimension in
these representations. This is due to the unsupervised approach used in learning these



Background and Related Work 9

representations, hence they are fitted to discover repetitive pattern of features which is
not necessarily interpretable. Nonetheless, it is possible that certain dimensions in these
representations can be correlated with a label. For example, some hidden representations
of deep neural networks are known to capture semantic properties of objects (Zeiler
and Fergus, 2014). Once this happens one can consider that feature to be a semantic
attribute since it is nameable.

The semantic aspect of the attributes enables a natural interface between a user and
a machine at a fine-grained semantic level. For example, the machine can generate a
description for the user of an unfamiliar category based on images (Hendricks et al., 2016)
or the user can supply the machine with a textual attribute-based object description to
compose a model for categories with no training data (Lampert et al., 2009). Additionally,
a more elaborate inference about the properties of objects can be supported by attributes
to detect unusual aspects of an object (e.g. a car with wings) or missing properties (e.g. a
car without wheels) (Saleh et al., 2013).

Usually, categories have various aspects of semantic attributes along the visual ones. For
example, an attribute can be related to: i) language: like type and form of linguistic
descriptions that can be applied to the object; ii) motor-specific: like forms of move-
ment; iii) sensory: like texture, taste and smell; iv) sound: like pitch and tone. However,
in this thesis we use the term semantic attributes to refer only to those that are directly
detectable from or correlate with a visual signal.

Some of the early work toward semantic attributes in computer vision go back to Yanai
and Barnard (2005), where they measured the visualness of words using web images
queried by certain concepts and assigned these words to regions in the image. Similarly,
Ferrari and Zisserman (2008) and VanDeWeijer et al. (2009) also proposed to learn simple
semantic concepts like colors and textures. Moreover, Kumar et al. (2008) introduced a
face retrieval approach that accounts for certain face-related attributes like gender, age,
hair-color or race. However, it was till the seminal work of Lampert et al. (2009) and
Farhadi et al. (2009) that attributes as an intermediate semantic representation shareable
across categories are presented to the computer vision community. This new prospective
enabled some novel applications of semantic attributes, like learning to recognize new
visual concepts with no training images as we will discuss later in Section 2.2.4.

Annotations. Attribute annotations can be defined at three levels:
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Figure 2.1: In the common Direct Attribute Prediction (DAP) framework, a predefined attribute
vocabulary is learned directly from training images. The models of the object cate-
gories are then constructed based on a predefined associations that define the mapping
to the semantic attributes.

1. instance-level: the annotations are collected at the instance level, e.g. per object
bounding-box (Farhadi et al., 2009) or image region (Wah and Belongie, 2013).

2. image-level: here the whole image is annotated with attributes without any spatial
information (Patterson and Hays, 2012).

3. class-level: in this case, the category is annotated with attributes such that all
instances of a certain category share the same attribute annotation (Lampert et al.,
2009).

These three different annotation levels differ significantly in their associated cost and
precision. While it is quite cost effective to provide annotations at the class level, these
annotations usually result in learning less precise attribute models sincemany correlations
are usually incorporated in the learning process. On the other hand, the instance- and
image-level annotations help in learning more precise models by spatially grounding the
relative image areas. However, they are much more expensive to obtain. This results
usually in much smaller data sets to train the attribute models.
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Visual recognition pipeline. Attributes can be incorporated in various ways for visual
analysis depending on the application. However, the most prominent and intuitive
approach to incorporate attributes in the recognition pipeline is the Direct Attribute
Prediction approach (DAP) (Farhadi et al., 2009; Lampert et al., 2009). In DAP, attributes
are learned and inferred directly from image samples. Then, a category model is con-
structed by composing the respective attribute models based on the given class-attribute
associations (see Figure 2.1).

A probabilistic realization of DAP using binary attributes is first introduced by Lampert
et al. (2009). Let p(am|x) be the probability of attribute am in sample x. Then a class
ci ∈ C can be inferred as:

p(ci|a) = p(ci)p(a|ci)
p(a) . (2.1)

Since each class is described by an attribute vector aci in a deterministic way, then:

p(ci|a) = p(ci)[[a = aci ]]
p(aci) , (2.2)

where [[·]] is the Iverson’s bracket: i.e. [[P ]] = 1 if condition P is true and 0 otherwise.
Accordingly, the probability of class ci in image x can be defined as:

p(ci|x) =
∑

a∈{0,1}M

p(ci|a)p(a|x) = p(ci)
p(aci)

M∏
m=1

p(aci
m|x). (2.3)

For p(a) a factorial distribution is assumed, i.e. p(a) = ∏
m p(am). Both class prior p(ci)

and attribute prior p(am) can be assumed to be uniform distributions and consequently
do not affect the classification decision or they can be estimated from the training data.

Our contribution. In this thesis, we make several contributions to the attribute-based
visual recognition framework. Specifically, we propose novel models 1) to learn attributes
at different abstraction levels; 2) to predict class-attribute associations; 3) discover at-
tribute vocabulary automatically; and finally 4) we introduce a novel application of
attributes in the domain of fashion analysis. In the following, we discuss all these
contributions in details.
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2.1.1 Abstraction level

Attributes are usually referred to as a mid-level representation. That is, they capture a
finer-grain of semantics than categories. Some of the most common types of attributes
are: i) parts (e.g. leg, wheel and wing); ii) color (e.g. red, blue and green); iii) pattern (e.g.
stripes, dots and squares). However, the level of representation is relevant to the task at
hand. That is for scene or action recognition, for example, object categories may as well
be considered as attributes. For example, since a desert is the habitat of camels, in this case
the object category camel can be considered an attribute of the scene category desert.

Nonetheless, even when considering a certain target task, attributes are usually learned
in a global manner from all classes available in the source and at a single level of abstrac-
tion (e.g. Farhadi et al., 2009; Lampert et al., 2009; Liu et al., 2011a; Parikh and Grauman,
2011). Context plays a major role in the visual depiction of an attribute. For example,
a fluffy towel and a fluffy dog have different visual realizations of fluffiness. Similarly,
an old book versus an old car; and a small house versus a small horse lead to different
depictions of attributes old and small respectively. Such methods can not cope with the
high variations within each of the attributes. Thus, taking context into consideration
while learning attributes might help us reach a better representation. One way to handle
such variations is to jointly model objects, attributes and their correlations like in Wang
and Mori (2010) and Liu et al. (2011a). Another way is to explicitly learn class-specific
attributes. In Farhadi et al. (2009) a set of attributes are learned per class as an intermedi-
ate step for feature selection in order to reduce attribute correlations. Yu et al. (2013)
propose to learn data-driven attributes at the category-level to better discriminate the
classes. However, data-driven attributes usually carry no semantic meaning; thus, their
approach requires user interaction when performing semantic related tasks like zero-shot
learning. In Zhang et al. (2013) the concepts in ImageNet are augmented with a set of
semantic and data-driven attributes. These are used along with the hierarchy to learn a
better similarity metric for content-based image retrieval. Chen and Grauman (2014)
and Misra et al. (2017) propose to learn class specific attributes and infer extra classifiers
of class-attribute pairs with no training data.

Our contribution. We propose in Chapter 4 to explicitly model the intra-attribute
variations at different abstraction levels. However, rather than just using class-specific
attributes, we expand the notion of the attributes to cover the spectrum from the most
abstract (i.e. global attributes) to the most specific (i.e. class-based attributes) driven by
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the embedded relations between the categories. Moreover, our model does not require
any extra annotations to learn these attributes and at the same time it outperforms other
attribute-based baselines with a wide margin.

2.1.2 Associations

The associations define the mapping between categories and attributes. That is, they state
which attribute connected to which class and how. There are three types of attribute
associations:

1. binary: this is the most common type of an association and it describes whether
an attribute exists or not for a certain object, i.e. a ∈ {0, 1}M , (e.g. Lampert et al.,
2009).

2. continuous: these associations assign a real value for each attribute, i.e. a ∈ [0, 1]M ,
that captures the frequency or the strength of that attribute for a certain object,
(e.g. Wah et al., 2011).

3. relative: unlike both previous types which represent attributes in the absolute
sense, the relative attribute capture how this attribute appears in one object in
relation to another. That is, aij ∈ {−1, 0, 1}M such that if aij

m = 1 then ai
m > aj

m

(e.g. the elephant is bigger than the ant) and vice versa when aij
m = −1. If aij

m = 0
then both objects exhibit attribute am at the same level, (e.g. Parikh and Grauman,
2011).

Predefined associations. The vast majority of attribute-based approaches rely on the
underlying assumption that for each class the complete information about attribute
associations are manually defined (Farhadi et al., 2009) or imported from expert-based
knowledge sources (Lampert et al., 2009;Wah et al., 2011). This is a hindering assumption
to the scalability of the attribute-based framework since the common user is unlikely to
have such a knowledge or is simply unwilling to manually set hundreds of associations
for each new category.

Association prediction. Towards simplifying the required user involvement, Yu et al.
(2013) reduce the level of user intervention by asking the operator to select the most
similar known classes to a given novel class and then inferring its expected attributes. In a
different direction, other approaches focused on predicting the class-attribute associations
automatically. Mensink et al. (2014) and Rohrbach et al. (2010) propose an unsupervised
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approach to automatically learn the class-attribute association strength by using text-based
semantic relatedness measures and co-occurrence statistics obtained from web-search hit
counts. However, as web data is noisy, class and attribute terms can appear in documents
in different contexts which are not necessarily related to the original attribute relation
we seek.

Our contribution. In Chapter 5, we propose a novel approach to automatically pre-
dict attribute associations using semantic relations. Our approach captures the diverse
relations between classes and attributes as bilinear operators with low rank factorization.
This renders our model to be adequate for cases when training data is relatively sparse.
Our model can predict class-attribute associations with high accuracy, outperforming
state-of-the-art with a significant margin.

2.1.3 Vocabulary

The attribute vocabulary A plays a vital rule in the robustness and performance of
the attribute-based model. Issues like diversity, coverage and descriptiveness control
the quality of the defined semantics. Thus, the vocabulary is usually defined by an
expert in the field or through crowd sourcing. Normally, such a vocabulary needs to be
picked with consideration of the target task. For example, for object classification, the
vocabulary needs to discriminate well between the target categories while at the same
time is shared among them in order to capture common properties.

Annotation cost. Bearing these previous criteria in mind, collecting attribute annota-
tions proved to be very expensive. This clearly limits the scalability of attribute-based
approaches to large number of categories. Thus, most available attribute data sets (Farhadi
et al., 2009; Lampert et al., 2009; Patterson and Hays, 2012; Wah et al., 2011) are limited
in terms of the number of attributes, categories or images. Patterson and Hays (2016)
estimate the cost of annotating 84, 000 images of 29 object categories with 196 attributes
for the COCO data set (Lin et al., 2014) using crowdsourcing to be around 110, 000 US
Dollars.

Attribute discovery. There were few attempts in the literature to automatically obtain
an attribute vocabulary. Rohrbach et al. (2010, 2011) mine attributes by crawling the
WordNet (Miller, 1995) ontology. Specifically, they track the “has-part” relations in
WordNet to extract “part” attributes. On the other hand, Ferrari and Zisserman (2008),
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Chen et al. (2013) and Divvala et al. (2014) use the top ranked images returned by web
search engines queried with a certain vocabulary to estimate the “visualness” of words.
Berg et al. (2010) and Sun et al. (2015) sample pairs of (image, description) from the
Internet to automatically find a set of visual attributes. Similarly, Vittayakorn et al.
(2016a) use both image-based textual descriptions as well as a set of image tags provided
by users in social media to identify the attribute vocabulary.

Our contribution. In this work, we circumvent the need of user supervision to define
and annotate attributes. We propose in Chapter 6 an unsupervised end-to-end approach
to automatically mine and learn semantic attributes for thousands of categories. Dif-
ferent from previous work, our approach does not require images aligned with textual
descriptions or tags. Furthermore, we do not rely on a predefined ontology such as
WordNet or target only a specific type of attributes like “parts”. Instead, we use textual
description at the category level in form of encyclopedia entries to extract a compact
set of attributes. Additionally, our model is able to discover salient, discriminate, and
diverse set of attributes that generalize well across categories.

2.1.4 Applications

Due to their favorable properties, semantic attributes witnessed wide spread utilization
in many computer vision applications. For example, attributes are successfully employed
in face analysis (Kumar et al., 2011), object classification (Farhadi et al., 2010), anomaly
detection (Saleh et al., 2013), image retrieval (Douze et al., 2011), visual comparison
(Parikh and Grauman, 2011), image (Kulkarni et al., 2011) and video (Rohrbach et al.,
2013b) captioning, person re-identification (Shi et al., 2015), image segmentation (Zheng
et al., 2014b), zero-shot learning (Lampert et al., 2009) and visual question answering
(Wu et al., 2017). In this thesis, we introduce a new application for semantic attributes
in the domain of fashion visual analysis.

Fashion is a fascinating domain for computer vision. Not only does it offer a challenging
testbed for fundamental vision problems—human body parsing (Yamaguchi et al., 2012,
2013), cross-domain image matching (Chen et al., 2015c; Huang et al., 2015; Kiapour
et al., 2015; Liu et al., 2012b), and recognition (Bossard et al., 2012; Chen et al., 2012;
Kiapour et al., 2014; Liu et al., 2016)—but it also inspires new problems that can drive
a research agenda, such as modeling visual compatibility (Iwata et al., 2011; Veit et al.,
2015), interactive fine-grained retrieval (Kovashka et al., 2012; Yu and Grauman, 2015),
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or reading social cues from what people choose to wear (Chen et al., 2015a; Kwak
et al., 2013; Simo-Serra et al., 2015; Song et al., 2011). At the same time, the space
has potential for high impact: the global market for apparel is estimated at $3 Trillion
USD (FashionUnited 2017). It is increasingly entwined with online shopping, social
media, and mobile computing—all arenas where automated visual analysis should be
synergetic.

Our contribution. In contrast to prior work, we tackle yet a novel fashion analysis
problem and introduce in Chapter 7 the first approach to forecast the popularity of
fashions styles in the future. In the following, we discuss the relevant work in visual
fashion analysis to our work in that direction.

Attributes in fashion. Descriptive visual attributes are naturally amenable to fashion
tasks, since garments are often described by their materials, fit, and patterns (denim,
polka-dotted, tight). Attributes are used to recognize articles of clothing (Bossard et al.,
2012; Liu et al., 2016), retrieve products (Di et al., 2013; Huang et al., 2015), and describe
clothing (Chen et al., 2012, 2015c). Relative attributes (Parikh and Grauman, 2011)
are explored for interactive image search with applications to shoe shopping (Kovashka
et al., 2012; Yu and Grauman, 2015). While often an attribute vocabulary is defined
manually, useful clothing attributes are discoverable from noisy meta-data on shopping
websites (Berg et al., 2010) or neural activations in a deep network (Vittayakorn et al.,
2016b). Unlike prior work, we use inferred visual attributes as a conduit to discover
fine-grained fashion styles from unlabeled images.

Learning styles. Limited work explores representations of visual style. Different from
recognizing an article of clothing (e.g. sweater, dress) or its attributes (e.g. blue, floral),
styles entail the higher-level concept of how clothing comes together to signal a trend.
Early methods explore supervised learning to classify people into style categories, e.g.,
biker, preppy, Goth (Kiapour et al., 2014; Veit et al., 2015). Since identity is linked to
how a person chooses to dress, clothing can be predictive of occupation (Song et al.,
2011) or one’s social “urban tribe” (Kwak et al., 2013; Murillo et al., 2012). Other
work uses weak supervision from meta-data or co-purchase data to learn a latent space
imbued with style cues (Simo-Serra and Ishikawa, 2016; Veit et al., 2015). In contrast to
prior work, we pursue an unsupervised approach for discovering visual styles from data,
which has the advantages of i) facilitating large-scale style analysis, ii) avoiding manual
definition of style categories, iii) allowing the representation of finer-grained styles, and
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iv) allowing a single outfit to exhibit multiple styles. Unlike concurrent work from
Hsiao and Grauman (2017) that learns styles of outfits, we discover styles for individual
garments and, more importantly, predict their popularity in the future.

Discovering trends. Beyond categorizing styles, a few initial studies analyze fashion
trends. A preliminary experiment plots frequency of attributes (floral, pastel, neon)
observed over time (Vittayakorn et al., 2015). Similarly, a visualization shows the fre-
quency of garment meta-data over time in two cities (Simo-Serra et al., 2015). The system
from Vittayakorn et al. (2016a) predicts when an object was made. The collaborative
filtering recommendation system of (He and McAuley, 2016) is enhanced by accounting
for the temporal dynamics of fashion, with qualitative evidence it can capture popularity
changes of items in the past (i.e., Hawaiian shirts gained popularity after 2009). A
study by Chen et al. (2015a) looks for correlation between attributes popular in New
York fashion shows versus what is seen later on the street. Whereas all of the above
center around analyzing past (observed) trend data, we propose to forecast the future
(unobserved) styles that will emerge. To our knowledge, our work is the first to tackle
the problem of visual style forecasting, and we offer objective evaluation on large-scale
data sets.

Text as side information. Text surrounding fashion images can offer valuable side
information. Tag and garment type data can serve as weak supervision for style classi-
fiers (Simo-Serra and Ishikawa, 2016; Simo-Serra et al., 2015). Purely textual features (no
visual cues) are used to discover the alignment between words for clothing elements and
styles on the fashion social website Polyvore (Vaccaro et al., 2016). Similarly, extensive
tags from experts can help learn a representation to predict customer-item match likeli-
hood for recommendation (Bracher et al., 2016). Our method can augment its visual
model with text, when available. While adding text improves our forecasting, we find
that text alone is inadequate; the visual content is essential.

2.2 Transfer learning

Transfer learning (TL) is the ability to leverage experiences and skills obtained previously
via a training process to a new task or domain. This feature is an important characteristic
of the learning process of human beings. We do not learn tasks in isolation, rather we
try to project the experiences we gather throughout our lives to facilitate the learning of
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a new task. In the following, we introduce the main concepts, benefits and challenges of
transfer learning. For a thorough discussion of this domain and its applications, we refer
the reader to the extensive survey by Pan and Yang (2010).

Terminology. In transfer learning we distinguish between two domains (see Figure 2.2a):

1. Source: The source domain is where the approach extracts knowledge and accumu-
lates experience through learning various source tasks. It is common to assume that
the source domain has enough training samples to develop a model that performs
well on the source tasks.

2. Target: The target domain is where a new task(s) is defined that is different from
those we have encountered before in the source domain. It is in the target where
we want to leverage our knowledge from the source domain to learn the target task.
It is common to assume that the target domain has few or no training samples for
the target task.

Benefits of transfer learning. The ability to transfer gives us the advantage of an initial
high performance and to learn faster when handling a new task while using only few
trials (or examples). Figure 2.2b shows the three main advantages of transfer learning
(Torrey and Shavlik (2009)):

1. Higher start: Even before any training on the target, a model that integrate trans-
fered knowledge is expected to have a high initial performance compared to an
“ignorant” random model.

2. Higher slop: Learning while exploiting previous knowledge should lead to faster
improvement in performance through time compared to models learning from
scratch in the target.

3. Higher asymptote: Finally, with transfer learning, a higher final performance can
be achievable since leveraging prior knowledge might improve the model general-
ization properties to unseen target data.

Negative transfer. The main goal of transfer learning is to improve learning in the target
domain. However, if the performance of the target task degrades with the transfered
knowledge compared to a target model that learns from scratch then this is referred to as
negative transfer. This negative effect of transfer learning might happen, for example,
when trying to exploit source knowledge that is not relevant to the target task.
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Figure 2.2: In transfer learning the knowledge acquired from the source tasks is transferred to a
new target task (a). Transfer learning helps in improving the learning process in target
to have a higher initial start, higher slope and better final performance (b). (Figure is
adapted from Torrey and Shavlik (2009))

Aspects of transfer learning. A knowledge transfer method usually tries to tackle one
or more of the following questions (Pan and Yang (2010)):

1. What to transfer? This addresses the type of knowledge most suitable to be trans-
ferred across domains. Hence, an important feature of the transferred knowledge
is its ability to encode information that is usable and shareable between tasks.

2. How to transfer? This addresses the process used to incorporate the transferred
knowledge from the source domain in the learning of the target task.

3. When to transfer? The source and the target tasks might be very different, and
transferring knowledge between them may be harmful and hinders the learning of
the target task (negative transfer). Thus, it is important to have a mechanism in
order to find out when previous experiences are applicable to the target and when
they are not.

In the following, we highlight our own contributions in the context of these three
transfer aspects and in the transfer task of zero-shot learning.

2.2.1 What to transfer?

There are three common directions in the literature in regard to the type of knowledge
used to transfer across domains (Pan and Yang, 2010): 1) Instance transfer where some
data samples from source are reused in training the target task (e.g. Dai et al., 2007; Fink,
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2005; Jiang and Zhai, 2007; Lam et al., 2010; Zadrozny, 2004); 2) Representation transfer
where a feature encoding that is learned in the source is shared with the target (e.g. Dai
et al., 2009; Farhadi et al., 2009; Gatys et al., 2016; Liu et al., 2011b; Pan et al., 2011); 3)
Parameter transfer where the parameters of a model trained in the source are incorporated
in the training of the target model, for example as a prior or for initialization (e.g. Cao
et al., 2010; Fei-Fei et al., 2006; Nater et al., 2011; Oquab et al., 2014; Stark et al., 2009;
Tommasi et al., 2014).

Our contribution. In this work, we argue that knowledge representation plays a vital
role in the robustness and success of a transfer learning approach. Depending on the type
of information encoded in the representation, the transfer approach (whether instance-,
representation- or parameter-based transfer) may exhibit different properties and robust-
ness against negative transfer. This aspect is usually ignored in the literature where the
focus is only on one of the previously listed directions (e.g. Fei-Fei et al., 2006; Lam et al.,
2010; Liu et al., 2011b). In Chapter 3, we propose a generic transfer metric learning
framework that allows us to consider all three transfer directions jointly. Specifically,
we study the impact of knowledge representation on transfer performance and robust-
ness against negative transfer when considering different transfer schemes jointly. We
highlight the effectiveness of high-level semantic representations like attributes (Farhadi
et al., 2009; Lampert et al., 2009), class similarity (Bart and Ullman, 2005) and our own
hierarchical representation against low-level feature representations (Dalal and Triggs,
2005; Laptev et al., 2008; Sivic and Zisserman, 2009). Furthermore, we analyze the effect
of semantic correlations and source domain relatedness on transfer performance.

2.2.2 How to transfer?

There is a wide range of approaches that are employed in transfer between source and
target domains, like support vector machines (Aytar and Zisserman, 2011; Tommasi
et al., 2014), deep neural networks (Gatys et al., 2016; Oquab et al., 2014), boosting (Dai
et al., 2007; Yao and Doretto, 2010), graphical models (Dai et al., 2009), metric learning
(Zha et al., 2009; Zhang and Yeung, 2010). The choice of model is usually influenced by
the type of knowledge that is transfered across domains and the type of the target task.

Our contribution. We consider in this work the attribute-based zero-shot learning
for object classification as our main target task. In this context, we introduce three
novel models on how to transfer semantic attributes between source and target. We
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propose: 1) a guided transfer approach based on class ontology (Chapter 4); 2) a relation-
based transfer approach (Chapter 5); and 3) an approach that leverages free-form textual
description for learning source-target mappings (Chapter 6). We will discuss these
contributions in detail in Section 2.2.4.

