

Model-based description of the temperature-dependent strength of ferritic and austenitic ODS steels

S. Seils, D. Schliephake, T. Boll, A. Kauffmann, M. Heilmaier

Thermec 2018

Institute for Applied Materials IAM–WK

Motivation

Suitable for high temperature applications Nano-scaled oxide particles \rightarrow nanoclusters

- Possible advantages of austenitic ODS steels
 - Higher corrosion resistance
 - Higher creep resistance due to crystal structure
- Identification of differences in mechanical properties of ferritic and austenitic ODS steels

Materials

ODS steels with simple composition to enable comparison

Mechanical alloying

Ferritic ODS steel

- Fe-14Cr-0.4Ti-0.25Y₂O₃ (in wt.%)
- Composition similar to 14YWT
- Elemental powders and Y₂O₃ powder
- Milling in an attritor
- Investigated alloys:
 - **Fe14 UM** (unimodal grain size)
 - **Fe14 BM** (bimodal grain size)

- Austenitic ODS steel
 - Fe-25Cr-20Ni-0.4Ti-0.25Y₂O₃
 - Composition similar to the high temperature steel AISI 310
 - Elemental powders and Y₂O₃ powder
 - Milling in a planetary ball mill
 - Investigated alloy:
 - Fe25/20

Consolidation

- Field assisted sintering technique (FAST)
- 5 min at 1100 °C and 50 MPa

Prevents coarsening of grains and nanoclusters

7/30/2018

Temperature-dependent strength

- Compression tests Temperatures up to 800 °C
- Initial strain rate $\dot{\varepsilon} = 10^{-4} \text{ s}^{-1}$
- Ferritic ODS steels have higher strength in the entire temperature range
- Drop of strength above 400 to 500 °C due to creep deformation

- Low temperature range
 - Superposition of strengthening mechanisms
 - Temperature dependency of shear modulus
- Creep models to describe high temperature strength

Calculation of yield strength

 $\sigma_{\rm dis} = \alpha M G B \sqrt{\rho_{\rm dis}}$

 $\sigma_{\rm HP} = \frac{k_{\rm HP}}{\sqrt{d_{\rm g}}}$

$$\sigma_{\rm OR} = \frac{MGb}{d_{\rm p}} \sqrt{\frac{6f_{\rm p}}{\pi}}$$

Dislocation strengthening

Hall-Petch strengthening

Orowan strengthening

7/30/2018

Sascha Seils

Dislocation density

- All ODS steels are singlephase after consolidation
- Differences in peak width → Williamson-Hall analysis
- Correction of device specific broadening and elastic anisotropy
- Dislocation density is
 ~ 10¹⁵ m⁻² in ferritic ODS steels and ~ 10¹³ m⁻² in
 Fe25/20

bcc

♦ fcc

Strong recovery and/or recrystallization expected during consolidation of austenitic ODS steels

7

- Area normalized grain sizes analyzed by EBSD
- Austenitic ODS steel Fe25/20 has smallest grain size
- **Fe14 BM** shows bimodal grain size distribution

Analysis of nanoclusters

3D reconstruction of a Fe25/20 tip

- Analysis with atom probe tomography
- Nanocluster size is between 3 and 5 nm
- Volume fraction of particles is 0.06 to 0.08 vol.%
- Broad size distribution
- Inhomogeneous distribution of particles in the atom probe tips

8

Calculation of yield strength

 $\sigma_{\rm dis} = \alpha M G B \sqrt{\rho_{\rm dis}}$

Dislocation strengthening

 $\sigma_{\rm HP} = \frac{k_{\rm HP}}{\sqrt{d_{\rm g}}}$

Hall-Petch strengthening

Orowan strengthening

 $\sigma_{\rm OR} = \frac{MGb}{d_{\rm p}} \sqrt{\frac{6f_{\rm p}}{\pi}}$

- Additional contributions from Peierls stress and solid solution strengthening
- Superposition depends on strength and density of obstacles [1]

Lower limit \rightarrow strong interaction of strengthening mechanisms

$$\sqrt{\sum_{i} \sigma_{i}^{2}} \le \sigma_{p0.2} \le \sum_{i} \sigma_{i}$$

Upper limit \rightarrow no interaction of strengthening mechanisms

- Furthermore, a discussion of uncertainties is necessary
- Uncertainties from literature data for constants and from experimentally determined parameters
- Orowan mechanism for smallest nanoclusters?

[1] Kocks et al., Progress in Materials Science (1975) 19

Calculation of yield strength

Green and grey columns visualize the minimum and maximum calculated strength, respectively

Linear superposition overestimates the experimentally determined strength

Error bars symbolize uncertainties resulting from experimentally determined microstructural parameters

A range for the expected strength of an ODS steel can be calculated with the knowledge of microstructural parameters

ī

7/30/2018

10

 $\sigma_{\rm p0.2} = \sum \sigma_{\rm i}$

Sascha Seils

Model-based description of the temperature-dependent strength in ferritic and austenitic ODS steels

Most important strengthening mechanisms

- Most important strengthening mechanisms in ODS steels are
 - Orowan strengthening
 - Hall-Petch strengthening
 - Dislocation strengthening (in ferritic ODS steels)
- Lower strength of austenitic ODS steels
 - Lower dislocation density due to recovery and/or recrystallization during consolidation
 - Lower Hall-Petch constant [1]:
 0.3 vs. 0.6 MPa·m^{1/2}

[1] Kashyap et al., Acta Materialia 50 (2002) 9

Strength at high temperatures

- Dislocation-based creep following Blum and Zeng [1]
- Annihilation and formation of dislocations at grain boundaries

$$\sigma_{\rm BZ} = \boldsymbol{k}_{\rm BZ} \cdot G \left(\frac{\pi (1-\nu)M^9}{1.2^4} \right)^{\frac{1}{8}} \cdot \left(\frac{k_{\rm B}T}{G\delta_{\rm gb}\boldsymbol{D}_{\rm gb0}} \cdot \dot{\boldsymbol{\varepsilon}} \right)^{\frac{1}{8}} \cdot \exp\left(\frac{\boldsymbol{Q}_{\rm gb}}{8RT} \right) \cdot \left(\frac{d_{\rm g}}{b} \right)^{-\frac{1}{2}}$$

Influence of Q_{gb}

[1] Blum and Zeng, Acta Materialia, 59 (2011) 15, 6205-6206

Model-based description of the temperature-dependent strength in ferritic and austenitic ODS steels

Model-based description of the yield strength

- Low temperature range
 - Linear superposition of strengthening contributions
 - Fitting to experimental data by a linear scaling factor

High temperature range

- Fitting to experimental data by varying the activation energy Q_{gb} and k_{BZ}
- Obtained values are in a reasonable range for ODS steels

B&Z model can be used to describe the strength at high temperatures Dislocation-based creep can be assumed

Conclusions

- Austenitic ODS steel shows lower strength due to lower contributions from dislocation strengthening and Hall-Petch strengthening
- In the low temperature range, yield strength can be described by the superposition of strengthening mechanisms
- Experimental uncertainties and unknown interaction of strengthening mechanisms has to be taken into account
- In the high temperature range the drop in yield strength can be described dislocation-based creep following the Blum & Zeng model
- The activation energy Q_{gb} and the constant k_{BZ} are used to fit the calculation to experimental data

Thank you for your attention!

Sascha Seils

Model-based description of the temperature-dependent strength in ferritic and austenitic ODS steels