2.2.3 When to transfer?

As discussed earlier, not all knowledge in the source is usually transferable to the target.
In fact, forcing incompatible knowledge on the target task will likely result in a negative
transfer effect (Rosenstein et al., 2005). Thus, a guarding mechanism is needed to decide
when it is appropriate to transfer and from which source. This question is usually
addressed jointly with the multiple source transfer problem for efficient selection and
combination of sources (Jie et al., 2011; Kuzborskij et al., 2017; Tommasi et al., 2010).
These approaches use the small amount of data in target to estimate the similarity between
target and source categories to decide from which source and when to transfer across
domains. However, in extreme settings as zero-shot learning such a transfer scheme is
not applicable since there are no target data available during learning to estimate the
similarity.

Our contribution. In Chapter 5 we introduce a simple yet effective mechanism to
select which knowledge to transfer to a target category. The proposed model leverages
its confidence in the predicted semantic link between the source and the target to select
which attributes are transferable and which are not.

2.2.4 Zero-shot learning

A common scenario where transfer learning proved to be quite beneficial is when training
data for the target task is scarce or not available. Going back to Figure 2.2b, one can see
that the highest margin of improvement expected from transfer learning lies in the scarce
target data regime (higher start and higher slope). Although, an improvement is also
expected when we see larger target training data (higher asymptote), it will practically
diminish as we get progressively more data. Thus, the scarce data regime represents a
good testbed to evaluate transfer learning approaches.

One of the most popular test settings is zero-shot learning (ZSL) (Larochelle et al., 2008).
In ZSL, we target the extreme case of having no training data at all (i.e. zero-shot) for the
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target task. That is, the transfer approach should rely solely on the obtained knowledge
from the source to create a model for the target task.

Formally, let C = {1, 2, 3 . . . N} be a set of categories defined over a data set D =
{(xi, yi) : xi ∈ X and yi ∈ C}. In ZSL, C is split into a disjoint sets of seen categories Cs

and unseen ones Cu. Where Cs ∩ Cu = ∅ and Cs ∪ Cu = C. Then at training time, we
only see training examples from Ds = {X s, Cs} and the task is to create a model for the
recognition of the unseen classes Cu. This formulation of zero-shot learning we refer to
as the conventional setup since it is the most common in the literature. However, there
are some other variations of this task which we present next.

Generalized ZSL. The previous definition of ZSL can be seen to be quite restrictive
since we assume at test time we only need to differentiate among the unseen classes.
However, when considering a realistic situation for recognition in the wild, both seen
and unseen classes can appear at test time. Hence, the generalized ZSL setting (Scheirer
et al., 2013) does not pose such a strong assumption on the evaluation, and performance
is measured when both Cs and Cu are considered as candidate labels at test time (Bendale
and Boult, 2016; Chao et al., 2016; Socher et al., 2013; Xian et al., 2017a). This setting is
quite helpful in shedding light on the bias of the transfer approaches toward the seen
classes which were solely used for training.

Transductive ZSL. Here the unlabeled data from the target X u is considered to be
available at training time and used along with the source labeled data {X s, Cs} (e.g. Fu
et al. (2014b); Kodirov et al. (2015); Rohrbach et al. (2013a); Zhang and Saligrama (2015))
in contrast to the conventional setup where only data from seen classes are exploited (i.e.
inductive ZSL).

Unless otherwise specified, throughout this thesis we use the term zero-shot learning to
refer to the inductive conventional setup.

Side information. In order to carry on ZSL, we need to define a mapping between
the seen and the unseen classes to identify how to transfer the knowledge between the
two domains. This is usually accomplished with the help of additional information, for
example:

1. Semantic attributes: Here, the unseen class is described with a predefined set of
semantic attributes, e.g. a zebra has stripes, is black and white, has legs and eyes
(Farhadi et al., 2009).
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2. Class similarities: Here, the unseen class is described by its similarity to other seen
classes, e.g. a zebra looks like a horse or a donkey but not like a fish or a duck
(Bart and Ullman, 2005).

3. Ontology: Here, the unseen class is related to its supercategory or siblings in an
ontology, e.g. a zebra is an equine (Rohrbach et al., 2011).

4. Articles (Textual Description): Here, the unseen class is described with a free-form
text, e.g. a zebra is described with this Wikipedia article (Elhoseiny et al., 2013).

These different types of side information require various levels of user involvement in the
mapping. For example, attributes require user intervention both at the level of defining
the vocabulary and the associations for the unseen classes, while in case of articles, only
a description in free-form text is provided for the approach to figure out what and how
to transfer to the target.

In this thesis, we introduce multiple attribute-based models with different characteristics
for zero-shot learning. We split these models into two main groups based on the level of
supervision needed for ZSL.

Supervised ZSL

Perhaps one of the most popular and successful approaches for supervised ZSL is the
attribute-based model (Farhadi et al., 2009; Lampert et al., 2009). In this approach,
semantic attributes are leveraged as the knowledge units to be transferred between the
seen and unseen classes. Since attributes form an intermediate layer between class labels
and low-level features (Figure 2.1), they can be effectively used to tackle the case of
disjoint train and test categories encountered in ZSL. This is usually carried out by
directly learning and transferring attribute classifiers (e.g. Farhadi et al., 2009; Jayaraman
and Grauman, 2014; Lampert et al., 2013; Rohrbach et al., 2010), or by leveraging the
attribute representation to learn new embedding space (e.g. Akata et al., 2015; Al-Halah
et al., 2014a; Bucher et al., 2016; Changpinyo et al., 2017; Palatucci et al., 2009; Xian
et al., 2016; Zhang et al., 2017). A common property of these models is that attributes
are learned and transferred in a generic matter to the unseen classes. However, as we
argued in Section 2.1.1, attributes exhibit a large variance in their visual representation
depending on the described category (i.e. the context). In Chapter 4, we propose a novel
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supervised ZSL model that leverages the hierarchical structure among the seen classes to
capture these differences and to guide the attribute transfer to an unseen class.

Hierarchies represent an attractive structure for knowledge transfer and they have been
exploited previously in various ways, for example for parameter transfer (Rohrbach
et al., 2011; Salakhutdinov et al., 2010; Shahbaba and Neal, 2007), representation transfer
(Al-Halah et al., 2014b) and annotation transfer (Guillaumin and Ferrari, 2012). Of
particular relevance to our work is the joint modeling of hierarchy and attributes. Akata
et al. (2013) propose an embedding approach that leverages both hierarchical labels along
global attributes as side information to learn a joint latent space of visual features and
semantics. On the other hand, Deng et al. (2014) propose a hierarchy and exclusion
graph which is learned over the various object categories. The graph models binary
relations among the classes like mutual exclusion and overlap. They also model similar
relations between object categories and global attributes for ZSL.

Our contribution. Differently, we propose a model that exploits the hierarchical
structure of the categories in two aspects: 1) We leverage the hierarchy to automatically
propagate annotations and learn attributes at different levels of abstraction; Then 2) we
use it in guiding the transfer process to select the most promising knowledge source of
attributes to share with novel classes. We show that our explicit guided transfer model
leads to learning and transferring more discriminative knowledge to the unseen classes
and, consequently, to improved ZSL performance especially in the context of fine-grained
categories.

Unsupervised ZSL

A drawback of the supervised approach to ZSL is the required user intervention during
testing to provide the semantic mapping between the seen and unseen classes (e.g. by
defining the class-attribute mappings). This is clearly limits the scalability of such models.
Hence, there is an increasing interest in conducting ZSL by tapping to an alternative
knowledge source where this mapping can be inferred automatically without human
supervision. One such an alternative source is lexical ontologies. For example, Rohrbach
et al. (2011) propose to leverage the WordNet ontology to transfer visual models between
the categories whereas Akata et al. (2015) use the same ontology to generate a hierarchical
representation of classes for their joint embedding framework. However, these ontologies
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are usually incomplete and they do not contain all categories, especially in the fine-grain
scenario.

Word embedding. A different direction leverages powerful word embeddings (Huang
et al., 2012; Mikolov et al., 2013) to establish the semantic link between seen and unseen
categories. These word embeddings are learned from large-scale text corpora in an
unsupervised manner such that words that appear in similar context get similar vector
representation (Mikolov et al., 2013). For example, Frome et al. (2013) and Norouzi
et al. (2014) propose deep neural models that embed the images in the space of the vector
representation of the categories labels. Then, test images are embedded in the vector
space and mapped to the closest representation of an unseen class for unsupervised ZSL.

Our contribution. In Chapter 5, we take advantage of these word embeddings in a
different manner. We propose a relational model that leverage the word embedding of
unseen categories to predict their class-attribute mappings, thus alleviating the need for
user intervention. We show that our approach results in a more discriminative ZSLmodel
and outperforms competitor approaches that rely directly on the word embeddings with
a wide margin.

Articles. On-line articles or free-form textual description provide yet another knowledge
source for ZSL. This valuable and massive source attracted recently more interest in the
vision community. Here, each category is associated with an article similar to those
found in Wikipedia. Then a form of domain adaptation between vision and language
is leveraged to directly predict the classifier weights for an unseen classes based on its
textual description embedding (Ba et al., 2015; Elhoseiny et al., 2013; Qiao et al., 2016).

Our contribution. In Chapter 6, we tap to a similar knowledge source to bridge the
gap between language and vision. However, in contrast to the previous approaches, our
objective is to automatically discover an explicit set of semantic attributes that is compact,
discriminative and best describes the categories in our data. Our model benefits from
the more discriminative nature of attributes compared to the generic textual embedding
while at the same time it does not require any user intervention whether for defining the
semantic vocabulary or for setting the class-attribute associations.





Chapter 3

Semantic Knowledge Representation in
Transfer Learning

Knowledge representation plays a vital role in our ability in capturing the richness of the
surrounding world, how we infer and reason about problems, and how we communicate
and transfer information among ourselves. In this chapter, we focus on the latter aspect
of a representation, i.e. the impact of knowledge representation on transfer learning.
Hence we tackle the question What to transfer?.

Under What to transfer?, one can identify three main directions:

1. Representation transfer, where the goal is to learn a “good” feature representation
in the source domain that can be shared with the target. It is important in this
case that the representation encodes common knowledge that is not specific to the
source task only (e.g. Liu et al., 2011b; Pan et al., 2011).

2. Parameter transfer, where parameters or priors learned from the source task are
shared with or used to regularize the parameters or priors of the target task model
(e.g. Nater et al., 2011; Zhang and Yeung, 2010).

3. Instance transfer, where all or some of the samples from the source domain are
re-used in the learning of the target task in order to overcome the low number of
target training samples (e.g. Lam et al., 2010).

It is common in the literature to approach these transfer directions separately (e.g. Lam
et al., 2010; Liu et al., 2011b; Nater et al., 2011), however they are not mutually exclusive.
For example, the choice of the feature representation and how the knowledge is modeled
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will eventually impact the efficiency of all three approaches: the representation, instance
and parameter transfer. Hence, unlike previous works, we propose in this chapter to
consider these directions jointly and analyze their mutual effect. Therefore, we introduce
a transfer metric learning framework that enables us to easily and seamlessly integrate
and analyze these three transfer approaches. Specifically, we analyze the performance
of several semantic representations in comparison to low-level features as a potential
similarity spaces for metric learning. We choose action similarity as our target task
where given two video samples the goal is to infer whether they exhibit the same action
or not. Moreover, we consider semantics that encode aspects of the visual concepts at
different levels of abstraction. This give us the opportunity to inspect the interplay
of the abstraction level encoded in the representation and the transfer performance.
Furthermore, we study the influence of the similarity space representation on the
various transfer directions when considered jointly and their resilience to the negative
transfer effect.

Contributions. The contributions of our work in this chapter are as follow: i) We show
the benefits of using high-level semantics for transfer metric learning; ii) We propose a
novel hierarchical knowledge representation that encodes the embedded semantic struc-
ture of category similarities in the attribute space, and show its superior performance to
other semantic models; iii) We introduce a generic framework for transfer metric learning
that improves the transfer performance and reduces the negative transfer effect; iv) We
suggest a realistic and challenging evaluation protocol for transfer learning, where the
target domain is much more diverse and complex than the source domain.

Publications. This chapter is based on our work that is published in Al-Halah et al.
(2014b) and Al-Halah et al. (2016a).

3.1 Semantic similarity spaces

Most metric learning approaches used for object and action recognition are based on
low-level features (e.g. Davis et al., 2007; Guillaumin et al., 2009; Zha et al., 2009; Zhang
and Yeung, 2010). However, we believe that semantics at different levels of complexity
can be a better representation for the transfer of source knowledge across domains. While
the feature similarity space is usually high-dimensional and dependent on the data distri-
bution in the source domain, the semantic similarity space is lower dimensional, concise,
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Figure 3.1: The attribute-based representation (a) captures some fine-grained visual properties of
an action, such as motion pattern, body parts, and objects; while the category-based
representation (b) encodes the overall similarity of a certain action to the various
categories.

and more robust to changes in the data distributions between target and source domains.
In the following, we will describe the two most common semantic spaces that are used
as an intermediate representation, the attribute similarity space and the category similarity
space. In the former, instances are represented by their visual properties (Figure 3.1a), and
in the latter, by their resemblance to other previously learned categories (Figure 3.1b).
Furthermore, we introduce a third and novel similarity space, the hierarchical similarity
space (Figure 3.2). Here, the instances are represented by a hierarchical structure, that
captures their visual properties at different resolution levels.

3.1.1 Attribute similarity space

Attributes define an intermediate representation between low-level features and high
level categories (Farhadi et al., 2009; Lampert et al., 2009). Semantic attributes describe
an entity regarding its visual appearance (e.g. is-round), parts (e.g. has-ears), and motion
patterns (e.g. forward-motion). Hence, they can be easily shared across categories and
even used to predict unseen classes if the classes can be described in terms of the same
vocabulary. In the attribute similarity space A, the different semantic attributes span the
bases of the space, where each axis encodes the presence of one of the attributes as well as
its intensity (or confidence for binary attributes) in a certain data instance, see Figure 3.1a.
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Samples that belong to the same category are close to each other in A since they share
the same properties, and they will form a tight cluster of points that are distinguishable
from other samples of different categories. Therefore, the lower the distance between
points in A, the more attributes they have in common, and consequently, the more
similar they are conceptually. The samples in the d-dimensional feature space X d are
mapped to space A using:

fA : X d → An and
fA(x) = [fa1(x), fa2(x), . . . , fan(x)]T ,

(3.1)

where fai
(x) is the prediction score of attribute ai on instance x, and n is the number of

defined attributes.

3.1.2 Category similarity space

Humans do not only use visual properties to describe entities in their environment, but
also inter-class relationships. Consider for example the action class triple-jump; it can
be described as an action similar to the classes run and jump. This intra-class similarity
pattern is not specific to a certain sample of triple-jump, rather it characterizes all samples
that belong to this category. In that sense, the category similarity space C provides
a meaningful semantic space to compare different actions in terms of their similarity
patterns to previously learned categories (Bart and Ullman, 2005). In C, the bases are
spanned by the predefined categories, where each axis encodes the resemblance of a
sample to a learned category, see Figure 3.1b. Samples from the feature space are mapped
to C using:

fC : X d → Cm and
fC(x) = [fc1(x), fc2(x), . . . , fcm(x)]T ,

(3.2)

where fci
(x) is the prediction score of category ci on instance x, andm is the number of

categories.

3.1.3 Hierarchical similarity space

A common property of the previously defined spaces is that both of them represent
semantics at a single layer of resolution. That is, both of them ignore the implicit
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Figure 3.2: The learned hierarchical representation of action classes in Olympic Sports where
actions are grouped based on their intra-class similarity in the attribute space.

structure that exists in the semantic space. Such structure allows us to have semantics
depicted at various levels of resolution or complexity, which enriches the knowledge
obtained in the source domain and provides a better semantic representation of samples.
Consider for example the action categories walk, jump and jump-forward. Since the latter
class is partially similar to the former ones, it would be better represented by a super-class
consisting of the other two categories, i.e. by walk-jump. Then learning the common
pattern between these two classes could provide a higher category of semantics that
improves the classification performance for jump-forward.

Hence, we propose to learn the structure of this hierarchical model by exploiting the
similarity between categories in the attribute space. Attributes correspond to observable
properties of the categories, and the more attributes are shared between a couple of
categories, the higher is the overall visual similarity between the pairs. Thus, assuming
that each of the action categories is described with a vector of semantic attributes of
length n (aci = {aj}n

1 ), we can exploit this representation by defining a distance function
f to group categories close to each other based on their similarity in the attribute space
(Figure 3.2), i.e.:

f : C × C → R : f(ci, cj) = d(aci , acj ), (3.3)
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Figure 3.3: The correlations of semantic attributes on (a) Olympic Sports and (b) ASLAN and
(c) their absolute differences.

where d(·, ·) is a distance function in the attribute space.

We construct a hierarchical representation by applying an agglomerative hierarchical
clustering algorithm over the attribute representation of the classes to get a dendrogram
depicting the hierarchical clustering result. The dendrogram is then used to construct the
final action hierarchy by interpreting the action classes as leaf nodes and the intermediate
clusters at different similarity threshold levels as inner nodes. The sub- and super-cluster
relations are translated to is-a relations in the tree structure. For our case of using binary
attributes to describe the various action classes, we use a hierarchical k-means clustering
algorithm with f(ci, cj) = ‖ aci , acj ‖1 to capture the similarity in An. Then instances
x ∈ X d are represented in the hierarchical similarity space H using:

fH : X d → Hk and
fH(x) = [fn1(x), fn2(x), . . . , fnk

(x)]T ,
(3.4)

where fni
(x) is the prediction score of node i in the hierarchy, and k is the number of

nodes.

The node classifiers are trained in a child-vs-parent manner (Marszalek and Schmid,
2007), i.e. if pos(ni) = ⋃ pos(nj) is the positive set of node ni, where nj ∈ child(ni),
then the classifier fni

is trained on pos(ni) as the positive set against {pos(np) \ pos(ni)}
as the negative set, where np = parent(ni).
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3.2 Decorrelated normalized space

It is important to notice that when the semantic similarity spaces are learned, also the
correlations of the semantics are implicitly modeled in theses spaces. While some of the
correlations are meaningful and correspond to real world co-occurrences (e.g. eyes &
nose, weak & small), many of these correlations come from the sampling bias of the
data sets. Most likely, these correlations are significantly different between the source
and the target domain since they arise from the respective semantics distribution in the
sampled data from each domain. For example, Figure 3.3 shows the respective different
correlations of semantic attributes in two data sets. Since it is hard to separate real
world correlations from artificial ones without referring to an oracle, maintaining such
knowledge in the representation when transferring across domains will likely result in a
negative transfer effect (see Section 3.5.5). Therefore, it is quite important to eliminate
the correlations learned in the source domain from the semantic spaces in order to
restrain the negative transfer.

The decorrelation of the semantic similarity space S (S ∈ {A, C,H}) can be efficiently
achieved using the whitening transformation. Such a transformation has been successfully
used before for attribute decorrelation (Al-Halah et al., 2014a) and for removing co-
occurrence patterns from the bag-of-words model (Jegou and Chum, 2012), for example.
The correlations are modeled by the covariance matrix Ω = YYT where Y represents
the data matrix from space S. By transforming Ω to the identity matrix, Y is whitened
and the data is transformed to a space S̃ where the bases are decorrelated and each given
the same importance.

The whitening transformation W of S is obtained by analyzing the covariance matrix
Ω such that:

W = VΣ−1/2 and Ω = VΣVT , (3.5)

where Σ is a diagonal matrix having the eigenvalues of Ω as its diagonal elements
(Σii = λi). V contains in its columns the relevant eigenvectors of the covariance matrix.
To have a robust estimation of W, we ignore the eigenvectors in V that correspond to
very small eigenvalues (λi < θ), i.e.:

W̃ = ṼΣ̃−1/2 where Σ̃ii ≥ θ. (3.6)
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Furthermore, we normalize the vectors in the truncated whitened space by their norms.
Thus, the samples representation in S is transformed to the decorrelated normalized
space Sdns using:

fSdns
(x) = W̃Ty/‖W̃Ty‖2 where y = fS(x) (3.7)

3.3 Metric learning

In order to measure similarity between samples in the different semantic spaces, we need
to learn an appropriate metric. For that purpose we use the Logistic Discriminant based
Metric Learning (LDML) from Guillaumin et al. (2009) to adapt to the positive and
negative similarity relations in the target data set.

In LDML, the probability of two data points (xi, xj ) to be similar (i.e. belong to the
same category) based on a Mahalanobis distance is modeled using the sigmoid function
(σ(z) = (1 + exp(−z))−1) as follows:

p(yi = yj|xi,xj; M, b) = σ(b− dM(xi,xj)), (3.8)

where b is a bias term and dM(·, ·) is theMahalanobis distance based onmatrixM ∈ Rd×d:

dM(xi,xj) = (xi − xj)T M (xi − xj). (3.9)

Then the problem is formulated as a standard logistic discriminant model where the
maximum log-likelihood is used to optimize the parameters of the model. The log-
likelihood is defined as:

L = ∑
n
tn ln(pn) + (1− tn) ln(1− pn), (3.10)

where tn = 1 when data pair is similar (i.e. yi = yj ) and 0 otherwise, and pn as defined
in Eq. 3.8. LDML has a convex optimization objective which guarantees an optimum
global solution. However, our approach is not restricted to a certain metric learning
method as we will show later in the evaluation (Section 3.5.5).
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(a) KTH (b) Olympic Sports (c) ASLAN

Figure 3.4: Samples from the three data sets used in our evaluation for action similarity. While
KTH has only 6 classes, Olympic Sports has 16 and ASLAN has 432 different cate-
gories.

3.4 Evaluation setup

Data sets. We evaluate our framework using three publicly available data sets:

• Olympic Sports (Niebles et al., 2010), which contains 781 videos of 16 action
classes collected from YouTube, like hammer-throw, tennis-serve and triple-jump.
We use the attribute annotations provided by Liu et al. (2011a), where the actions
are labeled with 40 semantic attributes describing motion, pose and objects, such
as lift-something, throw-away, two-arms-open and outdoor (Figure 3.4b).

• ASLAN (Kliper-Gross et al., 2012), which is collected for the main task of com-
paring actions (similar/not-similar). It has 432 action classes with more than 3600
video samples and each class has on average 8.5 video samples with more than
100 classes having only one sample each (Figure 3.4c). The data set has two views
(evaluation splits). View-1 has 1800 pairs splits into 1200 for training and 600 for
testing, and we use this view for most of our experiments. View-2 has 6000 pairs
with 10-fold cross validation setup which we use for full-scale testing.

• KTH (Schüldt et al., 2004), which contains six basic action classes (i.e. boxing,
clapping, waving, jogging, running, and walking). In our experiments the classes
are described with 10 semantic attributes by Liu et al. (2011a) (Figure 3.4a).

Transfer setup. In our experimental settings, we use Olympic Sports (or KTH) as
source and ASLAN as target data set. This addresses a realistic and very difficult scenario
for transfer learning that has been overlooked in previous studies. Collecting and labeling
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samples for actions is time consuming and expensive. Consequently, the labeled data
(source set) tends to be small and simple in terms of diversity and coverage compared to
the target. Our evaluation setup tackles this very challenging problem because of the
high diversity in ASLAN compared to Olympic Sports (432 to 16 different classes).

Features. As a video descriptor, we use the bag-of-words (BoW) model based on
histograms of oriented gradients and optical flow (HOGHOF) from Laptev et al. (2008)
with a vocabulary of size 4000. We use that BoW model to train the different classifiers,
presented in Section 3.1, on the training split of Olympic Sports. The features are
preprocessed with a power transform (Arandjelovic and Zisserman, 2012) with α = 0.3
before training a linear support vector machine. The parameters of the SVM classifiers
are estimated using a 5-fold cross validation. For the decorrelated normalized space, we
set θ = 10−8. To simulate a real transfer learning problem, we do no further training
of classifiers or the BoW model on the target set (ASLAN), and only the similarity
metric is adapted from the available training data of the target set to infer a reasonable
comparison metric in each of the semantic similarity spaces. The threshold of similarity
is automatically learned using a linear SVM trained on the distances between training
pairs.

3.5 Experiments

We first evaluate our transfer metric learning framework for the three transfer types:
representation-, instance- and parameter-transfer (see Figure 3.5). Then we analyze the
effect of using different source domains in Section 3.5.4 and the impact of the proposed
semantic space decorrelation approach on transfer performance in Section 3.5.5. Finally,
we go beyond the case of scarce training data in target and conduct a full scale evaluation
on the target data set and compare to a set of common metric learning methods with no
transfer (Section 3.5.6).

3.5.1 Representation transfer

We first test the performance of different semantic spaces compared to the common
low-level similarity space. We learn the different knowledge representations on Olympic
Sports and transfer them to ASLAN where we use the View-1 training/testing split as
defined by Kliper-Gross et al. (2012). Furthermore, we vary the number of training pairs
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Figure 3.6: Overall performance of different semantic similarity spaces regarding various sizes of
the target training set. The transferred high-level semantics clearly outperform the
low-level representation.

of similar and dissimilar actions from 5% to 100% of the target training set. For each
run, a random subset of the target training pairs is selected to learn the similarity and
then we evaluate the model on the test split. This is repeated 10 times, and we report
the average accuracy and standard error of similarity classification as seen in Figure 3.6.
For the feature space, we first reduce the dimensionality of the features to 128 using
principle component analysis since it is intractable to use the full feature vector with
LDML (Guillaumin et al., 2009).

In Figure 3.6 it’s interesting to see that all semantic spaces exhibit a higher start, a higher
slope and a higher asymptote compared to the low-level features space. Moreover, the
hierarchical and category similarity spaces outperform the attribute space when the
training data is scarce. However, when more than half of the training data is available, the
attribute space seems to do better than the category space while the proposed hierarchical
model outperforms both. This confirms our previous hypothesis on the importance
of high-level semantics and their ability to generalize well when transferred to other
domains.

Another interesting aspect of the high-level semantics is their scalability. The high-level
representation is much more compact than its low-level counterpart. For example,
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Figure 3.7: The performance of the different knowledge representations when using instance
transfer (a) and its negative transfer effect, i.e. the difference in performance when
not using instance transfer (b).

in our case the dimensionality of semantic representations ranges between 16 and 40
while the low-level feature vectors are of 4000 dimensions. Consequently, the semantic
representations are more scalable to big data sets since the computation cost of most of
the metric learning algorithms is heavily impacted by the representation dimensionality.

Moreover, adding new concepts for the attribute and category similarity spaces results
in a linear expansion in the dimensionality of the similarity space where only the new
concept classifiers need to be trained. Adding a new concept to the hierarchical space
is equivalent to inserting a leaf node to a binary tree. It requires the retraining of the
ancestors of that leaf node which is of logarithmic complexity in term of the number of
nodes in the tree. This cost is usually lower than trying to increase the descriptiveness
of the low-level features which usually results in much higher computation cost. For
instance, adding a new cluster to the bag-of-words requires rerunning the clustering
algorithm over all samples again.

3.5.2 Instance transfer

In this transfer setup, a random group of training pairs from the source (Olympic Sports)
are added to the training set in the target (ASLAN). Similar to the previous experiment,
the representation is learned in the source and we vary the size of the target’s training
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Figure 3.8: (a) Comparison of the proposed parameter transfer approach (ITML+PT) to the state-
of-the-art (TML) and (b) its robustness using the various semantic representations to
negative transfer effect.

set. The metric is learned from the transfered instances from source along with the
available target training instances. We report the similarity accuracy and we also analyze
the transfer effect (positive or negative) as the difference in performance (measured by
accuracy) between using instance transfer and without using it.

We see in Figure 3.7b that when the target’s data is too small (less than 25% of the
training pairs), both the hierarchical and attribute spaces take advantage of the additional
transferred samples from the source. However, when the size of target training set
increases, the transferred instances prevent the metric learning to adapt to the actual
data distribution of the target. Hence, it produces a significant negative transfer for
all semantic spaces. Nonetheless, the hierarchical representation still maintains higher
performance compared to the other alternatives (Figure 3.7a).

This type of transfer introduces a significant change in the data distribution of the target
training set which is not reflected in the test set, resulting in performance deterioration.
It also shows how the target and source sets are different and how the transfer settings
are challenging.
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3.5.3 Parameter transfer

In parameter transfer, the parameters learned in the source domain are used to regularize
or to aid the learning task in the target. The similarity metric learning method LDML
does not allow for parameter transfer in its formulation. Hence, we propose instead a
simple parameter transfer approach based on the information-theoretic metric learning
(ITML) from Davis et al. (2007). The metric learning problem in ITML is defined as:

min
M

KL(p(x,M0) ‖ p(x,M)), (3.11)

where KL is the Kullback-Leibler divergence between two Gaussian distributions corre-
sponding to a prior matrix M0 and the learned one M. Additionally, some constraints
on the distances are incorporated in learning the metric:

dM(vi,vj) ≤ u if (vi,vj) ∈ S
dM(vi,vj) > l if (vi,vj) ∈ D,

(3.12)

where u and l are the upper and lower bound of distances between similar (S) and
dissimilar (D) pairs respectively.

In Eq. 3.11, the common assumption is that the data is Gaussian distributed and the
prior M0 is either set to the inverse of the covariance matrix or the identity matrix I
(euclidean metric). In contrast, we suggest to adapt ITML to carry on parameter transfer
by setting the prior to be the metric learned in the source data set (M0 = Msource). In
other words, following Eq. 3.11, the metric learning in the target set is regularized to be
close to the source metric (Msource) while at the same time satisfying the constraints on
the pair distances in the target set (Eq. 3.12).

We evaluate the parameter transfer setting by learning first the similarity metric for each
of the three semantic spaces (Section 3.1) in the source set (Olympic Sports) and transfer
that metric using Eq. 3.11 to the target set (ASLAN). The metric in Olympic Sports
is learned by randomly generating 1500 pairs of similar and dissimilar actions in the
source, and then using the standard proposed framework to learn the similarity. During
testing, we use the same settings as described in Section 3.5.1.

We compare ITML with the proposed parameter transfer approach (ITML+PT) to
state-of-the-art transfer metric learning (TML) from Zhang and Yeung (2010). The
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Figure 3.9: Performance of parameter transfer when using KTH as the source set (a) instead of
Olympic Sports and (b) its negative transfer effect.

parameters for both ITML and TML are set following the recommendations suggested
by Davis et al. (2007) and Zhang and Yeung (2010), respectively.

Interestingly, our ITML+PT approach outperforms state-of-the-art TML as seen in
Figure 3.8a. TML seems to have a saturated performance after using just 15% of the
training set and slightly profits from the different semantic representations. ITML+PT,
on the other hand, clearly takes advantage of the characteristics of the different similarity
spaces and has a higher initial performance. This can be due to the formulation of TML
as a special case of multi-task metric learning, and the assumption that the tasks (source
and target) share a common data distribution which is not the case here.

We analyze the transfer effect (as in Section 3.5.2) as the difference in performance
between using the parameter transfer and without (i.e. setting M0 = I in Eq. 3.11).
While the hierarchical representation evidently benefits from parameter transfer, both
the attribute and category similarity representations show a negative transfer effect
(Figure 3.8b). As motivated in the introduction of this chapter, it seems that the ro-
bustness of the model against negative transfer is increased when the level of semantic
knowledge encoded in it is higher.
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3.5.4 Varying the source set

While Olympic Sports contains videos collected from YouTube with a lot of variations
(like camera motion, occlusion and varying background), KTH contains only simple
motion patterns and is recorded with a uniform background (see Figure 3.4). In this
experiment, we test the effect of replacing Olympic Sports with the more simpler KTH
data set as the source of the transfer metric learning.

We use a similar setup as in Section 3.5.3. A similarity matrix (Msource) is learned in
KTH (the source set) from a set of randomly generated pairs of action samples. Then,
Msource is transferred using ITML+PT for metric learning in ASLAN.

Figure 3.9a shows the performance of the transfer process when using KTH against
Olympic Sports as the source set. In general, KTH-based transfer performs worse than
the alternative source data set. Another observation is that the KTH-based transfer
performance curves do not monotonically increase as its Olympic-based counterparts.
The performance of the various KTH-based knowledge representations start to exhibit a
drop when the training set in the target gets bigger than 50%. This is expected since KTH
contains much less variation in its samples. Hence, it is harder to extract rich semantic
representations and learn useful similarity relations. This is evident in Figure 3.9b,
where the difference in performance against using M0 = I (i.e. no parameter transfer)
for the KTH-based transfer is shown. Clearly, the similarity relations learned among
the classes and attributes in KTH do not generalize well to ASLAN and a significant
negative transfer is produced. Nonetheless, when the training set in the target is tiny
(≤ 15%) the transferred knowledge from the very simple source (KTH) aides the learning
process in the target, performing on par with their Olympic Sports counterparts. This
suggests, that transferring semantics from simple sources may still be beneficial under
harsh transfer setting (i.e. extremely scarce target training data).

3.5.5 Semantic space decorrelation

Here, we evaluate the impact of the proposed decorrelated normalized space (DNS) on
the transfer process effectiveness. Similar to Section 3.5.1, we use Olympic Sports as
source for representation learning and transfer them to ASLAN. We test our framework
with and without the DNS transformation.
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Space / Metric ITML LDML KISSME Cov−1 L2 SVM

H 58.38 54.23 55.50 51.03 52.85 57.58
Hdns 60.62 61.80 60.98 56.98 56.33 56.90

A 55.08 57.80 55.50 50.87 54.00 57.50
Adns 57.52 59.00 58.42 56.37 54.83 57.73

C 57.65 57.50 56.77 54.17 54.50 53.17
Cdns 59.82 57.60 61.20 57.23 55.50 57.63

X 55.38 58.95 49.83 49.67 50.00 50.00
Xdns 56.07 52.67 54.33 53.00 56.53 56.05

Table 3.1: The effect of the decorrelated normalized space (DNS) on the performance of popular
metric learning methods.

Furthermore, since our framework is not restricted to a specific metric learning approach,
we test (along with LDML from Section 3.3) two state-of-the-art metric learning meth-
ods: ITML (Davis et al., 2007) and KISSME (Martin et al., 2012); and two commonly
used metrics: the Mahalanobis distance using the inverse of the covariance (Cov−1)
and the Euclidean distance (L2). Additionally, we train an SVM on the element wise
multiplication of the training pairs [x1.∗x2] as the sixth approach for learning similarities
(using the absolute difference |x1−x2| or the concatenation of the previous two produced
inferior performance). We use all training pairs available in the target and report the
accuracy of the different knowledge representations with and without using DNS.

In Table 3.1, we see that in most of the cases (22 out of 24), the decorrelated space
increased the performance of the transfer metric (up to 7% absolute increase). DNS is
quite generic, and it improves the performance of most of the metric learning approaches.
Even when using simple metrics likeL2 and Cov−1, DNS helps to learn a better similarity
metric.

On the other hand, both the category and the hierarchical spaces appear to perform
better than the attribute model; and the best performance (61.80%) is obtained by using
our hierarchical model with LDML.

3.5.6 Full scale evaluation

It is common in transfer learning literature to focus only on the case when the training
data in the target is scarce. However, considering the scenario of a large training set in
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the target is also beneficial. Evaluating in such settings helps us to put the transfer metric
learning method in perspective to standard methods that learn knowledge representation
in the target set and have enough information to adapt well to the target data distribution.

For that purpose, we evaluate on ASLAN View-2 which has 6000 pairs of similar and
dissimilar actions. We follow the benchmark setup suggested by Kliper-Gross et al.
(2012). That is, a 10-fold cross validation is carried out on View-2 and the performance
is reported in terms of average accuracy and area under receiver operating characteristic
(ROC) curve. For an in-target representation modeling, we compare to the approaches
of Kliper-Gross et al. (2012). They propose to extract three feature types: HOG, HOF,
and HNF (Laptev et al., 2008); and learn a BoW model of size 5000 for each to represent
video samples. They use 12 different similarity metrics to compare actions based on each
of these three representations and their combination. We report in Table 3.2 the results
of their best single similarity metric and the results of using the combination of the 12
metrics as stated by Kliper-Gross et al. (2012).

We notice in Table 3.2 that the transfer metric method performs as well as the methods
that are based on a representation learned in target domain. Even when 12 different
similarities and 3 feature representations are combined, the gain in performance of the
in-target method is only 1.7% in accuracy. This is an impressive performance for the
transfer metric learning approach, bearing in mind the diversity of the target compared
to the source set (432 to 16 classes) and that the data representation learned in the source
was never adapted to model changes in the target domain. Furthermore, the performance
of the different semantic spaces in the transfer metric approach follows the complexity
level of semantics encoded in the model. The proposed hierarchical representation has
the best performance, followed by the category, and the attribute spaces.

3.6 Summary and discussion

We proposed a generic framework for transfer metric learning and showed the influence
of knowledge representation on different transfer options. In our experiments, we
demonstrated that high-level semantics have better transfer properties and encode richer
transferable knowledge in comparison to low-level features. Furthermore, we introduced
a hierarchical representation that models the embedded structure of category similarities
in the attribute space. The proposed hierarchical model performed best and was more
robust to negative transfer effect. In addition, different metric learning methods benefit



46 Semantic Knowledge Representation in Transfer Learning

from the proposed transfer framework. We evaluated on very challenging settings
where the target set is much more complex and diverse in comparison to the source
set. Nonetheless, we showed that even when the knowledge source is limited, transfer
learning can still be beneficial if an appropriate semantic representation is used. Finally, a
large-scale evaluation showed impressive results of the transfer approach; the performance
is on par with methods that use feature representations learned in the target domain.

Discussion. In our analysis of the mutual effect of the different transfer options, we
adopted simple yet effective transfer schemes. Nevertheless, these options can be extended
to further improve the transfer performance and robustness. For example, in instance-
transfer we adopted a simple model that transfers a fixed set of source instances to the
target. This set is given the same weight in learning as the target samples. However,
adopting a more dynamic approach that can assign variable weights to transferred samples
(Dai et al., 2007) might reduce or eliminate the negative transfer effect that we saw in
our experiments. Similarly, when multiple sources are available it would be beneficial to
have a mechanism to select the most suitable source to transfer from (Tommasi et al.,
2014; Yao and Doretto, 2010) or to decide beforehand whether to transfer or not.
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Chapter 4

Hierarchical Transfer of Semantic
Attributes

Structured representation of concepts and objects is part of the human understanding of
the surrounding world. We usually try to combine objects into certain groups based on
a common criteria like functionality or visual similarity. This helps us to better learn
the commonality as well as the differences in and across groups. Moreover, we saw in the
previous chapter the influence of semantic representation on transfer learning and how
encoding structured information with various abstraction levels in the representation
impacts the transfer performance and its robustness against negative transfer.

However, in the prevailing approach of attribute-based recognition (like DAP), the
attributes are learned from all seen classes and then they are shared or transfered to
classify unseen ones (Section 2.1). Such a global learning approach of attributes clearly
does not account for the high intra-attribute variance that may exist in the data. Learning
an attribute from all seen classes results in capturing the visual concept in a quite abstract
manner and ignores the fine visual properties of the attribute that help in discriminating
a sub group of classes from another. Hence, subsets of classes that share similar attributes
cannot be distinguished easily (e.g. fine-grained categories).

Consider for example the attribute beak in Figure 4.1. The global model of beak would
learn that a beak is an elongated extension at a certain position relative to the head. That
is, it ignores the fine and distinctive differences among the wide curved-end beak of the
albatross species; the long thin beak of the hummingbirds; and the round short beak of the
jays. In other words, the global model is incapable of capturing the rich diversity that
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Figure 4.1: The high intra-attribute variance is better represented at different semantic levels of
abstraction. This helps in directing the transfer process to identify the most suitable
source of knowledge to share with a novel class.

already exists in the source set. Hence, more generic and less discriminative attributes
are usually transferred to the unseen class. On the other hand, an approach that can
learn these different versions of the same attribute (beak) is quite beneficial. Such an
approach would create a richer knowledge repository from which more suitable and
discriminative attributes can be shared and transferred across categories. Moreover, the
object hierarchy groups the classes based on their overall visual similarity; thus provides
a natural way to guide the transfer process to share information from the knowledge
sources that will most likely contain relative information. Accordingly, knowing that
both Gull and Albatross are Seabirds, it is intuitive and probably more discriminative to
describe the beak of the California-Gull as an albatross-like-beak.

Contributions. In this chapter, we propose a novel approach to model attributes at
different levels of abstraction, from the most specific that distinguish one class from
another to the most generic that are learned over all categories. Our model can leverage
the structured knowledge in the source to select and transfer the suitable attributes across
the different abstraction levels to be shared with an unseen class. We present a simple
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yet efficient approach that outperforms the global attributes model with up to 15%
in zero-shot accuracy. Furthermore, we show in the evaluation that our model takes
advantage of the category granularity in the source set and shows a higher margin of
improvement as the granularity get finer.

Publication. This chapter is based on our work that is published in Al-Halah and
Stiefelhagen (2015b).

4.1 Overview

Let C = {ck}K
k=1 be the set of seen categories, i.e. with training examples, andZ = {zl}L

l=1

the unseen categories such that C ∩ Z = ∅. A set of semantic attributes A = {am}M
m=1

describe all classes in C ∪ Z . A directed acyclic graph H = (N , E) defines a hierarchy
over the classes, with nodes N = {ni}I

i=1 and edges E = {eij : ni, nj ∈ N}.

Starting with a set of classes C, global attributes A and a hierarchy H in the category
space, our approach constitutes three main steps (see Figure 4.2): 1) we automatically
populate the hierarchy with additional attribute labels (Section 4.2); 2) model these
attributes to capture subtle differences between similar categories (Section 4.3); 3) finally,
we use a hierarchy-guided transfer to select the proper attributes to share with a novel
class (Section 4.4).

4.2 Attribute label transfer

Since we start with only the attribute labels of the main classes, the inner nodes of the
hierarchical representation are unlabeled. Hence, we need to populate the hierarchy with
attribute labels in order to obtain the attribute-based representation of all nodes. We
adopt here the intuitive idea that if a sub-category has attribute ai then the super category
has the attribute as well. For example, the super-category Dog has attributes meet-teeth
and small since German-Shepherd and Chihuahua have these attributes, respectively (see
Figure 4.2a). Note, this does not mean that all dog instances now have all attributes that
appear in its sub-categories, rather that these instances may exhibit a subset of these active
attributes. In other words, the label transfer does not change the underlaying attribute
labels of the instances but rather setup the active attributes through the hierarchy to
guide the learning and the transfer process afterwards.
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To that end, the attribute label transfer can be carried out by exploiting the hierarchy
of the object categories and populating the labels from the leaf node to the root in a
bottom-up fashion. Formally, the active attribute am for a node nj in H is defined as:

anj
m = 1 if ∃ ani

m = 1 and ni ∈ child(nj), (4.1)

such that child(nj) is the set of all children of node nj , i.e. child(nj) = {ni : eji ∈ H}.
Following this scheme, the root of H will have all attributes active.

4.3 Learning attributes at different levels of abstraction

Having all nodes in H populated with attribute annotations, now we want to learn the
fine differences among the various abstraction levels of the attributes. That is, we want to
learn a model that discriminates the paws of Bears from the paws of other Carnivores and
another one that discriminates those from the paws of other Mammals, etc. This leads
naturally to adopting a child-vs-parent learning scheme (Section 3.1.3) for our attribute
models.

Let S+(anj
m ) be the support set of attribute am for node nj . A support set for a node’s

attribute contains all data samples labeled with that attribute at that node level of the
hierarchy. In other words:

S+(anj
m ) =

⋃
ni∈child(nj)

S+(ani
m) ∪ lbl(anj

m ). (4.2)

where lbl(anj
m ) is the set of samples from class nj ∈ C with attribute am, and if nj /∈ C

then lbl(anj
m ) = ∅:

lbl(anj
m ) = {xi : yi = nj and axi

m = 1}. (4.3)

The support set definition is recursive. That is, S+ for the inner node nj will expand till
it includes all the samples that are labeled with that particular attribute am from all the
leaf nodes of the sub-tree rooted by nj .

To train a discriminative model for am at a certain level in the hierarchy ni, we use the
following positive T+ and negative T− training sets:

T+ = S+(ani
m) T− = S+(anj

m )− S+(ani
m), such that ni ∈ child(nj). (4.4)
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Figure 4.3: Recall and precision primacy of attributes classifiers Head, Ear and Torso at different
abstraction levels when evaluated on test samples corresponding to the leaf node
“Horse”. Attribute models learned close to the leaves of the hierarchy (e.g. “Ungulate”)
tend to have higher precision and lower recall compared to those learned at a higher
abstraction level.

Going back to our example from Figure 4.2b. A model for attribute aBear
paws will have

all samples with aP olar−Bear
paws and aGrizzly−Bear

paws in the positive set T+ while other paws
samples from class Carnivore and excluding those from Bear in the negative set T−. Note
that at the root nr we have no parent node and the attributes at this level are learned
using the common 1-vs-all scheme. Hence, the models are trained to discriminate one
attribute am from the rest of the attributes which map naturally to the notion of global
attributes.

4.4 Hierarchical transfer

Now that we have learned attribute models at different levels of abstraction, we need to
identify the most suitable ones to transfer for a new unseen category. We leverage here
the structure in the category space H to guide the knowledge transfer process. Consider
for example the unseen class Persian-Cat in Figure 4.2c. Rather than transferring the
generic global attribute furry to the Persian-Cat, we are able now to select a fine-grained
version of that attribute that is probably more suitable for this category, e.g. aCat

furry or
aF eline

furry .
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Analyzing the properties of the learned attribute models throughout the hierarchy,
we notice that those that are closer to the leaf nodes have higher precision and lower
recall from the ones closer to the root (see Figure 4.3). This is an expected property
since the intra-attribute variance increases as we move up in the hierarchy. While the
attribute models at the lower levels in H captures the fine differences in the attribute
that distinguish few classes from the others, the ones at the higher levels in the hierarchy
captures the common visual properties of the attribute among larger and more diverse
classes. We find out, similar to Zweig and Weinshall (2007), that a model which is
an ensemble of classifiers with such opposite recall and precision properties has better
performance than the constituent classifiers. Hence, rather than transferring an attribute
model from a specific abstraction level to the unseen category (e.g. aCat

furry → aP ersian−Cat
furry ),

we transfer an ensemble model specific for the unseen category which is constructed
from the various abstraction levels in H.

Let sni
(ani

m |x) be the prediction score of attribute am from node ni given image x, and
anc(ni) is the set of ancestor nodes of ni given H. Then the attribute model for the
unseen class zl ∈ Z is defined as:

szl
(azl

m|x) =

∑
ni∈anc(zl)

[[azl
m = ani

m ]] sni
(ani

m |x)∑
ni∈anc(zl)

[[azl
m = ani

m ]] , (4.5)

where [[·]] is the Iverson bracket which takes the value of 1 when the condition within
the bracket is true and 0 otherwise.

Consequently, to predict category zl in image x we average pool all attribute predictions
of zl:

s(zl|x) =

M∑
m=1

[[azl
m = 1]] s(azl

m|x)
M∑

m=1
[[azl

m = 1]]
. (4.6)

Similar to Rohrbach et al. (2011), we find that using normalized scores in Eq. 4.6 improves
performance. Hence, the prediction scores are normalized to have zero mean and unit
standard deviation.
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(a) aPascal/aYahoo (aPY) (b) Animals with Attributes
(AwA)

(c) CUB-200-2011 Birds (CUB)

Figure 4.4: Samples from the three data sets with varying object granularity. While aPY has 32
categories of vehicles, animals and artifacts, AwA has 50 animal classes and CUB has
200 species of birds.

4.5 Evaluation setup

Data sets. We evaluate our Hierarchical Attribute Transfer model (HAT) for zero-shot
learning on three data sets with varying granularity of classes (Figure 4.4). This give us
the chance to see how the performance of the proposed HAT model varies with regards
to the complexity of the embedded knowledge in the source set.

1. The aPascal/aYahoo (aPY) (Farhadi et al. (2009)) contains two subsets. The first
(aP) uses 12, 695 images and 20 categories from PASCAL VOC 2008 (Everingham
et al. (2008)). The second (aY) has 12 disjoint classes and 2, 644 images collected
from the Yahoo image search engine. Per-image labels of 64 binary attributes are
provided for both subsets. In the predefined zero-shot split, aP is used for training
and aY for testing.

2. The Animals with Attributes (AwA) (Lampert et al. (2009)) consists of 30, 475
images of 50 classes of animals. They are described with 85 semantic attributes on
the class level. The 50 classes have a predefined split for zero-shot learning, where
40 classes are used for training and 10 for testing.

3. The CUB-200-2011 Birds (CUB) (Wah et al. (2011)) has 200 bird classes and 11, 788
images. Each image is labeled with 312 attributes. Unlike the previous two, there
is no predefined split for this data set. For our experiments, we randomly select
150 classes for training and 50 for testing.
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Data set Attributes Per-Image Classes Seen Unseen Images

aPY 64 X 32 20 12 15,339
AwA 85 50 40 10 30,475
CUB 312 X 200 150 50 11,788

Table 4.1: Statistics of the three data sets used in our evaluation.

Hierarchy. We learn the object hierarchies using the WordNet ontology (Miller, 1995).
By querying the ontology with the category labels we extract a tree that brings the
classes into a hierarchical ordering. Subsequently, we prune the hierarchy to remove
intermediate nodes that have a single child.

Deep features. Motivated by the impressive success of deep Convolutional Neural
Networks (CNN), we encode the images using a CNN-based deep representation to
train the attribute classifiers. We use the CNN model CNN-M2K provided by Chatfield
et al. (2014) which has a structure similar to AlexNet (Krizhevsky et al., 2012). We also
use the BVLC implementation (Jia et al., 2014) of GoogLeNet (Szegedy et al., 2014)
which has a much deeper architecture. Both networks are pre-trained on ILSVRC-2012
(Deng et al., 2009) for object classification. Note, one should be careful when using
pre-trained deep representation from ImangeNet ILSVRC for zero-shot learning since
samples from some of the unseen categories might have been already used in training
the neural network as is the case for AwA (see Xian et al. (2017b) for more details).

To extract the deep representation, we follow the best practice found in Chatfield et al.
(2014). The image is resized to 256× 256. Then 5 image crops obtained from center and
corners with their flipped versions are fed to the CNN. The output of the last hidden
layer is extracted, sum-pooled and L2-normalized to be used as our deep-features to train
the different models.

Classifiers. For all our attribute classifiers, we use L2-regularized logistic regression
(Fan et al., 2008). The classifiers parameters estimated using 5-folds cross validation.

4.6 Experiments

In the following experiments, we first evaluate the performance of the deep features,
proposed in the previous section, against the common shallow features for attribute
prediction (Section 4.6.1). Then, we provide a thorough evaluation of our model for
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Features aPP aPY AwA CUB

Shallow 84.12 70.91 71.16 60.78
CNN-M2K 92.82 80.73 78.64 76.03
GoogLeNet 93.63 80.03 79.47 76.59

Table 4.2: Attribute prediction performance (mean AUC) using deep and shallow feature repre-
sentations.

zero-shot learning (Section 4.6.2) and consider various ZSL setups like the influence of
attribute labeling level, i.e. image-based vs. class-based (Section 4.6.4); recognition of
unseen classes with unknown attribute associations (Section 4.6.5); and the impact of
category granularity in source on ZSL performance (Section 4.6.3).

4.6.1 Attribute prediction with deep embeddings

We first evaluate the performance of the deep features that we use in learning attribute
classifiers. We compare the attribute prediction performance using the deep features
proposed in Section 4.5 against shallow features. Here, we use the “shallow” term to
refer to all manually crafted features like SIFT (Lowe, 1999), SURF (Bay et al., 2008),
HOG (Dalal and Triggs, 2005), etc. We use the precomputed features provided by Farhadi
et al. (2009) and Lampert et al. (2009) as a shallow representation of 9751 and 10940
dimensions for aPY and AwA respectively. For CUB, we encode the images with Fisher
vectors (Perronnin and Dance, 2007) based on SIFT and Color descriptors followed by
dimensionality reduction using principle component analysis (PCA) (Wold et al., 1987)
to get a 6456 dimensional vector which we use as the shallow representation.

We consider two evaluation setups in aPY: 1) within-category attribute prediction (aPP),
i.e. the evaluation is done on the aPascal testing set; 2) across-category prediction (aPY),
i.e. we evaluate on the disjoint aYahoo set. In both cases, the attributes are learned using
the aPascal training set. For AwA and CUB, we use the zero-shot testing setups defined
in (Section 4.5).

In Table 4.2, we see the performance of the three representations in terms of mean area
under the receiver operating characteristic curve (AUC) of the attribute predictions.
The deep-feature models constantly outperform their counterpart across all data sets
with an increase between 7% and 15%. Although the CNNmodel was learned for object
classification on a different data set; still the automatically learned features by the CNN
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Model Features aPY AwA CUB

Global Attributes
IAP (Lampert et al., 2013) Shallow 16.9 42.2 -
DAP (Lampert et al., 2013) Shallow 19.1 41.4 -
SJE (Akata et al., 2015) CNN-4K - 45.9 30.0
SJE (Akata et al., 2015) GoogLeNet - 52.0 37.8
DAP CNN-M2k 31.9 54.0 33.7
DAP GoogLeNet 35.5 59.9 36.7
ENS CNN-M2k 43.1 57.7 37.3
ENS GoogLeNet 42.8 63.5 39.4

Hierarchy /and Global Attributes
AHLE (Akata et al., 2013) Shallow - 43.5 17.0
HEX (Deng et al., 2014) DECAF - 44.2 -
SJEWordNet (Akata et al., 2015) GoogLeNet - 51.2 20.6
AMP(SR+SE) (Fu et al., 2015) CNN-4K - 66.0 -

Ours
HAT DECAF - 48.9 -
HAT CNN-M2k 46.3 68.8 48.6
HAT GoogLeNet 45.4 74.9 51.8

Table 4.3: Zero-shot multi-class accuracy on the three data sets. We compare with state-of-the-art
methods under different setting: 1) using global attributes and 2) using a combination
of attributes and hierarchical information.

layers are quite generic and work well for attribute prediction. CNNs automatically learn
to capture features with varying complexity at each layer. While the lower layers learn
features like edges and color patches, the higher layers learn much complex structures
of the object like parts (Zeiler and Fergus, 2014). Many of these correspond directly
to semantic attributes (Escorcia et al., 2015). Moreover, the non-linear image encoder
learned by the CNNs project the samples, by the last hidden layer, to a space where
they can be linearly separated according to their categories. This makes the used deep
representation quite suitable to our simple linear classifiers.

4.6.2 Zero-shot learning

To populate the hierarchy with attributes (Section 4.2), our model requires class-based
attribute descriptions. Hence, for aPY and CUB we average all image-based attribute
vectors of each class to calculate the class-attribute occurrence matrices. Then, the binary
class-attribute notations are created by thresholding the resulting occurrence matrix at
its overall mean value. Along with our Hierarchical Attribute Transfer model (HAT),
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Model Features aPY AwA CUB

DAP CNN-M2k 87.3 88.5 82.2
HAT (ours) CNN-M2k 87.1 92.0 94.9

DAP GoogLeNet 88.0 89.8 83.9
HAT (ours) GoogLeNet 86.7 94.1 95.5

Table 4.4: Zero-shot mean AUC under ROC curve for the test classes.

we also train and evaluate two common baselines for global attributes using our deep
features: 1) The Direct Attribute Prediction model (DAP), where the class prediction is
formulated as a MAP estimation (Lampert et al., 2009); 2) The Ensemble model (ENS),
that combines the predictions of the attributes using a sum formulation similar to the one
we use in Eq. 4.6 but based on global attributes (Rohrbach et al., 2011). We also evaluate
our model using the DECAF features (Donahue et al., 2014) provided by Lampert et al.
(2009) for direct comparison with some of state-of-the-art methods.

HAT vs. state-of-the-art. In Table 4.3, we report the normalized multi-class accuracy
on the three test sets. Compared to methods that leverage global binary attributes
and hierarchies (or graphs), our model outperforms the state-of-the-art with a wide
margin. In AHLE (Akata et al., 2013) and SJE (Akata et al., 2015), a join embedding
model is learned either based on joint modeling of global attributes and hierarchical
information with shallow features (Akata et al., 2013) or WordNet-based representations
and deep features (Akata et al., 2015). Whereas Deng et al. (2014) leverage the structure
in the category space using a hierarchy and exclusion graph (HEX) between objects and
attributes. Finally, in Fu et al. (2015) a semantic graph of class prototypes in the attribute
space is learned and combined with a probabilistic model to perform zero-shot learning.
Nonetheless, our model improves over the best state-of-the-art results by 9% (AwA) and
31% (CUB).

HAT vs. deep global attributes baseline. Compared to our strong baseline with deep
features (DAP & ENS), HAT still performs the best in terms of both multi-class accuracy
and mean AUC (Table 4.4). Figure 4.5 shows the highest ranking results obtained by
the three models for each test class in the AwA data set. While distinctive classes like
Chimpanzee and Humpback-Whale are correctly classified by all models, both DAP and
ENS confuse visually similar classes that share many global attributes like Leopard &
Persian-Cat and Rat & Raccoon, and more samples are wrongly ranked high by this
model. To the contrary, HAT learns the fine differences among the shared attributes of
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chimpanzee giant-
panda
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cat
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potamus

humpback-
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raccoon rat seal

(a) DAP

(b) ENS

(c) HAT (ours)

Figure 4.5: The highest scoring results of DAP and HAT (CNN-M2K) for each test class in AwA.
(Best viewed in color)

these classes which helps in discriminating them efficiently. For example, HAT learns the
differences between the attributes of Big-Cat and Cat (Figure 4.2c) which facilitates the
separation among the novel classes Leopard and Persian-Cat (Figure 4.5). Furthermore,
we find that normalizing the prediction scores of the novel classes (Eq. 4.6) makes the
scores more comparable. Without normalization and with CNN-M2k features, our
model achieves accuracies of 38.3% (aPY), 63.1% (AwA) and 44.4% (CUB), and we
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Figure 4.6: The performance of DAP and HAT (ours) in CUB with varying number of classes in
the source as demonstrated with (a) multi-class accuracy, (b) absolute improvement
of HAT over DAP, and (c) mean AUC.

notice a similar drop in performance for ENS. Normalization improves the accuracy of
both the baseline (ENS) and our model (HAT). However, this requires that the test data
is available as a batch at test time.

The relative improvement in accuracy of our HAT model over the baselines is 6% (aPY),
18% (AwA) and 31% (CUB). This trend nicely follows the level of granularity of the
objects in the data sets. Our model takes advantage of the underlying structure and the
commonality among the classes and it is able to distinguish between fine grained classes
more efficiently. On the other hand, it is harder for the baseline models (DAP & ENS)
to distinguish such fine grained objects using the abstract global attributes.

In the rest of the experiments, we report the results when using the GoogLeNet features
for our model and the baselines.

4.6.3 Granularity of the source set

In the following experiment, we vary the complexity of the knowledge contained in the
source (the number of seen classes) compared to the target (the unseen classes). This
helps to have a better understanding of the characteristics of the different models as the
richness of the embedded information in the source changes. We use the CUB data set
and start with a random set of 25 classes to be in the source. We gradually increase the
source set with additional 25 random classes. At each step, the rest of the 200 classes is
used as the target set to conduct zero-shot classification.
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In Figure 4.6a we see that when the source is relatively poor and contains less structured
knowledge, both DAP and HAT performs at the same level. However, as the source
get bigger and more complex HAT consistently outperforms DAP with an increasingly
wider margin (Figure 4.6b). Unlike DAP that uses a single layer of global attributes,
HAT is able to take advantage of the complexity of information available in the source.
HAT captures the commonality among the categories and exploits it to learn and transfer
more discriminative attributes to distinguish the unseen categories.

4.6.4 Image versus class level attributes

aPY and CUB provide attribute annotation at the image level which we used to train the
models in the previous experiments. We evaluate on these two data sets using class-based
attributes similar to those in AwA. We notice that the accuracy of both the baseline and
HAT decreases in these settings. Where ENS has 38.3% and 34.6%, the HAT model
achieves 40.3% and 48.2% on aPY and CUB. This seems to differ from the findings in
Lampert et al. (2013). The reason could be related to the type of features used. In Lampert
et al. (2013) a set of shallow features are used which require a relatively larger number
of samples to train good attribute classifiers. This in turn results in noisy attribute
predictions if there are few image-based annotations of the attribute. In comparison,
using the deep features, which have been previously learned with a large-scale data set
(like ImageNet), we can learn better attribute classifiers even if the training data in our
data sets is relatively small.

4.6.5 Transferring attribute associations

Although this evaluation setup is not possible with the global attribute model, HAT
enables us to carry out zero-shot recognition even if the attribute associations of the novel
class are unknown. To do that, we again leverage the hierarchy and transfer the attribute
associations of the parent node to the novel class. Using this setup, HAT achieves an
accuracy of 31.1% (aPY), 59.7% (AwA) and 32.6% (CUB). This drop in performance
is reasonable since we are transferring the more generic attribute associations of the
parent. Hence, confusion can arise when multiple test classes share the same parent in
the hierarchy. Nonetheless, HAT makes it possible to perform attribute-based zero-shot
classification when only the label of the novel class is available.
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4.7 Summary and discussion

In this chapter, we present a simple yet very effective model for zero-shot object recog-
nition. Our model takes advantage of the embedded structure in the category space
to learn attributes at different levels of abstraction. Furthermore, it exploits inter-class
relations to provide a guided knowledge transfer approach that can select and transfer the
expected relevant attributes to a novel class. The evaluation on three challenging data
sets shows the superior performance of the proposed model over the state-of-the-art.

Discussion. In this work we transferred attribute models through the hierarchy with
uniform weighting. That is, we assumed that all transferred models are of equal relevance
to the novel class. However, considering a different weighting approach might be
beneficial. For example, we can consider a decay weighting scheme relevant to the
hierarchical distance between the novel class and the source model. Another option
would be to incorporate the semantic similarity between the classes (e.g. by leveraging a
semantic representation like Word2Vec (Mikolov et al., 2013)) in the weighting scheme.
Furthermore, in our approach we only consider models of ancestor nodes to transfer, yet
those of siblings or near by concepts in the hierarchy might also contribute positively to
transfer a more discriminative model. However, this probably needs to be combined
with a weighting scheme like the ones discussed earlier to guard against negative transfer.



Chapter 5

Predicting Class-Attribute Associations

Attributes, by creating an intermediate semantic representation layer, lend themselves
quite naturally to be suitable knowledge units to share and transfer across categories.
We saw in the previous chapter how semantic attributes can be effectively transfered to
recognize object categories with zero training samples, i.e. zero-shot learning.

However, a major drawback of an attribute-based approach is that user supervision is
needed to associate the novel class with the attribute vocabulary. For example, giving a
new category “leopard”, the user has to establish the semantic link by describing this
novel category with the available attributes, e.g. the leopard has paws, it exhibits a spotted
pattern but does not live in ocean. The semantic description defines which attributes to
transfer (i.e. paws, spotted and ocean) and how to transfer them (i.e. paws and spotted have
positive contribution to classify a leopard while ocean has a negative one). This amounts
to providing manual class-attribute associations for each new category with a vocabulary
size in the range of tens to hundreds of attributes. This is not only time consuming but
often requires domain-specific or expert knowledge that the user is unlikely to have. It is
more convenient and intuitive for the user to provide just the name of the unseen class
rather than a lengthy description. In this chapter, we aim to automatically link a novel
category with the visual vocabulary and predict its attribute association without user
intervention. Thereby, we answer questions such as: Does the leopard live in the jungle?
Does it have a striped pattern? (see Figure 5.1).

Contributions. To this end, we propose a novel approach that models relations cou-
pling classes and attributes and automatically associates an unseen class with our visual
vocabulary (i.e. the attributes) based solely on the class name. Using the predicted
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Figure 5.1: Given only the name of an unseen category, here Leopard, our method automatically
predicts the list of attributes (e.g. yellow, spots) associated with the class through
relationships (e.g. has_color, has_pattern). These predicted associations are leveraged
to build category classifiers for zero-shot learning.

relations, we are able to construct a classifier for the novel class and conduct unsupervised
zero-shot learning. Additionally, our model can automatically select which attributes to
transfer that leads to enhanced performance compared to the commonly used generic
transfer approach. Moreover, since the proposed approach can automatically establish the
semantic link, we demonstrate that our model is able to automatically transfer the visual
vocabulary itself across data sets which results in significant performance improvements
at no additional cost.

Publication. This chapter is based on our work that is published in Al-Halah et al.
(2016b).

5.1 Overview

We present an end-to-end approach to automatically predict class-attribute associations
and use them for zero-shot learning. We begin by 1) finding suitable vector represen-
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tations for words and use the learned embedding as a way to mathematically relate
class and attribute names (Section 5.2). These representations form the basis to model
semantic relationships between classes and attributes. 2) We formulate the learning of
these relations in a tensor factorization framework (see Figure 5.3) and offer key insights
to adapt such a model to our problem. 3) In Section 5.4, we define the type of relations
used and how to learn them automatically from data. 4) Finally, for an unseen class we
show how to predict the set of its most confident attribute associations and carry out
zero-shot learning (Section 5.5). We start by defining the notation used throughout this
chapter.

Notation. Let C = {ck}K
k=1 be a set of seen categories that are described with a group

of attributes A = {am}M
m=1. The vector representation of a word is denoted by v(·),

and we use v(ck) and v(am) for class ck and attribute am respectively. The categories
and attributes are related by a set of relations R = {rj}N

j=1 such that rj(ck, am) = 1
if ck is connected to am by relation rj and 0 otherwise (e.g. has_color(sky, blue) = 1,
has_pattern(zebra, spots) = 0).Given only the name of an unseen class z 6∈ C, our goal is
to predict the attributes that are associated with the class (e.g. has_color(whale, blue) =?)
and conduct ZSL accordingly.

5.2 Word vector representation

In order to model the relations between classes and attributes, we require a suitable
representation that transforms names to vectors and at the same time preserves the
semantic connotations of the words. Hereof, we use the skip-gram model presented
by Mikolov et al. (2013) to learn vector space embeddings for words. The skip-gram
model is a neural network that learns vector representations for words that best help in
predicting the surrounding words. Therefore, words that appear in a similar context
(neighboring words) are represented with vectors that are close to each other in the
embedding space. We employ a context size of 20, use hierarchical softmax, and learn our
skip-gram model using asynchronous stochastic gradient descent. We train our model
on the Wikipedia corpus to learn a d = 300 dimensional word representation. The
corpus includes ∼ 3.5 billion words which yields a 96 thousand word vocabulary. The
vocabulary includes high-frequency words and phrases (appearing more than 300 times)
and the labels of classes and attributes used in our data sets.
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Figure 5.2: t-SNE representation of (a) class embeddings: colors indicate similar classes based on
the super category in the WordNet hierarchy (e.g. dalmatian, collie, and other dog
breeds are all colored in cyan); (b) attribute embeddings: colors indicate attributes
which are grouped together to form class-attribute relations (e.g. has_color relationship
clusters all colors yellow, black, etc. which are represented in cyan); and (c) class-
attribute pair-wise displacement vectors (e.g. v(dolphin) − v(ocean)) which show
that encoding relationships using vector operations is a difficult task. This figure is
best viewed in color.

Figure 5.2 visualizes the obtained word vector representation for few classes and at-
tributes in AwA data set using t-SNE (van der Maaten and Hinton, 2008). Even in
such a low-dimension it is clear that classes related to each other appear closer. This is
evident for example from the group of dog breeds or feline in Figure 5.2a. Similarly, we
also see clusters in the attribute label space corresponding to colors, animal parts, and
environment (see Figure 5.2b).

Relations in the word embedding space. The skip-gram embeddings have gained
popularity owing to their power in preserving useful linguistic patterns. An empirical
evaluation by Mikolov et al. (2013) shows that syntactic/semantic relations can be
represented by simple vector operations in the word embedding space. A great example
is v(king)−v(man)+v(woman) ≈ v(queen), where v(king) is the embedding for “king”.
In other words, the relation between “king" and “man" modeled by their displacement
vector is similar to the displacement between “queen" and “woman".

However, can we model the class-attribute relations by simple vector operations? In other
words, can we say that v(leopard) − v(jungle) ≈ v(whale) − v(ocean), for example?
Figure 5.2c presents the t-SNE representation for the displacement vectors between each
class-attribute pair (e.g. v(sky) − v(blue)). We see that displacement vectors for both
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Figure 5.3: Our model couples class and attribute embeddings using the tensor R. Each slice Rj

captures a relationship like has_shape or motion_type. The embeddings are obtained
from a neural network trained on a large text corpus.

positive existing relations and negative non-existing relations are inseparable. They
group together and often even coincide. We empirically show in Section 5.8.1 that class-
attribute relations are more complicated and are not easily represented by simple vector
operations.

To address this challenge we adopt a more sophisticated and comprehensive method
to learn these relations while at the same time effectively leverage the powerful word
embedding representation.

5.3 Semantic relations model

We now model the complex relations between categories and their corresponding vi-
sual attributes. Leveraging information based on these relations, we can predict the
associations between a novel unseen class and our attribute vocabulary and build the
corresponding ZSL classifier.

We propose tomodel the class-attribute relations using a tensor factorization approach (e.g.
Nickel et al., 2012; Sutskever et al., 2009). We represent the relations using a three
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dimensional tensor R ∈ Rd×d×N where d is the dimension of the word embedding and
N is the number of relations (see Figure 5.3). Each slice Rj ∈ Rd×d in the tensor models
a relation rj (e.g. has_color) as a bilinear operator. The likelihood of class ck being
associated with attribute am through relation rj is:

p(rj(ck, am)) = σ(v(ck)T Rjv(am)), (5.1)

where v(x) ∈ Rd is the vector embedding of word x and σ(·) is the logistic function. We
learn R by minimizing the negative log-likelihood of both positive (P ) and negative
(N ) class-attribute associations for each slice Rj:

min
v(A),Rj

−
∑

(j,k,m)∈P
log(p(tjk,m =1))−

∑
(j,k,m)∈N

log(p(tjk,m =0)), (5.2)

where tjk,m = rj(ck, am).

Note that there are two key components in Eq. 5.2. Firstly, we take advantage of the
powerful representation of skip-gram and learn word embeddings on a large text corpus
to initialize the representation of our class (v(C)) and attribute (v(A)) entities. This gives
our model the ability to generalize well to unseen classes and take advantage of the initial
learned similarities among the attributes. Secondly, in our case of zero-shot classification,
the novel class name is not available during training and we have no information about
how this unseen class is related with the visual attributes. Consequently, we treat the set
of categories as an open set and fix their embedding v(C) to the one learned in Section 5.2.
On the other hand, visual attributes A are usually restricted to entities which we have
seen before, and for which we have training images and learned models. Hence, we treat
A as a closed set which allows us optimize the attribute representation during training by
back propagating the gradients to v(A). This yields improved performance as we will
see in the model analysis in Section 5.8).

Limited training data. Learning R directly from training data is not favorable since
the number of class-attribute associations available for training are usually small. For
example, a typical data set consisting of 40 categories and 80 attributes yields around
1500 positive associations compared to tens or even hundreds of thousands of parameters
in R. Hence, in order to avoid overfitting we build on the ideas of Jenatton et al. (2012)
and reduce the number of parameters that are required to be learned, by representing
the relation operator Rj as a combination of L latent factors:
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Rj =
L∑

l=1
αj

l Θl, αj ∈ RL and Θl ∈ Rd×d, (5.3)

where αj is a sparse vector used to weight the contributions of the latent factors Θ.
Addiotionally, Θl is a rank one factor such that Θl = ulzT

l and ul, zl ∈ Rd. Both α and
Θ are learned while minimizing Eq. 5.2 and constraining ‖αj‖1 ≤ λ. The parameter λ
controls the sparsity of α, and hence the extent to which latent factors are shared across
relations. Modeling R with latent factors has the benefit of allowing the learned relations
to interact and exchange information through Θ and hence improves the ability of the
model to generalize.

5.4 Type of relations

In order to train our model, we need to define the relations that link the classes with
the respective attributes. Usually these relations are harvested through the process of
collecting and annotating attributes (e.g. What color is a bear? What shape is a bus?).
We refer to this type of relations as semantic relations. However, while some data sets
do provide such relation annotations (Farhadi et al., 2009; Wah et al., 2011) others do
not (Lampert et al., 2009). An alternative approach that alleviates the need to manual
relation annotation is to automatically discover relations by utilizing the word embedding
space. As described earlier in Section 5.2, embeddings of semantically related entities
tend to be close to each other (see Figure 5.2b). Hence, one can simply group attributes
into several relations by clustering their embeddings (i.e. N = number of clusters). We
refer to this type of relations as data-driven relations.

5.5 Inferring binary associations

Given an unseen class z, we infer its associations with the attribute set A:

rj(z, am) =


1 if p(rj(z, am)) > t+

0 if p(rj(z, am)) < t−

∅ otherwise
∀m, (5.4)

where thresholds t+ and t− are learned to help select the most confident positive and
negative associations while at the same time provide enough discriminative attributes to
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predict a novel class. Assignment to ∅ discards the attribute for ZSL since we are not
confident about the type (positive or negative) of the association. In other words, t+ and
t− allow our model to choose when to transfer attributes to the unseen class based on our
confidence of the mapping p(rj(z, am)). We learn these thresholds using leave-K-class-out
cross-validation so as to maximize zero-shot classification accuracy of the held out classes.

Zero-shot learning. The score for unseen class z on image x is estimated based on the
predicted attribute associations (Az = {az

m} ⊆ A) using the Direct Attribute Prediction
(DAP) (Lampert et al., 2009) method:

s(z|x) =
∏

am∈Az

p(am = az
m|x)/p(am), (5.5)

where p(am|x) is the posterior probability of observing attribute am in image x. We
assume identical class and attribute priors.

5.6 Baselines

We compare our method of predicting class-attribute associations via word vector rep-
resentations and learned semantic relationships against the state-of-the-art (SOTA) co-
occurrence approach and two other baselines based on word embedding space.

Co-occurrence. As in the state-of-the-art methods for associations prediction (Mensink
et al., 2014; Rohrbach et al., 2010), we use the Microsoft Bing Search API (Bing, 2016),
the Flickr API (Flickr, 2016) and Yahoo Image to obtain hit counts Hck

for classes
(e.g. “chimpanzee”); Ham for attributes (e.g. “stripes”), and Hck,am jointly for class-
attribute pairs (e.g. “chimpanzee stripes”). For Flickr, we consider the number of photos
using class or attribute names as tags or free text (includes titles, descriptions and tags)
and observe that tags typically outperform a free text search. Yahoo Image does not
provide a public API, hence we use the hit counts provided by Rohrbach et al. (2010)
for AwA. To obtain a hit-count based class-attribute association score, we use the Dice
score metric (Mensink et al., 2014) :

sH
ck,am

= Hck,am

Hck
+Ham

, (5.6)

where sH is the co-occurrence similarity matrix of classes and attributes.
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Word embedding space. These methods directly use the word vector representations
(Section 5.2) to predict class-attribute associations. We present two approaches using the
word embeddings:

(1) C→ A (Top Q): Let Q be the average number of attributes that are associated with
every class in the training set. For each unseen class, we consider a positive association
with the Q nearest attributes (in terms of Euclidean distance) using the vector space
embedding:

ack
m =

 1 if v(am) ∈ nearestQ(v(ck))
0 otherwise

∀m, (5.7)

(2) C → A (Similarity): Similar to the co-occurrence method, we construct a simi-
larity matrix between class and attribute labels based on the distances of the vector
representation of the two entities:

sW
ck,am

= exp(−‖v(ck)− v(am)‖2) ∀ck, am. (5.8)

For sH and sW , binary associations are obtained by choosing the best threshold over the
class-attribute similarity matrix which maximizes the ZSL performance.

In addition to the previous attribute-based baselines, we also examine two category-based
baselines for unsupervised ZSL:

(3) C→ C (Top 1): As we see from Figure 5.2a, similar classes do appear together in the
word embedding space. Hence, for each unseen class z we transfer the category classifier
of the training set class ck ∈ C which appears closest to it in the vector space:

sT (z|x) = s(ck|x) such that ck = arg min
cj∈C

(‖v(z)− v(cj)‖) (5.9)

(4) C→ C (Weighted K): This takes into consideration the similarity of the novel class
for all known classes (Bart and Ullman, 2005). We build a classifier as a weighted linear
combination of all training classes where the weights are based on distances between
their vector representations:

swc(z|x) =
K∑

k=1
exp(−‖v(z)− v(ck)‖2) s(ck|x), (5.10)

where s(ck|x) is the score obtained by the classifier for category ck on image x.
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5.7 Evaluation setup

Data sets. We use two publicly available data sets (see details in Table 4.1):

1. Animals with Attributes (AwA) (Lampert et al., 2009).

2. aPascal/aYahoo (aPY) (Farhadi et al., 2009).

Word embedding. The word embeddings with d = 300 dimensional representation are
learned using a skip-gram model (Mikolov et al., 2013) trained on the Wikipedia corpus
as described earlier in Section 5.2. All the class names and most of the attributes used in
our study occur naturally in text and their embeddings are obtained directly from the
learned dictionary. However, for few attributes like “two_dimensional_boxy” there is
no direct match. In such cases, we automatically split the label to the minimum number
of constituted phrases that do appear in the dictionary and take the average embed-
ding of these phrases as the attribute representation i.e. v(two_dimensional_boxy) =
1
2( v(two_dimensional) + v(boxy) )

Relations. We consider two types of relations for training our model (Section 5.4):

1. Semantic relations (SR): For aPY, we use the 3 predefined relations (has_material,
has_shape and has_part). As for AwA, a cursory look at the set of attributes shows
us that they can be easily grouped into 9 sets of relationships like has_color, lives_in,
food_type, etc. Table 5.1 shows the set of semantic relations defined over AwA and
their respective attributes.

2. Data-driven relations (DR): For both data sets, we perform hierarchical agglomer-
ative clustering on the word embeddings of the attributes. By analyzing the respec-
tive dendrogram, the clustering is stopped at 10 groups of attributes. Table 5.2
shows the learned relations in AwA. We see that many of the data-driven relations
can be easily mapped again to their semantic counterparts (e.g. R10 = has_color,
R7 ≈ has_part and R9 ≈ lives_in).

5.8 Experiments

We evaluate our model at: (1) predicting class-attribute associations (Section 5.8.1) and
(2) unsupervised zero-shot learning (Section 5.8.2). This is followed with (3) an in-depth
analysis of our model in Section 5.8.3. Furthermore, we demonstrate the ability of our
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Semantic Relation Attribute

has_color black, white, blue, brown, gray, orange, red, yellow
has_pattern patches, spots, stripes, furry, hairless, toughskin
has_shape big, small, bulbous, lean, muscle, bipedal, quadrapedal
has_part flippers, hands, hooves, pads, paws, longleg, longneck, tail, chewteeth,

meatteeth, buckteeth, strainteeth, horns, claws, tusks
movement_type flys, hops, swims, tunnels, walks, fast, slow, agility
food_type fish, meat, plankton, vegetation, insects
feeding_style forager, grazer, hunter, scavenger, skimmer, stalker
lives_in newworld, oldworld, arctic, coastal, nestspot, desert, bush, plains,

forest, fields, jungle, mountains, ocean, ground, water, tree, cave
behavior fierce, timid, smart, group, solitary, domestic, strong, weak, active,

inactive, nocturnal, hibernate, smelly

Table 5.1: The set of defined semantic relations in AwA and their respective attributes.

Data-driven Relation Attribute

R1 active, inactive
R2 fields, ground, group, domestic
R3 furry, big, smelly, hops, walks, hunter, stalker, bush, fierce, timid,

smart
R4 lean, fast, slow, strong, weak, muscle, agility
R5 patches, spots, stripes, hairless, small, bulbous, nestspot
R6 swims, nocturnal, hibernate, fish, plankton, insects, forager, grazer,

scavenger, solitary
R7 flippers, hands, hooves, pads, paws, tail, chewteeth, meatteeth, strain-

teeth, horns, claws, tusks, bipedal, meat
R8 toughskin, longleg, longneck, buckteeth, flys, quadrapedal, skimmer,

newworld, oldworld
R9 tunnels, vegetation, arctic, coastal, desert, plains, forest, jungle,

mountains, ocean, water, tree, cave
R10 black, white, blue, brown, gray, orange, red, yellow

Table 5.2: The set of learned data-driven relations in AwA and their respective attributes.

model to (4) transfer attributes across data sets without the cost of additional annotations
(Section 5.8.4). Finally, (5) we show that the model is generic and can learn different
types of relations and not only attribute-based ones (Section 5.8.6). In the following, we
refer to our Class-Attribute Association Prediction model as CAAP.
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Model AwA aPY

Co-Occurrence (Mensink et al., 2014;
Rohrbach et al., 2010)

Bing 41.8 (57.4) 20.9 (69.4)
Yahoo-Img 50.9 (62.5) -
Flickr 48.7 (63.4) 28.1 (82.3)

Word Embedding
C→ A (Top Q) 41.3 (53.7) 34.2 (74.0)
C→ A (Similarity) 41.3 (43.1) 34.2 (77.5)

Ours
CAAP (SR) 79.1 (78.2) 76.1 (89.8)
CAAP (DR) 79.7 (78.9) 75.7 (89.6)

Table 5.3: Performance of class-attribute association predictions for unseen classes, presented in
mAP and accuracy in parentheses.

5.8.1 Predicting associations

For training of our model CAAP, we generate both positive and negative training
triplets using the attribute annotations of the training set (e.g. has_part(horse, tail) = 1,
lives_in(dolphin, desert) = 0). We estimate the number of latent factors L and λ using
5-folds cross validation. We report the performance to predict all attribute associations
for the unseen classes, hence we set t− = t+ = 0.5.

Table 5.3 presents the mean average precision (mAP) and accuracy for predicting class-
attribute associations. Among the co-occurrence methods, Flickr and Yahoo Image
search perform better than Bing web search. This can be related to the fact that in
the first two methods the search results are grounded from visual information. As
demonstrated earlier, the word embedding space is not suitable to directly model the
relations and it fails to reliably predict class-attribute associations (see Figure 5.2c). Our
method of modeling relations outperforms state-of-the-art by a significant margin (an
absolute increase of 19% on AwA and 42% on aPY).

Table 5.4 presents examples of the top 5 confident positive and negative associations. In
general, we observe that our model ranks the most distinctive attributes of a category
higher (e.g. leopard↔fast, chimpanzee↔walk, hippopotamus↔strong). A more detailed
insight into the performance of our model for each semantic relation represented by
the precision-recall curve is presented in Figure 5.4, and the association accuracy per
attribute in Figure 5.5.
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Top Associations
Unseen Category Positive Negative
persian_cat tail, fast, paws, active, furry orange, yellow, horns, tusks,

desert
hippopotamus strong, group, big, walks,

ground
claws, flys, red, nocturnal, weak

leopard fast, lean, oldworld, active, tail tusks, water, arctic, plankton,
weak

humpback_whale fast, ocean, water, group, fish red, weak, tunnels, nocturnal,
plains

seal fast, meatteeth, bulbous, big,
toughskin

grazer, tunnels, longleg, hooves,
longneck

chimpanzee walks, group, fast, chewteeth, ac-
tive

arctic, flippers, red, plankton,
strainteeth

rat furry, active, chewteeth, new-
world, fast

plankton, yellow, orange, horns,
desert

giant_panda
fast, walks, active, quadrapedal,
strong

domestic, weak, strainteeth,
desert, flys

pig ground, timid, white, chewteeth,
quadrapedal

cave, plankton, orange, desert,
yellow

raccoon fast, newworld, quadrapedal,
furry, active

bush, hands, longneck, tusks,
desert

Table 5.4: Examples of predicted class-attribute associations for unseen classes in AwA. Wrong
associations are highlighted in gray and italic.

Moreover, both SR and DR models perform at the same level with no substantial
difference. Hence, the data-driven approach is a very good alternative for the semantic
relations thus even removing the need to provide extra relation annotations for CAAP.
In the rest of the experiments, we adopt the DR approach.

5.8.2 Unsupervised zero-shot learning

We now present unsupervised zero-shot classification performance comparing against
methods of the previous section which also use predicted class-attribute associations. For
all attribute-based approaches, we use the DAPmodel as described in Section 5.5. We also
consider the two additional unsupervised ZSL baselines that leverage class embeddings
(C→ C and C→ C (Weighted K) from Section 5.6).

Furthermore, most previous works assume that the attribute labels are provided by a
human operator for the unseen class. While in this work we circumvent this additional
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Figure 5.4: Prediction performance of individual relations learned by CAAP given by precision-
recall curves along with mAP scores (see legend).

overhead, we present the results of supervised DAP (i.e. using ground truth associations)
as a reference.

Image features and classifiers. We use the output of the last hidden layer of the public
BVLC implementation (Jia et al., 2014) of GoogLeNet (Szegedy et al., 2014) as our
1024 dimensional image features. The deep representation is then used to train linear
SVMs (Fan et al., 2008) for the attribute and category classifiers. The SVM parameter
C is estimated using 5-folds cross validation. Moreover, the same image features and
classifiers are used for the all baselines and our model.

For our model, we estimate the number of latent factors L and λ and additionally learn
the thresholds (t−, t+) by 5-folds cross validation.

Results. Table 5.5 presents the mean per class accuracy for the test classes used in
zero-shot learning. We see again that image-based hit-count information obtained by
Yahoo Images or Flickr outperforms general web-based search (Bing). However, they
are all far from supervised ZSL performance with ground truth association.

The word embedding methods based on attributes (C→ A) show poor performance. In
comparison, using the classifier of the nearest class (C→ C (Top 1)) performs well for
AwA (48%) and poorly on aPY (15%). An explanation for this is that the unseen classes
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Figure 5.5: Accuracy of predicting individual attribute associations over the unseen classes.

in AwA are visually close to the train set, while aPY has higher diversity in class types
(animals and man-made objects). Building a classifier by weighting all other classes (C
→ C (Weighted K)) shows moderate performance on both data sets.

Our method outperforms all baselines with an accuracy of 67.5% for AwA and 37.0% for
aPY . In fact, CAAP performs at the level of supervised DAP in aPY, while for AwA we
see impressive performance surpassing the performance of supervised ZSL with ground
truth attribute associations.

Figure 5.6 shows the top 5 most confident zero-shot classifications of our model for
each of the unseen classes in AwA. Correct predictions are marked with green while the
wrong ones in red. Most of the confident classifications are correct.
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Model AwA aPY

Supervised ZSL
DAP (Lampert et al., 2013) 59.5 37.1

Unsupervised ZSL
Co-Occurrence (Mensink et al., 2014;
Rohrbach et al., 2010)

Bing 11.8 13.1
Yahoo-Img 39.8 -
Flickr 44.2 13.8

Word Embedding
C→ A (Top Q) 10.2 14.3
C→ A (Similarity) 26.4 20.4
C→ C (Top 1) 48.6 15.0
C→ C (Weighted K) 40.6 22.5

CAAP (ours) 67.5 37.0

Table 5.5: Zero-shot classification performance presented in mean per-class accuracy.

persian-
cat

hippo-
potamus

leopard humpback-
whale

seal chimpanzee rat giant-
panda

pig raccoon

Figure 5.6: The top 5 ranked results of our CAAP model for each unseen class in AwA.

5.8.3 Model analysis

In this section, we study the effect of the different aspects of our model on the final
unsupervised ZSL performance (see Table 5.6).

(1) Single relation: In the previous experiments, we used a small set of relations that group
similar attributes together. Here, we group all attributes in a single abstract relation
(N = 1) called has_attribute and try to model the class-attribute associations accordingly.
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Model AwA aPY

Single relation (N = 1) 62.6 25.8
Fixed v(A) 65.1 28.2
t− = t+ = 0.5 65.4 25.0

CAAP (full) 67.5 37.0

Table 5.6: The impact of the different hyperparameters of our model on ZSL accuracy.

We observe that in this setting, the absolute drop in accuracy is 5% on AwA while on
aPY we see a reduction by 12%.

(2) Fixed attribute embedding: Similar to the category embeddings, we fix the represen-
tation of the attributes during learning. Here, the performance on both data sets drops
by 2% on AwA and 9% on aPY.

(3) Threshold@0.5: Rather than learning the thresholds (t−, t+) we set them both to
t− = t+ = 0.5, i.e. all attributes are transferred to the unseen category. In this case, the
accuracy drops by 2% on AwA while the performance on aPaY goes down by 12%.

We conclude that updating the attribute representation during learning is beneficial. We
notice that attribute pairs like (big, small) and (weak, strong) which get initialized with
similar embeddings by the skip-gram model are pushed apart by our model to facilitate
the learning of the relations. It is also good to learn multiple relations that account
for the discrepancies in the attributes rather than an abstract mapping that groups all
of them together in one inhomogeneous cluster. Our model learns proper confidence
scores on the associations, and ranks most distinctive attributes higher. This leads to
better ZSL performance when considering the most confident associations. In general,
we notice that results on aPY are more sensitive to changes. This can be related to the
large variance in both classes and attributes, since they describe not only animals (like in
AwA) but also vehicles and other man-made objects.

Finally, in Figure 5.7a, we present the performance of CAAP during cross validation
with respect to the number of latent factors L while λ = 1. We notice that our model
has relatively stable performance with regard of L, especially when the number of latent
factor is L ≥ 50. We observe a similar stable behavior with regard to λ. In Figure 5.7b,
we test our model with varying dimensionality d of word vector representation. We
see here that d has a high impact on the performance of CAAP when it is very small
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Figure 5.7: The mAP of association prediction of our model in AwAwhen (a) varying number of
latent factorsL and (b) varying the dimensionality of the word vector representation d.

(d < 100). However, even when d is as low as 10 dimensions, our model predicts
associations with a mAP of 68.5% outperforming state-of-the-art in Table 5.3.

5.8.4 Attribute transfer across data sets

A major advantage of our approach is the ability to automatically transfer the set of
attributes from one data set to another at no additional annotation cost. For example,
we can use the 85 attributes of the AwA data set to describe categories from aPY and
vice-versa. Most importantly, we do not need to manually associate the classes of one
data set with the attributes of the other. These associations are automatically obtained
through our CAAP model.

In particular, we learn the relations of AwA and aPY jointly without providing any
additional associations. Then, for a novel class (from AwA or aPY), we predict its
associations to the attribute set A = AAwA ∪ AaP Y . We see in Table 5.7 (3rd row), that
CAAP results in a significant improvement surpassing the performance of the manually
defined associations on each data set. Especially on aPY, we see a dramatic improvement
of 12% in performance. This can be attributed to the fact that roughly half the classes
of aPY test set are animals, which benefit strongly from the rich attributes transferred



Predicting Class-Attribute Associations 83

Target (unseen)
Source (seen) AwA aPY AwA+aPY

AwA 67.5 39.5 37.1
aPaY 10.4 37.0 6.2
AwA+aPaY 68.6 49.0 46.8

Table 5.7: Zero-shot classification accuracy when attributes are transferred across data sets using
CAAP. The source set contains the seen classes of the respective data set while the
target is the set of unseen ones. A source AwA and Target aPY means classifying the
unseen classes of aPY based on their predicted associations with the attributes of AwA.

from AwA. This demonstrates the effectiveness of CAAP in integrating knowledge from
different sources without the need for any additional effort.

In Table 5.7, we provide additional evaluation of the attribute transfer by changing the
source and target sets. Comparing the two sources AwA and aPY, it is clear that AwA
encompasses a richer diversity as it results in good performance for both test sets, while
transferring attributes from aPY→AwA results in performance on par with a random
classifier. Taking a closer look at the assigned attributes, we notice the following:

(1)AwA→aPY, not only the animal classes but even somemanmade classes get associated
with reasonable attributes. For example, the class “jetski” is positively associated with
attributes “water" and “fast"; and class “carriage" with “grazer" and “muscle".

(2) aPY→AwA, the attributes assigned to the animal classes are, in general, correct.
However, aPY does not have enough animal-related attributes to distinguish the fine
grained categories on AwA. Most of the test classes in AwA are assigned to attributes
like “eye", “head" and “leg".

(3) AwA+aPY→AwA+aPY, even on this harder setting where we test on 22 unseen
classes (i.e. random performance drops to 4.5% as compared to 10% on AwA and 8.3%
on aPY), our model generalizes gracefully with 46.8% accuracy.

5.8.5 CAAP versus state-of-the-art

In Table 5.8, the performance of our approach is compared against state-of-the-art in
unsupervised ZSL. Both Frome et al. (2013) and Norouzi et al. (2014) use the same
word embedding as ours, while Akata et al. (2015) use both GloVe (Pennington et al.,
2014) and Word2Vec (Mikolov et al., 2013). Additionally, all methods in Table 5.8
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Model Side Information AwA aPaY

DeViSE (Frome et al., 2013) C 44.5 25.5
Text2Visual (Elhoseiny et al., 2013) TextWiki 55.3 30.2
ConSE (Norouzi et al., 2014) C 46.1 22.0
SJE (Akata et al., 2015) C 58.8 -
SJE (Akata et al., 2015) C + HWordNet 60.1 -
HAT (Al-Halah and Stiefelhagen, 2015b) HWordNet 59.7 31.1

CAAP (ours) C 68.6 49.0

Table 5.8: Unsupervised zero-shot learning accuracy of state-of-the-art versus CAAP. The second
column shows the type of information leveraged by each model for the unseen classes
(C: class label, H: hierarchical representation, and Text: online articles).

use image embedding from GoogLeNet. Still, CAAP outperforms approaches based
only on class names (Frome et al., 2013; Norouzi et al., 2014) with more than 20%
on both data sets. Approaches like Text2Visual (Elhoseiny et al., 2013), SJE (Akata
et al., 2015) make use of additional sources of information like Wikipedia articles or
WordNet. Our HAT model from Chapter 4 also leverages the hierarchical structure
in the source to propagate attribute associations to unseen classes in an unsupervised
fashion (Section 4.6.5). Nonetheless, CAAP outperforms state-of-the-art by 8.5% and
18.8% on AwA and aPY respectively, while only leveraging the name of the unseen class.

5.8.6 Beyond attributes

Although the focus of this work is on predicting class-attribute associations, our model is
generic enough and it can learn other types of relations. For example, various approaches
in the literature have reported the advantage of incorporating hierarchical information
for ZSL (e.g. Akata et al., 2015; Rohrbach et al., 2011) and our own work in Al-Halah
and Stiefelhagen (2015b).

Our model can also learn hierarchical relations, for example to predict the ancestors of a
category. To test this, we query WordNet (Miller, 1995) with each of the data set cate-
gories and extract the respective graph relevant to the hypernym links. We then learn the
has_ancestor relation by generating triplets of the form has_ancestor(horse, equine) = 1
using the information from the extracted graph.

The evaluation reveals that we can predict the ancestor relation of an unseen class with
a mAP of 89.8% on AwA and 93.0% on aPY. Interestingly, learning such a hierarchy-
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based relation can aid the learning of some attribute-based relations. The model allows
the various relations to interact and exchange information at the level of the shared
latent factors. For example, in AwA among the improved attribute-based relations, is
has_pattern (+2.5%), and feeding_type (+2.1%). These relations correlate well with the
hierarchical information of the classes (e.g. carnivores tend to have similar pattern and
feeding type). Predicting such a hierarchical relation alleviates the need of a complete
hierarchy or manual synonym matching since this can be automatically handled by
the word embedding and CAAP model. This keeps user intervention to the minimal
requirement of providing class names. We expect that modeling more relations among
the classes jointly with class-attribute relations can result in better performance.

5.9 Summary and discussion

Attribute-based ZSL suffers from a major drawback of needing class-attribute associations
to be defined manually. To counter this, we present an automatic approach to predict the
associations between attributes and unseen classes. We model the associations using a set
of relationships linking categories and their respective attributes in an embedding space.
Our approach effectively predicts the associations of novel categories and outperforms
the state-of-the-art in two tasks; namely association prediction and unsupervised ZSL.
Moreover, we demonstrate the ability of our model to transfer attributes between data
sets at no cost. The transferred attributes enlarge the size of the description vocabulary,
which results in more discriminative classifiers for ZSL yielding an additional boost in
performance.

Discussion. In this work, while we leveraged a powerful word embedding that is
optimized over a large-scale textual data, we learned our relation model over the attribute
data sets from scratch. However, one can also follow a parameter-transfer approach
here. The relation model can be trained to predict many semantic relations in large-scale
knowledge graphs and then transferred and accommodated to learn and predict the
relations in the attribute data sets. Additionally, we proposed a method to select which
attribute to transfer to the unseen class based on our confidence in the predicted semantic
link. However, once the confidence thresholds of the model are learned during training,
they are shared for all target classes. This might lead to cases where an “out of domain”
target class still get some attributes transferred. For example, we saw in our cross data
set transfer evaluation how some animal-related attributes get transferred to man-made
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objects. Hence, incorporating the semantic similarity of the unseen class to the attribute
vocabulary to dynamically estimate these threshold at test time might help in guarding
against such cases and boost the transfer performance.



Chapter 6

Automatic Attribute Discovery from
Natural Language

We saw in the previous chapter how we can circumvent the need for user intervention
to associate categories with attributes by predicting them automatically via semantic
relations. However, while this overcomes the issue of manually defined associations, we
are still reliant on a predefined attribute vocabulary. Such vocabulary is usually manually
defined, where several human operators (or domain experts) have carefully engineered
this set of attributes with certain properties in mind like discrimination and shareability.

This is clearly a major obstacle for attribute-based approaches to scale to a large number
of categories. The cost associated with providing such annotations is prohibitive which
limits the available attribute data sets either in the number of classes, attributes or images
(see Section 2.1.3). Additionally, this non-trivial and expensive work is needed again
when moving across data sets or expanding the current set with new categories. On
the other hand, modern machine learning frameworks, like deep learning, require tens
of thousands of training samples in order to generalize well. Hence, to employ such
powerful frameworks for attribute-based visual recognition, large-scale training data is
essential.

To tackle this problem, we propose in this chapter an end-to-end unsupervised attribute
learning approach. Our goal is to automatically mine an attribute vocabulary and predict
their associations to object categories in a large-scale setting. We achieve this by utilizing
the large text corpora available in the web. Online encyclopedias represent a rich source
of information which encode the collective human knowledge over various concepts and
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Habitat 

Shape 

Family 

Figure 6.1: An encyclopedia article describing an object category. Many discriminative attributes
regarding shape, family and habitat of the object can be identified already in the first
few lines of the article. We propose a model that utilizes such a knowledge source to
automatically discover and learn visual semantic attributes at a large scale.

categories. It is an active and comprehensive knowledge source that keeps growing at
impressive rates (Wikipedia, 2017). Figure 6.1 shows a snippet of an article describing the
animal categoryWombat. One can easily observe that numerous distinctive attributes for
this category about its shape, taxonomy and habitat already appear in the introduction of
the article. In our approach, we tap to this knowledge source to discover these interesting
semantic concepts (attributes) and associate them with images to bridge the gap between
language and vision.

Contributions. To that end, our main contributions are: a) We propose a novel
attribute mining approach from natural textual descriptions that not only accounts for
discrimination but also mines a diverse and salient vocabulary which correlates well with
the human concept of semantic attributes. b) We propose a novel approach to associate
these mined attributes with classes using a deep convolutional model that leverages
visual data to account for the noisy and missing information in text corpora. c) We
experimentally demonstrate that our deep attribute model is able to learn and predict
attributes with high accuracy on ImageNet, as well as it generalizes well across data sets
and outperforms state of the art in zero-shot learning on three benchmarks.

Publication. This chapter is based on our work that is published in Al-Halah and
Stiefelhagen (2017).
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Figure 6.2: Discovering an attribute vocabulary from textual descriptions. Our model leverages
text from articles and their underlying latent topics to select a compact, discriminative,
diverse and salient set of semantic attributes.

6.1 Overview

In the following, we propose an end-to-end approach for large scale attribute-based visual
recognition. Starting with a set of articles describing the object categories, our approach
consists of three main steps: 1) We automatically analyze the articles in order to extract
an attribute vocabulary with the most salient and discriminative words to describe these
categories (Section 6.2). Then, 2) we optimize the class-attribute associations using visual
data by a novel deep convolutional model with a linguistic prior and joint optimization of
class and attribute predictions (Section 6.3). Finally, 3) we train a deep neural model for
large scale attribute classification (Section 6.4). In Section 6.6, we provide an extensive
evaluation and analysis of our model.

6.2 Semantic attribute discovery

LetD = {dj}J
j=1 be a set of text documents describing all object categoriesC = {cm}M

m=1

in the data set. For notation simplicity, we assume |D| = |C|, i.e. there is one document
for each category. LetW = {wi}I

i=1 be the dictionary of words learned from D. Then,
our goal is to select a subset vocabulary A ⊆ W that best describes C:

A = arg max
S⊆W

F (S) where |S| ≤ b, (6.1)
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where F (·) is a set function that captures the desired properties of the subset S, and b is
the size of the sought vocabulary.

Ideally, words inA should: 1) discriminate well between the object categories; 2) describe
diverse aspects of the categories rather than focusing only on one or few properties (e.g.
only colors or parts); and 3) represent salient semantic concepts understandable by
humans. Next, we describe how we capture these different criteria of S in our objective
function (Figure 6.2).

6.2.1 Discrimination

Let V = {vj = fv(dj) : vj ∈ R|W |}J
j=1 be a text-based embedding (e.g. fv(·) is based on

tf·idf or one-hot encoding) learned over the document set D such that vi
j captures the

word wi importance in document dj . We construct an undirected fully connected graph
G(N,E). Each node ni ∈ N represents a category ci. Each edge eij(i 6= j) has a weight:

gij(S) =
∑

wk∈S

|vk
i − vk

j | (6.2)

that captures how well words in S discriminate one class from the others. Additionally,
each node has a self loop eii with a weight

gii(S) =
∑
j 6=i

∑
wk /∈S

|vk
i − vk

j |. (6.3)

To capture the discriminative power of a set S, we employ the entropy rate of a random
walk X on graph G as defined by Liu et al. (2014) and Zheng et al. (2014a).

In summary, let gi(S) = ∑
j gij(S) be the sum of incident weights of node ni, and the

total sum of weights in the graph is gT = ∑
gi. The transition probability among the

nodes is set to:

pij(S) =


gij(S)
gi(S) if i 6= j

1−
∑

t
git(S)

gi(S) if i = j
(6.4)

Note that pij is a set function and the transition probabilities will change when the
selected set S changes. The incident weights gi for each node in the graph are kept
constant because of the self loops weight gii. Let the stationary distribution for the
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random walk be µ = (µ1, µ2, . . . , µ|N |), where µi = gi

gT
. Then the entropy rate of a

random walk on G is:

Fdis(S) = −
∑

i

µi

∑
j

pij(S)log(pij(S)) (6.5)

The maximization of Fdis demands the maximization of pij , i.e. the discrimination
among all pairs of classes.

6.2.2 Diversity

Another desired property of a good set of attributes is that it describes various aspects
of the categories. That is, we want to encourage diversity among the selected words to
reduce the bias towards a specific set of classes and to mine a vocabulary that describes all
categories equally well. In order to promote diversity, we first uncover the latent semantic
structure among the categories. We leverage here the unsupervised probabilistic topic
models, e.g. LDA (Blei et al., 2003), to discover underlying themes in the documents.

Let T = {Tk}K
k=1 be a set of topics learned from documents D and dictionaryW . We

define the diversity objective criteria as:

Fdiv(S) =
∑
Tk

√ ∑
wi∈S

s(wi, Tk) (6.6)

where

s(wi, Tk) =


p(wi|Tk) if Tk = arg max

Tj

p(Tj|wi)

0 otherwise
(6.7)

Fdiv encourages topic diversity in S since adding words that belong to a previously chosen
topic will have diminishing gain because of the square root function. It also accounts
for word importance for the topic since adding a word with higher p(wi|Tk) results in
a higher gain. Moreover, by encouraging diversity, Fdiv also discourages redundancy.
A word and its synonyms are more likely to belong to the same topic, hence they
are less likely to be chosen together. That is, Fdiv favors a diverse, less redundant and
representative set of words.
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Rank Top Words in Topic
1 instrument play music sound pitch note musical reed player violin make tone

range octave bass family key band fiddle hole
2 spaniel english welsh cocker springer show cardigan field pembroke work dock

type small sussex average come line variety would century
3 missile target system wing guide flight use force parachute engine know projectile

rocket air lift guidance kinetic anti weapon shuttle
...

198 call include allow many time upper consist long much several little last low reach
second slow half make follow suitable

199 use make allow would prevent work take give open cause come reduce keep provide
way protect help less leave property

200 use century become modern early world work time begin develop could history
new war late development introduce part include today

Table 6.1: Ranking of discovered topics according to their significance, i.e. how different they are
from junk topic prototypes. While the top ranked topics capture salient concepts like
music and dogs, the low ranked ones are obscure and have no particular theme.

6.2.3 Saliency

An important aspect of semantic attributes is that they represent salient words with
relatively clear semantic concepts, e.g. “leg”, “yellow” and “transparent”. Whereas words
like “become”, “allow” and “various” belong to the background language structure, hence
they are usually ambiguous and carry less or no semantics by themselves. Capturing word
saliency directly is hard due to word polysemy and since word importance depends on
the context. Therefore, we propose to capture this property using the learned underlying
topic structure among the documents as a proxy.

One can estimate the significance of a topic by comparing its distribution over the words
p(w|topic) and documents p(d|topic) to junk topics prototypes (AlSumait et al., 2009).
A junk topic is one that has uniform distribution over words (i.e. it doesn’t capture any
specific theme) or over documents (i.e. it captures the common theme of all documents).
By measuring the distance (e.g. KL divergence) of the discovered topics to these junk
prototypes, we can obtain a ranking of the topics regarding their significance.

Table 6.1 shows the highest and lowest ranked topics over a set of documents using
topic significance analysis model from AlSumait et al. (2009). The model considers
three junk topic prototypes: the uniform distributions over words and documents and
the vacuous semantic distribution. It ranks the discovered topics by significance using
their weighted average distance to the junk prototypes measured by three metrics: KL-
divergence, cosine distance and correlation coefficient. One can see that the top ranked
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topics revolve around specific themes like “music”, “dogs” and “military”, while the
lowest ranked topics have no theme in particular and are related to the background
structure of the language or the documents domain.

Let insig(T ) be the set of ρ = 10% lowest ranked topics. We define a saliency cost
function as:

C(S) =
∑

wi∈S

(1 + γ
∑

Tk∈insig(T )
p(Tk|wi)), (6.8)

where γ controls the contribution of the insignificance score of a word to the cost
function. C(·) favors salient words which will have a cost close to 1 while it punishes
junk words which have a higher probability to give rise to junk topics.

6.2.4 Submodular optimization

We formulate the vocabulary selection problem in a submodular knapsack framework
(Atamtürk and Narayanan, 2009). A set function F is submodular if it satisfies the
decreasing marginal gain condition (Fujishige, 2005) i.e.:

F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B) for A ⊆ B. (6.9)

In other words, the benefit of adding a new element s to the set is higher if it happens
earlier. All the previous functions Fdis, Fdiv and C satisfy the marginal gain condition
and are submodular.

Discrimination: A formal proof of the submodularity of the entropy rate of a random
walk on G can be found in Liu et al. (2014). Informally, according to the defined edge
weights gij(·) in the constructed graph G, adding a word w to S will result in increasing
the edge weights between some node pairs in G. However, this increase will result in a
lower increase in the uncertainty of the walk if it happens in a later stage, since then it
will be shared with the contributions of other words in S discriminating between the
same pairs.

Diversity: Note that s(wi, Tk) ≥ 0 ∀wi. Adding a new word w that belongs to a new
topic (the outer sum) will result in a higher gain than adding a word to an already existing
topic in S (the inner sum). This is due to the fact that the square root function is a
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monotonically increasing concave function and thus submodular (Fujishige, 2005). Fdiv

is sum of submodular functions and, therefore, it is submodular.

Saliency: Note that p(Tk|wi) ≥ 0 ∀wi, therefore C(S) > 0 and is monotonically increas-
ing. Adding a new word w to S in C will always increase the cost by the same margin,
hence C is submodular.

We formulate our main objective function as:

max
S⊆W

F (S) = Fdis(S) + λFdiv(S) subject to C(S) ≤ b (6.10)

where b is the budget and λ is a hyper-parameters controlling the contribution of Fdiv.
F (·) is submodular since it is a linear combination of submodular functions (Fujishige,
2005).

Since F (·) is nondecreasing (i.e. F (S1) ≤ F (S2) ∀S1 ⊆ S2 ⊆ W ) and F (∅) = 0, then
F (·) can be optimized using a greedy algorithm with a guaranteed solution to be within
at least a constant fraction (1− 1/e) of the optimal objective value (Nemhauser et al.,
1978). Moreover, we can take advantage of the submodular property of F (·) and use
a lazy greedy algorithm (Minoux, 1978) to significantly reduce the computation cost.
That is, since the gain of adding an item to the set S can only decrease after adding
other items, we can adopt a lazy evaluation scheme where only the few most promising
candidates are evaluated to select the best. Specifically, we adopt the Cost-Effective Lazy
Forward (CELF) greedy selection algorithm (Leskovec et al., 2007). CELF takes into
consideration the benefit to cost ratio to measure the gain of adding a new element and, at
the same time, it maintains the bounds on the solution quality. We start with an empty
set S = {}, then we incrementally add elements to S with maximum gain according to
F using lazy evaluations.

6.3 Association optimization with a linguistic prior

In the previous step, we have selected the best attribute vocabulary A that describes
the different categories ci ∈ C in our data set. Having this set of words, we get an
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Figure 6.3: (a) The joint optimization of class-attribute associations using a linguistic prior and
(b) the deep attribute model architecture.

initial estimate of the class-attribute association matrix Ml = [mij] (Figure 6.2) using
the text-based embedding V learned over D.

mij =

 +1 if vi
j > 0

−1 otherwise
(6.11)

However, this association matrix may contain some noise since V does not capture
the context, and not all relations for a certain category are necessarily represented in
the respective text documents. Usually, simple and obvious attributes of a class are
omitted from text if they are not interesting enough to mention from the perspective
of the author. For example, while most animals have attributes like “head”, “leg” or
“skin”, these are not always mentioned in text when describing the animal unless there is
something special about it. Moreover, V is a bag of words representation, i.e. it does
not capture the context of the attributes in text. This results in a negative relation like
“a tiger does not live in ocean” being captured as a positive association between “tiger”
and “ocean” (i.e. mtiger

ocean = +1) since V relies only on the presence of the word in the
description.

We propose to improve the initial associations obtained from language by grounding
it to visual data using a deep convolutional network model. The network is trained to
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predict both attributes and categories while at the same time constraining the weights of
the last layer to the initially estimated associations Ml (see Figure 6.3a). Note that this
architecture resembles the direct attribute prediction model DAP where the object class
is estimated based on the predicted attributes. We define the training loss function as:

L(x) = Lc(x) + β1La(x) + β2‖M−Ml‖1 (6.12)

whereLc andLa are the cross entropy loss of predicting the object category and the binary
attributes of a sample x, respectively. ‖M −Ml‖1 is an entry-wise L1 regularization
term over the weights of the last fully connected layer M based on the initial association
matrix Ml.

By using the linguistic prior we force the network to preserve the semantic link between
linguistic and visual data. This prevents the network from finding arbitrarily data-driven
associations that can not be estimated anymore from textual description. At the same
time, by controlling β2 we allow for small modification to the associations when there is
a strong visual signal supporting change to account for noise and missing information in
Ml.

We adopt an AlexNet-like architecture (Krizhevsky et al., 2012) for the joint deep model.
That is, we have 5 convolutional layers followed by two fully connected layers and a
Sigmoid activation function for attribute prediction, then another fully connected layer
with softmax activation for category classification.

At the end of the joint optimization, we get the new binary association matrix of classes
and attributes M∗ by thresholding the weights of the last layer M. The optimized
associations M∗ redefine the positive and negative label assignments for each attribute
which were initially based on Ml.

6.4 Deep attribute model

Finally, given the optimized associations M∗ from the previous step, we train a deep
model for attribute prediction (Figure 6.3b). The network has a similar architecture
as the one we used for the joint optimization. However, we remove the last layer
for the category prediction and add a new fully connected layer before the attribute
prediction layer. That is, the network is made of 5 convolutional layers followed by
three fully connected layers. The last attribute prediction layer is followed by a Sigmoid



Automatic Attribute Discovery from Natural Language 97

activation function. We use the cross entropy loss to train the network for binary
attribute prediction.

Predicting objects. Given an image x, we estimate the corresponding object category
using the direct attribute prediction model (DAP) (Lampert et al., 2009). We adopt
a summation formulation rather than the probabilistic one since it is more efficient
(Al-Halah and Stiefelhagen, 2015b; Rohrbach et al., 2011), especially in our large-scale
case. That is, for a class cm, the estimated prediction score of cm to appear in image x as:

s(cm|x) =

∑
i

[[acm
i = 1]] s(ai|x)∑
i

[[acm
i = 1]] . (6.13)

where s(ai|x) is the prediction score of attribute ai in image x, acm
i are the attributes

of class cm, and the classification scores are normalized to have a zero mean and unit
standard deviation.

Zero-shot learning. We use the same formulation from Eq. 6.13 for classifying unseen
categories in zero-shot learning. However, in this case the associations of the novel class
are estimated directly from the textual description.

6.5 Evaluation setup

Data set. Through our experiments, we use the ILSVRC2012 data set from ImageNet
(Russakovsky et al., 2015). It contains 1000 categories and more than 1.2 million images.

Articles. To collect the encyclopedia articles, we coded a simple tool to automatically
retrieve the articles from Wikipedia. For each synset in the ImageNet data set, the tool
queries the Wikipedia API using the different words in the synset to get articles with
the same title. We were able to collect about 89% of the articles automatically using the
previous method. The rest of the synsets either did not have an exact matching article
title in Wikipedia or there were ambiguities in the retrieved articles since multiple ones
matched the query. Articles for these synsets were then acquired interactively. In the
end we acquired 1100 articles with around 80500 unique words.

Preprocessing. All document are preprocessed to remove non-alphabetic characters,
and words are lower cased and stemmed. To avoid bias toward lengthy articles for some
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categories, we truncate the articles length to a maximum of 500 words. We extract a
tf·idf (term frequency·inverse document frequency) embedding for each document in
the set. The tf·idf measures the importance of a word in a document by accounting for
how often this word appears in the document and how frequent it appears in all other
documents. We use the normalized tf and logarithmic idf scores (Salton and Buckley,
1988). For each synset, we average the embedding over all its documents to get its final
representation.

Implementation details. For the attribute discovery, we learn a set of 200 topics using
the Latent Dirichlet Allocation model (Blei et al., 2003). We empirically set λ = 0.001,
γ = 20 and the maximum number of attributes to discover b = 1200. We set the
hyperparameters β1 and β2 for the joint deep model such that the initial losses from the
three terms are of similar magnitudes. Figure 6.4 shows the detailed architecture of the
deep neural networks used for the joint and attribute models. All the convolutional and
hidden fully connected layers are followed with a batch normalization layer and a ReLU
activation function. For the final deep attribute model, we initialize the weights of the
convolutional layer from the previous network trained for the joint optimization. All
networks are trained using Adam (Kingma and Ba, 2015) for stochastic optimization
with an initial learning rate of 0.001 and a weight decay of 5e− 4.

6.6 Experiments

In this section, we provide a thorough evaluation of our model in selecting a set of good
attributes, association optimization and predicting semantic attributes. Furthermore, we
evaluate our deep attribute model in zero-shot learning and its generalization properties
across data sets.

6.6.1 Selecting the attribute vocabulary

We evaluate the quality of the selected attribute vocabulary from two perspectives:
1) the performance of the attribute embedding in capturing object similarity and; 2) the
vocabulary saliency.

Attribute-based class embedding. A good attribute representation of categories should
capture the similarity among the classes. That is, categories that are visually similar
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(a) Deep Joint Model
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(b) Deep Attribute Model

Figure 6.4: The detailed network architecture used for (a) the joint and (b) attribute models.

should share most of their attributes and have similar embeddings. To capture the quality
of the attribute embedding, we rank the classes based on their similarity in the attribute
embedding space. We use the normalized discounted cumulative gain (nDCG) (Siddiquie
et al., 2011) to compare among the different methods:

nDCG = DCGk

IDCGk

where DCGk =
k∑

i=1

2reli − 1
log2(i+ 1) (6.14)

Such that reli is the relevance of the ith ranked sample, and the ideal rank score IDCGk is
that for the rank of the classes for each category based on their distances in the ImageNet
hierarchy.

As baselines, we consider several common feature selection methods: 1) max-Relevance
and min-Redundancy (mRmR) (Peng et al., 2005); 2) Multi-Cluster Feature Selection
(MCFS) (Cai et al., 2010); 3) Local Learning-based Clustering method (LLC-fs) (Zeng
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Figure 6.5: The ranking performance of the attribute embedding discovered by our approach
against the baselines.

Model Relevance (%) ↑ Junk (%) ↓ Saliency (%) ↑
mRmR 20.8 53.0 33.9
MinCorr 14.4 20.6 46.9
LLC-fs 29.1 42.9 43.1
MCFS 18.6 13.6 52.5

Ours 44.5 2.6 71.0

Table 6.2: Saliency scores of the selected vocabularies.

and Cheung, 2011); 4) Minimum Correlation (MinCorr) which selects words that have
the least correlation with the rest of the vocabulary.

Figure 6.5 shows the ranking quality of all the baselines and our approach up to position
K = 10 in the ranking list. Our approach outperforms all baselines and produces an
embedding that captures the within category similarities. We also consider different
variants of our approach by removing some of the optimization terms from Eq. 6.10.
Each of the terms used in our submodular optimization contributes positively to the
quality of the attribute embedding.
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Vocabulary saliency. Here, we explore how the selected vocabulary correlates with
human understanding of salient semantic attributes. To that end, we pick 100 synsets
that are uniformly distributed in the ImageNet hierarchy. For each category, we select
50 random words from the dictionary with positive tf·idf scores for that class. We
asked 5 annotators to classify the association between each class and its 50 words into 4
categories:

1. positive: such as “The horse has a tail”.

2. negative: like “The dolphin does not walk”.

3. unknown: when the annotator does not have the knowledge to decide the type.

4. junk: when the word itself does not carry a clear concept to define an association.

The majority of the annotators agree on 84% of the labels. The labels are distributed as
(25.1% positive, 47.8% negative, 1.9% unknown and 25.2% junk).

Out of the 4 categories, we are interested in the positive and junk categories since they
describe the semantic saliency of the words. The negative and unknown types do not
deliver much information about the semantics since a word having a negative association
might have a positive one with other classes, while the unknown reflects the lack of
knowledge of the annotator.

We obtain the probability of a word from the annotation vocabulary wi ∈ WA to
engage in a positive association p(+|wi) or being junk p(J |wi) by marginalizing over
all annotators and object classes. We then define the weighted relevance of the selected
words S as:

Relevance(S) =
∑

wi∈S∩W A p(+|wi)∑
wj∈W A p(+|wj)

, (6.15)

and similarly for the junk score:

Junk(S) =
∑

wi∈S∩W A p(J |wi)∑
wj∈W A p(J |wj)

. (6.16)

The final saliency score of S is then defined as the average of both:

Saliency(S) = 1
2(Relevance(S) + (1− Junk(S))). (6.17)
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Model Attributes Categories (DAP)
Accuracy AP Top1 AP

Joint Model
w/o Linguistic Prior 55.2 22.4 30.4 19.0
w/ Linguistic Prior 60.3 28.9 45.2 39.5

Attribute Model
w/o Association Opt. 74.8 64.1 51.4 48.3
w/ Association Opt. 76.9 68.2 55.9 54.2

Table 6.3: Attribute prediction performance.

(a) (b)

Figure 6.6: Performance of individual attributes in average precision (AP) and area under receiver
operating characteristic (AUC).

Table 6.2 shows the performance of our approach and the baselines from the previous
section. While some of the baselines performed relatively well in getting a good attribute
embedding, large portions of the selected words by these methods do not carry a clear
semantic concept. Our approach has a much higher relevance score while at the same
time the lowest junk score among all baselines. This indicates that the set of attributes
discovered by our method correlates well with the human concept of semantic attributes.

6.6.2 Attribute prediction

Having selected a set of salient attributes, we evaluate here the performance of our model
in predicting these attributes in images. Table 6.3 shows the attribute prediction accuracy
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and average precision (AP). It also reports the object Top1 classification accuracy and
the AP based on the predicted attributes and when using the DAP model (Eq. 6.13).

Joint Model. In the first section of Table 6.3, it is interesting to see that regularizing
the weights of the last fc layer with the language prior improves the performance of
attribute predictions by 5% in accuracy and 6% in AP. At the same time, it results in
a boost in object classification Top1 accuracy by 15%. These results show that side
information obtained from language has a significant impact on the performance of the
deep model. Additionally, the unregularized network learns quite different associations
between classes and attributes than those in Ml. Only 13% of the positive associations
in this case are shared with those learned from the textual description. This indicates
that the semantic link between the attributes and the classes is lost in this model. In
contrast, the regularized model preserves the semantics and retains more than 93% of
the positive associations in Ml.

Attribute Model. Finally, training the deep attribute model with the optimized associ-
ations M∗ results in a better model compared to a one trained directly using Ml. This
indicates that our joint model managed to account for some of the noise and missing
data in Ml. The deep attribute model trained with M∗ has higher attribute and object
prediction performance. Moreover, our deep attribute model achieves 75% Top5 object
classification accuracy, by predicting objects through the semantic attribute layer. This
is an impressive performance of the attribute model since it almost matches the perfor-
mance of a deep model with the same architecture trained directly for object classification.
By training such a model we get 80% Top5 accuracy.

Figure 6.6 shows the performance of the individual attributes. Around 80% of the
attributes can be predicted with an average precision better than 0.6.

6.6.3 Zero-shot learning

An important feature of semantic attributes is their ability to form a shared knowledge
layer which can be transfered to unseen classes. We evaluate here the performance of
our discovered attributes in classifying unseen classes (i.e. zero-shot learning). While
there is no standard zero-shot split in ImageNet, there are two common splits used in the
literature and defined over the ILSVRC2010 classes, split A from Rohrbach et al. (2011)
and B from Mensink et al. (2012). Both of them, split the classes into 800 seen and 200
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Model Split 200 labels 1000 labels

Rohrbach et al. (2011) A 34.8 -
PST (Rohrbach et al., 2013a) A 34.0 -
Ours A 46.1 15.9
Ours - BT A 48.0 20.2

Mensink et al. (2012) B 35.7 1.9
DeViSE (Frome et al., 2013) B 31.8 9.0
ConSE (Norouzi et al., 2014) B 28.5 -
AMP (SR+SE) (Fu et al., 2015) B 41.0 -
Ours B 46.3 15.2
Ours - BT B 49.0 20.0

Ours (w/o assoc. opt.) C 45.8 14.8
Ours C 48.1 16.9

Table 6.4: Zero-shot performance (Top5 accuracy) on 200 unseen classes from Imagenet.

unseen categories. We train our model as before while this time we use only the 800 seen
classes of the respective split for training and we test on the remaining unseen classes.

Table 6.4 shows the Top5 accuracy of our model over the two splits (A & B). Our deep
attribute model outperforms the state-of-the-art by 11% on split A and by 5% on split B.

Furthermore, we analyze the bias of our model toward seen classes similar to Frome et al.
(2013). In this test setup, both the seen and unseen labels are considered as candidates
when predicting the object category. Our model achieves 15% accuracy on split A
& B and shows much less bias compared to state of the art with 6% improvement.
Additionally, if we assume the availability of test data as a batch (Ours-BT), we can get a
better estimation of the mean and standard deviation for classifiers scores in Eq. 6.13.
This results in additional improvement of performance by 3%.

Since in the zero-shot settings, we optimize the associations using only data from the
seen categories, we analyze in the last section of Table 6.4 the performance of our model
with and without association optimization. Similar to A & B, we define a new split
C on ILSVRC2012 with 800 seen and 200 unseen classes. Here again, we find that
the association optimization did not result in a bias towards the seen classes, rather it
improved the model performance. Overall, we see that optimizing the associations is
beneficial in both within and across category prediction.



Automatic Attribute Discovery from Natural Language 105

Model Side Info. AwA aPY

Supervised ZSL
DAP (Lampert et al., 2013) (AlexNet) A 54.0 31.9
DAP (Lampert et al., 2013) (GoogLeNet) A 59.5 37.1

Unsupervised ZSL
DeViSE (Frome et al., 2013) W 44.5 25.5
ConSE (Norouzi et al., 2014) W 46.1 22.0
Changpinyo et al. (2016) W 57.5 -
CAAP (Al-Halah et al., 2016b) W 68.6 49.0
HAT (Al-Halah and Stiefelhagen, 2015b) H 59.7 31.1
SJE (Akata et al., 2015) H + G 60.1 -
Xian et al. (2016) H + G + W 66.2 -
EZSL (Romera-Paredes and Torr, 2015) T 58.5 -
Elhoseiny et al. (2013) T 55.3 30.2
Qiao et al. (2016) T 66.5 -

Ours (binary assoc.) T 77.3 57.6
Ours (continuous assoc.) T 79.7 57.5

Table 6.5: Zero-shot performance of various models on AwA and aPY. The supervised models
use manually defined attributes (A), while the unsupervised approaches rely on other
sources like word embeddings such as Word2Vec (W) (Mikolov et al., 2013) and GloVe
(G) (Pennington et al., 2014); hierarchy-based information (H) (Miller, 1995) or textual
description (T).

6.6.4 Across data sets ZSL

To compare the performance of our model that we learned on ImageNet with a manually
selected attribute vocabulary, we evaluate our deep attribute model on two public data
sets: 1) Animals with Attributes (AwA) (Lampert et al., 2009); 2) aPascal/aYahoo (aPY)
(Farhadi et al., 2009).

We collect articles for each of the unseen categories to extract their associations to our
discovered attribute vocabulary. We consider both using the raw continuous associations
(i.e. tf·idf values) and binary associations. When leveraging continuous associations, we
simply weight the attribute predictions in Eq. 6.13 with the respective association weight
learned from text. We test our model on the unseen categories on both data sets without
any fine tuning of the trained deep model (off-the-shelf).

FromTable 6.5 we see that our model outperforms all unsupervised zero-shot approaches.
Compared to methods from Elhoseiny et al. (2013) and Qiao et al. (2016) that used
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(a) AwA (b) aPY

Figure 6.7: Zero-shot performance with varying textual description lengths and when using
binary and continuous associations.

similar type of side information as ours, we have up to 13% improvement. Moreover,
our model outperforms a DAPmodel based on the manually defined attribute vocabulary
and using image embeddings from an AlexNet model (Krizhevsky et al., 2012) or even
from GoogLeNet (Szegedy et al., 2014). This demonstrates the impressive generalization
properties of our model across data sets.

Text Length. Here, we explore the effect of the article length on the prediction perfor-
mance. We vary the length of the considered section of the articles from 100 to 1000
words. Then, we extract the associations of the unseen classes in AwA and aPY from the
truncated articles.

Figure 6.7 shows the performance of the model in this case. We notice that the optimal
length of the article increases in correlation with the granularity of the categories in the
data set. For AwA which contains only animal classes, on average longer articles (400
to 600 words) are needed to sufficiently extract discriminant associations. In contrast,
categories in aPY are easier to separate with shorter articles (200 words). Moreover,
we see that most of the important attributes are mentioned quite early in the article,
with performance degrading when we consider relatively long articles (more than 800
words). In both data sets, we see that continuous associations outperform their binary
counterpart in predicting the categories in most cases.
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6.6.5 Discovered Attributes

Using our model, we have discovered and learned 1636 semantic attributes describing
1360 categories with more than 1.2 million images from ImageNet (ILSVRC2010 &
ILSVRC2012). This amounts to roughly 2 million class-attribute associations. On
average, each attribute is shared between 29 categories, and each category has about 33
active attributes. Some of the most shared attributes (with more than 100 categories) are
water, black, red, breed, tail, metal, coat, device, hunt, plastic, yellow and hair. Some of
the least shared attributes (with less than 10 categories) are cassette, cowboy, pumpkin,
sweater, convertible, ballistic, hump, axe, drilling, laundry, cash and quilt.

6.7 Summary and discussion

In this chapter, we propose a novel end-to-end approach to discover and learn attributes
at a large scale form textual descriptions. Our model discovers a salient, diverse and
discriminative set of attribute vocabulary that correlates well with human understanding
of semantic attributes. Moreover, in order to account for noise and missing data in the
text corpora, we propose to use a linguistic prior in a joint deep model to optimize
the class-attribute associations. In an evaluation on ImageNet, we show that our deep
attribute model is able to learn and predict semantic attributes with high accuracy for
a thousand categories. Our model outperforms the state-of-the-art in unsupervised
zero-shot learning and it generalizes well across data sets.

Discussion. In this work, our model relied on a simple method to estimate the initial
text-based associations. However, as discussed in Section 6.3, these estimation tend
to be quite noisy. Hence, a more advanced NLP approach can help improving the
initial estimation. For example, by taking the attribute context in the article into
account or by incorporating a form of sentiment analysis, a model can predict whether
an attribute is associated positively or negatively with a category. Additionally, our
model produced automatic attribute annotation at the category level. However, we
saw previously in Section 4.6.4 that image-level annotations lead to better attribute
models and, consequently, better transfer performance. Thus, extending our model to
produce image-level annotations can be beneficial. Finally, the AlexNet-like architecture
used in our deep attribute model can be replaced with deeper and more advanced
architectures (e.g. Huang et al., 2016; Szegedy et al., 2014) to learn more discriminative
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attributes. Specifically, a fully convolutional architecture (e.g. He et al., 2016; Simonyan
and Zisserman, 2014) might be better suited to learn the semantic attributes since many of
them are correlated with local image regions that can be better captured with convolution
layers.



Chapter 7

Application: Attributes for Fashion
Forecast

We saw in the previous chapters various applications of semantic attributes in visual
recognition and transfer learning. Due to their representation properties (Section 2.1),
attributes were employed in awide spectrum of vision applications, like image description,
object classification, visual question answering etc. In this chapter, we introduce yet a
novel real world application of semantic attributes, namely visual fashion forecasting.

Our goal is to predict the future popularity of fine-grained fashion styles (Figure 7.1).
For example, having observed the purchase statistics for all women’s dresses sold on
Amazon over the last N years, can we predict what salient visual properties the best
selling dresses will have 12 months from now? Given a list of trending garments, can
we predict which will remain stylish into the future? Which old trends are primed to
resurface, independent of seasonality?

The ability to predict the future of styles rather than merely items is appealing for
applications that demand interpretable models expressing where trends as a whole are
headed, as well as those that need to capture the life cycle of collective styles, not
individual garments. Computational models able to make such style forecasts would be
critically valuable to the fashion industry, in terms of portraying large-scale trends of
what people will be buying months or years from now.

A key technical challenge in forecasting fashion is how to represent visual style. Unlike
articles of clothing (e.g., sweater, vest), which are well-defined categories handled readily
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Figure 7.1: We propose to predict the future of fashion based on visual styles.

by today’s sophisticated visual recognition pipelines (e.g. Bossard et al., 2012; Chen
et al., 2012; Liu et al., 2016; Simo-Serra and Ishikawa, 2016), styles are more difficult
to pin down and even subjective in their definition. In particular, two garments that
superficially are visually different may nonetheless share a style. Semantic attributes
represent a good bases to represent fashion styles. They capture visual concepts at various
resolutions from the most local (e.g. v-neck) to the global (e.g. casual). Moreover, they
provide us with a semantic description of styles which helps us to better understand
what are the key characteristics that distinguish a style from another.

Contributions. To that end, we introduce the first approach that forecasts the popularity
of visual styles. We propose a model to discover a vocabulary of latent styles from large
scale unlabeled fashion images. Our model is capable of representing trends in the latent
styles over time and predicting their popularity in the future. Furthermore, we show
how to extract style dynamics (trendy vs. classic vs. outdated), and forecast the key visual
attributes that will play a role in tomorrow’s fashion—all based on learned visual models.
Finally, we analyze the tradeoffs of various forecasting models and representations, the
latter of which reveals the advantage of unsupervised style discovery based on visual
semantic attributes compared to meta-data based and off-the-shelf CNN representations,
including those fine-tuned for garment classification.

Publication. This chapter is based on our work that is published in Al-Halah et al.
(2017). The work was carried out during a research internship at the University of Texas
at Austin and in cooperation with Prof. Kristen Grauman.
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7.1 Overview

We propose an approach to predict the future of fashion styles based on images and
consumers’ purchase data. Our approach 1) learns a representation of fashion images
that captures the garments’ visual attributes (Section 7.2); then 2) discovers a set of
fine-grained styles that are shared across images in an unsupervised manner (Section 7.3);
finally, 3) based on statistics of past consumer purchases, constructs the styles’ temporal
trajectories and predicts their future trends (Section 7.4).

7.2 Elements of fashion

In some fashion-related tasks, one might rely solely on meta information provided by
product vendors, e.g., to analyze customer preferences. Meta data such as tags and textual
descriptions are often easy to obtain and interpret. However, they are usually noisy and
incomplete. For example, some vendors may provide inaccurate tags or descriptions
in order to improve the retrieval rank of their products, and even extensive textual
descriptions fall short of communicating all visual aspects of a product.

On the other hand, images are a key factor in a product’s representation. It is unlikely that
a customer will buy a garment without an image no matter how expressive the textual
description is. Nonetheless, low level visual features are hard to interpret. Usually, the
individual dimensions are not correlated with a semantic property. This limits the ability
to analyze and reason about the final outcome and its relation to observable elements in
the image. Moreover, these features often reside in a certain level of granularity. This
renders them ill-suited to capture the fashion elements which usually span the granularity
space from the most fine and local (e.g. collar) to the coarse and global (e.g. cozy).

Semantic attributes serve as an elegant representation that is both interpretable and
detectable in images. Additionally, they express visual properties at various levels of
granularity. Specifically, we are interested in attributes that capture the diverse visual
elements of fashion, like: Colors (e.g. blue, pink); Fabric (e.g. leather, tweed); Shape
(e.g. midi, beaded); Texture (e.g. floral, stripe); and Parts (e.g. side-slit, sleeves). These
attributes constitute a natural vocabulary to describe styles in clothing and apparel. As
discussed in Section 2.1.4, some prior work considers fashion attribute classification
(Huang et al., 2015; Liu et al., 2016), though none for capturing higher-level visual styles.
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Figure 7.2: The architecture of our deep attribute CNN model.

To that end, we train a deep convolutional model for attribute prediction using the
DeepFashion data set (Liu et al., 2016). The data set contains more than 200, 000 images
labeled with 1, 000 semantic attributes collected from online fashion websites. Our deep
attribute model has an AlexNet-like convolutional neural network (CNN) structure
(Krizhevsky et al., 2012). Figure 7.2 shows the details of the network architecture for
our attribute prediction model. The model is composed of 5 convolutional layers with
decreasing filter sizes from 11 × 11 to 3 × 3 followed by 3 fully connected layers and
2 dropout layers with probability of 0.5. Additionally, each convolutional layer and
the first two fully connected layers in our model are followed by a batch normalization
layer and a rectified linear unit (ReLU). The last attribute prediction layer is followed by
a sigmoid activation function. We use the cross entropy loss to train the network for
binary attribute prediction. The network is trained using Adam (Kingma and Ba, 2015)
for stochastic optimization with an initial learning rate of 0.001 and a weight decay of
5e− 4.

With this model we can predict the presence ofM = 1, 000 attributes in new images:

ai = fa(xi|θ), (7.1)

such that θ is the model parameters, and ai ∈ RM where the mth element in ai is the
probability of attribute am in image xi, i.e., am

i = p(am|xi). fa(·) provides us with a
detailed visual description of a garment that, as results will show, goes beyond meta-data
typically available from a vendor.
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7.3 Fashion style discovery

For each genre of garments (e.g., Dresses or T-Shirts), we aim to discover the set of
fine-grained styles that emerge. That is, given a set of images X = {xi}N

i=1 we want to
discover the set of K latent styles S = {sk}K

k=1 that are distributed across the items in
various combinations.

We pose our style discovery problem in a nonnegative matrix factorization (NMF)
framework that maintains the interpretability of the discovered styles and scales efficiently
to large data sets. First, we infer the visual attributes present in each image using the
classification network described above. This yields an M × N matrix A ∈ RM×N

indicating the probability that each of the N images contains each of the M visual
attributes. Given A, we infer the matrices W and H with nonnegative entries such that:

A ≈WH where W ∈ RM×K , H ∈ RK×N . (7.2)

We consider a low rank factorization of A, such that A is estimated by a weighted sum
of K rank-1 matrices:

A ≈
K∑

k=1
λk.wk ⊗ hk, (7.3)

where ⊗ is the outer product of the two vectors and λk is the weight of the kth factor
(Kolda and Bader, 2009).

By placing a Dirichlet prior on wk and hk, we insure the nonnegativity of the factoriza-
tion. Moreover, since ||wk||1 = 1, the result can be viewed as a topic model with the
styles learned by Eq. 7.2 as topics over the attributes. That is, the vectors wk denote
common combinations of selected attributes that emerge as the latent style “topics",
such that wm

k = p(am|sk). Each image is a mixture of those styles, and the combination
weights in hk, when H is column-wise normalized, reflect the strength of each style for
that garment, i.e., hi

k = p(sk|xi).

Note that our style model is unsupervised which makes it suitable for style discovery
from large scale data. Furthermore, we employ an efficient estimation for Eq. 7.3 for
large scale data using an online MCMC based approach (Hu et al., 2015). At the same
time, by representing each latent style sk as a mixture of attributes [a1

k, a
2
k, . . . , a

M
k ], we

have the ability to provide a semantic linguistic description of the discovered styles in
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addition to image examples. Figure 7.4 shows examples of styles discovered for three
data sets (genres of products) studied in our experiments.

Finally, our model can easily integrate multiple representations of fashion when it is
available by adjusting the matrix A. That is, given an additional view (e.g., based on
textual description) of the images U ∈ RL×N , we augment the attributes with the new
modality to construct the new data representation Á = [A; U] ∈ R(M+L)×N . Then Á is
factorized as in Eq. 7.2 to discover the latent styles.

7.4 Forecasting visual style

We focus on forecasting the future of fashion over a 1-2 year time course. In this horizon,
we expect consumer purchase behavior to be the foremost indicator of fashion trends. In
longer horizons, e.g., 5-10 years, we expect more factors to play a role in shifting general
tastes, from the social, political, or demographic changes to technological and scientific
advances. Our proposed approach could potentially serve as a quantitative tool towards
understanding trends in such broader contexts, but modeling those factors is currently
out of the scope of our work.

The temporal trajectory of a style. In order to predict the future trend of a visual style,
first we need to recover the temporal dynamics which the style went through up to the
present time. We consider a set of customer transactions Q (e.g., purchases) such that
each transaction qi ∈ Q involves one fashion item with image xqi

∈ X. Let Qt denote
the subset of transactions at time t, e.g., within a period of one month. Then for a style
sk ∈ S, we compute its temporal trajectory yk by measuring the relative frequency of
that style at each time step:

yk
t = 1
|Qt|

∑
qi∈Qt

p(sk|xqi
), (7.4)

for t = 1, . . . , T . Here p(sk|xqi
) is the probability for style sk given image xqi

of the
item in transaction qi.
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Forecasting the future of a style. Given the style temporal trajectory up to time n,
we predict the popularity of the style in the next time step in the future ŷn+1 using an
exponential smoothing model (Brown and Meyer, 1961):

ŷn+1|n = ln

ln = αyn + (1− α)ln−1.
(7.5)

Hence, by expanding the recursive definition of ŷn+1|n, we get:

ŷn+1|n =
n∑

t=1
α(1− α)n−tyt + (1− α)nl0, (7.6)

where α ∈ [0, 1] is the smoothing factor, ln is the smoothing value at time n, and l0 = y0.
In other words, our forecast ŷn+1 is an estimated mean for the future popularity of the
style given its previously observed temporal dynamics yt.

The exponential smoothing model (EXP), with its exponential weighting decay, nicely
captures the intuitive notion that the most recent observed trends and popularities of
styles have higher impact on the future forecast than older observations. Additionally,
due to the range of α, EXP tends to interpolate among previous observations and
predicts smooth transitions of popularity which is expected for short-term forecasts of
fashion trends. Furthermore, our selection of EXP combined with K independent style
trajectories is partly motivated by practical matters, namely the public availability of
product image data accompanied by sales rates. EXP is defined with only one parameter
(α) which can be efficiently estimated from relatively short time series. In practice, as we
will see in results, it outperforms several other standard time series forecasting algorithms,
specialized neural network solutions, and a variant that models all K styles jointly (see
Section 7.6.2). While some styles’ trajectories exhibit seasonal variations (e.g. T-Shirts
are sold in the summer more than in the winter), such changes are insufficient with
regard of the general trend of the style. As we show later, the EXP model outperforms
models that incorporate seasonal variations or styles’ correlations for our data sets.

7.5 Evaluation setup

Data sets. We evaluate our approach on three data sets collected from Amazon by
McAuley et al. (2015). The data sets represent three garment categories for women
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Text
Amanda Uprichard Women's 
Kiana Dress, Royal, Small

Tags
- Women 
- Clothing 
- Dresses 
- Night Out & Cocktail 
- Women's Luxury Brands

Text
Women's Stripe Scoop Tunic 
Tank, Coral, Large

Tags
- Women 
- Clothing 
- Tops & Tees 
- Tanks & Camis

Text
The Big Bang Theory DC 
Comics Slim-Fit T-Shirt 

Tags
- Men
- Clothing
- T-Shirts

Figure 7.3: The fashion items are represented with an image, a textual description, and a set of
tags.

Data set #Items #Transaction

Dresses 19,582 55,956
Tops & Tees 26,848 67,338
Shirts 31,594 94,251

Table 7.1: Statistics of the three data sets from Amazon.

(Dresses and Tops&Tees) and men (Shirts) with around 80,000 unique items. An item
in these sets is represented with a picture, a short textual description, and a set of tags
(see Figure 7.3). Additionally, it contains the dates each time the item was purchased.

These data sets are a good testbed for our model since they capture real-world customers’
preferences in fashion and they span a fairly long period of time. For all experiments,
we consider the data in the time range from January 2008 to December 2013. We use the
data from the years 2008 to 2011 for training, 2012 for validation, and 2013 for testing.
Table 7.1 summarizes the data set sizes.

7.6 Experiments

Our experiments evaluate our model’s ability to forecast fashion. We start with analyzing
the discovered fashion styles by our model (Section 7.6.1). Then, we quantify its perfor-
mance against an array of alternative models, both in terms of forecasters (Section 7.6.2)
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and alternative representations (Section 7.6.3). We also demonstrate its potential power
for providing interpretable forecasts, analyzing style dynamics (Section 7.6.4), and fore-
casting individual fashion elements (Section 7.6.5).

7.6.1 Style discovery

We use our deep model trained on DeepFashion (Liu et al., 2016) (cf. Section 7.2) to infer
the semantic attributes for all items in the three data sets, and then learn K = 30 styles
from each. We found that learning around 30 styles within each category is sufficient to
discover interesting visual styles that are not too generic with large within-style variance
nor too specific, i.e., describing only few items in our data. Our attribute predictions
average 83% AUC on a held-out DeepFashion validation set; attribute ground truth is
unavailable for the Amazon data sets themselves.

Figure 7.4 shows 15 of the discovered visual styles in the three data sets along with the
3 top ranked items based on the likelihood of that style in the items p(sk|xi), and the
most likely attributes per style (p(am|sk)). As anticipated, our model automatically
finds the fine-grained styles within each genre of clothing. While some styles vary across
certain dimensions, there is a certain set of attributes that identify the style signature.
For example, color is not a significant factor in the 1st and 3rd styles (indexed from left
to right) of Dresses. It is the mixture of shape, design, and structure that defines these
styles (sheath, sleeveless and bodycon in 1st, and chiffon, maxi and pleated in 3rd). On
the other hand, the clothing material might dominate certain styles, like leather and
denim in the 11th and 15th style of Dresses, respectively. Having a Dirichlet prior for
the style distribution over the attributes induces sparsity. Hence, our model focuses on
the most distinctive attributes for each style. A naive approach (e.g., clustering) could be
distracted by the many visual factors and become biased towards certain properties like
color, e.g., by grouping all black clothes in one style while ignoring subtle differences in
shape and material.

7.6.2 Style forecasting

Having discovered the latent styles in our data sets, we construct their temporal trajecto-
ries as in Section 7.4 using a temporal resolution of months. We compare our approach
to several well-established forecasting baselines, which we group in three main categories:
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(a) Dresses

(b) Tops & Tees

(c) Shirts

Figure 7.4: The discovered visual styles on (a) Dresses, (b) Tops & Tees and (c) Shirts data sets.
Our model captures the fine-grained differences among the styles within each genre
and provides a semantic description of the style signature based on visual attributes.
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Naïve. These methods rely on the general properties of the trajectory. We consider
three simple models:

1) mean: the future values are forecasted to be equal to the mean of the observed
series, i.e. ŷn+1|n = 1

n

∑n
t=1 yt.

2) last: the forecast is equal to the last observed value, i.e. ŷn+h|n = yn.

3) drift: the forecast follows the general trend of the series, i.e. ŷn+h|n = yn + h
n−1(yn−

y1) where h is the forecast horizon.

Autoregression. These are linear regressors based on the last few observed values’ “lags”.
That is, ŷn = b+ ∑P

i αiyn−i + ε where b is a constant, {αi} are the lag coefficients, P is
the maximum lag (set by cross validation in our case) and ε an error term. We consider
several variations (Box et al., 2015):

1) The standard linear autoregression model (AR).

2) the autoregression model that accounts for seasonality (AR+S): i.e. for a series
with 12 months seasonality the model will also consider the lag at n− 12 along
with most recent lags to predict the current value.

3) the vector autoregression (VAR) that considers the correlations between the differ-
ent styles’ trajectories.

4) and the autoregressive integrated moving average model (ARIMA): it models the
temporal trajectory with two polynomials, one for autoregression and the other
for the moving average.

Neural Networks. Similar to autoregression, the neural models rely on the previous
lags to predict the future; however these models incorporate nonlinearity which make
them more suitable to model complex time series. We consider two architectures with
sigmoid non-linearity:

1) The feed forward neural network (FFNN ).

2) and the time lagged neural network (TLNN ) (Faraway and Chatfield, 1998).

For models that require stationarity (e.g. AR), we consider the differencing order as
a hyperparamtere for each style. All hyperparameters (α for ours, number of lags for
the autoregression, and hidden neurons for neural networks) are estimated over the
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Model Dresses Tops & Tees Shirts
MAE MAPE MAE MAPE MAE MAPE

Naïve
mean 0.0345 25.50 0.0513 17.61 0.0155 6.14
last 0.0192 8.38 0.0237 8.66 0.0160 5.50
drift 0.0201 9.17 0.0158 5.70 0.0177 6.50

Autoregression
AR 0.0174 9.65 0.0148 5.20 0.0120 4.45
AR+S 0.0210 12.78 0.0177 6.41 0.0122 4.51
VAR 0.0290 20.36 0.0422 14.61 0.0150 5.92
ARIMA 0.0186 13.04 0.0154 5.45 0.0092 3.41

Neural Network
TLNN 0.0833 35.45 0.0247 8.49 0.0124 4.24
FFNN 0.0973 41.18 0.0294 10.26 0.0109 3.97

Ours 0.0146 6.54 0.0145 5.36 0.0088 3.16

Table 7.2: The forecast error of our approach compared to several baselines on three data sets.

validation split of the data set. We compare the models based on two metrics: The mean
absolute error

MAE = 1
n

n∑
t=1
|et|, (7.7)

and the mean absolute percentage error

MAPE = 1
n

n∑
t=1
|et

yt

| × 100. (7.8)

Where et = ŷt − yt is the error in predicting yt with ŷt.

Forecasting results. Table 7.2 shows the forecasting performance of all models on
the test data. Here, all models use the identical visual style representation, namely our
attribute-based NMF approach. Our exponential smoothing model outperforms all
baselines across the three data sets. Interestingly, the more involved models like ARIMA,
and the neural networks do not perform better. This may be due to their larger number of
parameters and the relatively short style trajectories. Additionally, no strong correlations
among the styles were detected and VAR showed inferior performance. We expect there
would be higher influence between styles from different garment categories rather than
between styles within a category. Furthermore, modeling seasonality (AR+S) does not
improve the performance of the linear autoregression model. We notice that the Dresses
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(a) (b)

(c) (d)

Figure 7.5: The forecasted popularity estimated by our model for 4 styles from the Tops & Tees
data set. Our model successfully predicts the popularity of styles in the future and
performs well even with challenging trajectories that experience a sudden change in
direction like in (c) and (d).

data set is more challenging than the other two. The styles there exhibit more temporal
variations compared to the ones in Tops&Tees and Shirts, which may explain the larger
forecast error in general. Nonetheless, our model generates a reliable forecast of the
popularity of the styles for a year ahead across all data sets. The forecasted style trajectory
by our approach is within a close range to the actual one (only 3 to 6 percentage error
based on MAPE).

Figure 7.5 visualizes our model’s predictions on four styles from the Tops&Tees data set.
For trajectories in Figure 7.5a and Figure 7.5b, our approach successfully captures the
popularity of styles in year 2013. Styles in Figure 7.5c and Figure 7.5d are much more
challenging. Both of them experience a reflection point at year 2012, from a declining
popularity to an increase and vice versa. Still, the predictions made by our model forecast
this change in direction correctly and the error in the estimated popularity is minor.
Moreover, Figure 7.6 shows the style popularity forecasts estimated by baselines from
the three forecasting groups in comparison to our approach. The Naive and NN based
forecast models seem to produce larger prediction errors. Our model performs the best
followed by the Autoregressor (AR).
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#Styles Dresses Tops & Tees Shirts

15 7.70 6.71 3.03
30 6.54 5.36 3.16
45 8.15 5.98 3.78
70 8.22 5.60 4.10
85 10.66 5.62 4.14

Table 7.3: The forecast error (MAPE) of our approach using varying number of styles.

Number of Styles. Table 7.3 shows the performance of our model in terms of fore-
casting error when varying the number of styles K between 15 and 85. We notice that
increasing K results in introducing more noise in the timeline of the style as some of
them does not capture a consistent style in the data and the forecasting error increases.
Nonetheless, the variance in performance is still acceptable for the tested K values.
Furthermore, we notice that the relative performance of the forecast approaches when
varying K is similar to Table 7.2, with EXP performing the best.

From the visual perspective, we see that at K = 30 the styles have a coherent visual
appearance of mid-level granularity. However, capturing the visual quality of the discov-
ered styles in a quantitative manner is not a trivial task. We believe this is an interesting
and important question for future investigation.

7.6.3 Fashion representation

Thus far we have shown the styles discovered by our approach as well as our ability to
forecast the popularity of visual styles in the future. Next, we examine the impact of
our representation compared to both textual meta-data and CNN-based alternatives.

Meta Information. Fashion items are often accompanied by information other than
the images. We consider two types of meta information supplied with the Amazon data
sets (Figure 7.3):

1) Tags: which identify the categories, the age range, the trademark, the event, etc.

2) Text: which provides a description of the item in natural language.

For both, we learn a unique vocabulary of tags and words across the data set and represent
each item using a bag of words representation. From thereafter, we can employ our
NMF and forecasting models just as we do with our visual attribute-based vocabulary.
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Consequently, we consider a text-only baseline as well as a multi-modal approach that
augments our attribute model with textual cues.

Visual. Attributes are attractive in this problem setting for their interpretability, but how
fully do they capture the visual content? To analyze this, we implement an alternative
representation based on deep features extracted from a pre-trained CNN. In particular,
we train a CNN with an AlexNet-like architecture on the DeepFashion data set to
perform clothing classification. The ClothingNet model is similar to our attribute model
architecture with the last sigmoid layer replaced with a softmax. The network is trained
to distinguish 50 categories of garments (e.g. Sweater, Skirt, Jeans and Jacket) from the
DeepFashion data set. On a held-out test set on DeepFashion, the ClothingNet achieves
86.5% Top-5 accuracy.

Since fashion elements can be local properties (e.g., v-neck) or global (e.g., a-line), we
use the CNN to extract two representations at different abstraction levels: 1) FC7:
features extracted from the last hidden layer; 2) M3: features extracted from the third max
pooling layer after the last convolutional layer. We refer to these as ClothingNet-FC7
and ClothingNet-M3 in the following.

Forecasting results. The textual and visual cues inherently rely on distinct vocabu-
laries, and the metrics applied for Table 7.2 are not comparable across representations.
Nonetheless, we can gauge their relative success in forecasting by measuring the distribu-
tion difference between their predictions and the ground truth styles, in their respective
feature spaces. In particular, we apply the experimental setup of Section 7.6.2, then
record the Kullback-Leibler divergences (KL) between the forecasted distribution and
the actual test set distribution:

KL(p||q) =
∑
si

p(si) log p(si)
q(si)

. (7.9)

For all models, we apply our best performing forecaster from Table 7.2 (EXP).

Table 7.4 shows the effect of each representation on forecasting across all three data
sets. Among all single modality methods, our approach is the best. Compared to the
ClothingNet CNN baselines, our attribute styles are much more reliable. Upon visual
inspection of the learned styles from the CNNs, we find out that they are sensitive to the
pose and spatial configuration of the item and the person in the image. This reduces the
quality of the discovered styles and introduces more noise in their trajectories. Compared
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Model Dresses Tops & Tees Shirts
KL IMP(%) KL IMP(%) KL IMP(%)

Meta Information
Tags 0.0261 0 0.0161 0 0.0093 0
Text 0.0185 29.1 0.0075 53.4 0.0055 40.9
Visual
ClothingNet-FC7 0.0752 -188.1 0.25 -1452.8 0.1077 -1058.1
ClothingNet-M3 0.0625 -139.5 0.0518 -221.7 0.0177 -90.3
Attributes 0.0105 59.8 0.0049 69.6 0.0035 62.4

Multi-Modal
Attributes+Tags 0.0336 -28.7 0.0099 38.5 0.0068 26.9
Attributes+Text 0.0051 80.5 0.0053 67.1 0.0014 84.9
Attr+Tags+Text 0.0041 84.3 0.0052 67.7 0.0014 84.9

Table 7.4: Forecast performance for various fashion representations in terms of KL divergence
(lower is better) and the relative improvement (IMP) over the Tags baseline (higher is
better). Our attribute-based visual styles lead to much more reliable forecasts compared
to meta data or other visual representations.

to the tags alone, the textual description is better, likely because it captures more details
about the appearance of the item. However, compared to any baseline based only onmeta
data, our approach is the best. This is an important finding: predicted visual attributes
yield more reliable fashion forecasting than strong real-world meta-data cues. To see the
future of fashion, it pays off to really look at the images themselves.

The bottom of Table 7.4 shows the results when using various combinations of text and
tags along with attributes. We see that our model is even stronger, arguing for including
meta-data with visual data whenever it is available.

7.6.4 Style dynamics

Having established the ability to forecast visual fashions, we now turn to demonstrating
some suggestive applications. Fashion is a very active domain with styles and designs
going in and out of popularity at varying speeds and stages. The life cycle of fashion
goes through four main stages (Sproles, 1981): 1) introduction; 2) growth; 3) maturity;
and finally 4) decline. Knowing which style is at which level of its lifespan is of extreme
importance for the fashion industry. Understanding the style dynamics helps companies
to adapt their strategies and respond in time to accommodate the customers’ needs. Our
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model offers the opportunity to inspect visual style trends and lifespans. In Figure 7.7,
we visualize the temporal trajectories computed by our model for 6 styles from Dresses.
The trends reveal several categories of styles:

–Out of fashion: styles that are losing popularity at a rapid rate (Figure 7.7a).
–Classic: styles that are relatively popular and show little variations through the years
(Figure 7.7b).

–Trending: styles that are trending and gaining popularity at a high rate (Figure 7.7c).
–Unpopular: styles that are currently at a low popularity rate with no sign of improve-
ment (Figure 7.7d).

–Re-emerging: styles that were popular in the past, declined, and then resurface again
and start trending (Figure 7.7e).

Our model is in a unique position to offer this viewpoint on fashion. For example, using
item popularity and trajectories is not informative about the life cycle of the visual style.
An item lifespan is influenced by many other factors such as pricing, marketing strategy,
and advertising among many others. By learning the latent visual styles in fashion, our
model is able to capture the collective styles shared by many articles and, hence, depicts
a more realistic popularity trajectory that is less influenced by irregularities experienced
by the individual items.

7.6.5 Forecasting elements of fashion

While so far we focused on visual style forecasting, our model is capable of inferring
the popularity of the individual attributes as well. Thus, it can answer questions like:
what kind of fabric, texture, or color will be popular next year? These questions are of
significant interest in the fashion industry (e.g., see the “fashion oracle" World Global
Style Network (DeFabio, 2017; WGSN Limited), which thousands of designers rely on
for trend prediction on silhouettes, palettes, etc.).

We get the attribute popularity p(am|t) at a certain time t in the future through the
forecasted popularity of the styles:

p(am|t) =
∑

sk∈S

p(am|sk)p(sk|t) (7.10)

where p(am|sk) is the probability of attribute am given style sk based on our style
discovery model, and p(sk|t) is the forecated probability of style sk at time t.
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GT

(a) Texture

GT

(b) Shape

Figure 7.8: Our model can predict the popularity of individual fashion attributes using the
forecasted styles as a proxy. The forecasted attributes are shown in color while the
ground truth is in black. The attribute size is relative to its popularity rank.

For the 1000 attributes in our visual vocabulary, our model achieves an intersection with
ground truth popularity rank at 90%, 84% and 88% for the Top 10, 25 and 50 attributes
respectively. Figure 7.8 shows the forecasted texture and shape attributes for the Dresses
test set. Our model successfully captures the most dominant attributes in both groups
of attributes, correctly giving the gist of future styles.

7.7 Summary

In this chapter, we propose a novel application of semantic attributes in fashion analysis.
We propose a model that discovers fine-grained visual styles from large-scale fashion data
in an unsupervised manner. Our model identifies unique style signatures and provides
a semantic description for each based on key visual attributes. Furthermore, based on
user consumption behavior, our model predicts the future popularity of the styles, and
reveals their life cycle and status (e.g. in- or out of fashion). We show that vision is
essential for reliable forecasts, outperforming textual representations. Finally, fashion
is not restricted to apparel; it is present in accessories, automobiles, and even house
furniture. Our model is generic enough to be employed in different domains where a
notion of visual style is present.



Chapter 8

Conclusion

In this thesis, we explored how visual semantic description can be effectively employed in
transfer learning as an intermediate representation in order to share knowledge between
source and target domains. In the following, we summarize the key contributions of
this thesis then we discuss possible directions for future work.

Semantic representations for transfer learning.
Peer-reviewed publications: Al-Halah et al. (2014b, 2016a)
We started in Chapter 3 with a thorough analysis of the interplay of knowledge repre-
sentations and the various transfer schemes (i.e. representation-, instance- and parameter-
transfer). We proposed a hierarchical semantic representation based on attributes along
with a transfer framework for action similarity learning. In our experiments, we ob-
served a positive correlation between the abstraction level of knowledge encoded in the
representation with its performance and robustness against negative transfer effect. More-
over, decorrelating the semantic space before transfer proved to be crucial for improved
performance. Interestingly, we find out that transferring from a relatively simple source
domain to a more complex and diverse target domain is still beneficial when labeled data
in the target is extremely sparse and when using proper knowledge representation.

Hierarchical transfer of semantic attributes.
Peer-reviewed publication: Al-Halah and Stiefelhagen (2015b)
In Chapter 4, we build on our previous findings and introduce a novel model to incorpo-
rate structured knowledge to guide and improve transfer learning. Here, we leverage the
structure knowledge in the category space to learn semantic attributes at different levels
of abstraction. This effectively enriches our source domain with additional attribute
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models with various specificity along the categories spectrum. Additionally, our model
employs the inter-class hierarchical relations to guide the whole transfer process by
selecting and constructing the most relevant attribute models for an unseen class.

Unsupervised attribute-based ZSL. While attribute-based transfer proved to be very
successful in various transfer learning problems, like zero-shot learning for example,
they usually required a high level of user supervision. In this work, we systematically
reduced the required supervision needed in learning and transferring semantic attributes
by proposing novel models for association predictions and vocabulary discovery from
text.

Association prediction via semantic relations.
Peer-reviewed publication: Al-Halah et al. (2016b)
In Chapter 5, we circumvent the need for manually defined class-attribute associations
by modeling semantic relations of classes and attributes. We propose a bilinear approach
that models these relations in the word embedding space. Given a novel class name, our
model can accurately predict the class associations with all attributes, hence effectively
providing an unsupervised zero-shot learning framework. Moreover, we provide an
efficient scheme to select “when to transfer” to the unseen class based on our confidence
in the predicted associations which improves the performance of our model even further.
The ability to predict association automatically enables our model to easily transfer
semantic attributes across data sets without any user intervention or additional labeling.

Automatic discovery of attribute vocabulary.
Peer-reviewed publication: Al-Halah and Stiefelhagen (2017)
In Chapter 6, we go a step further and propose to automatically discover semantic
attribute vocabulary from online articles at a large scale. We introduce a novel model
that can analyze free form encyclopedia articles describing object categories to mine
salient, discriminative and diverse set of semantic attributes. This discovered semantic
vocabulary is then associated with categories using a deep model in a joint optimization
framework. We show that the vocabulary mined by our model correlated well with
human understanding of semantic attributes and that the proposed model can account
for noise and missing information in text when optimizing associations. In a large-scale
evaluation, our deep attribute model demonstrated high performance and generalized
well across data sets.
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Forecasting the future of fashion.
Peer-reviewed publication: Al-Halah et al. (2017)
Finally, in Chapter 7 we introduce a novel application for semantic attributes in the do-
main of fashion analysis. We present the first work to discover fine-grained visual fashion
styles and forecast their popularity in the future. Our proposed model leverages semantic
attributes to learn fashion styles in unsupervised way and at a large scale. Then, these
styles are correlated with customer preferences captured from online shopping services.
This enables us to learn the popularity trajectories for each style through time and predict
how this popularity will change in the near future. Additionally, the proposed model is
capable of revealing the style life cycles and status through time which provides us with a
unique opportunity for an in depth analysis of fashion styles. Moreover, we demonstrate
that attribute-based representation for fashion helps in producing interpretable styles
and leads to the most reliable forecasts, outperforming other forms of visual and textual
representations.

8.1 Discussion and open directions

Transfer learning is a key factor in creating models with the ability to generalize well to
different tasks and domains. We addressed through this thesis some of the key challenges
and aspects of transfer learning in visual recognition, especially when the target training
data is scarce or not available. Additionally, we have discussed the properties and some
of the limitations of the proposed approaches at the end of the relevant chapter. Next,
we discuss a common aspect of the work presented in this thesis. The transfer learning
aspects tackled in this work represent a static view of the learning domain. That is, there
is a source and target domain and the problem is how to extract relevant knowledge from
the source and transfer to the target. However, learning is a continuous and accumulative
process. We, humans, go through a lifelong endeavor of learning and adapting to our
environment. Not only we can transfer our experience to new tasks but also incorporate
the feedback we acquire from learning the new task to expand and update our knowledge.
In machine learning, this ability is usually referred to as lifelong learning or learning to
learn (Thrun andMitchell, 1995). In lifelong learning, the tasks are presented sequentially
to the model and the aim is to learn new capabilities while at the same time maintain
performance on the old ones. Any practical application in visual recognition requires
such an ability since it is infeasible to keep accumulating data and retraining models
from scratch whenever a new task is encountered. This direction represents a natural
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extension to our work on transfer learning in this thesis. The number of visual categories
learned by modern machine learning models is in the range of a 1000 (Russakovsky et al.,
2015). However, there are tens of thousands of visual categories (Biederman, 1987) with
new visual and semantic concepts appearing every day. Hence, the model should be
able to know what, how and when to transfer along with how to expand its knowledge in
lifelong learning.
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